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 I 

Abstract 

Two types of artificial neural networks, Multilayer Perceptron (MLP) and 

Self-organizing Feature Map (SOM), were employed to detect mastitis for 

robotic milking stations using the preprocessed data relating to the electrical 

conductivity and milk yield.  

The SOM was developed to classify the health status into three categories: 

healthy, moderately ill and severely ill. The clustering results were successfully 

evaluated and validated by using statistical techniques such as K-means 

clustering, ANOVA and Least Significant Difference. The result shows that the 

SOM could be used in the robotic milking stations as a detection model for 

mastitis.  

For developing MLP models, a new mastitis definition based on higher EC and 

lower quarter yield was created and Principle Components Analysis technique 

was adopted for addressing the problem of multi-colinearity existed in the data. 

Four MLPs with four combined datasets were developed and the results 

manifested that the PCA-based MLP model is superior to other non-PCA-based 

models in many respects such as less complexity, higher predictive accuracy. The 

overall correct classification rate (CCR), sensitivity and specificity of the model 

was 90.74 %, 86.90 and 91.36, respectively. We conclude that the PCA-based 

model developed here can improve the accuracy of prediction of mastitis by 

robotic milking stations. 

Keywords: Artificial Neural Network; Multilayer Perceptron; Self-organizing 

Feature Map; Principle Components Analysis; 



 II 

Acknowledgements 

First of all, I would like to express my heartfelt gratitude to my supervisor, 

Associate Professor Sandhya Samarasinghe, for her invaluable help, 

encouragement, useful suggestions and patience in providing my main 

supervision throughout the research project. Without her consistent guidance and 

support, this thesis may never have reached its present form.  

I would also like to express my deepest gratitude to all professors, lecturers and 

staffs who have taught, instructed and helped me in the past two years: Professor 

Don Kulasiri, Professor Alan Mckinnon, Keith Unsworth, Dr Crile Doscher, Dr 

Brad Case, Dr Magdy Mohssen, Jane Swift, and Tracey Shields.  

I must thank my beloved wife Jing Chen and my lovely daughter Feiman Sun, 

for their love, patience and support throughout my studies in New Zealand. I 

also must thank my parents, Baosan Sun and Yufeng Hu, and my brother, 

Zhiyong Sun, for their loving considerations and great confidence in me during 

my studies in New Zealand. 

 

 

 

 

 



 III 

Table of Contents 

Abstract .........................................................................................................I 

Acknowledgements...................................................................................... II 

Chapter 1 ...................................................................................................... 1 

1 Introduction ............................................................................................................ 1 

1.1 Objectives of the Research................................................................................... 2 

1.2 Structure of Thesis ............................................................................................... 3 

Chapter 2 ...................................................................................................... 4 

2.1 Background of Mastitis ........................................................................................ 4 

2.2 Cost of Mastitis.................................................................................................... 8 

2.3 The methods of Detection used in Robotic Milking Systems (RMS) .................... 8 

2.4 The Predictability of Milk Traits for Mastitis ....................................................... 9 

Chapter 3 .................................................................................................... 11 

3.1 Artificial Neural Networks................................................................................. 11 

3.2 Multilayer Perceptron (MLP) Networks ............................................................. 11 

3.3 Self-organizing Feature Map Neural Networks .................................................. 15 

3.4 Use of ANNs for Mastitis Diagnosis .................................................................. 18 

Chapter 4 .................................................................................................... 21 

4.1 Methodology...................................................................................................... 21 

4.2 Data Analysis..................................................................................................... 21 

4.2.1 Data and Variables.................................................................................. 21 

4.2.2 Definitions of Mastitis and Healthy Quarters .......................................... 24 

4.2.3 Correlation Scatter Plots ......................................................................... 26 

4.2.4 Correlation between Variables ............................................................. 28 



 IV 

4.2.5 Principle Component Analysis (PCA)..................................................... 30 

4.3 Models Development ......................................................................................... 32 

4.3.1 Development of Multilayer Perceptrons (MLP)....................................... 32 

4.3.2 Development of Self – Organizing Maps (SOM)..................................... 35 

Chapter 5 .................................................................................................... 37 

5.1 Results and Discussion of SOM ......................................................................... 37 

5.1.1 Results of SOM ...................................................................................... 37 

5.1.2 Evaluation of SOM ................................................................................. 41 

5.2 Results and Discussion of MLPs ........................................................................ 45 

5.2.1 Classifying Mastitis with MLPs .............................................................. 45 

5.2.2 Comparing MLP and LDA...................................................................... 52 

Chapter 6 .................................................................................................... 56 

6.1 Conclusions ....................................................................................................... 56 

Reference .................................................................................................... 59 

Appendix 1.................................................................................................. 64 

Appendix 2.................................................................................................. 69 

 



 V 

List of Tables 
 

Table 4.1 Correlation Matrix for the Input and Output Variables.........................29 

 

Table 4.2 Results of Eigenvalue, Proportion and Cumulative Percentages of 

Variance..............................................................................................................31 

  

Table 4.3 Eigenvector Matrix and Their Loadings Extracted from the COV 

Matrix of the Standardized Variables ..................................................................31 

 

Table 4.4 A Sample of Four Records from the Dataset for Health States and 

Related variables. ................................................................................................33 

 

Table 4.5 Datasets with Different Input Variables for Supervised Neural 

Networks.............................................................................................................34 

 

Table 5.1 Mean and Standard Deviation of the Variables for Each Health 

Categories and the Statistical Significance of the Means between the Categories.41 

 

Table 5.2 Results of LSD Test. (1.00 stands for healthy, 2.00 for moderately ill 

and 3.00 for severely ill)......................................................................................42 

 

Table 5.3 Correlations between Clusters Obtained from SOM and K-means .......44 

 

Table 5.4 Predictive Abilities of the Four Best Models........................................48 

 

Table 5.5 Predictive Performance of LDA...........................................................52 

 

 



 VI

List of Figures 

 

Figure 2.1 Normalized fraction of running mean quarter yield profiles for all 4 

quarters of a cow with clinical mastitis in the LB. The quarters are named based 

on the locations of the quarter. B stands for back, F for front, L for left and R for 

right...................................................................................................................... 5 

 

Figure 2.2 Normalized EC running mean profiles for all 4 quarters of a cow with 

clinical mastitis. The blue line indicates the EC profile of the infected quarter 

(lb). The quarters are named based on the locations of the quarter. b stands for 

back, f for front, l for left and r for right ............................................................... 6 

 

Figure 2.3 Mean Difference of electrical conductivity values for healthy and 

infected quarters. It shows that an infected quarter (necRMlb) has larger mean 

and variation than healthy quarters. ...................................................................... 7 

 

Figure 2.4 Normalized EC running mean profiles for all 4 quarters of a cow with 

clinical mastitis. This cow has mastitis on quarter right back (yellow line). This 

cow does not have a highest EC on the infected quarter........................................ 7 

 



 VII

Figure 3.1 Architecture of a MLP, with four input neurons, three hidden neurons, 

two output neurons, and 18 weights.....................................................................12 

 

Figure 3.2 A simple network training example.....................................................12 

 

Figure 3.3 Configuration of a two dimensional SOM network.............................16 

 

Figure 4.1 Correlation scatter plots of input variables. nfRM = Running Means of 

Normalized Quarter-yield Fraction; necRM = Running Means of Normalized 

Electrical Conductivity. necFD = The fractional deviations from the smallest 

necRM value. BS indicates Bacteriological State where 0 denotes healthy and 1 

denotes sick. ........................................................................................................27 

 

Figure 5.1 Mapping of 3 Dimensional data onto a two-dimensional SOM. The 

top-left panel shows the health states. Red = Severely Ill; Green = moderately Ill; 

Blue = Healthy. The other three panels present the input variables. .....................38 

 

Figure 5.2 SOM Clustered Health Categories in 3-D Format ...............................40 

 

Figure 5.3 K-means Clustered Health Categories in 3-D Format .........................44 

 

Figure 5.4 Prediction Performance of Model 1 (inputs: nyfRM, necRM).............46 



 VIII 

 

Figure 5.5 Prediction Performance of Model 2 (inputs: nyfRM and necFD). .......46 

 

Figure 5.6 Prediction Performance of Model 3 (inputs: nyfRM, necRM, and 

necDV)................................................................................................................47 

 

Figure 5.7 Prediction Performance of Model 4 (PCA-based: PC1, PC2, PC3). ....47 

 

 

 

 

 

 

 

 

 

 

 



 1 

Chapter 1 

 

1 Introduction 

Bovine mastitis is the most costly disease in the dairy industry and exists in 

every herd. Recent research conducted by Dairy NZ, a dairy research 

organization in New Zealand, shows that mastitis costs the dairy industry $180 

million annually. The early detection of mastitis, therefore, is crucial for 

farmers’ economic gain because it allows prompt treatment, a higher rate of 

recovery, reduce the risk of infection being passed onto other cows and help 

prevent the development of chronic infections (Bentley & Lacy-Hulbert, 

2007).  

