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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master of Applied Sciences. 

 

The effect of grape stem inclusion fermentation on Pinot Noir wine 

composition 

by 

Pradeep Wimalasiri 

 

Whole bunch fermentation is believed by some winemakers to increase complexity, freshness, 

aromatic expression and textural smoothness in the resultant wine, but may also impart green, herbal 

and earthy characters. The aim of this study is to investigate the effect of stem inclusion fermentation, 

including the addition of stems and whole bunches, on the composition of Pinot Noir wines. Standard 

winemaking protocol was used to prepare five treatments in triplicate: 100% of destemmed and 

crushed grapes (DS), 100% of destemmed and crushed grapes with 100% of stems added back (DS100), 

30% of whole bunch (WB30), 60% of whole bunch (WB60), and 100% of whole bunch (WB100). The 

resultant wines were analysed for general oenological parameters, the colour parameters by modified 

Somers assay and CIELab, the phenolic composition by high-performance liquid chromatography 

(HPLC), and aroma profiling by gas chromatography-mass spectrometry (GC-MS). In comparison to the 

DS treatment, stem addition caused to increase pH and lower alcohol content in wines. In terms of 

colour, 100% stem addition (DS100) and high proportions of whole bunch addition (WB60 and WB100) 

could significantly increase the degree of ionisation of anthocyanin, hue, total phenolics, and SO2 

resistant pigments but decrease total anthocyanin in wines. Cold maceration without adding 

stems/whole bunches (DS) showed the highest concentration of total anthocyanin. According to the 

CIELab results, only DS100 had significantly higher luminosity (L*), yellow-blue component (b*), 

chroma (C*) and tone (H*) values compared to DS treatment.  The 100% stem addition (DS100) and 

the high proportion of whole bunch addition (WB60 and WB100) significantly increased tannin, total 

phenolics and most of the monomeric phenolics in the resultant wines. Interestingly, the WB100 

treatment showed a significantly higher concentration of tannin and total phenolics than the DS100 

treatment, indicating whole bunch fermentation is more effective in enhancing the extraction of 

phenolic compounds into wine.  Principle component analysis (PCA) showed stem inclusion treatments 

significantly increased the concentrations of eugenol, 3-isobutyl-2-methoxypyrazine (IBMP), 3-

Isopropyl-2-methoxypyrazine (IPMP) and phenol, which are mostly responsible for spicy, woody and 

green aromas in wine. Treatments with non-stem addition (DS) and low proportion of whole bunch 
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addition (WB30) showed higher concentrations of hexyl acetate, 2-methylbutyl acetate and isoamyl 

acetate, which are responsible for fruity aroma in the wine. This study improves our current 

understanding of stem inclusion fermentation, which can be used as a winemaking tool to manage the 

extraction of phenolics and colour in Pinot Noir wine.  Green characters imparted from grape stems 

should be also taken into consideration when stem inclusion fermentation is used for Pinot Noir 

production. 

 

Keywords: Anthocyanin, Methoxypyrazine, Phenolics, Pinot Noir, Stem, Tannin, Whole bunch.  
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Chapter 1 

Introduction 

The extraction of tannin and anthocyanin is essential for winemakers to produce good quality red wine. 

Pinot noir grapes can be challenging for the winemakers due to the tannin distribution (Carew, 

Sparrow, Curtin, Close, & Dambergs, 2014). It has low skin to seed tannin ratio compared to other 

grape varieties (Kennedy, 2008), and seed tannin is more difficult to extract than skin tannin (Dambergs 

et al., 2012; De Villiers, 1994; Kennedy, 2008; Waterhouse, 2002). Dimitrovska, Bocevska, Dimitrovski, 

and Murkovic (2011) reported that the anthocyanin concentration in Pinot noir grapes is almost 60% 

lower than other red grape varieties. Pinot Noir grapes have five types of anthocyanins (malvidin, 

peonidin, petunidin, delphinidin and cyanidin) in their mono-glucoside form, which is relatively 

unstable (F. He et al., 2012; Iland, 2013). Hence, Pinot Noir wines tend to have a much lighter colour 

and a lower concentration of tannin compared to other red wines (Dambergs et al., 2012; Kennedy, 

2008). To overcome these issues in Pinot Noir winemaking, some winemakers tend to employ stems 

as a secondary source of tannin and cold maceration to enhance anthocyanin extraction.  

Whole bunch fermentation has become increasingly fashionable in Pinot Noir wine production, 

particularly for styles with more elegance than power. Several studies have reported that fermentation 

with the inclusion of grape stem could have an effect on phenolics and colour in the finished wines 

(Casassa et al., 2019; Hashizume, Kida, & Samuta, 1998; Suriano, Alba, Tarricone, & Di Gennaro, 2015). 

Casassa et al. (2019) showed that 3% stem addition together with cold maceration (CS + S treatment) 

or stem addition without cold maceration (control + S) in Pinot Noir winemaking could increase tannin 

extraction by 60% compared to wine made without adding stems in 2015 vintage, but 20% whole 

bunch addition could not result in significant variation of the tannin content at the end of the 

fermentation of Pinot Noir wine (pressing). Suriano et al. (2015) reported that treatment prepared 

without adding stems had a higher anthocyanin concentration and lower phenolics content compared 

to whole bunches added treatments (25% and 50%). Hashizume et al. (1998) also reported that stem 

addition could increase total phenolics and levels of phosphoric acid (phosphorus), potassium, and 

calcium in the resultant wines. The extraction of potassium lowered TA and increased pH in wines. 

However, most of the studies were limited to use a lower amount of stems and whole bunches (20-

50% whole bunches, or <3% stems) to avoid green aromas and tannic astringency in the finished wines 

(Hashizume & Samuta, 1997; Sala, Busto, Guasch, & Zamora, 2004). Ultimately, stem inclusion 

generally increased phenolics, and pH and decreased anthocyanin, titratable acidity in the resultant 

wines. 
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Cold maceration facilitates extraction of water-soluble compounds, especially anthocyanin, before 

starting fermentation in wine (Aleixandre-Tudo & Du Toit, 2018). In cold maceration, breaking cell 

walls/ membranes and increase cell membrane permeability due to adding sulphur dioxide facilitate 

internal compounds to leach out during the pre-maceration period (Aleixandre-Tudo & Du Toit, 2018; 

Sacchi, Bisson, & Adams, 2005). Casassa, Bolcato, Sari, Fanzone, and Jofré (2016) also showed that 100 

ppm sulphur dioxide addition could result in higher anthocyanin extraction compared to adding 50 

ppm sulphur dioxide in winemaking. Many previous studies reported that cold maceration increases 

anthocyanin, polymerised anthocyanin, phenolics in wines (Álvarez, Aleixandre, García, & Lizama, 

2006; Koyama, Goto-Yamamoto, & Hashizume, 2007).  

Several studies have reported that cold maceration and stem inclusion could affect aroma composition 

of the resultant wines (Álvarez et al., 2006; Cai et al., 2014; Casassa et al., 2019; Hashizume & Samuta, 

1997). The stem inclusion could result in more green aromas in wines (Hashizume & Samuta, 1997; 

Sala et al., 2004). Hashizume and Samuta (1997) showed that these green aromas were mainly due to 

methoxypyrazines extracted from the stems during fermentation. Cai et al. (2014) reported that cold 

maceration in pumping over tanks could result in increased some acetate esters, and β-Damascenone, 

which are mostly contributed to fruity aromas, as well as cold maceration, and lead  to a decrease in 

some higher alcohols specially isobutanol and isopentanol in Cabernet Sauvignon wine.  

As discussed above, both stem inclusion and cold maceration can influence wine colour, phenolics and 

aroma profile of the wine. It is rare to find research articles discussing the combined effect of cold 

maceration and stem inclusion on wine colour, phenolics and aroma profile in the resultant wines. 

Some wine manufacturers may use both cold maceration and stem inclusion to produce good quality 

Pinot Noir wine. Effect of adding higher proportions of stems needs to be further investigated. Thus, 

to better understand the impact of stem inclusion fermentation together with cold maceration on 

Pinot Noir wine composition, five treatments have been carried out in this study: 1) treatment 

prepared with 100% of destemmed and crushed grapes (DS) as control; 2) treatments prepared with 

whole bunch addition at three levels: 30% (WB30), 60% (WB60) and 100% (WB100); and 3) treatment 

prepared with 100% of stems added back to destemmed and crushed grapes (DS100). The WB 

treatments are studied to understand the impact of adding different proportions of whole bunches on 

Pinot Noir wine composition, and the DS100 treatment was conducted to compare with the WB100 

treatment to understand how different forms of stem inclusion could impact the resultant wine 

composition 
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Chapter 2 

Literature Review 

2.1 Phenolic compounds in red wine 

Phenolic compounds are important to the wine quality by contributing to colour, taste, and mouthfeel 

of the wine. They also have strong antioxidant properties which ensure the quality of red wine, which 

are enhanced during production and maturation through preservation (Dambergs et al., 2012; 

Kennedy, 2008). Anthocyanins, tannin and tannin-anthocyanin polymers (Pigmented polymers or 

pigmented tannins) collectively determine the taste and appearance of red wine. The young red wine 

colour is mainly due to the presence of anthocyanins in their positively charged flavylium state (F. He 

et al., 2012). Pigmented polymers are important for the long-term stability of red wine colour 

(Dambergs et al., 2012; Kennedy, 2008). Phenolic substances especially tannin in red wines, contribute 

to the bitterness and astringency through interactions with salivary proteins and other tactile 

sensations, which is formally defined as the structure or body of the wine (Waterhouse, Sacks, & 

Jeffery, 2016). Hence, both visual and flavour perception of red wine depends to a large extent on 

phenolic compounds extracted from the grape into juice and stabilised in the wine matrix. 

The total phenolic content of red wines varies widely, even though generally present around 2000 

mg/L of gallic acid equivalents in reds those are ready to drink, and it can rise up to 3500 mg/L if red 

wine is aged for a long time due to oak derived tannin (Waterhouse et al., 2016).  Van Leeuw, Kevers, 

Pincemail, Defraigne, and Dommes (2014) analysed ten Pinot Noir wines produced between 2006 to 

2010 vintages from different countries, total phenolics (gallic acid equivalent) were below 2400 mg/L 

in most of the wines analysed in the study. Pinot Noir wine contains a relatively low concentration of 

total phenolics compared to other red wines (Dambergs et al., 2012) and it is mainly due to the lower 

skin to seed tannin ratio of the grape as previously mentioned.  

The majority of phenolic compounds in wine are grape-derived, and some can originate from the oak. 

Singleton and Esau (1969) reported that the total phenolics distribution in a red grape berry was 

estimated: 1% in the pulp, 5% in juice, 50% in skin and 44% in the seed. As previously mentioned, Pinot 

Noir grapes have a higher proportion of tannin in seeds compared to their skin. So, this composition 

may slightly vary in Pinot Noir grapes. Harbertson, Kennedy, and Adams (2002) also reported that Pinot 

Noir contained a higher concentration of tannin in seeds compared to skin. There are different classes 

of phenolic compounds present in different berry components. Grape skin contains mainly, 

anthocyanins, cinnamic acids and their esters, polymeric tannins, and monomeric flavanols; juice 

contains cinnamic acids and their esters; seed contains polymeric tannins and monomeric flavanols 
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(Kennedy, 2008). The main difference of the polymeric tannins found in seed and skin is the size of the 

molecule. Seed tannins are shorter, with a lower mean degree of polymerisation compared to skin 

tannin (Bordiga, Travaglia, Locatelli, Coïsson, & Arlorio, 2011; Chira, Schmauch, Saucier, Fabre, & 

Teissedre, 2009).  

Tannins in the stems have similar reactivity to tannins in seeds. The stems and seeds contain high 

concentrations of polymerised procyanidins and condensed tannin which produce a more marked 

tannic astringency (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006). There are no published 

studies about the composition of Pinot Noir stems. But there are some studies based on the stems 

from other red varieties. Souquet, Labarbe, Le Guernevé, Cheynier, and Moutounet (2000) reported 

that Merlot grape stems contained significant amount of polyphenolic compounds including phenolic 

acids, flavonols, and flavanonols (astilbin). Those stems contained 200 mg/kg of quercetin 3-

glucuronide, 60 mg/kg catechin, 40 mg/kg caftaric acid, 35 mg/kg of astilbin, 18 mg/kg of quercetin 3-

glucoside and 4.5 mg/kg of coutaric acid. Epicatechin, engeletin, myricetin 3-glucoside and myricetin 

3-glucuronide were present in trace amounts.  

Most phenolic compounds are non‐volatile, but a few volatile/ odorous phenolics exist, for example, 

4‐ethylphenol (Waterhouse, 2002). The simplest phenolics found in wine are composed of a single 

aromatic ring with one or more hydroxyl groups such as guaiacol and caffeic acid. While the majority 

found in wine are polyphenolics, they are made with multiple phenol rings within a single structure 

such as resveratrol and epicatechin. Phenolics concentration in red grapes are higher than white 

grapes due to the presence of anthocyanin in red grape skin. Phenolic compounds found in wine and 

grapes are complex in nature, but it can be classified into two classes: flavonoids based on a common 

C6-C3-C6 skeleton and non-flavonoid compounds (Cheynier et al., 2006; Rentzsch, Wilkens, & 

Winterhalter, 2009; Waterhouse, 2002; Waterhouse et al., 2016). Non-flavonoids are not always 

derived from grapes and they have slightly more variable structures. Hydroxycinnamates, 

hydroxybenzoic acids, stilbenes and volatile phenolics are the most well-known classes of non-

flavonoids derived in grapes (Rentzsch et al., 2009). There are two main groups of flavonoid phenolics: 

anthocyanin and flavanols. There are some other classes of flavonoid present in grapes in lower 

concentrations such as flavonols. Flavanols can exist as catechin monomers, oligomers and polymers, 

which also called as condensed tannins, or proanthocyanidins (Cheynier et al., 2006).  

2.1.1 Non-flavonoid 

The nonflavonoid compounds act as co-pigments (hydroxycinnamic and hydroxybenzoic acids) and 

antioxidants (stilbenes) in wines. But most of the nonflavonoids including hydroxycinnamate, caftaric 

and coutaric esters do not appear to have a direct impact on the perception of bitterness or 

astringency, at the concentration levels found in wines (Vérette, Noble, & Somers, 1988; Waterhouse, 
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2002). Non-flavonoid constituents in wine can be broadly divided into hydroxybenzoic acid (HBA) and 

hydroxycinnamic acid (HCA), volatile phenolics, stilbenes and miscellaneous compounds including such 

as lignans and coumarins (Rentzsch et al., 2009).  

Hydroxycinnamic acids (HCA) are the major phenols in grape juice and the major class of phenolics in 

white wine (Waterhouse, 2002). HCAs possess a C6-C3 skeleton and formally belong to the group of 

phenylpropanoids. There are three commonly found hydroxycinnamic acids namely coumaric, caffeic, 

and ferulic acids but none of these simple hydroxycinnamic acids is found in the grape pulp in free 

form because they are conjugated with tartaric acid to form tartaric acid esters namely p-coutaric acid, 

caftaric acid, and fertaric acid respectively (Rentzsch et al., 2009; Waterhouse et al., 2016). These HCA 

derivatives can be present in either cis- or trans- form in wine. More stable trans- form is 

predominantly found in plats and cis- form is induced by light. Up to 50% of total HCA is composed of 

caftaric acid. Grape derived tartrate esters can still be hydrolysed by HCA hydrolase enzyme produced 

by lactic acid bacteria and other organisms to produce simple HCA (coumaric, caffeic, and ferulic acids) 

in wine. So, they can be detected in newly fermented wines (Rentzsch, Schwarz, Winterhalter, & 

Hermosín-Gutiérrez, 2007). HCA concentration in different grape varieties and/or within the same 

variety are greatly varied in previous publications. Rentzsch et al. (2009) reported that HCA 

concentration depends on several factors such as grape variety, growing conditions, climate, etc. So, 

it is the reason to experience more variable concentrations of HCA in wines. Table 2.1 summarizes the 

most common structures of HCAs and reported concentrations in previous studies. 

Hydroxybenzoic acids (HBA) are a minor category of monomeric phenolics derived from benzoic acid 

in young wines. They are characterized by C6-C1 skeleton. Gallic acid, syringic acid, protocatechuic 

acid, p-hydroxybenzoic acid, gentisic acid, salicylic acid, and vanillic acid are the most common types 

of HBA found in wine (Rentzsch et al., 2009; Waterhouse, 2002). HBA is mainly found in their free form 

in the wine. Gallic acid accounts for the majority of this group. Gallic acid is not found in grapes, but It 

is formed by the hydrolysis of gallate esters in hydrolysable tannin and condensed tannin in the wine. 

On long ageing, gallic acid is persistent and can be observed in older wines (Waterhouse et al., 2016). 

HBA concentration in wine largely depends on the grape variety and growing condition (Rentzsch et 

al., 2009). Table 2.2 summarizes the most common structures of HBAs and reported concentrations in 

previous studies. 

Stilbenes are also a minor category of phenols found in grapes and wine. The resveratrol is the principle 

stilbene found in grapes (Waterhouse, 2002). Resveratrol is produced by the grapevine in all tissues as 

a phytoalexin in response to various stress factors such as UV-radiation, mechanical injuries, and, 

specifically in vine grapes to Botrytis infection and other fungal attacks (Aaviksaar, Haga, Pussa, Roasto, 

& Tsoupras, 2003; Waterhouse, 2002). Resveratrol synthesis mainly happened in the skin. So, its 
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derivatives such as cis and trans isomers and glucosides of both isomers are found in the skin  (Jeandet, 

Bessis, & Gaugheron, 1991; Waterhouse, 2002). However, cluster stems (rachis) is the richest source 

of resveratrol in Pinot Noir according to the research conducted by Melzoch, Hanzlíková, Filip, 

Buckiová, and Šmidrkal (2001). According to his study, resveratrol concentration in different parts of 

Pinot Noir grapes contained; 2.80 mg/kg in leaves, 13 mg/kg in rachis, and 2.34 mg/kg in berry 

respectively. The average resveratrol concentration in red wine is about 7mg/L. But, many authors 

reported that a higher concentration of resveratrol could be found in Pinot noir wines compared to 

other red wines (Baraboy, 2009; Melzoch et al., 2001). 

2.1.2 Flavonoid phenolics 

As previously mentioned, a specific three aromatic ring system (C6-C3-C6 skeleton) defines flavonoids 

structure, the central oxygen-containing pyran ring with the ability to hold different oxidation states is 

called as C-ring (figure 2.1). It is bonded to an aromatic ring (A Ring) along with one bond and attached 

to another aromatic ring with a single bond (B ring). The flavonoids found in grapes and wine all have 

the same hydroxyl substitution groups on ring A, at positions 5 and 7. Differences in the oxidation state 

and substitution on C ring defines the different classes of flavonoids (Waterhouse, 2002). These 

compounds are the most important group of compounds in terms of sensory appeal in red wines. 

However, it can be challenging to produce Pinot Noir due to the unique flavonoid distribution and 

concentration in grapes (Kennedy, 2008). As previously mentioned, there are mainly two groups, which 

directly influence wine taste and appearance: Flavanols and anthocyanin. Anthocyanin are the red 

grape pigments essential in red wine colour.  

Flavan-3-ols in red grapes can exist as monomers, oligomers and polymers of catechin and its 

derivatives such as epicatechin, gallocatechin, epigallocatechin, epicatechin 3-gallate, epigallocatechin 

3-gallate (Cheynier et al., 2006). Polymers of flavanols are collectively called as condensed tannin or 

proanthocyanidin and are available in grape skin, seed and stalks. Oligomers and polymers of flavan‐

3‐ols in a typical young red wine account 25 – 50% of its total phenolics and an even higher proportion 

in older wines (Waterhouse et al., 2016). Catechin, epigallocatechin (tri-hydroxylated form) are more 

prevalent in grape skin, and epicatechin 3-gallate (di-hydroxylated form) more prevalent in the seed. 

(Hayasaka, Birse, Eglinton, & Herderich, 2007). The formation of condensed tannins by the 

polymerisation of flavanol monomers has been associated with the moderation of the sensory impact 

of these compounds in wine (McRae, Falconer, & Kennedy, 2010). The condensation occurs to form 

covalent bonds between flavan-3-ol units, the most common linkages being 4→8 and 4→6 positions 

(Waterhouse, 2002). Condensation can also happen via bridging by co-factors (acetaldehyde, 

pyruvate). The monomeric catechins are bitter and astringent compared to polymeric phenolics. In the 

polymer, the bitterness is minimal, but the astringency remains unchanged (Robichaud & Noble, 1990). 
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Flavonol is considered as a minor class of flavonoid phenolics in wine. They are found in the berry skin 

and there are apparently no flavonols in the pulp or seeds. The concentration of flavonols in wine can 

be affected by processing variables, with factors that increase skin extraction resulting in higher levels 

(Price, Breen, Valladao, & Watson, 1995). The concentration of flavonols is increased by high sunlight 

exposure. It appears to function as sunscreen. Price et al. (1995) showed that sunlight exposure of 

Pinot Noir grape bunches enhances flavonol levels in grape skin.  

2.2 Pinot Noir wine colour 

The red wine colour is mainly determined by phenolics comprising mainly anthocyanin, tannin and 

tannin-anthocyanin polymers (Smith, Mercurio, Dambergs, Francis, & Herderich, 2007). Generally, 

anthocyanin refers to the glycosylated form of anthocyanidins/aglycons. Anthocyanidins are not stable 

in nature, so they are not found in either grapes or wine. Hence, they are glycosylated to form stable 

anthocyanin pigments in wine (Waterhouse, 2002; Waterhouse et al., 2016). The glycosylation 

increases both the chemical stability and the hydrophilicity of anthocyanidins (Durner, 2016; 

Waterhouse et al., 2016). The young red wine colour is mainly due to the presence of anthocyanins in 

their positively charged flavylium state. But, only a small percentage of total anthocyanin is present in 

a coloured form in the original wine conditions. Within the typical wine pH range, only 10–25% of the 

free anthocyanins occur in the form of the red flavylium cation (Durner, 2016). Anthocyanins are found 

in the red grape skin, but there are some grape varieties such as “teinturier” grapes, which have 

anthocyanins in both skin and the pulp (F. He et al., 2012). There are five major types of anthocyanidins 

present in red grapes: malvidin, peonidin, petunidin, delphinidin and cyanidin. Each of these types of 

anthocyanidins can exist in three forms: the mono glucoside, the acetyl glucoside and coumaroyl 

glucoside. The latter two are being referred to as acylated forms because their glucose is further linked 

through an -o- bond to either acetic acid or coumaric acid. Often the three types of malvidin contribute 

to the major proportion of the total pool of anthocyanins (Iland, 2013).  

