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Abstract of a Thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

The Potential of Beef Lungs as a Protein Ingredient and Peptide 

Source  

 

 

by 

Reshan Jayawardena 

 

Beef lungs are an underutilised co-product of the meat industry that could be used as an 

ingredient to supplement the protein content of cereal foods. Incorporating beef lung into 

widely consumed food can improve the protein quality of the food chain. Air oven drying was 

used to convert raw beef lungs to beef lung powder (BLP). Beef lungs were dried at 60 ˚C for 

32 hours and ground into beef lung powder (BLP). BLP was incorporated into the pasta as a 

model food for delivery of macro and micronutrients. BLP had 87% protein content (dry weight 

basis) with a rich essential amino acid profile and contained 1 mg/g iron. Fresh semolina pasta 

was used as a model food, and BLP could be incorporated at up to 20% based on preliminary 

trials. Incorporation of 10% BLP improved the indispensable amino acid score (IAAS) of the 

pasta from 0.48 to 0.91, Pasta with 10% BLP showed better textural, colour and cooking 

characteristics compared to those where BLP was incorporated at 15% and 20% (P <0.05). 

Incorporation of BLP into the pasta also significantly (P < 0.05) lowered the predicted 

glycaemic response. Therefore, the inclusion of BLP improved the nutritional value of a starchy 

food and is a potential ingredient in the development of new food products.  

Further research was focused on reducing drying time and temperature to lower the cost of production 

and increase the nutrient content. Raw beef lungs were minced and dried for 23 hours at 50 ˚C, 11 

hours at 70 ˚C or 6 hours at 100 ˚C. The resulting BLP powders were analysed for physicochemical and 

nutritional properties. All of the powders were able to absorb three times their weight in water.  The 

BLP dried at 50 °C preserved 40% of the total iron as haem iron, which has a higher bioavailability, but 

this significantly decreased to 29% when the lungs were dried at 100°C. All the powders dried at50, 70 
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and 100 °C were within microbial safety limits for total viable bacterial count, yeast and mould and 

there was no evidence of coliform bacteria after six months of storage. The higher quality of BLP dried 

at 50 °C was confirmed by low levels of lipid (0.51 MDA mg/Kg sample) and protein (8.6 nmol carbonyl 

/mg protein) oxidation after six months of storage. 

The bioaccessibility of the nutrients within BLP dried at different temperatures was assessed using a 

simulation of human digestion. The dried beef lungs at 50°C had a 96.3% in vitro protein digestibility 

(IVPD). This was significantly decreased 95.8% with drying at 70 °C. In vitro bioaccessibility of copper 

(Cu), iron (Fe) and sulphur(S) also significantly decreased as drying temperature increased.  Bovine lung 

dried at 50°C could provide highly bioaccessible proteins and minerals for the human body. 

Local meat processing plants were unable to provide edible beef lungs while meeting stringent export 

requirements. This prevented conducting any sensory analysis and would make commercialisation of 

a food supplement from bovine lungs difficult. As a result, the potential for using lungs for the 

production of bioactive peptides was investigated. The protein in raw beef lungs was digested and the 

resulting peptides analysed for angiotensin-1 converting enzyme (ACE) inhibitory activity. Kiwifruit 

extract and the commercial fungal proteases, FP31K and FP60K were used to produce beef lung 

hydrolysates. Active fractions were purified, and the amino acid sequence of the peptides were 

analysed by mass spectrometry. The highest ACE inhibitory activity was identified in FP31K enzymatic 

hydrolysates, and the peptides in this fraction had an IC50 of 24 µg/mL for ACE inhibition. The novel 

peptide sequence “Val-Ser-Pro-Gly-Met-Pro” was identified as a possible ACE inhibitory peptide. 

Peptide analysis revealed collagen and elastin as the dominant proteins in beef lung hydrolysates.  

This study produced economical and nutritious protein powder from beef lungs. This nutritious BLP 

could be used to supplement starchy food protein and possibly help eliminate world malnutrition, if 

the regulatory obstacles could be overcome. Meanwhile, the raw beef lungs are a good source for 

producing ACE inhibitory peptides. If the meat industry could use lungs in pharmaceutical production 

of ACE inhibitors and other peptides, it would increase profit margins from this underused coproduct.  

 

 

Keywords: Beef lung, air oven drying, protein nutrition, indispensable amino acid score (IAAS), iron 

content, glycaemic response, microbial food safety, lipid oxidation, protein oxidation, bioaccessibility, 

bioactive peptide, angiotensin-1 converting enzymes (ACE), inhibitors, amino acid, peptide sequence.   
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Chapter 1 

Introduction 

Meat plays a major role in the human diet to fulfil essential nutritional requirements by providing 

quality protein. Based on the amino acid profile, animal protein can supply complete protein with high 

biological value and bioavailability. The global demand for meat is growing continuously, and 

expansion of production is required to meet this demand.  

The expansion of meat production, and in particular beef, has been associated with environmental 

concerns. For instance, ruminants used 3.7 billion tonnes of the 4.7 billion tonnes feed biomass 

consumed by livestock globally in 2000 (Herrero, Havlík, Valin, Notenbaert, Rufino, Thornton, et al., 

2013). Further, it is estimated that they are responsible for a large portion of the total livestock non-

CO2 greenhouse gas emission (Herrero, Havlík, Valin, Notenbaert, Rufino, & Thornton, 2013). Beef is  

82 % of the meat produced from ruminants (FAOSTAT, 2018) and the beef industry is held responsible 

for the greatest environmental impact (Leonard, 2011). It is critical that the beef industry tries to 

increase the efficiency of production rather than just increase the number of animals. 

The beef carcass is about 45% to 60% of live animal weight (Albertí et al., 2008) and the rest is either 

considered as waste or co-products. Better utilisation of these co-products could significantly increase 

the production efficiency (Lynch, Álvarez, O'Neill, Keenan, & Mullen, 2018; Mullen et al., 2017) and 

preserve a greater portion of the animal protein within the human food chain. However, co-product 

consumption is a culturally bound food habit in certain communities and much less popular than 

muscle meat. Beef lung is an underutilised co-product due to the poor aesthetic characteristics. 

Processing of beef lungs could modify the textural characteristics and possibly allow it to be 

incorporated into widely consumed foods to deliver protein globally. The lungs in adult cattle weigh 

around 3 kg and a considerable amount of protein could be preserved by bringing them on to the 

consumer’s food plate. High meat-producing countries like New Zealand do not use this nutritious 

organ as edible food and it is used as pet food or a component of low value meat and bone meal. 

The major meat producing countries typically have a low demand for co-products, while other parts 

of the world suffer from protein deficiency. These latter countries always struggle to fulfil their energy 

requirement rather than focusing on nutrition requirements. The World Food Program's hunger map 

(WFP, 2019) illustrated severely malnourished countries, where more than 35% of their population is 

undernourished. Therefore, they are more prone to have protein-energy malnutrition. The income 
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level of these hunger-stricken countries is at the bottom level of developing countries and they are 

unable to purchase expensive animal meat. Globally, the price of meat is higher than plant 

commodities, and there is an obvious purchasing problem for low income countries to obtain high 

quality protein. Having low price animal protein affordable could help fulfil their protein requirement. 

Beef lungs are underutilised co-product of the meat industry that has enormous potential as a protein 

supplement. So, there is an opportunity to bridge the research gap by utilising the accumulating beef 

lungs in higher meat producing countries and at the same time, fulfil the nutrition requirement of 

malnourished communities. This research focuses on producing a low cost, nutritious and safe protein 

supplement from lungs, with a long shelf life without requiring refrigeration.  

There are a number of studies and reviews on beef co-products and beef lungs (Darine, Christophe, & 

Gholamreza, 2010, 2011; Lynch et al., 2018; O'Sullivan, Lafarga, Hayes, & O'Brien, 2017; Tridente, De 

Martino, & De Luca, 2019) and a few on processing of beef lungs for human consumption (Cardoso-

Santiago & Arêas, 2001a; Cardoso-Santiago & Arêas, 2001b; Chávez‐Jáuregui, Cardoso‐Santiago, Silva, 

& Arêas, 2003). To the author’s knowledge there are no reported research on converting beef lung 

into a food ingredient or for the production of ACE inhibitory peptides.  

This PhD thesis is aimed to achieve four objectives and the thesis is structured accordingly 

• To convert beef lung  into a food ingredient and incorporate it into a starchy food (pasta) as a 

nutrition vehicle.  

• To improve the processing conditions of this food ingredient to produce an economical and 

nutritious product with a long shelf life  

• To determine the accessibility of nutrients from beef lung powder to the human body using 

an in vitro digestion product  

• To determine the possibility of developing bioactive products as an alternative use of beef 

lung.  

1.1 Thesis structure 

Including this introduction, the thesis contains seven chapters. Chapter 2 is the literature review which 

gives background information upon which this project is based. Chapters 3 to 6 are experimental 

chapters prepared in journal paper format. Chapter 7 provides overall conclusions perceived from the 

project, followed by future work and a complete list of references. There is no separate methodology 

chapter to limit repetition of methods throughout the thesis, and methods are appropriately included 

in each experimental chapter. Figure 1.1 details the main idea of the experimental chapters and how 

they relate to each other. 
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Chapter 2 

Literature Review 

The global beef industry has grown due to increased demand for high quality protein and its sensory 

attributes.  However, beef production is under pressure globally due to environmental concerns. 

Generally, 60% of live weight is recovered as beef carcass, and the remaining 40% is edible or inedible 

coproducts. It is vital to utilise this fraction efficiently to maximize profitability, utilize resources 

efficiently and reduce pressure on environment. Among the edible coproducts, beef lungs are a 

commonly underutilised organ, especially in meat-producing countries, with an average weight of 

nearly 3 Kg in adult cattle. Edible offal consumption depends on cultural behaviour (Toldrá, Aristoy, 

Mora, & Reig, 2012) and bovine lung consumption is not popular in  western countries. Due to 

regulatory concerns and low demand for lungs, most of them are eliminated from the human food 

chain and used to produce meat and bone meals (MBM) by the rendering process. 

Even though, affluent individuals in some countries eat offal due to cultural reasons and pay premium 

value, most Asian and African communities are accustomed to and prefer offal since they are cheaper 

and more accessible than expensive animal meat. This is especially true in hunger-stricken countries 

that suffer from nutritional deficiencies which can be eliminated by serving nutritious cheap food 

options such as offal. Beef offal, including lungs, possibly can be converted into protein ingredients 

and incorporated in food products.  This approach can provide extra economical value for beef 

producing countries while serving animal proteins in a functional way with affordable price for hunger-

stricken countries. Alternatively, the bioactive properties of offal could be used for the pharmaceutical 

industry to gain high profit margins. 

 

2.1 Global and local meat production 

Globally pork, chicken and beef are the dominant meat industries and global  production reached  113 

million tonnes of pork, 95 million tonnes of chicken and 63 million tonnes of beef & veal in 2018 (USDA-

FAS, 2018). Focusing on beef production, in 2018 the United States produced the highest volume of 

beef  in the world at 12.3 million tonnes but its domestic consumption in the years from 2014 to 2016 

was slightly higher (USDA-FAS, 2017, 2018). Thus, the United States is the largest beef importer in the 

world, followed by China, Japan, Hong Kong and Korea. The major beef exporters are Brazil, India, 

Australia, United States and New Zealand. For New Zealand, meat exports are second only to dairy. 

New Zealand produced  1.39 million tonnes of meat in 2017 and exported 0.99 million tonnes of that 
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(FAOSTAT, 2018). Beef is the largest meat production in New Zealand by weight and 0.64 million 

tonnes of beef was produced in 2017 (MIA, 2018). New Zealand domestic beef consumption was less 

than 0.1 million tonnes in 2017, due to its small population (5.0 million) and it exported 0.56 million 

tonnes of beef  (FAOSTAT, 2018). New Zealand exported beef to 76 countries and its largest export 

market was the USA.  

World meat consumption has increased continuously during the last two decades. Global meat 

consumption increased from 204 million tonnes in 1997 to 313 million tonnes in 2017 with the 

increasing population and increased individual consumption from 35.33 to 42.57 kg/ capita/year 

(FAOSTAT, 2018).  Meat industries have continuously increased production to meet the rising demand. 

Using a larger proportion of each animal is a possible alternative to slaughtering more animals. The  

beef carcass weight is only 45% to 60% of animal live weight (Albertí et al., 2008) and the rest is either 

considered as edible coproducts or inedible portions. These are a potential source of products in either 

the food or pharmaceutical industry (García & Manrique, 2018). 

2.2 Global coproduct market 

The increase in meat production means that there is also a parallel increase in potential 

coproducts. Identification and quantification of global coproducts and their wastage are beneficial for 

the purpose of evaluating their potential and applications. The current literature does not distinguish 

the animal source of coproducts and wastage clearly. FAO statistics in 2019 provides the world 

production of coproducts but it does not differentiate particular coproducts or species. USDA data 

provided livestock statistics until mid of 2019 and forecast for 2020 but offal statistics were not 

available. Local meat production in New Zealand was reported by Meat Industry Association (MIA) 

annual report but it does not differentiate the edible offal figures according to animal species. 

The importation and export of edible offal increased rapidly from 1993 to 2013. Both import 

and export quantities of edible offal were around 1 M tonnes in 1993, and had grown to 4.9 M tonnes 

exported and 3.8 M tonnes imported in 2013. World total edible offal exports for different regional 

markets were as follows; 52.8%- Europe, 30.7%-America, 10.7%-Asia, 5.4%-Oceania and 0.4%-Africa; 

importation was reported as 48%-Asia, 31.3% Europe, 10.3%-Africa, 10.2%-America and 0.1% Oceania 

in 2013. In 2017, Edible offal Import-export market, values and quantities were derived by region  from 

the FAOSTAT (2018) database (Table 2.1). Global total edible offal export quantity was reported as 

5,798,582 tonnes with market value of 9,957,040 thousand (*1000) US$ in 2017 and average offal 

value was 0.6 US$/Kg with including edible offal of cattle, sheep, pig, goat and liver of chicken, duck 

and gees. According to FAOSTAT (2016) data base, edible pig offal is the most highly demanded edible 

offal market in the world. Germany exported the largest quantity of pig offal in 2016 (668632 tonnes) 
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and highest total quantity was imported by China-Mainland (1.35 million tonnes). The top five 

importers of beef and offal were Hong Kong China, Egypt, Vietnam, Russian Federation and Japan. 

Hong Kong imported 272502 tonnes of cattle offal and was the largest importer in 2016 (FAOSTAT, 

2016) and USA supplied 280805 tonnes of cattle edible offal as largest supplier followed by Australia, 

Brazil, Ireland and Argentina. 

Table 2.1 World edible offal market importation and exportation by region (2017) 

Export quantity of edible offal (tonnes)  

Region Cattle Chicken  Duck Geese Pigs Sheep Total (%) 

Africa 9,700 7,172 72 33 462 1,331 0.3 

Americas 646,167 1,023 30 58 777,091 720 24.6 

Asia 135,656 4,023 57 185 558,692 6,183 12.2 

Europe 528,540 738,665 14,092 2,114 2,090,960 22,187 58.6 

Oceania 192,485 NA 91 NA 6,641 54,151 4.4 

World 1,512,548 750,883 14,343 2,389 3,433,847 84,572 100 
 

      
 

Export value of edible offal (1000 US$)  

Africa 16,441 6,301 113 48 754 2,942 0.3 

Americas 1,682,359 1,264 371 212 1,274,769 1,832 29.7 

Asia 322,449 10,800 182 412 1,386,496 16,006 17.4 

Europe 1,026,788 640,543 133,865 19,100 2,632,030 40,590 45.1 

Oceania 614,512 NA 112 NA 8,842 116,905 7.4 

World 3,662,550 658,907 134,644 19,774 5,302,890 178,275 100        
 

Import quantity of edible offal (tonnes)  

Africa 506,929 60,650 93 134 97,920 9,313 13.4 

Americas 164,841 32,110 20 94 263,385 5,184 9.2 

Asia 584,618 54,048 320 1,122 2,043,856 43,608 54.0 

Europe 262,533 298,395 8,963 1,559 578,756 19,238 23.2 

Oceania 7,253 30 30 0 1,619 2,914 0.2 

World 1,526,174 445,232 9,426 2,908 2,985,536 80,259 100        
 

Import value of edible offal (1000 US$)  

Africa 530,739 54,089 301 229 83,234 10,665 7.6 

Americas 510,140 38,622 295 431 310,764 10,687 9.7 

Asia 2,312,777 61,212 7,713 18,425 3,526,791 105,649 67.5 

Europe 541,894 188,248 125,300 18,832 412,578 41,715 14.9 

Oceania 13,814 59 809 2 2,522 7,044 0.3 

World 3,909,364 342,230 134,418 37,919 4,335,888 175,760 100 

*NA= Data not available 
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Edible offal can also include material traded for meat and bone meal (MBM) or animal feed. These 

underutilised coproducts produce a very low-price margin. The identification of underutilised edible 

coproducts from edible coproducts is important to increase production efficiency. The general 

categorising of underutilising coproducts and popular coproducts depends on the preference of the 

communities. The preference of the coproducts and their usage are entirely affected by the culture 

and country (Tenrisanna, 2015). However, liver, heart, spleen, pancreas, thymus coproducts are 

accepted by most communities. Liver is the most popular coproduct and UN FAO separately 

categorised liver in FAOSTAT (2018). Thymus and pancreas are used as sweetbread in culinary dishes 

(Awan et al., 2015).  

Bovine lungs are large organs and generally rejected by consumers from Oceania and 

American region, hence they are regarded as an underutilised coproduct. The USA bans bovine lungs 

from entering the human consumption food chain (FSIS, 2015) due to possible contamination from 

the slaughterhouse. The USA is a major meat importer and these restrictions influences global meat 

industries who follow USA regulations. But the European Union (EC) has clearly established rules to 

obtain lungs and allowed their use for human consumption (EC 854/2004). Following well established 

EC regulations and redesign of processing flow may help to process offal without any clash between 

regulations.  

 

2.3 Local coproducts market in New Zealand 

Coproducts increase the returns from animal processing and contribute nearly 11% of the value of a 

slaughtered animal (Meat and Livestock Australia, 2014). Edible and inedible offal together 

contributed $1.4 billion in exports to the New Zealand economy in 2015 (MIA, 2015). New Zealand 

edible offal export market provided $211 million for 66401 tonnes in 2015. This was an average value 

of $ 3.10 per kilogram and was mainly exported to China, Japan, United Kingdom, Korea and Russia. 

Among coproducts, MBM has the highest production because industries usually underutilised 

coproducts like lungs put into rendering process to produce MBM. In 2015, the export value of MBM 

was twice as high as that of other edible offal, but edible offal export economic value higher than 

MBM (Figure 2.1). Beef lungs belong to edible offal according to MIA categorisation. But the USA is a 

key export market for New Zealand beef and they prohibit the sale of beef lung. This makes it very 

difficult for New Zealand meat processing premises to provide edible grade lung while meeting the 

strict USA importing requirements. If, however, it was able to remain in an edible form, it could provide 

better economic value. Locally, beef is a key meat industry in New Zealand and nearly 2.6 million cattle 

were slaughtered in 2015 (BLN, 2017). This high production of beef also leads to a large production of 
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offal including beef lungs. If 3kg is assumed to be the average weight of lung per animal (Cardoso-

Santiago, Moreira-Araújo, Pinto e Silva, & Arêas, 2001) then the new Zealand beef industry would 

provide about 7800 tonnes of bovine lungs per annum. With this large supply of raw material, there 

is scope to add value and expand the export income. 

 

 

Figure 2.1 Animal coproducts exported by New Zealand in 2015 (Source: MIA annual report 2015) 

 

2.4 Beef lungs 

Bovine lungs have the structure of the general mammalian pulmonary system (Prohl, Ostermann, 

Lohr, & Reinhold, 2014). There are two compartments in the left lung and four compartments in the 

right lung (Prohl et al., 2014). These two lungs are connected by a windpipe or trachea and together 

they make up the bovine pulmonary system.  Bovine lungs are a large internal organ with an average 

weight around 3Kg and are rich in essential nutrients and functional proteins (Cardoso-Santiago & 

Arêas, 2001b; Cardoso-Santiago et al., 2001).  

 The composition of fresh bovine lung is 16.2 %  protein, 2.5 %  fat, 0.98%  ash and 79.4%  water 

(USDA, 2020). Protein is the dominant macronutrient in bovine lungs and comprises  25% collagen 
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(Lynch et al., 2018) and 13.5% to 28% elastin (w/w defatted bovine lung) (Francis & Thomas, 1975a). 

Essential amino acids exceed 40% of the total amino acids in bovine lung protein, according to Fornias 

(1996). Our recent research demonstrated that dried beef lung powder has the maximum 

indispensable amino acid score (1) as a complete protein which matches  the requirement for optimal 

nutrition status of older-children, adolescents and adults (Jayawardena, Morton, Brennan, & Bekhit, 

2019a). 

2.4.1 Legislations towards bovine lungs 

Clear legislation for edible offal, and especially for the bovine lungs, are observed in the 

European Union. Bovine lungs are subject to current legal requirements, Europe food regulations (EC 

854/2004) covers bovine lungs with the antemortem and postmortem inspections. An official 

veterinarian carries out an antemortem inspection of all animals before 24 hours post slaughter, and 

particular attention is to be paid to identify zoonotic diseases and listed diseases of World 

Organisation for Animal Health-OIE (OIE, 2020). The trachea and the main branches of the bronchi 

must be opened lengthwise, and the lungs must be incised in their posterior third, perpendicular to 

their main axes. Further, bronchial lymph nodes are incised and examined by the veterinarian. These 

incisions of lungs are necessary for the inspection of lungs for human consumption according to the 

Europe food regulations (EC 854/2004). Apart from this, all hygienic rules of offal obtaining process 

must meet the Europe food regulations (EC 853/2004).  

New Zealand and Australia together have launched the food standards under the act of Food 

Standards Australia New Zealand in 1991. Food standard section 1.1.2-3 defined the meat offal as rest 

of the carcass excluding the flesh, bone and bone marrow. According to the definition, bovine lung 

belongs to the edible offal. However, the definition has included popular coproducts, blood, brain, 

heart, kidney, liver, pancreas, spleen, thymus, tongue and tripe as examples. Under the food standard 

schedule-22, edible tissues and organs other than muscles and animal fat from slaughtered animals 

belongs to the category of mammalian edible offal which can be prepared for wholesale or retail 

distribution. There is no specific regulation for bovine lungs in New Zealand and Australian legislation, 

and it should be developed more extensively and specifically for the edible offal that are destined to 

local markets. 

