Ecosystem Services Review of Water Projects

Edward Hearnshaw^o, Ross Cullen^o, Ken Hughey*

Department of Accounting, Economics and Finance
 *Department of Environmental Management
 PO Box 84, Lincoln University, New Zealand

Edward.Hearnshaw2 @lincolnuni.ac.nz, Ross.Cullen @lincoln.ac.nz, Ken.Hughey @lincoln.ac.nz

Pressures

- Water becoming scarce and rivers stressed by abstraction for irrigation
- Water multiple uses and society needs to consider all uses, not just consumptive uses
- Evaluations of water projects need to consider all values to be valid, accepted
- Economic evaluations struggle to include all values for water if they are not readily monetised
- Ecosystem Services approaches have arisen as a consequence.

Ecosystem Services

- Ecosystems have functions
- When ecosystems benefit humans they provide Ecosystem Services
- Debate over how to categorise ES, but Millennium Ecosystem Assessment approach seems most accepted.
- Four categories of ES:
 - Provisioning
 - Regulating
 - Cultural
 - Supporting

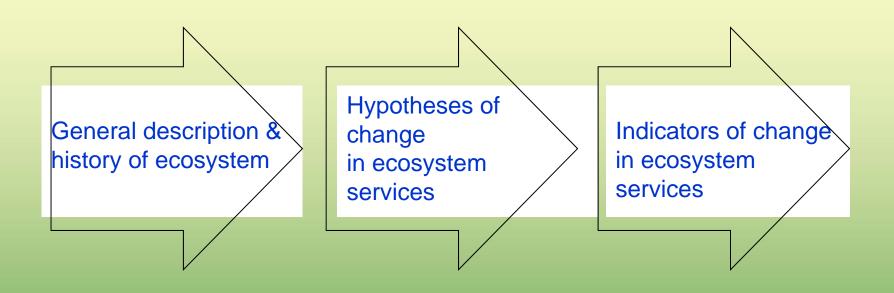
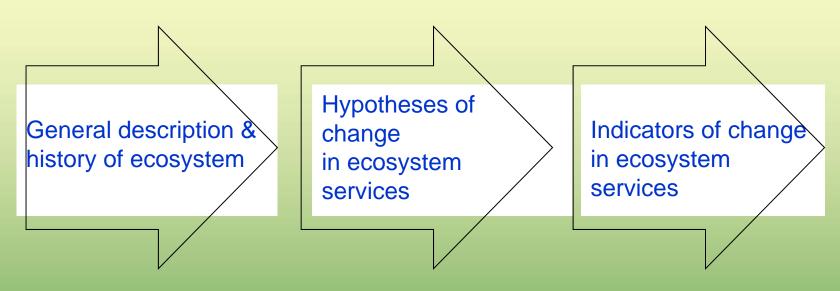

Classes of	Ecosystem services	Description of ecosystem service
ecosystem		
services		
Provisioning	Food	Ecosystem supplies food produce (e.g. fish, grains, wild
ecosystem		game, fruits)
services	Fibre	Ecosystem supplies extractable renewable raw materials for
		fuel & fibre (e.g. fuelwood, logs, fodder)
	Freshwater Supply	Ecosystem supplies freshwater for use & storage
	Biological Products	Ecosystem supplies biological resources that can be
		developed into biochemicals for medicinal or commercial
		use
	Abiotic Products	Ecosystem supplies extractable non-renewable raw
		materials such as metals and stones for commercial use
Regulating	Climate Regulation	Ecosystem regulates air temperature and precipitation and
ecosystem		acts as a source of and sink for greenhouse gases
Services	Disease Regulation	Ecosystem regulates the abundance of pathogens
	Water Regulation	Ecosystem regulates hydrological flows (i.e. surface water
		runoff, groundwater recharge/discharge)
	Water Purification	Ecosystem purifies & breaks down excess nutrients in water
	Pest Regulation	Ecosystem regulates the abundance of invasive or pest
		species
	Erosion Control	Ecosystem controls potential biological catastrophes &
		stabilizes against erosion, thus, retaining soils
	Natural Hazard	Ecosystem regulates and protects against extreme natural
	Regulation	events (i.e. floods or droughts)
Cultural	Educational Values	Ecosystem provides opportunities for non-commercial uses
ecosystem		(e.g. archaeological values, knowledge systems).
services	Conservation Values	Ecosystem provides existence values for species including
		important values relating to biodiversity
	Aesthetic Values	Ecosystem provides aesthetic qualities
	Spiritual Values	Ecosystem provides spiritual and inspirational qualities
	Recreational Values	Ecosystem provides opportunities for recreational uses
		11

Table 1: The various ecosystem services that an ecosystem may derive (adapted from Curtis, 2004; Capistrano et al., 2006).