The anthocyanin profile of Pinot noir is unique compared to other red grape varieties because it lacks 

a more stable acylated form of anthocyanins and has a relatively higher proportion of malvidin-3-

glucoside (Dimitrovska et al., 2011). Casassa et al. (2019) reported that 78% of total anthocyanin in 

Pinot Noir wine was composed of malvidin-3-O-glucoside in 2014 vintage. Pinot Noir wine has only five 

types of anthocyanins in mono glucosides forms: malvidin, peonidin, petunidin, delphinidin and 

cyanidin (Iland, 2013). Table 2.3 summarises the structure and general concentration ranges of those 

anthocyanins found in Pinot Noir wine. The concentration ranges in Pinot Noir wine were adopted 

from the works done by Mazza, Fukumoto, Delaquis, Girard, and Ewert (1999) and Cortell, Halbleib, 

Gallagher, Righetti, and Kennedy (2007). Mazza et al. (1999) analysed monomeric anthocyanin 

concentration in Pinot Noir wines from British Columbia using HPLC in 1996 and 1997 vintages 
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respectively. The winemaking protocol involved a 6-day cold maceration at 4°C. Cortell et al. (2007) 

also used HPLC technique to analyse monomeric phenol composition in resultant wines from grapes 

grown in different vine vigour zones in 2003 and 2004 vintages. Winemaking protocol was involved 

2.5-day cold maceration at 10°C and malolactic fermentation.  

The pH, sulphur dioxide concentration and different interactions of anthocyanin such as Self-

association of anthocyanins and co-pigmentation of anthocyanin in wine can influence the colour 

expression in red wines (F. He et al., 2012; J. He & Giusti, 2010). Anthocyanin structures reversibly 

undergo a pH-dependent transformation in aqueous solution (Figure 2.2), so they are unique among 

flavonoids. Four major anthocyanin forms are present in the equilibria: the red flavylium cation, the 

blue quinonoidal base, the colourless carbinol pseudobase, and the pale yellow chalcone. Low pH can 

increase the proportion of the flavylium state and retard the hydrolysis of the anthocyanins. As the pH 

rises, the concentration of the anthocyanins in the flavylium state and the colour density decline 

rapidly. For example, at the pH of 3.4-3.6, 20-25% anthocyanin is in red flavylium cation form, and at 

pH 4.0, only 10% of anthocyanins are present at in ionised state (F. He et al., 2012; Jackson, 2008).  

An increased amount of free SO2 will cause “bleaching” of the anthocyanins and decrease the red 

colour of wine (C. T. Somers & Evans, 1974). SO2 is bleaching monomeric anthocyanin by nucleophilic 

addition at position 4 of C ring (Figure 2.2). The red colour of the molecule fades away due to the SP3 

hybridisation of the carbon atom, causing interruption of the conjugated double bond system 

(bisulphite addition). However, this C—S bond is relatively weak. Hence, flavylium cation still can be 

rearranged if antagonist, such as acetaldehyde, are present in wine (Durner, 2016). 

Monomeric anthocyanin molecules in young red wines undergo a wide variety of chemical reactions, 

especially during the first two years of maturation. These reactions involve the formation of various 

anthocyanin derived pigments, which is crucial in long term colour stability of red wines (F. He et al., 

2012). Even though monomeric anthocyanin concentration of young wines declines rapidly during the 

first 1-2 years of maceration, the wine still can preserve its red colour. It is due to the reactions and 

associations involve complex mechanisms, including relatively short-term ones, such as self-

association and co-pigmentation, and the relatively long-term ones, such as the formation of polymeric 

anthocyanins with flavan-3-ols and proanthocyanidins, as well as the formation of new pigments, such 

as pyranoanthocyanins and their further polymerised products. Anthocyanins in young red wine 

primarily exist as weak complexes with themselves (self-association) and/or with other compounds 

(co-factors) to form co-pigments (González-Manzano, Santos-Buelga, Dueñas, Rivas-Gonzalo, & 

Escribano-Bailón, 2008; F. He et al., 2012) 

The co-pigmentation of anthocyanin is an important process in colour development in wines. Variable 

proportions of colour in red wines are mainly due to the co-pigmentation of anthocyanin with other 
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molecules in wine (F. He et al., 2012). Co-pigmentation involves forming non-covalent 

bonds/interactions between the molecules corresponding to the coloured structures (flavylium and 

quinonoidal base) and other phenolic compounds in a solution. It is also called as intramolecular co-

pigmentation (González-Manzano et al., 2008; Waterhouse et al., 2016). It only happens in aqueous 

solutions, as it is driven by the hydrophobic interactions of anthocyanins (Brouillard, Wigand, & 

Cheminat, 1990; Goto & Kondo, 1991). Flavonoids including catechin, epicatechin, epigallocatechin, 

quercetin, rutin, etc., and non-flavonoids, including caffeic acid, p-coumaric acid, ferulic acid, gallic 

acid, etc. can act as co-factors in this process.  As well as arginine and proline like amino acids also can 

act as co-factors in the reaction (F. He et al., 2012; Waterhouse et al., 2016). Normally, flavan-3-ols, 

such as (+)-catechin or (-)-epicatechin are recognized as powerful cofactors, which can form coloured 

complexes most easily and intensely (F. He et al., 2012). Co-pigmentation helps in stabilisation of the 

pigmented, aromatic forms of anthocyanins as compared to the colourless carbinol pseudo base 

(Waterhouse et al., 2016). Therefore, co-pigmentation can cause in greater colour intensity of 

anthocyanin solutions than theoretically could be estimated from the anthocyanin concentration and 

pH of the media (F. He et al., 2012). These complexes formed during co-pigmentation increase the 

proportion of red flavylium state of anthocyanin as compared to a solution of anthocyanins alone, in 

the same manner as decreasing the pH (Figure 2.3). Phloroglucinol is used as the co-factor in the 

reaction indicated in Figure 2.3 for the simplicity of the reaction even though it is not present in wine.  

Self-association phenomena of anthocyanin were first suggested by Asen, Stewart, and Norris (1972) 

and are demonstrated as a positive deviation from Beer’s law, which occurs on increasing the 

concentration of the anthocyanin (González-Manzano et al., 2008). Self-association is also a special 

form of the co-pigmentation process as discussed above. However, co-pigmentation can result in 

greater colour intensity of anthocyanin solutions than theoretically could be expected from the 

anthocyanin concentration and media pH effects (F. He et al., 2012; Timberlake, 1980). It has been 

reported previously that the presence of the methoxy group in the B-ring and of the glucose moiety at 

the C5 or C3 position of anthocyanins influences the self-association and colour appearance of 

anthocyanins. The hydrophilic interactions between the glucose components (glucose moiety at the 

C5 or C3 position)  of the corresponding anthocyanin molecules and the hydrophobic repulsion that 

take place between their aromatic nuclei and water, the vertical stacking of anthocyanin molecules in 

self-association complexes are promoted (Cavalcanti, Santos, & Meireles, 2011; González-Manzano et 

al., 2008; F. He et al., 2012). This stacking system forms a vertical helical structure composing 

hydrophobic core surrounded by hydrophilic glucose moieties (Hoshino, 1992). This molecular 

structure protects anthocyanidins in the core from hydration, which result in ionisation to form 

colourless pseudo base (Figure 2.4). 
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2.3 Aroma profile of Pinot Noir wine 

Wines contain hundreds of volatile compounds; most of them are not important as they fall well below 

their respective sensory perception thresholds in wine. Ferreira (2010) classified the wine aroma 

compounds into six groups according to their role on final wine aroma: genuine impact compounds, 

major contributor, net contributors, secondary or subtle contributors, aroma enhancers, aroma 

depressors. Genuine impact compounds in wine present in higher concentrations than their respective 

sensory threshold levels (Ferreira, 2010). Wine aroma is caused by a complex mixture of volatile aroma 

compounds present in wine. These aroma compounds are small, nonpolar molecules that readily enter 

the gas phase from the polar wine matrix. They enter the nasal cavity while we smell or drink a glass 

of wine, leading to the perception of specific aromas in a wine (Ilc, Werck-Reichhart, & Navrot, 2016).  

It is generally accepted that Pinot Noir wine aroma characters are varied with the regional effect of 

soil, climate, cultural practises, vinification procedures and storage (Girard, Yuksel, Cliff, Delaquis, & 

Reynolds, 2001). As well as Rita, Leonard, Barney, and McDaniel (1992) reported that the ripening 

stage of Pinot Noir grapes also influences the final aroma composition of wine. Wines made with Pinot 

Noir grapes at the end of the ripening period had more odour active peaks than wine from earlier 

harvested fruit. There are some studies conducted to clarify the effect of doing different maceration 

techniques on wine aroma. Cai et al. (2014) studied the effect of cold maceration on Cabernet 

Sauvignon wine aroma using commercial-scale punching down (PD) tanks and pumping over (PO) 

tanks. The author reported that PO tanks are more effective than PD tanks and when using PO tanks, 

resultant wine showed decreased higher alcohols and increased levels of some acetate esters in 

resultant wines. Casassa et al. (2019) examined the effects of cold maceration (CS treatment), whole 

bunch (WC) fermentation, and stem additions on the sensory and chemical composition of resultant 

Pinot noir wines. The author reported that control and 20% whole bunch added treatments (control + 

WC) wines were fruitier than cold macerated wines (CS and CS+S treatments) in 2014 vintage.  

Wine aroma can be categorized into three groups based on their origin: primary aroma - grape-derived; 

secondary aroma – derived via fermentation; and tertiary aroma – derived in ageing (Robinson et al., 

2014; Styger, Prior, & Bauer, 2011).  However, oak ageing was not used in this study so tertiary aromas 

are not expected in resultant wines. Reported concentrations of different aroma compounds in Pinot 

Noir wines from previous studies were summarised in Table A.1 (See Appendix). Identified aromas in 

this work were categorised into 9 classes based on their chemical structure and biosynthetic origin: 

acetate esters, ethyl esters, volatile fatty acids, higher alcohols, methoxypyrazines, aldehydes, volatile 

phenols, norisoprenoids, and monoterpenes. 

Varietal aroma compounds in wine reflect the grape variety and the climatic conditions of the grape 

grown region. Most of these compounds leach into wine due to rupturing the cell walls during 
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winemaking and harvesting practices. Terpenes, C13 norisoprenoid derivatives, sulphur compounds 

with thiol function, C6 aldehydes, C6 alcohols, aminobenzoate, phenylpropanoid esters and 

methoxypyrazines are the major groups of aroma compounds derived from grapes (Ferreira, 2010; 

Robinson et al., 2014).   

2.3.1 Terpenes  

There are two types of terpenes in the wine based on the number of isoprene molecules conjugated 

together to form them: monoterpene and sesquiterpenes. They are made from two and three isoprene 

units respectively. Monoterpenes in wine mainly contribute to floral and citrus aromas. Formation of 

monoterpenes in wine involves complex chemical reactions. Most of terpenes are leached into wine 

as odourless glycosidic precursors such as linalyl, geranyl. Then these odourless compounds are 

hydrolysed by acids and enzymes derived in yeast and/or grapes into terpenes in the wine. However, 

many studies reported that their concentration in Pinot Noir wine was below their perception 

threshold levels (Brander, Kepner, & Webb, 1980; Rutan, Herbst-Johnstone, Pineau, & Kilmartin, 2014; 

Schreier, Drawert, & Abraham, 1980) but there are still a few studies that have found  that the 

concentration of terpenes was above the threshold level in Pinot Noir wine (Girard et al., 2001; 

Tomasino et al., 2015).  

2.3.2 C13 Norisoprenoid derivatives 

C13 norisoprenoids are derived by the cleavage of the carotenoid substrate between C9 and C10 

position with carotenoid cleavage dioxygenases enzymes. The cleavage can happen at different 

positions in the carbon chain. Derived compounds with 13 carbon atoms are called C13 norisoprenoids 

(Robinson et al., 2014). Mendes-Pinto, Silva Ferreira, Caris-Veyrat, and Guedes de Pinho (2005) 

reported that β-carotene and lutein constitute 85% of the total carotenoid concentration in Port wine. 

The aroma of these compounds is responsible for fruity and floral aromas in wine. Chemical diversity 

of norisoprenoid compounds are mainly due to different non-enzymatic reactions, including 

photooxygenation, thermal degradation or acid hydrolysis (Ilc et al., 2016). Many studies reported that 

β-Damascenone had the highest concentration from all detected norisoprenoid in wine. Tomasino et 

al. (2015) observed the concentration of β-damascenone in 32 New Zealand Pinot Noir wines were 

range from not detected – 5 µg/L. The perception threshold level of this compound is calculated as 7 

µg/L in red wine (Pineau, Barbe, Van Leeuwen, & Dubourdieu, 2007). So reported concentration in 

Pinot Noir wine was slightly below the perception threshold level of this compound. 

2.3.3 C6 alcohols and aldehydes 

C6 alcohols and C6 aldehydes in wines are mainly due to the addition of vegetative parts such as stems 

and whole bunches during the crushing/maceration period. These compounds produce green aromas, 
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herbaceous odours and fresh-cut grass aromas in wine. C6 alcohols can be formed by reducing the 

corresponding C6 aldehydes by alcohol dehydrogenase enzyme (Hashizume & Samuta, 1997; Styger et 

al., 2011). Many factors influence the concentrations of C6 alcohols/aldehydes in wine: the level of 

enzymatic activity, the degree and form of mechanical injury (crushing), presence of inhibitors, pH, 

temperature, condition of the leaf (young vs mature), stem ripeness, juice clarification and the amount 

of oxygen present at the time of crushing (Rutan, 2016). However, the concentration of these 

compounds in wine is very low compared to grapes due to consumption by yeast during fermentation 

(Mauricio, Moreno, Zea, Ortega, & Medina, 1997). Casassa et al. (2019) reported that 1-hexanol 

concentration in Pinot Noir wines was unaffected by the addition of 20% whole bunches in the wine 

preparation in 2014 vintage and its concentration was below the perception threshold level in all 

treatments. But, there are some studies reports that 1-hexanol concentration in Pinot Noir wine 

exceeds the perception threshold level (Table A.1 in Appendix) (Girard et al., 2001; Rutan et al., 2014; 

Tomasino et al., 2015). This compound can trigger cut-grass aromas in wine, especially when exceed 

the perception threshold level (1100 µg/L in a model wine) (Peinado, Moreno, Bueno, Moreno, & 

Mauricio, 2004). However, stem aromatic composition may differ in climatic conditions, which may 

lead to variations of the stem-derived aromas among different vintages (Casassa et al., 2019). 

2.3.4 Phenylpropanoid esters 

Most well-known phenylpropanoid esters found in wine are ethyl-3-phenyl-2-propenoate (ethyl 

cinnamate) and ethyl-3-phenyl-propanoate (ethyl 2,3-dihydrocinnamte or ethyl hydrocinnamate). 

These compounds are esterification of cinnamic acid which is biosynthesized from phenylalanine, one 

of the three carbo-aromatic amino acids, from the precursor chorismic acid via phenylalanine 

ammonia-lyase (Rutan, 2016). Most studies suggested that their concentration in Pinot Noir wine were 

above their perception threshold levels (Rutan et al., 2014). 

2.3.5 Methoxypyrazines  

The 3-alkyl-2-methoxypyrazines (MPs) have been found to play an important role in the wine aroma 

due to their lower sensory perception threshold level (Parr, Green, White, & Sherlock, 2007; Parr et 

al., 2016; Sala et al., 2004). They produce green aromas, herbaceous odours and fresh-cut grass aromas 

in wine. The 3-isobutyl-2-methoxypyrazine (IBMP), 3-sec-butyl-2-methoxypyrazine (SBMP), and 3-

isopropyl-2-methoxypyrazine (IPMP) are the most important MPs found in wine. Higher 

concentrations of these compounds can result in undesirable green aromas in the finished wines, made 

by adding stems and whole bunches (Reynolds, 2010; Sala et al., 2004). Hashizume and Samuta (1997) 

reported that grape stem is the richest source of MPs compared to berry and leaf of Cabernet 

Sauvignon and Chardonnay grapes. Hence, there is a risk of ‘green’, ‘grassy’ and ‘herbal’ flavours and 

aromas when use stems in the winemaking. However, it can be avoided by adding bunches with 
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lignified stems rather than green and reducing the proportion of whole bunches. Lignification is likely 

to be lower in cooler climates due to cessation of vine growth as well as lignification tends to be lower 

in wet conditions specially mid and late season rain fall which stimulate vine growth (Goode, 2016). 

According to a previous study conducted by Hashizume et al. (1998), reported that Pinot Noir wines 

made by adding 3% stem caused to result in 2.9 µg/L of IPMP and 16.0 µg/L of IBMP in the resultant 

wines, and treatment made without adding stems was not contained these compounds. 

Volatile aroma groups of fatty acids, esters, higher alcohols and carbonyls in wine are derived from the 

yeast and bacteria metabolism (Swiegers & Pretorius, 2005). majority of volatile fatty acids, esters, and 

higher alcohols are absent in grape must and are produced during the fermentation process (Robinson 

et al., 2014). Wine aroma composition changes rapidly during the fermentation process and 

immediately after the fermentation. It is due to the production of acetaldehyde, ethanol, fatty acids, 

esters, higher alcohols and hydrogen sulphide like volatile compounds during sugar metabolism of 

yeast during fermentation. These chemical reactions typically occur as a result of the enzymatic or 

acidic hydrolysis of sugars and amino acids during the metabolism of yeast (Rutan, 2016). 

2.3.6 Fatty acids  

The majority of the fatty acids produced by yeast are long-chain fatty acids (>C12), those are heavier 

and non-volatile, but they also can produce short (<C6) and medium-chain (C6-C12) volatile fatty acids 

(Robinson et al., 2014). The total volatile acid concentration in wine usually ranges from 500 to 1000 

mg/L, which contributes 10-15% of the total acid content in wine. Acetic acid accounts for more than 

90% of total volatile fatty acid (FA) in wine (Swiegers & Pretorius, 2005) but normally concentration of 

acetic acid in wine is well below its perception threshold level unless there is significant spoilage. Short-

chain fatty acids including branched-chain isobutyric and isovaleric acids and straight-chained butyric 

and propionic acid have been found that they contribute to wine aroma (Robinson et al., 2014; Rutan, 

2016). Isobutyric and isovaleric acids cause sweaty, cheese-like aromas in wine. They were identified 

as markers of Brettanomyces bruxellensis spoilage and are thought to be capable of masking the ‘‘Brett 

character” attributed to 4-ethylphenol and 4-ethylguaiacol (Romano, Perello, Lonvaud-Funel, Sicard, 

& de Revel, 2009). Many studies reported that concentrations of isovaleric acid, hexanoic acid and 

octanoic acid in Pinot Noir wines were above the perception threshold level (Girard et al., 2001; Rutan 

et al., 2014; Tomasino et al., 2015) (Table A.1 in Appendix). Girard et al. (2001) reported that 30°C 

fermentation temperature caused a slight decrease of hexanoic acid and 20°C fermentation treatment 

increased the concentration of octanoic acid in Pinot Noir wine.  
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2.3.7 Esters  

Esters are the second largest contributor to the total volatiles, accounting around 36% and is second 

only to higher alcohols (fusel alcohol) (Sumby, Grbin, & Jiranek, 2010). This group is the primary source 

of fruity aroma in wines, but more soapy odours can develop when increasing the length of the 

hydrocarbon chain of the fatty acid (C16 and C18) involve in the formation of esters. Esters can be 

formed either enzymatically or formed during wine ageing by reacting to alcohol and carboxylic acid 

functional groups together (Sumby et al., 2010). However, most esters in alcoholic beverages are 

secondary metabolites produced by yeast during alcoholic fermentation. Their synthesis is linked to 

the lipid and acetyl-CoA (coenzyme A) metabolism in yeast cell but esters significant to a specific grape 

cultivar have also been identified. Pinot noir wines are known to exhibit distinct red fruity aromas that 

particularly evoke the odours of small-stone fruit. Synthesis of acetate esters during fermentation is 

an energy-requiring process that takes place inside the yeast cell. It requires the important metabolite, 

acetyl-CoA and occurs in two stages. These reactions require alcohol, fatty acids, CoA, and ester 

synthesising enzyme (Swiegers & Pretorius, 2005). Though, some variations in ester concentration in 

different treatments can observe due to the complex nature of wine subjects to continuous changes 

in composition during storage and even after bottle opening. This may be because of hydrolysis and 

esterification or could be caused by ester oxidation by hydroxyl radical-related processes. There are 

many factors that influence the formation of esters in wine such as fermentation temperature, yeast 

strain, nitrogen levels in must, oxygen availability, and grape variety (Rutan, 2016). 

2.3.8 Higher alcohols  

Higher alcohols (also called as fusel alcohol) found in wine are the largest group of aroma constituents, 

accounting around 51% of total volatile constituents found in wine (Sumby et al., 2010). It mostly 

contributes to the strong, pungent aromas and flavours in wine as well as they act as important 

precursors for ester production. C6 alcohols also cause vegetal and herbaceous aromas in wine 

(Ferreira, López, & Cacho, 2000). Higher alcohols are secondary products of yeast alcoholic 

fermentation (Sumby et al., 2010; Swiegers & Pretorius, 2005). Swiegers and Pretorius (2005) reported 

that when higher alcohol concentration in wine below 300 mg/L can contribute for wine complexity 

but if exceeded over 400 mg/L, they have a negative influence on the quality of the wine. There are 

two forms of higher alcohols in wines: 1) aliphatic alcohols, such as cis-3-Hexen-1-ol, trans-3-Hexen-1-

ol, trans-2-Hexen-1-ol, 1-Hexanol, 1-Octanol, 2) aromatic alcohols, such as Phenylethyl alcohol. 