There is no cultural practice among New Zealand local communities to eat beef lungs, and they are 

added to low-value MBM or pet-food. Establishing new regulations and smoothing the processing flow 

is important to produce beef lungs while producing meat for the US market without shaking the food 

regulations. New Zealand and other higher beef production countries have the ability to produce high 

quantities of protein rich beef lungs, while other parts of the world suffer from protein-energy 

malnutrition due to animal protein deficit (FAO, 2019b).  
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2.5 Low income countries have low meat consumption 

World Food Program's hunger map (WFP, 2019) illustrated the world hunger-stricken countries, and 

they are Zambia, Malawi, Zimbabwe, Republic of Congo, Central African Republic, Chad, Uganda, 

Rwanda, Liberia, Yemen, Madagascar, Democratic People's Republic of Korea and Haiti. 

Unfortunately, world hunger increased three years in a row from 2016, and the rise in food prices has 

caused this hunger shock (FAO, 2019b). According to the world bank explanation, these hunger-

stricken countries belong to the bottom of the developing countries. The hunger in the developing 

world results from an economic crisis and they need for any affordable food. The high price of animal 

protein causes this problem and the average per capita consumption of meat was reported around 25 

Kg/year in developing countries. In contrast, in developed countries, per capita consumption was 

greater than 80 Kg/year (FAO, 2019a). The hunger-stricken countries are mostly in the African region 

and they have the least purchasing ability. Table 2.2 illustrate the income level and meat consumption 

of the highest meat consuming countries and hunger-stricken countries. The lowest income level of 

the high meat consuming countries was reported as 9812 USD/capita/year in Brazil, and the highest 

income level of hunger-stricken countries reported as 1513 USD/capita/year in Zambia. All other 

hunger-stricken countries remain below than 1500 USD/capita/year. 

 So, the excess production of beef lungs in New Zealand could easily be absorbed by these hunger-

stricken countries after processing into a food ingredient. The processing of beef lung is important to 

convert it into an  aesthetically appealing food because generally beef lungs are rejected from the 

consumer due to poor texture qualities (Chávez‐Jáuregui et al., 2003). The processing of beef lungs 

into powders could modify this texture modification and has the potential to penetrate the high value 

protein market. The processing of beef lungs should modify the texture characteristics, preserve the 

nutritional value, have cost-effective process to deliver economical product and have a long shelf life 

without requiring a cold chain. Our project focused on preparing dried beef lung powder to achieve 

all these aspects to bridge the gap of a real-world problem. Further beef lung powder was used as a 

food ingredient for pasta as model food which is widely consumed and could possibly act as a vehicle 

of nutrients. This project creates an opportunity to sell bovine lungs for large scale beef producing 

countries and the same time fill the nutrient requirement of hunger-stricken countries 

Local industries need to redesign their processing flow to obtaining edible beef lungs for these 

achievements. Due to the obstacles to producing edible beef lungs within current regulations, the 

project also focused on the production of a bioactive peptide, which could have a high economic value 

in the pharmaceutical industry. Peptides with ACE inhibitory activity were successfully obtained during 

the final project and may be an alternative pathway for meat industries to use beef lungs. 
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Table 2.2 GDP (PPP) comparison with highly meat consuming countries and hunger-stricken 
countries 

Highest meat consuming countries 

Country GDP per capita-2017 (USD) 
Meat consumption-2017 

(Kg/capita/year) 

Hongkong 46394 137 

USA 60160 124 

Australia 57917 122 

Argentina 14517 109 

Macao 81211 103 

New Zealand 43651 101 

Spain 28316 100 

Brazil 9812 100 

Israel 42450 97 

Soma NA 97 

Hunger-stricken countries 

Country GDP per capita-2017 (USD) 
Meat consumption-2017 

(Kg/capita/year) 

Central African Republic 428 35.9 

Chad 698 26.4 

Malawi 341 20.3 

Liberia 453 18.27 

Zimbabwe 1333 17.63 

Haiti 776 17.16 

Yemen 855 16.86 

North Korea NA 13.67 

Zambia 1513 13.12 

Madagascar 515 12.34 

Uganda 634 9.69 

Rwanda 748 9.08 

Republic of Congo 462 NA 

NA=data is not available 
Data derived by FAOSTAT (2018) 

2.6 Coproducts for world malnutrition 

Half of the world children's deaths are contributed to Protein Energy Malnutrition (PEM) in developing 

countries (Haddad et al., 2015). According to the estimation of the World Health Organisation (WHO) 

in 2000, 32% of under-five children are malnourished in developing countries. The latest report of FAO 

(2019b) reported that one in nine people faces hunger in the world, and Africa is the highest hunger 

prevalence region as 1 in 5 people are hungry. World Food Program's hunger map (WFP, 2019) 

illustrated severely malnourished countries, where more than 35% of their population is 
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undernourished.  Macro and micronutrient deficiencies are apparent in those groups, and they are 

more prone to have protein-energy malnutrition.  

Two severe malnutrition syndromes in children are marasmus and kwashiorkor. According to 

Walton and Allen (2011), those suffering from marasmus have severe muscle wasting and minimal 

adipose tissues. A key symptom of kwashiorkor is nutritional oedema which swelling of body tissues 

in legs and arms by accumulating body fluid. Lack of protein in the diet causes this problem by lowering 

the plasma albumin concentration and reducing the osmotic pressure leads to fluid accumulation in 

tissues. A lack of antioxidants also contributes to oedema as damage to the cell membranes from free 

radicals causes an  increase in vascular permeability (Scallan, Huxley, & Korthuis, 2010).  

Treatment for severely malnourished children begins with ready to use therapeutic food 

(RUTF). These RUTFs are high energy and protein-enriched food with other micronutrients. Severely 

malnourished children are not given iron (Fe) rich foods to prevent the production of free radicals. 

Macronutrients, including iron, can be provided from 2 to 6 weeks during the rehabilitation period 

(WHO, 2013). Coproducts like lung, heart, kidney are rich in highly bio-available proteins, and lungs 

and spleen contain a high amount of iron (Bester, Schonfeldt, Pretorius, & Hall, 2018; Perignon, Barré, 

Gazan, Amiot, & Darmon, 2018). So these coproducts could provide the macronutrients and protein 

at low cost to use in rehabilitation period (Walton & Allen, 2011).  

2.6.1 Iron deficiency anaemia  

Anaemia is a Greek word which means "without blood", describing the low levels of red blood 

cells containing haemoglobin. Haemoglobin is a protein with a tightly bound iron-containing haem 

group. The haemoglobin in red blood cells is responsible for transporting oxygen from the lungs and 

return carbon dioxide to the lungs.  

All mammals, including humans, have advanced mechanisms to regulate blood iron 

concentration. Body iron regulation proceeds with the help of iron stores in the body, mostly in the 

liver, bone marrow and spleen.  A low protein diet decreases the formation of red blood cells and 

depletes iron reserves Borelli et al. (2007). This phenomenon shows the relationship between protein-

energy malnutrition and anaemia.  

Anaemia is the most abundant nutrition deficiency amongst the malnourished and highly 

related to low protein intake (Bernát, 1983; Fitzsimons & Brock, 2001).  The World Health Organization 

(WHO) definition of anaemia is based on haemoglobin (Hb) concentration in the blood, and limits are 

established as <13 g Hb/dL for men and <12 g Hb/dL for women. Levels above 10.0 g Hb/dL are 

classified as mild grade anaemia (Wilson, Reyes, & Ofman, 2004). 
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A WHO survey from 1993 to 2005 reported that 25% of the world population was anaemic, 

and anaemia was the most abundant global nutritional disorder (De Benoist, Cogswell, Egli, & McLean, 

2008). Further, preschool children, pregnant women and non-pregnant women were reported as 

highly anaemic prevalence groups, and 47.4%, 41.8% and 30.2% were anaemic respectively. Anaemia 

is mainly centred in Africa and South-East Asia and higher in all the countries which are suffering from 

malnutrition.  

Many coproducts contain significant levels of iron, many other micronutrients and low level 

of fat content compared with muscle tissues (Table 2.3). The recent report of  Biel, Czerniawska-

Piątkowska, and Kowalczyk (2019) also showed lung, liver, heart and kidney meat coproducts that 

contained a low amount of fat, and a high amount of iron content compared with the semitendinosus 

muscle. According to Chung, Kim, and Han (2011), mice intervention studies revealed that high-fat 

diet impaired iron metabolism and diminished the intestinal iron intake. High-fat diet elevates the 

hepcidin level in the body, which regulates iron metabolism and restricts the absorption of iron. There 

is a possibility to produce healthy low-fat food with high micronutrient availability from underutilised 

coproducts.  

2.6.2 Other minerals in coproducts 

In addition to iron, other micronutrients play a vital role in human nutrition. The composition of 

coproducts makes them potentially useful use as mineral supplements. The macro and micronutrient 

compositions of different offal are shown in Table 2.3 compared with the premium semitendinosus 

muscle.  

Calcium is an essential element in human nutrition and high demand during the growth period, 

pregnancy and breastfeeding. Calcium is necessary for muscle contraction, building strong bones and 

teeth, blood clotting, nerve impulse transmission and fluid balance (Piste, Sayaji, & Avinash, 2012). 

Calcium is highly available in the beef brain, muscle, kidney and lungs (Table 2.3). 

Magnesium is essential in aerobic and anaerobic energy generation, and more than 300 enzymes use 

it as a cofactor (Jahnen-Dechent & Ketteler, 2012).  Magnesium deficiency causes electrolyte 

disturbance, muscle spasms, poor coordination and loss of appetite (Soar et al., 2010). The highest 

magnesium content of offal was recorded as 22 mg/100g in the bovine spleen while beef lung contains 

14 mg/g, and the lowest amount was reported in the bovine brain as 13 mg/g. Magnesium upper 

intake is 400 mg/day according to Baghurst (2006), and beef offal is unlikely to exceed the safer level. 
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Zinc and copper metal ions are highly reported in beef liver than other offal. Zinc was reported 4 

mg/100g, and copper was available 9.6 mg/100g and bovine lung reached to 1.61 mg/g zinc and 0.26 

mg/g copper. Zinc is very important metal iron and deficiencies affect nervous, skeletal, immune and 

reproduction system. These zinc deficiencies are vastly prevalence in high cereal and low animal food 

consuming areas (Roohani, Hurrell, Kelishadi, & Schulin, 2013). Copper is responsible for many 

physiological functions in the human body, such as angiogenesis, regulation of gene expression, brain 

development and immune system. More than 95% of copper in body plasma interact with 

ceruloplasmin copper-enzyme, which is involved in iron metabolism (Hellman & Gitlin, 2002).  

The functions of selenium mineral  overlaps with  vitamin E (Strain & Cashman, 2009) and lower intake 

leads to Keshan disease, which cause bone deformations of children (Hartikainen, 2005). This vital 

mineral is abundant in the beef kidney, spleen, lung and liver meat than the muscle meat.  

Beef lung and beef brain have poor texture, and are the most underutilised coproducts in New Zealand 

compared with the liver, heart, kidney and spleen. Beef lungs contain magnesium, zinc, copper, 

selenium like minerals and proteins higher than the bovine brain. 

Table 2.3 Comparison of  minerals and main macronutrients of beef offal and muscle (for 100g wet 
tissue) 

Elements Lung Liver Heart  Kidney  Tongue Brain Spleen Muscle 
(semitendinosus) 

Calcium, Ca 10 5 8 13 6.39 43 9 16 

Phosphorus, P 224 387 218 255 133 362 296 195 

Sodium, Na 198 68 97 185 69 126 85 53 

Potassium, K 340 312 285 263 315 274 429 319 

Magnesium, Mg 14 18 20 17 16  13 22 24 

Iron, Fe 7.95 4.8 4.3 4.6 2.15 2.55 44.55 1.8 

Zinc, Zn 1.61 4 1.7 1.95 2.32 1.02 2.11 3.5 

Copper, Cu 0.26 9.66 0.395 0.43 0.07 0.2 0.168 0.091 

Manganese, Mn 0.019 0.29 0.29 0.14 0.015 0.04 0.073 0.012 

Selenium, Se (µg) 44.3 39 21 139 12 7.55 62.2 24 

Protein (g) 16.2 20.3 17.25 17.5 19 10.86 18.3 20.7 

Fat (g) 2.5 3.6 3.95 3.1 5.75 10.3 3 12.14 

Moisture (g) 79.3 70 77 77 77 76 77.2 66 

*Data derived by Biel et al. (2019) and USDA Food composition table(USDA, 2019); unit-mg unless stated 

otherwise 
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2.6.3 Health effect of protein bio-active protein 

Proteins are the source of amino acids, and the amino acid composition varies from protein to protein. 

Essential amino acids are not synthesised in the human body and taken only from the protein of diet. 

The human body requires these essential amino acids with different ratios and different quantities for 

different life stages. The amino acid reference pattern represents these required amino acid ratios for 

different life stages (FAO, 2011), and this pattern helps to rate the quality of the protein. For instance, 

older child, adolescent and adult reference pattern consist of tryptophan-6.6, threonine- 25, 

isoleucine-30, leucine- 61, lysine-48, valine-40, histidine-16, sulphur amino acids-23 and aromatic 

amino acids-41 mg/g protein  (FAO, 2011). The amino acid composition of inferior quality proteins 

partially matches with these ratios and complete proteins align with this. Proteins are rated using the 

indispensable amino acid score (IAAS) using reference patterns, and higher amino acid scores refer to 

complete proteins. In addition to the IAAS, protein digestibility is considered to contribute to the 

quality of protein, and it is crucial to evaluate the accessibility of amino acids to the human body. 

Animal-based proteins are rich in essential amino acids than plant-based protein and digestibility of 

animal protein is more than 90% while plant-based protein digestion remains around 80% (Berrazaga, 

Micard, Gueugneau, & Walrand, 2019). Animal coproducts, including beef lungs are rich in essential 

amino acids (Mullen et al., 2017). Our previous work, dried beef lung digestion reported more than 

90% digestibility Jayawardena et al. (2019a). So, beef lungs have high potential to provide essential 

amino acids with high digestibility level as a nutritious food. 

In addition to the nutrition supply of protein, recently recognised dietary peptide exerts various other 

functionalities which play a beneficial modulatory role in human body systems. The different sequence 

of peptides engages with different bioactive functions in the human body, and these are identified as 

bioactive peptides. Bioactive substances have been defined as "food component that can affect 

biological processes or substrates and, hence, have an impact on body function or condition and 

ultimately health" (Schrezenmeir, Korhonen, Williams, Gill, & Shah, 2000). This definition further 

refined by the Möller, Scholz-Ahrens, Roos, and Schrezenmeir (2008), the "bioactive" should be a 

dietary substance which has a measurable biological effect with physiologically feasible level. Further, 

"bioactivity" measured the health beneficial effect, not the damaging effect. Following the definition, 

animal protein-derived bioactive peptides are capable of influencing on the human physiological role 

by working on the positive health condition. In recent years, a number of bioactive peptides has been 

studied which was originated from animal proteins, but there is a lack of studies for the bioactivity of 

coproducts. 

 The most abundant animal protein is collagen and it is the primary constituent of many 

coproducts, including bone, cartilage and skin (Gómez-Guillén, Giménez, López-Caballero, & Montero, 
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2011). Collagen contains a poor amino acid profile due to it being composed of non-essential amino 

acids (Gly, Pro, and Hyp) (Gómez-Guillén et al., 2011). However, researchers have focused on bioactive 

peptides from the collagen-rich coproducts rather than nutrition supplements. Porcine skin collagen 

has been hydrolysed by Li, Chen, Wang, Ji, and Wu (2007) with different protease enzymes to derive 

Gln-Gly-Ala-Arg bioactive peptide with proven antioxidant activity. Chicken bone collagen hydrolysate 

have been produced by Zhang, Xiao, Samaraweera, Lee, and Ahn (2010) and were shown to exhibit 

cholesterol-lowering effect which might act as prevention substance of atherosclerosis as well as 

reported as an anti-inflammatory agent. Collagen of chicken legs (yellowish keratinised parts with 

nails) was hydrolysed by Aspergillus fungal protease to produce antihypertensive peptide with 

angiotensin 1 converting enzyme (ACE) inhibitory assay (Saiga et al., 2008). This study obtained the 

octapeptide sequence (Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro) with strong ACE inhibitory activity, and 

results were confirmed by rat bioassay. The peptide was administered to spontaneously hypertensive 

rats and significantly lowered their blood pressure.  Around 25% of the protein in bovine lung is 

collagen (Lynch et al., 2018) and there is a high possibility to produce bioactive peptides by enzymatic 

digestion.  

ACE inhibitory peptides are most extensively studied bioactive peptides which were derived from 

different protein sources.  Most of these bioactive peptides were derived from milk proteins and the 

antihypertensive effect was confirmed by the in vivo rat studies and human trials as well (Aihara, 

Kajimoto, Hirata, Takahashi, & Nakamura, 2005; Hata et al., 1996; Jauhiainen et al., 2005; Korhonen, 

2009; Masuda, Nakamura, & Takano, 1996; Mizushima et al., 2004; Nakamura, Yamamoto, Sakai, 

Okubo, et al., 1995; Nakamura, Yamamoto, Sakai, & Takano, 1995; Seppo, Jauhiainen, Poussa, & 

Korpela, 2003; Sipola, Finckenberg, Korpela, Vapaatalo, & Nurminen, 2002). But studies of bioactive 

peptides from animal coproducts are comparatively limited and no human intervention studies were 

reported. Produced peptides need to go through the intestinal lumen to show the bioactive effect and 

these in vivo studies are very important.  

Some researchers argue that only di- and tri-peptides are absorbed through the intestinal lumen to 

the bloodstream (Miner-Williams, Stevens, & Moughan, 2014). In contrast, Mirdhayati, Hermanianto, 

Wijaya, Sajuthi, and Arihara (2016); Saiga et al. (2008) showed that even longer than tri-peptide have 

ability to show bioactivity in vivo study. Further, the bioactive compounds derived from coproducts 

are listed on Table 2.4 
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 Table 2.4 Publications on the production of bioactive peptides from offal 

 

 

 

 

Coproduct Processing method Bioactive compound References 

Bovine lungs Protein extraction by extraction 
buffer and column 
chromatography 

Purified bio-Active 
compound (Soluble 
guanylate cyclase) 

(Mathis, Emmons, 
Curran, Day, & 
Tomasselli, 2008) 

Bovine lungs Enzymatic hydrolysis with high 
pressure pre-treatment 

Hydrolysates with 
DPP-IV, PEP 
inhibitors 

(Lafarga & Hayes, 
2017) 

Bovine lung Enzymatic hydrolysis Anti-inflammatory 
agent 

(O'Sullivan et al., 
2017) 

Bovine, 
porcine hearts 

Ammonium sulphate precipitation, 
Cation-exchange and affinity 
chromatography 

Isolation of heparin-
binding growth 
factors 

(Quinkler et al., 
1989) 

Porcine 
Intestinal 
mucosa 

Hydrolysate of intestinal mucosa, 
anion exchange 

Production of 
heparin  

(Griffin et al., 
1995) 

Duck skin Enzymatic hydrolysis and RP-HPLC 
purification 

Anti-oxidative 
peptide 

(Lee et al., 2012) 

Chicken bone Enzymatic hydrolysis angiotensin I‐
converting enzyme 
inhibitory peptide 

(Cheng, Liu, Wan, 
Lin, & Sakata, 
2008) 

chicken legs 
(yellowish 
keratinised 
parts with 
nails) 

Enzymatic hydrolysis with fungal 
proteases and membrane filtration 

angiotensin I‐
converting enzyme 
inhibitory peptide 

Saiga et al. (2008) 

Bovine blood 
plasma 

Enzymatic hydrolysis and RP-HPLC 
purification 

angiotensin I‐
converting enzyme 
inhibitory peptide 

(Wanasundara et 
al., 2002) 

Porcine aorta Solubilisation in salt solution and 
membrane filtration 

Anti-cholesterol 
peptide 

(Chernukha, 
Fedulova, & 
Kotenkova, 2015) 

Bovine tendon Acid extraction and salt 
precipitation. Purified by ion-
exchange and gel filtration 
chromatography 

angiotensin I‐
converting enzyme 
inhibitory peptide 

(Banerjee & 
Shanthi, 2012) 

Sheep brain Buffer extraction and purified by 
ion-exchange and gel-filtration 
chromatography 

Calmodulin 
Methyltransferase 

(Han, Richardson, 
Oh, & Roberts, 
1993) 

Porcine brain Acid extraction with pre-heat 
treatment and purified by series of 
chromatographic methods 

Galanin-like Peptide (Ohtaki et al., 
1999) 
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2.7 Coproduct incorporation with starchy food 

2.7.1 Extrusion cooking 

Extrusion is a versatile and very efficient technology that is broadly used in food and feed processing. 

Extrusion utilises 100% input materials from feeding end of the extruder barrel to other end of forming 

products as output. Processing steps of, mixing, shearing, temperature and pressure building, 

metering, forming, expansion and cooling take place inside of the barrel to produce the extruded 

products (Brennan, Derbyshire, Tiwari, & Brennan, 2013; Cheftel, Kitagawa, & Queguiner, 1992). 

According to Ilo, Schoenlechner, and Berghofe (2000), ingredients with lower fat  enhance the 

extrusion cooking behaviour and overall expansion of the direct expanded products. Thus, coproducts 

that are low in fat (Table 2.3) would have potential for extruded products.  

 The limiting factor of the utilisation of many coproducts in the human food chain is the poor quality 

of texture and low aesthetic appeal (Chávez‐Jáuregui et al., 2003). Extruded products have altered 

organoleptic properties and have been reported as enhancing nutritional accessibility and availability 

of protein (Bastos & Arêas, 1990; Jayawardena, Morton, Brennan, & Bekhit, 2019b; Santiago, Moreira-

Araújo, e Silva, & Arêas, 2001).  

 In 2011 Meat and Livestock Australia (MLA) initiated a project to produce extruded meat by using 

low-cost materials with high moisture extruded cooking (HMEC) (MIA 2011). Extruded product with 

better texture was obtained by using 36% trimmed red meat with standard HMEC, and further 

possibility indicated to produce extruded products with 67% meat (MIA 2011). Coproducts should be 

able to be substituted to produce retextured meat using high moisture extruded cooking process. 

Although the literature on extrusion is dominated by cereal-based products, high moisture extruded 

cooking has excellent potential to process high moisture (>40%) materials like meat (Akdogan, 1999; 

Cheftel et al., 1992; Osen, 2017) and higher potential to convert offal to retextured meat.  

