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Abstract of a thesis submitted in partial fulfilment of the requirements for the 

Degree of Doctor of Philosophy. 

 

The assessment and potential for mitigation of phosphorus losses from 

Organic soils under intensive dairying  

 

Bernard Simmonds 

 

The development of marginal land under Organic soils for intensive agricultural use is 

commonplace around the globe, being driven by population growth and the limited availability 

of alternative, highly productive soils. The development of Organic soils typically involves 

drainage and the application of lime and phosphorus (P) fertiliser amendments, to rectify 

acidic soil conditions and poor fertility for pastoral production. However, due to the poor P 

retention capabilities of Organic soil (a result of low concentrations of P-sorbing metal oxides) 

there is an elevated risk of P losses in runoff which can have dire agronomic and environmental 

consequences. The main aims of this thesis were to identify which properties of Organic soils 

best indicate the potential scale of P losses, the timeframe over which the risk of P losses is 

greatest, and how soil and land management variables including soil moisture, liming and 

fertiliser rates, fertiliser solubility, and mineral content can influence the quantities, forms and 

fractions of P exported from the landscape. A trial was conducted to quantify the importance 

of a number of soil physical and chemical properties, and land management activities on the 

potential for P losses. The results of this trial indicated that the effective management of P 

losses from Organic soils is critical for at least the first 10 years of development, and that P 

losses were driven by soil P and mineral concentrations. Management within the first 10 years 

includes drainage, applications of P fertiliser and liming amendments. To this end, a recently-

developed acid Organic soil was used in a runoff trial and three lysimeter studies to determine 

the influence of these variables: 

The runoff trial compared the role of soil moisture on the quantities, forms and fractions of P 

lost in overland and subsurface flow from an Organic soil and a Brown soil. This study 

demonstrated that soil moisture influenced P loss pathways, but the interactions with soil type 
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(e.g. anion storage capacity) determined the form and quantity of P lost, which may have 

implications for the drainage or irrigation of Organic soils. The first lysimeter trial determined 

the influence of liming Organic soils at different fertiliser rates to the forms and fractions of P 

lost in leachate, retained in the soil and herbage response. The trial found that liming Organic 

soils had the potential to reduce P concentrations in leachate, and had a positive influence on 

herbage. The second lysimeter trial determined the importance of P fertiliser solubility for P 

losses from acid Organic soils at different rates and pH levels. Results showed that the cost of 

P losses from superphosphate (SSP) treated soils were two to three times greater than reactive 

phosphate rock (RPR), suggesting that the additional cost of RPR and liming to pH > 5.5 has 

the potential to offset P losses from SSP fertilisers, making it a more environmentally 

responsible practice with minimal economic drawbacks. The third lysimeter trial investigated 

the potential for greater lotus (Lotus pedunculatus var. Grasslands Sunrise) to be used in place 

of white clover (Trifolium repens) or ryegrass (Lolium perenne) on an acid Organic soil. The trial 

found no differences in soil P fractions under the three species, and that P uptake into lotus 

was similar or less than ryegrass and clover, but losses in leachate were commonly greater. 

Finally, an incubation study was devised to quantify the relative importance of metal oxide 

concentrations and soil carbon content for P losses, and to determine the potential for the use 

of mineral amendments to reduce P losses. P losses (as water extractable P; WEP) were 

reduced by the addition of aluminium sulphate, iron sulphate and calcium sulphate in all cases, 

and results indicated that P-sorption to aluminium sulphate was the most important factor 

controlling P release as WEP from these soils. 

 

In conclusion, the findings of this study demonstrated that although Organic soils have the 

potential to lose far greater quantities of P than other soil types, and this is lost predominantly 

as subsurface flow, there are a number of management practices and approaches that can 

alleviate environmental risk and require minimal sacrifices to agronomic productivity. This 

includes identifying the potential for P losses from Organic and Podzol soils using simple soil 

tests (Olsen P and P retention or anion storage capacity), accounting for the likelihood of P 

losses in subsurface and overland flow with regard to soil moisture, irrigation and drainage 

activities, and mitigating the potential for P losses by increasing lime inputs in combination 

with sparingly-soluble fertilisers (e.g. RPR). 
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Chapter 1 

Introduction 

 

1.1 Background 

 

The world’s human population has been estimated to increase from 7 billion in 2012 to 8.5 

billion by 2025 and have doubled within 60 years (Bolan et al. 2004; Pimentel 2012). Along 

with anthropogenic encroachment in residential and industrial sectors, there will be a 

concurrent expansion in agriculture to meet the demands of a growing population. Agriculture 

currently occupies around 40% of the land surface area (Foley et al. 2005) and at present rates 

of population growth, agricultural intensification and technical development, agriculture will 

require the equivalent of 50% of the land surface area by 2030 to sustain current levels of food 

consumption per capita (Schneider et al. 2011). Globally, grassland-based farming systems 

have differing degrees of importance and contribute in varying ways to milk production. In 

Denmark, 63% of the land area is agricultural (OECD 2008) and the area under grass in dairy 

farms is around 29% with higher proportions for maize and other crops (30% land use). In 

Ireland, the same land area is given over to agriculture (63%), but grasslands cover 100% of 

dairy farmed land and stocking rates are twice that of Denmark (2.06 cows ha-1), with around 

50% higher milk production (12,300 kg ha-1 farmland) (Kristensen et al. 2005). In New Zealand, 

only 47% of the land area is agricultural (66% grasslands) but is of high importance to the 

economy, contributing 4% to GDP in 2014, with dairying exports alone representing 25% of all 

exports  (MacLeod and Moller 2006; OECD 2015). Due to the finite nature of quality 

agricultural land and seemingly boundless growth in the human population, further 

intensification of existing land (Ehrlich and Holdren 1971; Steinfeld et al. 2006), deforestation 

and development of new productive land (Lambin and Meyfroidt 2011) and the conversion of 

marginal land (Ehrlich and Holdren 1971) are predictable outcomes.  

 

Land intensification typically involves increased cropping rates, a shift towards more value-

added production, and increased amounts and frequency of inputs (Dumanski and Pieri 2000). 

Of these attributes, arguably the most significant in terms of both environmental impacts and 

economic benefits has been the use of fertilisers to increase agricultural production. During 
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the past 40 years, global fertilizer use has increased by around 700%, with a 70% increase in 

irrigated cropland area (Foley et al. 2005). While the net result of this rapid growth in 

productivity has been an improved diet for the steadily growing population (Hertel 2011), 

there is evidence to suggest that staple crops have a biological limit to their maximum yield. 

For example, Mann (1999) states that the average maize harvest in the United States has 

increased from 5 metric tonnes per hectare in 1967, to 8 t ha-1 in 1997, yet the highest 

recorded yields have remained at around 20 t ha-1 since the mid-1970s. This implies that 

population growth has the potential to eventually outstrip agricultural production. In 

conjunction with the current widespread opposition to genetically modified crops (Hertel 

2011), an increasing demand for food may necessitate and even improve the economic 

viability of utilising “marginal” land for agricultural purposes. Intensification of production has 

occurred recently in New Zealand which has seen an increase in dairy herd size together with 

fertiliser use. For example, the OECD (2008) report that P fertiliser use has increased 100% in 

the period 1990-92 to 2002-04. Both changing land use and intensification in New Zealand 

from the 1980s, especially of dairying, have been linked to a national decline in water quality, 

including P-enrichment (Ballantine et al. 2010). 

 

1.2 Marginal soils 

 

Marginal land can be defined as land with qualities that at present make it unsuitable for 

agriculture. Generally, the suitability of land for a particular activity is determined by physical 

and chemical characteristics of the land and its productivity, including water and wind erosion 

potential (Larson et al. 1988; Littleboy et al. 1996). Improvements in agricultural technology 

have increased the productive capacity of marginal soils in many cases. For example, soils with 

low natural P concentrations and high organic matter content (i.e. the Waituna Lagoon 

catchment, Southland, New Zealand) can require significant additions of P fertiliser to improve 

production. However, there are difficulties centred around the development of marginal lands 

with a strong reliance on fertilisers. For example, the inherently high nutrient loss 

characteristics of some marginal soil types (e.g. Organic soils) can render conventional farming 

practices inefficient (Iho and Laukkanen 2012) and result in detrimental environmental effects 

including the eutrophication of freshwater systems (Mann 1999). Because of this, the 
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conversion of marginal land to meet the demands of population growth is considered less 

desirable than further intensification of existing agricultural land (Cassman et al. 2002). 

  

1.3 Phosphorus in the environment 

 

Phosphorus (P) is frequently the main limiting nutrient for plant growth in terrestrial and 

aquatic ecosystems (e.g. McDowell et al. 2009). While there are obvious economic advantages 

to enhancing soil fertility by adding fertilisers, including increased animal stocking rates and 

production (MacLeod and Moller 2006), P is the most expensive macro-nutrient applied to 

pastoral soil (Edmeades et al. 2006; Gilbert 2009). Additionally, anthropogenic P inputs are a 

causative agent of accelerated aquatic eutrophication and can increase rates of eutrophication 

beyond natural levels (Abell et al. 2010; Qin 2009). Eutrophication is defined as the nutrient 

enrichment of aquatic ecosystems and frequently results in an array of symptomatic changes 

that impair water use (Likens et al. 1971). The process of eutrophication often occurs in 

sequential steps. Nutrients are primarily introduced from terrestrial landscapes by pathways 

that include infiltration- and saturation-excess overland flow (McDowell et al. 2004). Nutrient 

enrichment is followed by a period of increased primary productivity and succession in algal 

communities that typically culminates with the dominance of cyanobacterial species or 

extensive periphyton growth (Carpenter et al. 1998a; Khan and Ansari 2005). Long periods of 

phytoplankton growth can exhaust dissolved inorganic nutrient concentrations in the 

epilimnion, with senescence transporting organic nutrients to the hypolimnion, stimulating 

enhanced microbial decomposition which leads to hypolimnetic anoxia and the regeneration 

of ammonium (Borowiak et al. 2010; Meersche et al. 2004). Phosphorus in the water column 

is then able to become aggregated into insoluble flocculent and particulate organic forms 

which settle out and continue to bind P at the sediment/water interface. These aggregates 

dissolve under anoxic conditions, allowing filterable reactive phosphorus (FRP) to diffuse into 

the hypolimnion, further perpetuating eutrophic symptoms by creating a positive feedback 

loop that can be extremely difficult to mitigate once established (Bennion et al. 1996; 

Johannessen and Dahl 1996; Kalff 2002a). Other attributes of a eutrophic water body include 

the loss of biodiversity as eutrophic conditions favour competitive exotic species (Codd 2000), 

predatory dinoflagellate genera (e.g. Pfiesteria) (Burkholder and Glasgow 1997), reductions in 
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water transparency, undesirable odours, and the unsuitability of water for stock or human 

consumption (van den Brandt and Smit 1998). Bennett et al. (2001) determined that global 

inputs of P to terrestrial soils and freshwater ecosystems ranges from 33.5 and 38.5 Tg (1 Tg = 

1 million metric tonnes) annually. The global cost of accelerated eutrophication is difficult to 

quantify; having negative impacts on not only recreational activities, but also commercial 

ventures, including tourism and food. For the United States alone, eutrophication accounts for 

60% of impaired river reaches (Smith 2003), while the annual cost of water pollution control 

is estimated at US $80 x 109 per year (Carpenter et al. 1998b). In New Zealand, between 73% 

and 63% of freshwater lotic systems are P limited, and 14% and 20% are N and P co-limited 

(North and South Islands, respectively) (McDowell, Larned and Houlbrooke 2009). 

 

Driven by the declining quality of fresh water resources (Abell et al. 2010; Scanlon et al. 2007), 

a considerable amount of research has been conducted with the intent to maximise 

production and minimise P export from the landscape. Strategies include; reducing mobile P 

fractions through the use of slow-release fertilisers, such as RPR or serpentine super 

(McDowell and Catto 2005); trialling soil additions that reduce phosphorus flux, for example, 

alum (Al2(SO4)3·14H2O) (Moore and Miller 1994); and timing fertiliser applications to prevent 

losses to overland flow (McDowell and Catto 2005). 

 

1.4 Phosphorus in soils 

 

Phosphorus in soils naturally originates from the weathering of P-bearing minerals in rock 

substrata (Föllmi et al. 2009). As soils weather, the proportion primary mineral P (e.g. apatite) 

to labile inorganic and organic P fractions change; termed pedogenesis (Walker and Syers 

1976). The total P content of the soil at a given time is a combination of organic and inorganic 

mineral components, all with varying degrees of solubility and abilities to supply plant 

available P (McDowell et al. 2001). Phosphorus deficiencies in agricultural soils are mitigated 

by the application of fertilisers. Fertilisers range in P composition and plant availability, and 

are applied with regard to the physiochemical attributes of the soil, the specific requirements 

of the crops, environmental factors (e.g. precipitation) and cost-effectiveness.  
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Organic and inorganic soil P fractions – Around 30 to 80% of the total P present in soils exists 

as an organic fraction derived from the decomposition of plant, animal and microbial cells 

(Harrison 1987). New Zealand has a high number of soils with organic P fractions frequently in 

excess of 60% of total P (Cornforth 1998). Orthophosphate monoesters and diesters comprise 

some 60-90% of the total organic-P fraction and can form insoluble mineral compounds with 

iron, calcium and aluminium ions (Chang and Jackson 1957). There is debate over the plant 

and algal availability of organic P, with studies showing high and low availability depending on 

the exact form of organic P present in the soil and soil solution (Turner et al. 2003).  

Depending on the composition of the organic matter (OM), negatively charged 

carboxyl/hydroxyl function groups of OM can compete in solution with orthophosphoric acid 

esters to form bridging ligands with positively charged minerals, including iron (Fe) and 

aluminium (Al) oxides (Gu et al. 1994; Hinsinger 2001). These sorption processes subsequently 

influence the amount of P in active and fixed pools. Inorganic forms of P include apatite, 

complexes of calcium (Ca), Fe and Al phosphate, and adsorbed phosphate (Chang and Jackson 

1957). The importance of these P precipitates and sorption products to P availability relates 

to their relative quantities within the soil, the presence of competing P-fixing materials, and 

the physicochemical properties of the soil (e.g. pH, moisture regime and redox potential).  

 

Organic and inorganic aqueous P fractions – Forms of P lost in runoff from agricultural land 

have been operationally defined: first, physically by filtration at 0.45 μm and secondly, 

chemically by whether or not the fraction of P is detectable (or reactive) with the commonly 

used acid-Mo based colorimetric technique of Murphy and Riley (1962) and subsequent 

colorimetric variants (e.g. Watanabe and Olsen 1965). The fraction that is reactive and < 0.45 

μm is called dissolved or soluble reactive P (DRP or SRP), but more correctly called filtered 

reactive P (FRP). The digestion (e.g. persulphate; Eisenreich et al. 1975) of a sample which 

passes through the filter enables the determination of total filtered P (TFP). The difference 

between TFP and FRP is unreactive (FUP) P which is commonly thought to contain mostly 

organic P species, but can also contain some inorganic P species such as polyphosphate which 

are colorimetrically unreactive (McDowell et al. 2001). Phosphorus that is greater than 0.45 

μm is termed particulate P (PP) and can contain inorganic and organic P species. The 

proportion of PP in a sample is determined by difference of total P determined on a digested 

unfiltered sample and TFP.  
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These operationally defined P fractions have important implications for freshwater 

eutrophication. For example, FRP is highly bioavailable to periphyton and hence is the 

controlling factor in lotic systems (flowing streams and rivers) where there is limited residence 

time or opportunity to uptake P. In lentic systems (lakes, reservoirs and estuaries) both filtered 

and particulate fractions play a significant role as external P inputs are coupled with internal 

P loading, stimulating algal growth over long periods of time due to annual cyclic mixing and 

stratification events (Bennion et al. 1996; Kalff 2002b). There is debate over the plant and algal 

availability of organic P, with studies showing high and low bioavailability depending on the 

exact form of organic P present (Turner et al. 2003). Despite being more important in lotic 

systems, PP can be filtered from the water by periphyton or macrophytes (e.g. in a wetland) 

resulting in flow attenuation and an increase in the advective transport of FRP from the 

sediment (Dodds 2003). Although wetlands act as an important filter for PP (Cooke et al. 1992), 

they can act as a source of P when loading rates exceed the long-term sink capacity, and more 

importantly, when anerobic conditions occur leading to the dissolution of FRP (Richardson 

1989; Richardson et al. 1996). The eutrophication symptoms exhibited by lagoons and 

estuaries represents a convergence of lentic and lotic systems in that high concentrations of 

FRP will stimulate immediate algal productivity, as with lentic and lotic systems (Anderson et 

al. 2002), and that deposition of PP can become a major component of algal growth, as with 

lotic systems. 

 

1.5 Catchment attributes that affect P transport 

 

Catchments can be highly diverse in terms of their soils, topography, hydrologic regimes and 

land use and management characteristics. As a result of these differences, the pathways for P 

losses from terrestrial landscapes are also spatially variable. Small areas within catchments 

that have disproportionately high P loss characteristics are termed critical source areas (CSAs) 

(McDowell et al. 2004) and generally occur where transport mechanisms (e.g. overland flow) 

and contaminant sources (e.g. stock tracks) overlap (McDowell and Srinivasan 2009).  

 

1.5.1 Land use – Agricultural soils have a higher potential for P loss as they receive additional 

phosphorus in the form of fertilisers or dung and are prone to treading, compaction or erosion 
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exacerbated by animals and machinery (Figure 1.1). Compaction and treading can exacerbate 

erosion and overland flow by decreasing the macropore content of a soil and increasing its 

bulk density, influencing the movement of water through the soil (Nguyen et al. 1998). This 

can be a major concern in southern New Zealand, where animals are placed in fields with a 

forage crop (e.g. Brassica rutabaga L.) during winter. The higher soil moisture content at this 

time results in enhanced rates of physical degradation and runoff as moist soils are structurally 

less resistant to treading (McDowell et al. 2003a; McDowell et al. 2003b). The type and density 

of stock also play a key role. McDowell and Wilcock (2008) compared the relative losses of 

nitrogen, P and suspended sediment (SS) from New Zealand catchments containing exotic 

plantation and native forest (vegetation), sheep, deer, dairy and multiple stock types (mixed). 

The authors found that mean P losses were not significantly different between deer, mixed 

and dairy land uses, but were higher than sheep and vegetation. This indicates that some stock 

types are potentially associated with greater rates of P loss per unit area. These findings could 

be explained by the greater weight of cattle enhancing treading and compaction (Drewry et 

al. 2000), and the behavioural attributes of deer, including wallowing and fence line pacing 

(McDowell et al. 2006). The crushing of plant material can also increase P losses in subsurface 

flow (McDowell et al. 2003b), as indicated by Sharpley and Smith (1989) who recorded losses 

as high as 40% when plant residues were incorporated into soils. While some management 

activities clearly influence the quantity of P exported from a landscape, the availability of FRP 

for export from soils is predominantly a function of soil mineral content and pH, moisture 

regime, oxygen-reduction processes. 

 

 

Figure 1.1. Conceptual diagram of catchment P transport processes (adapted from Johnes and 

Hodgkinson 1998; McDowell et al. 2004). 
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1.5.2 Soil pH – Soil pH influences the availability of P by controlling levels of metal oxides that 

can precipitate with P, including Al, magnesium (Mn), Fe and Ca. Soluble calcium phosphate 

precipitates in alkaline soils at pH values of around 8 (Ferguson et al. 1973; Richardson et al. 

1996) and may eventually be converted to sparingly soluble tricalcium phosphate and then to 

new apatite minerals (Chang and Jackson 1957). The dissolution of Ca phosphates occurs 

under acidic conditions where Al and Fe phosphates are able to precipitate (pH < 3.5 and pH 

4-6, respectively) (McDowell et al. 2001; Oburger et al. 2011). However, under acidic 

conditions, Al concentrations can build to phytotoxic levels and inhibit the P uptake capacity 

of plants (Haynes 1982), further limiting P availability as Fe and Al phosphates are also 

insoluble and not plant available.   

 

Figure 1.2. The sorption and solubility of phosphate species and overlapping availability to white clover 

and Lotus sp. with pH (adapted from Lindsay 1979). 

 

1.5.3 Moisture regime – Wetting and drying cycles in acidic wetlands are coupled with 

alternating anaerobic and aerobic soil conditions due to the reductive effects of microbial 

activity during inundation, and oxygenation following drying. When soil conditions become 

anoxic, ferrous iron is used as a supplementary terminal electron receptor in lieu of oxygen, 

and Fe (III) phosphates are reduced to Fe (II) phosphates, promoting the release of P previously 

occluded by the iron compounds (Mack and Barber 1960). Subsequent drying processes 
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further exacerbate P release as soil microbes become mineralised during dry periods, and then 

liberate mineralised inorganic P to the overlying water column when re-wetted (Olila et al. 

1997). 

 

1.6 Transport processes 

 

The quantity and to some degree the form of P lost from land to water can be determined by 

the transport pathway. Runoff is a combination of surface flow and subsurface drainage (also 

called leaching), by which all forms of P are transported (Figure. 1.1). Atmospheric deposition 

of P tends to be minor (McDowell et al. 2009).  

 

1.6.1 Overland flow – The two major processes of surface runoff are saturation excess (Dunne) 

and infiltration excess (Hortonian) overland flow (Table 1.1, Figure 1.1). Saturation excess 

overland flow occurs in soils that have met their capacity for moisture storage (Dunne and 

Black 1970) and a precipitation rate that is less than or equal to the saturated hydraulic 

conductivity of the land surface causes water exfiltration at the surface (Kollet and Maxwell 

2006). Infiltration-excess runoff occurs when the rainfall rate exceeds the saturated hydraulic 

conductivity of the land, resulting in an accumulation of water (ponding) at the surface as the 

soil drainage takes place (Kollet and Maxwell 2006). Due to the large amount of kinetic energy 

associated with surface runoff, especially infiltration-excess surface runoff, erosion occurs and 

PP is preferentially lost over filtered forms (Kleinman et al. 2009). However, there is some 

evidence to show that in grassland (and grazed pastoral) situations, the filtration action of the 

pasture, and low rainfall intensities generally associated with climates where pasture is 

grazed, causes filtered P to be preferentially lost over PP (Nash et al. 2000). 

 

Phosphorus fertiliser losses in overland flow arise from a number of incidental and systematic 

effects (Dougherty et al. 2011) including the timing and type of fertiliser used with regard to 

precipitation (McDowell et al. 2010), the physicochemical properties of the soil, including its 

anion storage capacity (Morton et al. 2003) and pH (McDowell et al. 2002), and soil P 

concentrations (McDowell and Sharpley 2001a). However, agricultural landscapes with a long 

history of intensive management can still contribute significant P loads to aquatic waterways 
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in spite of reductions in fertiliser inputs. This takes place where mineral soils and sediments 

accrue P over time, eventually becoming ‘over fertilised’ (Haygarth et al. 1998). These soils 

can have internal P supplies that exceed external inputs (Dunne et al. 2010) and phosphorus 

losses occur as FRP is diffused or advected from underlying soil pore waters to overland flows 

(Moore et al. 1998). 

 

 

Table 1.1. Inputs and pathways with associated P fractions (adapted from Johnes and Hodgkinson 
1998). 

Fractions 

Fertiliser Manure Soil 
particles 

Leaching Eluviation Subsurface 
flow in 

drainage 

Overland 
flow 

Soil 
through 

flow 

Selective 
transport 
of fines 

Retention, 
cycling 

and 
export 

Particulate 
Inorganic 

P 
- - ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 

Particulate 
Organic P - ✓ ✓ - - - ✓ - - ✓ 

Filtered 
Reactive P ✓ - - ✓ ✓ ✓ ✓ ✓ - ✓ 

Filtered 
Unreactive 

P 
- ✓ ✓ - - ✓ - - ✓ ✓ 

 

 

1.6.2 Subsurface flow – In comparison to overland flows, subsurface flow (also called leaching) 

is a relatively slow mechanism for sediment and P dispersal (McDowell et al. 2003b). 