 

Early detection of mastitis can be performed on-line by Robotic Milking 

Systems (RMS) which have been used for several years in dairy industry. 

However, their detection results can not be fully relied on due to the fact that 

these detection model algorithms are mainly based on Electrical Conductivity 

(EC), whose value as a mastitis detector has been argued for a long time as its 

value is easily influenced by a number of factors (Mein, Sherlock & Claycomb, 

2004). Since other milk parameters such as quarter milk yield can be measured 

automatically during milking, it would be desirable if this information is 

incorporated into the algorithm of the models. Thus, mastitis would be detected 

not only based on changed EC values but also on the changes in quarter yield, 
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which would lead to higher predicting accuracy. In this study, Artificial Neural 

Networks (ANN) technique is adopted to develop such a model. 

 

ANN consists of neurons that mimic the human brain to perform complex tasks. 

An advantage of ANN is that it can detect patterns in complex and non-linear 

data. Cows with mastitis have different milk traits pattern than healthy cows 

such as higher EC and lower quarter yield (Yamamoto, 1985; Aoki, 1992; Lake, 

1992). By presenting these patterns, an ANN should be able to learn how to 

map them to their corresponding outputs (input-output mapping). A 

well-trained ANN should be able to classify new patterns correctly and thus 

provide reliable predictions for new situations. The outcomes of this research 

study may be applied to future development of on-line mastitis detection 

systems.  

 

1.1 Objectives of the Research 

 

� Find out proper data-processing methods for differentiating mastitic and 

non-mastitc quarters so that the ANN can be well trained. 

 

� Develop a mastitis detection model with sufficient accuracy by using 

Multilayer Perceptron (MLP) network based on the EC and quarter yield 
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� Develop a mastitis detection model by using Self-Organizing Map (SOM) 

to categorize cows in terms of health states. These health states will be 

healthy, moderately ill and severely ill. 

 

1.2 Structure of Thesis 

The thesis is outlined as follows: Chapter 2 is a brief review of background 

including mastitis, RMS, and the usefulness of milk composition for detecting 

mastitis. The basic concept of ANN is introduced in Chapter 3. A brief 

literature review on performance of ANN in detecting mastitis is presented in 

this chapter as well. Methods employed to achieve objects of the research are 

detailed in Chapter 4, which includes two main stages: data preprocessing and 

model development. Chapter 5 illustrates the results and the main findings are 

discussed. Finally, conclusions are presented in Chapter6. 
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Chapter 2 

 

2.1 Background of Mastitis 

Mastitis is inflammation of the udder and is caused by bacteria that enter 

through the teat canal, multiply in mammary tissue, and produce toxins that set 

up infection (NMAC, 2001). According to degrees of infection, mastitis can be 

defined as clinical mastitis and sub-clinical mastitis. Clinical mastitis is when 

the signs of infection can be seen, such as swollen teat, clotted milk and 

discolouration of the milk. In Sub-clinical mastitis, there are no visible signs 

appearing in milk or the udder. It can only be detected by laboratory 

examination (Sharif et al., 1998). 

 

Mastitis has two main influences on milk: milk yield reduction and change of 

milk composition. A clinical quarter produces less milk than those that are 

healthy. Figure 2.1 illustrates a cow with lower quarter yield in the infected 

quarter. John et al (1992) found that the relative drop in milk yield at the 

quarters during the infection period was 15.3% ± 2.5%. However, a drop in 

milk yield does not alwayys mean that the cow has mastitis.  
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Figure 2.1 Normalized fraction of running mean quarter yield profiles for 

all 4 quarters of a cow with clinical mastitis in the LB. The quarters are 

named based on the locations of the quarter. B stands for back, F for front, 

L for left and R for right 

 

Because of inflammation, the composition of milk from a sick quarter will be 

changed. This includes increased somatic cell counts (SCC), higher electrical 

conductivity (EC) and other components including fat and protein content 

(Auldist & Hubble, 1998). Somatic cells are mainly white blood cells sent to 

fight infection in the udder. When infection occurs and starts to damage the 

udder tissue, the immune system is called to action and very rapidly, large 

quantities of somatic cells are directed to the infection site (Leslie, Dohoo & 

Meek, 1983). A report form Dairy NZ states that a cow with SCC levels above 

150,000 cells /ml is likely to be infected with mastitis.  

 

As infection progresses, more cellular fluid enters into milk and the 

concentration of anions and cations in the milk increases. As a result, electrical 
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conductivity (EC) of the milk from the infected quarter is increased. In Figure 

2.2 and 2.3, a cow with a high conductivity on the infected quarter is shown. 

Due to the correlation to mastitis, ease of measurement, and the low cost of 

recording, EC has been widely recognized as an important indicator for 

mastitis and employed in mastitis detecting system in the dairy industry 

( Barth, Fishcer & Worstorff, 2000). However, as shown in figure 2.4 not all 

the infected quarters have a highest EC. For such a case, EC alone is 

inadequate as an indicator for the detection of mastitis.  
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Figure 2.2 Normalized EC running mean profiles for all 4 quarters of a 

cow with clinical mastitis. The blue line indicates the EC profile of the 

infected quarter (lb). The quarters are named based on the locations of 

the quarter. b stands for back, f for front, l for left and r for right 
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Figure 2.3 Mean Difference of electrical conductivity values for 

healthy and infected quarters. It shows that an infected quarter 

(necRMlb) has larger mean and variation than healthy quarters. 
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Figure 2.4 Normalized EC running mean profiles for all 4 quarters 

of a cow with clinical mastitis. This cow has mastitis on right front 

quarter (yellow line) but does not have the highest EC on the infected 

quarter.  
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2.2 Cost of Mastitis 

Mastitis is one of the leading diseases and a serious problem in the dairy 

industry world wide. Past studies have found that the annual cost of mastitis 

per cow was around $200-300 in the USA and France (Blowey, 1986). In the 

U.K, the estimated cost of mastitis is around $150 to $200 million per year 

(Booth, 1988; Hillerton & Walton, 1991). Other studies of mastitis in Canada, 

Sweden, and the Netherlands have shown that dairy farmers suffer financial 

losses ranging from $125 to $250/yr per cow (Heuven et al., 1988; Miles et al., 

1992; Monardes, 1994). The cost of mastitis for the average New Zealand 

dairy farmer is $36/cow. For the whole industry the figure amounts to more 

than $180 million per year (Bentley et al, 2006).  

 

2.3 The Methods of Detection Used in Robotic Milking 

Systems (RMS) 

In RMS, a detection model has been used to monitor the health status of the 

cows. It generates reports called Attention Lists that alerts the farmer to cows 

that may be sick. The algorithm of the model compare the EC value of the milk 

at each milking. If the EC value of a quarter is over 15% higher than the 

average of the two quarters with the lowest EC value, the quarter is detected as 

mastitis infected (Grennstam, 2005).  
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2.4 The Predictability of Milk Traits for Mastitis 

Electrical Conductivity (EC) 

Reports from some studies on the ability of EC to detect mastitis showed that 

the sensitivity (correctly detecting mastitis) and specificity (correctly detecting 

healthy cases) were on average about 65% and 75%, respectively (Sheldrake, 

McGregor & Hoare 1983; Batra & McAllister 1984; Lmsbergen et al. 1994). 

They pointed out that EC alone might not be a good measure to accurately 

discriminate between clinical and healthy cases, because EC of milk is easily 

affected by a number of factors. To improve the performance of EC in 

detecting mastitis, other measurements such as inter quarter ratio (IQR) has 

been investigated. IQR is the ratio between the quarter with the highest and 

lowest EC quarter value of the same cow. A study (Norberg, et al, 2004) 

showed that IQR of EC provided a much better result than directly using EC 

value alone. By using this trait, 80.6% of clinical and45% of sub-clinical cases 

were classified correctly in their study. They also added that the combination of 

EC with other traits could improve the ability to classify cows into udder 

health categories. 