Mechanically deboned chicken was used to prepare meat analog by Megard, Kitabatake, and Cheftel 

(1985) using high moisture extrusion. Low moisture extrusion was reported to produce fortified snacks 

with beef lungs successfully in Brazil (Moreira-Araújo, Araújo, & Arêas, 2008). These beef lung fortified 

snacks significantly reduced the prevalence of iron deficiency anaemia in preschool children. Series of 

beef lung protein extrusion projects were conducted with de-fatted beef lungs and successfully 

produced nutritious snacks with better textural characteristics  (Arêas & Lawrie, 1984; Campos & 

Arêas, 1993; Cardoso-Santiago & Arêas, 2001a; Cardoso-Santiago & Arêas, 2001b; Moreira-Araújo et 

al., 2008; Santiago et al., 2001).  

 Conti-Silva, Pinto e Silva, and Arêas (2011) replaced soy protein with extruded rumen protein 

in different food products and the sensory acceptability was evaluated by consumer panellists. 

Extruded rumen protein improved the flavour of pork sausage and incorporation of rumen protein 
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was feasible based on the sensory results. Bovine and porcine lungs and bovine tripe proteins were 

mixed together by Mittal and Lawrie (1984) and extruded with  soy grits to make 20% to 30% highly 

incorporated snacks.  Garcia Zepeda et al. (1997) prepared beef snacks using extruded beef cardiac 

muscles and improved binding ability was demonstrated with non-binding ingredients. Further 

microbiologically safer snacks were prepared by extrusion coupling with electron beam irradiation and 

obtained safer beef snacks with lower screw speed and low steam injection levels (Garcia Zepeda et 

al., 1997). Extrusion is therefore a viable unit operation to produce snacks by converting unfavourable 

textural characteristics to a favourable state. 

Further, cold extrusion takes place in pasta processing (Le Roux, Vergnes, Chaurand, & 

Abécassis, 1995) and this mechanism can be used to incorporate coproducts into starchy food. Meat 

emulsion was prepared by calf meat and incorporated into durum wheat  pasta (Liu et al., 2016) and 

Jayawardena et al. (2019b) produced dried bovine lungs incorporated pasta with durum wheat. 

coproduct incorporations significantly lowered the glycaemic response like calf meat incorporation in 

durum wheat pasta. 

2.7.2 Pasta as a model food 

Pasta is a widely consuming food and its global popularity has shown continuous increase (Verardo, 

Ferioli, Riciputi, & Iafelice, 2009).  Pasta can be produced by a simple extrusion process which has very 

low production cost and high production efficiency (Lemes, Takeuchi, Carvalho, & Danesi, 2012). These 

economical features of pasta manufacturing make it suitable as a nutrition vehicle for hunger-stricken 

countries.   

Ordinary durum wheat pasta contains 77% average carbohydrate, and less than 10% protein. 

This small protein percentage also lacks lysine and threonine amino acids (Filip & Vidrih, 2015) which  

reduces the quality of the protein. Protein substitution could be the best way to increase the nutrition 

status of the pasta. Incorporation of different food ingredients into pasta to increase the nutrition 

content is extensively reported in the literature.  Animal and plant proteins were incorporated into 

pasta successfully and improved the nutritional value.  For instance, incorporation of legumes 

(Teterycz, Sobota, Zarzycki, & Latoch, 2020), mushroom(Kim, Lee, Heo, & Moon, 2016; Lu, Brennan, 

Serventi, Mason, & Brennan, 2016), fruits (Sant'Anna, Christiano, Marczak, Tessaro, & Thys, 2014), 

vegetables (Minarovičová, Lauková, Kohajdová, Karovičová, & Kuchtová, 2017) like plant-based 

incorporations and animal proteins like meat (Liu et al., 2016), muscles (Holovko, Helikh, Holovko, 

Prymenko, & Zherebkin, 2020), fish (Desai, Brennan, & Brennan, 2018) like incorporations were 

reported. Animal protein incorporation could increase the price margin of pasta and could not be an 

affordable price. But underutilised offal ingredient incorporation could lead to cheap quality pasta. 
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 Pasta can be dried by air oven drying leading to internal moisture content below 12.5% 

(Ogawa & Adachi, 2014). The shelf life of the pasta increased by 1 to 2 years after the drying process 

and it could be stored at room temperature without maintaining a cold chain. Solar drying is a possible 

drying method for pasta manufacturing (Bolognese, Viesi, Bartali, & Crema, 2020)  and an economical 

approach for low-income countries in the Sub-Saharan African region. All these facts are important to 

select pasta as a model food to incorporate protein and use as a nutrition vehicle for malnourished 

countries.  

 

2.7.3 Drying of coproducts 

Drying is an ancient method of food preservation and processing (Ayanwale, Ocheme, & OO, 2007; 

Potter, 1986). The water is removed from materials by evaporation or sublimation (Lewicki, 2004) and 

this restricts the growth of micro-organisms (Morgan, Herman, White, & Vesey, 2006). Dried products 

have increased shelf life, require less storage space, are easier to transport and most importantly, 

have the potential to be stored  without refrigeration  in developing countries with hot and humid 

conditions (Bradford et al., 2018; Mishra, Mishra, Pati, & Rath, 2017). Meat coproducts are highly 

perishable foods and prone to microbial contaminations with increased safety issues (Jeong et al., 

2017), so it is more suitable to preserve these using drying technologies. Different ethnic groups in the 

world mostly use meat coproducts for their traditional food plate (Edwards, 2013) and it is challenging 

to maintain the cold chain in remote areas to reach them. Further, meat coproducts like beef lungs 

exhibit poor textural characteristics (Chávez‐Jáuregui et al., 2003) and drying also positively affected 

the textural modification of coproducts. Currently beef jerky and biltong are popular meat dried 

products with premium meat cuts, and ample research is available on these products (Burfoot, Everis, 

Mulvey, Wood, & Campden, 2010; Calicioglu, Sofos, & Kendall, 2003; Calicioglu, Sofos, Samelis, 

Kendall, & Smith, 2002; Konieczny, Stangierski, & Kijowski, 2007; Nortjé, Buys, & Minnaar, 2005a); 

Nortjé, Buys, and Minnaar (2005b); (Park & Lee, 2005; Petit, Caro, Petit, Santchurn, & Collignan, 2014). 

However, there are few studies are available on offal drying. In a recent study, bovine lungs were 

minced and air oven dried by Jayawardena et al. (2019b) and produced protein powder with a high 

amino acid score. This lung powder was successfully incorporated into pasta to enrich the protein 

quality and lower the glycaemic response. Similarly, bovine lungs were air oven dried by Pinto, Colli, 

and Areas (1997) and produced extruded snacks with high iron content. Though there is a lack of 

studies in coproduct drying in the human food chain, drying of animal coproducts is popular in the pet 

food industry and US patents are available with different drying conditions for pet food (Patent 

US4020187A, US5045339A). 
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2.7.4 Coproduct hydrolysates 

Protein hydrolysates are produced from hydrolysing of protein sources and used for several 

applications such as ingredients in nutritional and health products, infant formulae, medical and 

dietary supplements and flavouring agents (Philipps-Wiemann, 2018). 

Traditionally, hydrolysates were produced using concentrated acids (6N HCl), generally used 

for amino acid analysis (Walker & Sweeney, 2009). This method has a list of drawbacks such as 

destroying tryptophan, partial destruction of serine and threonine, conversion of asparagine and 

glutamine to their acids (Walker & Sweeney, 2009). Alteration of these amino acids affects the 

nutritional quality of hydrolysates. Enzyme digestion prevents these drawbacks and produces protein 

hydrolysates. Enzymatic digestions of protein sources have been extensively studied in the food 

industry due to advantages of low energy consumption, lower enzymes to substrates ratio and ease 

of control the reaction. Further, changing enzyme type and hydrolysing time produce varieties of 

hydrolysates which creates a wide range of product diversity from the same protein source. 

Different enzymes behaviours are explained in the study of hydrolysing bovine lung tissues 

with papain, pepsin and Alcalase enzymes to produce bovine lung hydrolysate (O'Sullivan et al., 2017). 

Among the proteases, Alcalase enzyme hydrolysates had anti-inflammatory activity by significant 

suppression of cytokine production in RAW264.7 cells while other hydrolysates had no significant 

effect. Meat coproducts can be used to produce food ingredients. The safety of the food ingredients 

should be ensured before applying to the human food chain. Safe flavour enhancer was produced 

from the chicken bone extract using enzymatic hydrolysis (Wang et al., 2016). In this study, proteins 

were extracted by hot pressure extraction method and proteins were hydrolysed with the 

Flavourzyme enzyme. Safety measures were studied by in-vivo rat study and there was no significant 

toxicity observed with 13-week administration.  

 Sheep visceral mass, including lungs, was hydrolysed using fungal proteases to produce 

nutritious hydrolysate (Bhaskar, Modi, Govindaraju, Radha, & Lalitha, 2007). The visceral mass protein 

digestibility corrected amino acid score (PDCAAS) reached to the higher level (0.93) corresponding to 

adult nutrition status. These studies suggest that slaughterhouse coproducts, like lungs, have the 

potential to produce nutritional supplements through protein hydrolysis.  

The purpose of most of the studies of hydrolysates produced from coproducts was to isolate 

the bioactive peptides, and these isolations are listed on Table 2.4 Preparation of antihypertensive 

peptides with angiotensin 1 converting enzymes (ACE) inhibitory activity has been widely studied with 

meat and milk but few studies are available on coproducts. This is lack of studied area and there is a 

clear space to initiate more projects on hydrolysates with meat coproducts to prepare bioactive 

peptides including ACE inhibitory peptides. Animal parts like chicken bone, bovine tendons were 
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hydrolysed with different enzymes and  the ACE inhibitory peptides were isolated (Banerjee & Shanthi, 

2012; Cheng et al., 2008). This showed the higher potential to utilise meat co products than meat 

itself?.The studies of beef lungs were not reported to analyse ACE inhibitory peptides but Darine et al. 

(2010) reported that beef lung concentrates are rich in low molecular weight  proteins. Low molecular 

weight protein is the characteristics of ACE inhibitory peptides  (Pihlanto-Leppälä, 2000) and there is 

a high potential to produce ACE inhibitory peptide from beef lungs. 

Clearly, there is a gap in knowledge regarding potential ways to utilize lungs in food products. 

The present research project aimed to investigate potential utilization of beef lungs as a food 

ingredient and peptide source under the beef coproducts regulations in NZ.   
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Table 2.5 Publications on the processing of coproducts 

Coproduct Processing method Advantage/end product Literature 

Bovine Lungs Oven-dried, defatted and extrusion 
cooking 

High iron bioavailable snacks (Pinto et al., 1997) 

Bovine Lungs Freeze-dried, defatted, extrusion 
with bacon flavour 

High consumer acceptability  (Chávez‐Jáuregui et 
al., 2003) 

Bovine Lungs Freeze-dried defatted extrusion 
with chickpea and corn 

snacks to prevent anaemia in 
preschool children 

(Moreira-Araujo, 
Araujo, & Areas, 
2008) 

Bovine lungs Oven-dried and incorporated into 
pasta 

Protein-rich pasta with low 
glycaemic response 

(Jayawardena et 
al., 2019a) 

Bovine lungs alkaline solubilisation and PI 
precipitation 

Protein extract with high 
emulsifying activity and forming 
property 

(Darine et al., 
2010) 
 
(Darine et al., 
2011) 

Bovine and 
porcine lungs 

Alkali solubilisation and PI 
precipitation 

High protein yield (Lynch et al., 2018) 

Bovine lung, liver, 
spleen and blade-
bone 

All coproducts steamed with 
cassava and wheat flour, slicing, air 
oven drying 

Snack with high consumer 
acceptability  

(Subba, 2002) 

Bovine lung, 
spleen, heart, 
porcine lung, liver 

Protein extraction with low ionic 
buffer 

30% to 75% of extracted protein (Nuckles, Smith, & 
Merkel, 1990) 

Bovine & porcine 
lung and bovine 
tripe 

Protein extracted and extruded 
with soy grits 

Extruded snacks with 20% to 
30% of coproducts 

(Mittal & Lawrie, 
1984) 

bovine rumen Defatted, air oven dried and 
extrusion 

Protein ingredient with high 
consumer acceptability 

(Conti-Silva et al., 
2011) 

Bovine heart  Protein extraction by acid 
solubilisation and salt precipitate 

Low fat protein (DeWitt, Gomez, & 
James, 2002) 

Bovine heart and 
lips 

Protein extraction by Salt 
solubilisation 

High water holding capacity and 
emulsion stability 

(Krasnowska, 
Górska, & Gergont, 
1995) 

Bovine liver Enzymatic hydrolysis and 
membrane filtration 

Hydrolysate with antioxidant 
activity 

(Di Bernardini et 
al., 2011) 

Calf head Meat emulsion incorporated into 
pasta 

Protein rich pasta with low 
glycaemic response 

(Liu et al., 2016) 

Porcine liver Protein extraction by salt 
solubilisation 

Low cost protein (Steen et al., 2016) 

Sheep intestine 
and stomach 

Sterilising, enzymatic hydrolysis 
(fungal protease) 

Protein hydrolysate  (Bhaskar et al., 
2007) 

Chicken bone Hot pressure extraction, 
concentration with vacuum 
condenser, enzymatic hydrolysis 

Safe meaty flavour enhancer (Wang et al., 2016) 

Buffalo rumen 
and heart 

Emulsion preparation and 
incorporate into sausages.  

High consumer acceptable 
sausages 

(Krishnan & 
Sharma, 1990) 
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Chapter 3 

Utilisation of Beef Lung Protein Powder as A Functional Ingredient 

to Enhance Protein and Iron Content of Fresh Pasta 

3.1 Introduction  

Meat consumption increases every year and efficient production and novel strategies for ‘nose to tail’ 

uses of the animal are needed to meet the ever increasing demand for protein. Global meat 

production reached 257 million tonnes in 2015 with pork, chicken and beef being the most important 

meats (USDA, 2016). Beef has a high economic and environmental impact (Pelletier & Tyedmers, 

2010), and thus, it is important to maximise the efficiency of beef production and use. The beef carcass 

weight is only 45–60% of the animal live weight, the remainder of the weight represent generated co-

products or waste (Muir & Thomson, 2008). Unfortunately, there is a low market demand for edible 

co-products in the countries which have high beef production and most of these co-products are 

rendered. The main product of rendering is animal feed which has a very low economic value (MIA, 

2015). Based on their amino acid profile, meat co-products are a potential source of low cost and high 

quality protein (Mullen et al., 2017) for malnourished people. More than half of the deaths among 

children in developing world by infectious diseases have been reported to be associated with protein 

energy malnutrition (Cerqueira & Cardoso, 2017; WHO, 2017). information highlights a significant gap 

where the high production of meat in developed countries is typically associated with low demand for 

co-products from human food; while many developing countries are suffering from protein energy 

malnutrition due to the unaffordable cost of animal protein. There is a potential for novel uses of co-

products to bridge this gap.  

Beef lungs are large organs with an average weight near 3 kg and contain high levels of protein and 

bioavailable iron (Cardoso-Santiago & Arêas, 2001b; Cardoso-Santiago et al., 2001). Beef lung protein 

is rich in essential amino acids which comprise more than 40% of the total amino acids (Fornias, 1996). 

In western countries, fresh beef lungs have a low consumer demand due to strong aesthetic rejection 

and poor intrinsic textural quality (Chavez-Jauregui et al., 2003). Beef lungs are subject to current legal 

requirements, for example Europe food regulations (EC 854/2004) covers beef lungs for human 

consumption with the postmortem inspections and (EC)No 853/2004 covers the hygienic regulations 

during processing. In many Eastern (China, Korea, Japan and many other Asian countries) as well as 

Middle Eastern (Egypt and Turkey), African and South American countries, consumption of 

slaughtered animals’ lungs is quite common. Beef lungs show a high level of processing potential as a 



25 
 

food ingredient (Darine et al., 2010). Extrusion and other processing methods can improve their 

textural and quality characteristics (Ar^eas, 1992). Beef lungs have successfully been incorporated into 

snacks to reduce the prevalence of anaemia in school children, illustrating their potential for 

improving the diet of malnourished populations (Moreira-Araujo et al., 2008). 

 Previous research has focused on the beef lung formulations and in vivo bio-availability but there is a 

need to understand the changes in physical and chemical characteristics after incorporation into food 

products. In this research, semolina fresh pasta was selected as a staple food for beef lung 

incorporation. The aim was to address the limiting amino acids in the semolina and to determine the 

optimal beef lung incorporation into pasta with consideration of the changes in physical, chemical and 

nutritional parameters. Starchy food with a high glycaemic index has been associated with type II 

diabetes (Willett et al., 2002) and although pasta is generally regarded as a medium to low glycaemic 

index food, any further reduction in glycaemic values of pasta may be of nutritional value. This 

research will investigate whether incorporating beef lung powder (BLP) into fresh pasta lowers the 

glycaemic index further. 

3.2 Materials and method 

3.2.1 Source of lungs 

 Fresh lungs derived from healthy bovine carcasses were obtained from ANZCO Limited, New 

Zealand. 

3.2.2 Preparation of beef lung powder  

Fresh lungs, without trachea derived from healthy animals, were obtained from ANZCO Limited, New 

Zealand and immediately transported on ice to AgResearch Limited (New Zealand) in insulated boxes 

and dried for 32 h at 60 °C using air oven dryer until reach to constant weight. Dried lungs were cut 

into small pieces and were packaged in airtight bags and transported to the food processing laboratory 

at Lincoln University. The dried lungs were ground to powder (BCG200 grinder, Breville, Sydney, 

Australia) and sieved using a standard 500 µm mesh. This BLP was used to prepare fresh pasta for 

further analysis. 

3.2.3 Pasta preparation with beef lung powder  

Control pasta dough was prepared using commercially available durum semolina powder (Sun Valley 

Foods, Christchurch, New Zealand). BLP was combined with semolina powder at 10%, 15% and 20% 

(w/w basis). Fresh pasta was prepared using a commercial pasta machine fitted with a 2.25-mm thick 

cylindrical spaghetti die (model: MPF15N235M; Fimar, Villa Verucchio, Ravenna, Italy) with 32.5 mL 
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of warm water (41 °C) was added to 100 g of the mixture (semolina plus BLP) and mixed for 20 min 

within the machine before extrusion (Lu et al., 2016). 

3.2.4 Chemical composition analysis 

Beef lung powder and freeze-dried control fresh pasta samples were analysed for chemical 

composition. Protein (%) was calculated by the summation of total amino acids. Moisture (%) was 

analysed as per AACC (2001) method No.44-16.01 by desiccation at 105 °C using air oven dryer. Ash 

(%) was determined by calcination at 550 °C, and fat (%) was determined by the Soxhlet extraction 

method (AOAC, 2005). Carbohydrate was calculated by the weight difference method.  

3.2.5 Mineral profile analysis 

Samples (0.2 g each) of dried BLP were mixed with 2.0 mL of nitric acid (69%) and 2.0 mL of hydrogen 

peroxide (30%) and were digested in a microwave (CEM MARS Xpress, Matthews, NC, USA) using a 

temperature programme of a linear increase from ambient to 90 °C over 15 min and then held at 90 

°C for further 5 min. Digested samples were analysed by Inductively Coupled Plasma Optical Emission 

Spectrophotometer (Varian 720 ICP-OES, Melbourne, Australia). Settings were Plasma gas flow-15.0 L 

min-1, Aux-1.5 L min-1, Nebuliser 0.9 L min-1 with SeaSpray nebuliser and cyclonic spray chamber. 

Calibration standards and internal standards were serially diluted from (Merck, Darmstadt, Germany) 

ICP standard solutions using MilliQ water. Calibration curves were generated using four standards and 

standard blank. 

3.2.6 Amino acid analysis 

Amino acids were determined using the methods adopted by Fountoulakis & Lahm (1998) and Weiss 

et al. (1998). Samples were freeze-dried and ground through a 0.5-mm sieve into culture tubes. The 

samples were resuspended in 5.0 mL of 6 M HCl, and 10.0 µL 0.5 M amino-butyric acid was added as 

a standard. Samples were mixed by vortexing and sonicated for 5.0 min. Each tube was purged with 

nitrogen and immediately made airtight by closing the top. Then, samples were digested at 110 °C for 

20 h. After cooling to room temperature, the hydrolysate was obtained and the tube was washed with 

5 mL water two times and added to the hydrolysate. Then, the hydrolysate was dried in a rotary 

vacuum evaporator at 45 °C. The hydrolysate residue was resuspended in nanopure water, transferred 

to a volumetric flask and the volume was made to 50 ml. The samples were filtered through a 0.45-lm 

syringe into a 2 mL HPLC vial for the HPLC analysis. 

All amino acids were analysed by HPLC 1100 series (Agilent Technologies, Waldrbom, Germany) 

provided with an autosampler, and fluorescence detector was used for analysis. HPLC column was 
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ACE, 3 µm C-18 (150 mm × 4.6 mm) with 40 °C column temperature. Indispensable amino acid ratio 

(IAAR), indispensable amino acid score (IAAS) and amino acid ratio were calculated for all amino acids 

according to the following equation, and amino acid score was the least amino acid ratio. 

  

𝐼𝐴𝐴𝑅 =
Indispensable amino acid amount (𝑚𝑔 / 𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑎𝑡𝑒𝑟𝑛 
 

 

3.2.7 Cooking quality 

Optimal cooking time (OCT) was determined according to the method of Foschia et al. (2014). Raw 

pasta was cut into 4-cm-long strands (20 g) and cooked in 600 mL boiling water. Samples were 

removed every 30 s to check the white core disappearance by squeezing them in between two 

transparent plastic pieces. Time was taken for the disappearance of white cores from the pasta strands 

was taken as OCT. 

Cooking loss 

 Cooking loss was determined according to the standard method 66-65 (AACC, 2000). Fresh pasta was 

cut into 4 cm strands, and 20 g samples were taken from undamaged strands. Samples obtained from 

all the developed products were cooked in boiling water (600 mL) until their OCT. Boiling water was 

decanted into a pre-weighed aluminium vessel. Cooked pasta and boiling pan were washed with 200 

mL of water, and the wash water was also added to the aluminium vessel which was then dried in air 

oven dryer at 105 °C until constant weight. After drying, residue weight was measured and reported 

as a percentage of starting spaghetti weight. All analyses were made in triplicate. 

Water absorption index and swelling index 

 Water absorption index (WAI), the measure of pasta hydration, was determined according to 

standard method 66-65 (AACC, 2000). Fresh pasta cooked until OCT was strained for 10 min and 

weighted to determine the WAI using the formula: 

 

WAI =
(weight of cooked pasta − weight of fresh pasta)

weight of fresh pasta
× 100 
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Dried pasta weight was used to determine the swelling index (SI) according to the method described 

by Fardet et al. (1998). Cooked pasta was dried in air oven at 105 °C until it reached a constant weight. 