Phosphorus transport in subsurface flow is more difficult to monitor than surface flow, and 

until relatively recently was considered insignificant in the context of overall catchment P 

losses (Brookes et al. 1997). However, the concentration of P in subsurface flow can be greater 

than in surface runoff due to extended periods of contact with soil (McDowell and Condron 

2004), and exceed the threshold required to stimulate symptoms of eutrophication (McDowell 

and Sharpley 2001a) making it an important consideration for P management. The subsurface 

transport of P tends to occur as a result of low intensity rainfall events where moisture is more 

readily conducted within the soil matrix, as opposed to high intensity rainfall that leads to 

overland (Hortonian) flow (McDowell 2012b).   

 

There are two ways that P can be lost via subsurface flow, namely matrix flow and bypass 

(preferential) flow (Table 1.1). Matrix flow refers to slow flow that occurs through the bulk 
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soil, whereas preferential flow is a transport pathway that allows large amounts of water to 

flow through a relatively small area of the soil (Simard et al. 2000). The concentration of P lost 

will depend on the release characteristics of the soil matrix. To some extent the concentration 

is also dependent upon the P sorption/desorption characteristics of the macropore walls, but 

more often the walls will not interact with the water flowing by, hence the term preferential 

or bypass flow (Sinaj et al. 2002). Examples of preferential flow pathways are cracks, root holes 

and worm holes. Preferential flow paths have been shown to transport P under high flow 

events. Stamm et al. (1998) measured P export from an intensively managed grassland 

catchment, and found P was transported in both filtered-reactive and particulate P forms, with 

227 g FRP ha-1 lost from a single site within 2.5 months. When coupled with artificial drainage 

systems, water and entrained P can be quickly transported to drainage networks. Deep 

drainage to groundwater can occur, but is usually considered of negligible impact on surface 

water bodies as the P is usually sorbed and retained before groundwater escapes into streams 

as baseflow. However, if the soil has low capacity to store P and groundwaters are anaerobic, 

facilitating P to be soluble, then groundwater could be an important source of P into 

freshwaters (McDowell et al. 2004). 

 

1.7 Phosphorus loss from Organic soils 

 

Organic soils are estimated to cover a global land area of between 230 and 450 million 

hectares (Armentano 1980), around 200,000 ha of which are in New Zealand (Gibbs 1980). 

The majority of New Zealand’s Organic soils occur under pasture, in wetlands, or under forest-

produced acid litter in areas of high precipitation (Hewitt 2010). Many of these have been 

drained to improve aeration and resistance to physical damage from machinery and stock 

(O'Connor et al. 2001). However, drainage accelerates rates of erosion (Marttila and Kløve 

2010a), peat mineralisation (O'Connor et al. 2001) and the desorption of P from previously 

reductive soils (Lovley and Phillips 1986; Stepniewska et al. 2006). Following drainage and 

development, Organic soils will typically have an exceptionally poor nutrient capacity (Zak et 

al. 2004) in addition to low pH levels. Other characteristics of Organic soils include low bulk 

densities, high cation (e.g. Ca2+) exchange and low anion (e.g. H2PO4
-) storage capacities, high 

C/N ratios, low load-bearing strength, poor thermal conductivity, high shrinkage potential and 
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high total water capacity with only moderate plant-available water (Hewitt 2010; Robson et 

al. 2011). Of the 200,000 ha found in New Zealand, around 146,000 ha has been converted 

into intensive land uses such as dairying (Ausseil et al. 2015). However, there are several 

factors that indicate that, during and after development, P losses may be exceptionally high 

under intensive dairying.   

The processes of FRP flux are enhanced in soils with high porosity and hydraulic conductivity 

values, such as Organic and Podzol soils. This is due to the combination of high surface areas 

within the soil matrix for P flux to occur across and the relative ease at which the soil solution 

is able to move within the matrix and leach to groundwater (Stutter et al. 2005). A fluctuating 

groundwater level, a common accompaniment to Organic soils due to their low lying position 

in many catchments (Guérin et al. 2011), also more readily saturates topsoil where P is most 

enriched leading to enhanced losses by drainage and cyclic wetting and rewetting processes 

(Butterly et al. 2009; Meissner et al. 2008; Rupp et al. 2004). However, the main factor 

influencing the availability of P loss in Organic soils is a low P retention, otherwise known as 

anion storage capacity (McDowell and Condron 2004). The anion storage capacity (ASC; also 

referred to as P retention) describes the soil’s capability to retain nutrients (O'Connor et al. 

2001). Organic soils typically have a low ASC, due to little mineral soil which would contain P-

sorbing Al- and Fe-oxides (Zak et al. 2004; Robson et al. 2011). The quantities of these 

materials ultimately influence the P retention and bioavailability properties of the soil. For 

example, aluminium-oxides have a high sorption affinity for P and studies have found that the 

injection of Al-based precipitation chemicals can radically increase the retention capacity of 

wetlands (Ronkanen and Kløve 2009). In eutrophic wetlands the precipitation of Fe (III) 

oxyhydroxides determines P export from soils by retaining P via precipitation under aerobic 

conditions (Rupp et al. 2004), and the desorption of P when Fe (III) reduces to Fe (II) under 

anoxic conditions (Lovley and Phillips 1986). Calcium precipitates can also control the 

concentration of P in soil solution via a sequence of solubility products. Initially P is adsorbed 

onto calcite, then subsequent steps convert this into precipitates of monocalcium, dicalcium, 

octocalcium and finally hydroxyapatite; a highly stable compound (Frossard et al. 1995).  

 

The low ASC values and enhanced FRP flux and variable soil moisture associated with Organic 

soils contribute significantly to their definition as ‘marginal’ soil types. High pasture production 

on Organic soils therefore requires additional development beyond that of high quality soils. 
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This includes applications of lime (or similar) to optimise pH levels for crops and intensive 

fertilisation to account for poor nutrient retention qualities. Nevertheless, high pasture 

production on Organic soils has commonly been achieved with P fertiliser application rates 

beyond that of higher quality soils. For example, the Olsen P target ranges to sustain 97% of 

maximum pasture production are 35–45 mg P L-1 for peat soils and 20–30 mg P L-1 for ash soils 

(Roberts and Morton 1999). The rate at which ASC changes on Organic soils and how this is 

influenced by land management (e.g. cultivation frequency) is unknown, but clearly will affect 

P losses.  

 

1.8 Organic soil drainage and development 

 

Organic soils are associated with a variable moisture regime, which plays an important role in 

the availability of P. Under moisture-rich conditions, flux rates of FRP can become enhanced 

leading to high concentrations of dissolved P in the soil root zone that may be subsequently 

lost by lateral transport and leaching processes (de Mars and Wassen 1999; Stepniewska et al. 

2006). Furthermore, under very dry conditions, water repellence; or hydrophobicity can also 

be extremely high in Organic soils. Research by Sharp et al. (2006) described hydrophobic 

organic material as having a greater coagulation potential than hydrophilic OM, due to 

possessing a significantly higher charge density. The coagulation process is optimised under 

acidic conditions and involves charge neutralisation, complexation and precipitation, and 

ligand exchange mechanisms (Sharp et al. 2006). Therefore, soil hydrophobicity could be a 

particularly important aspect of acidic wetlands with limited solution P penetration as a result. 

Deurer et al. (2011) compared hydrophobicity in 50 grassland sites spanning the 10 most 

dominant New Zealand soil orders. Organic and Podzol soils were found to exhibit the highest 

degree and persistence of water repellency, due to the hydrophobic nature of organic matter 

itself and the low quantity of exposed hydrophilic matter in the soil. Seasonal soil drying also 

causes hydrophobicity in 70% of New Zealand top soils (Deurer and Müller 2010) which 

indicates that soil moisture status could exacerbate overland flows and the transport of 

nutrients following precipitation; particularly following manure applications that supply both 

additional organic matter and readily soluble nutrients (McDowell 2012a). This is of particular 

concern as it means that runoff will transport P during summer when the potential for water 
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quality impairment is greatest. There is also evidence to indicate that increased infiltration-

excess surface runoff (as opposed to drainage or saturation-excess surface runoff) has more 

energy and results in the erosion of particulate P, which as noted above will degrade water 

quality in lakes, impoundments or lagoons (Kleinman et al. 2009). Although the processes 

involved in P loss to drainage, due to anaerobic conditions, are known, little is known of the 

potential P losses (and fractions therein) in surface runoff of Organic soils of different 

antecedent moisture.  

 

1.9 Management activities influencing P losses from Organic soils  

 

Typically, P is lost from soils from one of four sources - 1) the soil, 2) fertiliser, 3) dung (or 

effluent) and 4) the plant itself (McDowell et al. 2007). The relative proportion of each source 

varies. Many strategies exist to mitigate P loss from the various components of an intensive 

dairy farm, but have not been fully tested on Organic soils.  

 

1.9.1 Rate of P application – Multiple smaller P fertiliser applications are commonly 

undertaken, particularly where soils with high P-sorption properties (e.g. calcareous soils) are 

concerned (Burkitt et al. 2010a). However, there is little evidence to suggest that higher dry 

matter yields will result when soil test P concentrations are above the agronomic optimum. 

Instead, many studies have noted accelerated rates of P loss under multiple P application 

regimes. For example, Burkitt et al. (2010b) contrasted the P runoff risk following single and 

split phosphorus fertiliser applications on a soil. The authors found that three applications of 

13.3 kg P ha-1 resulting in higher overall dissolved and total P loss than a single 40 kg P ha-1 

application, supporting a single application during periods when surface runoff events were 

unlikely (i.e. summer). High rates of smaller super-P applications result in higher overall total 

P (TP) loss due to an increased risk of coinciding rainfall events (in comparison with a single, 

large super-P application), but high water solubility of the fertiliser orthophosphate is the 

primary cause of this. Multiple small applications of low-solubility RPR could result in higher 

soil P availability and relatively lower TP losses when fertilising coincides with rainfall. 
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1.9.2 Liming – Phosphorus availability in mineral soils with < 5% organic matter (OM) is 

greatest at a pH of around 6.0 – 7.0, while in soils of higher organic content P availability is 

greatest at a pH range of 5.0 – 6.0 (Wolf 1999). The ionic form of inorganic P changes with pH 

(Figure 1.2), but more importantly tends to be associated with Al and Fe under acidic 

conditions and Ca under alkaline conditions. Under very acidic conditions (pH < 4.0), Al 

concentrations can build to phytotoxic levels and also inhibit the P uptake capacity of plants 

(Haynes 1982). This is generally mitigated by the application of lime (or in some cases, gypsum) 

to increase pH for optimal nutrient availability (Murphy and Stevens 2010). The application of 

lime can increase the mineralisation of OM, causing P housed within OM to be released, and 

also increase the solubility of P associated with minerals that precipitate at more acidic 

conditions (Fe-P). It is unknown if this would result in losses as inorganic or organic P forms 

from Organic soil, or whether (due to a low ASC), this P is likely to be lost. 

 

1.9.3 Low solubility P fertilisers – The risk of surface runoff of P is greatest when highly soluble 

forms of P fertiliser (e.g. SSP) are applied when a runoff event is likely. In areas of high 

precipitation, the risk of incidental P loss can be reduced by using low-solubility forms of P 

fertiliser. Reactive phosphate rock has very little water soluble P, but contains as much or 

greater total P concentration to SSP. Due to its low solubility, the slowly releasing RPR can take 

several years post-application before soil test P targets are met. For example, McDowell et al. 

(2010) tested the relative P loads in streams from two 12 ha catchments, each fertilised with 

RPR for 3 consecutive years, and SSP for 2 years. The authors noted FRP and TP loads were 

58% and 38% lower in stream flow when RPR was applied, instead of SSP. Agronomically, 

Sinclair et al. (1993) showed that after applying RPR for 3 years it has the same pasture 

production as SSP in areas where rainfall > 800 mm and soil pH was < 6.0. However, RPR is still 

a viable fertiliser from an agronomic perspective because it can eventually provide the same 

potential dry matter yield (per application size) as SSP (McDowell and Catto 2005). This raises 

the question of whether poorly-soluble fertilisers can be used in place of conventional SSP on 

Organic soils, where two factors could negate the potential environmental benefit of RPR 

compared to SSP. The first is that because RPR contains apatite which increases in solubility in 

low pH environments, the lower pH of Organic soils (even after sustained liming) could 

increase the dissolution rate of RPR. The second is that it is likely that due to high hydraulic 

conductivities, that subsurface flow is the dominant pathway of P loss meaning that flow will 
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have longer to interact and be adsorbed (even if only to a small degree) by the soil matrix. In 

extreme cases, RPR applications on acidic Organic soils could result in an increase in solubility 

of RPR, leading to enhanced P loss rates to such an extent that SSP would be as effective as 

RPR.  

 

1.9.4 Vegetation types – Legumes like greater lotus (Lotus pedunculatus) are beneficial in 

agriculture because they are able to fix nitrogen (N), reducing N fertiliser requirements. 

Additionally, some legumes favour low pH soils (approximately 4.7), are shallow rooting and 

assimilate P quickly (Sheath 1981). This potentially makes them suitable for soils where P 

retention and plant growth is a concern, for example acidic Organic soils. When plants are 

grown under P-limited conditions, plant roots secrete organic acids and acid phosphatase 

enzymes which enhance the dissolution of organic phosphorus (Tadano et al. 1993). For 

example, White lupin (Lupinus albus) grown under P deficiency secretes a significant amount 

of acid phosphatase (Miller et al. 2001). New Zealand Organic soils have a high content of 

organic P, so the use of acid phosphatase-secreting plants has good potential for maximising 

forage crop yield with relatively minor P fertiliser inputs. Additionally, Lotus corniculatus has 

been found to produce significantly less methane in sheep (mean = 11.5 g kg-1 dry matter 

intake; DMI) in comparison to pasture (mean = 25.7 g kg-1 DMI) and lucerne (mean = 20.6 g kg-

1 DMI) (Waghorn et al. 2002). A major advantage to legume forage crops is the reduced risk of 

bloat due to high condensed tannin content. Bloat is caused when a stable froth of soluble 

plant proteins and cellular organelle particles from leaf mesophyll combines with the slime 

produced by ruminant bacteria (Howarth et al. 1991). Condensed tannins reduce bloat by 

causing plant protein to precipitate or come out of solution, thereby inhibiting bacterial 

activity (Majak et al. 2003). Legumes are common on acid soils and is successfully used as a 

winter forage crop in European and Mediterranean agriculture (Mihailović et al. 2008), and 

have proven good survival rates in cold temperate climates (Wills et al. 2003). However, there 

are difficulties associated with some legumes (e.g. lotus) in that they require a long period of 

establishment and, in soils of higher fertility, competitive exclusion by other vegetation can 

limit their potential use as a pastoral vegetation (Lowther et al. 2012). Lotus dry matter 

production and plant density declines with time under dairying, but this could be slowed using 

infrequent grazing, which also slows the ingression of weeds (Minneé et al. 2007). Research 

undertaken on a well-drained, fertile sandy loam soil has shown that in monocultures, 
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legumes have potential to increase milk solid production in comparison with mixed swards 

(McDowell et a. 2014). However it is unclear if the same is true for Organic soils, where the 

higher tolerance of lotus to low pH and limited nutrients could yield a productive advantage 

over more commonly opted legume and grass pasture species (e.g. white clover and ryegrass). 

 

1.9.5 Soil amendments – The poor P retention characteristics of soils with low quantities of 

iron and aluminium can be mitigated through the addition of soil treatments. Soil treatments 

can improve the retention of phosphorus by increasing the number of P sorbtion sites, thereby 

decreasing its mobility. The supplementation of soils with aluminium sulfate (alum) is one such 

example. In acid (pH < 5) Organic soils, free Al in solution can bind with organic matter (OM) 

to form OM-Al complexes with which inorganic P can form metal ligands (Darke and Walbridge 

2000). This effectively reduces the export of PO4
3- from the catchment system. McDowell 

(2010) trialled the effectiveness of 20 kg ha-1 alum to reduce P losses from a high-rainfall 

environment. The results did not successfully prove alum was able to decrease P losses and it 

was speculated that the alum was easily removed by precipitation. However at high 

concentrations (around 4.5 kg Al m2) trialled by Smith et al. (2001), alum reduced soluble 

reactive P in runoff from swine manure-treated fields by 84%. As the solubility of OM-Al-P 

complexes increase significantly at pH levels above 5.4 (Darke and Walbridge 2000) and as Al 

is phytotoxic at high concentrations; stunting plant root systems and greatly limiting growth 

(Hocking 2001), alum is unsuitable for use on high pH soils. These studies suggest alum has the 

potential to reduce the non-point source export of P on soils of low pH in areas of low 

precipitation. Other soil treatments or amendments include bauxite residue; a by-product of 

refining bauxite into alumina (McDowell and Nash 2011). Application rates of 10-20 t ha-1 have 

been shown to provide effective retention of P for up to 5 years (Summers et al. 1996), while 

at higher rates (270 t ha-1) in combination with waste gypsum (to alleviate the high pH), 

bauxite residue has been found to decrease P loss by up to 98% (Vlahos et al. 1989). However, 

at these concentrations bauxite residue is potentially toxic or disruptive to the rumen pH of 

cattle, and there are transport and supply issues (McDowell and Nash 2011).  
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1.10 Objective, hypotheses and thesis outline 

 

It is clear from the preceding literature review that the intensification of Organic soils is linked 

to potentially costly environmental and economic implications. There is a clear need to 

effectively manage agriculture on these soils if the future demands of a growing population 

are to be sustainably met without damaging natural ecosystems beyond current levels.  

 

The aim of this thesis is to define the key limitations of the intensification of Organic soils in 

order to define management practices that are lucrative from an agronomic perspective, yet 

are environmentally responsible. The overall hypothesis is that P loss from Organic soils and 

potential water quality impacts are high immediately following development, but can be 

decreased by changes in soil properties and better management. Farm management areas 

that can contribute to P transport from Organic soils have been identified from the literature, 

and the following six key project objectives have been defined: 

 

1: Determine soil and management practices that influence the loss of P from soils over 

time. 

2: Determine the relative potential and form of P loss under low-intensity rainfall for 

Organic soils as a function of Olsen P and moisture regime (specifically low moisture 

and hydrophobicity). 

3: Determine the bioavailability and quantity of P lost with increasing pH in Organic 

soils. 

4: Determine losses of P from Organic soil treated with RPR and super-P at different 

pH levels. 

5: Determine the relative importance of Al, Fe, Ca and C for Organic soil P losses. 

6: Determine productivity and losses from an Organic soil with lotus, ryegrass or clover 

in monoculture. 
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Chapter 2 

Potential phosphorus losses from Organic and Podzol soils: prediction and the 

influence of soil physico-chemical properties and management 

 

2.1 Introduction 

 

The transfer of P from soil to water is a process that occurs in natural ecosystems. However, 

converting land to agriculture results in substantial changes in the physical, chemical and 

biological properties of soils, which together with an increase in the quantity of P in soil can 

increase the risk of P loss from soil to water bodies (McDowell et al. 2001; Haygarth and 

Condron 2004; Haygarth et al. 2013). For instance, tillage aerates topsoils accelerating the 

mineralisation of OM and increasing the availability of organic P compounds (Kasimir‐

Klemedtsson et al. 1997; Horne and Sojika 2002; Rastogi et al. 2002). However, tillage also 

increases drainage and potentially P loss especially if subsurface runoff is intercepted by 

artificial drainage (Schelde et al. 2006; Kleinman et al. 2011). In contrast, drainage may also 

increase the ASC of peat soils (O’Connor et al. 2001), presumably as the soil decreases in C 

content and becomes more “mineral like” under oxic conditions. This could therefore 

decrease the potential for P loss (McDowell and Condron 2004). 

 

Organic and Podzol soils occur in similar lowland swampy areas; podzols form under acidic 

forest litter and high rainfall, while Organic soils form where there is poor drainage leading to 

an accumulation of organic matter. Increasingly they are being developed for intensive 

agriculture (e.g. dairying) as the competition and price of more suitable land increases (Ehrlich 

and Holdren 1971; Asner et al. 2004). To maintain high pasture production, these soils are 

drained and considerable quantities of lime and fertiliser are applied to correct acidic soil pH 

and poor fertility (O'Connor et al. 2001). However, concentrations of Al and Fe tend to be low 

in the surface horizons resulting in poor sorption of added P (e.g. Lundström et al. 2000; Riise 

et al. 2000; Pokrovsky et al. 2005). In order to maximise production, it is recommended that 

Olsen P is maintained at greater concentrations in Podzol and Organic soils than in most other 

soils. For example, in New Zealand the target Olsen P concentration to sustain 97% of 

maximum pasture production is between 35 and 45 mg P L-1 for peat (i.e. Organic) Soils and 
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between 20 to 30 mg P L-1 for ash and sedimentary soils (Roberts and Morton 1999). Relatively 

little is known of the potential for soils classified as Organic and Podzol soils in New Zealand 

to lose P. However, as P loss from soil to water is related to Olsen P concentration (McDowell 

and Condron 2004), maintaining an agronomic optimum Olsen P for Organic soils may result 

in greater P loss.  

 

The main objective of this study was to estimate the potential for P loss in surface and sub-

surface runoff with water and dilute CaCl2 extractable P concentrations determined in a range 

of Organic and Podzol soils. These extracts have been shown to be good estimators of P loss 

by McDowell and Sharpley (2001) and McDowell and Condron (2004), but their dataset 

contained few Organic or Podzol soils. A secondary objective was to predict water and dilute 

CaCl2 extractable P from more common soil physical and chemical characteristics (e.g. Olsen 

P), and how these change with time (e.g. since conversion from native landuse). This would 

enable estimations of P losses to be made where these variables are already known.   

 

2.2 Materials and Methods 

 

Soils were collected from the Waituna catchment, a predominantly dairying-oriented coastal 

catchment in Southland, New Zealand (Figure 2.1). The catchment receives approximately 

1,200 mm annual rainfall (Risk 2011). The soils are poorly-drained and were classified as per 

New Zealand soil taxonomy as Acid Fibric Organic (Invercargill and Otanomomo) and Perch-

Gley Podzol (Kapuka, Tisbury and Tiwai) soils (Hewitt 2010). Using soil maps, approximately 40 

sites were chosen of each soil Order for a total of 80 paddocks plus six additional “reference 

sites” consisting of undeveloped soils that were still in scrub (three of each Order).  

 

A questionnaire detailing the development and management histories of each paddock was 

completed with land owners. Data from the questionnaire was used to explain variation in 

each paddock’s soil physical and chemical data. The questionnaire obtained data on: the time 

since each paddock’s original conversion from scrub/native bush (years); current landuse 

(pasture or forage crop); mean maintenance and capital P fertiliser inputs (kg ha-1); mean soil 

test P concentration (Olsen P, mg L-1); mean stocking type and rate (stock units ha-1).   
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Figure 2.1 Waituna catchment and approximate distribution of soil types (Taken from Environment 

Southland).  
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Soil samples were collected in July 2012 from the surface (0-7.5 cm) and from below the 

plough layer (30-37.5 cm) at each site. Samples were air-dried at 60 °C, ground and sieved < 2 

mm. Soils were analysed for pH (in water; Hendershot and Lalande 1993), Olsen P (Olsen et al. 

1954), total P (via perchloric-nitric acid digestion; Olsen and Sommers 1982), WEP (McDowell 

and Condron. 2004), CaCl2-P (McDowell and Condron 2004), degree of phosphate saturation 

(DPS; via oxalate extractable Al, Fe, Ca, Mn and P; McKeague and Day, 1966; Breeuwsma et al. 

1995), organic C (Metson et al. 1979), ASC (Saunders 1965), and bulk density (Parent and Caron 

1993).  