 

Somatic Cell Count(SCC)  

Previous studies showed that the ability of SCC to determine mastitis states 

varies greatly. The sensitivities and specificities of SCC from these studies 

ranged from 40 to 70% and 60 to 89%, respectively. (Fernando et al., 1982; 
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McDermott et al., 1982; Rindsig et al., 1979; Schultz, 1977; Sheldrake et al., 

1983). One possible reason for this variation, they pointed out, could be 

attributed to threshold level because different levels could lead to different 

sensitivity and specificity. For example, setting a low level of SCC threshold 

could result in high sensitivity and reduce the false negative rate (a cow 

incorrectly classified as healthy cow), whereas setting a high threshold could 

lead to high specificity and reduce the false-positive rate (a cow incorrectly 

classified as infected cow). Another reason for the variation could be due to the 

fact that not only mastitis but also many other factors could result in a raised 

SCC, such as the age, lactation stage, milking equipment and season. Like EC, 

SCC alone may not be the best indicator, even though it is used throughout the 

world as an indicator of mastitis. 
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Chapter 3 

 

3.1 Artificial Neural Networks 

An ANN processes information through interactions of a large number of 

neurons and obtains knowledge through a learning process. The knowledge is 

stored within connections between neurons (Samarasinghe, 2006). For different 

purposes, a variety of ANN can be constructed based on differences in the 

arrangement of the layers, the interconnection of elements, and the learning 

methods. For purposes of this research study, two types of ANN, Multilayer 

Perceptron Networks (MLP) and Self-organizing Feature Map (SOM) Neural 

Networks, were employed. In the following two sections, the basic concepts of 

them are reviewed.  

 

3.2 Multilayer Perceptron (MLP) Networks 

The MLP are the most common neural network for nonlinear prediction and 

classification, in which the processing elements or neurons are grouped into an 

input layer, hidden layers, and output layer. Figure 3.1 shows structure of a 

three layer MLP. The neurons in one layer are connected to each neuron in the 

adjacent layer and the strengths of these connections are called weights which 

are the free parameter, and which can be positive or negative.   
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Figure 3.1 Architecture of a MLP, with four input neurons, 

three hidden neurons, two output neurons, and 18 weights. 

 

The learning process of an MLP taking place during the training is a supervised 

process in which the target output is given for each input pattern. The goal of 

the training is to minimize the error by adjustting the weights. The error is the 

difference between the output generated by the network and the target output. 

MLP adopt back-propagation algorithm in which the delta rule is most often 

used to adjust the weights. Two repeated phases are involved in the application 

of this delta rule (Figure 3. 2).  

 

 

Figure 3.2 A simple network training example 
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During forward propagation phase of the NN, the input layer transmits input 

data (e.g. x1, x2) to the hidden neurons (H). The input data is weighted by the 

corresponding input-hidden weights (e.g. a1, a2) which initially are specified 

randomly. The effective input to a receiving neuron in the hidden layer is a 

weighted sum of the all inputs (∑xiai). The hidden neurons then process this 

summed input value by processing it through an activation function (such as 

logistic, hyperbolic-tangent, Gaussian and sine function).  

 

After the activations are calculated, the results are weighted by hidden-output 

weighs (bi) and then sent to output neurons which sum the weighted inputs 

(∑biyi) and pass them through activation function (f). The outputs of these 

neurons produce the network outputs (z). At this point, the errors are calculated 

(t-z), and then the second phase starts during which the errors are passed 

backwards through all hidden and input neurons. The adjustment of weights is 

in a gradient-descent fashion and can be performed after each presentation of 

an input-output data pattern (example by example learning), or after 

presentation of the entire or some portion of input-output data (batch learning). 

One pass of batch learning is called one epoch. Weight adjustment often is 

preferred to take place after every epoch (batch learning) because it generally 

provides stable solutions. In order to do this, the total squared sum of the error 

over these input-output pairs is calculated after each epoch. The average total 

squared sum of the error is called mean square error and can be calculated by  
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where n is the number of input-output pairs, t is the target output and z is the 

network output. The fraction ½ is arbitrary and used for mathematical 

convenience. This completes the forward propagation phase and error 

calculated is used to adjust weights in the back propagation phase. 

 

The following equations defines the new weights ( 1+mw ) of a connection after 

mth epoch 

 

             mmm www ∆+=+1             [3.2] 

 

where Wm is the older value of the same weight at mth epoch, Wm is the new 

increment of the weight change after epoch m and calculated as 

 

               mm dw ε−=∆
              [3.3] 

 

where ε is learning rate, dm is total gradient for mth epoch and can be presented 

as  
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where n is the number of input-output pair, m is epoch number and E is mean 

square error. ∂E/∂Wm is the gradient of error with respect to weight in the mth 

epoch. 

 

The process is repeated for weights in both layers and weights are adjusted. The 

training is finished when there is no error or it is acceptably small and the 

corresponding weights are the final weights in which all or maximum possible 

input-output data are correctly classified. If the model is well trained, it will be 

able to classify new input patterns. There are several improved variants of the 

delta rule learning algorithm, and these include adaptive learning rate, 

Newton’s method and Lavenberg Marquardt method (Samarasinghe, 2006). 

 

3.3 Self-organizing Feature Map Neural Networks 

Self Organizing Feature Map (SOM or SOFM) involves a type of unsupervised 

learning in which the target outputs are not involved. An SOM is trained by 

showing examples of patterns (corresponding to input variables) that are to be 

clustered, and the network gradually learns to cluster these patterns into groups. 

The SOFM usually has two layers of neurons: an input layer and an output 

layer.  
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Figure 3.3 Configuration of a two dimensional SOM network 

Figure 3.3 shows the structure of a two dimensional SOM network in which 

each output neuron is linked to the input neurons by corresponding weights. 

 

A learning process of SOM is a type of competitive learning. Network weights 

are initially set to random values. The competition starts when the net input 

(weighted sum of inputs) is calculated by all the neurons in the network for a 

randomly presented input vector. Then each output neuron compares its net 

input or activation with each other and competes to be the winner. The neuron 

that has the highest activation is then defined as the winner. This competition 

can be implemented by using the concept of distance between an input and a 

weight vectors. Therefore, a winner can also be expressed as a neuron that has 

the smallest distance to input vector. The distance between an input and a 

weight vector (d j) can be calculated by  
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where X is the input vector, Wj is weight vector associated with the jth output 

neuron. The xi and wij are the ith component of input vector and the jth weight 

vector corresponding to input variable i. 

 

The objective of the SOM learning is to adjust the weight vectors so that they, 

in repeated exposure to input vectors, respond appropriately reflecting the 

natural clustering in the training data. During the learning process, SOM not 

only adjusts the weight of the winner neuron but also the weights of neurons in 

a neighborhood of the winner neuron. SOM uses neighbor size and neighbor 

strength function to determine how much the neighbor neurons should adjust 

their weights. Neurons closer to the winner adjust weights more than those that 

are far from it. During the training process, the neighbor size and strength are 

decreased gradually until only the winner remains towards the end of training. 

This process can be expressed as  

 

       ( ) ( ) ( ) [ ])1()(),(1 −−+−= twtXtdNSttwtw jjj β     [3.6] 

 

where Wj(t) is the weight update after t iterations, Wj(t-1) is the update after the 

previous iteration, β(t) is the learning rate which also gradually decreases with 

iterations, and NS(d,t) is the neighbor strength function, the X(t) is the input 

vector presented at the tth iteration.  
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3.4 Use of ANN for Mastitis Diagnosis 

In One study (Nielen et al, 1994), the ability of ANN to diagnose mastitis was 

explored. They used an ANN with the back-propagation technique and EC as 

the only input for training ANN. The network was trained with 17 healthy and 

13 clinical mastitic quarters, all healthy and 12 of 13 mastitic quarters were 

classified correctly after training. They concluded that ANN was able to 

discriminate between normal and infected quarters without any correction for 

cow level. They also suggested that “further development should include the 

use of different input parameters for building more robust models.”  

 

In their later study carried out in 1995, they compared three analysis techniques 

for on-line detection of mastitis. These techniques were principal component 

analysis (PCA), linear logistic regression (LRM) and multi-layer perceptron 

(MLP). The variables employed in the study were improved from original data 

and included milk production, milk temperature, and electrical conductivity. 

The study showed that the ANN with three-layer back-propagation had a 

slightly higher sensitivity and specificity than other techniques did.  

 

In research carried out by Yang et al. (1999), a number of variables were used 

for detection of mastitis including: SCC, lactation number, milk yield, days in 

milking, mean SCC for herd, herd size, season of calving, milk components. 

Three dataset were created based on the different ratio of clinical to healthy 
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records (1:1, 1:10 and 1:300).  They used a 2*2 contingency table to assess the 

sensitivity and specificity of the model. The results of study indicated that 

network trained with a higher proportion of mastitic records (1:1 ratio) 

provided more superior recognition than those with a lower proportion of 

mastitic cases. They also found that higher proportion of healthy records leaded 

to more specificity. The network achieved 80% accuracy in distinguishing 

between clinical and healthy cows.  