ES in evaluations

- ES can be quantified to provide estimates of total ES values at a site
- Policy decisions typically require insight into how ES may change
- Few evaluations have used ES approaches
- Not surprising as ES are complex, disagreement on how to categorise ES, and data often lacking
- Environment Canterbury (the local regional council) sought our help to complete ES Review for a water project and its linked catchment

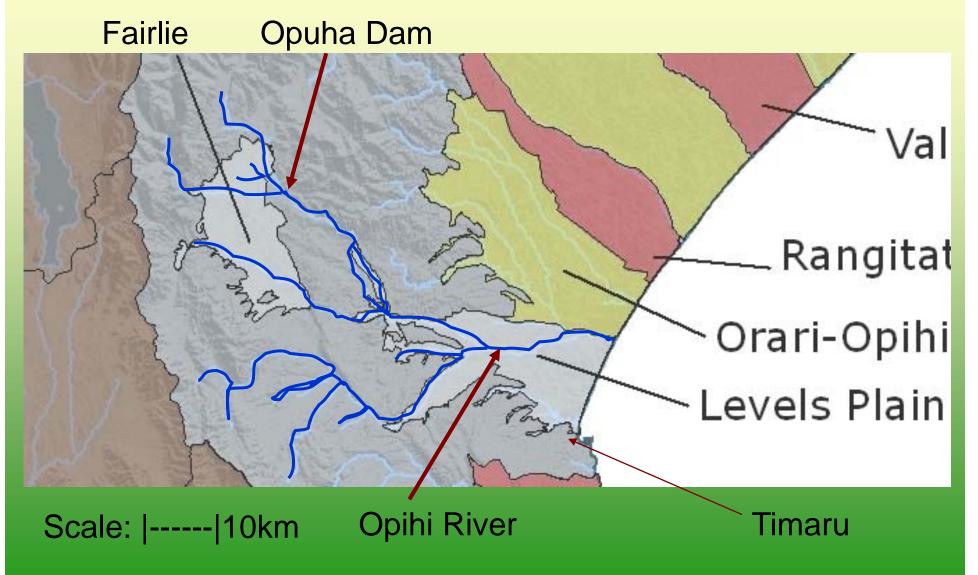
Approach used

Approach used

- Literature review
- Secondary data sources
- Expert and stakeholder interviews
- Site visits

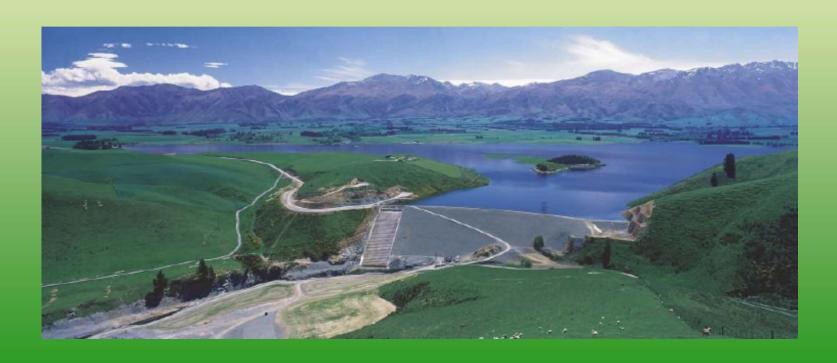
Opihi Catchment, South Canterbury

- Opihi river, 3 tributaries
- 245,000 ha in catchment
- Grazing, dairy farming, intensive cropping
- Small areas of wetlands, swampland, forest
- Rainfall 1400mm (west),
 550mm (east)
- Summer droughts, soil moisture deficits
- Levels Plains irrigation began 1936, 3700ha