 

A mass balance was also conducted to determine how much P had been lost since the paddock 

was developed. In keeping with McDowell (2008), P losses from 0 – 7.5 cm depth were 

determined using the model:  

 

𝐿𝑜𝑠𝑠𝑛  =  ∑([𝐼𝑛𝑝𝑢𝑡𝑖

n

i=0

− 𝑂𝑢𝑡𝑝𝑢𝑡𝑖] + 𝑆𝑜𝑖𝑙𝑛=0) − 𝑆𝑜𝑖𝑙𝑖−𝑛 

whereby losses of P are equal to the sum of soil P concentration (kg P ha-1; after accounting 

for BD) before development (Soiln=0; assumed to equal TP in undeveloped sites) and the 

difference between input and outputs of P from time zero to the year of sampling (kg P ha-1), 

minus soil P concentration (kg P ha-1) at the time of sampling (Soili-n). Total P off-takes (kg P 

ha-1) were derived from the Overseer® nutrient budget program (AgResearch 2013) as a 

function of land use (estimated to be 16 kg P ha-1 on average for dairy properties and 1 kg P 

ha-1 on average for drystock properties), while annual and historic P inputs were taken from 

fertiliser (rate, frequency, type and P percentage) and time since development data collected 

via individual land owner data. Soil TP and BD data for the mass balance was estimated from 

samples collected at each site. Plotting the estimated losses against age (n = 1 year) of 

development, and fitting a simple linear regression, yields a slope equivalent to the mean loss 

of P (kg ha-1 yr-1) with time. Estimates of P loss could not be made for the 30-37.5 cm depth as 

the quantity of P input via leaching from shallower depths was unknown. 

Summary statistics (mean, standard error, range, and probability), k-means clustering and 

regression modelling were determined using R version 3.0.1 (R Core Team 2013), and best 

subsets regression modelling with Mallows Cp was carried out using Minitab (Release 16.2.2, 
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Minitab 2010). Data was log-transformed if not normally distributed. The threshold for 

statistical significance was P < 0.05.  

 

2.3 Results and Discussion 

 

2.3.1 Attributing soil properties to potential P losses 

 

A k-means cluster analysis (Forgy 1965) of topsoils and subsoils was carried out to determine 

similarities between samples at each depth using the parameters TP, Olsen P, BD, pH, C:N 

ratio, and oxalate-extractable Al, Ca, Fe, Mn and P concentrations. Clustering split samples 

into two distinct clusters (C1 and C2) that had a high proportion of either Organic (C1) or 

Podzol (C2) soils (Table 2.1). The two clusters were found to explain 59.7% of the variability in 

the data set (Figure 2.1). Topsoils were evenly distributed within each cluster, comprising 47% 

and 53% topsoils in clusters C1 and C2, respectively. However, C1 had a greater proportion of 

subsoils than C2 (66%). Of the samples comprising C1 and C2, 79.2% and 76.2% were top and 

subsoils from the same paddock, respectively. The results indicated that significant differences 

existed between soil types, but not between the depths sampled, and justified combining 

topsoils and subsoils for further comparison of P loss by soil type.  

 

Table 2.1. Output of the cluster analysis from Figure 2.1, showing the proportions of Organic and 
Podzol soils, and topsoils and subsoils in each cluster 

Cluster Organic Podzol 
Composition  

(Soil Order) 
Topsoils Subsoils 

Composition 

(Sample depth) 

1 49 13 79.0% Organic 26 36 41.9% topsoils 

2 6 41 87.2% Podzol 29 18 61.7% topsoils 

 

 

Organic soils contained lower mean TP, BD and ASC values, but greater Olsen P, WEP, C and 

CaCl2-P concentrations compared with Podzol soils (Table 2.2). This is consistent with the 

increase in WEP with increasing Olsen P or decreasing ASC (McDowell and Condron 2004; 

Figure 2.2a,b). The enrichment of mean CaCl2-P in Organic compared to Podzol soils was 

attributed to mean concentrations of Alox and Feox that were two to four times greater 
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occur via sub-surface runoff due to high porosity and hydraulic conductivity, and low ASC. 

These factors result in enhanced interaction and the release of P from the soil into soil solution 

(Stutter et al. 2005). For example, data for Organic soils of very low ASC (< 5%) in Southland, 

New Zealand have shown DRP concentrations in the order of 3-10 mg L-1 in drainage water 

under forage crops grazed by dairy cattle (McDowell and Monaghan 2014). 

 

  



26 
 

 

 

 

Figure 2.3. Plot of WEP concentration against Olsen P concentration (a) or ASC (b) and CaCl2-P against 

ASC (c) for Organic and Podzol soils. 
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Table 2.2. Mean, minimum and maximum and standard errors for selected physio-chemical properties for Organic and Podzol topsoils and subsoils. 

Soil Order, 

depth and 

statistic 

Total P  

(mg kg-1) 

Olsen P  

(mg L-1) 

Bulk 

density  

(g cm3) 

WEP 

(mg L-1) 

CaCl2-P 

(mg L-1) 

ASC  

(%) 

pH C 

(g kg-1) 

Al* 

(mg kg-1) 

Ca* 

(mg kg-1) 

Fe* 

(mg kg-1) 

Mn *   

(mg kg-1) 

Paddock 

age (yrs) 

Topsoil (0-7.5 cm)                         

Organic (n = 38)             

Range 87-1285 6-144 0.19-0.83 0.08-

0.57 

0.01-9.92 1-68 3.6-6.3 91-500 364-10,758 14-50 249-7,325 1-92 1-27 

Mean 756 45.3 0.47 0.23 1.94 24 4.6 359 2,291 24 2,082 20 8 

Std. error 46 5 0.03 0.02 0.44 3 0.1 18 323 1 294 4 1 

 

Podzol (n = 40) 

Range 247-2331 3-54 0.48-1.05 0.05-

0.22 

0.020-4.71 2-99 3.9-6.4 51-453 713-18,472 18-275 543-15,137 1-110 7-60 

Mean 1039 24.2 0.78 0.09 0.5 65 4.9 146 7,062 44 4,761 23 38 

Std. error 61 2 0.02 0.01 0.28 3 0.1 13 529 6 500 3 3 

              

Sub-soil  30-37.5 cm             

Organic (n = 36)             

Range 102-1108 2-59 0.19-1.05 0.04-

0.31 

0.02-35.96 1-93 3.2-4.9 13-530 420-13,005 17-38 116-6,429 1-27 1-27 

Mean 366 22.5 0.64 0.1 5.29 37 3.7 342 3,470 24 1,363 3 8 

Std. error 41 3 0.03 0.01 1.35 4 0.1 26 567 1 237 1 1 

 

Podzol (n = 41) 

            

Range 180-1032 1-49 0.56-1.18 0.03-

0.08 

0.02-0.23 31-99 4.0-6.0 18-350 882-22,822 18-109 476-12,507 1-88 7-60 

Mean 518 10.7 0.91 0.05 0.08 82 4.5 110 10,859 35 5,174 11 38 

Std. error 55 1 0.03 0.01 0.01 3 0.1 11 798 3 538 3 3 

*Ammonium oxalate extractable           
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2.3.2 Predicting WEP and CaCl2-P 

 

As a first step in predicting WEP and CaCl2-P, Pearson correlation coefficients were generated 

for physio-chemical properties for Organic and Podzol soils (Table 2.3). There were 

commonalities among coefficients for the two soil Orders. In general, correlations with WEP 

were positive for DPS, Olsen P, C and N, and negative with Alox, ASC, and BD.  

 

DPS is commonly used as an indicator for the potential of soil to release P to surface runoff 

and leaching (viz. subsurface runoff), so the correlation of WEP with high soil P saturation is 

to be expected (Allen and Mallarino 2006; Amarawansha and Indraratne 2010). Water 

extractable P has also been demonstrated to have a close relationship with Olsen P (McDowell 

and Sharpley 2001), but without accounting for P sorption capacity via ASC, the relationship is 

generally curvilinear over a wide range of Olsen P concentrations. High WEP concentrations in 

soils enriched with C has been shown to be caused by organic anions out-competing P for soil 

sorption sites, particularly at low pH (Sibanda and Young 1986; Guppy et al. 2005). The 

correlation between N and WEP can be best explained by referring to Cleveland and Liptzin 

(2007), who note that the biogeochemical cycles of C and N are linked due to the requirement 

for N to fuel the growth of plant matter that ultimately contributes to soil C content. This 

implies that while N is not directly influential to WEP, high concentrations of N and C are likely 

to coincide, and therefore cause a correlation of N with WEP.  

 

A significant negative relationship occurred between WEP and Alox, which is not surprising as 

Alox forms part of the quotient in DPS (i.e. as a surrogate estimate of P sorption capacity). 

Oxalate extractable Fe, also used in calculating the DPS, was not significantly correlated with 

WEP, presumably since Fe is much more sensitive to anaerobic conditions and can be more 

readily leached from the soil than Al (Pant et al. 2002).  

 

The next stage in predicting WEP and CaCl2-P used a step-wise regression for each soil Order. 

For Podzol soils, the step-wise regression prediction that accounted for the most variation in 

WEP included the quotient of Olsen P and ASC and N concentration (P < 0.001; adj. R2 = 0.95; 

Eq. 1).  
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Table 2.3. Pearson correlation coefficients between WEP or CaCl2-P and selected physiochemical properties for Organic and Podzol topsoil and subsoils and 
associated P-values (bold if significant). 

 Physiochemical property WEPORG P WEPPOD P CaCl2-PORG P CaCl2-PPOD P 

Total C (g kg-1) 0.410 0.000 0.523 0.000 0.442 0.000 0.440 0.000 

ASC (%) -0.404 0.000 -0.537 0.000 -0.311 0.003 -0.407 0.000 

DPS (%) 0.748 0.000 0.590 0.000 -0.176 0.109 0.466 0.000 

Total N (g kg-1) 0.625 0.000 0.665 0.000 0.119 0.28 0.536 0.000 

Bulk density (g cm3) -0.528 0.000 -0.495 0.000 -0.147 0.182 -0.276 0.012 

Olsen P (mg L-1) 0.813 0.000 0.544 0.000 -0.014 0.899 0.142 0.203 

Al* (mg kg-1) -0.231 0.034 -0.426 0.000 -0.243 0.025 -0.253 0.021 

Fe* (mg kg-1) -0.187 0.088 -0.416 0.000 -0.255 0.019 -0.176 0.113 

pH 0.203 0.064 0.314 0.002 -0.381 0.000 -0.002 0.986 

Total P (mg kg-1) 0.449 0.000 0.146 0.190 -0.406 0.000 0.146 0.19 

P* (mg kg-1) 0.174 0.113 0.068 0.543 -0.328 0.002 -0.004 0.971 

Ca* (mg kg-1) 0.346 0.001 0.041 0.714 -0.196 0.073 -0.005 0.964 

Years since development -0.025 0.821 -0.141 0.206 0.013 0.906 -0.121 0.278 

Mn* (mg kg-1) 0.144 0.191 0.109 0.329 -0.221 0.043 0.045 0.688 

CaCl2-P (mg L-1) -0.110 0.319 0.547 0.000 - - - - 

WEP (mg L-1) - - - - -0.110 0.319 0.547 0.000 

* Ammonium oxalate extractable        
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WEPPod = 0.067  Olsen P/ASC + 0.003  N + 0.030    [Eq. 1] 

 

Nitrogen, although a component of the model, was not highly influential; hence, it could be 

argued that the relationship reverts to just the quotient of Olsen P and ASC. The Olsen P/ASC 

quotient was also included in the regression output predicting CaCl2-P concentration (P < 

0.001; adj. R2 = 0.72; Eq. 2).  

 

CaCl2-PPod = 1.80  Olsen P/ASC - 0.167    [Eq. 2] 

 

The use of the quotient is consistent with past work estimating DRP concentrations in surface 

(WEP) and sub-surface (CaCl2-P) runoff (McDowell and Condron 2004), and demonstrates that 

the Podzol soils examined in this paper conform to the concept that the potential for P losses 

are a function of the quantity of P in the soil (as approximated by Olsen P) relative to the soils 

P sorption capacity (as approximated by ASC). For WEPPod, the slope of 0.14 (P < 0.001; R2 = 

0.78) attributed to the quotient of Olsen P/ASC was steeper to that determined for more 

mineral soils in McDowell and Condron (2004), at 0.03 (P < 0.001; R2 = 0.83).  

 

For Organic soils, the best prediction of WEP included terms for DPS, Olsen P and C (P < 0.001, 

Adj. R2 = 0.84; Eq. 3).  

 

WEPOrg = 0.005  DPS + 0.003  Olsen P + 0.0001  C - 0.025 [Eq. 3] 

 

The greatest influence on WEPorg concentrations within the step-wise prediction was 

accounted for by the DPS and then Olsen P. The DPS is derived as the molar quotient of 

oxalate-extractable P to the sum of Al, Fe, and Ca (McKeague and Day 1966; Breeuwsma et al. 

1995). In essence the test is similar to ASC as it indicates the ratio of the amount of P already 

sorbed to the maximum P sorption capacity of the soil. However, the DPS test utilises a much 

more acidic extraction (pH 3) compared to the ASC test (pH 4.6 Saunders 1965) and therefore 

may better suit those constituents controlling WEPorg in the acidic Organic soils (Table 2.2). 

Although C concentration was significant, it did not exhibit a great deal of influence within the 

regression.  
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Calcium chloride extractable P concentration was not predicted by any variable for Organic 

soils. Concentrations of CaCl2-P were much more variable than WEP concentrations (Table 

2.4). Clearly, data shows that CaCl2 extracts different quantities of P compared to water, but 

McDowell et al. (2002) also showed that it extracted P from different pools. However, the use 

of CaCl2-P as a measure of sub-surface losses has not been verified for Organic soils (McDowell 

and Condron 2004). Hence, before any additional work occurs to predict CaCl2-P from a wider 

set of variables than used here, it must be determined if CaCl2-P is a useful measure of 

estimating sub-surface losses from Organic soils.  

 

2.3.3 Influence of time since development 

 

Data showed that the greatest WEP concentrations were from Organic soils that had been 

developed within 10 years (Figure 2.3). A significant negative relationship between WEP and 

years since development was detected for combined topsoils of both soil Orders (P < 0.001, 

R2 = 0.22), but not for individual soil Orders: Organic (P = 0.001, R2 = 0.74) or Podzol (P = 0.01, 

R2 = 0.52). The lack of a significant relationship with years since development was found to be 

the case for the majority of the parameters measured (Table 2.5); with the exception of 

increasing Organic soil bulk density (likely due to ongoing compaction and C mineralisation) 

and decreasing Podzol soil Fe concentration with time. The limited effect of time may have 

been due to a restricted spread of the data by soil Order, particularly for Organic soils, where 

the majority of soils were under 25 years since development. 

 

Plotting the estimated cumulative P loss (from the mass balance model) against the number 

of years since development enabled the mean annual P loss from the 0-7.5 cm layer for each 

of the soils Orders to be calculated using the slope of the regression. A Chow test (Chow 1960) 

strongly indicated that slopes were different from one another (P = 0.05). On average, 38 kg P 

ha-1 year-1 was being lost from Organic topsoils and 21 kg P ha-1 yr-1 from Podzol topsoils. 

However, it should be noted that while the mass balance shows P is being lost, it does not 

stipulate where the P is being lost to, which is likely to be a combination of transfer to other 

parts of the farm by stock, deeper soil layers and to runoff, as influenced by soil 

physicochemical properties.  
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Table 2.4. Coefficient of variation values of Organic and Podzol topsoil and subsoil for selected physio-chemical properties. 

 Total P Olsen P Bulk density WEP CaCl2-P ASC pH C Al Ca Fe Mn Paddock age 

 (mg kg-1) (mg L-1) (g cm3) (mg L-1) (mg L-1) (%)  (g kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (yrs) 

Organic topsoil 38 65 36 53 135 96 17 30 86 37 85 119 68 

Organic subsoil 72 67 33 55 133 86 15 48 100 43 106 139 70 

Podzol topsoil 42 44 17 58 267 29 12 59 42 42 60 93 44 

Podzol subsoil 71 86 18 44 71 23 15 65 47 118 69 167 46 
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Figure 2.4. Plot of WEP concentration (top) and P loss (bottom) against years since development for 

Organic and Podzol soils. The slope and coefficient of determination for the regression fits to the 

Organic and Podzol soil data are also given. 
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Table 2.5. Correlation coefficients between years since development and selected physiochemical 
properties for Organic and Podzol topsoils and subsoils, and associated P-values (bold if significant). 

 Physiochemical property 
Years since 

development (Org) 
P 

Years since 

development (Pod) 
P 

Al* (mg kg-1) 0.047 0.81 0.056 0.69 

ASC (%) 0.234 0.23 0.081 0.56 

Bulk density (mg L-1) 0.531 0.00 -0.262 0.06 

Total C (g kg-1) 0.019 0.92 0.229 0.10 

Ca* (mg kg-1) 0.020 0.92 -0.037 0.79 

CaCl2-P (mg L-1) 0.013 0.91 -0.121 0.28 

Fe* (mg kg-1) 0.066 0.74 -0.293 0.03 

Mn* (mg kg-1) 0.133 0.50 -0.026 0.85 

Total N (g kg-1) 0.008 0.97 0.211 0.13 

Olsen P (mg L-1) -0.022 0.91 0.133 0.34 

P* (mg kg-1) 0.171 0.38 0.128 0.36 

pH 0.216 0.27 -0.214 0.12 

Total P (mg kg-1) 0.109 0.58 0.126 0.36 

WEP (mg L-1) -0.025 0.82 -0.141 0.21 

*Ammonium oxalate extractable    

  

 

Past estimates using this mass balance approach have recorded similar P losses of 20 kg P ha-

1 year-1 from a Recent Soil (Hari Hari silt loam) (McDowell 2008). In the present study, the 

quantity of P estimated lost annually from the Organic topsoils far exceeds the estimates for 

Podzols, but is not unexpected given the Organic soils likely greater infiltration rate (via low 

BD), frequency of anaerobic conditions and poor P sorption compared to the Podzols (Table 

2.2). The installation of artificial drainage has also been well documented to result in increased 

losses of P from topsoil to surface waters. For instance, Miller (1979) reported losses of up to 

37 kg P ha-1 year-1 from Organic soils in Ontario, Canada, while rates of up to 168 kg P ha-1 year-

1 were reported from Organic wetland soils in Central Florida by Reddy (1983). Losses as high 

as those reported here and internationally highlight the role of Organic soils as potentially 

point sources of P loss if managed for intensive agricultural production and remedial measures 

should be put in place to ensure that losses do not impair freshwater.  
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2.4 Conclusion 

 

The findings of this study highlighted the high potential for P losses from recently developed 

compared to undeveloped Organic soils, but that the potential for this loss can be estimated 

from a soil test or estimated from associated soil tests and characteristics. Such tests (or their 

predictions) may be used to help identify Organic and Podzol soils that pose a risk to surface 

water quality from P losses.  
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Chapter 3 

The effect of soil moisture extremes on the pathways and forms of 

phosphorus loss in runoff from two contrasting soil types 

 

3.1 Introduction 

 

As the price and competition for suitable pastoral land increases, more marginal land is 

developed for intensive agriculture (Ehrlich and Holdren 1971; Asner et al. 2004). The 

availability of P for export from soils is largely a function of a soil’s mineral content, moisture 

regime, oxidation-reduction processes and pH. These properties differ substantially between 

Organic and Brown soils (Histosols and Inceptisols; USDA). For example ASC, outside of soil P 

concentration, is the main factor influencing the availability of P loss in soils (McDowell and 

Condron 2004) and is regulated by concentrations of metal oxides (minerals) that bind 

inorganic P, decreasing its transport in soil solution (Zak et al. 2004). The mineral content of 

many Organic soils is typically very low, while concentrations of organic matter and dissolved 

organic carbon (DOC) are high: DOC can compete with orthophosphate ions for sorption sites 

on the soil (Guppy et al. 2005). In catchments with marginal land, Organic and Brown soils can 

appear adjacent to one another. However, given their physiochemical differences it is 

important to quantify the relative pathways of P loss so that site-specific strategies to mitigate 

P loss (and the effect on surface water quality) can be made more cost-effective.  

 

Phosphorus loss pathways via runoff include surface runoff and subsurface flow, which are 

influenced by factors such as infiltration rates (Lal et al. 1989), soil water storage (i.e. pore 

space) and preferential flow paths. Organic soils have a high infiltration rate where subsurface 

flow (leaching) is expected to be the major pathway of P loss. Surface runoff could occur, but 

is unlikely unless the artificial drainage network is overwhelmed and saturation-excess surface 

runoff results. Brown soils exhibit a greater bulk density and lower hydraulic conductivity (and 

pore space) meaning surface runoff is likely to be the dominant pathway of P loss. However, 

under very dry conditions, water repellence; or hydrophobicity can be extremely high in 

Organic soils. This increases the likelihood of infiltration-excess surface runoff of P. Deurer et 
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al. (2011) compared hydrophobicity in 50 grassland sites spanning the 10 most dominant New 

Zealand soil orders. Organic and Podzol soils were found to exhibit the highest degree, and 

persistence, of water repellency, due to the high concentration of hydrophobic organic matter 

and the much lower proportion of soil hydrophilic matter exposed to water. Seasonal soil 

drying causes hydrophobicity in 70% of New Zealand top soils (Deurer and Müller 2010), which 

suggests that infiltration-excess surface runoff could well occur in Organic soils in summer and 

autumn. This is of particular concern as it means that runoff will transport P during summer 

when the potential for water quality impairment (e.g. via algal growth) is greatest (McDowell 

2012). There is also evidence to indicate that increased infiltration-excess surface runoff (as 

opposed to drainage or saturation-excess surface runoff) has more energy and results in the 

erosion of particulate P, which will degrade water quality in lotic systems (Kleinman et al. 

2009). 

 

Strategies to mitigate the loss of P from land to water tend to focus on reducing the quantity 

of P in the soil such as maintaining soil Olsen P concentrations at no more than the agronomic 

optimum (McDowell et al. 2003a) and not on transport processes. However, transport 

processes can dominate the load (i.e. concentration by flow) of P lost. Under extreme 

conditions, transport via hydrophobicity or saturated conditions could therefore result in P 

losses that are likely to impact surface water quality even if soil Olsen P is low. 

Little is known of how antecedent moisture contents influence the pathways and forms of P 

losses in runoff from soils of highly contrasting chemical and physical composition. More 

specifically, I contrasted two soils from a catchment recently developed into intensive pastoral 

agriculture – and therefore likely to have a range of soil Olsen P concentrations despite 

recommendations to avoid concentrations in excess of the agronomic optimum. The two soil 

orders chosen were a Brown and Organic soil with optimums for pasture production around 

25 and 40 mg Olsen P L-1, respectively (Roberts and Morton 2009). My hypotheses were that: 

1) rainfall applied to a dry soil would cause greater particulate P losses in surface runoff, due 

to hydrophobicity; 2) P losses from a wet soil would be via dominated by subsurface flow and 

filtered P; and 3) that both runoff processes would result in environmentally unacceptable P 

losses at agronomically productive Olsen P concentrations depending on the sorption capacity 

(viz. ASC) of the soil. 
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3.2 Materials and Methods 

 

3.2.1 Soils 

 

The Waituna catchment lies approximately 20 km southeast of Invercargill, New Zealand. It 

has a surface area of 21,000 ha (Schallenberg et al. 2010) and drains into the Waituna Lagoon 

via a RAMSAR classified wetland (Thompson and Ryder 2003). Soil types range from well-

drained Brown soils to poorly-drained Organic, Gley and Podzols (Wilson 2011). Farming in the 

Waituna catchment is dominated by dairying, which covers c. 80% of pastoral land in the 

catchment (Risk 2011). Of these dairy farms, around 25 are situated in the southern portion 

of the catchment where Organic soils (including Podzols and Gleys with Organic-like topsoils) 

are dominant, but are also commonly adjacent to Brown soils.   

 

Soils (Invercargill peat, a mesic acid Organic soil and a Mokotua; firm mottled Brown soil; 

Hewitt 2010) were collected from below the plough layer at 30 – 60 cm depth to ensure soils 

were of similarly low Olsen P concentrations. The Organic soil had been used the previous year 

for a forage crop of Swede (Brassica napobrassica) and had received no fertiliser or lime 

amendments in the nine months prior to soil collection. The Brown soil was under permanent 

pasture and had not been grazed by sheep for three months nor received fertiliser 

amendments. The Olsen P concentration of the Organic and Brown soils was 11 and 7 mg L-1, 

respectively (Table 3.1). Soils for chemical analyses were air-dried, crushed and passed 

through a 2-mm sieve for pre- and post-runoff analysis of ASC (Saunders 1965), TP (< 1mm, 

using perchloric acid digestion with an additional HNO3 digestion step to oxidise organic 

matter) (Olsen and Sommers 1982), Olsen P (Olsen et al. 1954), BD (Parent and Caron 1993) 

and pH (Hendershot and Lalande 1993). The potential for P loss to surface and subsurface flow 

were determined using WEP and CaCl2-P, respectively (McDowell and Condron 2004). 
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Table 3.1. Selected physicochemical characteristics of the unaltered soils. 