 

Nielen et al. (1995a) developed a back-propagation neural network for 

prediction of sub-clinical mastitis from on-line milking data. The variables used 

as inputs for training NN were EC per quarter, milk production per cow, parity 

groups (parity 1 and parity >1), and days in milking (DIM). Healthy periods 

were defined when a cow with four consecutive SCC measurements were < 200 

× 10³cells/ml. The periods for the sub-clinical mastitis were defined as two 

levels. One was severe sub-clinical mastitis (SCC > 1000 × 10³cells/ml) and 

another was moderate sub-clinical mastitis (SCC between 500 and 1000 × 103 

cells/ml). The neural network model achieved a sensitivity of 67% and 

specificity of 78%. They pointed out that the definition of the sub-clinical 

mastitis would have some influence on the sensitivity of model. As a result, the 

model could only be used for a herd with a fairly high incidence of sub-clinical 

mastitis. 
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In a study conducted by López-Benavides et al. (2003), a Self Organizing 

Feature Map (SOM) was developed to determine the health status of the cows 

in terms of the state of progression of mastitis. The variables used in the study 

were EC, protein percentage (PP), SCC, fat percentage (FP) and 

microbiological profile. They preprocessed original dataset and created new 

indicators for the model: Conductivity index (CI) and composite milk index 

(CMI). CI was derived from: CI = 2 + [(EC/100) – IQR]. IQR is the ratio of the 

EC of a quarter to sum total EC over all quarters. CMI was the sum of all the 

other variables. These two variables were used as input for the SOM and four 

health categories (healthy, moderately ill, ill, and severely ill) were defined. 

They suggested that CMI can be used as an indicator of mastitis status as it 

integrates several milk traits into one single measure.  They concluded that the 

SOM model effectively clustered the cows into appropriate health categories.  
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Chapter 4 

 

4.1 Methodology 

This chapter provides the methods used to achieve the research objectives. It 

consists of two stages: data analysis and model development. Data analysis is 

an initial and important step in modeling. A well processed data will greatly 

enhance learning ability of ANN. In this study, scatter plots and correlation 

coefficients were employed to explore relationships and trends. Principle 

component analysis was used to account for multi-colinearity among variables. 

In the modeling stage, two kinds of ANN, MLP and SOM, were trained to 

detect the presence or absence of clinical mastitis. These two stages are 

described in detail next.  

 

4.2 Data Analysis 

4.2.1 Data and Variables 

The data for this research study were supplied by Dairy NZ. It included two 

data files: treatment data file and milking data file. The treatment data included 

cowID, time of treatment, infected quarter, and SCC of all calls twice weekly. 

All this information was helpful to recognize mastitis cases in the milking data. 

The milking data file, which had been improved by another scientist in the 

Dairy NZ research team, had measurements taken by robots two or three times 

a day for each quarter of each cow during each milking. It contained 48,546 
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records (samples) representing 194 cows from end of July 2006 to early April 

2007. The variables in this data file were Running Means of Normalized 

Quarter-yield Fraction (nyfRM) for each quarter; Running Means of 

Normalized Electrical Conductivity (necRM) for each quarter; Fractional 

Deviations from the smallest necRM value (necFD), cowID and Time of 

Milking. The explanations of each variable are presented below:   

Running means of normalized quarter-yield fractions (nyfRM). This 

variable was created based on quarter yield and involved two steps of 

calculation: calculation of quarter-yield fraction (QYF) and calculation of 

running mean of QYF. The QYF is the ratio of milk yield of a quarter in a 

milking to the total milk yield from all four quarters in that milking. In the view 

of biology, it was calculated to account for the effect of biological differences 

on milk yield between each quarter of each cow. Running means of QYF was 

based on correction of QYF and it is illustrated below: 
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where '

t
χ  is the running mean of QYF at time t, tχ  is the measured QYF at 

time t, 1−tχ  is the measured QYF at time 1−t  and a is a coefficient that 

represents ‘running mean length’.  
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The running mean of QYF was calculated at two levels:  

� Herd level. Value of 50 was assigned to a  for this level. Thus, the herd 

running mean of QYF of the left-back quarter at milking t, for instance, 

approximates the average of the all left-back quarter QYF values through 

milking (t-50) to milking t. Since this contains the last 50 milkings, it 

covers the 50 cows that were consecutively milked prior to t 

� Quarter level. This was calculated for individual quarters over their own 

history of milking. In this research, a  value of 5 was adopted. 

 

The Running Means of Normalized Quarter-yield Fraction was then calculated 

for each quarter of each cow at each milking by dividing the quarter running 

mean of QYF by its corresponding herd running mean of QYF at the milking. 

The reason for taking this particular normalization is that the herd 

normalization is able to provide some correction for machine problems which 

occur from time to time.   

 

Running Means of Normalized Electrical Conductivity (necRM). This 

variable was calculated from electrical conductivity using the same procedure 

as that for the nyfRM. The only difference was, instead of QYF in Eq.4.1, x 

refers to the running mean of highest electrical conductivity of a quarter in a 

milking.  
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The fractional deviations from the smallest necRM value (necFD). This 

variable was defined as the relative deviation of necRM within quarters for 

each cow at each milking and was introduced to take in to account ratio of the 

three highest necRM values to the lowest one. It was calculated as follows: 

 

              
min

min

necRM

necRMnecRM
necFD i

i

−
=                     [4.2] 

where inecFD is necFD of any of the four quarters of a cow, inecRM is 

normalized EC running mean ( necRM ) of the same quarter, and minnecRM  is 

the smallest value of necRM  between four quarters. Reasoning behind the 

necFDi is as follows: Since not all four quarters are infected at a given time, it 

can be expected that the necRMmin reflects a healthy state.  Therefore, if a 

partiular quarter i becomes infected, its necRMi will be very high, thereby 

yielding a high necFDi compared to a healthy quarter whose fractional 

deviation according to Eq. 4.2 will be near zero.  

 

4.2.2 Definitions of Mastitis and Healthy Quarters 

The health state was defined on the basis of necFD, nyfRM and information on 

treatment data. According to the treatment data, 163 quarters of 43 cows in the 

milking data have received treatment and these quarters were defined as 

mastitic. In addition, it is very important to consider the health state before and 

after the treatment took place because the ability of early detection strongly 

depend on the length of the infection period around the date established for a 
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case of mastitic cow. There was no information about this period recorded in 

the treatment data. One literature (Mele et al, 2001) chose 7 days before and 7 

days after for clinical and 10 days after and 10 days before for sub-clinical 

mastitis. De Mol et al (2001) took 10 days before and 7 days after for clinical 

mastitis. However, these were not the case in this study, in which the 

combination of two thresholds with respect to higher EC and reduced milk 

yield were used. John Bramley et al (1992) found that during the infection 

period, the reduction in milk yield at the clinical quarter was 15.3% ± 2.5%. 

The threshold of 12.8% was used in the present study as it ensured that most of 

the clinical quarters were recognized. The EC threshold was defined as the 

value of necRM that was over 15% higher than the average of the two quarters 

with the lowest necRM value. Therefore, all quarter milking samples, before or 

after the date treatment took place, was defined as mastitis if it had 12.8% drops 

in milk yield and 15% higher than average of the two lowest quarters in EC 

value. As a result, the infected period around the date treatment was performed 

varied from quarter to quarter. It was found by visually examining that the 

longest time interval was 19 days before an infected quarter was recorded in the 

treatment data and the shortest was 3 days. The quarters that met the two 

thresholds values but not treated, and therefore, not recorded in treatment data, 

were not adopted in this study.  

 

The healthy quarter milking was defined as follows: the quarter never showed 
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on the treatment data, which means it had never been recorded as mastitic, and 

the weekly SCC value was always below 150,000cells/ml as this value was 

recommended by Dairy NZ as a proper threshold for predicting infected and 

non-infected quarters. Depending on mastitis definition, 895 clinical quarters 

and 3235 healthy quarters were found in the milking data. Therefore, a new 

data set was generated for the analysis in which there were a total of 4130 

quarters and the ratios of healthy to sick samples approximated 4.6:1. 

