Net photosynthesis rate and chlorophyll content of Caucasian and white clover leaves under different temperature regimes.

Alistair Black

Teagasc, Grange Research Centre, Dunsany, Ireland

Dick Lucas

Derrick Moot

Agriculture & Life

Sciences Division,

Lincoln University,

New Zealand

Conclusions

- Higher net photosynthesis rates (Pn) for Caucasian clover (Cc) leaves were attributed to their higher chlorophyll content than white clover (wc).
- Thus, for any given canopy leaf area index, Cc canopy Pn is expected to exceed that for wc and give more assimilate per unit leaf area.
- This could explain higher growth rates for Cc over wc observed in intensive temperate pastures.

Background

- Caucasian or Kura clover (*Trifolium ambiguum*) was more productive than white clover (*T. repens*) in New Zealand pastures.
- Examining the physiological basis for this difference can provide greater insight into the suitability of Cc for inclusion in temperate pastures.
- Leaf photosynthesis rate drives seasonal growth and is regulated by temperature and chlorophyll content.
- Thus, Pn and chlorophyll content of Cc and wc leaves were compared under different temperature regimes.

Methods

- Cc and wc were grown under irrigation at Lincoln University, Canterbury, New Zealand.
- Pn and chlorophyll were measured at either 12 °C
 (T_{lim}) or 23 °C (T_{opt}) air temperatures.
- Pn was measured on 10 leaves at 7 light intensities using a photosynthesis system (LI-6400 LiCor).
- Chlorophyll content was estimated using a chlorophyll meter (SPAD-502 Minolta).

Results

- Pn responses to light intensity followed non-rectangular hyperbolas (Figure 1).
- Cc Pn_{max} was 32 μ mol CO₂/m²/s at 23 °C but decreased to 17 μ mol CO₂/m²/s at 12 °C.
- These rates were $\sim 6 \,\mu \text{mol CO}_2/\text{m}^2/\text{s}$ higher than wc Pn_{max}.
- Chlorophyll contents were higher for Cc than wc at both temperatures (Table 1).

Figure 1. Pn response to light intensity at either 12 $^{\circ}$ C (T_{lim}) or 23 $^{\circ}$ C (T_{opt}).

Bars indicate se for Pn_{max}

	T _{lim}		T _{opt}		
	Сс	WC	Сс	WC	sed
Chlorophyll a	2.01	1.79	1.90	1.74	0.033
Chlorophyll b	0.32	0.25	0.29	0.24	0.010
Total chlorophyll	2.33	2.05	2.20	1.99	0.044

Table 1. Chlorophyll contents (mg/g) for Cc and wc at 12 °C and 23 °C.