 -------------------- Phosphorus extracts --------------------- ---------------------- Soil physiochemical properties ---------------------- 

Soil 
Order 

Olsen P 
(mg L-1) 

WEP 
(mg L-1) 

CaCl2-P 
(mgL-1) 

Total P 
(mg kg-1) 

Bulk 
density 
(g cm3) 

 
pH 

 

 
C 

(%) 
ASC 
(%) 

Water drop 
penetration 

time 
(s-1) 

 Dry Wet 

Organic 11 0.14 5.33 509 0.31 4.2 37.6 5 >3600 <5 

Brown 7 0.10 0.02 186 0.91 5.0 7.9 58 <5 <5 

 

3.2.2 Runoff boxes and rainfall simulator 

 

Sixty runoff boxes (Figure 3.1) were used in this trial. Boxes were 800-mm long by 200-mm 

wide by 70-mm deep, with six 2-mm holes drilled in the bottom to enable collection of 

subsurface flow (thereafter called leachate). Soil was placed into boxes and packed close to 

field bulk density (McDowell et al. 2003). The sixty boxes represented three replicates of five 

fertiliser rates by two (90% and <10% of available water holding capacity, AWHC) moisture 

treatments for each soil type. The fertiliser rates were designed according to the capital 

application of P required to increase mineral and peat soil Olsen P concentrations to control, 

15, 40, 60 and 80 mg P L-1 (Roberts and Morton 2009). This equated to rates of 0, 0.21, 0.42, 

0.63 and 0.84 g P box-1 for Brown soils, and 0, 0.21, 0.56, 0.84 and 1.13 g P box-1 for Organic 

soils. Superphosphate was sieved (< 1 mm) before being applied. Spiked soils were watered 

to near field capacity then left to air dry for one week and then wet and dried again to ensure 

SSP had equilibrated with soil. During week four (three weeks after SSP application), ryegrass 

was sown at a rate of 22 kg ha-1 (Young et al. 2010) and soils watered daily to retain moisture 

until germination without causing drainage. During week six, fortnightly additions of 10 mm 

of ¼ strength P-deficient Hoagland solution began (Hoagland and Arnon 1950). Three weeks 

after germination, ryegrass was trimmed to a dry matter residual of 1500 kg ha-1. Timing was 

repeated at monthly intervals. Irrigation was stopped 12 weeks after SSP application and 

boxed soils allowed to dry to either 90% or <10% of AWHC. The AWHC was calculated using 

bulk density and volumetric soil moistures calculated from saturated and air-dry soil cores 

collected at the same time as soils (Curran Cournane et al. 2010). Each box was weighed and 

moisture adjusted to ensure that treatments were at the correct moisture level before runoff 

was induced.  
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A water repellency assessment was carried out using the water drop penetration time (WDPT) 

test of DeBano (1981) on air-dried soil samples and soils in runoff boxes before they were 

rained upon. To do this, a single water drop was placed on the sample surface, and the time it 

took to absorb was recorded. This was repeated five times for each treatment. Five water 

repellency classes were used, in line with studies by Biemelt et al. (2005). These were WDPT 

<5 s-1 = wettable/non-water repellent, 5–60 s-1 = slightly water repellent, 60–600 s-1 = strongly 

water repellent, 600–3600 s-1 = severely water repellent, and >3600 s-1 = extremely water 

repellent. 

 

 

Figure 3.1. Design of runoff box showing integrated surface and subsurface flow samplers. 

 

Boxes were inclined at a slope of 10% and runoff generated using tap water via an artificial 

rainfall simulator (< 0.005 mg P L-1) to deliver rainfall at a rate of 30-35 mm h-1. This was 

designed to simulate storm conditions with an annual return interval of 5 years (calculated for 

the Waituna Catchment using NIWA’s High Intensity Rainfall System V3; NIWA 2010). The 

rainfall simulator was constructed as a 3.05 m3 aluminium frame with rainfall delivered from 

one TeeJet 1/4HH-SS30WSQ nozzle (Spraying Systems Co., Wheaton, IL) approximately 250 

cm above the soil surface. A previous trial by McDowell et al. (2007) employed this simulator 

and found the drop-size, velocity and impact energies of droplets to be closely representative 

of natural rainfall. The elapsed time for surface runoff and leachate to occur was noted, and 

samples collected for 40 minutes. The volume of runoff via both pathways was recorded and 

sub-samples taken for laboratory analysis. 
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3.2.3 Runoff analysis 

 

Samples of runoff were filtered (0.45 µm) immediately after collection and were analysed for 

FRP within 24 h. Filtered and unfiltered samples were also acid persulphate digested and P 

determined within 7 days (Eisenreich et al. 1975; Rowland and Haygarth 1997). This yielded 

TFP and TP, respectively. All P determinations were made colorimetrically using the method 

of Watanabe and Olsen (1965). Filtered unreactive P and PP were calculated as the difference 

between TFP and FRP, and TP and TFP, respectively. Suspended sediment was analysed by 

filtering a known volume of a sample, then weighing the oven-dried residue on a GFA filter 

paper (0.7 µm pore size) of pre-determined weight.  

 

3.2.4 Statistical analysis 

 

An analysis of variance (ANOVA) was used to compare soil data surface runoff and leachate P 

losses between treatments. Data was tested for normality and log-transformed where 

necessary. Due to non-constant variation in phosphate fractions (concentrations and losses) 

and volumes in runoff, data was log transformed, followed by a Tukey multiple comparison 

test between soil and moisture means. 

 

3.3 Results and Discussion 

 

3.3.1 Soil extractable P before and after runoff 

 

In line with other studies (e.g. Sharpley 1995; Lourenzi et al. 2014), before-runoff soil 

extractable P concentrations increased with target Olsen P for all treatments and soils (Table 

3.2). Before runoff the Organic soil generally had greater CaCl2-P and WEP concentrations, but 

lower Olsen P and TP concentrations than the Brown soil. The greater soil TP concentration 

reflects a larger pool of native P present in the Brown compared to Organic soil before soils 

were fertilised. In contrast, the greater WEP and CaCl2-P concentrations in the Organic 

compared to Brown soils relates to much lower ASC (and hence P sorption capacity; McDowell 
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and Condron 2004) of Organic soil. In most cases, extractable P concentrations of both soils 

decreased after runoff. However, the P lost from the soils after one runoff event was not great 

enough to significantly alter the frequency and strength of treatment differences in 

extractable P concentrations.   

 

3.3.2 Runoff volumes 

 

For the Organic soil, more surface runoff was generated under dry than wet conditions (Figure 

3.2). Surface runoff produced under dry conditions was most likely due to hydrophobicity, as 

the water droplet penetration test classified the soil as ‘extremely water repellent’ (Table 3.1; 

Biemelt et al. 2005). The volume of surface runoff generated from the Organic soil under dry 

conditions was similar to that produced from the Brown soil under wet conditions, except that 

surface runoff from the Brown soil was likely caused by saturation-excess surface runoff - 

produced as the available pore space was filled.  

 

 

Figure 3.2. Mean runoff volumes and suspended sediment losses for wet and dry Organic and Brown 

soils. Different letters indicate a significant difference between groups (P < 0.05; ANOVA and then 

Tukey’s multiple comparison tests). 

 

The lack of surface runoff and sub-surface flow from the dry Brown soil indicated it was highly 

wettable and therefore retained much of the rainfall applied (Dekker and Ritsema 2000; 
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Täumer et al. 2005). Much greater wettability and soil water storage may also explain why 

volumes of sub-surface flow from the Brown soil were lower than from the Organic soil where 

high hydrophobicity and macroporosity (due to low density) may have also facilitated flow 

through the Organic soil (Schwarzel et al. 2002).   

 

3.3.3 Suspended sediment losses 

 

Surface runoff was characterised by high mean SS losses (Figure 3.2). However, while the 

volume of surface runoff from the dry Organic soil was similar to the wet Brown soil, surface 

runoff from the wet Brown soil transported three times more sediment (by weight) than dry 

Organic soil. Furthermore, while sub-surface flow volumes from wet and dry Organic soils 

were seven times greater on average than Brown soils (Figure 3.2), there were little difference 

in SS losses. This does not infer that Brown soils and more erodible than Organic soils. In 

contrast, studies have shown Organic matter-rich soils in the North Island of New Zealand to 

be highly erodible (Selby 1972). Moreover, the lack of any difference in SS losses is probably 

due to the gravimetric determination of SS and the much lower weight of Organic material 

compared to mineral soil particles.  

 

3.3.4 Phosphorus losses 

 

Irrespective of antecedent moisture conditions, mean FRP, FUP, PP and TP concentrations in 

subsurface flow from Organic soils were 447, 12, 10 and 73 times greater than Brown soils, 

respectively (Table 3.3). The large differences are primarily because the Brown soil contained 

a much greater concentration of metal-oxides that can sorb orthophosphate anions than the 

low ASC Organic soil (Table 3.1; Sims et al. 1998). Differences translated into a similar picture 

with losses (Table 3.4) largely because, compared to the Brown soil, the Organic soil was 

packed to a much lower bulk density (representative of field conditions) that would likely have 

a very high hydraulic conductivity allowing sub-surface flow to occur. In addition, the Organic 

soil would likely contain greater quantities of negatively-charged humic substances that can 

compete with P for sorption (Gu et al. 1994), resulting in an elevated potential for P loss – 

although concentrations of humic materials were not measured.  
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Compared to sub-surface flow, much less P was transported in surface runoff from the Organic 

soil – although the concentrations were similar (Table 3.3). This implies surface runoff and sub-

surface flow quickly equilibrated with interacting soil, and that little additional P was lost into 

sub-surface flow despite interacting longer with the soil longer than surface runoff. McDowell 

et al. (2001) used 33P to establish that equilibration times (for P uptake or release) were best 

estimated by short (< 1 min) extractions for both surface runoff and sub-surface flow. 

Furthermore, McDowell and Sharpley (2003) established that the additional P leaching into 

soil solution, outside of this short equilibration period, tended to be small. They hypothesized 

that this was due to P being protected within aggregates and unlikely to diffuse out of the 

aggregate in time to influence P concentrations in runoff. The Organic soil contained little Al 

and Fe oxides to retain P meaning equilibration and P release from reactive surfaces was likely 

quick. Furthermore, the Organic soil was unstructured and therefore contained little 

protected P within aggregates. 

 

In contrast, P concentrations in surface runoff from the Brown soil tended to be greater than 

those in sub-surface flow, especially at high target Olsen P concentrations. This is presumably 

due to surface application and stratification of P in the soil surface that interacted with surface 

runoff, but was sorbed by less P-saturated soil at deeper depths in sub-surface flow (e.g. 

Kleinman et al. 2003).  Soil moisture influenced concentrations of P fractions in both surface 

runoff and subsurface flow. Mean concentrations of FRP, PP and FUP in surface runoff from 

the dry the Organic soil were on average 22, four and twice as enriched as surface runoff from 

wet soil. This translated into losses where surface runoff in the dry soil was likely due to 

hydrophobicity causing infiltration-excess conditions (Osborn et al. 1964). However, in 

contrast to my hypothesis, the major fraction in both wet and dry soil was FRP, despite 

infiltration-excess surface runoff being noted as more erosive than saturation-excess surface 

runoff (Pearce 1976), and the fact that soil organic matter can increases aggregate stability by 

lowering the wettability and increasing the cohesion of aggregates (Piccolo and Mbagwu 1999; 

Chenu et al 2000; Mataix-Solera and Doerr 2004), facilitating greater particulate transport.  
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Table 3.2. Mean pre- and post-runoff extractable soil P concentrations for all treatments. F-statistics 
are given for the comparison of treatment means by soil type, moisture and Olsen P rate, and for 
interactions between soil type and moisture, and soil type and Olsen P rate. 

Treatment 
Target  
Olsen P 
(mg L-1) 

--------------- Pre–runoff --------------- --------------- Post-runoff --------------- 

WEP 
(mg L-1) 

CaCl2-P 
(mg L-1) 

Olsen P 
(mg kg-1) 

TP 
(mg kg-1) 

WEP 
(mg L-1) 

CaCl2-P 
(mg L-1) 

Olsen P 
(mg kg-1) 

TP 
(mg kg-1) 

Dry 11 0.14 5.33 13 186 0.11 3.60 10 151 

Organic 15 0.41 9.80 15 257 0.28 17.80 11 194 

 40 0.74 33.03 30 349 0.46 23.58 15 366 

 60 1.04 49.73 40 516 0.85 46.81 32 481 

 80 1.47 64.83 55 669 1.27 73.89 53 564 

Wet 11 0.11 4.72 8 175 0.10 2.60 7 147 

Organic 15 0.28 10.67 9 257 0.25 13.51 10 200 

 40 0.62 27.22 23 353 0.49 24.17 18 362 

 60 0.88 42.17 30 470 0.79 33.94 23 418 

 80 1.15 57.42 41 662 1.00 50.95 40 698 

Dry 7 0.10 0.02 7 509 0.10 0.15 7 516 

Brown 15 0.13 0.04 14 630 0.08 0.18 11 561 

 40 0.14 0.06 19 704 0.11 0.12 16 662 

 60 0.16 0.08 23 786 0.13 0.14 25 747 

 80 0.16 0.09 30 900 0.13 0.08 30 897 

Wet 7 0.10 0.02 7 509 0.08 0.18 8 490 

Brown 15 0.11 0.03 13 584 0.11 0.16 10 546 

 40 0.13 0.05 19 662 0.09 0.13 15 654 

 60 0.13 0.08 22 779 0.09 0.12 19 725 

 80 0.15 0.08 28 896 0.11 0.09 26 871 

F-statistics          

Soil type <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Moisture <0.001 0.011 <0.001 0.076 0.002 0.078 <0.001 0.601 

Olsen P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Soil  Moisture 0.002 0.809 <0.001 0.335 0.784 0.056 0.194 0.259 

Soil  Olsen P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Moisture  Olsen P 0.469 0.977 0.113 0.794 0.084 0.746 0.118 0.082 

Soil  Moisture  Olsen P 0.138 0.730 0.205 0.366 0.032 0.862 0.066 0.098 

 

 

As mentioned previously, the Organic soil likely contained few receptive aggregates or Al and 

Fe oxides that would retain P on soil particles. This means that the Organic soil would likely 

contain little PP, compared to the Brown soil with a moderate ASC. The low ASC of the Organic 

soil also meant that the enrichment of P in both surface runoff and sub-surface flow was more 

pronounced with increasing target Olsen P than in the Brown soil. The enrichment of FRP in 

surface runoff may have also reflected undissolved P-fertiliser particles, which can enrich 

surface runoff for a period of 60 days after application (McDowell et al. 2003). However, the 

risk of direct P fertiliser losses declines exponentially with time such that differences even at 

high application rates would be difficult to detect, but more importantly, FRP (if used as an 
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indicator of P fertiliser) was only a minor fraction of surface runoff in the wet Brown soil where 

PP dominated.  

 

3.3.5 Implications for management 

 

This study demonstrates that the magnitude of P losses in subsurface and overland flow from 

Organic soils is strongly influenced by soil moisture and P fertility. Irrespective of the pathway, 

both soils exhibited FRP and TP concentrations that were in excess of ANZECC (2000) 

guidelines for good surface water quality (0.010 and 0.033 mg FRP and TP L-1, respectively), 

even at low soil Olsen P concentrations. The recent National Policy Statement for Freshwater 

Management (MfE 2014) stipulates that limits must be enforced by Regional Councils in New 

Zealand by 2030. One such council - Otago has already adopted the recommendations from 

Biggs (2000) and ANZECC (2000) to derive limits for farm–scale discharges (0.035-0.045 mg L-

1) receiving streams and rivers (0.005-0.026 mg FRP L-1) and lakes (0.005-0.033 mg TP L-1) that 

minimise algal growth (ORC 2014). While farm-scale limits are greater than those in receiving 

waters, due to removal processes that occur in runoff, they are still at least 200% greater than 

those found in surface runoff and subsurface flow in Table 3.2.  

 

It is recommended that soil Olsen P concentration are no greater than the agronomic optimum 

for pasture production (e.g. 25-40 mg Olsen P L-1) to minimise P losses (McDowell et al. 2003a). 

While I simulated two very different soil moistures, such conditions are common in the 

Waituna catchment. For instance, during winter the soil moisture deficit is commonly < 10% 

(McDowell end Monaghan 2015). Data from this study clearly shows that additional strategies 

are required if water quality limits are to be achieved and pasture production kept optimal. 

 

 

 

 



47 
 

Table 3.3. Mean concentrations (mg L-1) of FRP, FUP and PP in surface runoff and sub-surface flow. The 
F-values are given for the comparison of log-transformed means by soil type, moisture, target Olsen P 
and for the interaction of soil type and moisture, and soil type and target Olsen P. 

Treatment Target 

Olsen P 

(mg L-1) 

            --- Surface runoff concentrations ---           --- Subsurface flow concentrations --- 

  FRP FUP PP TP FRP FUP PP TP 

Dry 11 0.62 0.13 0.95 1.38 1.78 0.41 0.91 2.49 

Organic 15 8.79 1.58 1.97 12.34 22.24 2.1 1.51 25.85 

 40 36.08 8.34 11.73 56.16 45.45 4.22 3.22 52.89 

 60 84.77 4.59 20.15 109.51 73.17 3.35 5.89 82.41 

 80 183.84 4.27 29.15 217.26 206.69 8.94 6.86 225.9 

Wet 11 0.10 0.13 0.11 0.34 2.19 0.11 0.53 2.82 

Organic 15 3.40 1.06 1.32 5.77 33.15 1.56 2.48 37.19 

 40 4.14 2.88 5.47 11.53 70.57 2.24 9.08 81.88 

 60 2.63 2.27 2.86 7.75 134.68 1.88 32.06 168.62 

 80 3.56 2.83 2.98 7.49 210.75 19.11 20.37 250.22 

Dry 7 -1 - - - 0.02 0.34 0.72 1.08 

Brown 15 0.50 0.23 0.36 1.08 0.07 0.34 0.49 0.90 

 40 1.57 0.45 2.61 4.63 0.51 0.46 0.78 1.75 

 60 0.13 0.12 0.35 0.53 0.37 0.28 1.24 1.90 

 80 - - - - - - - - 

Wet 7 0.27 0.05 0.72 1.04 0.08 0.19 0.65 0.89 

Brown 15 0.25 0.14 5.20 5.59 0.13 0.25 0.66 1.04 

 40 1.18 0.19 7.22 8.60 0.11 0.40 0.63 1.15 

 60 - - - - 0.18 0.41 0.67 1.25 

 80 2.29 0.31 8.11 10.71 0.14 0.38 0.87 1.39 

F-statistic          

Soil type  <.001 <.001 0.328 <.001 <.001 <.001 <.001 <.001 

Moisture  0.001 0.089 0.717 0.192 0.013 0.969 0.007 0.024 

Olsen P  <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Soil × Moisture <.001 0.146 <.001 <.001 0.883 0.118 0.139 0.350 

Soil × Olsen P 0.065 0.484 0.513 0.189 <.001 <.001 <.001 <.001 

Moisture × Olsen P 0.608 0.146 0.948 0.579 0.038 0.081 0.380 0.191 

Soil × Moisture × Olsen P 0.096 0.576 0.446 0.256 <.001 0.611 0.207 0.011 

1Data missing as there were insufficient runoff events to make statistical comparisons for that 
treatment. 

 

There is a strong contrast between Brown and Organic soils as, due to possessing greater 

mineral content and higher ASC, Brown soils lose much less P. On that basis, strategies to 

mitigate P losses should be tailored to individual soil types. These strategies will also need to 

account for different loss pathways. For the Brown soil, strategies that mitigate the erosion of 

PP in saturation-excess surface runoff include: using low-solubility P fertilisers instead of highly 

water soluble P fertilisers that could be lost in a surface runoff events soon after application 

and avoiding or restricting the grazing of saturated paddocks (McDowell and Nash 2012). 
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Table 3.4. Mean losses (mg) FRP, FUP and PP in surface runoff and sub-surface flow. The F-values are 
given for the comparison of log-transformed means by soil type, moisture, target Olsen P and for the 
interaction of soil type and moisture, and soil type and target Olsen P. 

Treatment Target 

Olsen P 

(mg L-1) 

     ------------ Surface runoff losses  ------------      ------- Subsurface flow losses ------- 

  
FRP FUP PP TP FRP FUP PP TP 

Dry 11 0.22 0.05 0.27 0.53 3.78 0.90 3.30 7.98 

Organic 15 1.97 0.35 0.44 2.76 74.06 7.24 5.24 86.54 

 40 29.68 6.84 9.79 46.31 137.06 12.51 10.22 159.79 

 60 88.32 5.33 38.26 131.91 228.96 10.35 20.02 259.32 

 80 47.69 1.10 7.52 56.32 463.08 20.13 16.34 499.55 

Wet 11 0.00 0.00 0.00 0.01 6.25 0.33 1.64 8.22 

Organic 15 0.10 0.03 0.04 0.17 98.45 4.77 7.70 110.92 

 40 0.21 0.29 0.39 0.89 196.9 6.62 25.03 228.54 

 60 0.04 0.01 0.02 0.07 280.79 3.95 67.43 352.17 

 80 0.18 0.11 0.12 0.41 381.81 27.61 32.44 441.86 

Dry 7 -1 - - - 0.01 0.02 0.05 0.07 

Brown 15 0.05 0.02 0.04 0.11 0.01 0.05 0.06 0.12 

 40 0.47 0.14 0.78 1.39 0.12 0.09 0.17 0.39 

 60 0.01 0.01 0.03 0.06 0.11 0.09 0.47 0.68 

 80 - - - - - - - - 

Wet 7 0.04 0.01 0.16 0.22 0.09 0.23 0.76 1.08 

Brown 15 0.29 0.14 6.19 6.62 0.10 0.16 0.43 0.70 

 40 0.68 0.06 4.22 4.96 0.04 0.14 0.24 0.43 

 60 - - - - 0.11 0.24 0.41 0.77 

 80 3.03 0.41 10.74 14.18 0.02 0.07 0.15 0.24 

F-statistic          

Soil type 0.117 <0.001 0.485 0.272 <0.001 <0.001 <0.001 <0.001 

Moisture 0.003 0.007 0.161 0.022 <0.001 0.007 <0.001 <0.001 

Olsen P <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 

Soil × Moisture <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.265 0.001 

Soil × Olsen P 0.215 0.226 0.112 0.040 <0.001 <0.001 <0.001 <0.001 

Moisture × Olsen P 0.914 0.010 0.487 0.284 <0.001 0.236 0.581 0.109 

Soil × Moisture × Olsen P 0.591 0.237 0.416 0.309 <0.001 0.310 0.078 0.011 

1Data missing as there were insufficient runoff events to make statistical comparisons for that 
treatment. 

 

 

In the Organic soil, drip feeding P via a low water soluble P fertiliser may not decrease P losses 

compared to highly water soluble P-fertilisers as the low ASC implies that there is little sorptive 

material for P to bind onto (Simmonds et al. 2015). In addition to poor sorption capacity, 

strategies for the Organic soil should address P loss by sub-surface flow. McDowell and Norris 

(2015) showed that surface applying aluminium sulphate (alum) to pasture could decrease the 

availability (and loss) of FRP in sub-surface flow by a third, while Murphy and Stevens (2010) 

demonstrated a similar effect on WEP following the incorporation of gypsum (CaSO4) into acid 
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Cambisols and Gleysols. Once in flow, McDowell et al. (2008) showed that back-filling artificial 

drainage channels with easily-sourced, non-toxic, P-sorbent material removed 80% of FRP 

from tile drainage. In open drains, Bryant et al. (2012) showed that ditch filtration using flue 

gas desulfurization gypsum could decrease mean total dissolved (viz. filtered) P concentrations 

by around 73%. While the mitigation of P from Organic and Brown soils is possible, the cost of 

doing so may prohibit the farmer from making a profit on the Organic soil. Therefore, at a 

catchment scale where the two soils abut one another, a strategy to maintain or increase 

profitability while decreasing P losses may be to concentrate profitable land uses on the Brown 

soil accepting that any increase in P losses would be more than offset by not farming the low 

ASC Organic soil. 