 

4.2.3 Correlation Scatter Plots 

Scatter plots were created to get a better understanding of the data with respect 

to spread, trends and correlations among variables. Figure 4.1 shows plots of all 

input variables for relationship analysis. The off-diagonal scatter plots show 

how individual variables related to one another. Points lying on a line indicate a 

linear relationship; a dispersive set of points denotes a nonlinear relationship. It 

can be observed that necRM and necFD have a strong positive correlation, 

while nfRM has a weak correlation with both necRM and necFD. It also can be 

seen from the plots, such as the one: nfRM against necRM, that infected 

patterns (red points denoted by bacteriological state BS=1) generally have 

higher necRM value than non-infected patterns (black points denoting BS=0), 

which highlights the fact that a quarter with mastitis has higher electric 

conductivity than those are healthy. Furthermore, the figure reveals that 

infected and non-infected patterns partially overlapped. Another interesting 
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features is that although there are many healthy quarters (4.6:1 healthy to sick 

quarter ratio), the region of healthy data denoted by back in the plots are much 

more compact than that for sick data. This was also observed by Wang and 

Samarasinghe (2005). This consistent observation indicates that a stable region 

marked by healthy values exists and an infection makes these vales to change 

drastically beyond the healthy region.  
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Figure 4.1 Correlation scatter plots of input variables. nfRM = Running Means of 

Normalized Quarter-yield Fraction; necRM = Running Means of Normalized Electrical 

Conductivity. necFD = The fractional deviations from the smallest necRM value. BS indicates 

mastitis State where 0 denotes healthy and 1 denotes sick. 
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4.2.4 Correlation between Variables  

To measure the strength of relationship between variables, the coefficient of 

correlation was adopted. It indicates the linear relationship between two 

variables. When r  gets closer to 1± , the linear relationship between the two 

variables is stronger. When r  is near 0, little or no linear relationship exists 

and it was calculated using equation below. 
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where r  is the linear correlation coefficient, i1χ is the i th value of the first 

variable, 1χ  is the mean of first variable, i2χ  is the i th value of the second 

variable, 2χ  is the mean of second variable, and N  is the number of 

observations.  

 

A correlation matrix was created to depict correlation between all variables and 

is presented in Table 4.1. It is symmetric with the diagonal values representing 

the correlation of a variable to itself. Off-diagonal values are the correlations 

between pairs of variables denoted by the labels indicated in the first row and 

column. Table 4.1 reveals that necRM and necFD are strongly and positively 

correlated at 0.869, whereas nyfRM has negative correlation with both necRM 

and necFD (-0.369 and -0.371, respectively). Furthermore, the necRM  
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Table 4.1 Correlation Matrix for the Input and Output Variables 

 nyfRM necRM necFD Mastitis Status 

nyfRM 1 -0.369 -0.371 -0.438 

necRM -0.369 1 0.869 0.580 

necFD -0.371 0.869 1 0.531 

Mastitis Status -0.438 0.580 0.531 1 

 

and necFD have a positive relationship with mastitis status (r = 0.58, r = 0.531), 

and nyfRM has a negative relationship with mastitis status (r = -0.438).  

 

Based on data analysis it can be found that necRM and necFD are strongly 

correlated. This strong relationship should be carefully considered when 

developing ANN models because correlated variables provide redundant input 

dimensions to the network causing the computation more complicated. 

Furthermore, correlated variables can cause the problem of collinearity that 

lead to training problems such as overfitting, high prediction variance and ill 

conditioning. To deal with these problems, one possible way is to employ only 

one variable as a representative from the highly correlated variables. In this 

study, therefore, two combined data sets with different input variables were 

generated and used to train the models. The details are presented in the section 

4.3.1. Another approach often used to solve problem of collinearity is Principle 

Component Analysis (PCA), which is discussed in the next section.  
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4.2.5 Principle Component Analysis (PCA) 

To remove collinearity, PCA was carried out for predictive variables in 

classification of healthy and infected patterns. The main advantage of PCA is to 

reduce the number of dimensions, without much loss of information. This is 

achieved by transforming original variables into a new set of uncorrelated 

variables, which are ordered in terms of significance. Therefore, the first few 

principle components (PC) capture most of the variation present in all of the 

original variables.  

Mathematically, the PCA can be represented by  

                  COV x = y x                  [4.4] 

where COV is a covariance matrix of standardized original variables; y is 

scalar multiple of vector x; if the above equation holds true, then x is said to be 

the eigenvector of COV, representing PC and y is said to be the eigenvalue of 

COV, representing variance of the PC. By ordering Eigenvalue in descending 

manner, the first PC represented by the first eigenvector account for the largest 

amount of variation in the original data, each subsequent PC captures the 

largest amount of remaining variance, and so on.  

 

The eigenvectors, eigenvalues, proportion of variance explained by each PC, 

cumulative percentages of variance were analyzed and the results are 

illustrated in Table 4.2 and Table 4.3. It can be observed from Table 4.2 that 

PC1 has the largest eigenvalue and account for 70% of total variance in the  
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Table 4.2 Results of Eigenvalue, Proportion and Cumulative 

Percentages of Variance 

 PC1 PC2 PC3 

Eigenvalue 2.1147 0.7542 0.1311 

Proportion 0.705 0.251 0.044 

Cumulative 0.705 0.956 1.000 

  

Table 4.3 Eigenvector Matrix and Their Loadings Extracted from the 

COV Matrix of the Standardized Variables 

Variable PC1 PC2 PC3 

nyfRM -0.425 0.905 0.001 

necRM 0.640 0.301 -0.707 

necFD 0.640 0.301 0.717 

 

data. The PC2 account for approximately 25% total variance. The total 

variance accounted for by the first two components is 96%.  

 

According to Table 4.3, which is eigenvector matrix extracted from the COV 

matrix of the standardized variables, the PC1 strongly features both necRM 

and necFD (0.640 and 0.640 respectively) which suggests that these two 

variables are correlated as was found earlier. The PC2 strongly features nyfRM, 

indicating that it correlates much less with the other variables. The PC3 again 
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strongly features necRM and necFD and captures the remainder (4.4%) 

variance.  

 

Because the purpose of PCA performed in the current study was for addressing 

the problem of collinearity, not for dimension reduction, all three PC were used. 

To obtain the transformed variables, the original mean-standardized variables 

are transposed (i.e. the data items were in each column, with each row holding 

a separate dimension) and then multiplied on the right by the transposed 

eigenvector matrix. This new PCA-transformed variables were uncorrelated 

and therefore not affected by the problem of collinearity. 

 

4.3 Models Development 

4.3.1 Development of Multilayer Perceptrons (MLP) 

In order to perform the analysis, the feature of health status in original dataset 

was expanded into two new features (variables): state_sick and state_healthy, 

representing health states used as target output. For the infected quarters 

state_sick and state_healthy was set to 1 and 0 respectively. For the healthy 

quarters state_sick was 0 and state_healthy was 1. Four input-output pattern 

vectors extracted from the dataset with state_sick and state_healthy are 

displayed as an example of the data in Table 4.4  

 

The reason why we had this feature expanded in this way rather than simply set  
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Table 4.4 A Sample of Four Records from the Dataset for Health States and 

Related variables (LB&RF = sick quarters; LF&RB = healthy quarters). 

Quarter nfRM necRM necFD state_sick* state_healthy* 

LB 0.716559857 1.200276676 0.261971563 1 0 

LF 1.287413784 0.88574183 0 0 1 

RB 0.629766045 0.899254695 0.008375033 0 1 

RF 1.390699242 1.001854109 0.045999956 1 0 

*state_sick & state_healthy: Two new variables used as target output.  

 

infected quarters to 1 and healthy quarters to 0 is because neural network is 

made primarily for ordered sequences of data for each feature. If we assign sick 

quarters with 1 and healthy quarters with 0, for example, the in-between values 

(like 0.1-0.9) have no meaning (neither representing sick cow nor health cows) 

and it will just make things difficult for the neural network to make sense of it. 

Therefore, feature expansion was applied in this case as there were two separate 

classes: health and mastitis, that has no an implicit order. 

 

As it was found by data analysis in section 4.2.4 that the problem of 

collinearity existed between variables, two data sets were generated according 

to combinations of input variables (see dataset 1 and 2 in Table 4.5). The 

original data set (dataset 3) was used as well so that it could be explored that 

whether or not the multi- collinearity had any effect on model performance.  
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Table 4.5 Datasets with Different Input Variables for Supervised Neural 

Networks 

MLP Model Dataset Input Variables Output variables 

1 1 nyfRM; necRM state_sick;0state_healthy 

2 2 nyfRM; necFD state_sick; state_healthy 

3 3 nyfRM; necRM; necFD  state_sick; state_healthy 

4 4 PC1; PC2; PC3 state_sick; state_healthy 

 

In addition, a new dataset with three PC variables discussed in Section 4.2.5 

was generated as well so that the performance of non-PCA and PCA-based 

models could be evaluated in terms of prediction accuracy. The best model was 

retained. 

 

For each dataset in Table 4.5, the data was divided into training and validation 

subsets. The training set was used for training the neural network to develop the 

correlation between input and output variables and it contained 70% of patterns 

from both side of healthy and sick quarters. The rest of the patterns (30%) were 

assigned to validation set that was used to test the generalization of the system. 

i.e. how well it worked on data it has not been trained on.  