2.3.9 Volatile Phenols 

Volatile phenols can derive from microbial actions, oak maturation and smoke-taint. The most 

common volatile phenols found in wines are 4-ethylguaiacol, 4-ethylphenol, guaiacol, eugenol and 

vanillin (Allen, Bui, Cain, Rose, & Downey, 2013; Chatonnet, Viala, & Dubourdieu, 1997). These 
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compounds have aroma ranging from the sweaty saddle to cloves. Most significant volatile phenols 

are originated via microbial actions in wines from the precursors, p-coumaric acid and ferulic acid, both 

cinnamic acids. Brettanomyces yeasts are responsible for the decarboxylation of the precursor acids 

to vinyl phenols via cinnamate decarboxylase. The vinyl phenols are then converted by vinyl phenol 

reductase to ethyl phenols (Chatonnet et al., 1997).  

The 4-ethylguaiacol, and 4-ethylphenol guaiacol are mainly responsible for “bretty” flavour in wine, 

and these compounds are considered as indicator compounds for Brettanomyces activity. These 

flavours are often considered as a defect, when present in wines (Fariña, Boido, Carrau, & Dellacassa, 

2007; Hornsey, 2007). Feng, Skinkis, and Qian (2017) showed that oak ageing can enhance guaiacol, 

eugenol, and vanillin in wines. It has been reported that toasting of the oak barrels leads to thermal 

degradation of lignin and produces the volatile phenols, which could be extracted into the wine. The 

author reported that American oak could enhance all above three compounds compared to Spanish 

and French oak used in the study.  

Previously reported concentrations of most of the volatile phenols were well below their perception 

threshold levels in Pinot Noir wine (Rutan et al., 2014; Tomasino et al., 2015). But Eugenol 

concentration could exceed its perception threshold levels in both of these studies (Table A.1 in 

Appendix). 

2.4 Impact of cold maceration and grape stems on wine composition 

A range of winemaking techniques can be used in Pinot Noir wine production to manage the extraction 

of phenolics and enhance/stabilise colour, for example, cold maceration, whole bunch fermentation, 

and post-fermentation maceration. Several factors affect the extraction of polyphenolics including 

tannins and anthocyanins into wine during maceration treatments and fermentation. It includes the 

duration of the treatment, temperature, alcohol concentration and sulphur dioxide concentration. 

Anthocyanin concentration typically come into the peak early, while proanthocyanidin extraction 

usually increases to reach a maximum at pressing. However, the localisation of phenolics in grape berry 

and interaction of phenolics with other components limit extraction of total grape polyphenolics into 

wine (Patricia & Kennedy, 2007). Smith, McRae, and Bindon (2015) also reported that extraction of 

tannins can be influenced by various winemaking interventions, e.g. more tannins can be extracted by 

crushing grapes, extended maceration, pulsed electric field, enzyme application and microwave 

maceration.  

2.4.1 Adding stem or whole bunch in fermentation 

Grape stems contain a significant amount of phenolics (Kosińska-Cagnazzo et al., 2019; Makris, Boskou, 

Andrikopoulos, & Kefalas, 2008; Ruiz-Moreno et al., 2015; Souquet et al., 2000). Souquet et al. (2000) 
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reported that merlot grape stems contained significant amounts of polyphenolic compounds, 

especially phenolic acids, flavonols, and flavanonols comprising:  caftaric acid-40 mg/kg, coutaric acid-

4.5 mg/kg, quercetin-3-glucuronide-200 mg/kg, quercetin-3-glucoside-18 mg/kg, catechin-60 mg/kg 

and epicatechin- trace amount. In addition to flavanols and flavonols, Roditis grape stems contain 

significant amounts of stilbenes and astilbins (Makris et al., 2008). Melzoch et al. (2001) reported that 

the richest source of resveratrol (main stilbene in wine) is the cluster stems (rachis) of grapes. 

Resveratrol is a stilbene produced by the grapevine in all tissues as a phytoalexin in response to various 

stress factors such as UV-radiation, mechanical injuries, and, specifically in vine grapes to Botrytis 

infection and other fungal attacks (Aaviksaar et al., 2003; Waterhouse, 2002). Resveratrol 

concentration in different parts of Pinot noir grapes contained; 2.80 mg/kg in leaves, 13 mg/kg in 

rachis, and 2.34 mg/kg in berry respectively (Melzoch et al., 2001). Pinot Noir wines tend to have a 

higher concentration of resveratrol compared to other varieties (Baraboy, 2009; Melzoch et al., 2001).  

Typically, in the range of 5% to 40% of whole bunch addition is common in practice, but there are many 

anecdotal pieces of evidence of using 100% whole bunches (Casassa et al., 2019). It has been shown in 

many studies that maceration in the presence of stems in red winemaking is an important technique 

to enhance tannins and increase the formation of polymeric pigments, which are useful for long term 

colour stability in wines (Casassa et al., 2019; Hashizume et al., 1998; Suriano et al., 2015).  

Stem addition for all types of varieties is not appropriate because stem may cause significant colour 

loss, reduced acidity and stemmy flavour to the resultant wine. Most of the time stem addition is 

common in low tannin grape varieties like Pinot Noir to enhance tannin (Hashizume et al., 1998). The 

potential drawback of whole bunch fermentation is the risk of ‘green’, ‘grassy’ and ‘herbal’ flavours 

and aromas, in finished wines. It can be avoided by adding bunches with lignified stems rather than 

green and reducing the proportion of whole bunches. Lignification is likely to be lower in cooler 

climates due to cessation of vine growth as well as lignification tends to be lower in wet conditions 

especially mid and late-season rainfall which stimulates vine growth thus adding vegetal or herbaceous 

notes to the wines (Goode, 2016). These sensory notes arise from methoxypyrazines, aliphatic 

carbonyl compounds or C6 higher alcohols such as 1-hexan-ol or 3-hexen-1-ol (Suriano et al., 2015). 

2.4.2 Cold Maceration 

Cold maceration is a common method used to enhance the total phenolic content in red wine. It is a 

production tool which may increase the complexity of aroma, colour and colour stability of red wines 

(Panprivech, Lerno, Brenneman, Block, & Oberholster, 2015). Cold maceration is a maceration practice 

based on permitting the contact of skins, and seeds just before the beginning of alcoholic 

fermentation. The absence of fermentative activity is ensured by chilling. They prevent the activity of 

Saccharomyces cerevisiae (Casassa et al., 2019; Dambergs et al., 2012). Absence of ethanol during CS 
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treatment helps for selective extraction of water-soluble compounds including anthocyanins, free and 

glycosylated-bound aroma compounds, polysaccharides and low molecular weight tannins (Casassa et 

al., 2019). Time-temperature combination of this treatment varies widely depending on many factors 

such as the grape variety used and expected characteristics of resultant wine in the literature.  

Previous studies have shown that cold maceration could influence on colour, phenolics and aroma 

composition of wine. Many authors reported that cold maceration could increase anthocyanin in the 

resultant wines (Álvarez et al., 2006; Koyama et al., 2007). However, there are some contradictory 

findings as well Casassa et al. (2019) reported that cold maceration caused to reduce anthocyanin 

extraction and decrease colour intensity in Pinot Noir wines. In terms of phenolics, most of the previous 

publications suggest that cold maceration is increased total phenolics in the resultant wines (Álvarez 

et al., 2006; Casassa et al., 2019; Koyama et al., 2007). Casassa et al. (2019) reported that cold 

maceration (Dry ice was used to maintain the temperature at 6.7 ± 1.2°C for five days and SO2 

concentration was 80 mg/L) could increase total tannin extraction by 37% in making Pinot Noir wine 

compared to a control treatment. 

Few publications are assessing the effect of cold maceration on wine aroma. Cai et al. (2014) reported 

that cold maceration in pumping over tanks could result in higher concentrations of β-Damascenone, 

and acetate esters in Cabernet Sauvignon wines, those are mainly responsible for fruity aromas in 

wine. But Casassa et al. (2019) reported that cold maceration decreased β-Damascenone 

concentration in Pinot Noir wine. The author also reported that cold maceration could significantly 

increase ethyl butanoate, hexyl acetate and hexanol, and cold maceration significantly decreased 

hexanoic acid and β-Damascenone in cold macerated wines compared to a control treatment (no cold 

maceration). However, these variations of results may be due to changes in cold macerating 

parameters such as temperature, duration and method used in reducing the temperatures of the 

media.   

2.5 Project aims 

This study aims to investigate the effect of stem inclusion fermentation on the composition of Pinot 

Noir wines which were fermented with or without the addition of grape stems or whole bunches at 

different proportions. In total, there are five treatments included in this study: 1) the DS treatment 

prepared with 100% of destemmed and crushed grapes; 2) the WB30 treatment prepared with 

addition of 30% of whole bunches; 3) the WB60 treatment prepared with addition of 60% of wholes 

bunch; 4) the WB100 treatment prepared with addition of 100% of wholes bunch; 5) the DS100 

treatment prepared with 100% of stems added back to destemmed and crushed grapes. Analysis of 

resultant wine composition was carried out to investigate the impact of stem inclusion fermentation 

on colour parameters, phenolic compounds and aroma compounds of Pinot Noir wine. 
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2.6 Thesis structure  

This thesis contains seven chapters, including the first two chapters of introduction and literature 

review. Tables and figures used in chapters are given at the end of each chapter. Chapter 3 outlines 

the general material and methodology used throughout the project. From chapter 4 to 6 are 

experimental chapters, which are discussing the effect of stem inclusion fermentation on colour 

parameters, phenolic compounds and aroma profiling of Pinot Noir wines, respectively. Experimental 

chapters are structured as journal papers containing the abstract, introduction, methodology, results 

and discussion, and conclusion. The methodology used in experimental chapters discussed briefly to 

keep the flow and avoid repetition of chapter 3 (general materials and methodology). All the 

references cited in each experimental chapter are listed in the references at the end of the thesis. 

Chapter 7 includes the general conclusion of this study and recommendations for future studies.  
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Figure 2.1: Parent ring system for flavan‐3‐ols  
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Figure 2.2: The pH-dependant equilibria among the various structural forms of anthocyanins 

(F. He et al., 2012; J. He & Giusti, 2010)  
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Figure 2.3: Model Co-pigmentation reaction of anthocyanin with a phloroglucinol-electron rich 
partner (this equilibrium shifts to the right side (red coloured form))  

(Waterhouse et al., 2016) 
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Figure 2.4: Self-association of anthocyanin - stacking of anhydrobase molecules prevent the 
formation of colourless pseudo base  

(Goto & Kondo, 1991) 
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Table 2.1: HCA structures and their concentration in Pinot Noir wine from previous publications. 

1 (Van Leeuw et al., 2014) 

 

 

  

 

Non-flavonoid: HCA R1 R2 R3 
Reported concentration 

range in Pinot noir (mg/L)1 

Caftaric acid OH H Tartaric Acid 39.91-117.95 

cis-coutaric acid H H Tartaric Acid  

trans-coutaric acid H H Tartaric Acid  

caffeic acid OH H H 1.92-7.88 

p-coumaric acid H H H 0.49-3.85 

ferulic acid OCH3 H H  
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Table 2.2: HBA structures and their concentration in Pinot Noir wine from previous publications 

 
1 (Van Leeuw et al., 2014) 
 
  

 

Non-flavonoid: HBA R1 R2 R3 R4 
Reported 

concentration range in 
Pinot noir (mg/L)1 

Gallic acid H OH OH OH 23.37-105.27 

Syringic acid H OCH3 OH OCH3 2.36-9.12 

Protocatechuic acid H OH OH H 1.09-6.23 

p-Hydroxybenzoic acid H H OH H 0.09-1.44 
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Table 2.3: Anthocyanin structures and their concentration in Pinot Noir wine from previous 
publications 

 

Monomeric 
Anthocyanin 

R1 R2 R3 
Concentration ranges (mg/L) 

(Cortell et al., 2007) 
(Mazza et al., 

1999) 

Cyanidin-3-O-
glucoside 

OH H Glc 0.49-1.50 3.3-3.5 

Delphinidin-3-O-
glucoside 

OH OH Glc 1.48-6.14 10.4-14.5 

Peonidin-3-O-
glucoside 

OCH3 H Glc 9.50-22.21 15.7-24.3 

Petunidin-3-O-
glucoside 

OCH3 OH Glc 3.26-11.44 11.4-14.4 

Malvidin-3-O-
glucoside 

OCH3 OCH3 Glc 79.89-150.32 50.4-52.1 

Glc-glucosyl unit
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Chapter 3 

General Materials and Methodology  

3.1 Pinot noir grapes and grape extracts 

Two rows of Pinot Noir grapes (clone/rootstock: B777/3309) planted in the Lincoln University vineyard 

(-43.644970, 172.444760) were selected for the study. The maturity level of the selected two rows of 

Pinot Noir grapes was monitored by measuring the total soluble solids (TSS), pH and titratable acidity 

(TA). Maturity level observation started on 18th of February 2019. The pH and TA analysis were started 

when TSS reached 20° Brix and continued until the 2nd of April 2019 when 23° Brix was achieved 

prompting manual harvest of the grapes. Three batches of 30 berries were randomly taken at harvest 

for analysing the TSS, pH, TA, and yeast assimilable nitrogen (YAN). A separate 50 g berry sample was 

homogenized using a grinder (Breville, BCG200, Australia), and 1 g of the homogenate was extracted 

into 10 mL of 50% ethanol solution as described by Sarneckis et al. (2006) to analyse tannins and total 

anthocyanins in grapes at harvest. Any unripe or diseased berries/ bunches were removed, and only 

healthy grapes were used for winemaking using the protocol described below. 

3.2 Experimental design and winemaking 

Five treatments were set out according to Table 3.1, each using an initial weight of 5 kg of grape 

bunches per treatment.  Each treatment was carried out in triplicate following the protocol developed 

in consultation with winemakers, Dom Maxwell at Greystone and Mark Rose at Pegasus bay. 

Cold maceration was done in 10 L plastic buckets while in the presence of 30 ppm sulphur dioxide 

(SO2). Carbon dioxide gas cover was maintained in the buckets to avoid oxidation and facilitate an 

anaerobic environment inside the containers during cold maceration. After that, the containers were 

sealed and incubated at 4°C for 5 days. After CS each treatment bucket was crushed manually by 

punching down (including whole bunches). Before fermentation, representative samples (50 mL) from 

each treatment were collected to analyse for TSS, pH, and TA. 

Grape must was inoculated with EC1118 commercial yeast (Lalvin, Denmark) and the fermentation 

was carried out in a room maintained at 26 - 30°C. SuperfoodTM yeast nutrient was added in two stages 

during fermentation according to the manufacturer’s specifications. Addition charts were developed 

according to the initial YAN content of grapes. Grapes harvested in this work (YAN: 207 ppm) was 

categorized in the “Mild Risk” category in the addition chart. Temperatures of the cap and liquid were 

recorded before cap management.  The cap management, manual punch-down, was done twice per 

day during alcoholic fermentation and reduced to once per day during post-fermentation maceration. 
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All wines were fermented to dryness, defined as residual sugar less than 4 g/L. Total weight reduction 

was used to determine the progress of the fermentation. Clinitest™ was used to monitor the endpoint 

of fermentation. Subsequently, the Rebelein method was used to measure reducing sugar in wine 

(Iland, 2013). After 4 days post-fermentation maceration, free-run wines were collected, and 50 ppm 

of sulphur dioxide added.  The wines were allowed to settle for 2 days at 1°C before bottling. Three 40 

mL aliquots of wine samples were taken into screw cap amber vials, with PTFE/Silicone septa (Supelco 

Bellefonte, PA, USA, through Sigma- Aldrich, Australia) for HPLC and three 10 mL aliquots of wine 

samples were taken into screw cap GC vials were for GCMS and kept in the freezer until further 

analysis. The remaining volume of wine was bottled in 375 mL bottles and sparged for 30 seconds of 

nitrogen gas flush to headspace before sealing. They were kept in refrigerated conditions. 

3.3 General oenological parameters 

Total soluble solids (TSS) and pH of harvested grapes and juice after cold maceration were analysed 

using a refractometer (Model PR-101, Atago Co. Ltd, Japan) and pH meter (Model SP-701, Suntex, 

Taiwan), according to the methods described in Iland (2013). Titratable acidity (TA) was measured by 

titrating a known quantity of juice (10 mL) with standardised 0.1 N Sodium hydroxide (NaOH) solution 

(Fisher Scientific, Waltham, MA, USA) to a pH endpoint of 8.2. Yeast assimilable nitrogen (YAN) and 

malic acid were determined using commercial enzyme test kits (Vintessential Laboratories, Australia). 

The alcohol content was determined using the ebulliometer (Dujardin Salleron, France). Rebelein 

method was used to determine the concentration of residual sugars in wine according to the methods 

described by Iland (2013).  

3.4 Methyl cellulose precipitable (MCP) tannin assay  

Tannin in grape extracts and wine was determined using the 1 mL methyl cellulose precipitation (MCP) 

method described by Sarneckis et al. (2006) as modified by Mercurio, Dambergs, Herderich, and Smith 

(2007). Epicatechin stock solution (1 g/L) was prepared to develop the calibration curve ranging from 

0 to 120 mg/L. Methyl cellulose solution (0.04% of the product; Sigma-Aldrich, M-0387, Sydney, 

Australia, 1500 cP viscosity at 2%) and saturated ammonium sulphate solution (Sigma-Aldrich A4915, 

Auckland, New Zealand) were prepared according to the method of Sarneckis et al. (2006). Grape 

extract samples (100 µL) and 2 times diluted wine samples (25 µL) were used for the analysis. 

Absorbance readings were taken at 280 nm on a UV-Visible spectrophotometer (Model UV-1800, 

Shimadzu Corporation, Japan). 

3.5 Total anthocyanin measurement 

Total anthocyanins content of harvested grape berries was determined based on the method 

described by Iland, Cynkar, Francis, Williams, and Coombe (1996). Grape extracts (200 μL) were 
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transferred into a quartz cuvette (10 mm) and 3.8 mL of 1.0 M hydrochloric acid (HCl) added. The 

cuvette was then covered with parafilm and mixed by inverting a few times. The mixture was kept at 

room temperature for 3 hours before taking the absorbance readings at 520 nm on a UV-Visible 

spectrophotometer (Model UV-1800, Shimadzu Corporation, Japan). 

3.6 Total phenolic content measurement 

Total phenolic content in wines was analysed using the microscale Folin-Ciocalteau colourimetric 

method as described by Wrolstad (2001). Gallic acid stock solution (5 g/L) was prepared to develop the 

calibration curve ranging from 0 to 500 mg/L. The concentration of total phenolics was quantified 

against the gallic acid calibration curve and expressed as mg/L gallic acid equivalent. Absorbance 

readings were taken at the wavelength of 765 nm on a UV-Visible spectrophotometer (Model UV-1800, 

Shimadzu Corporation, Japan). 

3.7 Analysis of monomeric phenolics by HPLC 

Reagents Deionised water was obtained from a Barnstead GenPure system (Thermo Scientific, 

Germany) for solid-phase extraction (SPE) and HPLC analysis. All reagents used in SPE: methanol (Fisher 

Chemical, A452, Canada), formic acid (Fisher Chemical, F/1900/PB17, Canada), acetonitrile (Fisher 

Chemical, A998, Canada) and absolute ethanol (Scharlau, SA, Australia). All standard reference 

reagents were HPLC grade and purchased from Sigma-Aldrich (Australia).  

Monomeric phenolics in wines were separated using the solid phase extraction method described in 

Jeffery, Mercurio, Herderich, Hayasaka, and Smith (2008). The Oasis HLB cartridge (Waters, Rydalmere, 

NSW, Australia) was conditioned with 2 mL of methanol followed by 2 mL of water. Wine samples (1.5 

mL) were clarified at 8960 g (RCF) for five minutes before the analysis (Model Biofuge 15, Heraeus 

Sepatech GmbH, Germany). After centrifugation, 1 mL of wine sample was added under gravity to the 

cartridge. The cartridge was completely dried with a gentle stream of nitrogen once the wine volume 

was completely absorbed (approximately 25 minutes). Subsequently, the cartridge was eluted with 40 

mL of 95% acetonitrile/5% 0.01 M hydrochloric acid to separate the fraction of monomeric phenolics 

from polymeric phenolics. The eluent was vacuum evaporated (Model CH-9230, Buchi AG, Switzerland) 

completely at 36°C in a water bath (Model JB2, Smith Biolab Ltd, New Zealand). Solids were dissolved 

in 1 mL of 10% ethanol/0.1% formic acid and transferred into an HPLC vial for analysis.  

HPLC analysis was carried out according to the method described by Gómez-Alonso, García-Romero, 

and Hermosín-Gutiérrez (2007) with slight modifications. Agilent Technologies 1100 series HPLC 

machine equipped with quaternary pump and diode array detector (DAD) was used with an ACE 3µ 

C18-PFP 150X4.6mm (Advanced Chromatography Technologies, Aberdeen, Scotland) as a separation 

column. The fraction containing monomeric phenolics (10 µl) from each wine sample was injected into 
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the HPLC column while kept at 20C temperature. The mobile phase is composed of three solvents: A 

(0.05M NH4H2PO4, pH=2.6), B (100% acetonitrile) and C (0.2M H3PO4). The total flow rate was 0.8 

mL/min, and the solvents programme is shown in shown Table 3.2. The detection and quantification 

of monomeric phenolics were recorded at 280, 320, 360 and 520 nm using the photodiode array 

detector (DAD). The identification of phenolic compounds was carried out by comparing their 

retention times and the spectra with those of standards (Table 3.3). The quantification of phenolic 

compounds was calculated by using the individual calibration curve of each standard.  

3.8 Aroma profiling of wines  

Reagents Deionised water was obtained from a Barnstead GenPure system (Thermo Scientific, 

Germany). Absolute ethanol was purchased from Scharlau Chemi (SA, Australia), Sodium hydroxide 

was purchased from Fisher Scientific (Waltham, MA, USA), All pure reference reagents and isotopically 

labelled compounds were purchased from Sigma-Aldrich (Australia). 