The analyses were made in triplicate. 

SI =
(weight of cooked pasta − weight of dried pasta)

weight of dried pasta
× 100 

3.2.8 Textural characteristics  

Fresh pasta was cooked in boiling water to reach the OCT. Then drained and left for 10 min until 

surface water was evaporated before measuring textural characteristics. 

Elasticity and firmness  

Cooked pasta elasticity was measured on single pasta strands, and firmness was measured based on 

the force required to cut five strands of pasta placed parallel to each other. A Texture Analyser 

(TA.XT2; Stable Micro System, Godalming, UK) equipped with a 5-kg load cell was used to analyse 

the pasta firmness and elasticity with equipment settings as in Foschia et al. (2014). 

Elongation  

The elongation of the cooked pasta was measured by the Texture Analyser (TA.XT2; Stable Micro 

System) equipped with a 5-kg load cell. Length difference of the pasta was measured simultaneously 

while measuring elasticity. The ability of pasta to be elongated was determined as extending pasta 

length until breakage and was calculated according to the following equation (Laleg et al., 2016). 

Elongation (%) =
𝐹𝑖𝑛𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ
× 100 

The original length of pasta was equal to the initial distance (10 mm) of elasticity settings in Texture 

Analyser. All textural characteristics were analysed in ten replicates. 

3.2.9 Colour analysis  

Pasta colour readings were taken immediately after processing and cooking. Two layers of pasta were 

mounted on black paper without gaps and ‘L’, ‘a’ and ‘b’ values were measured using a colorimeter 

(Minolta Chroma Meter CR210; Minolta Camera Co., Osaka, Japan) with the illuminant C (CIE, 

standard, 6774 K). Measurements were made at ten random places on the surface of uncooked and 

cooked pasta layers. Colour reading ‘L’ value represents darkness to lightness, ‘a’ value represents 

green to red and ‘b’ value represent blue to yellow when values change from negative to positive. The 
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colorimeter was calibrated to L = 98.03, a = 0.23 and b = 0.25 with standard white tile. All analyses 

were replicated six times. 

3.2.10 In vitro digestion for predictive glycaemic impact  

This method predicts the glycaemic response by measuring how rapidly free reducing sugars are 

liberated during in vitro hydrolysis. Cooked pasta was cut into small pieces, placed in a mortar and 

squeezed ten times with a pestle to simulate oral chewing (Foschia, Peressini, Sensidoni, Brennan, & 

Brennan, 2014). In vitro digestibility trials were described from Brennan, Derbyshire, Tiwari, and 

Brennan (2012). The 2.5 g weighed samples with 30 mL of RO water were added to digestion pots on 

a pre-heated IKAAG RT 15 multi stirred block (IKAWERKE Gmbit & Co., Staufen, Germany) and 

constantly stirred until reach 37 °C. Gastric digestion was started by adding 0.8 mL 1M HCl and 1 mL 

of 10 % pepsin (Sigma Aldrich, USA) solution in 0.05 M HCl while continuously stirring and incubated 

at 37 °C for 30 min. A 1 mL aliquot was taken from each digestion pot at the end of gastric digestion 

(start counting time as “0 min”) and added to 4 mL ethanol to terminate the reaction. 

Amyloglucosidase (0.1 mL) added to the digestion pot, soon after taking 0 min aliquot to prevent the 

end-product inhibition of pancreatic α-amylase. Intestinal digestion was stimulated by adding 5 mL of 

2.5% Pancreatin (Sigma Aldrich, USA) solution in 0.1 M sodium maleate buffer pH 6 for 120 minutes. 

Aliquots were taken during 20, 60 and 120 min and each was added to 4 mL ethanol. The samples 

were stored at 4 °C until analysis of reducing sugar using the 3.5-dinitrosalicylic acid (DNS) method. 

 All aliquots of test tubes were centrifuged at 1000 g for 10 minutes, and then 0.05 mL of the 

supernatant was transferred into individual glass vials. A 0.05 mL of reagent blank (RO water), 0.05 

mL of glucose standards (5 mg/mL and 10 mg/mL) were transferred to separate tubes. Then, 0.25 mL 

of enzyme solution (1 % Invertase and 1% amyloglucosidase) added to each glass tube. All the tubes 

were incubated 20 min at room temperature before adding 0.75 mL of the DNS (reagent) to each tube. 

All tubes were covered with aluminium foil and heated in a boiling water bath for 10 min. The tubes 

were cooled and 4 mL RO water was added to each tube, and the absorbance was measured at 530 

nm by using a spectrophotometer with 1cm path length. Reducing sugar released was calculated as 

mg /g sample and plotted the curve against the time and area under the curve (AUC). AUC was 

determined by dividing the graph into trapezoids (Matthews, Altman, Campbell, & Royston, 1990). 

Glucose released over the time and area under the curve (AUC) was calculated according to Matthews 

et al. (1990). 

3.2.11 Statistical analysis  

The data generated by repeating the experiments for different quality parameters were compiled and 

analysed using SPSS (IBM SPSS Statistics V22.0, Armonk, NY, USA). All experiments were performed in 
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triplicate unless otherwise stated. All data were reported as means ± standard deviation. A one-way 

analysis of variance, at the 0.05 level of significance, was carried out to investigate the significant 

differences between the treatments. When the ANOVA was significant (P < 0.05), means were 

separated by a pairwise comparison using Tukey’s comparison test. 

3.3 Results and discussion 

3.3.1 Chemical analysis  

Cereals are a staple food and characterised by a high proportion of carbohydrate and relatively low 

protein content as seen in the control pasta which is made up of semolina wheat (Table 3.1). BLP 

provides a useful supplement as it had a higher protein concentration, mineral (ash) and fat content 

than the pasta (Table 3.1). BLP had no detectable carbohydrate while the control pasta had 87% 

carbohydrate. 

Fresh control pasta had a moisture content of 26.19± 2.17% (w/w) and BLP showed a low moisture 

(6.6 ± 0.02% w/w). The protein, fat and ash content of control fresh pasta (Table 3.1) were consistent 

with the results reported in previous research of OvandoMartinez et al. (2009), and the protein 

content (12%DM) was similar to Mercier et al. (2016), and similar to the semolina powder composition 

reported by USDA (2017). BLP protein and fat content results (Table 3.1) were consistent with Fornias 

(1996), and ash content results were similar to Cardoso-Santiago and Arêas (2001b). In the present 

study, the highest protein content was 27% in 20% BLP pasta and the lowest protein content was 20% 

in 10% BLP pasta (all content on a dry weight basis). Kadam & Prabhasankar (2012) added 30% shrimp 

meat into pasta which increased the protein content to 15.7% and adding 45% beef emulsion to pasta 

raised the protein to 15.5% on dry matter basis (Liu et al., 2016). The protein content of the fortified 

pasta in this research was higher than these studies and above the average protein content of 17.3% 

in a meta-analysis of fortified pasta (Mercier et al., 2016). 

Mineral profile of beef lung powder  

The high ash content of the BLP represents the high mineral content as identified by inductively 

coupled plasma mass spectrometry (ICP). The mineral profile is dominated by potassium, phosphorus, 

sulphur and sodium. Iron (Fe) was the next highest mineral with 1.0 mg/ g dry matter. 

Essential minerals are elements required for the normal physiological functions of the body and the 

requirement of the specific minerals varies with the life stage of the person and gender. Lower and 

higher RDI/AI values were sourced from NHMRC (2006) for older child, adolescent or adult. Different 

amounts would be required for infants, and during pregnancy or lactation. For instance, iron 
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requirement during lactation is within the range stated in Table 3.2, but for pregnant woman, a higher 

amount of iron (27 mg/ day) is needed. 

Iron plays an important role in the function of the body and is essential for the normal functioning of 

several enzymes and in haem pigments. The iron content of the body is highly conserved (Bothwell et 

al., 1979) but lack of iron in the diet can cause a varying degree of deficiencies ranging from low iron 

stores to iron deficiency anaemia (NHMRC, 2006). BLP is a rich and cheap source of iron (1 mg/ g dry 

matter basis). About 17 g of BLP is adequate to meet the highest daily requirement (Table 3.2) of adult 

women (19–50 years), whereas 8 g can easily meet the lower daily requirement (Table 3.2) of adult 

men and older women (>50 years). Further, the low levels of zinc and manganese in BLP may enhance 

the absorption of iron by reducing competitive inhibition (Rossander-Hulten et al., 1991). Iron from 

beef lungs is expected to be highly bioavailable as found with other animal sources (Hurrell & Egli, 

2010). An intervention study (Cardoso Santiago et al., 2001) showed that incorporating 8% beef lung 

into snacks successfully reduced the prevalence of anaemia in the children from 61.5% to 11.5% in 

preschool children of a poor Brazilian region. In the current study, the minimum BLP incorporation 

was 10% and has a similar potential to reduce anaemia prevalence. Semolina flour contains only 0.03–

0.04 mg/ g of iron on dry matter basis (USDA, 2018). After incorporating 10% BLP to semolina fresh 

pasta iron content increased up to 0.143 mg/ g dry matter. 

 
 

Table 3.1 Proximate analysis of beef lung powder and control pasta. 

Component (w/w, dry basis) Beef lung powder Control pasta 

Protein 87.01 ± 2.85% 12.44 ± 0.36% 

Fat 8.76 ± 0.07 % 0.44 ± 0.04% 

Carbohydrate 0.0% 86.73 ± 0.43% 

Ash 4.93 ± 0.08% 0.46 ± 0.03% 
Results are the means (± SD) of triplicate samples (n=3) 
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Table 3.2 Comparison of beef lung powder with RDI/AI values. 

Element Amount / g (beef 
lung powder) 

RDI/ AI value 
(lowest to highest) 

BLP required to provide lowest 
and highest value (g)* 

Ca (mg) 0.48 ± 0.002de 500-1300 1042-2709 

Cr (µg) 0.34 ± 0.03e 11-35 33-103 

Cu (mg) 0.00627 ± 0.0003e 0.7-1.7 112-272 

Fe (mg) 1.07± 0.007d 8-18 8-17 

K (mg) 10.92 ± 0.77a 2000-3800 184-348 

Mg (mg) 0.63 ± 0.008de 80-420 127-667 

Mn (mg) 0.00059 ± 0.0001e 2-5.5 3390-9322 

Na (mg) 7.30 ± 0.08c 200-920 28-126 

P (mg) 9.26 ± 0.03b 460-1250 50-135 

Zn (mg) 0.092 ± 0.005e 8-14 87-153 
Source of RDI /AI values: National Health and Medical Research Council, Australia; 
RDI, recommended daily intake (Ca, Cr, Cu, Fe, Mg, P, Zn); AI, adequate intake (K, Mn, Na) 
Different superscripts are significant (p<0.05)  
Results are the means (± SD) of triplicate samples (n = 3) 
*Denotes calculated values 

 

3.3.2 Cooking characteristics and texture properties 

Optimal cooking time, cooking loss, SI and WAI are important parameters of cooked pasta quality. OCT 

refers to the minimum boiling time to gelatinise the pasta core. Control fresh pasta OCT (6 min and 30 

s) was similar to the results of Foschia et al. (2014) and Lu et al. (2016) that used the same processing 

procedures. Adding of BLP to the fresh pasta caused a significant (P < 0.05) increase in the OCT. Kadam 

& Prabhasankar (2012) also reported a similar increase in the OCT of the pasta incorporated with 

shrimp meat, what is of note in that the 10% BLP showed a higher OCT than the 15% and 20% BPL 

pasta. Kadam & Prabhasankar (2012) suggested that increasing protein content in pasta initially 

disrupts the starch–protein matrix and that high protein addition may lead to protein–protein 

association which forms cohesive structure and may result in a more homogeneous starch–protein 

complex. This could partially explain our observation. A clear pattern could not be identified with the 

WAI and SI. However, the WAI and SI were higher in BLP pasta compared to the control pasta (Table 

3.3). WAI and SI increased significantly in the 10% pasta and could probably be associated with high 

OCT of the 10% pasta. The cooking loss of BLP incorporated pasta was significantly higher than the 

control pasta but did not significantly increase with the increasing percentage of BLP which is in 

agreement with the findings of Pasqualone et al. (2016). According to Cleary & Brennan (2006), higher 

cooking losses by exudates and leaching of the solid mass into the water was due to a discontinuous 

protein coat and weaker binding proteins of the fortified pasta. However, the maximum cooking loss 
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was 6.8% and conventionally a cooking loss below 7–8% is regarded as acceptable in pasta processing 

(Dick & Youngs, 1988; Doxastakis et al., 2007). 

Elastic limit, firmness and elongation represent the textural properties of pasta (Table 3.3). Firmness 

was increased significantly (P < 0.05) with increasing BLP similar to Liu et al. (2016). An increasing 

pattern was recorded in the elastic limit of the pasta up to 15%, whereas a decreasing (P < 0.05) trend 

was observed in the elongation with increasing levels of the addition of the BLP. 

Table 3.3 Cooking characteristics and textural properties. 

Cooking characteristics Control pasta 10% BLP 15% BLP 20% BLP 

Optimal cooking time (OCT) 
(min) 

6.5±0.41c 11±0.52a 8±0.38b 8.5±0.55b 

Water absorption Index (g 
/100g) 

64.91±2.82d 89.01±2.48a 72.01±1.29c 77.16±1.40b 

Swelling index (water (g)/dry 
pasta (g) 

1.63±0.06b 2.01±0.06a 1.73±0.02b 1.70±0.06b 

Cooking loss (g / 100g) 3.57±0.30b 5.84±1.53a 6.84±0.22a 6.09±0.82a 

Textural properties 

Elastic limit (g) 40.79±3.98b 39.88±4.16b 49.56±5.69a 43.03±5.04b 

Firmness (g) 215.04±9.10c 323.69±17.11b 409.42±16.25a 418.85±8.52a 

Elongation 45.77±4.53a 29.59±4.96b 24.29±3.57c 17.17±4.04d 

Different superscripts are significant (p<0.05) along the row. 
Results for cooking characteristics are the means (± SD) of triplicate samples (n=3)  
Results for textural properties are the means (± SD) of 10 replicate samples (n= 10) 

 

3.3.3 Cooked and fresh pasta colour  

All colour values of the fortified pasta (Fig. 3.1) were within the range of an earlier pasta meta-

analysis (Mercier et al., 2016). Both cooked and fresh control pasta colour values were in the range 

previously published by Liu et al. (2016) and Foschia et al. (2014). 

Raw fresh pasta samples with BLP were significantly darker (low L* value) and redder (high a* value). 

The redness of cooked fortified pasta was significantly higher in 15% and 20% supplementation rate 

than 10% treatment (Table 3.4), and these results were consistent with the meat emulsion added 

pasta of Liu et al. (2016). The yellowness (b* value) of all pasta types increased after cooking and but 

yellowness decreased with the increasing in the concentration of BLP. 
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Table 3.4 Main colour values (L*a*b*) of raw and cooked pasta contained 10%, 15% and 20% beef 
lung powder or non-treated (control) samples. 

Raw pasta colour values 

Product L* value a* value b* value 
Control pasta 75.43 ± 1.99a 1.02 ± 0.46c 12.51 ± 2.02a 
10% beef lung pasta 50.61 ± 1.49b 3.62 ± 0.21b 11.42 ± 0.38b 
15% beef lung pasta 40.73 ±0.71c 6.77 ±0.17a -2.93 ± 0.09d 
20% beef lung pasta 38.28 ± 1.06d 6.51 ± 0.08a -1.62 ± 0.21c 
Cooked pasta colour values 

Control pasta 69.19 ± 2.67a -0.11 ± 0.09c 17.49 ± 0.48a 
10% beef lung pasta 39.66 ± 1.40b 5.73 ± 0.30 a 14.54 ± 0.53b 
15% beef lung pasta 34.01 ± 0.99c 5.55 ± 0.37ab 12.74 ± 0.43c 
20% beef lung pasta 31.95 ± 0.97d 5.30 ± 0.26b 12.25 ± 0.46c 

Different superscripts are significant (p<0.05) along the column
Results are the means (± SD) of six samples (n = 6) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.3.4 In vitro digestion for predictive glycaemic impact  

Pasta is a high carbohydrate food and a reduction of its glycaemic impact is important for improving 

consumer health. The release of reducing sugar during in vitro digestion of all cooked pasta 

combinations over 120 min is shown in Table 3.5. It can be seen that there was rapid starch 

degradation during the first 20 min and slow digestion from 20 min to 120 min. The value of the area 

under the glycaemic response curve (AUC) shown in Table 3.5 demonstrated that incorporation of BLP 

significantly reduced (P < 0.05) the glycaemic response of pasta. So that at 20% inclusion rate the 

standardised AUC value was significantly lower than the control sample. This indicated the potential 

 
10% BLP raw pasta  

15% BLP raw pasta 
 

20% BLP raw pasta 
 

Control raw pasta 

 
 

 
10% BLP cooked pasta 

 
15% BLP cooked pasta 

 
20% BLP cooked pasta Control cooked pasta 

Figure 3.1 Images indicating the colour and consistency of control and beef lung powder containing 
pasta at 10%, 15% and 20% supplementation levels. 
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to increase the slowly digestible fraction of carbohydrate in the sample by reducing starch 

degradation. Higher protein content can lower the glycaemic response by starch granules embedded 

in the protein matrix and may limit the access of enzymes to starch granules (Liu et al., 2016). But BLP 

20% pasta increased the glycaemic response at initial 20 min. This can happen by creating ruptures in 

pasta structure due to high concentration of protein (Kadam & Prabhasankar, 2012) and expose starch 

granules to the enzymes. Control pasta AUC results were similar to the in vitro pasta digestion study 

of Foschia et al. (2014). 

Table 3.5 Pasta reducing sugar release with In vitro digestion. 

Minutes Reducing sugar (mg)/ pasta(g) 

Control Pasta BLP 10% pasta BLP 15% pasta BLP 20% pasta 

0 4.09±15.13a3 1.05±8.85a3 12.83±5.28a3 9.73± 2.69a3 

20 211.27±7.49a2 158.85±15.46a2 118.21±27.81ab2 195.36±24.55b2 

60 282.85±11.77a1 233.14±16.86b2 230.46±10.77b1 230.51±14.76b1 

120 305.33±15.31a1 276.81±14.92ab1 252.49±26.47ab1 263.05±11.70b1 

Standard AUC 222.61±4.21a 185.53±6.47bc 170.79±13.25c 190.31±8.18b 

AUC, area under the curve 
Different superscripts in a row wise (lower case alphabet) and column wise (numbers) differ significantly (P<0.05) 
Results are the means (± SD) of triplicate samples (n = 3) 

 

 

3.3.5 Indispensable amino acid score  

Indispensable amino acids are a critical component of protein quality as they cannot be synthesised 

in the human body. On the basis of colour, cooking characteristics and elongation of the texture 

results, the IAAS of control and 10% BLP pasta were compared (Table 3.6).  

The BLP protein had 45% indispensable amino acids (IAA) compared to the 31% of control pasta. 

Incorporating 10% of BLP into the control pasta increased the IAA value to 37%. However, IAAS is the 

proper method to analyse the quality of the protein and in this experiment, IAAS was calculated using 

the reference pattern for adults and older child (FAO, 2011). Table 3.6 illustrates the level of histidine, 

tryptophan and sulphur amino acids and follows values reported earlier (Fornias, 1996; Mullen et al., 

2017). However, their concentrations were higher than that recommended by the FAO (2011) an 

observed in the AAR value. 

In this study, BLP was a balanced source of amino acids and achieved the highest IAAS (1) for protein 

quality according to the FAO expert consultation 2011 reference pattern (Table 3.6). Histidine and 
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lysine were the most limiting amino acids in control pasta according to the amino acid ratio (AAR). 

After incorporation of BLP at 10%, lysine was no longer limiting with an AAR >1 while the histidine 

ratio improved from 0.56 to 0.91 (Table 3.6). This illustrates that BLP has capacity to enrich the quality 

of plant protein. 

Table 3.6 Amino acid ratios and indispensable amino acid scores (IAAS) of BLP and 10% BLP pasta. 

Amino acid Beef lung 
powder 
(mg/g 

protein) 

control 
pasta (mg/g 

protein) 

*10% Beef 
lung 

powder 
pasta 
(mg/g 

protein) 

Older child, 
adolescent 

& adult 
reference 
pattern 

*Beef Lung 
powder 

AAR 

*control 
pasta 
AAR 

*10% pasta 
AAR 

Tryptophan 24.77 ± 3.34 15.51 ± 
0.02 

19.69 6.6 3.75 2.35 2.98 

Threonine 43.51 ± 2.16 28.70 ± 
0.03 

35.17 25 1.74 1.15 1.41 

Isoleucine 34.71 ± 1.13 36.50 ± 
0.04 

35.71 30 1.16 1.22 1.19 

Leucine 88.72 ± 4.21 70.90 ± 
0.06 

78.68 61 1.45 1.16 1.29 

Lysine 81.06 ± 4.95 22.99 ± 
0.01 

48.38 48 1.69 0.48 1.01 

SAA 30.08 ± 0.97 23.71 ± 
0.12 

26.49 23 1.31 1.03 1.15 

AAA 69.47 ± 3.02 66.72 ± 
0.24 

67.91 41 1.69 1.63 1.66 

Valine 59.90 ± 3.01 38.42 ± 
0.08 

47.81 40 1.50 0.96 1.20 

Histidine 21.59 ± 2.08 9.00 ± 0.14 14.51 16 1.35 0.56 0.91 

IAAS    
 

1 0.48 0.91 
Reference pattern adopted from FAO Expert consultation, 2011; AAR, amino acid ratios; SAA, sulphur amino acid 
(methionine + cysteine); AAA, aromatic amino acid (phenylalanine + tyrosine) 
Results are the means (± SD) of triplicate samples (n=3) 
*Denotes calculated values 
 

 

3.4 Conclusion 

The incorporation of BLP into fresh pasta illustrated that BLP is a valuable under-utilised by-product 

in terms of its potential to improve the nutritional quality of protein-poor, carbohydrate-rich cereal 

foods, such as pasta. The incorporation of 10% BLP into fresh pasta was determined to be optimal 

based on the colour, cooking characteristics and elongation of textural properties. The inclusion of 

10% BLP into pasta improved the iron content fivefold, increased the protein content by 60% and the 

IAAS from 0.48 to 0.91. BLP also decreased the glycaemic response of pasta. The opportunity exists to 
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improve the functional value of food products by the incorporation of lung material; however, further 

research is required to determine the sensory profile, consumer preference and microbiological 

content to establish the shelf life compared to conventional pasta. Pasteurisation may be required for 

industrial scale-up to meet the regulations of particular country. 
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Chapter 4 

Effect of Different Drying Temperatures on the 

Physicochemical Properties of Beef Lung Powder 

4.1 Introduction 

Protein supplements play a crucial role in improving the nutrition status of various groups of 

people in society such as elderly people, pregnant women, malnourished people and those people 

recovery from wounds or surgery. The high demand for protein supplements and the cost of the 

protein have increased the price of protein supplements globally. Thus, scientists and food industry 

have started searching for underutilised protein sources for production of low-cost high-quality 

protein products. Given the fact that meat carcases constitute only 45% to 60% of animal live weight 

(Muir, Thomson, & Askin, 2008) and much of the remaining of the animal is protein-rich co-products 

(Lungs, kidney, heart, tongue etc..), there is an ample opportunity to utilise these co-products as a 

source of protein and its products. Making use of various underutilised co-products is a good strategy 

to produce nutritious and safe protein supplements since co-products have been used and still are 

consumed by many people around the world and have long history of safety. Furthermore, using the 

co-products will help to reduce environmental impact caused by disposing the material and improve 

profit margin since the raw material is cheap. The beef industry has a high cost production, and it is 

important to focus on underutilised co-products such as beef lungs, to increase production efficiency. 