 

3.4 Conclusions 

 

The data confirmed the hypothesis that rainfall applied to a dry Organic soil would cause 

greater P losses in surface runoff than from a wet soil, due to hydrophobicity. However, due 

to high hydraulic conductivity and poor ASC, the most important loss pathway for the Organic 

soil was subsurface flow, wet or dry. Due to poor aggregation and low ASC in the Organic soil, 

much of the P lost was as FRP and not PP as originally hypothesized. In contrast, a moderate 

ASC meant that much of the P lost from the Brown soil was as PP in saturation-excess surface 

runoff irrespective of antecedent moisture conditions. The fact that both runoff processes 

resulted in environmentally unacceptable P losses at agronomically productive Olsen P 

concentrations means that additional strategies will be required to reduce any impact on 

surface water quality. These strategies should focus on PP losses in saturation-excess surface 

runoff from the Brown soil and FRP losses in sub-surface flow from the Organic soil. Where 

the two soil types abut one another, reducing catchment losses may be best served by 

focusing on P losses from the Organic soil.  
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Chapter 4 

Influence of phosphorus fertility and liming on amounts and forms of 

phosphorus leached from an acid Organic soil. 

 

4.1 Introduction 

 

Organic soils are estimated to cover around 200,000 ha in New Zealand (Gibbs 1980). Many of 

these have been drained to improve soil aeration and resistance to physical damage from 

machinery and stock (O'Connor et al. 2001). Following drainage, the next step in the 

development of many Organic soils for pasture production will be to correct poor nutrient 

content (Zak et al. 2004); for example, with P fertiliser, and soil acidity with lime.  

 

The quantities and forms of sorbed and precipitated P influence soil P retention and hence 

susceptibility to loss via surface runoff or subsurface flow (viz. leachate). McDowell and 

Sharpley (2001) and McDowell and Condron (2004) noted that the potential for P loss in water- 

and CaCl2-extractable fractions (i.e. P available for loss in surface runoff and subsurface flow, 

respectively) was related to soil P concentration (Olsen P), but also to ASC which is a measure 

of a soil’s Al and Fe-oxide concentration (Saunders et al. 1965).  

 

Liming increases soil pH, but changes to soil pH can profoundly influence the nature and 

dynamics of P in the soil. For example, liming modifies the relative solubility and net charge of 

metal oxides (e.g. Fe and Al) and amorphous minerals (e.g. containing Ca) that can sorb and 

precipitate P (e.g. Lee et al. 2011). In mineral soils, the solubility maximum for orthophosphate 

in soil solution is around pH 6.1 (Lindsay 1979). Therefore, increasing or decreasing soil pH to 

around this level may increase the potential for P loss, especially if the soil has few sorption 

sites (i.e. a low ASC). There is also some suggestion that liming increases the mineralisation of 

organic matter (OM) and associated P, often transforming insoluble P into more bioavailable 

forms (Haynes 1982; Sinclair et al. 1993; Andersson and Nilsson 2001; McDowell and Sharpley 

2001). In addition, mineralisation releases low molecular weight aliphatic organic acids 

(Haynes and Mokolobate 2001) that can reduce P sorption by competing with inorganic P for 
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sorption sites (Gu et al. 1994; Hinsinger 2001). This study therefore investigated the influence 

of lime and P fertiliser applications on filtered inorganic and organic P losses from a low ASC, 

acid Organic soil. Due to a very high infiltration rate, surface runoff was deemed unlikely from 

this soil and losses were measured in leachate from lysimeters. I hypothesised that the 

quantity and soluble unreactive fraction of P (which includes organic P; Gjettermann et al. 

2007) lost from the soils in drainage would increase with increasing pH as organic matter 

would be mineralised and that losses would be exacerbated when P fertiliser was also applied. 

 

4.2 Materials and Methods 

 

4.2.1 Study site 

 

The Waituna catchment (46° 34′S/168° 36′E) has a surface area of 210 km2 (Schallenberg et al. 

2010) and drains into the Waituna Lagoon and wetland. Soil types range from well-drained 

Brown soils (USDA Taxonomy, Dystrochrepts; Hewitt 2010) at the northern-end, to poorly-

drained acid Organic, Gley and Podzols (USDA Taxonomy, Hemists, Aquepts and Aquods; 

(USDA Taxonomy, Hemists, Aquepts and Aquods; Hewitt 2010) at the southern-end of the 

catchment (Wilson 2011). Farming in the Waituna catchment is largely dairying, with 

operations covering around 80% of pastoral land in the catchment (Risk 2011). Of these dairy 

farms 25 are situated in the southern portion of the catchment where Organic soils (including 

Podzols and Gleys with peat-like topsoils) are dominant.  

Soil for the trial was taken from a single paddock at the southern-end of the catchment and 

was classified as an Invercargill peat (acid, mesic Organic soil, New Zealand soil classification; 

USDA Taxonomy, dysic, mesic Typic Medihemist). This soil had a low extractable P 

concentration and bulk density, was acidic and had a very low ASC (and oxalate extractable Al 

and Fe concentrations) (Table 4.1). The paddock had been in production for one year under a 

forage crop of swede (Brassica napobrassica sp.). It had not received fertiliser or lime in the 

nine months prior to soil collection. Soil was collected from below the plough layer (30 – 60 

cm depth) to minimise the chance of sampling soil that had was influenced by fertiliser or lime. 
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Soil was air-dried, crushed and passed through an 8-mm sieve before being packed into 

lysimeters at a field bulk density (0.31 g cm3).  

 

Table 4.1. Selected soil physiochemical characteristics of the unaltered acid mesic Organic soil. 

------- Phosphate extracts ------- ------------- Soil physiochemical properties ----------- Oxalate extractable 

Olsen P 

(mg L-1) 

WEP 

(mg L-1) 

CaCl2-P 

(mg L-1) 

Bulk density  

(g cm3) 

pH ASC  

(%) 

C 

(%) 

N 

(%) 

Al  

(mg kg-1) 

Fe  

(mg kg-1) 

7 0.14 3.14 0.31 4.2 2 37.6 1.0 419.8 180.8 

 

4.2.2 Lysimeter set up and leachate collection 

 

Forty-eight lysimeters were placed in a precipitation and temperature-controlled (25 °C) 

greenhouse at the AgResearch - Invermay Agricultural Centre, Mosgiel. They were arranged in 

a randomised block, two-by-eight metre row-column design with additional lysimeters around 

the outside to reduce the potential for edge effects (Hurlbert 1984). Lysimeters consisted of 6 

L polyethylene pots with a nylon mesh (1000 µm) covering a 5-mm hole drilled in the bottom 

to prevent soil loss and allow drainage along 4-mm tube to 3 L vented bottles. As soils were 

re-packed and received regular rainfall, edge flow and drying effects were not of concern 

(Cameron et al. 1992). 

 

Treatments consisted of four replicates of sieved (< 2 mm) single superphosphate (9% P) 

inputs ranging from a nil or regular maintenance application (0 or 50 kg P ha-1 yr-1) to a capital 

application of 100 or 200 kg P ha-1 yr-1, all at three pH values (4.5, 5.5 and 6.5). Manipulations 

of pH were made using a 1:5 ratio of laboratory grade Ca(OH)2 and CaCO3 (hereafter referred 

to as lime). Liming rates required to increase soil pH to 4.5, 5.5 and 6.5 were calculated from 

Lierop (1983). Lime was mixed homogenously through the lysimeters, followed by a three 

week equilibration period containing three wetting and drying cycles. 

Following equilibration, lysimeters were watered with 50 mm of tap water (with an 

established P concentration lower than 0.005 mg P L-1) every two days until leaching was 

noted. Ryegrass was sown at a rate of 22 kg ha-1 (Young et al. 2010) then lysimeters were 

watered daily to retain moisture until germination without causing leaching. After two weeks, 

fortnightly additions of 10 mm of ¼ strength P-deficient Hoagland solution were applied 
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(Hoagland and Arnon 1950). Three weeks after germination, ryegrass was trimmed to a dry 

matter residual of 1,500 kg ha-1 and repeated at monthly intervals. Three weeks after 

germination, 40 mm of tap water was applied to lysimeters over a 72 hour period (13.3 mm 

day-1) using a commercial garden sprinkler system (2 mm full circle micro jet spray fittings) to 

trigger leaching across all lysimeters. This was followed by three, computer-controlled two-

minute daily rainfall cycles over the duration of the experiment, with leachate regularly 

collected from lysimeters over the 12 month span of the experiment. Precipitation 

approximated the mean annual rainfall of 1,025 mm recorded from 1975-2011 at a research 

farm (20 km north of study site). 

 

4.2.3 Analyses 

 

Herbage was trimmed at monthly intervals, dried at 60 °C and weighed to assess the 

cumulative dry matter yield over the 12 month trial period. Leachate samples were filtered 

(0.45 µm) immediately following each drainage event and analysed for FRP within 24 h and 

total filtered P following acid-persulphate digestion (Rowland and Haygarth 1997) within 7 

days. Filtered unreactive P was obtained as the difference between TFP and FRP. The P 

concentration was determined colorimetrically using the method of Watanabe and Olsen 

(1965), and the quantity of P lost was calculated from the leachate volume and P 

concentration. 

Prior to leaching, a single 25 x 2 cm core was taken from each pot and replaced with moist 

untreated soil. A soil core was also taken at the end of the trial. Soil cores were oven dried and 

passed through a 2-mm sieve and then analysed for ASC (Saunders 1965), Olsen P (Olsen et al. 

1954), WEP and CaCl2-P (McDowell and Condron 2004). Soil pH was determined by mixing air-

dried soil with deionised water at a 1:10 ratio (Hendershot et al. 1993). Bulk density was 

established as the dry weight of a sample, divided by the volume occupied (Parent and Caron 

1993). The amount of Fe and Al (non-crystalline and poorly crystalline forms) in soils was 

determined using the oxalate-extractable method of McKeague and Day (1966). Soil P 

fractionation was conducted using the method of Chen et al. (2000). 
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4.2.4 Statistical analysis 

 

Data was analysed using an ANOVA for two independent variables: soil pH (4.5, 5.5 and 6.5) 

and fertiliser P rate (0, 50, 100 and 200 kg P ha-1), and their interactions. Data was log-

transformed where necessary. The resulting P-values are presented in tables and least 

significant difference at the 5% level is shown for graphs of FRP and FUP; Figures 4.1a and 

4.1b. A t-test was also conducted to explore differences between extractable P and soil P 

fractions before and after leaching. All statistical analyses were performed using the statistical 

package - GenStat version 16 (Payne et al. 2011). 

 

4.3 Results and Discussion 

 

4.3.1 Soil physical and chemical properties 

 

Over the 12 month leaching period there were a number of changes to soil chemical properties 

(Table 4.2). All soils exhibited a decrease in pH after leaching, such that no difference was 

noted between mean soil pH for pH 4.5 and 5.5 treatments; however, the pH 6.5 treatment 

still maintained a greater pH than the other treatments. Soil Olsen P, CaCl2-P and WEP 

concentrations declined for all pH treatments after leaching with the greatest changes in pH 

4.5 and 5.5 treatments. Interestingly, mean pre-leaching Olsen P concentrations for pH 6.5 

treatments were less than those of pH 4.5 and 5.5 treatments, suggesting that applied P may 

have been incorporated into non-bicarbonate extractable pools with the addition of lime. 

Other studies have noted a decline in Olsen P concentrations coincident with liming; 

attributing this to enhanced phosphate adsorption from precipitation with Ca (Sorn-Srivichai 

et al. 1984; Curtin and Syers 2001). The inconsistent pre-leaching Olsen P values for pH 4.5 

treatments were most likely because Olsen P tests were conducted outside the optimum pH 

range for the test (Olsen et al. 1954).  

 

4.3.2 Phosphorus losses in leachate 
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In keeping with other studies of P loss following the addition of P fertilisers (e.g. Withers et al. 

2001), FRP losses in leachate increased with P fertiliser rates for all pH treatments (Figure 

4.1a). The lowest cumulative FRP losses were from pH 5.5 and 6.5 treatments, which were 

generally not different from one another, except at the 100 kg P ha rate where pH 5.5 FRP loss 

was greater than at pH 6.5. The decreased loss compared to pH 4.5 point to a mitigation effect 

by the addition of lime. A number of papers have described increased P desorption from soils 

following the application of lime, citing increases due to: 1) a net increase in the negative 

charge on soil colloids that limits P sorption (Lindsay 1979); and 2) the mineralisation of soil 

organic P (Haynes 1982a; Sinclair et al. 1993). However, these data were for mineral soils that 

contain substantial quantities of Al, Fe and Ca. The acid mesic Organic soil in the present study 

had a very low ASC (2%; Table 4.1), thus the likelihood that inorganic phosphates are bound 

to Al or Fe is far less than the likelihood of being bound by Ca (Hsu and Jackson 1960). Indeed, 

the solubility equilibria of soils limed to pH 5.5 and above indicate that amorphous Ca-

phosphates and pure Ca-phosphate such as brushite (CaHPO4·2H2O) may begin to form 

(Lindsay 1979; Haynes 1982a; Chepkwony et al. 2001; McDowell et al. 2002), and P extracted 

with NaOH (indicating P associated with Fe and Al oxides) was very low in comparison with 

other studies (e.g. Chen et al. 2000) and did not change after leaching (Table 4.3).  

Similar to my study, Lee et al. (2011) found that increasing soil pH from 5.1 to between 5.5 

and 5.8 with Ca(OH)2 significantly reduced total, unreactive and dissolved P concentrations in 

leachate. This was due to the conversion of WEP fractions into Ca-bound (Ca-P) forms in an 

Entisol soil – a silt loam soil devoid of Al and Fe oxides. In a Spodosol (pH 4.6) rich in organic 

matter, but poor in Al or Fe, Olsen and Sommers (1982) noted that applying 1 t ha-1 of lime 

increased soil pH to 7.4 and increased P retention due to the precipitation of Ca-P.  

 

While FRP is immediately bioavailable to plants and algae, the bioavailability of organic P 

species measured collectively as FUP varies (Toor et al. 2003; McDowell et al. 2008). Filtered 

unreactive P losses followed a similar pattern to FRP, with mean losses increasing with P 

application rate and were greatest from pH 4.5 treatments (Figure 4.1b; Perrott and Mansell 

1989).  However there was no significant difference between FUP losses at pH 5.5 and 6.5 at 

any P application rate. The proportion of FUP as TFP increased with pH (P < 0.01), but was 

probably due to changes in FRP since FUP only made up – at most, 20% of TFP losses. 
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Table 4.2. Mean soil pH and P extract concentrations before and after leaching and the P-values (bold 
if significant) indicating significant changes in means of pH and P extracts by pH, P rates and the 
interaction of pH by P rates after leaching. 

Soil pH 
Fertiliser 
rate 
(kg P ha-1) 

           --------- Before leaching ---------         ------------ After leaching ------------ 

pH 
Olsen P  
(mg L-1) 

CaCl2-P 
(mg L-1) 

WEP  
(mg L-1) 

pH 
Olsen P 
(mg L-1) 

CaCl2-P 
(mg L-1) 

WEP 
(mg L-1) 

4.5 0 4.7 26 20.0 0.15 3.8 8 0.5 0.09 

 50 4.5 58 29.7 0.41 3.8 9 0.9 0.08 

 100 4.3 46 55.3 0.73 3.7 13 0.8 0.09 

 200 4.5 40 58.8 0.89 3.6 13 1.1 0.09 

 Mean 4.5 42 41.0 0.55 3.7 11 0.8 0.09 

5.5 0 5.1 14 7.9 0.19 3.9 6 0.9 0.08 

 50 4.9 28 21.9 0.33 4.0 9 1.1 0.09 

 100 5.0 62 27.8 0.55 3.9 7 1.4 0.10 

 200 4.9 92 73.9 1.24 3.9 17 2.8 0.13 

 Mean 5.0 49 32.9 0.58 3.9 10 1.6 0.10 

6.5 0 6.9 13 3.9 0.16 4.8 5 0.5 0.08 

 50 6.7 31 7.7 0.24 4.8 14 0.9 0.08 

 100 6.5 38 11.9 0.43 4.8 19 1.3 0.13 

 200 6.4 63 29.8 0.66 4.9 28 1.5 0.13 

 Mean 6.6 36 13.3 0.37 4.8 17 1.1 0.11 

P value          

pH    <0.001 0.013 <0.001 0.093 

P rate    0.991 <0.001 <0.001 0.038 

pH × P rate    0.987 0.154 0.516 0.349 

 

 

 

Figure 4.1. a) Mean cumulative FRP and b) FUP load at each fertiliser rate and soil pH. The least 

significant difference at the P < 0.05 level is given for the comparison between all P rates and pH 

treatments.  
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Table 4.3. Mean concentrations of inorganic and organic P (mg P kg-1) fractions for soils before, and after leaching at pH 4.5, 5.5 and 6.5 treated with 0, 50, 
100 and 200 kg P ha-1. The corresponding P-values (bold if significant) are given for the comparison of means by pH and fertiliser rate, and for the interactions 
of these treatments. 

Soil 

pH 

Fertiliser 

rate  

(kg P ha-1) 

----------------------------------- Before leaching P fractions (mg kg-1) ----------------------------------- ------------------------------------ After leaching P fractions (mg kg-1) --------------------------------- 

NH4Cl 

 

NaHCO3-

Pi 

NaOH-

Pi 

HCl 

 

NaHCO3-

Po 

NaOH-

Po 

NaOH-II-

Po 

Residual 

 

NH4Cl 

 

NaHCO3-

Pi 

NaOH

-Pi 

HCl 

 

NaHCO3

-Po 

NaOH-

Po 

NaOH-II-

Po 

Residual 

 

4.5 0 87 37 62 8 27 32 2 4 9 30 98 2 12 45 2 2 

 50 227 73 97 11 19 24 2 3 13 28 99 2 12 24 2 2 

 100 410 114 78 22 15 24 2 4 12 27 73 3 14 61 3 1 

 200 517 135 94 17 29 38 2 5 15 32 93 4 17 43 2 2 

5.5 0 75 53 59 15 18 35 1 3 12 26 79 2 16 62 6 2 

 50 210 77 71 15 8 19 1 4 15 31 86 2 13 43 2 2 

 100 302 101 75 41 20 60 2 3 16 31 86 5 15 27 5 1 

 200 505 198 89 45 19 26 2 4 29 35 84 7 14 34 2 1 

6.5 0 46 46 59 15 13 30 2 4 13 26 92 3 9 23 2 2 

 50 146 101 70 36 18 37 3 4 20 32 79 6 18 47 6 1 

 100 254 194 98 64 19 29 2 3 34 42 99 9 14 31 2 2 

 200 514 227 131 79 41 42 1 3 42 50 80 17 16 31 3  1 

P values           

pH 0.009 0.004 0.081 <0.001 0.394 0.879 0.821 0.410 <0.001 0.005 0.530 <0.001 0.573 0.325 0.443 0.869 

P fertiliser rate <0.001 <0.001 <0.001 <0.001 0.204 0.817 0.676 0.340 <0.001 <0.001 0.873 <0.001 0.634 0.803 0.960 0.271 

pH × P fertiliser rate 0.597 0.200 0.039 0.834 0.453 0.235 0.061 0.675 0.110 0.049 0.284 0.291 0.535 0.197 0.219 0.237 
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4.3.3 Phosphorus transformations and distribution 

 

Similar to initial soil tests, the quantity of inorganic P (Pi) extracted from soils among different 

fractions increased with P fertiliser rate before leaching (Table 4.3). The majority of Pi in pre-

leachate soils was located in bioavailable (NH4Cl- and NaHCO3-extractable) forms, due to the 

low metal-oxide concentration of the soil (Table 4.1). For treatments that received P, t-tests 

indicated the amount of NH4Cl- and NaHCO3-extractable forms decreased significantly after 

leaching. For example, decreases in NH4Cl-Pi compared to pre-leachate concentrations in the 

200 kg P ha-1 treatments were 97.2%, 94.3% and 91.9% at pH 4.5, 5.5 and 6.5, respectively. 

The addition of lime increased the proportion of P that was extracted by HCl. Before leaching, 

pH 6.5 soils extracted 236% and 68% more HCl-extractable P on average than pH 4.5 and 5.5 

soils, respectively. The data supports enhanced P retention in the soil due to the formation of 

sparingly soluble Ca-phosphates (e.g. Haynes 1982b; Naidu et al. 1990; Chepkwony et al. 

2001; Lee et al. 2011). Post-leaching, some P was still extractable by HCl in the pH 6.5 soils, 

but almost none remained in the pH 4.5 or 5.5 soils – commensurate with the acid pH of the 

soils after leaching (Table 4.2).  

My hypothesis also stated that with increasing pH, dissolved organic P losses would increase. 

Soil fractionation showed there were no significant changes to extractable organic P for pH 

treatments or P fractions before or after leaching, indicating that net mineralisation did not 

occur (Table 4.3). There are several potential reasons for this, such as little to no microbial 

activity or exudation of organic acids by plant roots (Chen et al. 2002). Microbial and plant P 

requirements are likely to have been met by the large quantities of inorganic P in soil solution 

and hence there was no need to mineralise organic P for growth (Olander and Vitousek 2000). 

This was confirmed by the fact that there was no significant differences between P rates and 

dry matter production (data not shown as a result). The only difference noted was a greater 

yield in the pH 5.5 and 6.5 treatments compared to pH 4.5 most likely due to the pH range for 

the optimal growth of ryegrass which sits at between 5.5 and 7.5 (Hannaway et al. 1999). 

However, the role of organic P could increase as soil fertility increases and more P is present 

in organic forms (Perrott et al. 1992).  

The mass balance presented in Figure 4.2 indicated that there was relatively little variation in 

soil P fractions between soil pH and fertiliser rates, compared to leachate losses and plant 
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material. This indicates that the added P was either present in poorly-sorbed (and leached) 

or bioavailable P (incorporated into plant biomass) forms, leaving only original soil P in soil at 

the end of the trial (Table 4.2). However, it is important to realise that this was a short-term 

study and with P losses being so high (93, 37 and 24% of the P added [calculated as FRP] at 

pH 4.5, 5.5 and 6.5, respectively) it is clear that on this low ASC soil, liming to pH 6.5 will still 

result in substantial P losses in leachate. 

 

 
Figure 4.2. Mass balance showing the mean distribution of P at the end of the experiment for each pH 

treatment and rate. The mean unaccounted P (i.e. difference between soil P + mean rate of added P 

and the distribution at the trial’s end) was 29.2 mg pot-1 ± 64.1. 

 

4.4 Conclusions 

 

Due to the low metal oxide content of the acid mesic Organic soil, applied P was loosely-

bound to soil, and therefore mobile. Assuming that in the absence of metal oxides, the 

addition of lime promoted the formation of insoluble Ca-phosphates, I conclude that P 

concentrations in leachate subsequently reduced when pH was > 5.5. Phosphorus losses were 

not enhanced by mineralisation of organic matter, resulting in higher organic P losses as 

originally hypothesised. However, the magnitude of P losses (51% of P added, on average) in 

leachate from this low ASC soil, even at pH 6.5, was so great that they represent not only an 

environmental loss but also a significant economic loss. 
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Chapter 5 

Can low-water solubility phosphorus fertilisers decrease phosphorus leaching 

loss from an acid peat subsoil? 