3.8.1 Headspace solid-phase microextraction gas chromatography-mass 
spectrometry (HS-SPME/GC-MS) 

Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) 

was used to determine selected aroma compounds in wine samples using the method described by 

(Tomasino et al., 2015). Three different HS-SPME/GC-MS methods were used to identify and quantify 

different groups of aroma compounds: esters, higher alcohols, fatty acids and low concentration 

aromatic compounds. Composite standard solution for each method was prepared from stock 

standard solutions of aroma compounds, which were selected based on previous studies on Pinot noir 

wines.  Subsamples of the prepared composite standard were stored frozen at -20°C in 4 mL amber 

colour screw cap vials. A separate internal standard for each method was prepared from the stock 

solutions containing the isotopically labelled (deuterated) compounds.  

To prepare working standards different proportions of previously prepared composite standard 

subsample (0 - 0.90 mL) (vial thawed to room temperature before use), and acidified (pH 3.5) aqueous 

14% (v/v) ethanol solution (0.90 – 0 mL) (“wine matrix”) were mixed and  8.06 mL of acidified (pH 3.5) 

deionised water, followed by 40 µL of internal standard and 4.5 g of sodium chloride added into a 20 

mL amber glass screw cap vial just prior to capping as mentioned in Tomasino et al. (2015). All wine 

samples were diluted immediately before the analysis. The same working standards preparation 

procedure applied for the wine sample preparation for the analysis (0.9 mL of wine used instead of 

composite standard). The total volumes used are equivalent to a 10-fold dilution of the wine sample. 

All samples were held at 8°C prior to injection in a stack cooler attached to the Combi-Pal autosampler 

(CTC-Analytics, Zwingen, Switzerland).  
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The fibre used in this methodology is 2-cm long Stableflex DVB/CAR/PDMS combination SPME fibre 

(p/n 57348-U, 50/30 μm thickness, 24 gauge). This fibre was conditioned at 250°C for 1 hour in the 

injection port and it was further conditioned in helium for 10 minutes at 250°C in a fibre conditioning 

station attached to the Combi-Pal auto-sampler used with the Shimadzu GC-MS instrument (Shimadzu 

Scientific Instruments, Oceania, NSW, Australia) immediately before each sample analysis.  

Method 1: Analysis of 12 esters, 7 alcohols and 1 aromatic aldehyde were determined in this step. 

Initially, samples were incubated at 60°C while agitating at 500 rpm for 10 minutes. The SPME fibre 

was then exposed to the headspace of the vial without agitating at 60°C for a 60-minute extraction 

period. Shimadzu QP2010 GC-MS (Shimadzu Scientific Instruments) equipped with a CTC Combi-Pal 

autosampler (CTC-Analytics) using Version 5.0 of Shimadzu GC-MS solutions data acquisition software 

was used for the analysis. The chromatography arrangement contained a short guard column (5 m × 

0.25 mm ID, Restek, Bellefonte, PA, USA) connected to dual columns in series: a Rtx-wax column (30 

m × 0.25 mm ID × 0.5 μm film thickness, polyethylene glycol, Restek) and a Rxi-1MS column (15 m × 

0.25 mm ID × 0.5 μm film thickness, 100% dimethyl polysiloxane, Restek). The helium carrier gas was 

used at a linear velocity of 33.5 cm/s. The oven of the column was maintained at 35°C for 3 minutes 

(during desorption of the SPME fibre), after that it was increased to 250°C at 4°C/min and held at this 

temperature for 10 minutes. The interface and MS source temperature were set at 250°C   and 200°C, 

respectively, with the MS source, operated in electron impact (EI) mode at ionisation energy of 70 eV. 

The MS acquisition mode was set to full scan for all 20 compounds for the quantification of each aroma 

compound during post-run data analysis. The reference standards composed of pure compounds and 

NIST05 (National Institute of Standards and Technology) mass spectral library were used to check the 

identities for all standards used.  

Method 2: Twenty-one low concentration (trace category) compounds were analysed using a similar 

procedure to method 1 except the data acquisition mode was set to selected ion monitoring (SIM) and 

altered GC oven temperature ramp to improve separation to ensure the presence of required 

sensitivity to detect selected compounds. The modified GC oven temperature was held at 35°C for 3 

min, increased to 105°C at 3°C /min and held for 10 min, then increased to 140°C at 2°C/min and held 

for 10 min, then further increased to 250°C at 4°C/min and held for 10 min. 

Method 3: A separate method was used to detect and quantify six volatile fatty acids in wine samples. 

This method also used the same column configuration described in method 1, but HS-SPME extraction 

conditions were different, as well as the linear velocity of carrier gas flow rate and the GC oven 

temperature ramp, which was increased to ensure faster analysis. Samples were incubated initially for 

10 min at 60°C during which time the vial was agitated at 500 rpm. After 10 min, the SPME fibre was 

exposed to the headspace of the vial for 30 min at 60°C. The splitless injection was used for the first 3 
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min of the runtime, after which split mode was used at a 20:1 ratio. The helium carrier gas was set to 

a constant linear velocity of 46.8 cm/s. The column oven was held at 50°C for 3 min, increased to 240°C 

at 10°C/min, then further increased to 250°C at 30°C/min and held at this temperature for 5 min. The 

interface and MS source temperature were set at 250°C and 200°C, respectively, and the MS was 

operated in EI mode at ionisation energy of 70 eV. Full scan mode was used for all standards 

3.8.2 Methoxypyrazine analysis using HS-SPME MD-GC-MS 

The automated Headspace solid-phase microextraction with multi-dimensional gas chromatography-

mass spectrometry (HS-SPME MD-GC-MS) technique was used to analyse methoxypyrazines including 

3-isopropyl-2-methoxypyrazine (IPMP), 3-isobutyl-2-methoxypyrazine (IBMP), and sec-butyl- 

methoxypyrazine (SBMP) in wine samples. Analysis of IBMP was performed according to the method 

published by Parr et al. (2016), and some modifications to that method were developed for analysing 

IPMP and SBMP in wines (Breitmeyer, Field, & Olejar, 2020).  

Composite standard solution for each method was prepared from stock standard solutions of above 

three methoxy compounds.  Subsamples of the prepared composite standard were stored frozen at -

20°C in 4 mL amber colour screw cap vials. A separate internal standard for each method was prepared 

from the stock solutions containing the isotopically labelled (deuterated) compounds.  

To prepare working standards different proportions of previously prepared composite standard 

subsample (0 - 3 mL) (vial thawed to room temperature before use), and acidified (pH 3.5) aqueous 

14% (v/v) ethanol solution containing 5 g/L tartaric acid (3 – 0 mL) (“wine matrix”) were mixed together 

and  4.85 mL of acidified (pH 3.5) deionised water, followed by 150 µL of internal standard and 4.5 g 

of sodium chloride added into a 20 mL amber glass screw cap vial. Immediately after that, 1 ml of 4 M 

sodium hydroxide was added, and the tube was quickly capped. All wine samples were diluted 

immediately prior to analysis. The same working standards preparation procedure applied for the wine 

sample preparation for the analysis (3 mL of wine used instead of composite standard). The total 

volumes used are equivalent to a 3-fold dilution of the wine sample. All samples were held at 8°C prior 

to injection in a stacked cooler attached to the Combi-Pal autosampler (CTC-Analytics, Zwingen, 

Switzerland). 
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3.8.3 Calculation of odour activity values (OAVs) and aroma series  

The odour activity value (OAV) for each aroma compound was calculated by dividing respective aroma 

compound concentration by the corresponding aroma threshold values obtained from previous 

studies to determine impacting aroma compounds (OAV>0.1) in resultant wines. 

To predict the overall aroma perception in each treatment from the data obtained from GC-MS 

analysis, aroma active compounds identified in OAV analysis were grouped into eight aroma series (1-

Fruity, 2-Floral, 3-Spicy, 4-Chemical, 5-Microbiological/oily/fatty,6-Woody, 7-Vegetative, 8-Nutty) 

based on their respective odour descriptors mentioned in Table A.1 (See Appendix). The grouping was 

done according to the aroma wheel developed by Noble et al. (1987) together with previously 

published research articles (Cai et al., 2014; Zea, Moyano, Moreno, & Medina, 2007). Some odour 

compounds were categorised into two or more groups due to the high complexity of aroma 

perception. The aroma compounds in the same aroma category were summed together and plotted 

in a bar chart. 

3.9 Modified Somers Assay 

Wine samples were analysed for colour parameters using the modified Somers 10 mL colour assay as 

described in Mercurio et al. (2007). Wine samples were centrifuged at 4000 rpm for 5 minutes before 

the preparation of 4 treatments (Model Heraeus Multifuge X1R, Thermo Fisher Scientific, Germany). 

In treatment A, one in 10 dilutions of wine was added into buffer 1 (model wine, 0.5% w/v tartaric acid 

in 12% v/v ethanol adjusted to pH 3.4 with 5 M NaOH), and absorbance was read at 420 nm and 520 

nm immediately after mixing. In treatment B, one in 10 dilutions of wine was added into buffer 1 plus 

0.375% w/v sodium metabisulphite. Samples were mixed and incubated at room temperature for 1 h. 

Absorbance was read at 520 nm. In treatment C, one in 10 dilutions of wine was added into buffer 1 

plus 0.1% v/v acetaldehyde. Samples were mixed and incubated at room temperature for 1 h. 

Absorbance was read at 420 and 520 nm. In treatment D, one in 50 dilutions of wine was added into 1 

M HCl. Samples were mixed and incubated at room temperature in the dark for 3 hours. Absorbance 

was read at 280 and 520 nm. Absorbance readings at different wavelengths were taken by UV-Visible 

spectrophotometer (Model UV-1800, Shimadzu Corporation, Japan) and calculations of modified 

Somers colour parameters were conducted according to formulas described in Mercurio et al. (2007). 

3.10 CIELab analysis  

The standard procedure published by OIV (2006) was used to calculate the CIELab colour parameters 

in wine. Transmittance every 5 nm over the visible spectrum range from 380 nm to 780 nm were 

conducted in a 2 mm path length quartz cuvette against deionised water blank using a UV-Visible 

spectrophotometer (Model UV-1800, Shimadzu Corporation, Japan). CIELab colour parameters were 
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calculated for the CIE illuminant D65 and 10 standard observer conditions, according to OIV (2006). 

The colour parameters include L* (luminosity/lightness), a* (green/red), b* (blue/yellow), C* (chroma) 

and H* (tone/hue angle). 

3.11 Statistical analysis 

Data were presented as mean ± SD of three replicates. Data obtained from oenological parameters 

measurement, HPLC, GC-MS, Somers assay and CIELab were analysed by one-way analysis of variance 

(ANOVA) with a post-hoc analysis. Post-hoc analysis was carried out by the Tukey HSD test. Analyses 

were performed at a 0.05 level of significance using Minitab 18 (Minitab, US) software package. 

Interactions of CIELab coordinates with total phenolics, MCP tannin, total anthocyanin, hue results 

were analysed according to Pearson Correlation analysis at a 0.05 level of significance using Genstat 

19 (Genstat, UK). 

All impacting aroma compound’s OAV values (OAV>0.1) calculated using GCMS data were presented 

as mean ± SD of three replicates and analysed by one-way analysis of variance (ANOVA) with post-hoc 

analysis. Post-hoc analysis was carried out by the Tukey HSD test. The analysis was performed at a 0.05 

level of significance by means of Minitab 18 (Minitab, US) software package. 

Principle component analysis (PCA) was conducted in this study. Significantly different compounds in 

GCMS analysis were chosen to perform the PCA analysis at a 0.05 level of significance using Minitab 

18 (Minitab, US). 
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Table 3.1: Treatment Preparation Procedure 

Treatment Grape processing conditions 

DS 100% destemmed grapes 

DS100 100% destemmed grapes with stems added back 

WB100 100% whole bunch 

WB60 60% whole bunch + 40% destemmed grapes 

WB30 30% whole bunch + 70% destemmed grapes 
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Table 3.2: Mobile phase solvent gradient table 

Time (min) A (%) B (%) C (%) 

0 100 0 0 

2 100 0 0 

5 93.6 6.4 0 

17 2.8 11.2 86 

22 3.6 14.4 82 

29.5 4.2 16.8 79 

55 6.6 26.4 67 

70 10 40 50 

75 10 40 50 

78 36 64 0 

81 36 64 0 

86 100 0 0 

90 100 0 0 

 A: 0.05M NH4H2PO4 at pH=2.6; B: 100% Acetonitrile; C: 0.2M H3PO4 
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Table 3.3: Phenolics Standards and Retention time (RT). 

# RT (min) 
Quantification 

wavelength (nm) Compound name 

1 10.407 280nm Gallic acid 

2 14.78 280nm Protocatechuic acid 

3 15.47 280nm Gallocatchin 

4 19.7 320nm Caftaric acid 

5 20.0 280nm Hydrobenzoric acid 

6 21.3 280nm Epigallocatechin 

7 22.9 280nm Catechin 

8 23.3 280nm Vanilic acid 

9 24.89 280nm Caffeic acid 

10 25.29 280nm Syringic acid 

11 27.3 280nm Epicatechin 

12 28.79 520nm Malvidin-3-O-glucoside 

13 31.509 280nm p-Coumaric acid 

14 35.4 280nm Ferulic acid 

15 37.0 360nm Rutin 

16 39.8 280nm Epicatechin gallate 

17 62.3 360nm Quercetin 
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Chapter 4 

The effect of grape stem inclusion fermentation on colour 

parameters of Pinot Noir wine 

4.1 Abstract 

The wine colour is an important sensory attribute of wine quality, which can be influenced by various 

winemaking techniques, including the use of grape stems. In this study, the basic oenological 

parameters and colour parameters were measured in wines made from five treatments consisting of 

different proportions of whole bunches/grape stem. In general, stem inclusion fermentation (by 

adding stems or using whole bunches) resulted in lower alcohol content and higher pH in the resultant 

wine. Wine colour measured by modified Somers assay showed that addition of 100% grape stems and 

high proportions of whole bunches (60% and 100% whole bunches by weight) tend to increase the 

degree of ionisation of anthocyanin, hue values, total phenolics and SO2 resistant pigments, and 100% 

stem inclusion significantly decreased total anthocyanins in resultant wine compared to non-stem 

added treatment. Wine colour evaluation by CIELab parameters showed that addition of whole 

bunches regardless of percentage didn’t lead to any significant difference in comparison to non-stem 

addition treatment (DS), but the addition of 100% of stems (DS100) resulted in a significant increase 

in L*, b*, C*, and H*. These results suggest that grape stem inclusion fermentation may improve wine 

colour stabilisation by increasing the concentration of SO2 resistant pigments, and the impact of adding 

stems into destemmed must is varied from whole bunch fermentation. 

Keywords: Anthocyanin, colour, Pinot Noir, stems, whole bunches   
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4.2 Introduction 

Colour is an important quality feature of red wine. The red wine colour is mainly determined by 

phenolics comprising mainly anthocyanin, tannin and polymeric pigments (formed during ageing) 

(Smith et al., 2007). The red colour in young red wine is mainly due to monomeric anthocyanins, and 

polymeric pigments are necessary for the longevity of red wine colour in aged wines (Durner, 2016). 

Pinot Noir wine colour is much lighter than other red varieties (Morgan & Tresidder, 2015). Because it 

lacks more stable acylated forms of anthocyanins. Pinot Noir has only five types of anthocyanins in 

unstable mono glucoside form: malvidin, peonidin, petunidin, delphinidin and cyanidin (Iland, 2013). 

Malvidin-3-O-glucoside is the main type of anthocyanin found in Pinot Noir wine (Casassa et al., 2019; 

Iland, 2013). Different winemaking treatments such as cold maceration, direct stem inclusion, and 

whole bunch addition are being used to enhance/stabilise colour and phenolics, especially when using 

low-tannin and anthocyanin grape varieties such as Pinot Noir. 

Several studies have investigated the effect of stem inclusion on wine colour (Smith et al., 2007). The 

stem inclusion can provide tannins as a secondary source of tannin in winemaking (Casassa et al., 2019; 

Suriano et al., 2015) but stem addition may reduce anthocyanins and result in paler colours in wines. 

Addition of stems/whole bunches can influence the wine colour mainly due to two reasons, (1) 

formation of stable pigmented tannins in wines by reacting stem extracted tannin with anthocyanin, 

which can lead to forming protein-precipitable polymeric pigments (Casassa & Harbertson, 2014; 

Durner, 2016; F. He et al., 2012), and (2) re-adsorption of anthocyanin into stems (Andrew, 2016; 

Suriano et al., 2015). Suriano et al. (2015) reported that stem inclusion (25% and 50 whole bunches) in 

Primitivo winemaking caused to decrease total anthocyanin and colour intensity in the resultant wines. 

Casassa et al. (2019) studied the combined effect of stem inclusion and cold maceration on the colour 

parameters of Pinot Noir wine. The author reported that anthocyanin concentration was higher in the 

wines treated with cold maceration together with 3% stems (CS + S treatment), and cold maceration 

together with 20% whole bunches (CS + WB treatment) compared to wines made without undergoing 

cold maceration in 2015 vintage. But the opposite was observed in 2014 vintage, whereby cold 

maceration without adding stems or whole bunches reduced anthocyanin in wines compared to 

control wine made without undergoing cold maceration.  

Hypothetically cold maceration can enhance phenolic compounds, mainly coloured compounds such 

as anthocyanins, among others, during the pre-maceration period. Many authors have investigated 

the effect of cold maceration on the resultant wine colour (Álvarez et al., 2006; Gómez-Míguez et al., 

2007; Koyama et al., 2007). Álvarez et al. (2006) reported that cold maceration using dry ice was more 

effective than storing in cold room to increase anthocyanins, especially malvidin-3-glucoside, ionised 

and polymerised anthocyanin in Monastrell red wines, as well as the maceration time, showed not to 
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be significant during the process (4 days and 8 days). Koyama et al. (2007) showed that cold maceration 

could extract phenolics in skins, including anthocyanin, flavonol, and epigallocatechin units within 

proanthocyanidins during early stages of maceration, and cold maceration has reduced the extraction 

of phenolics from the seed in Cabernet Sauvignon wines. However, there are some contradictory 

results have also been observed in literature: G González-Neves, Gil, Barreiro, and Favre (2010) 

reported that cold maceration was not affected for anthocyanin concentration at 12 months of bottle 

ageing of Tannat wine, and  Casassa et al. (2019) showed that cold maceration decreases anthocyanin 

extraction and colour intensity in Pinot Noir winemaking. 

In most of the previous studies, one maceration treatment was evaluated at once, and there are also 

some contradictory findings of the effect of cold maceration in wine colour. Hence, evaluating the 

combined effect of stem inclusion and cold maceration is useful to understand the effect of these 

treatments on the resultant wine colour. As well as, relatively lower amounts of stems were used in 

the previous publications (Generally 20-50% whole bunches or <3% stems), and most of the studies 

used one stem added treatment or cold macerated treatment to evaluate the influence of those 

treatments, by comparing to a non-treated wine. Therefore, in this work, five treatments were micro-

vinified to investigate the combined effect of different proportions of stem inclusion (0-100% whole 

bunches) and cold maceration on resultant wine colour. Separate treatment was used to evaluate the 

effect of direct stem addition and whole bunch addition on wine colour. 

4.3 Methodology  

4.3.1 Wine and juice Samples 

Five treatments were examined in this study: 100% destemmed and crushed grapes (DS), 100% 

destemmed and crushed grapes with stems added back (DS100), 30% whole bunches (WB30), 60% 

whole bunches (WB60), and 100% whole bunches (WB100). Juice samples immediately after cold 

maceration were collected. After that triplicate ferments of each treatment were conducted using a 

standard winemaking protocol, which includes five days cold maceration at 4 °C and four days post-

fermentation maceration at room temperature. Free-run wine samples from each treatment were 

collected at the end of alcoholic fermentation. Detailed winemaking protocol is described in Chapter 

3.2.  

4.3.2 General oenological parameters 

Grapes after harvesting were analysed for total soluble solids (TSS), pH, yeast assimilable nitrogen 

(YAN), and total anthocyanin. Total soluble solids (TSS), titratable acidity (TA) and pH of juice after cold 

maceration were analysed. Ethanol content, residual sugar, pH, titratable acidity (TA), and malic acid 

were analysed in wine. Detailed procedures of each method are described in chapter 3.3.  
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4.3.3 Wine colour assessment 

Both modified Somers assay and CIELab method were used to evaluate the colour of resultant wines. 

Modified Somers assay (Mercurio et al., 2007) was used to calculate total anthocyanin, degree of 

ionization of anthocyanins, colour density, hue, chemical age, sulphur dioxide resistant pigments and 

total phenolics. The detailed procedure of modified Somers assay is described in chapter 3.9. The 

CIELab colour parameters were measured according to the standard protocol published by OIV (2006), 

and details are described in Chapter 3.10.  

4.3.4 Statistical analysis 

Data are presented as mean ± SD of three replicates. In all cases, ANOVA was performed with the 

Tukey comparison test to compare means with a 5% level for rejection of the null hypothesis using 

Minitab 18 (Minitab, US) software package.  

Interactions of CIELab coordinates with some modified Somers method parameters were analysed 

using Pearson Correlation analysis from Genstat 19 (Genstat, UK) software. Five data points (average 

of each treatment) were used to calculate correlation values (df = n-2). Pearson correlation analysis 

was conducted at 95% significant level, so if the Pearson correlation coefficient (r) is greater than 

0.878, which is considered as a statistically significant relationship according to the Pearson’s 

Correlation Table.  

4.4 Results and Discussion 

4.4.1 Basic enological parameters of grape, juice and wine  

Pinot Noir grapes were harvested with total soluble solids (TSS) of 23.4 Brix, pH of 3.17, titratable 

acidity (TA) of 9.33 g/L, and yeast assimilable nitrogen (YAN) of 207 mg/L (Table 4.1). After cold 

maceration, the total soluble solids (TSS) of juice was significantly decreased in DS100, WB60 and 

WB100 treatments compared to DS treatment. As grape stems contain more than 70% of water 

(Hashizume et al., 1998; Rice, 1976), decreased TSS in juice might be due to the dilution effect of water 

in stems. The differences in TSS of juices after cold maceration were also reflected in alcohol content 

in wines (12.3%-13.1%). The lower alcohol content was observed in wines made from treatments 

added with stems (DS100) and a high proportion of whole bunches (WB60 and WB100). The residual 

sugar in resultant wines was determined with concentration ranging from 0.9 to 1.2 g/L (Table 4.1). 

