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Abstract

DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and,
more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly
used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller
fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding
region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable,
method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select
the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R
package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker.
Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp
region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen
identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46
landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the
snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene
they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing
with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been
reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel
sequencing without the need for bioinformatic consolidation.
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Introduction

DNA barcoding has been increasingly used for both species

discovery and specimen identification. This approach is based on

amplification and sequencing of DNA regions that are informative

at the species level. For Metazoa, the mitochondrial cytochrome

oxidase subunit 1 (COI) gene is recognised as the standard DNA

barcode and the basis for the Barcode Of Life project [1].

However, other molecular markers such as 12 S, 16 S, 18 S, 28 S,

ITS1, ITS2 and COII, are commonly used in the same way to

serve similar purposes. Therefore, following Valentini et al. [2], we

adopt the term DNA barcoding sensu lato to encompass research

using any of these alternative markers. Ideally, DNA barcoding

studies use fresh or preserved tissue samples as sources of DNA.

However, in many situations this is not possible and degraded

DNA must be used instead. This is the case for diet analyses [3],

ancient DNA studies [4], specimen identification from environ-

mental DNA samples [2], and more generally for any DNA

sample that has not been adequately preserved. The main

difficulty associated with amplifying poorly preserved or degraded

DNA is the disintegration of the DNA molecule into short

fragments [4].

Studies of degraded DNA preferentially target mitochondrial

genes due to their higher number of copies per cell, and therefore

their greater amplification success than single-copy nuclear genes

[5]. Despite this, amplifying degraded DNA remains a challenge

[6]. The length of the most commonly used barcoding marker

(COI) is more than 600 bp. If the DNA molecules are broken

down into fragments that are smaller than this then it will not be

possible to amplify this region since none of these fragments will

contain the binding sites for both primers [4]. However,

information relevant for specimen identification may not be

evenly distributed along the barcoding region, and a shorter target

or ‘mini-barcodes’ can often be sufficient for identification

purposes [7]. No general method currently exists to objectively

compare the performance of all potential ‘mini-barcodes’ and to

select the best one for a given set of taxa. This has led previous
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studies focusing on the standard DNA barcoding region to rely on

non-optimised mini-barcodes with a comprehensive but not

absolute resolution at the species level [8–11].

In diet analyses, pieces of prey tissue isolated from a predator’s

gut often contain enough non-degraded prey DNA for PCR

amplification [12–14]. However, heavily digested prey DNA

diffused in the gut ‘soup’, or remaining in the predator’s faeces is

difficult to isolate and amplify [15], which may lead to some prey

species being overlooked. Similarly, in environmental samples,

well preserved DNA is preferentially amplified by conventional

primers while any degraded DNA is likely to remain undetected.

Another important issue inherent to environmental samples and

diet analyses is the presence of genetic material from several

species in a single mixed sample. Individual sequencing of all

species in a mixed DNA sample can, however, be achieved

through massively parallel sequencing methods, such as 454-

pyrosequencing. Pyrosequencing technology is capable of simul-

taneously detecting many thousands of different sequences in a

mixed sample, without the need for sub-cloning [16].

We propose a new method for selecting short but informative

DNA fragments for specimen identification from degraded DNA

samples, and for sequencing and identifying all the species present

in a mixed DNA sample. Our method is based on a newly

developed R package SPIDER (SPecies IDentity and Evolution in

R) that provides customisable, user-friendly functions for calculat-

ing a diverse range of summary statistics useful for DNA

barcoding, taxonomy and analysis of species-level evolution [17].

We tested our method on earthworm DNA that had been

degraded through digestion by the carnivorous landsnail Powelli-

phanta augusta (Mollusca: Pulmonata: Rhytididae). The 16 S rDNA

region was selected to create an earthworm DNA library because

previous research has highlighted the value of this molecular

marker over COI for earthworm taxonomy at genus and species

levels [18–20]. In addition, this marker is usually composed of

alternating stretches of variable and conserved sequences, which

are ideal for specimen identification and the design of internal

primers. Using the sliding window analysis implemented in

SPIDER, we selected the shortest fragment of 16 S rDNA that

contains sufficient information for accurate and reliable specimen

identification. Corresponding primers were then designed and

used to amplify degraded earthworm (prey) DNA from landsnail

(predator) faeces. Because P. augusta may feed on many different

species of earthworms, PCR products may contain mixed DNA

that is not compatible with conventional Sanger sequencing.