 

All modeling was performed on the SYNAPSE software (Peltarion Synapse 

Version 1.25, 2006). One of the advantages of Synapse is that, by using a 
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Genetic Algorithm Optimizer, it automatically searches for optimal parameters 

(e.g. numbers of hidden neurons in the hidden layer, learning rate and 

momentum) that need to be estimated.  Once the optimal parameters have 

been found, the optimum network is trained in the normal way for determining 

the (weights) coefficients of the network. .  

 

Three-layer MLP with back-propagation was used for developing predication 

models. As mentioned in Chapter 2, the MLP processes information in a 

forward manner through the network while the prediction error is propagated 

backwards through the network. The input and output variables for each model 

were as detailed in Table 4.5. The performance accuracy was evaluated by the 

sensitivity, specificity and overall correct classification rate (CCR). In addition, 

a traditional statistical classifier, Linear Discriminant Analysis (LDA), was 

selected in the current study to contrast traditional statistical classifier with the 

ANN model. The same datasets used to train the ANN models were used for 

LDA. 

 

4.3.2 Development of Self – Organizing Maps (SOM) 

The data used for the development of the SOM models was the data set 3 in 

Table 4.5, but the output variables were not involved as SOM is a kind of 

unsupervised networks. The purpose of developing SOM is to cluster the 

health status into three categories (i.e., health, moderately ill and severely ill). 
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Thus, the network has three outputs. A SOM 15 x 15 with 225 neurons was 

trained and the results of the SOM were evaluated by using three statistical 

techniques: K-means clustering, ANOVA and Least Significant Difference.   
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Chapter 5 

 

5.1 Results and Discussion of SOM 

5.1.1 Results of SOM 

A two dimensional SOM with 225 neurons in the output layer was trained to 

cluster the health status into three categories. The input variables were nyfRM, 

necRM and necFD. Thus there were three neurons in the input layer. The initial 

learning rate was 0.5 and Gaussian function was adopted as neighbour strength 

function. 

 

The health categories clustered by the SOM are shown in top-left panel in the 

Figure 5.1, in which all the data patterns were well clustered into three groups 

representing different health states. The red colour represents severely ill, 

green colour represents moderately ill and blue colour represents healthy. The 

black circles inside the unit cells indicate how many data patterns are close to a 

particular neuron. Larger circle means more data. The rest of the panels are the 

individual input variables. The red colour indicates a higher value, and the blue 

represents a lower value.  

 

Figure 5.1 shows that as the necFD and necRM increase, the health status of a 

quarter deteriorates gradually from healthy to severely ill. It is also revealed 

that with healthy state getting worse, the nyfRM decrease as well. For  
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Figure 5.1 Mapping of 3 Dimensional data onto a two-dimensional 

SOM. The top-left panel shows the health states. Red = Severely Ill; 

Green = moderately Ill; Blue = Healthy. The other three panels 

present the input variables.  

 

example, from the cluster panel and nyfRM panel it can be observed that all 

the infected quarters including moderately ill and severely ill have lower 

values of nyfRM than the healthy quarters. As discussed in the previous section, 

usually, an infected quarter has the higher than normal electrical conductivity 

and produces less milk. The SOM has well detected this trend. 

 

Furthermore, Table 4.1 in Section 4.2.4 revealed that electrical conductivity 

(necFD and necRM) was more strongly correlated with health state than milk 

yield (nyfRM) did indicating that electrical conductivity plays a more leading 
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role in detecting mastitis status. Principal component analysis corroborated this 

evidence and quantified it by demonstrating that the very first PC was almost 

exclusively made of necFD and necRM capturing the largest amount (70%) of 

variation in data. The SOM in Figure 5.1 confirms this evidence by 

highlighting the fact that the 3 health states (first panel) are demarcated 

strongly according to the levels of necFD and necRM (top right and bottom 

right panels). However, the milk yield plays a meaningful role as shown by the 

bottom left panel in Figure 5.1. It shows without ambiguity that the yield drops 

progressively from healthy to marginally ill and drops further in the severely ill 

case. Owing to the high correlation between necFD and necRM, the panels 

representing these two (top and bottom right) show similar patterns of 

variation. 

 

The SOM in Figure 5.1 further shed light on the distribution of cows in the 

spectrum of the three health states of healthy, moderately ill and severely ill. 

As stated previously, the black circles inside the neurons depicts the number of 

cows (i.e. quarters) belonging to the neuron. The larger the circle, the larger 

number of quarters represented by that neuron. On this basis, the cluster panel 

(top left) in Figure 5.1 shows that most of the healthy cows (blue cluster) are 

very healthy and a large proportion of the sick cows (red cluster) are very ill.  

This is because most of the larger black circles in the blue cluster are located 

towards the top right area away from the moderately ill (green) cluster and  
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Figure 5.2 SOM Clustered Health Categories in 3-D Format 

 

most of the larger circles in the red cluster are located in the bottom left area 

away from the moderately ill cluster.   

 

Figure 5.2 also shows the results of the clustering in 3-D format that clearly 

illustrates the structure of the spatially organised data in the SOM network. It 

reveals meaningful cluster structures where healthy quarters (green cluster) all 

have high yield (nyfRM) and severely ill quarters (black cluster) all have very 

high conductivity (necFD and necRM). The moderately ill (red) cluster has 

in-between values for these variables.  
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5.1.2 Evaluation of SOM 

For each cluster the mean values and the standard deviations of the three 

variables were analysed using One Way ANOVA, and Least Significant 

Difference (LSD) was used to test if the mean differences between the health 

categories were statistical significant. Table 5.1 shows the summary of the 

analyses and Table 5.2, which was extracted from SPSS software, illustrates 

the results of the LSD test.  From these, it can be observed that all the health 

categories are statistically significant based on the mean values of the three 

input variables.   

 

In terms of specifics, Table 5.1 presents the results of analysis of the three 

SOM based health clusters using ANOVA. It shows that all three variables are 

 

Table 5.1 Mean and Standard Deviation of the Variables for Each Health 

Categories and the Statistical Significance of the Means between the Categories. 

*H0: Healthy 

*H1: Moderately ill 

*H2: Severely ill   

 Health Category 

Variable H0* H1* H2* 

LSD(p<0.05) 

nyfRM 1.12± 0.27 0.68 ± 0.22 0.46± 0.31 All 

necRM 0.95 ± 0.91 1.03 ± 0.11 1.41 ± 0.19 All 

necFD 0.04 ± 0.05 0.05 ± 0.08 0.43 ± 0.21 All 
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statistically significant for the clusters (p < 0.05).  It also indicates the 

interesting outcome that the yield drops sharply as healthy quarters deteriorates 

into moderately ill and it decreases much less dramatically from moderately ill 

to severely ill. This might indicate that the yield is quite sensitive to infection 

and is affected early on in the disease. The two conductivity related variables, 

in contrast, show a marked increase in the transition between marginally ill and 

severely ill states confirming the known biological evidence that electrical 

conductivity increase happens due to the breaking of blood-milk barrier at later 

stages of an infection. Of these two variables, necFD shows the most marked 

increase. 

 

Table 5.2 Results of LSD Test. (1.00 stands for healthy, 2.00 for moderately ill 

and 3.00 for severely ill) 
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LSD test results presented in Table 5.2, where all possible mean differences are 

tested for significance, indicate that all mean differences are significant at the 

0.05 level.  None of the confidence intervals for the mean difference contains 

zero further highlighting that the two corresponding means belong to two 

different populations.   

  

To assess if the clustering results were acceptable, k-means clustering was 

performed. The results obtained from the k-means clustering were compared to 

the results found by SOM. Table 5.3 (extracted from SPSS) shows the 

correlations between clusters obtained from SOM and K-means, respectively. 

It can be observed that the correlation between the clustering results from these 

two methods is 0.82 (P<0.01) which indicates that the results from the SOM 

are quite reasonable. Figure 5.3 shows the results of the K-means clustering in 

3-D format. It can be seen clearly that it has a structure similar to that obtained 

from the result of SOM clustering.  Considering the two methods however, 

k-means can be considered as a simpler linear version of SOM but without the 

neighbourhood preserving quality of SOM.  These two aspects - ability to 

handle nonlinear cluster boundaries and preserving neighbourhood properties 

of the clusters give SOM extra advantage over k-means.   

 

Main advantage of SOM over k-means is that in SOM, owing to the 

neighbourhood feature that it uses during training, input patterns that are  
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Table 5.3 Correlations between Clusters Obtained from SOM and K-means  

Correlations

1 .819**

.000

4139 4139

.819** 1

.000

4139 4139

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

SOM_Clusters

K_meansCluster

SOM_

Clusters

K_

meansCluster

Correlation is significant at the 0.01 level (2-tailed).**. 