Stem inclusion treatments (DS100, WB30, WB60 and WB100) had higher residual sugar in finished 

wine compared to DS treatment. This may also explain the differences observed in alcohol content 

between treatments. In this study, 30% whole bunch addition (WB30: approximately 2.2% stems by 

weight) was not significantly affected to reduce ethanol concentration in resultant wines compared to 

non-stem added treatment (DS). Casassa et al. (2019) also reported that treatments prepared with 
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adding 20% whole bunches could not significantly reduce the alcohol content in the resultant Pinot 

Noir wines in 2015 vintage.  

There are significant differences in TA and pH of juice and wine between treatments. After cold 

maceration, the pH value was significantly increased in DS100 treatment but decreased in treatments 

with a high proportion of whole bunch addition (WB60 and WB100) compared to non-stem added 

treatment (DS). A significantly higher concentration of TA was only observed in WB100 treatment 

compared to DS treatment. These results could be due to a combined effect of cold maceration and 

inclusion of stems, as both winemaking practises can influence the extraction of potassium ions from 

grape skin and stems (Aleixandre-Tudo & Du Toit, 2018; Sacchi et al., 2005). Cold maceration in which 

destemmed and crushed grapes were held at a low temperature has been reported to increase 

extraction of potassium ions from grape skin, which can consequently increase pH and increase TA in 

juice. Adding stems could also enhance the extraction of potassium ions from stems during cold 

maceration. However, when high proportion of whole bunches were used, less potassium ions were 

extracted from crushed grapes and stems during cold maceration. At the end of alcoholic 

fermentation, wine pH was increased in all treatments ranging from 3.74 to 3.93, and titratable acidity 

(TA) was decreased in all treatments ranging from 7.47 to 7.88 g/L respectively. Comparing to DS 

treatment, the wine pH was significantly increased in all stem inclusion treatments including DS100, 

WB30, WB60 and WB100, which is likely resulted from gradual extraction of potassium ions from stems 

during fermentation (Hashizume et al., 1998). Similar to the results observed in titratable acidity of 

juice after cold maceration, only WB100 treatment showed significantly higher TA compared to DS 

treatment, which might be due to the least extraction of potassium ions during cold maceration.  

The malic acid concentration was significantly different between treatments with a range from 3.73 to 

4.20 g/L. As up to 30% of malic acid can be metabolised by yeast during alcoholic fermentation 

(Moreno & Peinado, 2012), the differences in malic acid between treatments could be due to different 

rates of malic acid metabolism during fermentation. It seems less malic acid was metabolised in DS100 

treatment but no significant difference between DS and WB treatments.  

4.4.2 Modified Somers colour assay 

The chemical age I, chemical age II, degree of ionisation of anthocyanin, total anthocyanin, colour 

density, SO2 corrected colour density, hue, A520-red hue, A420-yellow hue, SO2 resistant pigments, 

and total phenolics were measured in resultant wines using modified Somers assay (Table 4.2). As wine 

samples were collected at the end of alcoholic fermentation, there is no significant difference in the 

chemical age of wine between treatments. In most cases, 30% whole bunch fermentation (WB30) 

didn’t show significant differences in modified Somers assay parameters (except total anthocyanins) 

compared to DS treatment.  
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Degree of ionisation of anthocyanin in wines of all treatments was ranged from 21 % to 23%, which is 

within the range reported previously in Pinot Noir wine (Dicey, 1996; Durner, 2016). A significantly 

higher degree of ionisation of anthocyanin was observed in treatments with a high proportion of whole 

bunches (WB60 and WB100) compared to DS treatment. This is likely due to the variations in wine pH 

and total anthocyanins in wine with concentrations ranging from 181 to 242 mg/L. The highest 

concentration of total anthocyanin was observed in non-stem added treatment (DS) as a result of 

increased extraction of anthocyanins during cold maceration (Álvarez et al., 2006; Gil-Muñoz et al., 

2009; Gómez-Míguez et al., 2007; Koyama et al., 2007), and stem addition seems to significantly reduce 

the concentration of total anthocyanins due to the adsorption of anthocyanins onto stems (Suriano et 

al., 2015).  

Colour density and SO2 corrected colour density were ranged from 6.0 to 7.3 and from 5.7 to 6.8, 

respectively. Compared to non-stem added treatment (DS), there was no significant difference in 

colour density and SO2 corrected colour density observed in stem inclusion treatments. However, 

comparing between DS100 and WB100 treatments, significantly higher colour density and SO2 

corrected colour density were observed in WB100 treatment. It seems that cold maceration, together 

with stems may reduce those two parameters in DS100 treatment due to adsorption of anthocyanins 

into stems (Suriano et al., 2015).  

Hue values in this study were ranged from 0.961 to 1.129. In comparison to non-stem added treatment 

(DS), both 100% stem inclusion (DS100) and a high proportion of whole bunch addition (WB60 and 

WB100) significantly increased hue in resultant wines. Hashizume et al. (1998) also reported that Pinot 

Noir wine made by adding 5% stems resulted in higher hue values compared to wine made without 

adding stems. Wine hue is defined as the ratio of the yellow hue to red hue, so wines made with 

addition of stems/whole bunches had higher hue values may be due to 1) the formation of yellow-

coloured xanthylium cation after interacting of anthocyanin and stem extracted tannin to form 

anthocyanin-tannin (A-T) adducts (Durner, 2016); and 2) the decrease of anthocyanins, especially 

those in red coloured form. 

There is no significant difference in SO2 resistant pigment in stem inclusion treatments comparing to 

DS treatment, but the higher proportion of whole bunch addition (WB60 and WB100) showed 

significantly higher SO2 resistant pigment in resultant wine than that observed in DS100 treatment. 

This might be because the DS100 treatment had the lowest concentration of anthocyanins and thus 

less polymeric pigments were formed during fermentation.  

Total phenolic content in resultant wines was ranged from 38.9 to 50.8. In comparison to non-stem 

added treatment (DS), 100% stem addition (DS100) and the high proportion of whole bunch addition 

(WB60 and WB100) could result in a significantly higher amount of total phenolics in resultant wines, 
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which is likely due to the additional extraction of total phenolics from stems. When comparing 

between WB100 and DS100 treatments, WB100 treatment had a significantly higher concentration of 

total phenolics, which may be due to the precipitation of phenolics in DS100 during cold maceration 

as a result of the interactions with other macromolecules in juice (e.g. proteins and polysaccharides) 

(Smith et al., 2015).   

4.4.3 CIELab colour coordinates  

The CIELab colour space was used by several authors to describe wine colour (Bakker et al., 1998; 

Casassa, Bolcato, & Sari, 2015; Gil-Muñoz et al., 2009; Negueruela, Echavarri, & Perez, 1995). CIELab 

colour parameters measured in wines of five treatments were shown in Table 4.3. In comparison to 

non-stem added treatment (DS), only DS100 treatment had significantly different colour coordinates, 

showing significantly higher luminosity/clarity (L*), yellow-blue colour component (b*), chroma (C*) 

and tone (H*) values.  

In this study, luminosity values (L*) were ranged from 25.9 to 33.0. Directly adding stems (DS100) had 

significantly higher luminosity value compared to DS treatment. In this study, luminosity has a strong 

negative correlation with A520 red hue (r=-0.906, p=0.034) and total anthocyanin (r=-0.939, p=0.018) 

determined by modified Somers assay. So, the higher L* in DS100 treatment is the reflection of the 

low concentration of anthocyanins and consequent low A520 red hue.  

Red-green (a*) colour component was not affected by the winemaking treatment. DS100 treatment 

had the highest yellow-blue colour component (b*) value and it was significantly high compared to DS 

treatment. Surprisingly, the lowest yellow-blue colour component (b*) value was recorded in DS 

treatment. DS treatment had the highest total anthocyanin content in the Modified Somers method. 

Yellow-blue colour component (b*) from CIELab had a strong negative correlation with total 

anthocyanin results from modified Somers method (r=-0.958, p=0.010). It seems that decreasing 

anthocyanin cause to increase b* in wine. This relationship agrees with previous findings Chang-Qing 

et al. (2008).  This same trend was followed in Chroma (C*) parameter also because of Chroma (C*) is 

derived parameter from a* and b* coordinates.  

The highest tonality value was recorded in DS100 treatment. When comparing between WB100 and 

DS100 treatments, it seems that cold maceration together with stem addition could result in 

significantly higher tonality values in the resultant wines. Bakker and Arnold (1993) reported that the 

tonality of wine directly correlates with the perception of brownness in wine. In this work, tonality had 

a strong negative correlation with A520 red hue and total anthocyanin results from the modified 

Somers method (r=-0.872, p=0.050, and r=-0.942, p=0.017 respectively). It may be due to the 
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adsorption of anthocyanin which reduces red hue and promotes brownness in more stem/ whole 

bunch added treatments.  

4.5 Conclusion 

Stem inclusion fermentation showed a significant impact on general oenological parameters and wine 

colour parameters. In general, stem inclusion fermentation can result in lower alcohol content and 

higher pH in the resultant wines. Cold maceration without adding stems or whole bunches, resulted in 

the highest total anthocyanin content, which is mainly responsible for the red colour in young red 

wines. Both direct stem addition and whole bunch addition caused to reduce total anthocyanin content 

in the resultant wines. Comparing to non-stem added treatment, 100% stem addition and the high 

proportion of whole bunch addition (at 60% and 100%) significantly increased total phenolic content 

in the resultant wines. This study shows that whole bunch addition is more efficient to increase the 

concentration of total phenolic content in wine than adding stems into the destemmed must. A higher 

amount of phenolics could result in a higher amount of non-bleachable pigments in wine. 



 45 

Table 4.1: General oenological parameters of grapes at harvest, juice after cold maceration and wine at the end of alcoholic fermentation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Different lowercase letters in rows indicate significant differences among treatments (Tukey’stest, P<0.05)  
TSS- Total soluble solids; TA-Titratable acidity; YAN- Yeast assimilable nitrogen 
1 Tartaric acid equivalent 

  

Grapes at harvest      

 TSS (Brix) pH TA (g/L)1 YAN (ppm)  

 23.4 ± 0.3 3.17 ± 0.02 9.33 ± 0.04 207 ± 7  

      

 DS DS100 WB30 WB60 WB100 

Juice after cold maceration      

TSS (Brix) 23.4 ± 0.2a 22.5 ± 0.1b 23.2 ± 0.3a 22.6 ± 0.2b 22.7 ± 0.2b 

TA (g/L)1 7.88 ± 0.32b 7.72 ± 0.29b 8.43 ± 0.24ab 8.25 ± 0.28ab 8.96 ± 0.33a 

pH 3.35 ± 0.03b 3.41 ± 0.02a 3.34 ± 0.02b 3.28 ± 0.02c 3.20 ± 0.02d 

 Wine      
Alcohol (%) 13.1 ± 0.21a 12.6 ± 0.23bc 12.9 ± 0.10ab 12.5 ± 0.15bc 12.3 ± 0.06c 

Residual Sugar (g/L) 0.9 ± 0.03b 1.2 ± 0.06a 1.2 ± 0.06a 1.1 ± 0.05a 1.2 ± 0.06a 

pH 3.74 ± 0.01e 3.93 ± 0.02a 3.78 ± 0.02d 3.83 ± 0.01c 3.88 ± 0.01b 

TA (g/L)1 7.53 ± 0.12bc 7.47 ± 0.08c 7.80 ± 0.08ab 7.48 ± 0.11c 7.88 ± 0.16a 

Malic Acid (g/L) 3.76 ± 0.11b 4.20 ± 0.12a 3.87 ± 0.13ab 3.73 ± 0.26b 4.10 ± 0.10ab 
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Table 4.2: Wine colour parameters measured by modified Somers assay 

 
 
 
 
 
 
  
  
 
 
 
 
 
 
 

Different lowercase letters in rows indicate significant differences among treatments (Tukey’stest, P<0.05)  
 

 
 
 

 Parameter DS DS100 WB30 WB60 WB100 

Chemical age I 0.275 ± 0.02a 0.311 ± 0.01a 0.283 ± 0.01a 0.311 ± 0.02a 0.321 ± 0.03a 

Chemical age II 0.068 ± 0.01a 0.080 ± 0.01a 0.073 ± 0.00a 0.084 ± 0.01a 0.084 ± 0.01a 
Degree of ionization of 

anthocyanin (%) 
21 ± 0.8c 22 ± 0.4abc 22 ± 0.4bc 23 ± 0.4a 23 ± 0.6ab 

Total anthocyanin (mg/L) 242 ± 3a 181 ± 9c 211 ± 7bc 212 ± 12ab 207 ± 19bc 

Color Density (Au) 6.8 ± 0.50abc 6.0 ± 0.14c 6.4 ± 0.29bc 7.3 ± 0.28a 7.2 ± 0.21ab 

SO2 Corrected Color Density 
(Au) 

6.5 ± 0.42ab 5.7 ± 0.23b 6.2 ± 0.33ab 6.8 ± 0.32a 6.8 ± 0.30a 

Hue 0.961 ± 0.04c 1.129 ± 0.01a 1.004 ± 0.02bc 1.069 ± 0.04ab 1.088 ± 0.05ab 

A520-Red hue (Au) 0.347 ± 0.02a 0.282 ± 0.01b 0.318 ± 0.01ab 0.351 ± 0.02a 0.343 ± 0.02a 
A420-Yellow hue (Au) 0.334 ± 0.03ab 0.318 ± 0.01b 0.319 ± 0.02b 0.375 ± 0.01a 0.372 ± 0.01a 

SO2 Resistant Pigments (Au) 0.92 ± 0.11ab 0.84 ± 0.05b 0.88 ± 0.04ab 1.04 ± 0.08a 1.06 ± 0.07a 

Total Phenolics (Au) 38.9 ± 1.9d 44.2 ± 0.6bc 41.8 ± 0.8cd 46.1 ± 1.6b 50.8 ± 2.2a 
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Table 4.3: Wine colour parameters measured by CIELab 

Parameter DS DS100 WB30 WB60 WB100 

Luminosity L* 25.9 ± 1.8b 33.0 ± 0.9a 28.3 ± 2.3ab 28.0 ± 2.3ab 27.8 ± 2.3ab 

Red - green a* 53.41 ± 0.4a 53.93 ± 0.2a 54.58 ± 0.9a 54.45 ± 1.0a 54.04 ± 0.7a 

Yellow - blue b* 42.12 ± 2.0b 50.83 ± 0.7a 45.11 ± 2.1ab 45.09 ± 2.6ab 45.41 ± 2.8ab 

Chroma C* 68.03 ± 1.5b 74.12 ± 0.5a 70.81 ± 2.0ab 70.71 ± 2.2ab 70.60 ± 2.3ab 

Tone (°) H* 38.24 ± 1.1b 43.30 ± 0.5a 39.56 ± 0.9b 39.60 ± 1.3b 40.01 ± 1.5b 

Different lowercase letters in rows indicate significant differences among treatments (Tukey’stest, 
P<0.05)  
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Chapter 5 

The effect of grape stem inclusion fermentation on phenolic 

compounds in Pinot Noir wines 

5.1 Abstract 

 The aim of this study is to investigate the impact of adding different proportions of whole bunches 

(WB30, WB60, and WB100) and stems (DS100) on the concentrations of tannin and phenolics in 

resultant wines. In comparison to non-stem inclusion treatment (DS), either adding stems (DS100) or 

whole bunches (except WB30) resulted in a significant increase of tannin, total phenolics and most of 

monomeric phenolics in resultant wines. Comparing to DS100 treatment, significantly higher 

concentration of total phenolics and tannin was observed in WB100 treatment. Whole bunch 

fermentation, including WB30, WB60 and WB100 treatments, didn’t show significant impact on the 

concentration of malvidin-3-O-glucoside, but adding stems into destemmed must (DS100) resulted in 

a significant decrease of malvidin-3-O-glucoside. These results confirmed that grape stem could be a 

good source for tannin extraction, but different uses of grape stems (the amount and the form of 

addition) could have a varied influence on tannin extraction and phenolic composition in resultant 

wines, which are important to sensory properties of Pinot Noir.  

Keywords: Monomeric phenolics, Pinot Noir, stems, tannin, whole bunches 
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5.2 Introduction  

Most of the phenolics found in wine are grape-derived, and they are important constituents in red 

wines quality, contributing to astringency, bitterness and colour stability of wine (Mercurio, Dambergs, 

Cozzolino, Herderich, & Smith, 2010; Waterhouse, 2002). The concentration of tannin in grapes 

depends on several factors such as water status, heat, sunlight and vine vigour (Kennedy, Matthews, 

& Waterhouse, 2000). The tannins in grapes can be extracted into wine from the skins, seed and stems 

(if used) during alcoholic fermentation. Extractions rates are mainly depending on time (extended 

maceration), fermentation temperature and techniques used in winemaking (Sacchi et al., 2005). 

Tannin concentration in Pinot Noir wine is relatively low compared to other red wines, which is because 

Pinot Noir grapes have very low skin to seed tannin ratio compared to other red varieties, and seed 

tannins are more difficult to be extracted during fermentation (Dambergs et al., 2012; De Villiers, 1994; 

Kennedy, 2008; Waterhouse, 2002). Thus, it could be a difficult challenge for winemakers to enhance 

extraction of tannins in Pinot Noir wine production.  

There are several winemaking practices aimed to improve phenolic composition in wines. Stem 

inclusion is one of the most famous treatments used to enhance tannin content in wines. In practice, 

stem inclusion fermentation can be carried out by adding stems into the destemmed must or using 

whole bunches. As grape stems contain significant amounts of polyphenolic compounds (Makris et al., 

2008; Souquet et al., 2000), including stems in the fermentation, have been used to increase tannin 

concentration in red wines  (AWRI, 2018; Casassa et al., 2019; Dambergs et al., 2012; Hashizume et al., 

1998). However, most of the previous studies are limited to use 20-50% whole bunches and/or less 

than 3% stems by weight in winemaking (Casassa et al., 2019; Suriano et al., 2015). Many authors have 

reported that cold maceration also can enhance total phenolics in wines (Álvarez et al., 2006; Casassa 

et al., 2019; Gustavo González-Neves, Favre, Gil, Ferrer, & Charamelo, 2015). Due to the water 

solubility of most phenolics, mainly anthocyanins are extracted during the cold maceration period. 

Casassa and Harbertson (2014) reported that cold maceration could extract flavonols, flavan-3-ols and 

proanthocyanidin dimers and trimers at different rates due to their polarity conditions. However, 

polymeric and oligomeric forms of proanthocyanidins extraction progressed slower due to their 

hydrophobicity.  

Only a few studies are discussing the effect of whole bunch addition on the resultant wine phenolics 

profile. Suriano et al. (2015) studied the effect of stem contact maceration on phenolics in Primitivo 

red wines. The author reported that 100% destemmed treatment showed higher anthocyanin 

concentration, but lower phenolic concentration with respect to the treatments prepared by adding 

stems 25% and 50% whole bunches. But, Casassa et al. (2019) reported that 20% whole bunch addition 

together with cold maceration (CS+WC treatment) in Pinot Noir winemaking could not result in a 
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significant difference in tannin concentration in both vintages (2014 and 2015) compared to a cold 

macerated wine without adding whole bunches. However, 3% stem addition together with cold 

maceration (CS+S treatment) could result in a significantly higher concentration of tannins in 2015 

vintage. 

Stem inclusion, together with cold maceration needs to be further investigated due to lack of previous 

publications, and there are some contradictions in the previous findings. It is important to find out the 

level of the whole bunch required to result in a significant increment of phenolics in wine. Hence this 

study was designed to investigate the influence of adding different proportions of whole bunches and 

stems together with cold maceration on total phenol, tannin and monomeric phenol composition in 

the resultant wines. Another separate treatment was used to assess the difference between whole 

bunches addition and direct stem addition on the phenolic composition of the resultant wines. 

5.3 Methodology 

5.3.1 Wine samples  

Five treatments were examined in this study: 100% destemmed and crushed grapes (DS), 100% 

destemmed and crushed grapes with stems added back (DS100), 30% whole bunches (WB30), 60% 

whole bunches (WB60), and 100% whole bunches (WB100). Fermentation in each treatment was 

carried out in triplicate using a standard winemaking protocol, which includes 5 days of cold 

maceration at 4°C and 4 days of post-fermentation maceration at room temperature. Detailed 

winemaking protocol is described in chapter 3.2.  

5.3.2 Total phenolics  

The concentration of total Phenolics in resultant wines was measured using microscale Folin-ciocalteau 

colourimetric method (Wrolstad, 2001). Detailed procedures are described in chapter 3.6. 

5.3.3 Methyl cellulose precipitable (MCP) tannin 

The concentration of tannin in resultant wines was determined using the 1 mL assay of methyl cellulose 

precipitation (MCP) method (Mercurio et al., 2007). Detailed procedures are described in chapter 3.4. 

5.3.4 Solid-phase extraction and HPLC analysis of monomeric phenolics 

Deionised water was used in all aspects. All reagents used in solid-phase extraction (SPE) includes 

methanol (Thermo Fisher Scientific, New Zealand), formic acid (Thermo Fisher Scientific, New Zealand), 

acetonitrile (Thermo Fisher Scientific, New Zealand) and absolute ethanol (Scharlau, SA, Australia). All 

standard reference reagents were HPLC grade and purchased from Sigma-Aldrich, Australia. 
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Optimised solid-phase extraction (SPE) was used to separate monomeric phenolics and polymeric 

phenols before HPLC analysis (Jeffery et al., 2008). Monomeric phenolics were quantified using HPLC 

according to the method described by Gómez-Alonso et al. (2007). Detailed procedures are described 

in chapter 3.7. 

5.3.5 Statistical analysis  

Data were presented as mean ± SD of three replicates. In all cases, analysis of variance (ANOVA) was 

performed with the Tukey comparison test using Minitab 18 (Minitab, US) software package.  Least 

significant differences (LSD, 5%) was used to separate means when a significant P-value was obtained. 