Therefore, 454-pyrosequencing was used to sequence DNA from

each predated species.

Materials and Methods

Ethics statement
Animal handling and sampling methods were conducted

according to relevant national and international guidelines. All

necessary permits were obtained from the New Zealand Depart-

ment of Conservation.

Sample collection
A large proportion of the original habitat of P. augusta has

recently been lost to opencast coal mining at Stockton mine (on the

West Coast of New Zealand’s South Island) [21]. Prior to mining,

in October–November 2006 and May 2007, snails found in the

field were placed in individual clean plastic containers and any

faecal strings produced within 24 hours were retained and stored

in ethanol (95%) at 220uC. Because previous studies on other

rhytidid snails have highlighted the importance of earthworms in

their diet [22], an earthworm inventory was conducted in 2008

and 2009. About 1,500 earthworms were collected from the

remainder of the original habitat of P. augusta, as well as from

surrounding disturbed and undisturbed habitats by excavation and

hand sorting of 300 soil blocks (20 cm620 cm620 cm) [23]. All

earthworms found in these areas were New Zealand endemic

species (Oligochaeta: Megascolescidae and Acanthodrilidae).

Earthworm DNA libraries
A total of 139 earthworm specimens representative of all

sampled morphotypes were selected to build a DNA library of the

species potentially predated by P. augusta. DNA extractions were

performed on earthworm muscle using the Axygen Biosciences

extraction kit (animal tissue spin protocol). Universal invertebrate

16 S rDNA primers (LR-J-12887 and LR-N-13398) [24] were

used to amplify a ,500 bp fragment of DNA (see [25] for full

protocol).

Molecular analyses revealed the presence of 15 distinct clades

with a minimum divergence of 4%, representing 15 putative

species, yet to be described [25]. Because intra-clade variation was

generally low, the earthworm DNA library was built using a single

representative sequence from each clade. Reference sequences

were aligned with MAFFT version 6 [26] and pruned to a 430 bp

section (including indels) that runs from positions 11,736 to 12,118

of the Lumbricus terrestris (Oligochaeta: Lumbricidae) mitochondrial

genome sequence [27].

Sliding window analysis
The statistical programming language R is a powerful, flexible

and free environment for the analysis of a wide range of data,

including nucleotide sequences [28]. We used the sliding window

function slideAnalyses in the R package SPIDER [17] version 1.0–5

(http://spider.r-forge.r-project.org/) to determine the shortest

informative window that best discriminated the reference

earthworm sequences. This function extracts all possible windows

of a chosen size in a DNA alignment, and performs a variety of

distance and tree-based measures on each window.

As an effective specimen identification tool relies on each species

having a unique DNA profile, within each window, genetic

distance values greater than zero can permit effective differenti-

ation. It is also advantageous to retain phylogenetic information so

that species not represented in the DNA library can be correctly

assigned at a higher taxonomic level. For this reason, windows that

best represent the topology given by the full 430 bp alignment are

favoured. To this effect, we selected the shortest informative

window by considering the following distance matrix and tree-

based criteria: (1) the proportion of zero pairwise non-conspecific

distances in the matrix; and (2) the proportion of identical clades

shared between the neighbour-joining tree derived from the full

430 bp dataset, and those derived from each window. Windows

with no zero non-conspecific distances and a proportion of

identical clades greater than 85% for shallow nodes (i.e. nodes

tipwards of the median node depth) were considered as highly

informative because they allow accurate specimen identification,

and provide a good representation of the tree topology for the full-

dataset. Windows of 25, 50, 100, 150, 200 and 250 bp were

analysed and compared to determine the shortest highly informa-

tive window. Conserved regions on either side of the selected

window were then investigated with the aim of designing

degenerate primers that amplify only the DNA of New Zealand

endemic earthworms (Oligochaeta: Megascolecidae and Acantho-

drilidae). These are referred to as ‘group-specific primers’ below.