Opihi Catchment

- Irrigation abstraction, dry river in summers
- ES degradation
- Opuha Dam built 1997-98
- 710 ha lake, water storage for irrigation, electricity generation, boating, fishing, recreation, maintain summer flows in Opihi River
- Negative effects expected: increased algal growth, loss of natural character



Opihi River, Groundwater zones, South Canterbury

Ecosystem Service Hypotheses

- Ex ante evaluation of dam and literature on possible impacts of dams on ES
- Hypotheses for impacts on Opuha Dam on provisioning, regulating, and cultural Ecosystem Services

Hypothesised dam Impacts on Provisioning ES

Ecosystem service class	Ecosystem service		Notes and sub-class of ecosystem service					
Provisioning	Food	Fisheries						
	Food	risileries		+/-				
ecosystem			Trout	+/-				
services		Mahinga ka	Mahinga kai (e.g. eel, whitebait, flounder)					
	Fibre	Flax, driftw	Flax, driftwood					
	Freshwater	Irrigation	+					
	supply	Hydroelect	+					
		Municipal v	+					
		Industrial w	+					
		Stock wate	+					
	Biological	Not applica	Na					
	products							
	Abiotic	Gravel extr	0					
	products							

The ecosystem services provided by the Opihi River and the hypothesized impacts (*i.e.* positive +; negative -; no change 0) of the Opuha Dam on provisioning ecosystem services.

Hypothesised dam Impacts on Regulating ES

Ecosystem service class	Ecosystem service	Notes and sub-class of ecosystem service	Hypothesized impact
Regulating ecosystem	Climate regulation	Not applicable	Na
services	Disease regulation	Parasite and toxic algae regulation	-
	Water regulation	Hydrological flow regulation (e.g. minimum river flows, flushing flows)	+/-
	Water purification		+/-
	Erosion control		+
	Pest regulation	Invasive non-native species (e.g. algae, willows, gorse, broom)	-
	Natural hazard regulation	Flood and drought protection	+

The ecosystem services provided by the Opihi River and the hypothesized impacts (*i.e.* positive +; negative -; no change 0) of the Opuha Dam on provisioning ecosystem services.

Hypothesised dam Impacts on Cultural ES

Ecosystem	Ecosystem	Notes a	nd sub-class of	Hypothesized			
service class	service	ecosyst	em service	impact			
Cultural	Conservation	Native k	Native biodiversity and habitat				
ecosystem	values	Endang	ered native species	-			
services		Ecologic	cal landscapes of significance	+/-			
	Educational	Historic	al/archaeological values	0			
	values	Knowle	dge systems	+/-			
	Aesthetic values	Percept	ive beauty	+/-			
	Spiritual	Māori	Natural character	-			
	values	values	Life supporting capacity or mauri	+			
	Recreational	Boating	+				
	values	Fishing		+/-			
		Hunting	(e.g. duck hunting)	+			
		Picnicki	ng	+			
		Swimm	ing	+/-			
		Walking	3	0			

The ecosystem services provided by the Opihi River and the hypothesized impacts (*i.e.* positive +; negative -; no change 0) of the Opuha Dam on provisioning ecosystem services.

 Seek biophysical, economic and social indicators for each Ecosystem Service

Socio-economic indicator	Indicator calculation	Unit	Revenue	Expenses	Surplus
	¢/ha irrigated forms	¢/ba	¢1211	\$849	¢262
Farm Level Impact	.,	\$/ha	\$1211	\$649	\$362
of Irrigation	\$/ha non-irrigated farms				
Irrigation Impact	Irrigation impact/	\$/ha	\$2457	\$1722	\$735
per Hectare	proportion of area				
	irrigated (0.493)				
Economic Impact	Irrigation impact per ha ×	\$/year	\$39,740,000	\$27,850,000	\$11,890,000
over Irrigation Area					

Table 4: Economic benefits from reliable and increased freshwater supply for irrigation (adapted from Harris Consulting, 2006).

Socio-economic indicator	Unit	Irrigation	Hydroelectric production
Total Economic Benefits (\$/catchment/		\$123,200,000	\$1,220,000
Full Time Employment	(FTEs/catchment)	480	4

Table 5: Impact of irrigation and hydroelectric generation in catchment area (adapted from Harris Consulting, 2006).