5.4 Results and Discussion 

5.4.1 MCP tannins and total phenolics 

The concentration of MCP tannin in resultant wines were ranged from 863 to 1660 mg/L (Table 5.1), 

which is within the range of tannin concentration in Pinot Noir reported previously (Casassa et al., 

2015; Harbertson et al., 2008; Kemp, Harrison, & Creasy, 2011). In comparison to non-stem inclusion 

treatment (DS), a significantly higher concentration of tannin was observed in wines from DS100, 

WB60, and WB100 treatments but not in WB30 treatment. The higher percentage of whole bunch 

added, the higher concentration of tannin was observed in the resultant wine. The increased tannin in 

wine could be additionally extracted from stems, which has been reported previously (Dambergs et 

al., 2012; Hashizume & Samuta, 1997). A recent study by Casassa et al. (2019) also reported that a low 

percentage (20%) of whole bunch addition didn’t result in a significant increase of tannin in Pinot Noir 

wine. In comparison between WB100 and DS100 treatments, WB100 treatment had a significantly 

higher concentration of tannin. This may be due to: 1) the precipitation of tannins by interacting with 

other macromolecules (e.g. proteins and polysaccharides) during cold maceration in DS100 (Smith et 

al., 2015), and 2) the adsorption of tannins to stems during cold maceration in DS100, because grape 

stems contain polysaccharides (González-Centeno et al., 2010) and proteins (R. B. Ferreira et al., 2000); 

hence tannin molecules (proanthocyanidins) may bound into them (Aleixandre-Tudo & Du Toit, 2018; 

Casassa & Harbertson, 2014).  

The concentration of total phenolics in resultant wines was ranged from 1691 to 2500 mg/L (Table 

5.1), which is within the concentration range of total phenolics in Pinot Noir reported previously 

(Casassa et al., 2015; Dambergs et al., 2012; Kilmartin, Zou, & Waterhouse, 2002). Similar to the results 

of tannin, in comparison to DS treatment, a higher concentration of total phenolics was observed in 

wines made from WB60 and WB100 treatment but not for WB30 treatment. Interestingly, in this study 

adding 100% of stems (DS100) didn’t show a significant increase in the concentration of total phenolics 

compared to DS treatment. As explained for tannin results, it is possible that some phenolic 



 52 

compounds in DS100 treatment were precipitated due to the interactions with other macromolecules 

(e.g. proteins and polysaccharides) during cold maceration (Smith et al., 2015), and this reduction of 

total phenolics counteracts the effect of stem addition on increasing total phenolics.  

5.4.2 Quantification of monomeric phenolics by HPLC 

The same phenolic compounds were found and quantified in Pinot Noir wines from five treatments 

(Table 5.2). However, the concentrations of these phenolic compounds varied significantly among 

treatments.  

The flavan-3-ols, predominantly catechin, are the major class of phenolics determined in Pinot Noir 

wines, which represent 61.6 – 67.9% of total monomeric phenolics quantified by HPLC. The 

concentrations of catechin and epicatechin were determined in the range of 228 mg/L to 315 mg/L 

and 89 mg/L to 130 mg/L, respectively (Table 5.2). These values are slightly higher than those reported 

in Pinot Noir wine previously (Cortell et al., 2007; Van Leeuw et al., 2014). This might be because wine 

samples in this study were collected at the end of alcoholic fermentation at which stage many flavan-

3-ols monomers are extracted from skin and seeds but yet to be polymerised into oligomers or tannins. 

Addition of stems or whole bunches (except WB30) during fermentation significantly increased the 

concentrations of both catechin and epicatechin in resultant wines, which is likely due to the extraction 

of flavan-3-ols from stems (Souquet et al., 2000). The changes in flavan-3-ols between treatments are 

consistent with previous observations for tannin and total phenolics. 

Malvidin-3-O-glucoside is the main anthocyanin found in Pinot Noir wine (Dimitrovska et al., 2011; 

Iland, 2013). The concentration of malvidin-3-O-glucoside was determined in the range from 124 mg/L 

to 156 mg/L (Table 5.2), which is within the concentration range reported in Pinot Noir wine previously 

(Casassa et al., 2019; Cortell et al., 2007). There is a significant decrease of malvidin-3-O-glucoside in 

DS100 treatment comparing to DS treatment, but no significant differences in the concentration of 

malvidin-3-O-glucoside between DS and WB treatments. It is known that cold maceration could 

facilitate the extraction of anthocyanins from destemmed and crushed grapes into juice (Álvarez et al., 

2006; Gil-Muñoz et al., 2009; Gómez-Míguez et al., 2007; Koyama et al., 2007), but addition of stems 

might cause the adsorption of anthocyanins to stems and result in lower concentration of anthocyanins 

(Andrew, 2016; Suriano et al., 2015).  

Quercetin and qurcetin-3-O-glucoside were quantified with a concentration range from 1.24 mg/L to 

1.90 mg/L and from 3.74 mg/L to 7.08 mg/L respectively, which is within the concentration range 

reported in Pinot Noir wine previously (Van Leeuw et al., 2014). Flavonols are mainly found in grape 

skin and stems (Cheynier & Rigaud, 1986; Makris et al., 2008; Souquet et al., 2000). It seems that 

addition of stems or whole bunches could result in a significant increase of quercetin in Pinot Noir 
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wine, which might be due to the additional extraction of quercetin from stems or higher degree of 

hydrolysis of qurcetin-3-O-glucoside during fermentation.   

Benzoic acids, including gallic acid, syringic acid, protocatechuic acid and p-hydroxybenzoic acid, were 

quantified within the concentration range previously reported in Pinot Noir wine (Van Leeuw et al., 

2014). In comparison to DS treatment, a significant increase in all types of hydroxybenoiz acids was 

observed in Pinot Noir wine made from DS100 treatment. Comparing between DS and WB treatments, 

there was a significant increase of gallic acid in WB60 and WB100 treatments, and a significant increase 

of syringic acid in WB100 treatment. The significantly higher concentration of hydroxybenoiz acids in 

DS100, WB60 and WB100 treatments are likely due to the extraction of hydroxybenoiz acids from 

stems (Waterhouse et al., 2016). 

Hydroxycinnamic acids are mainly present in the pulp but also in grape stems (Doshi, Adsule, Banerjee, 

& Oulkar, 2015; Waterhouse et al., 2016). The same hydroxycinnamic acids (except ferulic acid) were 

identified in all five treatments and their concentrations were determined within the range previously 

reported in Pinot Noir wine (Van Leeuw et al., 2014). Ferulic acid was only observed in DS100 treatment 

(0.08 mg/L) and WB60 treatment (0.08 mg/L). Caftaric acid is the most abundant hydroxycinnamic 

acids in wine with concentration ranging from 10.4 mg/L to 31.1 mg/L, followed by cis-coutaric acid 

(1.81-2.80 mg/L) and caffeic acid (0.83-2.28 mg/L). Caftaric acid has also been reported previously as 

major hydroxycinnamic acids in finished wine (Rentzsch et al., 2007). In comparison to DS treatment, 

the concentrations of caftaric acid, cis-coutaric acid and caffeic acid were significantly increased in 

wines made from DS100, WB60 and WB100 treatments, which is possibly due to the additional 

extraction of these compounds from stems. There were no significant differences in the concentrations 

of trans-coutaric acid, p-coumaric acid, and grape reaction product (GRP) between treatments. 

Resveratrol is a stilbene produced by grapevine in all tissues as a phytoalexin in response to various 

stress factors such as UV-radiation, mechanical injuries, and fungal attacks (Aaviksaar et al., 2003; 

Waterhouse, 2002). Resveratrol was quantified in all Pinot Noir wines with concentrations ranging 

from 0.06 mg/L to 0.47 mg/L, which is within the concentration range previously reported in Pinot Noir 

wine (Baraboy, 2009; Melzoch et al., 2001). In comparison to non-stem inclusion treatment (DS), a 

significant increase of resveratrol was observed in DS100, WB60 and WB100 treatments but not in 

WB30 treatment. This is because more resveratrol can be extracted from stems which are the richest 

source of resveratrol Melzoch et al. (2001).  

5.5 Conclusion  

Phenolic compounds are important to the quality of wine due to their contribution to wine colour, 

taste and mouthfeel (Gawel, 1998; Reynolds, 2010). Enhancing the extraction of colour and tannins is 
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a difficult challenge in light-pigmented Pinot Noir production. This study confirmed that grape stems 

could be a good resource of tannin extraction, but stem addition during fermentation are also likely to 

decrease the concentration of malvidin-3-O-glucoside which is the major anthocyanin in Pinot Noir 

wine. Grape anthocyanins are initially responsible for wine colour, but they will be displaced 

progressively by more stable polymeric pigments during wine ageing (T. Somers, 1971). Thus, the 

impact of stem inclusion fermentation on development of wine colour and non-bleachable pigments 

during ageing should be further studied in the future. 

Comparing to DS100 treatment, more tannins and total phenolics are extracted in WB100 treatment. 

Comparing among the three whole bunch addition treatments (WB30, WB60 and WB100), 30% of 

whole bunch addition didn’t show significant impact on the concentrations of total phenolics, tannin, 

and most of monomeric phenolics. These results suggest both the way of using stems (whole bunch 

fermentation versus adding stems into destemmed must) and the amount of stems included in 

fermentation could have a varied impact on phenolic extraction. Insights into the mean degree of 

polymerisation (mDP) and size distribution of tannins extracted in wine made from different stem 

inclusion treatments are worth exploring in the future study. 
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Table 5.1: Tannin and total phenolics determined in wines from five treatments 

Parameter DS DS100 WB30 WB60 WB100 

Tannin (mg/L)1 863 ± 69c 1270 ± 66b 1073 ± 70bc 1294 ± 79b 1660 ± 143a 

Total phenolics (mg/L)2 1691 ± 89c 1997 ± 77bc 1900 ± 91bc 2097 ± 149b 2500 ± 147a 
1 Epicatechin equivalent; 2 Gallic acid equivalents; Different lowercase letters in rows indicate 
significant differences among treatments (Tukey’s test, P<0.05)  
  



 56 

Table 5.2: Monomeric phenolic composition in wines from five treatments 

Monomeric phenol 
(mg/L) 

DS DS100 WB30 WB60 WB100 

Flavan-3-ols           

Catechin 228 ± 10c 276 ± 17ab 251 ± 11bc 269 ± 17b 315 ± 19a 

Epicatechin 89 ± 4b 111 ± 10a 117 ± 7a 123 ± 3a 130 ± 11a 

Subtotal 317 ± 14c 387 ± 27ab 368 ± 17bc 393 ± 18ab 445 ± 29a 

Anthocyanins      

Malvidin-3-O-glucoside 156 ± 5a 124 ± 4b 138 ± 10ab 146 ± 4a 140 ± 12ab 

Flavonols           

Quercetin 1.24 ± 0.18b 1.85 ± 0.13a 1.33 ± 0.06b 1.90 ± 0.22a 1.58 ± 0.08ab 

Quercetin-3-glucoside 7.08 ± 0.70a 3.74 ± 0.30d 4.37 ± 0.08cd 5.67 ± 0.70bc 5.80 ± 0.35ab 

Subtotal 8.32 ± 0.62a 5.59 ± 0.35b 5.7 ± 0.02b 7.58 ± 0.91a 7.39 ± 0.39a 

Benzoic acids           

Gallic acid 13.8 ± 0.3c 18.1 ± 1.3ab 15.8 ± 0.9bc 17.9 ± 0.4ab 20.0 ± 1.2a 

Syringic acid 3.72 ± 0.06a 3.20 ± 0.26b 3.47 ± 0.10ab 3.90 ± 0.30a 2.99 ± 0.10b 

Protocatechuic acid 1.84 ± 0.27b 2.75 ± 0.58a 1.87 ± 0.33ab 2.6 ± 0.17ab 2.52 ± 0.06ab 

p-Hydroxybenzoic acid 0.46 ± 0.05b 0.81 ± 0.16a 0.47 ± 0.03b 0.51 ± 0.08b 0.50 ± 0.14b 

Subtotal 19.8 ± 0.6b 24.9 ± 1a 21.6 ± 1b 24.9 ± 0.9a 26 ± 1.2a 

Hydroxycinnamic acids           

Caftaric acid 10.4 ± 1.4c 22.6 ± 1.8b 13.1 ± 2.0c 18.9 ± 1.6b 31.1 ± 3a 

cis-Coutaric acid  1.81 ± 0.01c 2.69 ± 0.18a 1.89 ± 0.22bc 2.26 ± 0.10b 2.80 ± 0.17a 

trans-Coutaric acid 0.09 ± 0.03a 0.11 ± 0.04a 0.11 ± 0.04a 0.17 ± 0.07a 0.07 ± 0.01a 

Caffeic acid 0.83 ± 0.10c 2.28 ± 0.24a 1.14 ± 0.03bc 1.29 ± 0.16b 2.07 ± 0.19a 

p-Coumaric acid 0.08 ± 0.01a 0.11 ± 0.01a 0.06 ± 0.01a 0.08 ± 0.04a 0.06 ± 0.03a 

Ferulic acid nd 0.08 ± 0.04a nd 0.08 ± 0.02a nd 

GRP 0.66 ± 0.22a 0.59 ± 0.18a 0.98 ± 0.25a 1.42 ± 0.96a 0.50 ± 0.34a 

Subtotal 13.8 ± 1.7c 28.5 ± 2.2b 17.3 ± 1.9c 24.1 ± 1.8b 36.6 ± 3.6a 

Stilbenes       
 

  

Resveratrol 0.06 ± 0.04c 0.27 ± 0.06b 0.12 ± 0.02bc 0.28 ± 0.06b 0.47 ± 0.11a 

Different lowercase letters in rows indicate significant differences among treatments (Tukey’s test, 

P<0.05)   
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Chapter 6 

The effect of grape stem inclusion fermentation on aroma profiling 

of Pinot Noir wines  

6.1 Abstract 

This study aims to investigate the impact of adding different proportions of whole bunches (WB30, 

WB60, and WB100) and stems (DS100) on the aroma composition in the resultant wines. Headspace 

solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to 

determine a total of 51 aroma compounds in Pinot Noir wines, including 3 types of methoxypyrazines: 

3-isopropyl-2-methoxypyrazine (IPMP), 3-isobutyl-2-methoxypyrazine (IBMP), and sec-butyl- 

methoxypyrazine (SBMP). Comparing to non-stem added treatment (DS), 100% stem inclusion and 

whole bunch addition increased the concentrations of eugenol, IBMP, IPMP, phenol, α-Ionone and 

ethyl cinnamate in the resultant wines, and those compounds are mainly responsible for green, woody 

and spicy aromas in wine. When comparing 100% stem added treatments, DS100 treatment had 

significantly higher concentrations of ethyl octanoate, octyl acetate, ethyl decanoate, ethyl hexanoate, 

hexanoic acid and octanoic acid compared to WB100 treatment, and those compounds are mainly 

responsible for fruity, floral and fatty aromas in wine.  

Keywords: Aroma, odour activity values, stem inclusion, treatments, whole bunches.  
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6.2 Introduction  

Aroma compounds of wine play a significant role in the perception of wine quality (Reynolds, 2010). 

The complexity of red wine aroma is high compared to white wines due to the presence of volatile 

phenolics which exert a suppression effect on fruity notes (Atanasova, Thomas‐Danguin, Langlois, 

Nicklaus, & Etievant, 2004). Several previous studies have investigated the relationship between aroma 

composition and respective sensory perception in wine (Benkwitz et al., 2012; Escudero, Campo, 

Farina, Cacho, & Ferreira, 2007; Fang & Qian, 2005; Ferreira et al., 2016; Tomasino et al., 2015). Pinot 

noir wine has distinctive red fruity aromas evoking particularly odours of small-stone fruits (plum and 

cherry) (Fang & Qian, 2006). Many authors reported that Pinot noir aroma is a complex formulation of 

many aroma compounds, and there is no single compound responsible for the characteristic aroma of 

Pinot noir wine (Fang & Qian, 2005, 2006; Rutan et al., 2014; Tomasino et al., 2015). Fang and Qian 

(2005) reported that 2-phenyl ethanol, 3-methyl-1-butanol, ethyl 2-methylpropanoate, ethyl 

butanoate, isoamyl acetate, ethyl hexanoate, and benzaldehyde are the most significant aroma 

compounds found in Oregon state Pinot Noir wines using aroma extract dilution analysis (AEDA). 

Tomasino et al. (2015) identified the most significant aroma compounds in New Zealand Pinot Noir 

wines using canonical correlation analysis. The author showed that ethyl decanoate, ethyl octanoate 

and 2-phenyl ethanol had a negative correlation with “dark fruit” aromas. While benzaldehyde had a 

negative correlation with “jam” aroma and a positive correlation with “oak” aromas in wines.  

Concentration and the synthesis of aroma compounds depend on several factors, such as grape 

maturity, weather conditions, soil, irrigation, the winemaking process, geographic region, etc. 

(Mirandalopez, Libbey, Watson, & McDaniel, 1992). Many authors have studied the impact of different 

winemaking treatments on resultant wine aroma composition: Zhang, Petersen, Liu, and Toldam-

Andersen (2015) analysed the impact of different pre-fermentation treatments including direct press 

after crushing, whole cluster press, cold maceration, and skin fermentation on the aroma composition 

of Solaris wine. Cold maceration could enhance apricot and apple aromas, and skin fermentation 

resulted in flowery aromas in wines. Girard et al. (2001) studied the effect of fermentation 

temperature on the aroma composition of Pinot Noir wine. There were four treatments in the 

experimental design: high, ambient, cold and modified cold temperature treatments. Use of high 

temperatures (30°C) caused to increase vegetal characters in wine. The treatment called modified cold 

temperature (15°C) had the most tropical fruit and spicy aromas and had the least vegetal characters. 

Cold maceration is mainly used to extract water-soluble phenolics, specially anthocyanin before 

starting the fermentation. However, it was reported that cold maceration could influence on aroma 

composition of wines. Cai et al. (2014) investigated the effect of cold maceration on the aroma 

composition of Cabernet Sauvignon wine. The author reported that cold maceration reduced some 
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higher alcohols and increased some acetate esters and β-Damascenone in the resultant wines.  Casassa 

et al. (2019) reported that cold macerated Pinot Noir wine (CS-treatment) had significantly higher 

concentrations of hexyl acetate, and 1-hexanol, and significantly lower concentrations of ethyl 

hexanoate, D-limonene, and β-damascenone compared to a control wine without undergoing cold 

maceration.  

Higher proportions of stem inclusion can result in more green, vegetative aromas in wines, which is 

mainly due to the extraction of methoxypyrazines and C6 alcohols and C6 aldehydes   (Hashizume & 

Samuta, 1997). Hence, most of the previous studies were used a lower proportion of whole bunches 

and stems in their studies (Casassa et al., 2019; Suriano et al., 2015). Casassa et al. (2019) reported 

that 20% whole bunch addition together with cold maceration (CS+WC treatment) in Pinot Noir 

winemaking could significantly increase ethyl butyrate, ethyl hexanoate, hexyl acetate, and 1-octanol, 

and significantly lower concentrations of ethyl 2-methylbutyrate, and isobutanol compared to a cold 

macerated wine without adding whole bunches (CS treatment). 

Studying the effect of different winemaking techniques on wine aroma composition is essential to 

understand the relationship between aroma compounds and their sensory impact on wines. It can help 

wine producers and manufacturers to make good quality wine. Most of the previous studies involved 

in finding the effects of a specific maceration practise at once, on aroma composition of wine. As well 

as, it is rare to find previous studies involved in finding the effect of whole bunch addition on Pinot 

Noir wine aroma. In this study, both cold maceration and stem inclusion practised for finding the 

combined effect of these two treatments on the resultant wine aroma composition. Five treatments 

are involved in the experimental design to facilitate identifying the effect of adding different 

proportions of stems and evaluate the impact of different stem inclusion methods (direct stem 

addition and whole bunch addition) on the resultant wine aroma composition.   

6.3 Methodology 

6.3.1 Wine Samples 

Five treatments were examined in this study: 100% destemmed and crushed grapes (DS), 100% 

destemmed and crushed grapes with stems added back (DS100), 30% whole bunches (WB30), 60% 

whole bunches (WB60), and 100% whole bunches (WB100). Fermentation in each treatment was 

carried out in triplicate using a standard winemaking protocol, which includes 5 days of cold 

maceration at 4°C and 4 days of post-fermentation maceration at room temperature. Detailed 

winemaking protocol is described in chapter 3.2.  
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6.3.2 Aroma profiling of wines 

The headspace solid-phase microextraction with gas chromatography tandem mass spectrometry (HS-

SPME-GC-MS) method (Tomasino et al., 2015) was used to determine a total of 48 aroma compounds 

in Pinot Noir wines, including 20 esters, 9 alcohols, 7 volatile fatty acids, 1 aldehyde, 4 volatile phenols, 

3 norisoprenoids, and 4 monoterpenes. Detailed procedures ware described in chapter 3.8.1.  

The headspace solid-phase microextraction with multi-dimensional gas chromatography-tandem mass 

spectrometry (HS-SPME MD-GC-MS) method (Parr et al., 2016) was used with some modifications to 

determine 3 types of methoxypyrazines, including 3-isopropyl-2-methoxypyrazine (IPMP), 3-isobutyl-

2-methoxypyrazine (IBMP), and 3-sec-butyl-methoxypyrazine (SBMP). Detailed procedures are 

described in chapter 3.8.2. 

6.3.3 Odour activity values (OAVs) 

The odour activity value (OAV) for each aroma compound was calculated by using the respective aroma 

compound concentration divided by the corresponding perception threshold published from previous 

studies (Table A.1). The complete methodology is described in chapter 3.8.3. 

6.3.4 Statistical analysis 

Data were presented as mean ± SD of three replicates. In all cases, analysis of variance (ANOVA) was 

performed with the Tukey comparison test using Minitab 18 (Minitab, US). Least significant differences 

(LSD, 5%) was used to separate means when a significant P-value was obtained.  

Significant aroma attributes were chosen for the principal component analysis (PCA) at a 0.05 level of 

significance using Minitab 18 (Minitab, US).  

6.4 Results and Discussion 

A total of 51 aroma compounds were identified and quantified in Pinot noir wines, including 20 esters, 

7 volatile fatty acids, 9 higher alcohols, 3 methoxypyrazines, 1 aldehyde, 4 volatile phenols, 3 

norisoprenoids, and 4 monoterpenes (Table 6.1). These aroma compounds have also been previously 

reported in Pinot noir wine (Girard et al., 2001; Rutan et al., 2014; Tomasino et al., 2015).  Previously 

published concentration ranges of identified aroma compounds with the perception threshold levels 

are summarised in Table A.1. (See the Appendix). 