The specificity of these primers was tested on lumbricid

earthworms, which are not native to New Zealand and according

Sliding Window Analyses for Optimal Mini-Barcodes
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to a recent comprehensive survey [29], do not occur in the snail’s

habitat. The non-target species tested were: Eisenia fetida, E. andrei

and Lumbricus terrestris. This specific approach aimed to prevent the

amplification of DNA from non-target taxa, which may occur in

snail faeces. This includes DNA from the snail itself, DNA from

other invertebrate species (especially parasites), and bacterial

DNA.

454-pyrosequencing
The group-specific primers were used to amplify earthworm

DNA from 46 faecal samples produced by 46 different P. augusta

individuals captured in the field prior to mining. The PCR

protocol was the same as in Boyer et al. [25]. PCR products

amplified from snail faeces were processed by electrophoresis

(1.5% agarose gel) followed by a gel extraction and DNA

purification (Qiagen Qiaquick� PCR gel extraction kit). The

PCR products from all 46 samples were diluted to 0.5 ng/ml and

pooled following the manufacturer’s recommendation for ampli-

con sequencing with the Roche Genome Sequencer FLX System. One

sixteenth of the full pyrosequencing plate was used. DNA reads

obtained from 454-pyrosequencing were filtered to exclude

amplicons with unexpected lengths (,120 bp or .160 bp) and

amplicons lacking a complete primer. Unique amplicons were also

discarded and only those that were detected at least 5 times were

taken into account in the analysis, with the aim of filtering out

chimeric sequences and PCR artefacts.

DNA reads were then compared to the earthworm DNA library

(containing 15 species) using the BLAST program [30]. Reads that

did not correspond to any species from the library were compared

to the Genbank database using the BLASTn algorithm to confirm

that they corresponded to earthworm DNA. If so, they were

considered additional species.

Results

Bioinformatics
The length of the selected window had a large impact on the

identification success rate. With shorter windows, specimen

identification was often not achievable because non-conspecific

distances could be zero (Fig. 1). When longer windows were

considered, more accuracy was observed, with many of the

windows displaying no zero non-conspecific distances (i.e. 100%

accuracy). Using longer windows also resulted in a better

representation of the tree topology with higher proportions of

clades identical to those obtained with the full 430 bp dataset.

According to the sliding window analysis, the shortest highly

informative window was a 100 bp fragment starting at base 210 of

the alignment (Fig. 1), which corresponds to position 11934 of the

published L. terrestris mitochondrial genome sequence. This

window provides accurate specimen identification (no zero non-

conspecific distances) and a tree topology similar to that obtained

from the full dataset (85.7% of the shallow clades are the same)

(Fig. 1C).

Pyrosequencing
Conserved regions were used to design group-specific primers

that amplify a 134 bp region encompassing this 100 bp window

(Fig. 2). The use of these group-specific primers, coupled with 454-

pyrosequencing, led to the successful amplification and retrieval of

8,742 DNA sequences of which 8,712 (99.7%) were of good

quality (i.e. of expected length and containing at least one primer).

The number of sequences corresponding to the earthworm DNA

library was 7,210 (83%). Earthworm DNA retrieved from snail

faeces contained 13 species from the library. Only species 7 and 10

were not detected in the faecal samples (Fig. 3). The remaining

sequences (17%), which had no correspondence in the DNA

library, formed three distinct clades, which may correspond to

three additional species (Fig. 3).

Discussion

The diet of P. augusta
Earthworm DNA that had been degraded through digestion by

the carnivorous landsnail P. augusta was successfully amplified

using group-specific primers designed to amplify the shortest

(100 bp) possible informative window. Using a short section of a

single gene to identify predated earthworm species was particularly

effective because (1) likely prey species were restricted to a narrow

taxonomic range and (2) data for most of the potential prey species

had been generated and were available as a DNA reference

library. Pyrosequencing of prey DNA obtained from faecal

samples led to the detection of 18 earthworm species comprising

the diet of P. augusta. Most of these species are likely to be new to

science as the New Zealand earthworm fauna is still largely

unknown [31,32]. Sequences that did not match any references in

the earthworm library (17%) formed three distinct clades. The

corresponding amplicons had a minimum of 7.5% divergence

from their closest sequence in the DNA library, which corresponds

to 10 nucleotide differences and strongly suggests that they are

three additional species. A BLAST analysis of these sequences

showed that they were closely related to those of other New

Zealand earthworms. These additional species are likely to be

endemic species that were overlooked during the earthworm

inventory [29], and probably correspond to ‘anecic’ earthworms:

deep burrowing species that only come to the surface at night to

feed on dead leaves and plant debris [33]. Such behaviour would

make them accessible to the nocturnal snails but unlikely to be

found in 20 cm deep soil samples collected during the day.