 

 

 

Figure 5.3 K-means Clustered Health Categories in 3-D Format 

 

similar are spatially organized in close proximity to each other in such a way 

that cluster structures reveal spatial organization of the input patterns correctly. 

Furthermore, in SOM, clusters are found by clustering neurons of the trained 

map, i.e. after training. Thus, clusters can be more reliable. This is because 

clustering happens in 2 stages: in the first stage, input patterns are sorted 
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properly in the multi-dimensional space preserving the neighbourhood 

character and in the second stage, the clusters are formed on these spatially 

organized input patterns. The clustering of the map neurons were done in the 

Synapse by Ward clustering (Ward, 1963), a powerful statistical clustering 

method.      

 

5.2 Results and Discussion of MLPs 

5.2.1 Classifying Mastitis with MLP 

Each MLP model was trained with the input and output variables depicted in 

Table 4.5. The training sessions were carried until the highest sensitivity on the 

validation dataset was achieved. For the hidden layer, the Tanh Sigmoid 

function was adopted and learning rate and number of neurons were 

automatically searched by using Genetic Optimizer function. Details of results 

on the optimal parameters in hidden layer for each model, validation mean 

square error (MES) and best results from each model in terms of sensitivity and 

specificity are given in Appendix 1. The best results from each model in 

predicting sick quarters in the validation datasets is illustrated in Fig.5.4, 5.5, 

5.6, and 5.7. There are four lines in the plot: model output, target output 

(desired) and the higher and lower bounds of the confidence interval. The 

confidence interval was written on the top of the plot. It can be observed that 

the model that trained with PC as variables has a smaller confidence interval 

compared with others, which indicates that its prediction accuracy is slightly 
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higher than that of other models trained with a combination or all of the original 

variables.  

 

 

Figure 5.4 Prediction Performance of Model 1 (inputs: nyfRM, necRM). 

 

 

 

 

Figure 5.5 Prediction Performance of Model 2 (inputs: nyfRM and necFD). 
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Figure 5.6 Prediction Performance of Model 3 (inputs: nyfRM, necRM, and 

necDV). 

 

 

 

 

Figure 5.7 Prediction Performance of Model 4 (PCA-based: PC1, PC2, PC3). 
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To evaluate the predictive ability of each model, the sensitivity, specificity and 

correct classification rate (CCR) was employed as measurements. Table 5.4, 

which is summary of Appendix1, shows the optimal hidden neurons in hidden 

layer, the mean square error when best performance achieved, the specificity, 

sensitivity and overall correct classification rate on validation dataset from the 

four best models. The first observation that can be made is that PCA-based 

model has a better performance than non-PCA-based models. It classified the 

validation data set with an overall correct classification of 90.74%.  

Especially, the sensitivity of the model for correctly detecting infected cases is 

86.9%, which is much higher than other non-PCA-based models. Although the 

specificity of model 1 is slightly higher than that of the PCA-based model, its 

overall CCR and sensitivity are worse than the PCA-based model. As it is of 

 

 

Table 5.4 Predictive Abilities of the Four Best Models 

Models Input Variables Neurons in 

Hidden Layer 

Mean 

Square 

Error 

Specificity 

(%) 

Sensitivity 

(%) 

(CCR)%* 

1 nyfRM, necRM 12 0.170 92.00 81.23 89.46 

2 nyfRM, necFD 7 0.171 90.00 83.15 89.77 

3 nyfRM, necRM, necFD 10 0.173 91.31 78.93 87.21 

4 PC1, PC2, PC3 6 0.169 91.36 86.90 90.74 

* Overall Correct Classification Rate 
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great importance to correctly find cows with mastitis, the PCA-based model is 

more desirable than model 1. For non-PCA-based models, model 1 and model 

2 has a similar prediction performance in overall CCR (89%), however, the 

specificity and sensitivity provided from these two models are different from 

each other. For model 1, the specificity and sensitivity are 92% and 81.23%, 

and for model 2 these are 90% and 83.15%, respectively. Model 2 with 

electrical conductivity deviation (necFD) seems to be slightly superior.  The 

model 3, in which the overall CCR is 87.21%, is inferior to other models, 

especially; its sensitivity is much lower than others.  Another observation is 

that the specificity is higher than sensitivity in the all models. This could be 

due to the different proportion of infected to non-infected cases in the training 

data. Because there was no other proportion investigated in the current study a 

firm conclusion about this finding can not be made. However, other researchers 

(Nielen et al, 1994; Yang et al. 1999) found out that higher proportion of 

healthy cases do increase the specificity of the predictions.  

 

It also can be observed from Table 5.4 that the PCA-based model not only 

provided the best performance (CCR=90.74%) but also its architecture is less 

complex (i.e., less neuron numbers in hidden layer). It has the smallest 

validation mean square error (MSE) and it is reached with the smallest number 

of hidden neurons compared to the other 3 models.  Therefore, this model has 

the least complexity, and therefore, the simplest structure. In the case of 
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non-PCA-based neural networks, it is seen that the model 1 with twelve hidden 

neurons is optimal and that the model 2 with the seven neurons in the hidden 

layer achieves the best predictive performance. For the model 3, 10 neurons in 

the hidden layer is optimal. 

 

As it was found in data analysis in the previous section, all input variables 

were related to some extent, in particular, necRM and necFD were strongly 

correlated to each other and can cause the problem of collinearity. This is 

clearly highlighted by the inferior results of model 3 as shown in Table 5.4.  

The improvement achieved by PCA-based model proves that collinearity 

indeed exists within the input data and PCA is a suitable option to deal with 

this issue as the predictive performance can be significantly improved by 

PCA-based model.  

 

In mastitis research, definitions of mastitis are usually defined based on SCC. 

However, in the current study mastitis was defined on the basis of two 

thresholds relating to higher EC and lower quarter yield. Owing to the 

relatively low threshold defined for quarter yield, it is possible that more ill 

quarters are involved, thus, the proportion of ill cases was high leading to a 

relatively low error rate i.e. the model gains more relevant knowledge about 

mastitis and in turn could more accurately detect infected quarters. In addition, 

on visual exploration of misclassified infected quarters in relation to whole 

data, it was found that the misclassified ones are those that are closer to or  
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Figure 5.8 Relation of misclassified infected cases to healthy and ill cases 

for the validation data set. Black dots represent healthy cases. Red 

squares represent infected cases. Green diamond squares represent 

clinical cases that are wrongly detected as healthy cases. 

 

within the healthy region. Figure 5.8, which is scatter plot of necRM and  

nyfRM from validation dataset of model 3, is presented here as an example to 

illustrate the relations of misclassified infected cases to healthy and ill cases. In 

Figure 5.8, the misclassified infected cases that are superimposed on the data 

are represented by green diamond squares, the black dots represent healthy 

cases, and red squares represent infected cases. It clearly shows that the most 

misclassified infected cases are those that have neither high conductivity 

(necRM) nor low milk yield (nyfRM). As discussed early, the EC values vary 

from cow to cow and not all clinical cows have very high EC or even have a 

reduced milk production on the ill quarter. For such cases, it is difficult or 

would be impossible for a model to detect them correctly.  
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5.2.2 Comparing MLP and LDA 

LDA was adopted to contrast the traditional statistical method with ANN in the 

current study. To compare these two methods, the same datasets used to train 

MLPs were employed in LDA. Details of the result are given appendix 2 and 

Table 5.5 shows the classification results in terms of the specificity and 

sensitivity on the validation datasets from LDA models for the four datasets in 

Table 4.5 

 

It can be observed that the PCA-based linear model, which has 88.7% overall 

CCR, is the best one in classifying the infected and non-infected quarters. The 

sensitivity (84.2%) is dramatically higher than other non-PCA- based models. 

 

 

Table 5.5 Predictive Performance of LDA  

Linear 

Models 

Variables Specificity 

(%) 

Sensitivity 

(%) 

Overall Correct 

Classification 

Rate (CCR)% 

1 nyfRM, necRM 89.9 77.2 87.1 

2 nyfRM, necFD 89.6 79.6 87.5 

3 nyfRM, necRM, necFD 89.5 76.3 86.7 

4 PC1, PC2, PC3 89.9 84.2 88.7 
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Among the non-PCA-based linear models, the model 2 has higher predictive 

performance in correctly classifying mastitis cases (79.6%) and its overall 

CCR (87.5%) is the highest as well compared to other non-PCA-based models. 

However, the specificity of model 2 is slightly lower than that of model 1, of 

which the specificity is 89.9%. The model 3, which was trained with nyfRM, 

necRM and necFD, has the lowest overall CCR, specificity and sensitivities 

(86.7%, 76.3% and 89.5%, respectively).  