6.4.1 Esters 

Esters are the aromatic and fruity compounds in wine, which can be grouped into two classes: acetate 

esters and ethyl esters. There is no significant difference in the concentrations of total acetate esters 
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between treatments, but WB100 treatment had significantly lower total ethyl ester concentration 

compared to DS treatment (Table 6.1). The concentration of total acetate esters was higher than the 

concentration of total ethyl esters in all Pinot Noir wines, which is in agreement with previous findings 

(Jiang, Xi, Luo, & Zhang, 2013). 

Ethyl acetate showed the highest concentration among all the identified esters, accounting for over 

92% of total esters, which agrees with previous findings (Girard et al., 2001; Jiang et al., 2013; Song et 

al., 2015). Among the six acetate esters identified in this study, there were significant differences in 

the concentrations of 2-methylbutyl acetate, isoamyl acetate, hexyl acetate and octyl acetate between 

treatments, but only the concentration of isoamyl acetate, contributing banana aroma into wines, was 

higher than its perception threshold. Adding stems or whole bunches at 60% resulted in a significant 

decrease of isoamyl acetate in the resultant wine. 

There were significant differences in the concentrations of ethyl 2-methylbutyrate, ethyl hexanoate, 

ethyl octanoate, diethyl succinate, ethyl cinnamate, and ethyl decanoate between treatments. Among 

these ethyl esters, only ethyl hexanoate, ethyl octanoate, ethyl cinnamate, and ethyl decanoate had 

their concentrations above the perception thresholds (Table A.1). The 100% whole bunch fermentation 

resulted in a significant decrease of ethyl hexanoate and ethyl octanoate in wine. Adding stems 

(DS100) or a high percentage of whole bunches (WB60 and WB100) led to a significant increase of 

ethyl cinnamate, contributing spicy and woody aromas into wine.  

6.4.2 Volatile fatty acids 

Volatile fatty acids are typically described as cheesy and oily aroma in wine (Fang & Qian, 2006). The 

production of volatile fatty acids has been reported to be dependent on fermentation conditions such 

as the grape variety, yeast strains, sugar content, pH and temperature (Shinohara, 1986). Acetic acid 

was the major volatile fatty acid (accounting 89-92%) found in all treatments, and its concentration 

was below the perception threshold. Adding stems (DS100) showed no significant difference in the 

concentration of fatty acids compared to the DS treatment. However, there were significant 

differences in the concentrations of butyric acid, hexanoic acid and octanoic acid between WB 

treatments with the WB100 treatment showing a significantly lower concentration than in the WB30 

and WB60 treatments. Shinohara (1986) reported that lower pH could result in a lower concentration 

of hexanoic acid and octanoic acid in Cabernet Sauvignon wine. Thus, the decreased concentration of 

hexanoic acid and octanoic acid in Pinot Noir wine could be due to the high pH in the WB100 treatment.  

6.4.3 Higher alcohols 

Higher alcohols are secondary products of yeast metabolism during alcoholic fermentation (Sumby et 

al., 2010; Swiegers & Pretorius, 2005). They are mainly contributing to the vegetal and herbaceous 
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aromas in wine, and important precursors of ester production (V. Ferreira et al., 2000). In this study, 

total higher alcohols concentration was ranged from 304 to 336 mg/L. Comparing to the DS treatment, 

only isobutyl alcohol showed significantly higher concentration in DS100 treatment. There were no 

significant differences in the concentrations of isoamyl alcohol and 1-heptanol in stem inclusion 

treatments comparing to DS treatment. However, comparing among stem inclusion treatments 

(DS100, WB30, WB60 and WB100), the DS100 treatment showed a significantly higher concentration 

of isobutyl alcohol but a lower concentration of 1-heptanol. Isoamyl alcohol was the major higher 

alcohol accounting for 70-73% of total higher alcohols found in all treatments.  

6.4.4 Methoxypyrazines  

Methoxypyrazines, including 3-isopropyl-2-methoxypyrazine (IPMP), 3-sec-butyl-methoxypyrazine 

(SBMP), and 3-isobutyl-2-methoxypyrazine (IBMP), were analysed in this study as they are the main 

contributor to vegetative and green characteristics in the wine. Adding stems (DS100) or whole 

bunches (WB60 and WB100) resulted in a significant increase of the concentration of total 

methoxypyrazines (Table 6.1), which is likely due to the extraction of methoxypyrazines form grape 

stems. Hashizume and Samuta (1997) have reported that the concentrations of IPMP, SBMP and IBMP 

in Cabernet Sauvignon grape stem were 43 ng/kg, 64 ng/kg and 205 ng/kg respectively, and their 

concentrations in corresponding wines made by adding 100% stems were 2.7 ng/L, 2.8 ng/L and 33.8 

ng/L respectively.  

The IPMP was not detected in non-stem added treatment (DS) but observed in all stem inclusion 

treatments, indicating the possible extraction of IPMP from grape stems. The concentration of IPMP 

was higher in DS100 than in WB100 treatment, indicating the cold maceration with stem addition could 

even further increase the extraction of IPMP from stems. There was no significant difference in the 

concentration of SBMP between treatments. The IBMP was the major methoxypyrazines determined 

in all Pinot Noir wines, and stem inclusion treatments (except WB30) significantly increased the 

concentration of IBMP with the highest concentration observed in DS100 treatment. Previous studies 

also reported that IBMP is the main methoxypyrazine found in red wines (Belancic & Agosin, 2007; 

Botezatu, Kotseridis, Inglis, & Pickering, 2016; Hashizume & Samuta, 1997; Rauhut & Kiene, 2019). 

These results confirm that inclusion of grape stems in fermentation could significantly increase the 

extraction of methoxypyrazines, and thus more vegetative/green characteristics in the resultant wine.  

6.4.5 Other aroma compounds  

Benzaldehyde concentration was ranging from 15.8 to 24.0 µg/L. Its concentration was significantly 

increased in the DS100 treatment compared to other treatments (Table 6.1). Four volatile phenols, 

including phenol, guaiacol, 4-ethyl guaiacol and eugenol, were determined in this study, and stem 
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inclusion treatments showed an increased concentration of phenol and eugenol but a decreased 

concentration of guaiacol in wine. Phenol and eugenol have been reported present in grape stems 

(Ruiz-Moreno et al., 2015), so adding stems or whole bunches could increase the extraction of phenol 

and eugenol from the stem into wine, and consequently increase spicy and woody aromas in the 

resultant wine. Guaiacol and 4-methyl guaiacol are the products from lignin degradation and 

commonly found in wine with barrel maturation. These compounds may naturally occur in grapes and 

leaves (Wirth, Guo, Baumes, & Günata, 2001). Stem inclusion fermentation had no impact on the 

concentration of 4-ethyl guaiacol, but significantly decreased the concentration of guaiacol in resultant 

Pinot Noir wines made with the addition of whole bunches. 

Three norisoprenoids including β-damascenone, α-Ionone and β-ionone were determined in all Pinot 

Noir wines. Only β-damascenone and α-Ionone showed significant differences in their concentrations 

between treatments with the WB100 treatment showing the lowest concentration of β-Damascenone 

and the DS treatment showing the lowest concentration of α-Ionone. These results indicate that cold 

maceration could increase the concentration of β-Damascenone (Cai et al., 2014) and stem inclusion 

fermentation could increase the concentration of α-Ionone. 

Four terpenes including geraniol, linalool, nerol and citronellol have been determined in Pinot Noir 

wines, but none of them showed significant differences in their concentrations between treatments, 

indicating stem inclusion fermentation had little impact on floral characteristics in the resultant wine. 

6.4.6 PCA Analysis 

Significant aroma attributes were chosen to conduct the principal component analysis (PCA) 

representing 66.3% of the variation in the data set with 41.8% and 24.5% explained by PC1 and PC2, 

respectively (Figure 6.1). Wines were separated very well between treatments on PCA plots. On the 

PC1 plot, wines made from DS and WB30 treatments were located to the right on the plot and 

characterised mostly by hexyl acetate and 2-methylbutyl acetate which contribute to fruity aromas 

into wine; wines made from WB60 treatment were located to the centre on the plot; and wines made 

from DS100 and WB100 treatments were located to the left on the plot and characterised mostly by 

eugenol and IBMP which contribute to spicy, woody and vegetative aromas into wine. On the PC2 plot, 

wines made from DS100 treatment were located to the top of the plot, which separated well from 

wines made from WB100 treatment that were located to the bottom of the plot. Wines made from 

these two treatments were mainly characterised by octyl acetate and ethyl octanoate which contribute 

to fruity aroma into wine. 
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6.4.7 The odour activity values in different treatments 

The OAVs (odour activity values) are commonly used to assess the contribution of volatile compounds 

on the overall perception of wine aroma (Cai et al., 2014; V. Ferreira et al., 2000; Zea et al., 2007; Zhu, 

Zhang, Shi, & Duan, 2019). Ferreira, Ortín, Escudero, López, and Cacho (2002) suggested that 

compounds with OAV between 0.5 and 10 are important on the overall aroma of the wine. However, 

other studies have considered any aroma compounds with OAV above 0.1 are important contributors 

to the overall wine aroma due to the synergistic effect of certain aroma compounds (Cai et al., 2014; 

Zea et al., 2007). Thus, in this study, all aroma compounds with OAV above 0.1 were summarised in 

Table 6.2. Hence, 36 out of 51 aroma compounds are having their OAV values above 0.1. Those aroma 

compounds were categorised into 8 aroma series based on their odour descriptors (Table A.1). After 

that total OAVs (∑OAV) for each aroma series were calculated by adding the OAVs of each individual 

compound listed in Table 6.2 and showed in Figure 6.2. The ∑OAV of series 8 (Nutty) is not shown in 

Figure 6.2, due to its low contribution to overall wine aroma (∑OAV<1) 

Total OAVs (∑OAV) of Fruity, floral, chemical and fatty/oily aroma series were not significantly affected 

by the winemaking treatment (Figure 6.2). But it seems that ∑OAVs of fruity and fatty/oily aroma series 

are decreasing when increasing the whole bunch proportion. The fruity aroma series was dominated 

by the higher OAV values of ethyl hydrocinnamate, ethyl hexanoate and ethyl acetate in all treatments 

(Table 6.2). Moio and Etievant (1995) reported that ethyl hydrocinnamate is one of the main aroma 

compounds found in Burgundy Pinot noir wines. As well as, Fang and Qian (2005) showed that ethyl 

hexanoate is also important aroma compound in Oregon state Pinot Noir wines.  The isovaleric acid, 

hexanoic acid, and butyric acid were the highest contributors for ∑OAV fatty/oily aroma series in Figure 

6.2.  

Stem addition (DS100) and whole bunch addition (except WB30) led to significantly higher ∑OAV of 

spicy, woody and vegetative/green aroma series compared to non-stem added treatment (DS) (Figure 

6.2). Ethyl cinnamate and eugenol were the highest contributors for ∑OAV of spicy and woody aromas 

series in wines, and they were the most significant aroma chemicals to differentiate treatments. In 

contrast, IBMP, 1-hexanol and IPMP were the highest contributors for ∑OAV of vegetative/green 

aroma series in the resultant wines. The IBMP and IPMP concentrations were the most significant 

aroma chemicals to differentiate treatments. However, stem inclusion method (whole bunch addition, 

and direct stem addition) was not affected on ∑OAV of spicy, woody and vegetative/green aroma series 

in DS100 and WB100 treatments.   
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6.5 Conclusion  

Stem inclusion fermentation can significantly influence the aroma profile of resultant Pinot Noir wine. 

Adding 100% grape stems or a high percentage of whole bunches (60% and 100%) in the fermentation 

could significantly increase the concentrations of eugenol, phenols, IPMP and IBMP responsible for 

woody, spicy, vegetative and green aromas. Vegetative or green characters in wine, indicating under 

ripeness of grapes, are normally negatively associated with wine quality. However, 30% of whole bunch 

addition did not show a significant difference in vegetative/green characters compared to the non-

stem inclusion treatment. Thus, a low percentage of whole bunch addition is recommended for 

winemakers to avoid extraction of green characters from stems. 
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Figure 6.1: Principle component analysis biplots for Pinot Noir wines from five treatments 
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Figure 6.2: Total OAVs (∑OAV) of aroma series in wine from five treatments 
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Table 6.1: Concentrations of aroma compounds in wine from five treatments (n=3) 

Aroma Chemical DS DS100 WB30 WB60 WB100 

Acetate Esters      

Ethyl acetate (mg/L) 55.8 ± 3.6a 49.0 ± 0.2a 55.5 ± 3.7a 56.9 ± 5.5a 53.7 ± 3a 

Isobutyl acetate (µg/L) 30.7 ± 3.3a 28.2 ± 1.8a 32.2 ± 0.7a 28.0 ± 2.4a 29.4 ± 1.5a 

2-Methylbutyl acetate (µg/L)* 239 ± 20ab 202 ± 11b 260 ± 12a 219 ± 25ab 204 ± 9b 

Isoamyl acetate (µg/L)* 199 ± 5a 165 ± 13b 198 ± 0a 160 ± 15b 171 ± 8ab 

Hexyl acetate (µg/L)* 5.62 ± 0.42a 4.32 ± 0.59b 5.96 ± 0.29a 4.91 ± 0.43ab 4.45 ± 0.37b 

Octyl acetate (µg/L)* 4.79 ± 0.11ab 6.26 ± 1.41a 5.41 ± 0.46ab 5.85 ± 0.28ab 4.29 ± 0.21b 

Subtotal (mg/L) 56.3 ± 3.6a 49.5 ± 0.3a 56 ± 3.7a 57.3 ± 5.5a 54.1 ± 3a 

Ethyl Esters           

Ethyl isobutyrate (µg/L) 26.8 ± 1.2a 30.7 ± 3.3a 28.1 ± 0.9a 27.9 ± 0.6a 28.6 ± 2.1a 

Ethyl butanoate (µg/L) 213 ± 11a 194 ± 8a 222 ± 13a 220 ± 14a 196 ± 18a 

Ethyl lactate (µg/L) 1088 ± 100a 906 ± 64a 976 ± 29a 925 ± 112a 897 ± 106a 

Ethyl 2-methylbutyrate 
(µg/L)* 

5.71 ± 0.40c 8.85 ± 0.34a 7.38 ± 0.34b 8.18 ± 0.66ab 7.96 ± 0.61ab 

Ethyl isovalerate (µg/L) 6.55 ± 0.47a 6.81 ± 0.74a 6.50 ± 0.23a 6.30 ± 0.4a 5.95 ± 0.48a 

Ethyl pentanoate (µg/L) 1.55 ± 0.10a 1.80 ± 0.02a 1.71 ± 0.06a 1.77 ± 0.18a 1.58 ± 0.21a 

Ethyl hexanoate (µg/L)* 484 ± 27a 502 ± 18a 528 ± 23a 512 ± 33a 411 ± 18b 

Ethyl heptanoate (µg/L) 2.54 ± 0.16a 2.60 ± 0.16a 2.61 ± 0.15a 2.65 ± 0.08a 2.54 ± 0.34a 

2-Phenylethyl acetate (µg/L) 21.7 ± 0.6a 20.7 ± 0.8a 20.8 ± 0.9a 20.0 ± 1.6a 21.6 ± 0.7a 

Ethyl octanoate (µg/L)* 794 ± 28ab 864 ± 42a 854 ± 18a 836 ± 22a 694 ± 63b 

Diethyl succinate (µg/L)* 441 ± 16b 526 ± 52ab 509 ± 42ab 595 ± 41a 551 ± 28a 

Ethyl cinnamate (µg/L)* 3.50 ± 0.80b 8.85 ± 2.14a 5.54 ± 0.23ab 8.79 ± 1.41a 8.10 ± 0.90a 

Ethyl hydrocinnamate (µg/L) 114 ± 6a 115 ± 5a 110 ± 3a 105 ± 8a 112 ± 1a 

Ethyl decanoate (µg/L)* 541 ± 30a 554 ± 21a 556 ± 19a 538 ± 22ab 461 ± 32b 

Subtotal (mg/L) 3.74 ± 0.08a 3.74 ± 0.14a 3.83 ± 0.09a 3.81 ± 0.11a 3.40 ± 0.16b 

Volatile fatty acids (FA)           

Acetic acid (mg/L) 98 ± 0a 90 ± 13a 102 ± 4a 110 ± 13a 108 ± 2a 

Butyric acid (mg/L)* 1.10 ± 0.01ab 1.08 ± 0.07ab 1.14 ± 0.04a 1.17 ± 0.04a 1.00 ± 0.01b 

Isobutyric acid (mg/L) 1.90 ± 0.05a 2.09 ± 0.16a 1.95 ± 0.07a 1.96 ± 0.10a 1.91 ± 0.16a 

2-Methylbutyric acid (mg/L) 1.45 ± 0.06a 1.55 ± 0.10a 1.49 ± 0.06a 1.43 ± 0.13a 1.32 ± 0.23a 

Isovaleric acid (mg/L) 1.67 ± 0.09a 1.77 ± 0.10a 1.72 ± 0.06a 1.64 ± 0.14a 1.52 ± 0.20a 

Hexanoic acid (mg/L)* 2.81 ± 0.03a 2.92 ± 0.11a 2.97 ± 0.11a 2.94 ± 0.06a 2.46 ± 0.04b 

Octanoic acid (mg/L)* 1.55 ± 0.03ab 1.60 ± 0.11a 1.63 ± 0.05a 1.61 ± 0.02a 1.26 ± 0.25b 

Subtotal (mg/L) 109 ± 0a 101 ± 13a 113 ± 4a 121 ± 12a 117 ± 2a 

Higher alcohols           

Isobutyl alcohol (mg/L)* 37.2 ± 0.1b 43.0 ± 1.4a 40.2 ± 1.6ab 37.4 ± 1.4b 39.3 ± 2.9ab 

Isoamyl alcohol (mg/L)* 229 ± 2abc 238 ± 7a 237 ± 3ab 220 ± 6c 221 ± 9bc 

cis-3-Hexen-1-ol (µg/L) 47.2 ± 0.9a 56.1 ± 4.1a 56 ± 2.6a 55.1 ± 6.9a 48.6 ± 6.2a 

trans-3-Hexen-1-ol (µg/L) 25.2 ± 1.2a 29 ± 2.7a 28.6 ± 0.5a 29.1 ± 2.8a 26 ± 3.8a 

trans-2-Hexen-1-ol (µg/L) 3.73 ± 1.55a 5.65 ± 2.73a 4.17 ± 2.24a 4.71 ± 2.28a 3.70 ± 1.87a 

1-Hexanol (mg/L) 2.64 ± 0.12a 2.60 ± 0.19a 2.69 ± 0.08a 2.58 ± 0.10a 2.56 ± 0.21a 

1-Heptanol (µg/L)* 51.2 ± 1.7ab 45.5 ± 3.8b 52.5 ± 2.1a 50.7 ± 1.0ab 49.9 ± 2.9ab 

Phenylethyl alcohol (mg/L) 45.2 ± 0.3a 52.3 ± 5.3a 46.8 ± 2.0a 44.3 ± 3.6a 51.2 ± 2.2a 

1-Octanol (µg/L) 43.6 ± 2.8a 41.4 ± 2.5a 39.4 ± 0.2a 39.5 ± 3.9a 36.5 ± 4.1a 
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Subtotal (mg/L) 314 ± 2ab 336 ± 14a 326 ± 7ab 304 ± 10b 314 ± 13ab 

Methoxypyrazine (MP)      

IPMP (ng/L) 0.00 ± 0.00c 0.97 ± 0.03a 0.01 ± 0.00c 0.06 ± 0.01c 0.63 ± 0.04b 

SBMP (ng/L) 0.33 ± 0.37a 1.46 ± 0.47a 1.05 ± 0.36a 0.98 ± 0.59a 1.14 ± 0.29a 

IBMP (ng/L) 0.36 ± 0.07c 7.63 ± 0.55a 1.52 ± 0.55bc 2.76 ± 1.30b 6.17 ± 0.32a 

Subtotal (ng/L) 0.69 ± 0.38c 10.06 ± 0.98a 2.57 ± 0.81bc 3.80 ± 1.88b 7.94 ± 0.60a 

Aldehydes           

Benzaldehyde (µg/L)* 18.8 ± 1.1b 24 ± 1.3a 15.8 ± 1.5b 17.1 ± 2.2b 18.7 ± 0.4b 

Volatile phenols           

Phenol (µg/L)* 4.64 ± 0.21b 5.09 ± 0.09a 4.58 ± 0.13b 5.09 ± 0.14a 5.14 ± 0.17a 

Guaiacol (µg/L)* 4.55 ± 0.52a 3.52 ± 0.50ab 3.19 ± 0.02b 3.33 ± 0.26ab 2.86 ± 0.54b 

4-Ethyl guaiacol (µg/L) 0.20 ± 0.06a 0.23 ± 0.03a 0.19 ± 0.04a 0.17 ± 0.02a 0.23 ± 0.07a 

Eugenol (µg/L)* 5.54 ± 0.15b 7.66 ± 0.24a 6.16 ± 0.25b 6.66 ± 0.8ab 7.47 ± 0.35a 

Subtotal (µg/L) 14.9 ± 0.51ab 16.5 ± 0.49a 14.1 ± 0.21b 15.2 ± 1.01ab 15.7 ± 0.43a 

Norisoprenoids           

β-Damascenone (µg/L)* 20.9 ± 0.4a 19.9 ± 0.8a 19.5 ± 0.7a 19.8 ± 1.0a 17.2 ± 0.6b 