 

5.1 Introduction 

 

The risk of surface runoff of P is greatest when water soluble forms of P fertiliser (e.g. SSP) are 

applied when a surface runoff event is likely to occur (McDowell et al. 2003). This risk can be 

decreased by using sparingly soluble forms of P fertiliser (e.g. reactive rock phosphate, RPR) 

that slowly dissolves into soil solution when soil pH is < 6.0 (Bolan et al. 1990; Kanabo and 

Gilkes 1987; McDowell and Catto 2005). McDowell et al. (2010) assessed the relative P loss 

from two 12 ha catchments fertilised with either RPR or SSP, and showed that FRP and TP 

losses were on average 58% and 38% less, respectively, when RPR was applied. However, no 

data is available for sub-surface losses where interaction with the soil matrix (via Al- and Fe-

oxides) is thought to prevent excessive P losses – irrespective of the form of P applied.  

 

Organic soils (peats including Histosols and Hemists in FAO and UDSA Taxonomy, respectively) 

are estimated to cover between 230 and 450 million hectares (ha) worldwide (Armentano 

1980); New Zealand has around 200,000 ha (Gibbs 1980). The majority of New Zealand’s 

Organic soils have been drained, which aside from the agronomic benefits of less 

waterlogging, improved aeration and resistance to physical damage from machinery and 

stock, provides an efficient conduit for P to be lost to receiving surface waters where it can 

enhance eutrophication (O'Connor et al. 2001; McDowell et al. 2009). Losses are aided by the 

fact that many Organic soils poorly sorb or retain P: measured in New Zealand as Al- and Fe-

oxides contributing to ASC (Saunders 1965). 

 

Without inputs of lime to maintain soil pH at agronomically viable levels (compared to a 

mineral soil), the pH of Organic soils can be low. Acidic conditions increase the dissolution rate 

of RPR. While a combination of high hydraulic conductivity, acidic conditions and low ASC, 

implies that RPR would be dissolved quickly and potentially lost in subsurface flow, the 
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attenuation and magnitude of leachate losses have not been established. My hypothesis was 

that there is no environmental benefit in using RPR on these soils compared to SSP, or in other 

words: dissolved P losses in leachate from acid Organic soils receiving RPR would be similar to 

those receiving SSP.  

 

5.2 Materials and Methods 

5.2.1 Site description 

 

The Waituna catchment (46° 34′S/168° 36′E) has a surface area of 210 km2 (Schallenberg et al. 

2010) and drains into the Waituna Lagoon and wetland. Soil types range from well-drained 

Brown soils (USDA Taxonomy, Dystrochrepts; Hewitt 2010) at the northern-end to poorly-

drained acid Organic, Gley and Podzols (USDA Taxonomy, Hemists, Aquepts and Aquods, 

respectively; Hewitt 2010) at the southern-end of the catchment. Pastoral farming covers c. 

80% of the Waituna catchment and is dominated by dairying (Stevens and Robertson 2007). 

Of these dairy farms, around 25 are situated in the southern portion of the catchment where 

Organic soils (including Podzols and Gleys with peat-like topsoils) are dominant.  

 

Soil for the trial originated from a single location at the southern-end of the catchment and 

was classified as an Invercargill peat (acid, mesic Organic soil, New Zealand soil classification; 

USDA Taxonomy, dysic, mesic Typic Medihemist). The soils had low extractable P 

concentrations and bulk density, were acidic and had very low ASC (and oxalate extractable Al 

and Fe concentrations) (Table 5.1). The area had been developed from native swamp and had 

been in production for one year under a forage crop of swede. It had not received fertiliser or 

lime in the 9 months prior to soil collection. Soil was collected from below the plough layer 

(30 – 60 cm depth) to minimise the chance of sampling soil that had received fertiliser. Soil 

was air-dried, crushed and passed through an 8-mm sieve before being packed into lysimeters 

at a field bulk density (0.31 g cm3).  
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Table 5.1. Selected soil physicochemical characteristics of the control acid mesic Organic soil. 

Phosphorus extracts ---- Soil physiochemical properties ---- Oxalate extractable 

Olsen P 

(mg L-1) 

WEP 

(mg L-1) 

CaCl2-P  

(mg L-1) 

Bulk 

density 

(g cm3) 

pH ASC 

(%) 

C 

(g kg-1) 

N 

(g kg-1) 

Al  

(mg kg-1) 

Fe  

(mg kg-1) 

7.0 0.14 3.14 0.31 4.2 2.0 376 10 420 181 

 

5.2.2 Lysimeter set up and collection 

 

Eighty-four lysimeters were placed in a light and temperature-controlled greenhouse at the 

Invermay Agricultural Centre, Mosgiel, New Zealand. They were arranged in a randomised 

block, two-by-eight metre row-column design with additional lysimeters around the outside 

to reduce the potential for pseudoreplication and edge effects (Hurlbert 1984). Lysimeters 

consisted of 6 L polyethylene pots with a nylon mesh (1000 µm) covering a 5 mm hole drilled 

in the bottom to prevent soil loss and allow drainage along 4 mm tube to 3 L vented bottles. 

As soils were re-packed and received regular rainfall, edge flow and drying effects were not of 

concern (Cameron et al. 1992). 

 

Treatments consisted of four replicates of four sieved (< 2 mm) SSP (9% P) or RPR (13% P) 

inputs ranging from a nil or regular maintenance application (0 or 50 kg P ha-1 yr-1) to a capital 

application of 100 or 200 kg P ha-1 yr-1, all at three pH values (4.5, 5.5 and 6.5). Manipulations 

of pH were made using a 1:5 ratio of laboratory grade Ca(OH)2 and CaCO3 (hereafter referred 

to as lime). Liming rates required to increase soil pH to 4.5, 5.5 and 6.5 were calculated from 

Lierop (1983). Lime was mixed homogenously throughout the soil in the lysimeters, followed 

by a six week equilibration period containing three wetting and drying cycles. 

 

Lysimeters were initially watered with 50 mm of tap water (with an established P 

concentration lower than 0.005 mg P L-1) every two days until leaching was noted. Ryegrass 

was sown at a rate of 22 kg ha-1 (Young et al. 2010) then lysimeters were watered daily to 

retain moisture until germination without causing leaching. After two weeks, fortnightly 

additions of 10 mm of P-deficient ¼ strength Hoagland solution were applied (Hoagland and 

Arnon 1950). Three weeks after germination, ryegrass was trimmed to a dry matter residual 
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of 1,500 kg ha-1 and repeated at monthly intervals. Shoot material was bulked together within 

each lysimeter. Three weeks after germination, 40 mm of tap water was applied to lysimeters 

over a 72 hour period (13.3 mm day-1) using a commercial garden sprinkler system (2 mm full 

circle micro jet spray fittings) to trigger drainage across all lysimeters. This was followed by 

three, computer-controlled two-minute daily rainfall cycles over the duration of the 

experiment, with leachate regularly collected from lysimeters over the 12 month span of the 

experiment. Precipitation approximated the mean annual rainfall of 1,025 mm recorded from 

1975-2011 at a research farm near the Waituna catchment. 

 

5.2.3 Analyses 

 

Leachate samples were filtered (0.45 µm) immediately following collection and analysed for 

FRP within 24 h and FUP following acid-persulphate digestion (Rowland and Haygarth 1997) 

within 7 days (FUP estimated as the difference between TFP and FUP). The P concentration 

was determined colorimetrically using the method of Watanabe and Olsen (1965), and P loss 

(load) was determined by combining concentration and leachate volume data for each 

lysimeter. 

 

Plant matter was harvested at monthly intervals, dried at 60 °C and weighed to determine the 

cumulative dry matter yield over the 12 month trial period. At the end of the trial pasture 

roots were washed from each lysimeter, dried at 60 °C, weighed and bulked with the 

corresponding shoot material. Separate sub-samples (1 g) of shoot and root material from 

each lysimeter was ground in a stainless steel mill and digested using HNO3 and HClO4 mixed 

in 4 to 1 ratio (Crosland et al. 1995). 

 

At the start of the trial, a single 25 x 2 cm core was taken from each pot and replaced with 

new soil from each treatment. A similar core was also taken at the end of the trial. Soil cores 

were oven dried and passed through a 2 mm sieve prior to analysis of ASC (Saunders 1965) 

and bicarbonate-extractable Olsen P (Olsen et al. 1954). Water extractable P (McDowell and 

Condron 2004) and CaCl2-P were also determined as good indicators of the potential for P loss 

via surface runoff and subsurface flow, respectively (McDowell and Sharpley 2001). Soil pH 
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was determined by mixing air-dried soil with deionised water at a 1:10 ratio (Hendershot et 

al. 1993). An estimate of bulk density was established as the dry weight of a sample, divided 

by the volume occupied (Parent and Caron 1993). The amount of Fe and Al (non-crystalline 

and poorly crystalline forms) in soils was determined using the oxalate-extractable method of 

McKeague and Day (1966). Soil P fractionation was conducted using the method of Chen et al. 

(2000).   

 

The fate of the fertiliser-P applied was apportioned into soil, plant and leachate via a mass 

balance of the product of total P concentration and weight (or volume) for each of the 

constituent pools. Existing soil P was taken into account by subtracting the mass of total P for 

unfertilised soil. 

 

5.2.4 Statistical analysis 

 

Data were analysed using an ANOVA fitting factors for fertiliser type (SSP and RPR, plus no 

fertiliser), soil pH (4.5, 5.5 and 6.5) and fertiliser P rate (50, 100 and 200 kg P ha-1), and their 

interactions. All data required log-transformation except cumulative dry matter. Of the 

possible interactions, only those for fertiliser type by pH were significant. The significance of 

this interaction and the magnitude of difference are shown in tables as the ratio of SSP to RPR. 

All statistical analyses were performed using the statistical package - GenStat version 16 

(Payne et al. 2011). 

 

5.3 Results and Discussion 

 

5.3.1 Leachate analyses  

 

Data for mean losses of FRP and FUP are given in Table 5.2. When taken as an average of all P 

rates, FRP and FUP losses from pH 4.5 SSP-treated soils were 165% and 211% greater than at 

pH 5.5, and 281% and 189% greater than at pH 6.5. In comparison, FRP and FUP losses from 

pH 4.5 RPR-treated soils were 158% and 185% greater than pH 5.5 treatments, and 585% and 
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326% greater than 6.5 treatments. Given all lysimeters received the same irrigation rate, 

leaching losses would be a function of how available the applied- P was and uptake either by 

the soil or pasture. A number of studies (Haynes 1982; Naidu et al. 1990; Chepkwony et al. 

2001; Lee et al. 2011) have found that liming soils to pH 5.5 and above increases P 

retention/sorption due to the formation of Ca-phosphates in soils with low sorption capacity, 

while the application of lime can reduce RPR dissolution (He et al. 1996). 

 

Table 5.2. Mean FRP and FUP losses (mg P pot-1) in leachate from soils at pH 4.5, 5.5 and 6.5 treated 
with RPR or SSP. The standard error of the difference (SED) and P-values relate to a comparison of 
means for P fractions between fertiliser treatments at each pH along with the relative strength of 
difference given as the ratio of means for SSP to RPR. 

  ---------- Treatment ----------    

 pH Control RPR SSP SED P Ratio (S/R) 

FRP 4.5 94.1 307.4 405.6 27.6 0.002 1.3 

 5.5 12.2 126.6 145.0 23.5 0.440 1.1 

 6.5 12.3 34.2 112.5 21.9 0.002 3.3 

FUP 4.5 35.9 75.1 95.9 17.5 0.247 1.3 

 5.5 8.3 27.4 28.5 4.0 0.785 1.0 

 6.5 11.1 16.1 30.9 2.9 <.001 1.9 

 

 

 

There were differences between FRP and FUP losses as a function of fertiliser type, but only 

at certain pH levels (Table 5.2). In general, there was little difference (expressed as the ratio 

of losses from SSP to RPR) in mean FRP and FUP losses between the two fertiliser types at pH 

4.5 and 5.5. However, FRP loss from SSP treated soils at pH 6.5 was three-times that lost from 

RPR amended soils. Although, there was more FRP lost from the SSP compared to RPR soil at 

pH 4.5, the difference was not strong (ratio = 1.3; Table 5.2). Interestingly, FUP losses were 

greater from SSP than RPR treated soils at pH 6.5, suggesting increased loss of organic P. 

However, there was little change in soil organic P over the duration of the experiment (see 

next section). It is possible that the acidifying nature of SSP (e.g. Horsnell 1985), especially at 

high application rates, may have solubilised a small amount of organic P, detectable in 

leachate, but not detected as a change in soil organic P. 
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5.3.2 Soil P fractionation 

 

Before leaching the addition of fertiliser P increased, on average, the concentration of all 

extractable inorganic P pools (NH4Cl, HCO3, NaOH, and HCl) compared to unfertilised soil, but 

not concentrations of extractable organic P. It is well established that adding fertiliser enriches 

inorganic P in readily bioavilable pools (e.g. Rowarth et al. 1992) until processed within the 

soil and redistributed into more recalcitrant pools (McDowell et al. 2010; Chen et al. 2000). It 

is also known that the distribution and magnitude of P in different pools can be influenced by 

the form of P applied and its water solubility. For instance, Metherell et al. (1997) compared 

the accumulation of P fractions in organic and inorganic soil pools following 17 years of 

applying Sechura phosphate rock (Sechura PR) and SSP. They noted increases in HCO3 and 

NaOH pools were similar for the two fertiliser types, while the sparingly water-soluble Sechura 

PR treatment still contained significant quantities of undissolved PR extractable by HCl. In my 

study, differences in inorganic extractable P concentrations between RPR and SSP-treated soils 

were only noted at pH 6.5 (Table 5.3).  

 

Among P fractions, both treatments contained most P in labile (NH4Cl- and NaHCO3-

extractable) over more recalcitrant NaOH- and HCl-extractable forms (Table 5.3). Of the two 

most labile fractions, NH4Cl-extractable P was much greater, probably reflecting the absence 

of Fe and Al oxides in the Organic soil as indicated by its low ASC (Table 5.1). In mineral soils P 

fractions are dominated by NaHCO3- and NaOH-extractable forms due to a much greater 

concentration of Al and Fe oxides (Chen et al. 2000; Condron and Newman 2011). It is also 

worth noting that whereas fertiliser P accumulated in NH4Cl-, NaHCO3-, and NaOH-extractable 

fractions in SSP-treated soils, soils receiving RPR had more P in the HCl- and, recalcitrant 

NaOH-II-extractable pools (SSP to RPR ratio of 0.3 and 0.1, respectively). The enrichment of 

the HCl-extractable P has been attributed to the formation of Ca-phosphates (e.g. Boruvka 

and Rechcigl 2003; Lee et al. 2011). However, the Organic soil contained little Ca. Some was 

added as CaCO3 and with the fertilisers, but as HCl-extractable P was not enriched in the SSP 

treated (and limed) soils, the enrichment of HCl-extractable P in RPR treated soils is likely to 

represent undissolved RPR (i.e. apatite).  
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After leaching, total soil P had significantly decreased (Table 5.4). Among P fractions, all had 

decreased on average except for NaOH-extractable P which was similar across treatments, 

suggesting this pool was not as strongly influenced by P fertiliser additions. Of more 

importance is that differences between fertiliser types after leaching, while still significant in 

pH 6.5 soils (Table 5.4), had decreased e.g. from 2.4 and 2.5 in the NH4Cl- and HCO3-extractable 

P pools to 1.5 and 1.3, respectively. This reflects a total decrease in both fertiliser treatments 

but more from the SSP treated soil at pH 6.5. The ratio for SSP to RPR extractable by HCl at pH 

6.5 changed relatively little (from 0.3 before leaching to 0.4 afterwards), but it too was greatly 

depleted by leaching or plant uptake.   

 

Table 5.3. Mean concentrations of P fractions (mg P kg-1) extracted from soils at pH 4.5, 5.5 and 6.5 
and treated with RPR or SSP before leaching. The standard error of the difference (SED) and P-values 
relate to a comparison of means for P fractions between fertiliser treatments at each pH along with 
the relative strength of difference given as the ratio of means for SSP to RPR. 

   Treatment     

 Target pH Actual pH Control RPR SSP SED P Ratio (S/R) 

NH4Cl 4.5  82.2 404.9 374.2 58.5 0.605 0.9 

 5.5  98.6 411.3 379.3 64.2 0.620 0.9 

 6.5  45.3 118.5 283.2 37.7 <.001 2.4 

HCO3-Pi 4.5  37.9 95.0 107.4 11.5 0.298 1.1 

 5.5  53.3 101.8 116.4 11.2 0.210 1.1 

 6.5  47.3 68.7 172.7 20.3 <.001 2.5 

NaOH-Pi 4.5  63.9 79.1 89.6 6.1 0.103 1.1 

 5.5  58.7 75.9 78.1 4.9 0.658 1.0 

 6.5  58.3 72.0 97.9 8.0 0.004 1.4 

HCl 4.5  8.4 12.1 16.2 2.5 0.107 1.3 

 5.5  17.8 41.7 33.1 11.4 0.451 0.8 

 6.5  17.3 179.9 56.4 28.3 <.001 0.3 

NaOH-II-Pi 4.5  1.0 1.6 2.3 1.0 0.503 1.4 

 5.5  2.1 3.5 4.0 1.8 0.798 1.1 

 6.5  1.1 33.0 4.7 2.2 <.001 0.1 

Residual 4.5  4.3 4.8 4.2 0.6 0.318 0.9 

 5.5  3.6 4.0 3.7 0.6 0.713 0.9 

 6.5  4.6 3.5 3.3 0.6 0.738 0.9 

Organic P 4.5  75.8 54.2 57.6 15.3 0.454 1.1 

 5.5  141.7 61.1 161.5 67.6 0.386 2.6 

 6.5  63.5 64.2 77.8 29.5 0.621 1.2 

Total P 4.5  261.1 650.0 642.9 59.0 0.907 1.0 

 5.5  290.7 691.1 664.6 72.4 0.718 1.0 

 6.5  220.4 559.1 674.1 75.6 0.143 1.2 
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Table 5.4. Mean concentrations of P fractions (mg P kg-1) extracted from soils at pH 4.5, 5.5 and 6.5 
and treated with RPR or SSP after leaching. The standard error of the difference (SED) and P-values 
relate to a comparison of means for P fractions between fertiliser treatments at each pH along with 
the relative strength of difference given as the ratio of means for SSP to RPR. 

  ---------------- Treatment ---------------     

 pH Control RPR Super SED P Ratio (S/R) 

NH4Cl 4.5 9.5 17.0 13.4 2.1 0.099 0.8 

 5.5 12.4 30.4 19.6 4.0 0.014 0.6 

 6.5 13.3 20.9 31.4 4.2 0.021 1.5 

HCO3-Pi 4.5 29.8 30.6 29.4 1.8 0.472 1.0 

 5.5 26.0 33.9 32.0 2.5 0.463 0.9 

 6.5 26.2 31.8 40.8 2.7 0.003 1.3 

NaOH-Pi 4.5 99.6 76.8 87.3 6.1 0.103 1.1 

 5.5 80.8 84.0 85.4 7.2 0.842 1.0 

 6.5 94.9 84.6 85.3 7.3 0.925 1.0 

HCl 4.5 1.9 2.3 2.9 0.3 0.100 1.2 

 5.5 2.2 3.7 4.7 0.8 0.245 1.3 

 6.5 4.6 33.7 12.5 7.3 0.009 0.4 

NaOH-II-Pi 4.5 1.1 1.2 1.2 0.3 0.907 1.0 

 5.5 1.9 1.6 1.5 0.4 0.799 0.9 

 6.5 2.1 7.8 3.0 1.3 <.001 0.4 

Residual 4.5 1.9 1.9 1.7 0.4 0.550 0.9 

 5.5 2.4 1.8 1.6 0.5 0.646 0.9 

 6.5 2.5 1.9 1.4 0.5 0.361 0.8 

Organic P 4.5 76.0 48.1 67.6 16.2 0.464 1.4 

 5.5 101.7 57.8 54.6 15.7 0.749 0.9 

 6.5 37.0 66.8 64.5 24.4 0.677 1.0 

Total P 4.5 203.0 181.5 200.6 10.7 0.086 1.1 

 5.5 208.3 212.9 196.9 13.4 0.249 0.9 

 6.5 174.2 243.6 231.5 18.1 0.511 1.0 
 

 

5.3.3 Plant production 

 

Soil pH influenced (P<0.001, SED = 3.1 mg pot-1) dry matter yield, with little growth at pH 4.5 

(10.5 mg pot-1) compared to pH 5.5 (58.4 mg pot-1) and 6.5 (67.9 mg pot-1). The pH 4.5 

treatment was well outside the range tolerated by ryegrass of 5.1 to 8.4, and certainly the 

range for optimal growth at pH 5.5 to 7.5 (Hannaway et al. 1999). There were not other 

significant differences between treatments. 
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5.3.4 Management 

 

Figure 5.1 shows the distribution of P in the various pools at the end of the trial. As soil pH 

increased and associated plant growth increased, the loss of P by leaching decreased. The 

major differences between treatments of differing pH and fertiliser type can largely be 

explained by the quantities of P in plant biomass and leachate losses. The added P was either 

lost from poorly-sorbed soil (i.e. leached) or was bioavailable P (taken up in biomass), leaving 

only native soil P at the end of the trial.  

The mean costs of using RPR or SSP at a given pH level on an acid Organic soil are given in 

Table 5.5 on a per hectare basis. These were calculated using the annual leaching losses in 

Table 5.2, the diameter of the lysimeters and scaled up to a hectare. Differences in costs reflect 

those in Table 5.2, with significant differences between fertiliser types only evident at pH 6.5. 

While it is common for Organic soils to be maintained at a pH of 5.0-5.5 (Roberts and Morton 

2009) to optimise yield, the added cost of liming to > 5.5 will be compensated for by reduced 

P losses. Therefore, there are economic and environmental benefits to using RPR as opposed 

to SSP on an acid Organic soil that is limed to pH 6.5.    

 

 

Figure 5.1. Mass balance showing the mean distribution of P at the end of the experiment across each 

fertiliser type by pH treatment. The mean unaccounted P (i.e. difference between soil P + mean rate 

of added P and the distribution of P at the trial) was 18.8 mg pot-1 ± 52.8. 
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Table 5.5. Cost of P leached from soils at pH 4.5, 5.5 and 6.5 for soils treated with RPR or SSP – averaged 
across all P rates. Loads of FRP plus FUP were adjusted to kg P ha-1 and costs calculated using a P 
concentration and cost of 9% and $3.51 kg P-1 for SSP, while the respective P concentration and cost 
for RPR were 13% and $2.30 kg P-1.  

Soil pH Fertiliser type Mean cost of P leached ($ ha-1)1 

4.5 RPR $193 

 SSP $374 

5.5 RPR   $81 

 SSP $153 

6.5 RPR   $31 

 SSP $109 

1 The mean cost of RPR and SSP applied when averaged across all pH and fertiliser rates was $102 ha-1 
and $212 ha-1, respectively. 

 

5.4 Conclusions 

 

At a soil pH of 4.5 and 5.5 the application of RPR to an Organic soil resulted in FRP losses in 

leachate to a similar extent to those of SSP. However, at pH 6.5, FRP losses from RPR were 

significantly less than SSP. Soil fractionation analysis showed that the quantities of extractable 

P were influenced by the fertiliser applied. Pools of loosely-bound and bioavailable inorganic 

P were greatly enriched by SSP applications. The same occurred for those soils receiving RPR, 

with the exception that HCl-extractable P was also enriched. All of these pools decreased 

significantly over the trial period, but still exhibited differences at pH 6.5. These data suggest 

that there are both agronomic and environmental benefits to using RPR over SSP, when an 

acid Organic soils soil is limed to pH 6.5.  
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Chapter 6 

The potential for the use of Lotus as a replacement for clover or ryegrass, on 

an acid Organic soil 

 

6.1 Introduction 

 

New Zealand acid mesic Organic soils are most common in wetlands, or under forest-produced 

acid litter in areas of high precipitation (Hewitt 2010). These moisture- and carbon-rich 

environments create conditions that constrain pastoral production, including low soil pH, poor 

P retention, and a high and variable water table (Guérin et al. 2011). In order to maximise 

production of pastoral species like ryegrass, Organic soils initially require significant 

development, including drainage and applications of fertiliser and lime to increase soil P and 

pH. However, drainage can increase the aeration of Organic soils, which increases microbial 

mineralisation of organic P and providing a conduit for the rapid movement of P to adjacent 

surface waters (Schipper and McLeod 2002). The addition of Ca has been shown to increase 

(and at times decrease) P solubility (Haynes 1982) and hence availability to plants, but also 

drainage. Compared to more mineral soils, concentrations of Al and Fe metal oxides tend to 

be poor in Organic soils, resulting in poor P retention (Robson et al. 2011). Hence, the 

combination of poor P retention, lime and drainage may result in a large proportion of P that 

is added as fertiliser being at risk of loss in surface runoff or subsurface flow. 