Beef lungs has a high protein content and has been used as food in many cultures and sometimes used 

for pet food, but mostly rendered or considered as low value material. 

Co-products are generally more prone to contamination than meat and are highly perishable 

and susceptible to microbial growth. Thus, it requires preservative techniques to stabilise them during 

storage, such as drying or freezing. The drying process suppresses the growth and multiplication of 

spoilage microorganisms by controlling the availability of water and is one of the best unit operations 

to preserve animal products (Traffano-Schiffo, Castro-Giráldez, Fito, & Balaguer, 2014). Dried protein 

powders have been successfully developed from different protein sources (Bishnoi et al., 2015; 

Ohkuma et al., 2008) including the protein powder from beef lungs developed in the previous study ( 

Chapter 3). The beef lung powder had useful nutritional properties, did not require special storage 

conditions and could conveniently be used as an ingredient in fortified foods. Thorough 

characterisation of this newly developed protein powder, including its physical parameters, would be 

necessary before it could be proposed as an ingredient for development of protein supplements. 



39 
 

Different physical properties of food ingredients are important to the food industry at 

different processing stages, and these parameters are interconnected with each other. For instance, 

moisture content, particle size and shape (morphology) all affect the bulk density and powder 

flowability and physical properties of emulsions such as viscosity and solids concentrations (O’Hagan, 

Hasapidis, & Coder, 2015; Walton & Mumford, 1999). Both physical and chemical properties can 

change due to use of different processing conditions and these can directly affect the quality of the 

developed products. Physical parameters like hygroscopicity give an idea about moisture absorption 

to powder and are important to determine the storage conditions and packaging materials in 

industrial scale. Flowability of the powder is important to determine the unit operations and relevant 

machines to maintain the powder without flowing in processing premises. Bulk densities and absolute 

densities give an idea about relationship of volume and weight of the product and important 

parameter for distribution channels after processing. While our previous study (Chapter 3) reported 

the nutritional potential of beef lung protein powder, no information is available about the effect of 

different processing conditions on its quality and physical properties. In the present study, the impact 

of different processing temperatures during the preparation of beef lung protein powder on its 

physicochemical properties has been determined.  

4.2 Methodology  

 

4.2.1 Processing of beef lung powder 

Hygienically derived frozen beef lungs (10 kgs) without trachea processed into beef lung powder using 

the facilities in the food-processing laboratory at Lincoln University (Lincoln, New Zealand). Beef lungs 

were thawed overnight at 4˚C and discoloured areas trimmed to obtain clean lungs. The trimmed lungs 

were separated into nine samples (970g ±122) and minced individually (TS-102aAL, Tasin, Taichung, 

Taiwan). Three of these minced samples were air oven-dried (E32M, Bakbar, Christchurch, NZ) at each 

temperatures until they reached a constant weight.  This took 23 h and 20 minutes at 50 ˚C, 10 h and 

55 minutes at 70 ˚C and 6 h at 100 ˚C. The weight of the dried samples was measured frequently, and 

the surface crust was broken for steady moisture evaporation. The dried beef lungs were ground into 

powder using an FP920 grinder (Kenwood, China) for 15 minutes, vacuum-packed in LDPE packaging 

and stored at room temperature for further analysis. The BLP tested for storage stability by measuring 

protein oxidation, lipid oxidation and microbiology growth was stored for six months 
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4.2.2 Particle size distribution, bulk density, absolute density, porosity & 
flowability 

Dried beef lung powder samples were sieved using a series of standard sieves (0.5, 1.18 and 2.26 

mm) to determine the particle size distribution of each sample. Other physical properties were 

measured after sieving the samples through the 500 µm sieve. 

Bbulk density (þbulk)was measured according to Mahdavi, Jafari, Assadpoor, and Dehnad 

(2016) with 1 g of beef lung powder  placed in a 10 mL plastic measuring cylinder. The measuring 

cylinder was tapped a constant volume was reached. The bulk density of the sample was calculated 

as the ratio between the weight of powder in the cylinder and the filled volume. The absolute density 

(þabs) was measured with a pycnometer using RO water as a standard. 

The porosity (ε) was calculated according to equation 1 using bulk density to absolute density 

ratio (Rahman, Perera, Chen, Driscoll, & Potluri, 1996) 

ε = 1 –(þbulk/þabs) ……………………. (Equation-1) 
 

Flowability of the beef lung powder was analysed using Hausner ratio (HR), which is a number 

correlated to flowing ability of powders (Hausner, 1967). The BLP powder (10 g) was placed in a 25 mL 

measuring cylinder and the initial volume (Vb) was recorded. The filled cylinder was tapped 10 times 

by hammer and the final volume (Vf) was recorded. HR was calculated by using the formula mentioned 

in equation 2 based on the ratio of Vb and Vf. The flowability was classified into four categories 

(Hausner, 1967). (1) HR value 1.0 -1.1, free-flowing powder; (2) HR value 1.1-1.25, medium flowing 

powder; (3) HR value 1.25 - 1.4, difficult flowing powder and (4) HR value > 1.4, very difficult flowing 

powder. 

Hausner ratio (HR) = (Vb / Vf )× 100…………… (Equation-2) 
 

4.2.3 Hygroscopicity of beef lung powder 

Hygroscopicity of beef lung powder was measured according to the method of Cai and Corke (2000) 

with minor modifications. Samples (2 g) were taken in pre-weighed Petri dishes which were placed in 

an airtight plastic container with saturated sodium chloride solution. The airtight box was placed in an 

incubator at 30 ˚C to obtain constant relative humidity (75.09% RH). After 7 days, the hygroscopic 

moisture was weighed gravimetrically. Samples were analysed in triplicate. Results were expressed as 

absorbed moisture per 100 g of dry matter. 

4.2.4 Water solubility index (WSI) and Water binding capacity (WBC) 

The water solubility index was measured according to the method described by Mahdavi et al. (2016). 

The BLP power (12.5 g) was vortexed thoroughly with 30 mL RO water in a 50 mL centrifuge tube for 
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2 min. Then, the sample was incubated at 37 ˚C in a water bath for half an hour and subsequently was 

centrifuged at 17,640 x g for 20 min at 4 ˚C. The supernatant was collected into a pre-weighed beaker 

and oven-dried at 105 ˚C overnight. The weight difference was determined after drying and WSI was 

calculated by equation-3. The remaining pellet in the centrifuge tube was weighed to determine the 

water-binding capacity (WBC) of the sample using equation-4. 

 

𝑊𝑆𝐼 =
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑎𝑓𝑡𝑒𝑟 𝑑𝑟𝑦𝑖𝑛𝑔)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 
× 100 

𝑊𝐵𝐶 =
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑒𝑙𝑙𝑒𝑡 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
× 100 

4.2.5 Colour measurements 

Colour values ‘L*’, ‘a*’ and ‘b*’ parameters were determined using a Chroma CR 400 colourimeter 

(Konica Minolta INC., Tokyo, Japan) with the illuminant C (CIE, standard, 6774 K). The colour values 

were measured at six random places on beef lung powder placed on black coloured paper. The L* 

value represents lightness, negative and positive a* values, represent the green to red colour 

spectrum, negative and positive b* represent blue and yellow colour components. The colorimeter 

was calibrated using a standard white tile (L = 98.03, a = -0.23 and b = 0.25). All values were mean of 

six replicate samples. 

4.2.6 Pasting properties of BLP added semolina dough 

Samples were prepared using three different levels of beef lung powder viz. 10%, 15% and 20% 

along with semolina flour.  The semolina without BLP was used as a control. The apparent viscosity of 

the samples was measured by Rapid Visco Analyzer RVA S4 (Perten Instruments Pty. Ltd., Warriewood, 

Australia). Sample (3 g) was transferred into a canister and 25 mL of distilled water was added to it 

before operating the analyser. Standard general pasting method No. 1 heating and cooling cycle 

program was used where the samples were held at 50 °C and heated to 95 °C at 12 °C/min, a holding 

phase at 95 °C for 3.5 min, a cooling step from 95 to 50 °C at 10 °C/min, and a holding phase at 50 °C 

for 2 min were followed. Measurements of peak viscosity, trough viscosity, breakdown, final viscosity, 

setback and pasting temperature were directly recorded. Derived parameters were determined from 

direct measurements as described by Kumar, Brennan, Zheng, and Brennan (2018). 

 Stability ratio = trough viscosity / peak viscosity  

Setback ratio = final viscosity / trough viscosity and  

Relative breakdown = breakdown viscosity / setback viscosity 

 

.………. (Equation-3)  

.………. (Equation-4)  
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4.2.7 Protein (N) content of beef lung powder 

Protein content of beef lung powder was determined using the AACC Micro-Kjeldahl method 113 

976.05 (2000). Protein content was calculated by multiplying the nitrogen content with the factor of 

6.25 (Lynch et al., 2018) 

4.2.8 SDS-PAGE analysis of beef lung powder and raw beef lung 

 
The protein profile of the BLP and raw lung samples was studied by using SDS-PAGE following the 

procedure described by Bhat, Morton, Mason, and Bekhit (2018) 

Protein extraction from beef lung powder 

Dried beef lung powder (0.5 g) or sample from fresh lungs (1 g) was homogenised for 60 s at 10,000 

rpm with a Polytron homogeniser using 10 mL extraction buffer (0.1 M KCl, 1 mM EDTA, 1 mM Sodium 

azide (NaN3), 25 mM potassium phosphate buffer at pH 7.0). The homogenate was centrifuged at 1000 

g for 15 minutes at 4 °C and the pellet was resuspended in buffer after supernatant was separated. 

The procedure was repeated three times for maximum extraction. 

SDS-PAGE gel casting (Bio-Rad Mini-PROTEAN® 3) 

12.0% Bis-Tris (0.75 mm × 10 well) gel (acrylamide: bisacrylamide = 37.5:1 [w/w], 0.1% [w/v] SDS, 

0.05% [w/v] ammonium persulfate, and 0.384 M Tris–HCl, pH 8.8) was used as resolving gel. Stacking 

gel was a 4.0% polyacrylamide gel (acrylamide: bisacrylamide = 37.5:1 [w/w], 0.1% [w/v] SDS, 0.07% 

[w/v] ammonium persulfate, and 0.125 M Tris–HCl, pH 6.8). The polymerisation of both resolving gel 

and stacking gel was initiated by adding 0.1% [v/v] TEMED. The resolving gel was first added to Bio-

Rad Mini-PROTEAN® 3 Casting Frame and immediately smoothing the gel surface by adding 

isobutanol. Isobutanol was washed out by RO water and blotted dry after 30 minutes of solidifying. 

Then stacking gel was added, and the teeth-comb was inserted to produce loading wells. The comb 

was unplugged after solidifying (30 minutes) the stacking gel and the trapped air in wells was flushed 

out using RO water. 

SDS-PAGE running 

Standardised soluble protein samples from various treatments were mixed with SDS sample loading 

buffer (50.0 mM Tris-HCI, pH 6.8; 2% SDS; 10% glycerol; 12.5 mM EDTA; 0.02% bromophenol blue; 1% 

(v/v) 2 β-mercaptoethanol) and incubated at 70 °C for 15 min. After cooling, the stock samples and 

molecular markers (Precision Plus Protein™ Standards, All Blue) were loaded onto Bis-Tris gels 

prepared in a Bio-Rad Mini-PROTEAN® 3 Casting Frame. The electrophoresis was performed in a Mini-

Protean III electrophoresis (Bio-Rad Laboratories, Hercules, CA) tank using SDS (1×) running buffer (25 
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mM Tris-HCI, pH 8.6; 192 mM glycine; 0.1% SDS) at 150 V for 90 min at room temperature (21 °C ± 

2.0). Fixing solution (50% Methanol: 7% Acetic acid) was used (20 mL) to prevent leaching out of 

proteins by shaking with gels for 15 minutes. Gels were washed three times in RO water for 5 min 

each time and stained in 20 mL GelCode® Blue Stain Reagent (Pierce) for one hour with gentle shaking 

on the rocker. Gels were destained in distilled water overnight to reveal the bands. The bands in the 

gels were analysed by Gel Doc Imaging System (XR+, Bio-Rad Laboratories Inc, Redmond, USA) using 

Image lab TM software (Version 6.0; Bio-Rad Laboratories). 

4.2.9 Amino acid profile and mineral profile of beef lung powder 

Amino acid and mineral profiles were determined following the same protocol of Chapter 3.2.5. Amino 

acid profile was measured using a HPLC 1100 series (Agilent Technologies, Waldrbom Germany). 

Minerals profile was measured using an Inductively Coupled Plasma Optical Emission 

Spectrophotometer (Varian 720 ICP-OES, Melbourne, Australia). (refer Chapter 3.2.6) 

 

4.2.10 Haem iron analysis 

Haem iron was analysed as described by Hornsey (1956). Beef lung powder (0.5 g) was transferred 

into a 15 mL Falcon tube and 7 mL of acidified acetone (40 ml of 32% acetone, 1 mL of concentrate 

HCl, 9 mL of distilled water) was added. The sample was homogenised for 15 s by vortex and 7 mL of 

acidified acetone was added again to the falcon tube. The sample tube was caped tightly and kept for 

1 hour in dark. The samples were centrifuged at 2200 x g for 10 min and the supernatant was filtered 

using Whatman 3 filter paper with accelerating vacuum filtration unit. The filtrate absorbance was 

measured at 640 nm against the reagent blank. For raw beef lung, 2g sample was used for the 

experiment and the moisture content of the sample was considered. Falcon tubes were covered by 

aluminium foil throughout the analysis to avoid sunlight. Haematin was calculated by using a factor 

136 μg haematin/g meat/mL (Hornsey, 1956) and the experiment was validated by using a standard 

haematin sample (product No: H3281, Sigma Aldrich, MO, USA). Haematin and haem iron were 

calculated according to the following equations (5 and 6): 

 

Haematin µg /g sample = (AB× 136×final volume (mL)) / sample weight (g) …………… (Equation-5) 

 

 

Iron µg /g sample = (AB× 136×final volume(mL)× 55.847) / (sample weight (g) ×633.49) …………… 
(Equation-6) 
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*Final volume: Added acidified acetone (15mL), All weights were in dry matter basis 

 

4.2.11 Determination of protein oxidation using the DNPH method 

The extent of protein oxidation was determined by evaluating the total carbonyl content using 

dinitrophenylhydrazine (DNPH) as described by Oliver, Ahn, Moerman, Goldstein, and Stadtman 

(1987) with slight modification. Dried meat powder sample (1 g) was weighed in 50 mL falcon tube 

and was homogenised using 1:10 (w/v) 20mM of sodium phosphate buffer (10 mL) containing 0.6 M 

NaCl (pH 6.5) for 30 s at 10000 rpm. Homogenate (0.2 mL) was transferred into separate Eppendorf 

tubes for protein and carbonyl measurements. Then, cold TCA (10%) was added and centrifuged at 

5000 rpm for 5 minutes to precipitate the protein. After discarding the supernatant, 1 mL of 2 M HCl 

was added to one pellet for protein measurement and 1 mL of 0.2% (w/v) DNPH in 2 M HCl was added 

to other pellet for carbonyl measurement. Samples were incubated at room temperature for 1 hour 

with vortexing every 15 minutes. TCA (10%) was added and the samples were centrifuged (Centra 

GP6R, Thermo IEC, Needham Heights, MA, USA) at 5000 rpm for 5 minutes to separate the pellet. All 

pellets were washed 3 times with ethanol: ethyl acetate (1:1, v/v) to remove excess DNPH. Then the 

pellet was dissolved in 1.5 mL of 20 mM sodium phosphate buffer containing 6 M guanidine HCl (pH 

6.5). Samples were stirred and centrifuged (Centra GP6R, Thermo IEC, Needham Heights, MA, USA) at 

10000 rpm for 5 minutes to take the supernatant. Protein concentration of the supernatant was 

measured by using BCA protein assay kit at 562 nm. The absorbance of the samples was measured at 

370 nm using 1 cm path length cuvettes. The carbonyl content was measured using OD and coefficient 

(21 nM-1cm-1) for protein hydrazones (Oliver et al., 1987). The carbonyl content expressed as nmol per 

milligram of protein using equation 5. 

Carbonyl concentration= [Absorbance (370 nm)/21 nM-1cm-1]/protein concentration (mg/mL)………. 

(Equation-5) 

 

4.2.12 TBARS assay for lipid oxidation 

Lipid oxidation was assessed by measuring the TBARS in the samples using the method 

described by Pearson, Love, and Shorland (1977). A 5 g of minced raw sample or beef lung powder 

was homogenised in 25 mL distilled water for 1 min using a Polytron homogeniser at 9,000 rpm. A 3 

mL aliquot of the homogenate was added to 3 mL thiobarbituric acid/ trichloroacetic acid stock 

solution (0.032 M 2-thiobarbituric acid, 1.14 M trichloroacetic acid in 0.32 M HCl) and vortex-mixed. 

Samples were incubated at 94°C for 15 min in a water bath for colour development. Samples were 
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centrifuged (Centra GP6R, Thermo IEC, Needham Heights, MA, USA) at 2,500 rpm for 15 min after a 

cooling period of 10 min and absorbance of the supernatant was measured at 535 nm (V-1200 

Spectrophotometer, Global Science, VWR International, Leuven). A standard calibration curve was 

prepared using 1,1,3,3-tetraethoxypropane and the results were expressed in milligram 

malondialdehyde per kilogram sample. 

4.2.13 Microbiology analysis 

Total viable count, coliform and yeast and mould were determined using ready to use media plates 

(For Richard Laboratories, Auckland, New Zealand). Ten grams were obtained from each dried sample 

under complete aseptic conditions. Samples were homogenised with 90-mL sterile peptone water 

(Marks, Darmstadt, Germany) in sterile bag for 2 min using stomacher. Tenfold serial dilutions were 

prepared  from the original homogenate (Swanson, Petran, & Hanlin, 2001). The samples were 

prepared near flame under laminar flow (Serial No. 8801/88, Gelman Sciences PTY. LTD., Australia). 

4.2.14 Analysis for total aerobic bacteria, coliforms and fungi 

Total viable counts (TVC) 

Total viable counts were enumerated by spreading 100 µl from each dilution on the surface of plate 

count Agar and incubated at 35 °C for 48 h (Morton, 2001). The dilution of plates showing 30 to 300 

colonies were selected for enumeration and expressed as colony forming units per gram (cfu/g) of 

sample 

Coliform count 

Coliform and other gram-negative pathogens were enumerated by inoculation of plate of MacConkey 

agar. The plates were incubated at 35 °C±20C for 48 h and counts were determined as colony forming 

units per gram (cfu/g) of sample. 

Yeast and moulds 

Yeast and moulds were enumerated by inoculation of plates of Sabaroud dextrose agar followed by 

incubation at 25±20C for 5 days (Beuchat & Cousin, 2001). Counts were determined as colony-forming 

units per gram (cfu/g) of sample. 

 

 

4.2.15 Statistical analysis 

The data generated by repeating the experiments for different parameters were compiled and 

analysed using SPSS (IBM SPSS Statistics V22.0, Armonk, NY, USA). All experiments were performed in 

http://www.sciencedirect.com.ezproxy.lincoln.ac.nz/topics/agricultural-and-biological-sciences/theoretical-plate
http://www.sciencedirect.com.ezproxy.lincoln.ac.nz/topics/agricultural-and-biological-sciences/theoretical-plate
http://www.sciencedirect.com.ezproxy.lincoln.ac.nz/topics/agricultural-and-biological-sciences/glucose
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triplicate unless otherwise stated. All data were reported as means ± standard deviation. Differences 

between the treatments were analysed by one-way analysis of variance, at the 0.05 level of 

significance. When the ANOVA was significant (P < 0.05), means were separated by a pairwise 

comparison using Tukey’s comparison test. 
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4.3 Results and discussion 

4.3.1 Drying pattern of beef lungs with different drying temperatures 

The bovine lungs were dried at 50 °C for 1400 minutes, 70 °C for 665 minutes and 100 °C for 360 

minutes to reach constant weight (Figure 4.1). Different drying temperatures reached different 

moisture levels of final products, at 50 °C to 4.78%, 70 °C to 1% and 100 °C to 0.4% (average moisture 

content). Figure 4.1 illustrates that the drying curves were straighter than typically seen in the 

literature. Generally drying curves are more curved due to the decline in evaporation rate with time 

(Trujillo, Wiangkaew, & Pham, 2007). In our study, regular breaking of the surface crust facilitated 

evaporation while drying the minced bovine lungs which may have reduced the curvature. 