α-Ionone (µg/L)* 0.05 ± 0b 0.06 ± 0a 0.06 ± 0a 0.06 ± 0a 0.06 ± 0a 

β-Ionone (µg/L) 1.62 ± 0.06a 1.64 ± 0.15a 1.72 ± 0.12a 1.69 ± 0.16a 1.88 ± 0.14a 

Subtotal (µg/L) 22.6 ± 0.4a 21.6 ± 0.9a 21.3 ± 0.7a 21.6 ± 0.9a 19.1 ± 0.7b 

Monoterpenes           

Geraniol (µg/L) 13.7 ± 0.9a 14.5 ± 1.3a 12.6 ± 0.6a 12.8 ± 0.9a 13.6 ± 1.4a 

Linalool (µg/L) 73.9 ± 3.7a 74.7 ± 9.9a 74.1 ± 4.7a 76.8 ± 0.9a 80.4 ± 9.2a 

Nerol (µg/L) 6.44 ± 0.83a 6.84 ± 1.67a 7.76 ± 0.84a 6.97 ± 0.49a 7.12 ± 1.21a 

Citronellol (µg/L) 17.0 ± 0.5a 18.0 ± 2.7a 16.2 ± 0.5a 16.8 ± 0.3a 18.1 ± 1.6a 

Subtotal (µg/L) 111 ± 6a 114 ± 15a 111 ± 6a 113 ± 1a 119 ± 13a 

Different lowercase letters in rows indicate significant differences among treatments (p<0.05, Tukey 
comparison).   
* Aroma compounds showing significant differences in concentration between treatments and thus 
selected for the PCA analysis.  
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Table 6.2: Odour activity values (OAVs) of significant aroma compounds (OAV > 0.1) 

Aroma Chemical DS DS100 WB30 WB60 WB100 

Acetate Esters 
     

Ethyl acetate 7.45 ± 0.47a 6.54 ± 0.03a 7.40 ± 0.49a 7.59 ± 0.74a 7.16 ± 0.40a 

2-Methylbutyl acetate* 0.76 ± 0.06ab 0.65 ± 0.03b 0.83 ± 0.04a 0.7 ± 0.08ab 0.65 ± 0.03b 

Isoamyl acetate* 6.64 ± 0.17a 5.51 ± 0.43b 6.59 ± 0.02a 5.34 ± 0.50b 5.69 ± 0.27ab 

Ethyl Esters      

Ethyl isobutyrate 1.78 ± 0.08a 2.04 ± 0.22a 1.88 ± 0.06a 1.86 ± 0.04a 1.91 ± 0.14a 

Ethyl butyrate 0.53 ± 0.03a 0.49 ± 0.02a 0.56 ± 0.03a 0.55 ± 0.04a 0.49 ± 0.05a 

Ethyl 2-methylbutyrate* 0.32 ± 0.02c 0.49 ± 0.02a 0.41 ± 0.02b 0.45 ± 0.04ab 0.44 ± 0.03ab 

Ethyl isovalerate 2.18 ± 0.16a 2.27 ± 0.25a 2.17 ± 0.08a 2.10 ± 0.13a 1.98 ± 0.16a 

Ethyl pentanoate 0.31 ± 0.02a 0.36 ± 0.00a 0.34 ± 0.01a 0.35 ± 0.04a 0.32 ± 0.04a 

Ethyl hexanoate* 34.6 ± 1.9a 35.9 ± 1.3a 37.7 ± 1.7a 36.6 ± 2.3a 29.3 ± 1.3b 

Ethyl heptanoate 1.16 ± 0.07a 1.18 ± 0.07a 1.18 ± 0.07a 1.20 ± 0.04a 1.15 ± 0.15a 

Ethyl octanoate* 1.37 ± 0.05ab 1.49 ± 0.07a 1.47 ± 0.03a 1.44 ± 0.04a 1.20 ± 0.11b 

Ethyl cinnamate* 3.18 ± 0.73b 8.04 ± 1.95a 5.03 ± 0.21ab 7.99 ± 1.29a 7.36 ± 0.82a 

Ethyl hydrocinnamate 71.4 ± 3.8a 72.1 ± 3.1a 68.6 ± 2.1a 65.4 ± 4.7a 70.2 ± 0.8a 

Ethyl decanoate* 2.7 ± 0.15a 2.77 ± 0.11a 2.78 ± 0.09a 2.69 ± 0.11ab 2.31 ± 0.16b 

Volatile fatty acids (FA) 
     

Acetic acid 0.49 ± 0a 0.45 ± 0.06a 0.51 ± 0.02a 0.55 ± 0.06a 0.54 ± 0.01a 

Butyric acid* 6.36 ± 0.08ab 6.23 ± 0.40ab 6.59 ± 0.25a 6.75 ± 0.25a 5.78 ± 0.05b 

Isobutyric acid 0.83 ± 0.02a 0.91 ± 0.07a 0.85 ± 0.03a 0.85 ± 0.04a 0.83 ± 0.07a 

2-methylbutyric acid 0.48 ± 0.02a 0.52 ± 0.03a 0.50 ± 0.02a 0.48 ± 0.04a 0.44 ± 0.08a 

Isovaleric acid 50 ± 2.7a 53.0 ± 2.9a 51.4 ± 1.9a 49.0 ± 4.1a 45.6 ± 6.1a 

Hexanoic acid* 6.69 ± 0.07a 6.94 ± 0.27a 7.07 ± 0.26a 7.00 ± 0.15a 5.87 ± 0.09b 

Octanoic acid* 3.09 ± 0.05ab 3.19 ± 0.21a 3.26 ± 0.11a 3.21 ± 0.04a 2.51 ± 0.49b 

Higher alcohols 
     

Isobutyl alcohol* 0.93 ± 0.00b 1.07 ± 0.04a 1.00 ± 0.04ab 0.94 ± 0.04b 0.98 ± 0.07ab 

Isoamyl alcohol 7.64 ± 0.05abc 7.93 ± 0.22a 7.89 ± 0.10ab 7.32 ± 0.20c 7.37 ± 0.30bc 

1-Hexanol 2.4 ± 0.11a 2.36 ± 0.17a 2.44 ± 0.08a 2.35 ± 0.09a 2.33 ± 0.19a 

1-Heptanol* 0.26 ± 0.01ab 0.23 ± 0.02b 0.26 ± 0.01a 0.25 ± 0.00ab 0.25 ± 0.01ab 

Phenylethyl alcohol 3.23 ± 0.02a 3.74 ± 0.38a 3.34 ± 0.14a 3.17 ± 0.26a 3.66 ± 0.15a 

Methoxypyrazines (MP)      

IPMP* NS 0.49 ± 0.02a NS NS 0.32 ± 0.02b 

SBMP 0.33 ± 0.37a 1.46 ± 0.47a 1.05 ± 0.36a 0.98 ± 0.59a 1.14 ± 0.29a 

IBMP* 0.36 ± 0.07c 7.63 ± 0.55a 1.52 ± 0.55bc 2.76 ± 1.30b 6.17 ± 0.32a 

Volatile phenols 
     

Guaiacol* 0.47 ± 0.03a 0.37 ± 0.05ab 0.34 ± 0.00b 0.35 ± 0.03ab 0.30 ± 0.06b 

Eugenol* 0.92 ± 0.02b 1.28 ± 0.04a 1.03 ± 0.04b 1.11 ± 0.13ab 1.24 ± 0.06a 

Norisoprenoids 
     

β-Damascenone* 2.99 ± 0.06a 2.85 ± 0.12a 2.78 ± 0.10a 2.83 ± 0.14a 2.45 ± 0.08b 

β-Ionone 0.32 ± 0.01a 0.33 ± 0.03a 0.34 ± 0.02a 0.34 ± 0.03a 0.38 ± 0.03a 

Monoterpenes 
     

Geraniol 0.46 ± 0.03a 0.48 ± 0.04a 0.42 ± 0.02a 0.43 ± 0.03a 0.45 ± 0.05a 

Linalool 2.93 ± 0.15a 2.96 ± 0.39a 2.94 ± 0.19a 3.05 ± 0.03a 3.19 ± 0.36a 

Citronellol 0.17 ± 0.01a 0.18 ± 0.03a 0.16 ± 0.01a 0.17 ± 0.00a 0.18 ± 0.02a 
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Different lowercase letters in each row indicate significant differences among treatments (p<0.05).   

* Aroma compounds showing significant differences in OAV between treatments. 

NS – Non significance (< 0.1 OAV) 
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Chapter 7 

General Conclusion and Future Work 

In this study, five treatments, including the DS, DS100, WB30, WB60 and WB100 treatments, were 

prepared to study the effect of stem inclusion fermentation on Pinot Noir wine composition. Either 

adding stems or whole bunches could result in a decrease of alcohol content attributed to the water 

content in stems. The inclusion of grape stems also increases the pH of resultant wine due to the 

extraction of potassium from stems.  

Two methods were used to assess the colour of the resultant wines. When concluding the results from 

Somers method, stem inclusion and whole bunch addition caused a decrease in anthocyanin 

concentrations, mainly due to adsorption of anthocyanin into stems and formation of polymeric 

pigments.  The inclusion of grape stems also increased the degree of ionisation of anthocyanin, and 

hue compared to non-stem added treatment. A higher proportion of whole bunch addition (60% and 

100% whole bunches) caused to form more unbleachable pigments (SO2 resistant pigments) in wines. 

However, in most of the analysis results related to oenological parameters and colour assessment 

showed that 30% whole bunch addition was not sufficient to result in a significant difference compared 

to non-stem added treatment. When considering about the CIELab results, only DS100 treatment had 

significantly different luminosity (L*), tone (H*), yellow-blue (b*), and chroma (C*) coordinate values 

compared to DS treatment, but red-green (a*) coordinate was not affected by adding stems or whole 

bunches. 

Stem inclusion (direct stem addition and whole bunch addition) increased tannin and total phenolics 

concentrations due to stem derived tannins. However, 100% stem inclusion led to a significantly lower 

amount of tannin compared to 100% whole bunch added treatment due to the precipitation of tannins 

after interacting with proteins and polysaccharides in the media as well as in the stems. It was observed 

that amount of stem addition and the method of stem addition have varied impacts on the resultant 

wine phenolics. The concentrations of catechin, gallic acid, caftaric acid, cis-coutaric acid, caffeic acid, 

and resveratrol in resultant wines were increased with incremental whole bunch addition treatments 

compared to DS treatment respectively. However, in most cases, WB30 was not enough to result in a 

significant increase compared to DS treatment.  

Both stem addition and whole bunch addition resulted in higher concentrations of eugenol, IBMP, 

IPMP and phenols attributed for green, woody and spicy aromas in wine. Principle component analysis 

(PCA) was carried out to find the most significant aroma compounds to categorise treatments, hexyl 

acetate, 2-methylbutyl acetate, octyl acetate and ethyl octanoate were the most significant aroma 
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compounds identified in this study to characterise the different treatments. Odour activity value 

analysis showed that 30% whole bunch addition did not significantly increase green, woody and spicy 

aroma series values compared to non-stem added treatment. When comparing 100% stem added 

treatments, DS100 treatment had significantly higher concentrations of ethyl octanoate, ethyl 

decanoate, octyl acetate, ethyl hexanoate, hexanoic acid and octanoic acid compared to WB100 

treatment, which is mostly responsible for fruity and fatty/oily aroma in the wine. 

This study has investigated the effect of grape stem inclusion fermentation on the resultant wine 

composition. Results of this study will be important for winemakers to determine the required quantity 

and the way of stem inclusion to achieve the desired quality in Pinot Noir wines in terms of colour, 

phenolics and aroma. However, there are some additional aspects of this study that should be further 

investigated because they can help to have a clear idea about the impact of stems on resultant wine 

composition. Potential further investigations include; 

• To analyse the composition of Pinot Noir grape stems at different maturity stages. 

• Determine the impact of different field practices such as leaf removal on stem composition. 

• To standardise the maturity level of stems and evaluate the impact of the maturity stage on 

resultant wine composition.  
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Appendix 

Table A.1: Information about aroma compounds from previous studies (all concentrations are given in µg/L) 

Aroma Chemical 
(Common name) 

Aroma Chemical (IUPAC) Aroma Description1, 2 ,3 ,4 ,5 ,6 
Perception 
threshold 

Matrix 
Aroma 
Series 

(Tomasino et 
al., 2015) 

(Rutan et al., 2014) (Girard et al., 2001) 

Acetate Esters  
 

   
 

  

Ethyl acetate Ethyl acetate Fruity, Pineapple, varnish 7500 12 B 4, 1   386.5– 520.5 (×103) 

Isobutyl acetate 2-Methylpropyl ethanoate Apple, Banana 1605 10 F 1  27-58 10.7-28.2 (×103) 

2-Methylbutyl acetate 2-Methylbutyl acetate Banana, fruity 313 21 J 1    

Isoamyl acetate 3-Methylbutyl acetate Banana 30 12 B 1 149-378 (×103) 189-254  

Hexyl acetate Hexyl Acetate 
Lolly, fruit, Apple, cherry, 

pear 
700 8 G 1 2-16 10.6-18.6 3.62-62.7 (×103) 

Octyl acetate Octyl acetate Fruity, neroli, jasmine 50000 18 D 1, 2    

Ethyl Esters         

ethyl isobutyrate Ethyl 2-methylpropanoat Fruity, strawberry, melon 15 9 A 1 104-559 25-54 31.4-94.0 (×103) 

Ethyl butyrate ethyl butanoate 
Banana, pineapple, 

strawberry, acid fruits 
400 15 C 1 116-340 75-153 49-135 (×103) 

Ethyl lactate Ethyl 2-hydroxypropanoate 
Strawberry, raspberry, 

buttery 
150000 15 C 1, 5  134.9-191.7 (×103)  

Ethyl 2-methylbutyrate ethyl 2-methylbutanoate Sweet fruit, Strawberry 18 9 A 1   7.92-28.1 (×103) 

Ethyl isovalerate Ethyl 3-methylbutanoate Fruity, cherry 3 9 A 1 12-52 23-54  

Ethyl pentanoate Ethyl pentanoate Fruity, strawberry 5 11 K 1 1-4   

Ethyl hexanoate Ethyl hexanoate Green apple, banana, fruit 14 9 A 1 300-593 312-372 142-400 (×103) 

Ethyl heptanoate Ethyl heptanoate Sweet, strawberry, banana 2.2 16 K 1 3-9  1.70-6.51 (×103) 

2-Phenylethyl acetate 2-phenylethyl acetate Flowery, roses, honey 250 12 B 2, 7 -  500-1070 

Ethyl octanoate Ethyl octanoate 
Sweet, floral, fruity, banana, 

pear 
580 14 C 1, 2 410-874 318-384 213-464 (×103) 

Diethyl succinate diethyl butanedioate 
Fruity, melon, Over-ripe, 

lavender 
1200000 14 C 1, 2  10.9-17.1 (×103) 9.96-20.6 (×103) 
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Ethyl cinnamate ethyl (E)-3-phenylprop-2-enoate Cinnamon, vanilla 1.1 9 A 6, 3  1.6-4.1  

Ethyl hydrocinnamate ethyl 3-phenylpropanoate Sweet, pleasant, floral 1.6 9 A 1, 2  1.11-2.31  

Ethyl decanoate Ethyl decanoate Fruity, fatty, pleasant, soap 200 9 A 1, 4, 5 172-971 164-207 73.3-90.6 (×103) 

Volatile fatty acids(FA)         

Acetic acid Acetic acid Volatile acidity, vinegar 200000 12 B 4 415-874 (×103)   

Butyric acid butanoic acid Cheese, rancid 173 9 A 5 209-716 1026-1756 1.42-3.47 (×103) 

Isobutyric acid 2-methylpropanoic acid Cheese, rancid, butter 2300 9 A 5  389-895 3.69-7.46 (×103) 

2-methylbutyric acid 2-methylbutanoic acid Cheese, sweaty 3000 12 B 5 -   

Isovaleric acid 3-methylbutanoic acid Cheese, Acid, Rancid 33.4 9 A 5 160-591 275-665  

Hexanoic acid Hexanoic acid Cheese, fatty, sweaty 420 9 A 5 1104-1941 712-1217 1.40-6.22 (×103) 

Octanoic acid Octanoic acid Rancid oily, cheese, fatty 500 9 A 5 665-2002 911-1302 1.07-3.07 (×103) 

Higher alcohols         

Isobutyl alcohol 2-methylpropan-1-ol Fusel, spiritous 40000 12 B 4  10.4-14.7 (×103) 16.5-32.1 (×103) 

Isoamyl alcohol 3-methylbutan-1-ol Harsh, nail polish 30000 12 B 4 136-312 (×103) 104.3-150.5 (×103) 1861-2579 (×103) 

cis-3-Hexen-1-ol (Z)-hex-3-en-1-ol 
Herbaceous, green, bitter, 

fatty 
1000 15 C 5, 7 24-116 22-43 3.77-6.03 (×103) 

trans-3-Hexen-1-ol (E)-hex-3-en-1-ol Herbaceous, green 1000 8 H 7 62-127 18-35 5.6-16.3 (×103) 

trans-2-Hexen-1-ol (E)-hex-2-en-1-ol Herbaceous, green 1000 18 D 7 -   

1-Hexanol Hexan-1-ol Herbaceous, grass, woody 1100 15 C 6, 7 2-5 (×103) 809-1272 99-188 (×103) 

1-Heptanol Heptan-1-ol Oily 200 17 I 5 12-270  1.64-13.7 (×103) 

Phenylethyl alcohol 2-phenylethanol Roses, floral 14000 9 A 2 17-101 (×103) 68.7-135.0 23.1-26.8 (×103) 

1-Octanol octan-1-ol Jasmine, lemon 800 14 C 2    

Methoxypyrazine (MP)         

IPMP 2-methoxy-3-propan-2-ylpyrazine Earthy, grassy, leafy 0.00219 L 7    

SBMP 2-butan-2-yl-3-methoxypyrazine Green, peas, bell pepper 0.00120 K 7    

IBMP 2-methoxy-3-(2-methylpropyl) 
pyrazine 

Herbaceous, earthy 0.00119 L 7    

Aldehydes         

Benzaldehyde Benzaldehyde Roasted, almond 2000 15 C 8 5-66  2.97-5.52 (×103) 



 76 

Volatile phenols         

Phenol phenol Phenolic, medicinal 5900 7 K 4, 6 Nd-21   

Guaiacol 2-methoxyphenol Medicinal, smoky 9.5 9 A 4, 6  3.1-10.3  

4-Ethyl guaiacol 4-ethyl-2-methoxyphenol Toasted bread, smoky, clove 33 9 A 6 1-46   

Eugenol 2-methoxy-4-prop-2-enylphenol Cinnamon, clove, wood 6 9 A 3, 6 15-80 16.9-25.3  

Norisoprenoids         

β-Damascenone 
(E)-1-(2,6,6-trimethylcyclohexa-

1,3-dien-1-yl)but-2-en-1-one 

Sweet, exotic, flowers, 
stewed apple, canned 

peach, dry plum 
7 13 E 1, 2 1-5 4.02-5.44  

α-Ionone 
(E)-4-(2,6,6-trimethylcyclohexen-

1-yl)but-3-en-2-one 
Sweet fruit 2.6 9 M 1  0.28-0.61 180-320 

β-Ionone 
(E)-4-(2,6,6-trimethylcyclohexen-

1-yl)but-3-en-2-one 
Dark berries, violet, roses 5 18 D 1, 2 Nd-1 0.29-0.42  

Monoterpenes         

Geraniol 
(2E)-3,7-dimethylocta-2,6-dien-1-

ol 
Citrus, Floral 30 12 B 1, 2 Nd-5 12.4 – 16.2 600-1020 

Linalool 3,7-dimethylocta-1,6-dien-3-ol Flowery, muscat 25.2 9 A 2, 1 41-170 2.25-5.37  

Nerol 
(2Z)-3,7-dimethylocta-2,6-dien-1-

ol 
Violets, floral 300 18 D 2  3.79-5.98  

Citronellol 3,7-dimethyloct-6-en-1-ol Floral, rose 100 14 C 2  6.9-11.1  

Aroma description: 1 (Burdock, 2016), 2 (Cai et al., 2014), 3 (Rutan et al., 2014), 4 (Siebert et al., 2005), 5 (Zea et al., 2007), 6 (Zhu et al., 2019) 
 
Perception threshold references: 7 (Baker, 1963), 8 (Benkwitz et al., 2012), 9 (V. Ferreira et al., 2000), 10 (Ferreira et al., 2002), 11 (Flath, Black, Guadagni, McFadden, 
& Schultz, 1967), 12 (Guth, 1997), 13 (Pineau et al., 2007), 14 (Peinado, Mauricio, & Moreno, 2006), 15 (Peinado et al., 2004), 16 (Takeoka, Flath, Mon, Teranishi, & 
Guentert, 1990), 17 (Tao & Zhang, 2010), 18 (Zhao, Gao, Qian, & Li, 2017), 19 (Alen, Lacey, Harris, & Brown, 1991), 20 (Sala et al., 2004), 21 (Cameleyre, Lytra, Tempere, 
& Barbe, 2017) 
 
Matrix used to measure perception thresholds by different authors: A-model wine containing 11% (v/v) ethanol/water solution, 7 g/L glycerine, 5 g/L tartaric 
acid, and pH at 3.4 (adjusted with 1M NaOH); B-10% (v/v) ethanol/water solution, C-model wine containing 10% (v/v) ethanol/water solution, and pH at 3.5 
(adjusted with tartaric acid); D- model wine made with water/ethanol (90 + 10, w/w); E- Thresholds were calculated in red wine; F-model wine containing 10% 
(v/v), ethanol/water solution, 7 g/L of glycerine, 1 g/L tartaric acid and pH at 3.2; G-model wine containing 12.5% (v/v) ethanol/ water solution at pH 3.2; H-model 
wine containing 14% (v/v) ethanol/water solution at pH 3.5; I- model wine containing 9.72 g/100 g ethanol/water mixture, 5 g/L tartaric acid and pH adjusted to 
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3.2; J- model wine containing 12% (v/v) ethanol/water solution, 5g/L of tartaric acid and pH adjusted to 3.5 with NaOH; K- thresholds were calculated in water; L-
Thresholds were calculated in white wine; M- No data available 
 
Aroma Series: 1-Fruity, 2-Floral, 3-Spicy, 4-Chemical, 5-Microbiological/oily/fatty, 6-Woody, 7-Vegetative, 8-Nutty 

(Tomasino et al., 2015): analysed 34 aroma compounds in the 32 New Zealand regional Pinot Noir wines from solid phase microextraction GC-MS technique; 
(Rutan et al., 2014): Mean aroma compound concentration range of Estate and Premium Pinot Noir wines in 2009 and 2010 vintages using gas chromatography 
olfactory analysis (GC/O) technique. Grapes were grown in Bannockburn, Central Otago, New Zealand; (Girard et al., 2001): Mean aroma compound concentration 
range of four Pinot noir wines made from EC1118 at four different vinification temperatures in British Columbia. 
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