Some of these issues could be addressed by opting for a pastoral species that is tolerant of 

low pH, soil P, and high soil moisture, yet is able to produce good quantities of quality dry 

matter. Lotus is able to fix nitrogen to soils, reducing N fertiliser requirements, favours low pH 

soils (approximately 4.7), is shallow rooting, is tolerant of low soil P concentrations and 

assimilates P quickly (Sheath 1981): Lotus corniculatus also produces less methane in sheep 

(mean = 11.5 g kg-1 DMI) in comparison to ryegrass-white clover pasture (mean = 25.7 g kg-1 

DMI) and lucerne (mean = 20.6 g kg-1 DMI) (Waghorn et al. 2002). However, there are 

difficulties associated with some legumes (e.g. Lotus spp.) in that they require a long period of 

establishment and, in soils of higher fertility, competitive exclusion by other vegetation can 
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limit their potential use as a pastoral vegetation (Lowther et al. 2012). Lotus dry matter 

production and plant density declines with time under dairying, but this could be slowed using 

infrequent grazing, which also slows the ingression of weeds (Minneé et al. 2007).  

The objective of this paper was to determine productivity (as dry matter yield) and losses (as 

P in leachate) from lysimeters containing an Organic soil, and monocultures of ryegrass, 

greater lotus, or white clover, over a pH range of 4.5 to 6.5, with SSP at rates ranging from 

zero to capital inputs. The hypothesis was that productivity and P losses are better in a lotus-

based pasture at low pH and soil P concentration than a clover or ryegrass-based pasture. If 

true, this could open up the potential for lotus to be used as an alternative pasture species on 

poorly-developed marginal soils, as a means to reduce the risk of P loss and environmental 

impacts. 

 

6.2 Materials and Methods 

 

6.2.1 Study site 

Study site and soil data are as outlined in chapters 5 and 6. 

 

6.2.2 Lysimeter set up and collection 

 

One hundred and fourty-four lysimeters were placed in a light and temperature-controlled 

greenhouse at the AgResearch - Invermay Agricultural Centre, Mosgiel. They were arranged in 

a randomised block, two-by-eight metre row-column design with additional lysimeters around 

the outside to reduce the potential for pseudoreplication and edge effects (Hurlbert 1984). 

Lysimeters consisted of 6 L polyethylene pots with a nylon mesh (1000 µm) covering a 5 mm 

hole drilled in the bottom to prevent soil loss and allow drainage along 4 mm tube to 3 L vented 

bottles.  

 

Treatments consisted of three pasture species; perennial ryegrass, greater lotus, and white 

clover. Each species had four replicates of four sieved (< 2 mm) SSP (9% P) inputs of 0, 50, l00 

or 200 kg P ha-1, all at three pH values (4.5, 5.5 and 6.5). Manipulations of pH were made using 
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a 1:5 ratio of laboratory grade Ca(OH)2 and CaCO3 (hereafter referred to as lime). Liming rates 

required to increase soil pH to 4.5, 5.5 and 6.5 were calculated from Lierop (1983). Lime was 

mixed homogenously through the lysimeters, followed by a 3 week equilibration period 

containing three wetting and drying cycles. 

 

Lysimeters were initially watered with 50 mm of tap water (with an established P 

concentration lower than 0.005 mg P L-1) every two days until leaching was noted. Ryegrass 

was sown at a rate of 22 kg ha-1 (Young et al. 2010) and lotus and white clover at 5 kg ha-1 

(Charlton and Brock 1980) then lysimeters were watered daily to retain moisture until 

germination without causing leaching. After two weeks, fortnightly additions of 10 mm of ¼ 

strength P-deficient Hoagland solution began (Hoagland and Arnon 1950). Germination was 

interrupted by an 11 day failure in the watering system that coincided with an infestation of 

fungus gnat (Mycetophilidae). This resulted in the destruction of all recently established lotus 

and clover seedlings. Ryegrass was not affected, and as other concurrently run trials shared 

ryegrass treatments with this trial, the decision was made to allow ryegrass to grow while new 

lotus and clover were established. Ongoing attempts were made to eradicate the infestation 

and had been successful by March 2014. Three weeks after the germination of ryegrass, 40 

mm of tap water was applied to lysimeters over a 72 hour period (13.3 mm day-1) using a 

commercial garden sprinkler system (2 mm full circle micro jet spray fittings) to trigger 

leaching across all lysimeters, and plants were trimmed to a dry matter residual of 1,500 kg 

ha-1 which was repeated at monthly intervals. This was followed by three, computer-

controlled two-minute daily rainfall cycles over the duration of the experiment, with leachate 

regularly collected from lysimeters over the span of the experiment. Precipitation 

approximated the mean annual rainfall of 1,025 mm recorded from 1975-2011 at a research 

farm 20 km north of study site.  

 

Plant matter was harvested at monthly intervals, dried at 60 °C and weighed to assess the 

cumulative dry matter yield over the 5 month trial period. Leachate samples were filtered 

(0.45 µm) immediately following each leachate event and analysed for FRP within 24 h and 

FUP following acid-persulphate digestion (Rowland and Haygarth 1997) within 7 days. The P 

concentration was determined colorimetrically using the method of Watanabe and Olsen 

(1965). 
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Prior to commencement, a single 25 x 2 cm core was taken from each pot and replaced by 

moist untreated soil. A soil core was also taken at the end of the trial. Soil cores were oven 

dried and passed through a 2 mm sieve prior to analysis of ASC (Saunders 1965) and Olsen P 

(Olsen et al. 1954). Water-extractable P (McDowell and Condron 2004) and CaCl2-P were also 

determined as these have been shown to be good indicators of the potential for P loss via 

surface runoff and subsurface flow, respectively (McDowell and Sharpley 2001). Soil pH was 

determined by mixing air-dried soil with deionised water at a 1:10 ratio (Hendershot et al. 

1993). Bulk density was established as the dry weight of a sample, divided by the volume 

occupied (Parent and Caron 1993). The amount of Fe and Al (non-crystalline and poorly 

crystalline forms) in soils was determined using the oxalate-extractable method of McKeague 

and Day (1966). Soil P fractionation was conducted using the method of Chen et al. (2000). 

 

6.2.3 Statistical analysis 

 

Data from the 12 month trial was truncated to the last five months when lotus and clover were 

established. This meant that some P had already been leached. To account for this, treatments 

were compared as a percentage change from their starting point at germination (i.e. starting 

from 100% soil P content). This was analysed using an ANOVA for three fixed factors: species 

(lotus, ryegrass and clover), soil pH (4.5, 5.5 and 6.5) and fertiliser P rate (0, 50, 100 and 200 

kg P ha-1), and their interactions. The resulting P-values are presented in tables and least 

significant difference at the 5% level is shown in graphs. All statistical analyses were performed 

using the statistical package Genstat - version 16 (Payne et al. 2011). 

 

6.3 Results and Discussion  

 

6.3.1 Soil physical and chemical properties 

 

Prior to leaching, there were no significant differences between plant species for mean pH or 

extractable P at any pH level (Table 6.1). Differences in extractable P and soil pH occurred as 

expected due to the addition of fertiliser-P and lime, respectively. After leaching, soil pH was 
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still different among treatments, but the overall mean soil pH had decreased compared to that 

before leaching. This was most likely due to the dissolution of applied lime and its removal 

into leachate (e.g. Nye and Ameloko 1987; Gunn et al. 2001). There was some suggestion of 

an enrichment of CaCl2-P in the clover treatment with P additions compared to ryegrass or 

lotus. There were no other significant effects observed.  

 

6.3.2 Change in phosphorus over time 

 

An objective of this trial was to determine whether P losses could be reduced under a 

monoculture of lotus, compared to clover or ryegrass. This was evaluated from the percentage 

decline of FRP in leachate over 5 months (Table 6.2). Data from ANOVA showed that the 

percentage of FRP decline was only affected by pH for all species, and the least change in FRP 

was from pH 6.5 treatments. This is most likely because calcium applied to the soil as lime 

increased P adsorption as Ca-phosphates, reducing extractable P fractions (i.e. WEP; Lee et al. 

2011) and increasing P retention (Olsen and Sommers 1982). These results indicate that the 

proportion of FRP released from soils was not influenced by plant type. 
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Table 6.1. Mean pre- and post-leaching soil pH and P extract concentrations for clover (C), lotus (L) and ryegrass (R) treatments, and the P values indicating 
significant post-leaching changes between means by treatments of pH, P rates and species, and the interactions of these treatments. 

Soil 
pH 

Fertiliser 
rate 

(kg P ha-1) 

------------------------------------ Pre-leaching ---------------------------------- -------------------------------- Post-leaching -------------------------------- 

pH Olsen P CaCl2-P WEP pH Olsen P CaCl2-P WEP 

C L R C L R C L R C L R C L R C L R C L R C L R 

4.5 0 4.8 4.7 4.7 24 28 26 22.2 6.0 20.0 9.6 10.1 9.1 3.7 3.6 3.8 9 8 8 0.6 0.7 0.5 4.2 5.2 5.6 

 50 4.5 4.5 4.5 41 48 58 20.6 24.5 29.7 25.0 23.5 24.5 4.0 3.9 4.0 11 12 9 1.3 0.7 0.9 5.7 5.0 4.9 

 100 4.4 4.4 4.3 41 40 45 65.3 46.2 55.3 57.2 40.9 43.9 4.0 3.8 4.0 8 12 13 0.8 0.9 0.8 4.8 4.8 5.5 

 200 4.6 4.4 4.5 49 45 40 48.4 58.3 58.8 51.6 55.2 53.1 3.9 3.9 3.9 13 11 13 2.5 1.0 1.1 5.3 5.2 5.5 

 Mean 4.6 4.5 4.5 39 40 42 39.1 33.8 40.9 35.9 32.4 32.7 3.9 3.8 3.9 10 11 11 1.3 0.8 0.8 5.0 5.1 5.4 

5.5 0 5.2 5.3 5.1 11 17 14 4.9 21.5 7.9 9.6 7.6 11.7 3.8 3.8 3.5 8 7 6 0.7 1.0 0.9 5.4 6.1 4.8 

 50 5.8 5.2 4.9 26 28 28 17.6 21.7 21.9 15.3 22.9 19.9 3.9 3.9 3.9 8 9 9 1.2 0.9 1.1 5.3 3.7 5.2 

 100 5.2 5.0 5.0 30 43 62 30.6 29.7 27.8 30.6 32.7 33.2 4.8 4.9 4.8 15 9 7 2.8 0.8 1.4 5.4 7.1 5.9 

 200 4.9 4.8 4.9 66 85 92 54.4 64.4 73.9 51.1 58.8 74.1 4.8 4.8 5.4 14 12 17 1.5 1.1 2.8 4.6 5.1 7.6 

 Mean 5.3 5.1 5.0 33 43 49 26.9 34.3 32.9 26.7 30.5 34.7 4.3 4.3 4.4 12 9 10 1.6 0.9 1.5 5.2 5.5 5.9 

6.5 0 6.4 6.4 6.9 23 21 12 3.2 4.3 3.9 10.1 9.1 9.6 3.8 3.8 3.7 11 11 5 0.9 0.7 0.5 5.8 6.1 5.0 

 50 6.5 6.4 6.7 48 32 6 10.0 8.8 7.7 14.2 19.9 14.2 4.8 5.0 4.6 11 10 14 1.1 1.0 0.9 6.4 5.7 5.2 

 100 6.3 6.0 6.5 48 56 38 21.6 28.4 11.9 32.2 37.8 26.0 5.0 4.8 4.6 17 13 19 2.2 1.2 1.3 7.5 6.2 8.1 

 200 6.1 6.3 6.4 22 77 63 47.1 31.0 29.8 47.0 51.1 39.8 4.9 4.5 4.9 23 14 28 1.7 1.7 1.5 6.5 6.7 8.2 

 Mean 6.3 6.3 6.6 35 47 30 20.5 18.1 13.3 25.9 29.5 22.4 4.6 4.5 4.4 15 12 17 1.5 1.1 1.1 6.6 6.2 6.6 

      --------------------------------------------  P values  -------------------------------------------- 

         pH <0.001 <0.001 0.00 <0.001 

         P rate 0.79 <0.001 <0.001 0.06 

         Species 0.98 0.46 0.02 0.55 

         pH × P rate 0.98 0.50 0.49 0.52 

         pH × Species  0.99 0.50 0.17 0.92 

         P rate × Species 1.00 0.39 0.53 0.21 

                 pH × P rate × Species 0.85 0.51 0.28 0.44 
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6.3.3 Plant P assimilation 

  

In order to evaluate the potential for lotus to assimilate more P from the soil than ryegrass 

and clover, plant TP was analysed (Table 6.3). From the ANOVA, it was evident that mean 

herbage TP differed between species, and was affected by rate, pH and the interaction of all 

of these terms. There was no difference between species herbage TP at pH 4.5, however 

ryegrass TP at pH 5.5 was significantly higher, indicating the species has an appreciably better 

P uptake capacity than lotus or clover which were of similar values. Hinsinger and Gilkes (1996) 

have shown that P uptake from other species of ryegrass can be significantly greater than 

clover. An increase in herbage TP with soil P has been reported in other studies (Christie and 

Moorby 1975) and in line with Trolove et al. (1996), TP concentrations were similar in herbage 

from unfertilised lysimeters. Increasing soil pH had an effect of increasing herbage TP in clover 

and lotus. Ryegrass TP was greatest at pH 5.5, but pH 6.5 was significantly higher than 4.5. This 

could have simply been due to a greater uptake of P at higher pH levels where growth is 

optimal, and because inorganic P uptake of plants has been shown to be highest between pH 

5 and 6 (Schachtman et al 1998). For the last harvest, plant dry matter yield was different 

between species (Figure 6.1), with ryegrass herbage equivalent or greater to other species at 

all pH levels and P rates, and lotus herbage yield was equivalent to clover (only lower at pH 

4.5, 200 kg P ha-1). Ryegrass yield was influenced by rate, particularly at low pH. This indicates 

that P had become limiting at low pH treatment, likely the consequence of elevated FRP losses 

from these soils compared to pH 5.5 and 6.5 treatments (Table 6.2).  
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Table 6.2. Mean proportion of FRP losses in final leachate as a percentage of starting leachate losses 
for clover, lotus and ryegrass treatments at pH 4.5, 5.5 and 6.5 and SSP rates of 0, 50 100 and 200 kg P 
ha-1. Corresponding P values (significant if bold) are given for the comparison of means by plant species, 
pH and fertiliser rate, and for the interaction of these treatments.  

Soil pH 
Fertiliser rate  

(kg P ha-1) 

                        Proportion of starting FRP (%) 

Clover Lotus Ryegrass 

4.5 0 13 13 7 

 50 25 4 12 

 100 3 5 7 

 200 6 11 4 

     

5.5 0 9 8 12 

 50 6 4 6 

 100 11 9 15 

 200 5 12 5 

     

6.5 0 13 27 20 

 50 23 20 20 

 100 22 9 28 

 200 12 11 26 

--------------------P values -------------------- 

pH < 0.001   

Rate 0.387   

Species 0.480   

pH × rate 0.274   

pH × species 0.258   

Rate × species 0.095   

pH × rate × species 0.229   
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Table 6.3. Mean herbage TP for clover, lotus and ryegrass treatments at pH 4.5, 5.5 and 6.5 and SSP 
rates of 0, 50 100 and 200 kg P ha-1. Corresponding P values (significant if bold) are given for the 
comparison of means by plant species, pH and fertiliser rate, and for the interaction of these 
treatments.  

Soil pH 
Fertiliser rate 

(kg P ha-1) 

                       Plant total P (mg P kg-1) 

Clover Lotus Ryegrass 

4.5 0 1479 1635 1293 
 50 1325 1852 1583 
 100 2048 2345 1735 
 200 3755 2062 2567 
     

5.5 0 2990 2781 3012 
 50 2733 3468 5145 
 100 4066 3417 6777 
 200 3949 4625 8475 
     

6.5 0 2623 3668 3034 
 50 3644 3813 4378 
 100 4345 4476 4821 
 200 3744 4624 4765 
-----------------------P values ----------------------- 

pH <0.001   
Rate <0.001   

Species <0.001   
pH × rate 0.003   

pH × species <0.001   
Rate × species 0.008   

pH × rate × species <0.001   
 
 
 



80 
 

 

Figure 6.1. Mean final herbage yield for each species, fertiliser rate and soil pH. The least significant 

difference at the P<0.05 level is given for comparisons of species and P rate at each pH level. 

 

6.4 Conclusions 

 

Our hypothesis was that productivity and P losses are better in a lotus-based pasture than a 

clover or ryegrass-based pasture when at a pH and Olsen P representative of unmodified 

Organic soil. Comparisons of the relative decline in mean FRP losses in leachate over the 5 

month trial showed that differences in FRP release were related to soil pH rather than plant 

species. Plant P was related to species, soil pH and P rate and their interactions. Data 

suggested that at pH levels approximating unmodified Organic soil (pH 4.5) there was no 

difference in plant P between species. However at pH 5.5, ryegrass uptake was greater than 

lotus or clover. My findings suggest that P losses under clover and lotus pastures will be similar 

or greater than losses under ryegrass, and depend primarily on soil pH and P rate. Due to the 

poor performance of lotus and clover in this study, it is not possible to make meaningful 

comparisons of their usefulness as a pastoral species in monoculture or their ability to curb P 

losses from Organic soils at a catchment or farm scale. Additional work is required to 

determine how this dynamic might change where lotus and clover monocultures are 

established at more comparable levels to ryegrass, and leaching data reflects the full period 

of plant growth. 

pH 4.5 Clover pH 4.5 Lotus pH 4.5 Ryegrass pH 5.5 Clover pH 5.5 Lotus pH 5.5 Ryegrass pH 6.5 Clover pH 6.5 Lotus pH 6.5 Ryegrass
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Chapter 7 

The use of iron, aluminium and calcium sulphates as amendments to decrease 

P losses from Organic soils 

 

7.1 Introduction 

 

Drainage and the application of lime and fertiliser amendments to Organic soils can increase 

production for pastoral agriculture (for example, dairying). However, their high OM content 

can increase the risk of P losses relative to more mineral soils (Gjettermann et al. 2007). Soil 

organic matter has been found to decrease P retention in soils due to competition between 

dissolved organic compounds and P for sorption sites on the soil surface (Sibanda and Young 

1986; Guppy et al. 2005). These sorption sites are influenced by Fe, Al and Ca (Lindsay 1979). 

These elements have been used in varying combinations to reduce dissolved P concentrations. 

For example, alum and modified zeolite have been used as flocculants and lake-bed capping 

agents (Al-binding) (McDowell et al. 2008; Gibbs and Özkundakci 2011); laterite and bauxite is 

used in wastewater to reduce P enrichment (Al and Fe-binding; Vlahos et al. 1989; Summers 

et al. 1996); and lime or gypsum can increase Ca-phosphate formation and decrease water 

solubility of P in soil (Moore and Miller 1994; Chepkwony et al. 2001; Lee et al. 2011). 

 

While it is widely accepted that Al, Fe and Ca dominate P retention in mineral soils, less work 

has focused on the relative importance of these in soils that are naturally deficient in them, 

but high in OM. Some studies have measured P desorption from a single soil using a range of 

amendments (e.g. Moore and Miller 1994), or over a range of soils (e.g. Borggaard et al. 2005), 

but these studies did not elaborate on the importance of Al, Fe and Ca amendments for 

retaining P in relation to OM. Due to competition between organic compounds and P, there is 

a higher risk of P loss from OM-rich soils; hence it would be useful to quantify the relative 

importance of Al, Fe and Ca as amendments to reduce P losses, while accounting for the 

interaction of soil OM. McDowell and Condron (2004) showed that for mineral soils, WEP 

provided a good approximation of the potential for P losses in surface runoff, and that WEP 

concentrations were related to the Olsen P and anion storage capacity of a soil. More recent 
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work on Organic soils has shown that the quantity of WEP is related to Olsen P, the degree of 

phosphate saturation (DPS) and C (P < 0.001, Adj. R2 = 0.84; Simmonds et al. 2015). I 

hypothesise that amendments of Fe, Al and Ca will decrease P losses (measured against WEP 

of the unmodified soil sample), but the importance of each amendment will depend on soil 

pH which controls the precipitation of metal-phosphates and that WEP decreases in C-rich 

soils will be less influenced by amendments than those soils with lower C content. 

 

7.2 Materials and methods 

 

7.2.1 Study site 

 

Sampling was undertaken in the southern-end of the Waituna catchment in Southland, New 

Zealand (46° 34′S/168° 36′E) where poorly-drained acid Organic, Gley and Podzols (USDA 

Taxonomy, Hemists, Aquepts and Aquods; (USDA Taxonomy, Hemists, Aquepts and Aquods; 

Hewitt 2010) predominate (Wilson 2011). Farming in the Waituna catchment is largely 

pastoral (mainly dairying). The collected soils had been previously classified in a previous trial 

(Simmonds et al. 2015) as per New Zealand soil taxonomy as Acid Fibric Organic (Invercargill 

and Otanomomo) and Perch-Gley Podzol (Kapuka, Tisbury and Tiwai) soils (Hewitt 2010). 

Seventy-five topsoils were selected for the present study for a high C content (C > 16%; Table 

7.1). 

 

 

Table 7.1. Mean, minimum and maximum values and standard errors for selected physico-chemical 
properties for the study soils. 

 

Total 

carbon 

(%) 

Bulk 

density 

(g cm3) 

ASC 

(%) 
pH 

Total P  

(mg kg-

1) 

WEP 

(mg L-

1) 

Olsen P 

(mg L-1) 

Fe*  

(mg kg-1) 

Al*  

(mg kg-1) 

Total Ca  

(mg kg-1) 

DPS 

(%) 

Min 16 0.19 0 3.0 62 0.01 3 181 364 936 1 

Max 53 0.81 98 6.7 2331 1.63 155 5244 12080 28764 47 

Mean 37 0.48 25 4.3 647 0.25 36 1532 2644 10286 12 

Std. error 1 0.02 3 0.1 59 0.03 3 150 292 922 1 

* Ammonium oxalate extractable. 
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7.2.2 Incubation set up and collection 

 

Prior to incubation, samples were air-dried at 35°C, ground and sieved < 2 mm. Soils were 

analysed for pH (in water; Hendershot et al. 1993), Olsen P (Olsen 1954), TP (via perchloric-

nitric acid digestion; Olsen and Sommers 1982), WEP (McDowell and Condron 2004), CaCl2-P 

(McDowell and Condron 2004), organic C (Metson et al. 1979), ASC (Saunders 1965), and BD 

(Parent and Caron 1993). Concentrations of AlOX and FeOX, representing the amorphous 

fractions of these elements able to adsorb P were determined by acid ammonium oxalate 

extraction and ICP-OES (McKeague and Day 1966; Breeuwsma et al. 1995). Total Ca was 

determined by perchloric-nitric acid digestion and was analysed by ICP-OES.  

 

Prior to incubation, either 0.5M Aluminium Sulfate Octadecahydrate (Al2(SO4)3.18H2O), 0.1M 

Iron(II) Sulfate Heptahydrate (FeSO₄.7H2O) or 0.5M Calcium Sulfate Dihydrate (CaSO4.2H2O) 

was added to 3 g duplicate samples of each soil in sufficient quantity to double the amorphous 

Al, Fe or total Ca content of that sample (calculated from ICP-OES of unamended soils). All 

samples were topped up to 10 mL with RO water and allowed to dry at 35°C, then rewetted 

(5 mL RO) to further allow amendments to dissolve and interact with the soil. This process was 

repeated three times over three weeks. To half of the soils, 3 mL of 5 ppm orthophosphate 

solution was added to create eight treatments (Ca+/-P; Al+/-P; Fe+/-P; and control+/-P). This 

P concentration was in line with other P sorption studies (Hedley et al. 1982; Dunne et al. 