Alternative explanations for these three amplicons include

sequencing errors and the possible amplification of nuclear

mitochondrial pseudogenes (NUMTs), which can be co-amplified

with mitochondrial DNA paralogs [34] and can lead to false

interpretations in molecular diet analyses [35,36], particularly

when short fragments of DNA are targeted [37]. However,

NUMTs are probably less likely to be amplified than cytoplasmic

mtDNA due to lower copy number, especially in degraded DNA

samples and to our knowledge, NUMTs have not been reported

for Annelida or Mollusca [38,39]. Two of the amplicons regarded

as potential new species (species 17 and 18) were detected 333

times across two samples and 505 times across two samples,

respectively. These are therefore less likely to be the product of

NUMTs or sequencing errors. However, the amplicon corre-

sponding to species 16 was detected only seven times, and from

only one faecal sample, which suggests either a rarely predated

earthworm species or a possible sequencing error. These

hypotheses could be tested with further data, especially in regard

to locating the previously unobserved earthworms by sampling

from deeper soil layers.

Sequencing degraded DNA
When amplification of degraded DNA with conventional

markers fails because DNA is broken down into short fragments,

the alternative is to design new primers specifically to amplify a

shorter region [40]. In this case, the short region must contain

enough inter-specific variability to ensure accurate specimen

identification. Short DNA regions, or mini-barcodes are becoming

increasingly popular for the analysis of environmental DNA

samples [10,11,15,41]. Although a few studies have selected mini-
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barcodes based on objective criteria [42,43], they focused on a

limited number of candidates. The work described here appears to

be the first to propose a method for comparing all possible mini-

barcodes for a given molecular marker. We measured the

performance of 1745 potential mini-barcodes compared to eight

[42], 10 [43], 13 [44] and 26 [45], in other studies.

The sliding window analysis in the R package SPIDER [17]

provides molecular ecologists with a way to objectively select the

most informative region of the gene they aim to amplify. This

method is applicable to any taxon or gene region and is capable of

analysing reasonably sized alignments in a matter of seconds to a

few minutes [17]. By using published sequences from online

databases (e.g. BOLD or GenBank), the sliding window analysis

can be applied at virtually no cost to determine which molecular

marker will contain the smallest and most informative window

appropriate for the group under study. This method also allows

the users to set their own objectives in terms of accuracy of

specimen identification and/or conformity to a given tree

topology. Because traditional cut-off thresholds for full-length

sequences are not directly applicable to shorter sequences [45], we

considered only zero non-conspecific distances to be below the cut-

off for species differentiation (i.e. a single nucleotide difference

within the mini-barcode was considered sufficient for species

diagnosis). Although such a liberal criterion could lead to false

positives (i.e. individuals from the same species being categorised

as different species), when using the selected 134 bp mini-barcode,

differences between species were always .4% (Fig. 2), corre-

sponding to at least five nucleotide differences making false

positives less likely.

In addition to the sliding window criteria presented here

(distance to non-conspecifics and topological similarity), there are

other useful metrics for the determination of the best window.

Such criteria include species monophyly, summed genetic

distance, average GC content, and species-diagnostic nucleotides,

all of which are appropriate methods for other applications and

are implemented in the package SPIDER [17].