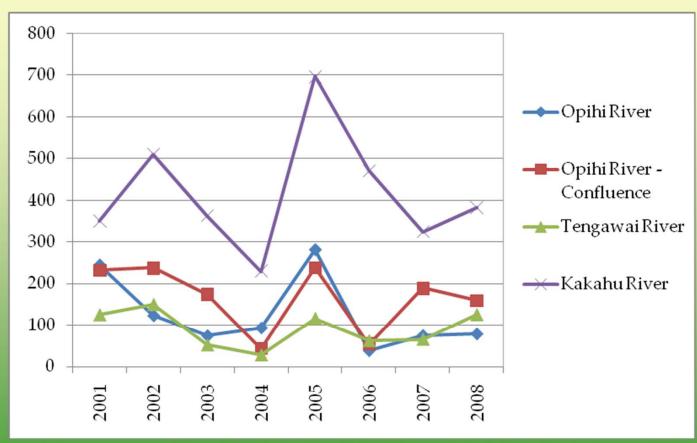


Figure 3: Average annual E. coli levels for the Opihi River and its tributaries between 2001 and 2008 (adapted from Environment Canterbury, 2009).

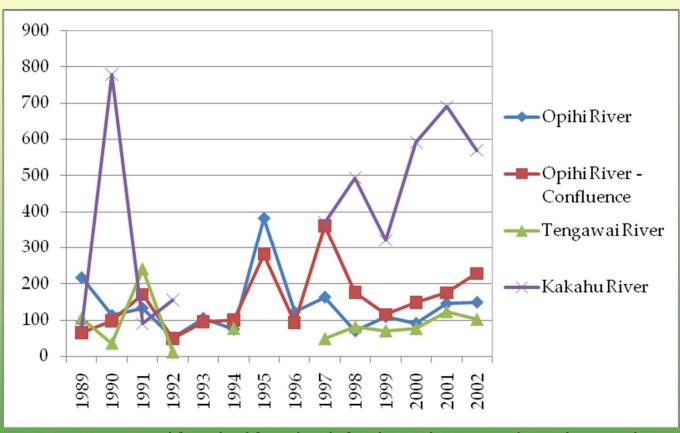


Figure 4: Average annual faecal coliform levels for the Opihi River and its tributaries between 1989 and 2002 (adapted from Environment Canterbury, 2009).

Monitoring site	Unit	Opihi River:		Opił	ni River -	Opuha River:	
		Waipopo		Confluence:		Skiptor	n Bridge
				Rockwood			
Biophysical indicator		2007 Trend		2007	Trend	2007	Trend
Minimum River	m³/s	7.67	+	2.95	0	4.45	+
Flows							

Table 6: Trends in the average minimum river flows on the Opihi River and its tributaries 1989 - 2007 (Ministry for the Environment, 2009).

Period	Pre-Opuha Dam	Post-Opuha Dam
Biophysical indicator		
Number of Days River Mouth	100+	4-5
Closed		

Table 7: The average annual number of days the mouth of the Opihi River is closed.

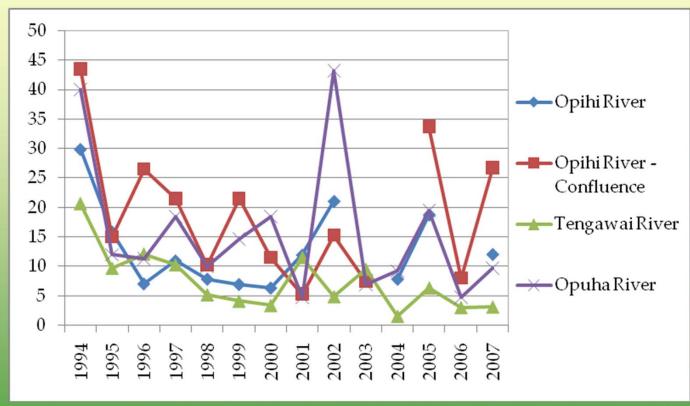


Figure 5: Average annual salmon spawning numbers between 1994 to 2007 for the Opihi River and its tributaries (adapted from Fish and Game, 2009).

Period	Pre-Opuha Dam	Post-Opuha Dam		
River				
Opihi River	12.6	11.7		
Opihi River – Confluence	9.9	10.2		
Tengawai River	gawai River 11.3			
Kakahu River	10.7	11.3		

Table 9: Average water temperature for the Opihi River and its tributaries before and after the Opuha Dam scheme (adapted from Environment Canterbury, 2009).