 

 

 
Figure 4.1 Beef lung drying with different temperatures 
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4.3.2 Particle size distribution of bovine lung powder 

A considerable amount (45% to 70%, w/w) of fine beef lung powder (<0.5mm) was obtained at all 

drying temperatures (Figure 4.2). The increase in temperature of drying led to high percentage of fine 

particles (<0.5 mm). Drying at lower temperatures caused lower percentage of fine particles due to a 

greater caking effect resulted from a high moisture content 
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4.3.3 Bulk density, Absolute density, Porosity and Flowability 

 
There was no statistically significant difference in bulk density among the different drying 

temperatures, but a pattern of increasing average bulk density was observed between 50 ˚C to 100 

˚C. The increment of bulk density with temperature may be due to closer packing of the powder with 

finer particles (Table 4.1). Higher bulk density lowers the occupying space and is a commercially 

important property to reduce the cost of storing and transportation. Absolute density corresponds to 

the solid density and spaces between particles are not taken into account (Tonon, Brabet, & Hubinger, 

2010). Absolute density was significantly increased (p<0.05) with higher drying temperature (Table 

4.1), and this may be a result of the reduced moisture content of the particles as the drying 

temperature is increased (Table 4.1). Porosity was significantly decreased by increasing of drying 

temperature from 50 ˚C to 100 ˚C drying and these results were similar to refractance window drying 

of meat powder reported by Rostami, Dehnad, Jafari, and Tavakoli (2018). Porosity indicates the air 

space inside the materials and intragranular spaces (López-Córdoba & Goyanes, 2017). High porous 

granules could lead to granular cavities and high surface area which can potentially change 

biochemical reactions (Sujka & Jamroz, 2007) such as digestion(Chapter 5). The Hausner ratio (HR) is 

an indication of powder flowability, and the HR for all beef lung powders was around 1.3 in the range 

of difficult flowing according to Hausner (1967).  

 
 

4.3.4 Water binding capacity, water-soluble index and hygroscopicity 

The affinity of water or moisture towards the dried bovine lung powder is important to determine the 

processing and storage conditions. Table 4.1 shows the water binding capacity (WBC), water soluble 

index (WSI), Hygroscopicity, and moisture content of the beef lung powder. 

Significant differences in water binding capacity (WBC) were not observed with increasing drying 

temperature. All dried powder absorbed threefold the sample weight moisture (Table 4.1). A high-

water binding capacity is an important feature in food processing industry. For instance,  high WBC 

ingredients can be possibly used  in the baking industry to bind water in dough (Southward, 2003).  

The  Water Soluble Index (WSI) is a measurement of the solubility of biomolecules like protein, 

carbohydrate, vitamins, minerals (Sharma, Singh, Hussain, & Sharma, 2017). The WSI of the BLP 

decreased significantly with the higher drying temperatures (Table 4.1). Hygroscopicity percentage 

also significantly decreased from 50 ˚C to 100˚C temperature BLP drying. 

The moisture contents of the BLP powders were significantly reduced as drying temperature increased 

from 50 ˚C to 100 ˚C drying. Tonon et al. (2010) explained that low moisture powder has a higher 
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capacity to absorb moisture as a result of the water concentration gradient between the product and 

its surrounding. In contrast to this mechanism, water binding capacity did not increase significantly 

and WSI, hygroscopicity decreased with rising temperature. This may be a result of protein 

denaturation and exposure of the hydrophobic regions of the protein’s core at high temperature 

which would generate repulsive force towards water molecules.  

Considering these physical parameters, BLP should be stored in a dry and cold place in a moisture 

impermeable package, such as an aluminium pouch, soon after processing due to the high WBC and 

hygroscopicity. 

4.3.5 Colour of beef lung powder 

All colour parameters (L*, a*, and b*) of bovine lung powder were decreased with drying at higher 

temperatures. Beef lung powder dried at 50 ˚C were lighter (L* value) and yellower (b* value) and 

would be suitable for incorporating with light coloured food products. The redness value (a* value) of 

beef lung powder dried at 100 ˚C was significantly reduced compared to that of the BLP powder dried 

at 50 ̊ C and 70 ̊ C temperatures. At higher temperatures (70 ̊ C to 100 ̊ C), the red coloured myoglobin 

was possibly oxidised into the brown coloured metmyoglobin and metmyoglobin further converted 

into denatured metmyoglobin, which formed a dark brown colour (Shimokomaki, Youssef Youssef, & 

Terra, 2003). Similar results where redness was in the range from 2 to 5  have been reported in beef 

jerky (Kučerová, Marek, & Banout, 2018). 
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Table 4.1 Beef lung powder characteristics, colour values and nitrogen content with different 
temperature drying 

Powder 
characteristics 

50 ˚C dried 
BLP 

70 ˚C dried 
BLP 

100 ˚C dried 
BLP 

Bulk Density(g/mL) 0.56±0.03 0.59±0.04 0.65±0.02 

Absolute 
Density(g/mL) 

1.18±0.02c 1.27±0.03b 1.48±0.03a 

Porosity 0.62±0.02a 0.54±0.03b 0.45±0.02c 

Hausner Ratio 1.29±0.04 1.28±0.03 1.32±0.01 

WBC%  314±4.3 316±1.8 317±1.8 

WSI % 16.69±0.91a 11.76±0.19b 10.36±0.15c 

Hygroscopicity %  15.97±1.03a 13.22±0.55b 13.48±0.81b 

Moisture content % 4.79±0.63a 1.01±0.82b 0.40±0.49c 

Colour values 

L* 62.72±1.60a 55.20±1.59b 53.61±1.41b 

a* 4.81±0.90a 5.12±0.15a 3.89±0.17b 

b* 18.26±0.60a 13.07±0.96b 12.35±0.50b 

Nitrogen content 

N% DM 13.67±0.26 13.58±0.07 13.54±0.06  

* Mean ± Standard deviation in the same row followed by different superscript differ significantly at p<.05 
BLP-beef lung powder, WBC-water binding capacity, WSI- water soluble index, DM- dry matter basis, N%-
nitrogen content 
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4.3.6 The viscosity parameters of semolina flour with beef lung powder 

Adding beef lung powder to the semolina flour resulted in a decrease in all viscosity parameters of the 

dough (including peak viscosity, through viscosity, final viscosity as well as break down and setback 

values) (Table 4.2). This situation is clearly illustrated in Figure 4.3 where the viscosity graphs are lower 

with increased beef lung powder percentage. A similar viscosity trend was seen after adding whey 

proteins to either taro flour (Onwulata and Konstance (2002) or rice flour (Shin, Gang, & Song, 2010). 

Drying temperatures can affect the viscosity of the flour mixture and this was clearly identified 

with the different temperature curves at 10% substitution (Figure 4.4).  Figure 4.4 illustrates that the 

control semolina had the highest viscosity, followed by 50 ̊ C BLP substitutions, 70 ̊ C BLP substitutions 

and 100 ˚C substitutions.   

High peak viscosity curves generally lead to high breakdown viscosity (Tsakama, Mwangwela, Manani, 

& Mahungu, 2010) and high breakdown viscosity leads to unstable gel structures. Kumar et al. (2018) 

described that lower breakdown and higher stability ratio indicated low hydration, low swelling 

power, and high shear resistance, which lead to more stable gels.  In agreement of these findings, the 

results of 50 ˚C BLP substitutions showed an inverse relationship between the breakdown viscosity 

and stability ratio (Table 4.2). High substitution of 50 ˚C BLP significantly increased the stability ratio 

(Table 4.2) which means that the addition of bovine lung powder leads to stable gel structure. The 

stable gels eventually could lead to increase the firmness of the product. The study of Brabet et al. 

(2013) showed the strong correlation between the stability ratio and firmness of noodles. The overall 

idea is that a higher percentage of 50 ˚C BLP incorporation would lead to a higher stability ratio and 

consequently would increase the firmness of the product. Previous work with BLP incorporated pasta 

(Chapter 3) confirmed this scenario. The firmness of pasta increased with high level of beef lung 

powder incorporation. 

Setback ratio is defined as the ratio of viscosity at the completion of cooling (final viscosity) to 

the viscosity at the onset of cooling (trough viscosity) as described by Kim, Wiesenborn, Lorenzen, and 

Berglund (1996). Setback ratio is a predictive parameter of retrogradation (Kim et al., 1996) which is 

directly affect the storage stability. In the present study, both BLP increasing percentage and drying 

temperature increment decreased the setback ratio (Table 4.2). Further, Increment of protein 

percentage reduced the retrogradation due to reduction of starch concentration (Chen, Schols, and 

Voragen (2003). High level of BLP incorporation and high drying temperature of BLP appear to favour 

the BLP supplemented product from retrogradation point of view.  

The relative break down pattern of semolina dough is shown in Table 4.2. At the breakdown,  

swollen starch granules break further, and amylose leaches to the solution (Zaidul, Norulaini, Omar, 

Yamauchi, & Noda, 2007). Table 4.2 illustrates that the relative breakdown decreased with the BLP 
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percentage corresponding to increasing substitution results reported by Kumar et al. (2018). However, 

no clear pattern related to drying temperature could be identified. The pasting temperature was 

increased by 4 degrees by adding 50 ̊ C beef lung powder similar to adding whey protein and caseinate 

in Shin et al. (2010), but 70 ˚C and 100 ˚C beef lung powder did not show these temperature 

increments. Altogether, to maintain the viscosity characteristics similar to control semolina flour, 50 

˚C dried BLP with 10% incorporation level should be appropriated for semolina dough. 
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Table 4.2 RVA viscosity parameters of beef lung powder with semolina flour 

* Mean ± Standard deviation in the same column followed by different superscript differ significantly at p<.05 
 

Test Peak 
viscosity 
(cP) 

Trough 
viscosity 
(cP) 

Breakdown 
viscosity 
(cP) 

Final 
viscosity 
(cP) 

Setback 
viscosity 
(cP) 

Peak Time 
(min) 

Pasting 
Temp (˚C) 

Stability 
ratio 

Setback ratio Relative 
breakdown 

Control 
semolina 

2570±233a 1940±105 a 631±127 a 3587±202a 1641±101a 5.51±0.03 b 87±0.51 f 0.76±0.029 c 1.84±0.02 e 0.38±0.06 a 

50-10%-BLP 2034±81 b 1610±92 b 451±5 b 3153±134b 1574±47ab 5.47±0.00 bc 89±0.03 bcd 0.79±0.024 c 1.96±0.06 cd 0.29±0.01 b 

50-15%-BLP 1496±87 de 1270±49 de 227±38 cd 2664±101cd 1394±53cd 5.42±0.04 bcd 90±0.46 ab 0.85±0.017 b 2.10±0.005 ab 0.16±0.02 cd 

50-20%-BLP 1155±81 f 1062±66 f 93±14 de 2332±129e 1270±62de 5.40±0.07 cd 91±0.46 a 0.92±0.007 a 2.20±0.02 a 0.07±0.01 e 

70-10%-BLP 1781±71 bc 1536±23 b 245±52 c 2970±9bc 1434±16bc 5.35±0.04 d 89±0.40 cde 0.86±0.024 b 1.93±0.02 cde 0.17±0.04 c 

70-15%-BLP 1409±24 def 1332±37 cde 76±15 e 2686±53cd 1354±67cde 7.00±0.00 a 89±0.05 bcd 0.95±0.012 a 2.02±0.07 bc 0.06±0.01 e 

70-20%-BLP 1235±89 ef 1158±82 ef 77±8 e 2418±135de 1260±53de 7.00±0.00 a 89±0.45 bc 0.94±0.003 a 2.09±0.03 b 0.06±0.005 e 

100-10%-BLP 1650±22 cd 1515±45 bc 135±32 cde 2904±76bc 1389±31cd 5.22±0.04 e 87±0.49 ef 0.92±0.020 a 1.92±0.01 cde 0.10±0.03 de 

100-15%-BLP 1499±44 cde 1438±37 bcd 61±8 e 2714±58cd 1276±23de 7.00±0.00 a 88±0.83 de 0.96±0.005 a 1.89±0.01 de 0.05±0.01 e 

100-20%-BLP 1298±70 ef 1208±76 ef 90±6 e 2411±103de 1203±29e 7.00±0.00 a 86±0.06 f 0.93±0.008 a 2.00±0.04 bc 0.07±0.01 e 
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Figure 4.3 RVA viscosity changes with BLP ratio; A-semolina only(Control), B- 10% BLP(100 ˚C) with semolina (90%), C-15% BLP(100 ˚C) with 
semolina(85%), D-20% BLP(100 ˚C) with semolina (80%) 
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Figure 4.4 RVA viscosity changes with different drying temperature of BLP, E- semolina only (control), F- 50 ˚C BLP (10%) with semolina (90%), G-70 ˚C BLP
(10%) with semolina (90%), H-100 ˚C BLP (10%) with semolina (90%) 



57 
 

4.3.7 SDS-PAGE analysis of beef lung powder and raw beef lung 

 

The protein profile of dried beef lung powder was compared with the fresh beef lung protein 

extract using SDS-PAGE (Figure 4.5). The two thickest bands in fresh lung were at 67 and 10kDa. Band 

at 67 kDa was visible with decreasing intensity until the 70 ̊ C drying temperature.  A faint 67 kDa band 

was presented after Darine et al. (2010)  extracted protein from beef lungs through alkaline 

solubilisation. The 44 kDa band in Figure 4.5  was also seen in the beef lung concentrate of Darine et 

al. (2010) as a thick band. The heat labile band at 27 kDa had completely disappeared after drying at 

70 ˚C. The 17 kDa band was not seen in the raw beef lung and may have been produced by degrading 

larger molecules with heat.  Band intensity analysis revealed that the (Table 4.3), 17 kDa peptide 

appeared in the dried powder and increased in intensity with temperature. The thickest band of our 

study was the 10 KDa band in raw meat and appeared as a weak band in 50 ˚C beef lung powder and 

completely disappeared from 70 ˚C to 100 ˚C. High temperatures could lead to protein aggregation 

and cause these low molecular protein bands to disappear. Overall, the lowest temperature of 50 ˚C 

drying beef lung powder preserved more bands compared with 70 ˚C and 100 ˚C beef lung powder 

(Figure 4.5).  

 Lower weight peptides have the potential for bioactive properties (Pihlanto-Leppälä, 2000) and 

raw beef lungs are possibly a good source for bioactive peptides due to the high intensity of bands 

around 10KDa.  
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Figure 4.5 SDS-PAGE of raw beef lung and beef lung powders extraction 

 Table 4.3 SDS-PAGE relative band intensities of beef lung protein extract 

Results are the means (±SD) of triplicate samples (n = 3). 
Different superscripts are significant (P < 0.05) along the row. 

Molecular Weight (KDa) 
Relative band intensity (%) 

Raw Beef lung 50 ˚C BLP 70 ˚C BLP 100 ˚C BLP 

236 1.3±0.1 ND ND ND 

131 1.9±0.2 ND ND ND 

101 4.9±0.1a 4.3±0.1b ND ND 

81 2.8±0.1b 4.8±a ND ND 

67 41.5±0.5a 41±1.6a 35.2±3.4b 8.8±0.4c 

55 1.4±0.1 ND ND ND 

49 1.3±0.1 ND ND ND 

44 3.1±0.3a 3.3±0.1a 2.4±0.1b ND 

34 1.2±0.4 ND ND ND 

27 8.7±1.2a 3.6±1.7b ND ND 

26 5.8±0.5 ND ND ND 

17 ND 3.2±0.2c 5.5±0.5b 8.2±1.3a 

10 36.1±0.9a 10.4±1.1b ND ND 
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4.3.8 Amino acid profile of beef lung powder 

Table 4.4 shows the amino acid molar percentage in beef lung powder. Glycine was the most abundant 

as a molar percentage (16% to 18%) in beef lung powder, but it becomes the second highest on a 

weight basis because glycine is the simplest amino acid and has the lowest molar mass.  Glycine was 

significantly increased by drying at 100 ˚C temperature, which may be due to cleaving the side chains 

of other amino acids. Glycine is the primary amino acid in collagen (Bhagavan & Ha, 2015), and the 

results reflected the fact that beef lung is a collagen-rich tissue. It has been reported that 25 to 30% 

of the beef lung protein is collagen (Lynch et al., 2018). The temperature did not have a significant 

effect on the other individual amino acids, but the total percentage of essential amino acids was 

significantly decreased after drying at 100 ˚C. 

Glutamic acid made up 9% of the amino acids and was the highest amino acid by weight in the 

BLP due to its higher molar mass. These results corresponded with our previous work in Chapter 3. 

Essential amino acids are nutritionally crucial elements. Among the essential amino acids, 

leucine, valine, lysine, threonine, and arginine were highly available on molar basis and most abundant 

essential amino acids in weight basis were leucine, lysine, arginine and valine (Table 4.4). These results 

were consistent with the findings of Cardoso-Santiago and Arêas (2001b); Schweigert, Bennett, and 

Guthneck (1954) in beef lungs. Phenylalanine and tyrosine are aromatic amino acids which consider 

together in nutritional parameters. These aromatic amino acids exceeded 5% of total amino acids 

together and contained around 70 mg/protein(g) in beef lung powder according to weight basis (Table 

4.4). Beef lung powder compositions of USDA food composition tables (USDA, 2018) gave similar 

results for phenylalanine and tyrosine after calculating as dry matter basis.  
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 Table 4.4 Essential and non-essential amino acids of beef lung powder with molar basis and weight 
basis 

* Mean ± Standard deviation in the same column followed by different superscript differ significantly at p<.05 

 
 
 

4.3.9 Mineral profile of beef lung powder 

Animal protein sources provide a wide range of bioavailable micronutrients for human well-being. The 

content of various minerals such as Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Se, and Zn were 

determined in the dried beef lung powder but the heavy metals Cd and Pb were not detected. Drying 

temperatures did not have a significant effect on mineral content (Table 4.5). 

 

 

Essential AA 

Amino acid Molar basis Weight basis 

50 ˚C BLP 
mol % 

70 ˚C BLP 
mol % 

100 ˚C BLP 
mol% 

50 ˚C BLP 
mg/g protein 

70 ˚C BL   
mg/g protein 

100 ˚C BLP 
mg/g protein 

Arginine 4.4±0.1 4.2±0.1 4.4±0.3 64.5±1.3 62.9±0.8 66.7±4.8 

Histidine 1.6±0.1 1.8±0.1 1.7±0.1 24.3±1.4 27.2±1.1 26.3±2.2 

Isoleucine 3.5±0.1 3.4±0.1 3.3±0.1 32.7±0.9 32.2±0.8 31.3±0.6 

Leucine 8.6±0.3 8.7±0.3 8.1±0.2 79.5±2.5 81.4±2.9 77.1±1.6 

Lysine 5.3±0.1 5.4±0.1 5.0±0.2 68.2±1.6 70.3±1.8 67.0±2.8 

Methionine 1.7±0.0 1.7±0.07 1.6±0.1 17.9±0.4 18.4±0.7 17.3±0.8 

Phenylalanine 3.5±0.1 3.5±0.1 3.3±0.1 40.1±1.4 41.6±1.2 39.8±0.8 

Threonine 4.5±0.2 4.7±0.1 4.4±0.15 37.3±1.9 40.1±0.1 38.4±1.3 

Tryptophan 1.8±0.6 1.8±0.04 1.7±0.1 25.5±9.2 26.3±0.6 25.6±1.2 

Valine 6.6±0.3 6.4±0.2 6.1±0.1 54.0±2.2 54.1±2 51.9±0.8 

Total EAA % 41.4±2.0 41.6±1.2 39.6±1.4 49.9±1.3 49.9±1.1 48.6±1.4 

Non-essential AA 

Amino acid 50BLP 
mol% 

70BLP 
mol % 

100BLP 
mol % 

50 ˚C BLP 
mg/g protein 

70 ˚C BLP   
mg/g protein 

100 ˚C BLP 
mg/g protein 

Alanine 10.9±0.2 10.5±0.1 10.8±0.1 68.2±1.4 67.2±0.5 70.3±0.6 

Asparagine 0.6±0.03 0.6±0.02 0.7±0.02 5.9±0.2 5.6±0.2 6.7±0.2 

Aspartic 6.3±0.1 6.4±0.2 5.9±0.2 59.3±1.2 61.0±1.8 57.4±2.1 

cysteine 1.4±0.1 1.5±0.1 1.4±0.1 11.8±0.9 12.6±0.7 12.2±0.8 

Glutamic acid 9.3±0.4 9.4±0.1 9.0±0.2 96.5±4.3 99.1±0.7 96.7±2.5 

Glutamine 0.05±0.01 0.04±0.01 0.04±0.001 0.5±1.2 0.5±0.1 0.5±0.01 

Glycine 16.5±1.0d 16.0±1.0d 18.6±0.8c 87.2±5.2b 85.9±5.5b 101.8±4.6a 

Proline 6.7±0.3 6.7±0.4 7.1±0.3 54.0±2.6 55.1±3.0 59.7±2.8 

Serine 4.5±0.5 5.0±0.1 4.7±0.1 33.0±3.7 37.5±0.7 35.7±0.8 

Tyrosine 2.3±0.1 2.3±0.1 2.2±0.05 28.7±0.6 30.0±1.2 28.6±0.7 

Total non-
EAA % 

58.5±2.8 58.4±2.0 60.4±1.9 50.0±1.7 
 

50.0±1.2 51.5±1.3 
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Table 4.5 Mineral content of beef lung powder (dry basis) at different drying temperatures 

Mineral BLP 50 ˚C drying (µg/g) BLP 70 ˚C drying (µg/g) BLP 100 ˚C drying (µg/g) 

Al 6.06±0.34 4.98±0.31 4.04±0.39 

B 0.52±0.02 1.11±0.04 0.49±0.08 

Ca 480±20 486±35 520±25 

Cd ND ND ND 

Cr 0.14±0.01 0.15±0.04 0.24±0.09 

Cu 6.17±0.24 6.00±0.16 5.93±0.06 

Fe 617±17 605±13 593±19 

K 9108±151 8371±271 8349±44 

Mg 509±5 496±3 498±3 

Mn 0.59±0.02 0.51±0.01 0.58±0.03 

Mo 1.33±0.06 1.08±0.04 0.97±0.08 

Na 6367±49 6298±152 6293±49 

Ni 0.62±0.04 1.84±0.91 1.60±0.3 

P 9227±168 9011±55 9102±125 

Pb ND ND ND 

S 13049±133 12987±89 13238±169 

Zn 82±2 83.73±0.9 83.38±0.91 

 
Food iron content is a vital micronutrient to prevent iron deficiency anaemia. Iron deficiency 

anaemia is the primary deficiency in worldwide, and it was identified as one of the six priorities of 

World Health Organisation (WHO) (McGuire, 2015).  Chapter 3 illustrated that the iron content for 

dried beef lung was 1 mg/g, and it was lower at 0.6 mg/g in this study (Table 4.5). This decrease in iron 

could be due to washing out the blood from beef lungs during the mincing process. 

The meat iron content comprises haem and non-haem iron (Table 4.6). The higher portion of iron is 

contributed from the blood as haem iron form and lower portion of iron is presented as non-haem 

form in animal live tissue.  Haem iron is efficiently absorbed  in the range  of 15% to 25% while non-

haem iron is absorbed in the range of 5% to 12% (Hallberg, 1983; Hurrell & Egli, 2010). High-

temperature drying may cause oxidative cleavage of the iron‐porphyrin structure of haem iron to 

convert haem to non-haem form and facilitate the release of the non-haem iron (Schricker & Miller, 

1983). 