Further applications
Identification of specimens from environmental samples or for

diet analyses (from gut contents or faeces) requires that all the

potentially present species be represented in a reference sequence

library [11]. However, unknown species may also display

variability within the same highly informative window as known

species, in which case detection of non-inventoried species is

possible. Primers should be restricted to a narrow taxonomic

group, as environmental samples typically contain non-target

Figure 1. Sliding window analysis. The windows are 25, 50, 100, 150, 200 and 250 bp (from A to F). X axes: starting base of the window. Y axes
on top graphs: proportion of zero non-conspecific distances. Y axes on bottom graphs: proportion of identical clades between trees derived from
each window and trees derived from the full dataset. Black circles are based on all nodes and blue circles on shallow nodes only, i.e. nodes tipwards
of the median node depth. The red boxes indicate the positions of highly informative windows.
doi:10.1371/journal.pone.0038215.g001
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DNA. Therefore, efficient group-specific primers are required,

which is often not compatible with large-scale environmental

barcoding data, from which diverse DNA assemblages are

expected [46]. In such cases, a combination of several primer

pairs may be necessary. Despite providing information on the best

possible mini-barcode regions, the current version of SPIDER

does not provide functions for designing of the actual primers;

many other software packages are specifically designed for this

purpose, e.g. Qprimer [47], Green SCPrimer [48], Uniprime [49],

ecoPrimers [50], etc. However, the nucleotide diagnostics functions

of SPIDER can be used to identify sites useful for group specific

primer design, and can then be used together with other programs

to fit primers around the best possible mini-barcode(s). Some of

these programs also assess the suitability of mini-barcodes for

specimen identification [43,50] by selecting primer combinations,

matching the amplicons in pairs and comparing the barcode

resolution capacity of each pair to decide which is best for

identification purposes [43]. Our approach is different in that it

focuses on identification success and information content over

primer design by comparing all possible mini-barcodes for a given

molecular marker and set of taxa.

Pyrosequencing is ideal for the analysis of mixed DNA samples.

It represents a significant improvement in molecular diet analyses,

because (1) it supplants non-sequencing methods, such as

denaturing gradient gel electrophoresis, which requires additional

gel extraction and sequencing for identification of prey species

[51], (2) it does not require the design of a different pair of primers

for each potential prey species, or the use of multiplex PCR

reactions [52], and (3) all prey species are detected and sequenced

simultaneously without the need for cloning [36] so that increasing

the number of samples or the number of potential prey species has

little impact on the cost of the analysis. However, because of the

technical limitations, pyrosequencing is currently limited to short

DNA fragments (,200 bp for the Roche Genome sequencer FLX

System used here). As a result, pyrosequencing analyses have

mostly been used along with powerful bioinformatic tools that

detect overlapping regions and splice together small fragments of

the genome [53]. When using a sliding window analysis a priori, the

information content of short length sequences can be assessed,

with the aim of negating the requirement for additional

bioinformatic sequence consolidation of several longer, less

informative regions.

Our method is also relevant for the molecular analysis of

historical or ancient DNA (e.g. old museum specimens, palaeo-

samples) for which DNA amplification and sequencing often fails

with conventional primers [6]. Previous research has highlighted

the compatibility of the pyrosequencing approach with barcoding

of historical specimens [54]. When combined with techniques such

as whole-genome amplification (e.g. GenomiphiH), this approach

has the potential to constitute an improved option for sequencing

highly degraded DNA.

Figure 2. Position of the selected short informative window and the group-specific primers. For all sequences, the 59 end is on the left
and the 39 end is on the right. Green = Adenine (A), orange = Thymine (T), blue = Cytosine (C), Purple = Guanine (G), White = gap. (A) Portion of the
mitochondrial 16 S sequence from the 15 New Zealand endemic species comprising the DNA library (lines 1–15) and one L. terrestris (line 16). The
represented portion covers positions 11890 to 12055 of the L. terrestris mitochondrial genome sequence [26]. (B) List of sequences compatible with
the degenerate group-specific primers. When several nucleotides are compatible for a given position, they are written vertically, e.g. the first
nucleotide of the Forward sequence must be A, the fifth nucleotide must be C or A. (C) Example of sequences not compatible with the degenerated
group-specific primers (L. terrestris).
doi:10.1371/journal.pone.0038215.g002
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Another important application lies in the search for alternatives

to the barcoding region. Although COI is widely used for

specimen identification in many animals, it appears to be

unsuitable for certain groups, such as Anthozoa [55,56], plants

[57], fungi [58,59] and protists [60]. Sliding window analysis offers

an objective method for comparing molecular markers proposed

by different authors in these difficult situations. For taxa where no

obvious barcode has been proposed, sliding window analysis can

greatly help in evaluating the best candidates.
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