2005). The addition of the orthophosphate was followed by another three week equilibration 

period containing three wetting and drying cycles and yielded eight treatments for each of the 

75 soils: (n = 600). After an incubation period of 6 weeks, dry soils were removed and 

measured for WEP, pH and Olsen P. 

 

7.2.3 Statistical analyses  

 

Best subsets regression modelling with Mallows Cp was used to determine the variables that 

best explained WEP concentration. All statistical analyses and summary statistics (mean, 

standard error and range) were performed using the statistical package GenStat version 16 
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(Payne et al. 2011). Data were log-transformed if not normally distributed. The threshold for 

statistical significance was P < 0.05. 

 

7.3 Results and Discussion 

 

7.3.1 Soil physical and chemical properties 

 

Soil physical and chemical properties were highly variable (Table 7.1). On average, unamended 

soils in the study had high carbon content, a low bulk density and pH. Total P was moderate 

and Olsen P near optimal levels for agronomic production for Organic soils (35-45 mg P L-1; 

Roberts and Morton 2009). However, soils were acidic, and had a moderate WEP. Mean FeOX 

and AlOX concentrations were 1,532 and 2,644 mg kg-1. Mean total Ca was 10,286 mg kg-1. 

 

7.3.2 The influence of mineral amendments and P additions on pH, Olsen P and WEP 

 

An ANOVA showed that 5 ppm P additions increased WEP and Olsen P, while all amendments 

decreased mean WEP, Olsen P, and pH (Fig. 7.1; Table 7.2). Both Al and Fe sulphate have been 

shown to acidify soils (Haynes 1986). Aluminium sulphate caused the greatest decrease in WEP 

compared to control (39% and 44% decrease, with and without 5 ppm P, respectively), 

followed by Fe and Ca amendments which had a similar influence on WEP (29% and 24%, and 

19%  and 16% decreases, with and without 5 ppm P, respectively). The dominance of Al in 

reducing WEP, compared to Ca and Fe, is likely because unamended soils had a greater Al than 

Fe concentration due to the dominance of low lying and periodically inundated conditions that 

promote Fe leaching from top soils (Pant et al. 2002). Furthermore, while Al and Fe can act to 

reduce WEP via sorption reactions, Ca-phosphates arise and induce lower WEP concentrations 

only when at or above neutral soil pH (Lindsay 1979). Calcium phosphate precipitation can 

also be inhibited by organic compounds, and modify the availability of P in soils (Alvarez et al. 

2004). 
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Figure 7.1. Plot of WEP concentration against Olsen P concentration for soils treated with amendments 

of (a) aluminium sulphate, (b) calcium sulphate, (c) iron sulphate and (d) no amendment. All with and 

without 5 ppm P added (solid/dotted trend line indicates presence/absence 5 ppm P solution). The 

slope and coefficient of determination for the regression fits to each data set are also given. 

 

While the magnitude of soil Olsen P decrease in amended compared to the control soil was 

similar to WEP (1% difference between Olsen P and WEP change, on average), there was no 

difference between amendments (Table 7.2). This most likely reflects the inability of NaHCO3 

to extract potentially leachable P, instead being designed to extract plant available P from Al, 

Fe and Ca compounds (Chen et al. 2000; Condron and Newman 2011). Olsen P indicates plant 

available P fractions, so Al amendments could potentially limit P uptake by herbage by creating 

insoluble Al-P complexes. However for many plant species, organic acid root exudates can 

increase the mobility of Al-bound P for subsequent uptake (e.g. Shen et al. 2002). As with WEP, 
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the relative dominance of Al in reducing Olsen P concentrations highlights the importance of 

Al for P retention in the soils of this catchment, compared to Fe and Ca.  

 

Table 7.2. Mean, minimum and maximum values and standard errors (SE) for pH, Olsen P and WEP for 
soils receiving amendments of aluminium, iron (II) and calcium sulphate, and control soils, with and 
without additions of 5 ppm P solution. F-statistics are given for the comparison of treatment means by 
soil amendment, P fertiliser addition, and for interactions between soil amendment and P fertiliser 
addition. 

    WEP (mg L-1) Olsen P (mg L-1) pH 

   Min  Max Mean SE Min  Max Mean SE Min  Max Mean SE 

Without 

P 

Al 0.00 1.05 0.14 0.023 0.2 114.7 21.0 2.3 2.5 6.1 3.5 0.1 

Fe 0.01 1.09 0.19 0.027 3.8 113.3 28.1 2.4 2.8 6.4 3.9 0.1 

Ca 0.01 1.18 0.21 0.026 2.1 112.0 29.2 2.4 2.8 6.5 4.0 0.1 

Contro

l 
0.01 1.63 0.25 0.033 3.5 155.4 36.1 2.9 3.0 6.7 4.3 0.1 

With P 

Al 0.02 1.23 0.19 0.025 0.1 121.6 25.0 2.3 2.3 6.2 3.5 0.1 

Fe 0.02 1.00 0.22 0.026 5.7 136.0 32.0 2.5 2.8 6.6 3.9 0.1 

Ca 0.02 1.08 0.25 0.027 5.0 134.6 34.5 2.4 2.8 6.5 3.9 0.1 

Contro

l 
0.02 1.85 0.31 0.037 5.9 156.9 41.7 2.9 3.1 6.9 4.3 0.1 

F statistics                     

Amendment < 0.001 < 0.001 < 0.001 

P fertiliser < 0.001 < 0.001 < 0.445 

Amend × P fertiliser 0.002 0.735 0.978 

 

 

7.3.3 Factors contributing to WEP concentrations from amended soils 

 

Pearson correlation coefficients were produced between WEP and physio-chemical properties 

(Table 7.3). Correlations were positive for DPS, total C and Olsen P, and were negative for ASC, 

BD and AlOX. There was no difference in the number of correlated constituents among 

amendments or when P was added. These findings were in line with a previous study using a 

wider range of Organic and Podzol soils from the same catchment (Simmonds et al. 2015). 

Positive correlations with DPS (and by extension, AlOX as it forms part of the DPS quotient) are 

to be expected, as DPS is commonly used as an indicator for the potential for soil to release P 

to surface runoff and leaching (e.g. Allen and Mallarino 2006; Amarawansha and Indraratne 

2010). Similarly, a negative correlation between WEP and ASC is to be expected, as ASC 
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describes the potential for P retention in soil (McDowell and Condron 2004). Water 

extractable P has been shown to have a close relationship with Olsen P (McDowell and 

Sharpley 2001). As with the Simmonds et al. (2015) study, FeOX was not correlated with WEP, 

most likely due to Fe leaching from these soils under the wet and reductive conditions that 

occur in Organic and Podzol soils (Pant et al. 2002). There was a trend of decreasing AlOX, FeOX 

and total Ca (and therefore P sorption) with increasing C (Figure 7.2; P < 0.05), explaining the 

positive relationship between WEP and total C (P < 0.01; Figure 7.3 a-d). High C concentrations 

in soils have also been known to create competition between DOC compounds and 

orthophosphate ions, further limiting the ability of the soils to retain P (e.g. Mengel 2008). It 

was impossible to tell whether C or Al was the dominant factor or just the corollary of one-

another. However, Borggaard et al. (2005) tested the influence of humic substances on the P 

sorption capacity of several Al and Fe compounds. Their trial compared P retention in washed 

and unwashed soils (a process designed to remove organic compounds responsible for 

interference with P sorption sites), and found changes in P sorption were a function of Al, 

more than Fe concentration, and were not strongly influenced by organic compounds. 

 

Table 7.3. Pearson correlation coefficients between WEP and selected physiochemical properties for 
all amendments, with and without 5 ppm P solution (bold if significant to P < 0.05). 

Physiochemical 

property 

WEP 

Al 

WEP 

Ca 

WEP 

Fe 

WEP 

control 

WEP+P 

Al 

WEP+P 

Ca 

WEP+P 

Fe 

WEP+P 

control 

ASC (%) -0.412 -0.458 -0.436 -0.428 -0.393 -0.451 -0.459 -0.389 

Bulk density (g cm3) -0.503 -0.524 -0.548 -0.473 -0.505 -0.568 -0.544 -0.510 

CaCl2-P (mg L-1) -0.107 -0.133 -0.109 -0.129 -0.132 -0.164 -0.145 -0.184 

DPS (%) 0.767 0.744 0.750 0.731 0.723 0.678 0.674 0.678 

Total C (g kg-1) 0.379 0.364 0.373 0.321 0.335 0.358 0.383 0.308 

Total P (mg kg-1) 0.132 0.148 0.131 0.196 0.201 0.216 0.183 0.244 

Total Ca (mg kg-1) -0.067 -0.059 -0.077 -0.021 -0.091 -0.122 -0.147 -0.015 

Al* (mg kg-1) -0.364 -0.388 -0.372 -0.357 -0.316 -0.355 -0.363 -0.305 

Fe* (mg kg-1) -0.143 -0.067 -0.102 -0.044 -0.112 -0.050 -0.166 -0.007 

Mn* (mg kg-1) 0.080 0.174 0.067 0.190 0.126 0.185 0.072 0.177 

P* (mg kg-1) -0.073 -0.022 -0.059 0.016 -0.028 0.003 -0.071 0.042 

pH 0.129 0.142 0.144 0.198 0.118 0.151 0.099 0.167 

Olsen P control (mg L-1) 0.768 0.818 0.752 0.838 0.757 0.767 0.722 0.822 

WEP control (mg L-1) 0.908 0.962 0.921  0.910 0.908 0.902 0.940 

*Ammonium oxalate-extractable  
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Figure 7.2. Plots of total soil carbon against oxalate-extractable Fe and Al, and total Ca. The slope and 

coefficient of determination for the regression and trend line fits to Fe (dotted), Al (grey) and total Ca 

(black) are also given. 

 

A step-wise regression was carried out to determine the variables responsible for the most 

variation in WEP (Table 7.4). For all amendments, variability in WEP concentrations were 

associated with Olsen P, DPS, bulk density, and pH (P < 0.001; adj. R2 = 0.91; Eq. 1). Soil bulk 

density decreases as organic matter increases (Perie and Ouimet 2008). The negative 

correlation between BD and WEP is therefore explained by the decreasing quantity of Al, Fe 

and Ca with increasing ratio of C (P < 0.05; Figure 7.2). The negative relationship between WEP 

and pH could be caused by the addition of amendments which decreased pH (Table 7.2), 

potentially altering the solubility of Al-, Fe- or Ca-phosphate.  As described above, the positive 

relationships that were measured between DPS and WEP, and Olsen P and WEP are to be 

expected as correlations between these variables have been reported in earlier studies (e.g. 

Allen and Mallarino 2006; McDowell and Sharpley 2001).  

 

WEPAVG = 0.01  DPS + 0.005  Olsen P - 0.42  BD - 0.05  pH + 0.36  [Eq. 1] 
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Figure 7.3. Plot of WEP concentration against total C for soils treated with amendments of (a) 

aluminium sulphate, (b) calcium sulphate, (c) iron sulphate and (d) no amendment. All with and 

without 5 ppm P added (solid/dotted trend line indicates presence/absence 5 ppm P solution). The 

slope and coefficient of determination for the regression fits to each data set are also given. 

 

 

Table 7.4. Coefficient values for WEP predictive terms from stepwise regression analyses. WEPAVG is 

an average of the WEP values across all treatment for each soil.  

 R2 (adj) 

 

Bulk dens.  

(g cm3) 

DPS 

(%) 

pH 

 

Olsen P 

(mg P L-1) 

Constant 

WEPCon 0.87 -0.44 0.009 n/a 0.008 0.30 

WEPAl 0.90 -0.36 0.013 -0.05 0.005 0.25 

WEPFe 0.84 -0.46 0.01 -0.22 0.005 0.91 

WEPCa 0.91 -0.41 0.01 -0.06 0.006 0.37 

WEPAVG 0.91 -0.42 0.01 -0.05 0.005 0.36 
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7.4 Conclusions 

 

The magnitude of WEP decrease was dependent on the initial Al, Fe and Ca concentration of 

the soil. However, on average, the response in WEP to doubling the concentration of Al and 

Fe was more effective than adding Ca (i.e. without changing pH as would happen if added as 

lime). My secondary hypothesis was that WEP losses from C-rich soils will be less influenced 

by amendments than those soils with lower C content. Although the Pearson test showed total 

C was positively correlated with WEP (Table 7.3), and that WEP was highly variable at greater 

C levels (Figure 7.3 a-d), components other than C (but perhaps acting as a surrogate) better 

described variation in WEP. Thus, it cannot be concluded that OM had a greater influence on 

WEP concentrations than other components. These findings suggest that even in C-rich soils, 

what little Al and Fe is present in the soil is highly influential in determining WEP 

concentrations. The concentration of Al and Fe could be altered with amendments to decrease 

WEP and the potential for loss to surface and groundwaters. 
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Chapter 8 

Summary and future research priorities 

 

8.1 Summary of results and implications for P loss mitigation 

  

The conversion of Organic soils for intensive agriculture carries a high risk for P export from 

the landscape, yet marginal soil development is increasing globally due to population growth 

and a demand for agricultural products. The overall hypothesis for this body of work was that 

P losses from Organic soils and potential water quality impacts are high, especially after initial 

development, but will decrease due to changes in soil properties and better management. The 

main aims of this thesis were to identify which properties of Organic soils best indicate the 

potential scale of P losses, the timeframe over which the risk of P losses is greatest, and how 

soil and land management variables including soil moisture, liming and fertiliser rates, fertiliser 

solubility, and mineral content can influence the quantities, forms and fractions of P exported 

from the landscape. 

 

The first step was to collect physicochemical and management data for ninety soils from the 

lower Waituna catchment – a predominantly dairying-oriented catchment populated by 

poorly-drained Organic, Podzol and Gley soils. This data was used to determine how the 

potential for topsoil and subsoil P losses from an array of soils changed over time (since 

development from scrub), and what physical, chemical and management properties those 

losses were related to. It was found that for Organic soils, P losses were immediately high 

following development, and P concentrations in overland flow (as WEP) could be 

approximated by Olsen P, DPS (as oxalate-extractable concentrations of Fe, Al and P), and the 

C content of the soil. This was important because it helped fill a potential knowledge gap in 

previous work by McDowell and Condron (2004), who found that WEP in overland flow from 

mineral soils was a function of Olsen P and ASC. The findings of that trial enabled us to create 

terms for the prediction of surface losses from Organic and Podzol soils, and subsurface losses 

(as CaCl2-P) from Podzol soils. The data also demonstrated that Organic soils have the potential 

to lose more P than a Podzol soil.  



92 
 

The findings of this study indicated that Organic soils are prone to high P losses immediately 

following development, and that efforts to mitigate P losses should be employed at this time. 

I then set about determining what soil attributes and environmental conditions are most 

influential to P losses, and how soil management practices commonly practiced over that 

timeframe (including liming, fertiliser application and pastoral species) could be optimised to 

reduce P losses, with minimal detrimental impact to productivity.  

 

A runoff trial was conducted to assess the most important pathway for P loss from an acid 

Organic soil and acid Mesic Brown soil at different soil moisture levels and Olsen P fertility. 

The data suggested that for Brown soils, high soil moisture (>90% AWHC) can lead to an 

elevated potential for P losses in overland flow via saturation-excess surface runoff. Because 

of a high ASC, P was primarily lost as PP from these soils, rather than in dissolved forms. 

Surface runoff was also generated from dry Organic soils, but this was due to hydrophobicity 

(infiltrations-excess surface runoff). Similarly to Brown soils, PP was transported in surface 

runoff, but due to a very low ASC, a much greater proportion of the P lost was in dissolved 

form, and was an order of magnitude greater than equivalent Brown soils. However, due to a 

high hydraulic conductivity and low ASC the greatest quantity of P lost from Organic soil 

(regardless of moisture) was via subsurface flow; found to be between 77 and 100 times 

greater than mean P losses in surface flow, primarily as dissolved forms. This work indicates 

that strategies to reduce P losses from Organic soils should account for leachate or drainage 

being the dominant pathway of P loss, and should be field tested to confirm. 

 

Management decisions for recently developed Organic soil typically include liming to correct 

acidic soil conditions, capital applications of P fertiliser to increase plant-available P, and the 

establishment of hardy pastoral species. To this end, three lysimeter trials were conducted to 

determine how these management decisions might be optimised to reduce P losses in 

leachate. All lysimeter trials were conducted at three pH levels (4.5, 5.5 and 6.5) and four P 

rates (0, 50, 100 and 200 kg P ha-1) over 12 months in temperature and precipitation-

controlled greenhouse.  

 

A lysimeter trial was carried out to assess the quantity of P fractions in leachate, and soil as a 

function of soil pH (controlled by liming). I had hypothesised the quantity of P in leachate 
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would increase with soil pH and fertiliser P rate. The data showed that most P was lost from 

pH 4.5 soils. Soil P fractionation data revealed that due to very low quantities of Fe and Al-

oxides, P was retained in limed soils by the creation of Ca-phosphates that were readily soluble 

in HCl. This contrasted with other studies that had found that raising soil pH increased the 

solubility of Fe and Al-phosphates. As the higher pH increased ryegrass production, this also 

resulted in a higher quantity of P in plant biomass at pH 5.5 and 6.5. The results show that P 

losses from mineral-deficient Organic soils can be mitigated in the short term by the addition 

of lime to increase soil pH to > 5.5.  

 

The second lysimeter trial compared P losses in leachate following the application of a soluble 

P fertiliser and a sparingly soluble fertiliser (RPR). The results of this trial showed that at low 

pH, P losses in leachate were greatest for both fertiliser types and the cost of P losses from 

SSP were 94% higher than RPR. As pH increased, the cost of P losses from SSP also increased, 

compared to RPR (252% higher at pH 6.5). There were no significant differences in plant 

growth at pH 4.5 and 5.5; however at pH 6.5 mean SSP yield was 7% greater than RPR. This 

trial showed that P losses in leachate can be significantly lower from an acid, Organic soil that 

is limed to pH > 5.5, when RPR is used over SSP. 

 

The third lysimeter trial attempted to compare plant productivity and P losses in leachate from 

three pastoral species – greater lotus, white clover and perennial ryegrass. Lotus had 

previously been shown to be tolerant to low pH and limited nutrients, which could yield a 

productive advantage over more commonly opted legume and grass pasture species (e.g. 

white clover and ryegrass) on a recently developed acid Organic soil. However, issues with the 

watering system and fungus gnat infestations severely limited the growth of lotus and clover. 

Due to the poor performance of these species it was difficult to make any meaningful 

comparisons of their relative usefulness as a pastoral species in monoculture or their ability 

to curb P losses from Organic soils. Further work is therefore required to compare these 

species effectively. 

The primary study found that while P release as WEP in surface runoff was a function of Olsen 

P, DPS and C, there was no effective prediction term for subsurface P losses (estimated by 

CaCl2-P; McDowell and Condron 2004). However, from subsequent lysimeter trials it was clear 

that ASC (or DPS, as a function of Al, Fe and Ca concentrations) was key in controlling the 
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magnitude of P losses from Organic soil in both overland and subsurface flow. To this end, an 

incubation trial that doubled the concentrations of metal oxides (Fe, Al and Ca) in 75 topsoils 

over a range of C and Olsen P values (with and without added P) was conducted. The objective 

was to double the natural amorphous concentrations of Al, Fe or Ca, with and without 

additional P, in order to determine the roles of these minerals in regulating surface P losses 

(measured as WEP) in relation to soil carbon (C). The results showed no strong relationship 

between C and WEP, and found Al was the most important metal oxide controlling WEP 

concentrations for soils of the catchment, and indicated that amendments of an Al-based 

material could significantly reduce P transport from the soil.   

 

In conclusion the potential for P losses from Organic soils was confirmed to be high 

immediately following development and via subsurface flow. However, the scale of these 

losses can be predicted with simple soil tests, and where necessary, can be better managed 

by increasing P sorption in the soil (e.g. liming to pH > 5.5 or other soil amendments, e.g. alum) 

and through the use of sparingly soluble P fertilisers.  

 

8.2 Future research priorities 

 

This body of work has demonstrated that P losses from Organic soils are high following 

development, and occur through subsurface pathways. It has detailed best management 

practices that mitigate P losses at a management scale including higher liming rates, low-

solubility P fertiliser and pasture species that provide a balance of high P uptake and yield with 

little P inputs. The following section proposes additional work that could address gaps in this 

research. 

 

8.2.1 Establish the use of CaCl2 as a measure for estimating subsurface P losses from Organic 

soils 

 

Chapter 2 used soil properties and management variables to develop a predictive equation for 

WEP losses from Organic soils (an indication of surface P loss potential in overland runoff), but 
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was not able to establish a workable equation for CaCl2-P losses (P loss potential in subsurface 

runoff) using the same set of variables. This research and others (McDowell et al. 2002) have 

shown that CaCl2 extracts P from different pools and at different quantities compared to 

water, however the use of CaCl2-P as a measure of sub-surface losses has not been verified for 

Organic soils as with more mineral soils (McDowell and Condron 2004). In order to predict 

CaCl2-P from soil and land management variables (as with WEP), it must first be determined if 

CaCl2-P is a useful measure of estimating sub-surface losses from Organic soils.  

 

8.2.2 Strategic application of lime, Al or plant species to reduce P losses from critical source 

areas 

 

Chapter 3 found that the majority of P transport from soils occurred in subsurface flow, and 

later chapters provided some management oriented strategies to reduce those losses. 

However hydrophobic Organic soils still lost approximately 30% of their total P in overland 

flow as a combination of PP and FRP. Following this, chapter 4 established that in the absence 

of P-sorbing metal oxides found in mineral soils, the application of higher rates of lime had the 

effect of decreasing the quantities of P released from Organic soil due to the formation of Ca-

phosphates that were poorly-soluble at higher pH levels. Chapter 7 found that doubling the 

Alox content of OM-rich soils required only small additions of alum (due to naturally low soil 

concentrations) yet resulted in a mean WEP decrease of 87% compared to controls. The cost 

of liming to pH > 5.5 or broadly applying alum may be prohibitive on a whole farm, yet an 

alternative strategy could be liming or applying alum at higher rates in critical source areas 

(CSAs) to intercept overland or drainage P losses. Following this, part of the logic of chapter 6 

was that lotus supposedly had a higher P uptake capacity than clover or ryegrass, and that this 

could lead to lower P losses. This was not demonstrated, however the principle remains, that 

a high P uptake plant could potentially be used in CSAs to intercept nutrients and provide feed 

for stock. The potential ecological and economic implications of these mitigation strategies 

need to be explored. 
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8.2.3 Test the environmental and economic limitations of alum amendments on Organic soils 

 

Chapter 7 demonstrated excellent potential for Al amendments to reduce WEP from an array 

of Organic soils. However, Al-toxicity is a major limitation to crop growth, and is a primary 

reason why liming is undertaken (Haynes and Mokolobate; 2001), and McDowell (2010) 

assessed the use of alum (20 kg ha-1) to reduce P losses from a high-rainfall environment, but 

P retention was not significantly increased due to the removal of alum by precipitation. 

Further work is needed to determine if the small quantities of Al used in chapter 7 would 

increase P retention in situ, potentially using different Al forms or application methods. Then 

test any effects to feed quality, herbage yield, or environmental risk when applied as a soil 

amendment. 

 

8.2.4 Determine quantity and bioavailability of PP losses in Organic soil drainage  

 

Previous studies (e.g. Stamm et al. 1998) state that in some soils, subsurface flow pathways 

are important for transporting both dissolved and PP. This PP can eventually stimulate primary 

production and contribute to eutrophication symptoms. Due to the loosely-structured nature, 

high porosity and hydraulic conductivity of Organic soils, P losses via macropores are 

predictable, yet are hard to quantify. It would be valuable to determine the quantity and 

bioavailability of PP lost from Organic soils in subsurface pathways, and following this, to 

develop a strategy for reducing these losses. In this regard, applications of gypsum have shown 

promise (e.g. Svanbäck et al. 2014), and alternative materials that promotes aggregate 

formation and strength could also be explored.  
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