 

Copper is an essential micronutrient for metabolically active tissues like brain, heart and liver 

(Trumbo, Yates, Schlicker, & Poos, 2001). Recommended dietary allowance (RDA) of copper for adult 

men and women is 1.2 to 1.7 (mg/day) and recommended upper level is 10mg/mL (Baghurst, 2006). 

According to the results shown in Table 4.5, beef lung powder can supply a considerable percentage 

of RDA value, but it is unlikely to reach toxic levels. High amounts of copper intake can impair iron 
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absorption. Further, a school children intervention study (Turgut, Polat, Inan, Turgut, & Emmungil, 

2007) reported a high level of blood copper level could be lead to iron deficiency anaemia.  

Magnesium plays an essential role in the human body. Magnesium involves  in aerobic and anaerobic 

energy generation and more than 300 enzymes use it as a cofactor (Jahnen-Dechent & Ketteler, 2012).  

Beef lung powder contained around 500 µg/g of magnesium and it is the most abundant metal after 

iron. Magnesium upper intake is 400mg/day, and BLP is far unlikely to exceed the safer level. Other 

all minerals stay in safer level, and absence of heavy metals (Cd, Pb) give extra assurance about the 

safety of air oven-dried beef lung powder.  

Table 4.6 The effect of drying on the haem iron % of BLP 

BLP drying 
temperature 

haem %  non-haem % 

50 ˚C BLP 40.65±2.08a 59.35±2.08b 

70 ˚C BLP 31.23±1.64b 68.77±1.64a 

100 ˚C BLP 29.13±2.04b 70.87±2.04a 

 

4.3.10 Safety of microbial, lipid oxidation and protein oxidation of the BLP 

Microbial safety 

Low microbial levels are key safety features of processed co-products. The safe limit of total viable 

count (TVC) for manufactured meat is 5×105 CFU according to the microbial reference guide New 

Zealand (MPI, 1995).  Raw minced beef lungs had a 1.7×104 CFU of TVC in Table 4.7 by ensuring the 

safety of raw materials. Ready to eat meat products aerobic microbial limit is 1×103 and all drying 

powders were in safe range as ready to eat products after six months. Beef lung powder dried at 100 

˚C was in a sterile condition and no trace of TVC, coliform or yeast and mould was found. Yeast and 

moulds were found only in 50 ˚C beef lung powder and did not increase during storage. Yeast and 

mould safe level is 100 CFU for other foods but not specified for meat in New Zealand guidelines (MPI, 

1995).  

Lipid oxidation 

Thiobarbituric acid reactive substances (TBARS) was used to determine the amount of lipid 

oxidation of products during storage. TBARS determined the aldehydes and ketones which are 

produced from the secondary auto-oxidation of lipids (Kaczmarek, Cegielska-Radziejewska, 

Szablewski, & Zabielski, 2015). Beef lung powder TBARS values significantly increased from 0.25 to 

0.55 mg/Kg with 50 ˚C to 100 ˚C of drying temperature and also TBARS values increased significantly 

over the six months storage in LDPE airtight bags (Table 4.7). Our project BLP TBARS values are below 

than beef jerky production at 70 ˚C drying (Lim et al., 2014)  and biltong production with γ irradiation 
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(Nortjé et al., 2005b). This low level of BLP lipid oxidation may be a result of not adding salts or salt-

phosphate because adding salts to dried beef products like jerky and biltong catalysed the lipid 

oxidation (Devatkal & Mendiratta, 2001; Rhee & Ziprin, 2001; Torres, Pearson, Gray, Booren, & 

Shimokomaki, 1988). Lipid oxidation is the primary cause of quality deterioration. It is known to affect 

the flavour, odour, taste, colour, texture, and appearance of meat and meat products (Aalhus & 

Dugan, 2004). The relationship between the off flavour of lipid oxidation and TBARS value was 

established Greene and Cumuze (1982) with an untrained sensory panel and reported 0.6 to 2 mg 

MDA/1kg minimally required to identify the off flavours in beef. However, (Campo et al., 2006) later 

reported that 2 mg MDA/kg is the limiting threshold of lipid oxidation for off-flavour sensory 

attributes. However, BLP 50 ˚C and 70 ˚C drying contained 0.51 to 0.54 mg MDA/1kg and convenient 

for consumption even after six months storage, but BLP drying at 100 ˚C was not suitable after six 

months for consumption by considering the 0.6 mg MDA /Kg as the threshold limit. 

 

Protein oxidation 

The level of protein carbonyl measured by DNPH method is widely accepted as an indicator of 

protein oxidation. Protein oxidation of beef lung powder significantly increased with the drying 

temperature (Table 4.7). Mean carbonyl values non-significantly increased after six months storage 

for each drying temperature and increased with elevated drying temperature as well. Similarly, Astruc, 

Marinova, Labas, Gatellier, and Santé-Lhoutellier (2007); Santé-Lhoutellier, Astruc, Marinova, Greve, 

and Gatellier (2008) reported a significantly high level of carbonyl content with the high-temperature 

heat treatments on beef muscles. Further, Hu et al. (2017) reported that temperature and cooking 

methods are directly responsible for the carbonyl production of protein oxidation. Carbonyl group can 

react with the non-oxidised free amino acids to form amide bonds (Liu & Xiong, 2000b). This may lead 

to protein aggregation and may cause a reduction of digestibility and negatively impact on the 

nutritional status as well (Gatellier, Kondjoyan, Portanguen, & Santé-Lhoutellier, 2010). The protein 

oxidation results confirm, 50 ˚C drying is most suitable for beef lung powder production. 
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Table 4.7 Microbial count, lipid oxidation and protein oxidation 

Microbial count (CFU)  

Test Initial value After 6 months of storage 

Raw beef lungs 50 ˚C BLP 70 ˚C BLP 100 ˚C BLP 50 ˚C BLP 70 ˚C BLP 100 ˚C BLP 

Total Viable count 17×103 2×102 1×102 0 3×102 1×102 0 

Coliform 0 0 0 0 0 0 0 

Yeast and Mould 8×102 1×102 0 0 1×102 0 0 

Lipid oxidation 

TBARS (MDA mg/ 
Kg sample) 

0.058± 0.006e 0.25± 0.01d 0.38± 
0.02c 

0.55± 
0.01b 

0.51± 
0.03b 

0.54± 
0.01b 

0.69± 0.07a 

Protein oxidation  

carbonyl (nmol/mg 
protein) 

1.6±0.38d 7.1±0.4c 8.1±0.42bc 11.3±0.97a 8.6±0.92bc 10±0.4ab 12±1.58a 

 

4.4 Conclusion 

 

The present study was designed to determine the physicochemical characteristics of beef lung powder 

with the effect of 50 °C, 70 °C and 100 °C drying temperatures. This study has shown that all BLP 

powder in the difficult flowing state according to the Hausner ratio. All beef lung powder samples (50, 

70 and 100 °C) presented threefold higher water-binding capacity compare to the sample weight. BLP 

dried at 50 °C preserved 40% of haem iron compare with total iron content and significantly decreased 

to 29% at 100°C dried BLP powder. According to the safety aspects, beef lung powder samples (50, 70 

and 100 °C) were within the safety limits of total viable count, yeast & mould and negative from 

Coliform bacteria after six months of storage as well. BLP dried at 50 °C ensured the quality by 

generating the maximum 0.51 MDA mg/Kg sample in lipid oxidation and 8.6 carbonyls (nmol/mg 

protein) in protein oxidation after six months of storage. 
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Chapter 5 

In Vitro Protein Digestion of Beef Lung Powder and Mineral 

Released  

5.1 Introduction 

Meat is a primary protein source with a high concentration of key micronutrients (iron, selenium, zinc 

and vitamins B6 and B12), and also provides essential amino acids in the human diet (Higgs, 2000). 

Protein demand is increasing with the rising human population, and food scientists and processors are 

looking for alternative animal protein sources and processing methods to meet the increasing 

demand. The utilisation of meat co-products increases the efficiency of the meat industry and has the 

potential of delivering high-quality proteins for human nutrition. There have been numbers of studies 

of the protein and micronutrient availability of several meat co-products (Chávez‐Jáuregui et al., 2003; 

Santiago et al., 2001; Van-Heerden & Morey, 2014). However, processing condition effects on the 

nutritional quality, and the digestibility of these co-products is still unknown. 

Beef lungs are an underutilised meat co-product in western countries (Chávez‐Jáuregui et al., 2003) 

due to poor textural characteristics and strong aesthetic rejection. Bovine lungs have been reported 

to have quality protein, a high micronutrient bioavailability (Cardoso-Santiago & Arêas, 2001b; 

Santiago et al., 2001) and a large edible portion with an average weight of 3 Kg (Fornias, 1996) and 

are accepted by the European regulatory bodies (EC 854/2004). Beef lungs have the potential to 

provide a source of protein rich ingredients for protein-based food supplements. 

 Although meat and meat co-products contain all the essential amino acids, other factors, such 

as protein digestibility, amino acid bioavailability and digestion rate in the intestine, determine the 

actual nutritional quality and can affect the absorption of the end products (Mosoni & Mirand, 2003). 

Processing steps such as drying, cooking, and salting, can oxidise and denature proteins (Liu & Xiong, 

2000a),which will change the physicochemical characteristics and release of amino acids (Chizzolini, 

Novelli, & Zanardi, 1998; Liu & Xiong, 2000b; Santé-Lhoutellier et al., 2008) and other micronutrients 

from a food matrix during digestion. Due to extra safety concerns associated with meat co-products, 

processing is critical to ensure food safety. In our previous study, beef lungs were thermally processed 

to protein powder as a proposed ingredient for protein-food supplements (Chapter 3). There is no 

information about how this thermal processing affects the protein digestion and release of minerals 

during in vitro protein digestion. This research evaluated the effect of different drying conditions on 

in vitro protein digestion of beef lung powder. 
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5.2 Methodology 

 

5.2.1 Sample preparation 

Hygienically derived frozen beef lungs without trachea were obtained from ANZCO Limited, New 

Zealand. Beef lungs were minced and dried in different temperatures (50 ˚C, 70 ˚C and 100 ˚C) on-air 

oven drier until getting constant weight. Powdered dried samples were used for this experiment. 

Please refer (4.2.1) for sample preparation in detail. 

5.2.2 Protein content (%) 

Total protein content (%) was determined by nitrogen analyser "Rapid MAX N exceed" (Serial No. 

29154045, Elementar Analysensysteme GmbH, Donaustrasse, Hanau, Germany) using the Dumas 

method. All samples were produced in triplicate and individually loaded into the machine. This 

machine combusts samples at high temperature with oxygen to determine the protein percentage 

using nitrogen content.  

5.2.3 Soluble protein (%) 

Soluble proteins of digesta were measured using bicinchoninic acid (BCA) assay method (No: 23225, 

Pierce™ BCA Protein Assay Kit, Pierce Chemical Company, Illinois, USA). Absorption was measured at 

570 nm in 96 well microplates using a microplate reader (FLUOstar Omega, BMG Labtech GmbH, 

Ortenberg, Germany) and bovine serum albumin standard curve was used. 

5.2.4 In vitro protein digestion 

In vitro protein digestion was performed according to Kaur et al. (2016) with minor modifications and 

digestibility calculated according to Almeida, Monteiro, da Costa-Lima, Alvares, and Conte-Junior 

(2015). For each sample, BLP powder equal to 70 mg nitrogen and 17 mL of 0.1M HCl added to each 

polyvinyl digestion pots. These were stirred using magnetic fleas (500 rpm) on magnetic multi-

stirrer (RT 15 Power, IKA®-Werke) at 37 °C until homogenous solutions were formed. Freshly 

prepared 2.5 mL pepsin (1031 U/mg, enzyme: substrate ratio = 1: 100 w/w, Sigma Aldrich, St Louis 

USA) in 0.1M HCl was added to each digestion pot, and the samples were incubated for 1 hour 

at 37 ˚C to simulate gastric digestion.   The pepsin was inactivated by adding 2.5 mL of sodium 

phosphate buffer ( 0.1 M, pH 8.0) containing pancreatin (enzyme: substrate ratio = 1: 100 w/w, 

350 U/mg, Sigma Aldrich, St Louis USA) and continuously incubated for 2 hours at 37 ̊ C to simulate 

the intestinal digestion. Aliquots (1.0 mL) were taken at 0, 30 and 60 min from gastric digestion and 
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60 and 120 min from small intestinal digestion. These aliquots were collected to 2 mL sample tubes 

and placed on ice. Immediately after collection of aliquots, the pH level was changed to 8.0 for gastric 

digestion and 2.0 for intestinal digestion. Thereafter sample tubes were centrifuged at 4000 g for 15 

min and the clear supernatants were collected and stored at -20 ̊ C as digestion supernatant for further 

analysis.  

The protein concentrations of the aliquots were measured using a microplate BCA assay (refer 

5.2.3). In vitro Protein digestibility was analysed according to the following equation 

 

In Vitro Protein Digestibility (IVPD)= (Ps–Pc)/P × 100 

 

* Ps and Pc represent protein content of the sample digesta and control digesta after the digestion 

and P represents the protein content of the added BLP solid sample before the digestion. 

5.2.5 Analysis of the free amino acids release in the digesta 

A 5 mL aliquots of digestion supernatant were used to analyse the free amino acids. The thawed 

working samples were filtered through a 0.45 µm syringe into 2 mL HPLC vials for the HPLC analysis. 

All amino acids were analysed by HPLC 1100 series (Agilent Technologies, Waldrbom Germany) 

provided with an autosampler and fluorescence detector. HPLC column C-18, 3 µm (ACE-111-1546, 

Winlab, Scotland) with 150 mm × 4.6 mm dimension was used for amino acid separation. The solvent 

A (0.01 M, sodium phosphate buffer, pH 7.5 with 0.8% THF) and solvent B (50% methanol, 50% 

acetonitrile) was used at 40 ˚C column temperature. Column flow-rate was 0.7 mL/min and pump 

gradient settings were 0 to 14 min- 0% B to 40% B, at 20 min 50% B, 24 min to 29 min-100% B, at 30 

min- 0% B and kept equilibrating until 36 min. O-phthaldialdehyde (OPA) was used as a fluorescence 

derivative reagent for primary amino acids, with an excitation of 335 nm and emission of 440 nm using 

a fluorescence detector. At 22 min, secondary amino acids were detected utilising 9-fluorenylmethyl 

chloroformate (FMOC) by switching detector excitation 260 nm with emission 315 nm. Standard 

amino acid mix was run to produce a standard curve for calibration purposes. 

5.2.6 Analysis of the mineral release in digesta 

 The digestion supernatant was thawed and used to analyse the mineral release. Samples were 

analysed by Inductively Coupled Plasma Optical Emission Spectrophotometer (Varian 720 ICP-OES, 

Melbourne, Australia). Settings used were: Plasma gas flow-15.0 L min -1, Aux-1.5 L min -1, Nebuliser 

0.9 L min -1 with SeaSpray nebuliser and cyclonic spray chamber. ICP calibration standards (Merck, 

Darmstadt, Germany) and internal standards were serially diluted using MilliQ water. Calibration 

curves were generated using four standards and standard blank. 
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5.2.7  Statistical analysis 

The data generated by repeating the experiments for different parameters were compiled and 

analysed by one-way ANOVA except for soluble protein (%) that was analysed using a repeated 

measurements ANOVA to investigate the effect of treatments at the 5 incubation times by General 

Linear Model using SPSS version 21.0 (SPSS Inc., Chicago, IL, USA). All data were reported as 

means ± standard error of the means. The measured variables were set as dependent variables. The 

model included fixed effects for treatment, time (digestion time) and their interactions. Duncan's 

multiple range tests, at the 0.05 level of significance, were used for comparing the means to find out 

the effect of treatment and digestion time (Snedecor & Cochran, 1994). 
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5.3 Results and discussion 

 

5.3.1 Effect of drying temperature on BLP in vitro digestion 

An in vitro gastrointestinal digestion model was used simulating one hour of gastric digestion and two 

hours of intestinal digestion (Table 5. 1, figure 5.1). Soluble protein increases with time for all the 

samples with the highest values observed at the end of digestion. These results were in agreement 

with the findings of Bhat et al. (2018) and (Bhat, Morton, Mason, Jayawardena, & Bekhit, 2019) who 

also observed a similar increasing trend in soluble protein released with time during simulated 

gastrointestinal digestion of beef. Similar results were also reported by Kaur et al. (2016) for free 

amino nitrogen released during in vitro gastrointestinal digestion of beef. 

Higher temperature significantly lowered the digestibility. The protein release of samples 

dried at 50 ̊ C were significantly higher than the release from 70 ̊ C and 100 ̊ C dried beef lung powders 

throughout the digestion. The mean values for soluble protein (%) for 50 ˚C, 70 ˚C and 100 ˚C dried 

samples reached 21.8%, 18.4% and 17.4%, respectively at the end of the digestion (Table 5.1). 

 Although processing conditions have been reported to affect the protein released from meat 

samples (Kondjoyan, Daudin, & Santé-Lhoutellier, 2015), muscle composition has a minor effect on 

the digestion (Bax et al., 2013). Thermal processing has been reported to affect the digestion of 

proteins by affecting the number of hydrolysable sites available for digestion (Kondjoyan et al., 2015). 

Three-dimensional structure of proteins can be altered by heating which affects the protease active 

sites and influences the protein digestibility (Simonetti, Gambacorta, & Perna, 2016). Exposure to the 

high temperature of 100 ˚C promotes protein aggregation extensively and causes heavy unfolding 

which reduces the protease vulnerability whereas minor unfolding of structure facilitates the digestion 

(Gatellier & Santé-Lhoutellier, 2009; Promeyrat et al., 2010; Simonetti et al., 2016). 

Table 5.1 Soluble protein (%) with the time 

Digestion time(min) Soluble protein percentage (%) 

50 ˚C drying 70 ˚C drying 100 ˚C drying 

0 10.4± 0.21a 4.8± 0.33b 4.7± 0.04b 

30 10.6± 0.19a 6.0± 0.05b 5.8± 0.2b 

60 11.1± 2.67a 6.5± 0.04c 7.3± 0.06b 

120 17.1± 0.29a 16.6± 0.07b 14.5± 0.30c 

180 21.8± 0.08a 18.4± 0.67b 17.4± 0.30c 

* Mean ± Standard deviation in the same row followed by different superscript differ significantly at p<0.05 
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Protein digestibility percentage is a crucial factor to estimate the protein quality and 

represents the percent protein accessible to the body. This is the first study that focuses on the protein 

digestibility of dried beef lungs. The mean values for in vitro protein digestibility (%) of beef lung 

powder dried at 50 ˚C temperature was significantly higher (P< 0.05) than samples dried at 100 ˚C 

(Table 5.2). All three samples were highly digestible with values above 90%. This level of digestibility 

was similar to those reported by (Tavares, Dong, Yang, Zeng, & Zhao, 2018) for boiled hairtail 

(Thichiurus lepturus) fillets and Faber et al. (2010) for total digestibility of beef, pork, chicken and fish 

using an in vivo dog assay. Like other premium meat sources, beef lung powder showed a high 

digestibility and could possibly be used as a protein substitute. Farouk, Wu, Frost, Staincliffe, and 

Knowles (2019) also reported a digestibility of more than 90% for various beef coproducts (heart, 

kidney, spleen and liver). Beef lungs are abundant in low molecular weight proteins (Darine et al., 

2010) which can undergo rapid hydrolysis during gastrointestinal digestion similar to the kidney and 

liver proteins reported by Farouk et al. (2019).  
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Figure 5.1 Digested protein in the digestion pot with the time 
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Table 5.2 Digestibility percentage of different temperature drying BLP 

Beef lung powder Protein digestibility % 

50 ˚C BLP 96.35± 0.08a 

70 ˚C BLP 95.87± 0.07ab 

100 ˚C BLP 95.59±0.4b 

Results are the means (SD) of six samples (n = 6). 
Different superscripts are significant (P < 0.05) along the column. 
 

5.3.2 Protein digestion of dried beef lung powder 

Heat treatments can cause protein degradation. SDS-PAGE analysis was used to illustrate the changes 

in the profile of bovine lung protein produced at different drying temperatures. Figures 5.2 and 5.3 

show the effects of different drying temperatures (50 ˚C, 70 ˚C, and 100 ˚C) on the protein profile of 

beef lung powder subjected to gastrointestinal digestion. Several bands appeared in all the samples 

during initial stages of gastric digestion. A higher number of intense bands appeared in the samples 

dried at 50 ˚C in comparison to 70 ˚C and 100 ˚C (Figure 5.2 and 5.3). These proteins in these bands 

which were present between 25 kDa to 100 kDa were gradually denatured with the increment of 

drying temperature (50 ˚C to 100 ˚C) and some bands completely disappeared. These patterns clearly 

indicate the effect of processing temperature on the digestion of proteins during the gastric phase. 

Protein aggregation with high temperature could be the reason for disappearing protein bands in SDS-

PAGE   

Most of the bands that were present during the gastric phase either disappeared or became less 

intense in the samples dried at 50 ˚C and 100 ˚C during the intestinal phase of digestion. There were 

few peptides in the samples dried at 70 ˚C which did not disappear even at the end of the digestion. 

Bhat et al. (2019) during gastrointestinal digestion of beef proteins and (Kaur et al., 2016) reported 

some limited peptides which did not disappear until the end of the digestion. However, after 3 hours 

digestion, all protein bands of 100 ˚C are disappeared completely (Figure 5.3) indication a high level 

of digestibility.   
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 Figure 5.2 Gastric digestion of beef lung powder dried at different temperatures 
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Figure 5.3 Protein profile of simulated intestinal digestion of beef lung powders 
which had been dried at different temperatures 
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5.3.3 Free amino acids released during digestion 

The amino acids released from dried beef lung powders were compared with that of raw beef lungs 

(Table 5.3). Estimation of free amino acids provides a better estimate of protein availability because 

only free amino acids or shorter peptides can pass the intestinal epithelium to the bloodstream (Bhutia 

& Ganapathy, 2018). 