Period	Pre-Opuha Dam	Post-Opuha Dam		
River				
Opihi River	12.6	11.7		
Opihi River – Confluence	9.9	10.2		
Tengawai River	gawai River 11.3			
Kakahu River	10.7	11.3		

Table 9: Average water temperature for the Opihi River and its tributaries before and after the Opuha Dam scheme (adapted from Environment Canterbury, 2009).

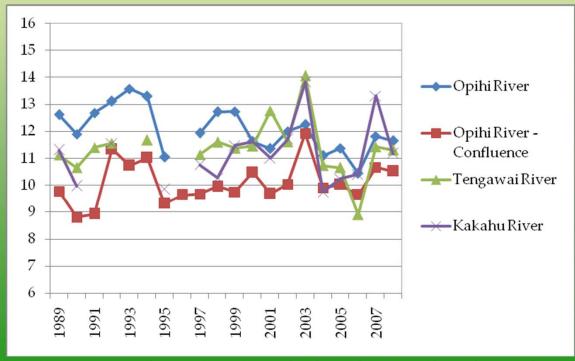


Figure 6: Average annual water temperature for the Opihi River and its tributaries between 1989 and 2008 (adapted from Environment Canterbury, 2009).

Discussion

- Biophysical, economic and social data availability is patchy
- Indicators for Regulating and Cultural ES often rely upon biophysical data
- Difficult to quantify ES in any objective way (as well as in \$ values)
- Can capture trends in ES if have time series data
- If have +ve and –ve impacts on ES of projects, an index of ES useful to gauge net effect
- Multiple uses of some indicators, danger of double counting
- Need criteria to score and potentially weight each indicator

Indicators with multiple uses

Indicator	Annual Periphyton Cover	Clarity	Cultural Health Index	E. coli Levels	Irrigated Area	Macroinvertebrate Community Index	Native Biodiversity	Number of Days River Mouth Closed	Number of Flood Flows	Number of Salmon Caught	Total Suspended Sediment	Turbidity
Ecosystem service	An	Ck	Ŋ	E.	Irr	Š	Nc	N	N	N	70	Tu
Freshwater Supply				×	×							
Food	×		×			×		×		×		
Fibre												
Abiotic Products												
Water Regulation						×			×			
Natural Hazard					×				×			
Regulation												
Water Purification	×				×							×
Disease Regulation	×											
Pest Regulation												
Erosion Control											×	×
Conservation Values					×		×					
Educational Values												
Aesthetic Values	×	×									×	
Spiritual Values		×	×		×		×					
Recreational Values	×	×		×				×		×		
Total	5	3	2	2	5	2	2	2	2	2	2	2

Table 12: Indicators that were used to indicate the state of multiple ecosystem services.

Expert scores for various evaluation criteria of several indicators representing the ecosystem service **Water Purification**

	Criteria/sub-criteria		ailability scale)	commi inforn	ty to unicate nation scale)		
Ecosystem service	Indicator	Scale monitoring	Processed	Intuitive	Accepted	Cost (0-3 scale)	Indicator cost- effectiveness
Water	Total Nitrogen	3	3	2	3	2	5.5
Purification	Concentration						
	Total Phosphorus Concentration	3	3	2	3	2	5.5
	pH Levels	3	3	1	3	2	5
	Annual	3	2	2	2	1	9
	Periphyton Cover						
	Average Percentage of EPT	3	2	2	2	2	4.5
	Таха						
	Macroinvertebrate Community Index	3	2	2	2	2	4.5

Sub-criteria for the criteria availability of data and ability to communicate information are:

- 1. Multiple scales: Data gathered at appropriate spatial and temporal scales;
- 2. Processed: Data processed into indicators that are widely used;
- 3. Intuitive: Indicator communicates information about ecosystem service in an obvious way that limits ambiguity, so that the mind can perceive a clear agreement between the indicator and the ecosystem service; and
- 4. Accepted: Indicator adheres to scientific principles and methods.

ES approaches to evaluation

- Plenty of issues to overcome to make ES approach readily usable and useful for policy makers
- Investment in appropriate time series data a key decision
- If can overcome the challenges, ES approaches could be used to evaluate future projects