 

By comparing Table 5.4 and Table 5.5, several observations can be made: 

firstly, the fact that both PCA-based models from two methods have the best 

predictive performances, and that both models using nyfRM, necRM and 

necFD as input variables have the worse predictive performance, again 

emphasizing the issue of multi-collinearity within data. When inputs are highly 

correlated, there can be over compensation due to redundancy. This can lead to 

model overfitting, low predictive capability, less robustness and high variance 

in the predictions (Samarasinghe, 2006). As for robustness, when variable are 

correlated, the redundancy means that there can be more than one  model 

configuration that suit the data due to overcompensation of one variable over 

the other. This leads to non-unique model parameters and less robust or 

unstable outputs.  However, when the variables are independent in the model, 

it ensures uniqueness of the model configuration thereby ensuring the 

uniqueness of model parameters and enhancing stability and robustness of the 
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model outcomes.  

 

Another observation from Table 5.4 and 5.5 is that the ANN methods perform 

better compared with the LDA for all the datasets. For example, in the dataset 

with PC as input variables, 86.9% infected cows were correctly classified by 

PCA-based ANN model compared with 84.2 % by PCA-based linear model. In 

the dataset with three variables, 78.93% infected cows were correctly classified 

by ANN model compared with 76.3% of correctly classified by LDA. The 

ANN and the LDA have similarities and dissimilarities in classification. Both 

are methods that minimize the error between the actual and desired outputs. 

However, for LDA, certain assumptions about the input parameters are usually 

required and it is based on linear combination of inputs. In contrast, ANN do 

not make assumptions about the data, incorporate nonlinear interactions and 

have the capability to learn from the input data to produce an optimal output 

within a changing data environment. In addition, LDA cannot draw multiple 

partitions. Only one partition in a sample is possible. Also, it cannot draw a 

nonlinear partition. In contrast, a neural network is capable of drawing any 

number and types of partitions as long as a sufficient number of hidden 

neurons are provided (Lippmann, 1987).  

 

Due to the difference in mastitis definition and data properties, it is 

complicated to compare the model performance with other studies. However, 
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by comparing models performed in this particular study it has been clearly 

shown that the performance of the neural network can be improved by using 

three principal components as neural network inputs. PCA-based model is 

superior to other models in many respects such as less complexity, higher 

predictive accuracy, and also in terms of addressing the problem of collinearity.  
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Chapter 6 

 

6.1 Conclusions 

In this study, the self organizing map (SOM) and multilayer perceptron (MLP) 

were developed for mastitis detection using the preprocessed data relating to 

the electrical conductivity and milk yield. Also, the LDAs were performed on 

each dataset developed for ANN models to compare with the ANN in 

predictive performance. The Principle Components Analysis technique was 

adopted for addressing the problem of multi-colinearity existed in the data. A 

new mastitis definition based on higher EC and lower quarter yield was created 

to distinguish between the infected and non-infected quarters. Based on this 

new definition, the PCA-based MLP model manifested to be superior to other 

non-PCA-based models. The overall correct classification rate (CCR), 

sensitivity and specificity of the model was 90.74 %, 86.90 and 91.36, 

respectively.  

 

The other 2 models, one involving yield and conductivity as inputs and the 

other with yield and fractional deviation of conductivity had lower 

prediction accuracy than the PCA-based model but were still reasonably 

high at 89.36% and 89.47 for overall CCR, respectively.  The last model 

with all 3 input variables had lower performance than the above 3 indicating 

the undesirable influence of multi-correlinearity among variables, in this 
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case, the correlation between conductivity and its fractional deviation. With 

such high accuracy, the models such as the PCA-based model developed 

here can improve the accuracy of prediction of mastitis by robotic milking 

stations.  

 

The results of comparison between the two methods of the ANN and LDA 

indicate that the ANN is superior to LDA for all the datasets. The advantage 

of using ANN over LDA for classifying problems is that ANN can learn to 

improve performance while employing nonlinear capabilities to find 

multiple clusters.   

 

The SOM was developed to classify the health status into three categories: 

healthy, moderately ill and severely ill. These categories were meaningful 

and clear in terms of their regions of spread and the mean of the clusters.  

The clustering results were successfully evaluated and validated by using 

statistical techniques such as K-means clustering, ANOVA and Least 

Significant Difference. Results indicated that yield drop is prominent in the 

early stages and conductivity increase is dominant in the later stages of an 

infection. It can be concluded that the SOM can be employed by a robotic 

milking station as a detection model for mastitis.  

 

Due to the limited number of mastitis indicators, the results of this study 
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may not be optimal. Therefore, in the future research more informative milk 

traits related to mastitis should be added so that the detection model would 

be improved and optimized.   
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Figures show the predictive performance of model 1 (input: nyfRM and necRM) on the 

validation data set and MSE when model achieved the best performance.  (The optimal 

parameters selected by genetic optimizer for the hidden layer are shown in the right 

part of the figure)   
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Figures show the predictive performance of model 2 (input: nyfRM and necFD) on the 

validation data set and MSE when model achieved best performance.  (The optimal 

parameters selected by genetic optimizer for the hidden layer are shown in the right 

part of the figure)   
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Figures show the predictive performance of model 3 (input: nyfRM, necRM and necFD) on 

the validation data set and MSE when model achieved the best performance.  (The optimal 

parameters selected by genetic optimizer for the hidden layer are shown in the right 

part of the figure)   
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Figures show the predictive performance of model 4 (input: PCs) on the validation data set 

and MSE when model achieved the best performance.  (The optimal parameters selected by 

genetic optimizer for the hidden layer are shown in the right part of the figure)   
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Appendix 2 
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Classification Results of LDA for the Dataset1 (nyfRM and necRM) (a, b) 

 

Predicted Group 

Membership Total 

      healthy_states .00* 1.00* .00 

.00 2063 223 2286 Count 

1.00 115 507 622 

.00 90.2 9.8 100.0 

Cases Selected* Original 

% 

1.00 18.5 81.5 100.0 

.00 854 96 950 Count 

1.00 62 210 272 

.00 89.9 10.1 100.0 

Cases Not Selected* Original 

% 

1.00 22.8 77.2 100.0 

a  88.4% of selected original grouped cases correctly classified. 

b  87.1% of unselected original grouped cases correctly classified. 

* Cases selected = Training Dataset 

* Cases Not Selected = Validation Dataset 

* .00 = Healthy 

* .1.00 = Mastitis. 

 

 

 

Classification Results LDA for the Dataset 2 (nyfRM and necFD) (a, b) 

 

Predicted Group 

Membership Total 

      healthy states .00 1.00 .00 

.00 2021 233 2254 Count 

1.00 145 479 624 

.00 89.7 10.3 100.0 

Cases Selected Original 

% 

1.00 23.2 76.8 100.0 

.00 880 102 982 Count 

1.00 55 215 270 

.00 89.6 10.4 100.0 

Cases Not Selected Original 

% 

1.00 20.4 79.6 100.0 

a  86.9% of selected original grouped cases correctly classified. 

b  87.5% of unselected original grouped cases correctly classified. 

* Cases selected = Training Dataset 

* Cases Not Selected = Validation Dataset 

* .00 = Healthy 

* .1.00 = Mastitis. 
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Classification Results of LDA for the Dataset3 (nyfRM, necRM and necFD) (a, b) 

 

Predicted Group 

Membership Total 

      healthy_states .00* 1.00* .00 

.00 2076 214 2290 Count 

1.00 117 520 637 

.00 90.7 9.3 100.0 

Cases Selected* Original 

% 

1.00 18.4 81.6 100.0 

.00 847 99 946 Count 

1.00 61 196 257 

.00 89.5 10.5 100.0 

Cases Not Selected* Original 

% 

1.00 23.7 76.3 100.0 

a  88.7% of selected original grouped cases correctly classified. 

b  86.7% of unselected original grouped cases correctly classified. 

* Cases selected = Training Dataset 

* Cases Not Selected = Validation Dataset 

* .00 = Healthy 

* .1.00 = Mastitis. 

 

 

 

Classification Results of LDA for the Dataset 4 (PC1, PC2 and PC3) (a, b) 

 

Predicted Group 

Membership Total 

      healthy_states .00 1.00 .00 

.00 2050 213 2263 Count 

1.00 132 509 641 

.00 90.6 9.4 100.0 

Cases Selected Original 

% 

1.00 20.6 79.4 100.0 

.00 875 98 973 Count 

1.00 40 213 253 

.00 89.9 10.1 100.0 

Cases Not Selected Original 

% 

1.00 15.8 84.2 100.0 

a  88.1% of selected original grouped cases correctly classified. 

b  88.7% of unselected original grouped cases correctly classified. 

* Cases selected = Training Dataset 

* Cases Not Selected = Validation Dataset 

* .00 = Healthy 

* .1.00 = Mastitis. 

 