The concentration of almost all free amino acids in digesta, whether essential or non-essential 

were significantly higher for samples dried at 50 ˚C in comparison to other samples, including the non-

heat-treated raw beef lungs. Low temperature of 50 ˚C may have slightly unfolded the proteins to aid 

the protein digestion while high temperature (>50 ˚C) presumably caused severe aggregation of 

protein molecules that may have reduced the accessibility of digestive enzymes as explained by 

several publications (Gatellier & Santé-Lhoutellier, 2009; Promeyrat et al., 2010; Simonetti et al., 

2016). A slight unfolding of proteins exhibits the hydrophobic peptides which are hidden in the core 

of protein structure to facilitate the accessibility of digestive enzymes (Djikaev & Ruckenstein, 2008; 

Zou, Zhou, Yu, Bai, & Wang, 2018). The most abundant amino acid in the digesta was leucine followed 

by glutamic acid, glycine and alanine for the raw extract and all the drying temperatures. The essential 

hydrophobic amino acids leucine, lysine and phenylalanine were released in greater amounts in the 

digesta for all drying conditions. Availability of essential amino acids is important as these can only be 

obtained from the diet (Reeds, 2000).   

 Protein oxidation could negatively impact on the protein digestion. This could be due to the 

oxidation of the protein's side chains to carbonyls and which interferes with the identification of 

cleavage sequences by proteases (Santé-Lhoutellier et al., 2008). In chapter 4, BLP protein oxidation 

increased with high-temperature drying. This protein oxidation may impair the protein digestion of 

BLP and reduce the release of free amino acids with increasing temperature. Sante-Lhoutellier, Aubry, 

and Gatellier (2007) prepared myofibrillar proteins from pig M. longissimus dorsi and oxidised these 

proteins with hydroxyl radicals. This study established a  relationship between protein oxidation and 

loss of protein digestibility.  Santé-Lhoutellier et al. (2008) confirmed a significant and negative 

correlation between pepsin activity and carbonyl group formation. Cystine and methionine are the 

most susceptible to oxidation due to their sulphur atom (Garrison, 1987). Table 5.3 results showed a 

large reduction in cystine release with the digestion, but no reduction in methionine release. The thiol 

group of cysteine readily oxidise to produce thiyl radicals and these thiyl radicals can make disulphide 

bonds with another thiol group (Schöneich, 2016; Turell et al., 2008). 

The essential branched chained amino acids, leucine and valine (Perelman & Lu, 2000) made 

up a large portion of the free amino acids (Table 5.3). Branched chained amino acids play an essential 
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role in muscle building particularly leucine which has an anabolic effect on muscle protein metabolism 

by increasing protein synthesis and reducing degradation (Blomstrand, Eliasson, Karlsson, & Köhnke, 

2006). They also have a role in reducing the free fatty acid concentration in the bloodstream 

(Hormoznejad, Javid, & Mansoori, 2019) and a reduction in the sense of fatigue (Rahimi, Shab-Bidar, 

Mollahosseini, & Djafarian, 2017; Watson, Shirreffs, & Maughan, 2004). The free amino acid profile 

released following digestion of BLP powder is nutritionally and commercially attractive and has a 

strong potential for utilisation as an ingredient for the protein supplement industry. 

 
Table 5.3 Free amino acid release with digestion 

Essential AA 

Amino acid 50BLP 70BLP 100BLP Raw beef lung 

µM µM µM µM 

Arginine 708±61bI 357±40cGH 1102±178aB 639±57bFG 

Histidine 230±11aK 117±21bKL 63±14bcHI 188±42aJK 

Isoleucine 610±30aJ 391±58bFG 294±41bF 341±61bHI 

Leucine 3069±49aA 1688±81cA 1243±29dA 2005±22bA 

Lysine 1823±78aD 990±13bcC 1126±205bB 763±52cEF 

Methionine 280±16abK 198±29bcJK 133±23cGH 313±60aHIJ 

Phenylalanine 1200±68aE 675±61cD 619±14cD 857±45bDE 

Threonine 591±7aJ 388±76bFG 181±33cG 442±73bH 

Tryptophan 138±24bL 205±9aIJK 134±14bGH 157±21bK 

Valine 1463±71aE 589±50bDE 296±41cF 647±4bFG 

Total EAA  10114±417a 5599±439bc 5191±593c 6353±437b 

Non-essential AA 

Alanine 3039±74aA 963±3cC 504±8dE 1123±52bC 

Asparagine 276.±19bI 254±39bHIJ 193±26bFG 451±85aH 

Aspartic 625±16aJ 323±45bGHI 156±15cGH 272±47bIJK 

Cysteine 24±6bM 8±3bL 7±4bI 137±26aK 

Glutamic acid 2227±19aB 1040±28bC 744±28cC 964±77bD 

Glutamine 248±26bK 158±29cJK 137±27cGH 343±57aHI 

Glycine 2057±49aC 1396±258bB 1097±47bB 1299±319bB 

Proline 810±61aH 327±63bcGH 185±24cFG 414±96bHI 

Serine 1077±50aG 485±64cEF 178±49dG 683±38bFG 

Tyrosine 823±56aH 595±42bDE 671±46bCD 612±11bG 

Total non-EAA  11206±379a  5551±576b 3873±277c 6301±811b 
Results are the means (SD) of three samples (n = 3). 
Different superscripts in a row-wise (lower case alphabet) and column-wise (upper case alphabet) differ significantly (P < 
0.05).  
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5.3.4 Mineral release with digestion 

Effect of drying temperature on the release of various minerals from BLP during in vitro 

gastrointestinal simulation presents in Table 5.4. Mineral bioavailability is known as the proportion of 

mineral trapped in the food matrix that is available for absorption (Fairweather-Tait et al., 2005). 

Gastric acidic pH and peristaltic movements facilitate the food matrix disruption and release of 

minerals to digesta (Alminger et al., 2014). These released minerals can be absorbed in intestine or 

colon through epithelium by active or passive transportation (Etcheverry, Grusak, & Fleige, 2012; 

Gropper & Smith, 2012). 

We have measured the release of several minerals of dietary importance from BLP during an in vitro 

gastrointestinal digestive simulation. Increasing the drying temperature significantly (p<0.05) 

decreased the release of copper (Cu), iron (Fe) and sulphur(S) and their maximum concentration was 

seen in the supernatant from raw and 50 ˚C dried samples. Similar results were observed by Garcia et 

al. (1996) for iron content and they reported a reduction of more than 70% in iron solubility in beef 

and rabbit meat upon cooking as soluble iron was converted to an insoluble form due to precipitation 

within the proteins during digestion. 

The soluble iron state is in the ferrous form, and it can be oxidised by high-temperature air oven drying 

to the ferric ion, which is insoluble  (Emerson, Roden, & Twining, 2012), Some amino acids, di-peptides, 

tri-peptides and polypeptides have iron-chelating ability (Li, Jiang, & Huang, 2017). While amino acids 

such as histidine, cystine, lysine chelate iron, glycine can form complexes with iron and enhance its 

absorption Kwiecień, Samolińska, and Bujanowicz (2015); Van (1973). 

Heat-induced denaturation of proteins can diminish the release of metal ions. Our results are in 

agreement with the findings of another study on mineral bioavailability in pork, beef and chicken after 

baking on the conventional oven by Menezes, Oliveira, França, Souza, and Nogueira (2018) who also 

reported a significant decline in bio-accessibility of metal ions like copper and zinc. A significant 

reduction in sulphur-containing amino acids such as methionine and cystine with increasing drying 

temperature (Table 5.3) may have resulted in a significant decline in the sulphur concentration of the 

digesta. 
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Table 5.4 Mineral release during in vitro digestion 

Element 
mg/l 

Raw BL 50 ˚C drying 70 ˚C drying 100 ˚C drying 

Ca 7.47±0.44e 8.97±0.19e 8.79±1.13d 8.45±1.09 d 

Cr 0.02±0.00 0.02± 0.001 0.01±0.00 0.01±0.00  

Cu 0.12±0.01A 0.10± 0.001 A 0.04±0.01 B 0.01±0.00 C 

Fe 2.60±0.49A 1.73±0.09 B 0.73±0.26 C 0.53±0.10 C 

K 247±8 c 294±3 c 263±29 c 238±37 c 

Mg 10±0.51e 12±0.14e 11±1.34d 10±1.35 d 

Mn 0.01±0.001 0.02±0.001 0.01±0.001 0.01±0.001 

Mo 0.02±0.001 0.02±0.001 0.01±0.001 0.01±0.001 

Na 2054±76 a 2141±18 a 2085±214 a 2068±194 a 

Ni 0.03±0.00 0.06±0.05 0.03±0.01 0.01±0.00  

P 527±31 b 603±4b 522±67 b 521±84b 

S 123±4 Ad 98±1.28 Bd 77±10 BC 68±13 C cd 

Se 0.04±0.01 0.03±0.01 0.02±0.00 0.03±0.01  

Zn 1.45±0.15 A 1.32±0.03 A 1.36±0.14 A 0.91±0.07 B 
Results are the means (±SD) of triplicate samples (n = 3). 
Different superscripts in a row-wise (upper case alphabet) and column-wise (lower case alphabet) differ significantly (P < 
0.05).  
 

Conclusion 

The temperature of drying for the bovine lung to form powder caused changes in the bioaccessibility 

of proteins and minerals. The beef lung dried at 50°C had a high in vitro protein digestibility (IVPD) as 

96.3%. This was significantly decreased with drying at 70 °C and 100 °C. Similarly, the release of soluble 

proteins and free amino acid during in vitro digesta was significantly greater with low-temperature 

drying (50°C) and gradually decreased with the 70 °C and 100 °C drying. In vitro bioaccessibility of 

copper (Cu), iron (Fe) and sulphur(S) elements significantly decreased with the increasing 

temperature. Based on the results, drying bovine lung at 50°C will produce a powder with the highest 

bioaccessibility of proteins and minerals. 

Constraints for sensory evaluation 

This Chapter 5 confirmed the high digestibility of the bovine lung powder, and Chapter 3 

showed the ability for BLP incorporation into starchy food as a food ingredient. The intention was to 

conduct sensory analysis to ensure palatability and consumer satisfaction for this beef lung 

incorporated pasta. We prepared an application for the sensory evaluation and found evidence of 

previous sensory analysis of beef lung incorporated products (Cardoso-Santiago & Arêas, 2001b; 

Cardoso-Santiago et al., 2001; Santiago et al., 2001). As a result of this, we gained ethical approval for 

conducting the sensory evaluation for beef lung incorporated pasta (Appendix A). We needed edible 

beef lungs processed according to hygienic requirements to perform a sensory evaluation, and we 

consulted with ANZCO Limited about providing these.  Two major obstacles appeared at that point. 
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According to MPI information, lung processing as a human consumption was not permitted for 

companies who are exporting beef to the United States.  The United States is a significant market for 

all the major meat exporters. Another major obstacle was that the meat industries would need to 

change their carcass inspection procedure with a veterinary surgeon to obtain the edible lungs. 

Procedure changes were very difficult due to the busy industrial environment.  Though the collection 

of beef lung from home killed animals’ was an alternative, the safety of the process couldn’t be 

ensured. For these reasons, the sensory evaluation component was omitted. Because the inability of 

the meat export industry to process lungs to an edible grade, the focus of the PhD changed to consider 

alternative uses for lungs. Research moved to the production of the bioactive peptide from beef lungs 

in Chapter 6.  
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Chapter 6 

Production of ACE Inhibitory Peptides from Beef Lung using Plant 

and Microbial Proteases 

6.1 Introduction 

Processing of animal co-products helps in sustaining the meat industry by providing economic and 

environmental advantages through the sale of these product for direct consumption (e.g. liver, kidney, 

heart and so on) or used in further processing (intestines for small goods and collagenous materials 

for gelatine production). However, some co-products, such as beef lungs, are restricted in their direct 

human consumption due to poor aesthetic qualities, safety issues and underdeveloped regulations. 

Beef lung is a co-product that has limited current economic value but possesses a high amount of low 

molecular mass proteins (Darine et al., 2010). These proteins may have the potential to produce anti-

hypertensive peptides. Production of peptide-based products from animal sources for the treatment 

and prevention of hypertension provides enormous opportunities in biopharmaceutical 

manufacturing industries (Bhat, Kumar, & Bhat, 2017). However, information on the utilisation of beef 

lungs for production of anti-hypertensive peptides is generally lacking in the literature and appears to 

be a neglected research area. 

Hypertension is a significant modern public health problem. Being responsible for 10.4 million 

deaths per year worldwide (Campbell et al., 2015), hypertension is a leading cause of mortality and 

morbidity among human adults globally  (Bhat, Mason, Morton, Bekhit, & Bhat, 2017; Gąsowski & 

Piotrowicz, 2017) and has become a major health problem in children during last few decades (Karatzi 

et al., 2017). Around 40% of adults of the age of 25 and above suffer from hypertension globally and 

the number of people suffering from hypertension has increased from 600 million to 1 billion between 

1980 and 2008 (Organization, 2010). Several synthetic ACE inhibitor drugs (such as benazepril, 

captopril, enalapril, perindopril, etc.) are available and can successfully manage human blood 

pressure. However, these are often associated with side effects such as hypotension, cough, skin 

rashes, headaches and fatigue (Bhat, Mason, et al., 2017; FitzGerald & Meisel, 2000). Food-derived 

peptides with anti-hypertensive properties are believed to be safer than ACE inhibitory drugs and less 

likely to cause side effects (Lee & Hur, 2017). Since the production of ACE inhibitory peptides from 

beef lungs is an unexplored area and needs immediate scientific attention, the present study was 

designed to generate enzymatic hydrolysates from beef lungs using kiwifruit extract and commercially 

available fungal proteases and investigate their ACE inhibitory activities. 
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New Zealand is one of the top kiwi fruit producing countries with 30% of the world total 

production (Skallerud & Olsen, 2011). Kiwifruit contains actinidin, a cysteine protease, which has 

selective digestion properties on proteins (Ha, Bekhit, & Carne, 2014) and has proven meat 

hydrolysing ability (Nieuwenhuizen, Beuning, Sutherland, Sharma, & Cooney, 2007). Actinidin has 

been reported to produce ACE inhibitory peptides in few plant-derived proteins (Zhang, Sun, Liu, Li, & 

Jiang, 2017) and may have a potential to produce peptides with ACE inhibitory properties from beef 

lungs. 

Fungal protease 31,000 (FP31k) and 60000 (FP60k) (Enzyme Solutions, Victoria, Australia), 

which are obtained from Aspergillus oryzae along with a combination of acid, neutral and alkaline 

proteases, have proven exopeptidase and endo-peptidase activity (LiHui & Silva, 2009). Commercially 

available fungal proteases obtained from Aspergillus oryzae are active over an extensive pH range and 

are stable up to 70 ˚C (Tarté, 2009). The manufacturers (Enzyme Solutions, Victoria, Australia) 

information manuals have reported that FP31k and FP60k are produced by using different 

fermentation processes using maltodextrin diluent. These guidelines have reported several food 

industry applications for both these fungal proteases which include but are not limited to production 

of protein hydrolysates in fish and soya, protein hydrolysis in fermentation media, modification of 

cheese, modification of gluten in the bakery industry and protein hydrolysis in brewing industry. Studies 

regarding the meat tenderising properties of FP60K and FP31K for their application in the meat 

industry have been reported (Ha, Bekhit, Carne, & Hopkins, 2013). Proteases from Aspergillus oryzae 

are included in FDA’s GRAS (Generally recognized as safe) list (GRAS, 2018) that gives researchers and 

manufactures confidence to directly use them in the food industry. Despite their role in protein 

hydrolysis and peptide generation, no study has evaluated the potential of FP31k and FP60k in the 

production of ACE inhibitory peptide from bovine lungs. 

Therefore, the aim of this study was to evaluate the potential of FP31K, FP60K and kiwi fruit 

extract in the production of ACE inhibitory peptides from beef lung proteins. 
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6.2 Methodology 

6.2.1 Research plan 

The research plan is described in the flowchart presented in Figure 6.1. The protease enzymes 

were prepared by hydrating the enzyme powder in a 50 mM sodium phosphate buffer, pH 6, and their 

activity was determined using a peptide assay. The protein profile and enzyme activity of all proteases 

were determined by SDS-PAGE and casein zymography, respectively. Beef lung hydrolysates were 

prepared using standardised enzymes. Degree of hydrolysis, protein profile (SDS-PAGE) and ACE 

inhibitory activity of hydrolysates was determined at different time intervals during the digestion. The 

fractions with high activities were determined for each enzyme and passed through a 10KDa 

ultrafiltration membrane before loading on a gel filtration chromatography column. Eluted fractions 

were pooled, and the highest ACE inhibitory active fractions were selected. Selected fractions were 

passed through a 3KDa molecular cut-off membrane to remove larger peptides, and ACE inhibitory 

activities were determined. Purified highly active samples were desalted and subjected to mass 

spectrophotometry for protein sequencing. Identified amino acid sequences were analysed using 

amino acid databases. 
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Figure 6.1 Flow chart of the research plan 
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6.2.2 Determination of the activity and composition of protease enzymes  

 Z-Lys pNP assay 

Sample preparation 

Samples were prepared by suspending 200 mg of fungal protease powder (FP31K/ FP60K) in 

10 mL buffer (50 mM sodium phosphate, pH 6). Samples were centrifuged at 4000 g using Centra GP6R 

centrifuge (Thermo IEC, Needham Heights, MA, USA) for 10 minutes and supernatants were 

separated. 

Fresh green kiwi fruits (Acinidia deliciosa) were purchased from the New World supermarket 

(Lincoln, New Zealand). Kiwifruits were squeezed using cheesecloth and collected extracts were 

centrifuged at 4000 g using Centra GP6R centrifuge for 10 minutes to separate the supernatants. 

To prepare the enzyme samples, 1.386 mL of each supernatant were mixed with 7 µL of 500 

mM DDT and 7 µL of 50 mM EDTA. 

Assay 

Proteolytic activity was measured as described in Choi and Laursen (2000). A reaction mixture 

was prepared from 50 µL of enzyme and 900 µL of phosphate buffer (50 mM, pH 6.0) in a cuvette (1 

cm path length) and the reaction was initiated by adding 50 µL of the substrate (4 mM, Z-Lys-pNP). 

The absorbance was measured at 348 nm at 5-second intervals using a spectrophotometer at 25 °C. 

All samples were measured in triplicate.  Phosphate buffer (50 mM, pH 6.0) replaced the 50 µL of 

enzyme in the controls and the rest of procedure was same. 

The reaction rate was determined from the linear curve of the graph. The blank rate was 

subtracted from the sample  rate and divided by the molar extinction coefficient for nitrophenol ( 

5400 M-1.cm-1)to determine the activity as production of molarity of  p-nitrophenol per minute 

(M.min-1)  (Equation 1The result of Equation 1 was converted to moles per minute (mol.min-1) using 

0.001 L assay volume and then converted to micro mole per minute (µ mol. min-1) to express the 

activity in units (Equation 2). ). A unit was defined as the amount of enzyme required to produce 1 

µmol nitrophenol per minute (Boland & Hardman, 1972). The enzyme activities were expressed by 

dividing Equation 2 by the enzyme weight for Units. g-1, enzyme volume for Units. mL-1, and by the 

enzyme protein weight for specific activity, Units. protein g-1 (Equation 3 to 5). 

 

Activity =    (Sample rate − blank rate)/Δß   = 𝑀. 𝑚𝑖𝑛 − 1   (Δß = 5400)…………….…….. Equation (1) 

Activity in Units = Equation (1) × 0.001L ×106 = µmol. min-1 …………………………..………..……….. Equation (2) 

Enzyme activity in Units. g-1= (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2))/(𝐴𝑑𝑑𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) …………...Equation (3) 

Enzyme activity in Units. mL-1= (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2))/(𝐴𝑑𝑑𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿)) ……..Equation (4) 
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Specific activity in Units. protein g-1 = (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2))/(𝐴𝑑𝑑𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔)) 

………Equation (5) 

 

6.2.3 Preparation of protein hydrolysates from beef lung extract 

Frozen beef lungs without trachea were thawed for 24 hours at 4 ˚C and minced. Minced 

bovine lungs were packed in aluminium pouches and heat-treated by immersing in boiling water for 

10 minutes. Beef lungs were cooled to room temperature and precisely measured (20 g ± 0.01) in 

digestion pots. The 200 mL of buffer (0.05 M sodium phosphate, pH 6) was added to all digestion pots 

and were placed on magnetic multi-stirrer. The digestion mixtures were stirred using a magnetic flea 

during incubation at 45 ˚C (monitoring with a digital thermometer). Incubation temperature was 

selected from Ha et al. (2013) which illustrated the maximum activity for both fungal proteases and 

Zhang et al. (2017) which illustrated the activity for actinidin. After attaining a temperature of 45 ˚C, 

2 mL of kiwi fruit extract or 4.5 g of FP31k or 4 g of FP60k were added to digestion pots to reach an 

enzyme concentration of 0.4 Units. mL-1. Aliquots (5 mL) were taken at five-time intervals (0, 2, 4, 6, 

and 8 hours) during digestion (in 15 mL Falcon tubes) and immediately incubated for 20 min in an 80 

˚C water bath to inactivate the enzymes (Mirdhayati et al., 2016) and were placed on ice. The cooled 

digesta were centrifuged at 15,770 g for 20 min at 4 ˚C with Centra GP6R centrifuge (Thermo IEC, 

Needham Heights, MA, USA) and the supernatants were collected as hydrolysates. The pH of the 

hydrolysates was modified to pH 7 using 1M NaOH and stored at -20 ˚C. 

6.2.4 Determination of protein concentration and degree of hydrolysis 

The total protein concentration of hydrolysates was determined using a Pierce BCA Protein 

Assay Kit (Thermo Scientific, Waltham, USA) with bovine serum albumin as a standard. The degree of 

hydrolysis (DH) was determined by measuring the soluble protein content in 10% trichloroacetic acid 

(TCA) using the method of Edwards and Shipe (1978) with minor modifications. The 500 µL aliquot of 

each enzyme-treated hydrolysate was mixed with 500 µL of 20% (w/w) TCA. The mixture was 

centrifuged at 15,770 g for 15 min at 4 ̊ C with Centra GP6R centrifuge (Thermo IEC, Needham Heights, 

MA, USA). The TCA soluble total protein in the supernatant was assayed by Pierce BCA Protein Assay 

Kit (Thermo scientific). The percentage of the degree of hydrolysis was expressed as follows: 

 

% DH = (10% TCA-soluble protein/total protein) × 100 
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6.2.5 Protein profile with SDS–PAGE 

The digestion pattern of the BLP proteins and protein profile of proteases were determined 

using 4-12% SDS-polyacrylamide gel. This electrophoresis was performed by following the method 

described in chapter 4 (refer 4.2.8- SDS-PAGE running) 

6.2.6 Enzyme activity with zymography PAGE analysis 

The zymography PAGE was adapted from Ilian et al. (2004) and designed for gelatine 

zymography. The 10% separating gel (0.75 mm × 10 well, pH 7.5) contained 0.05% gelatine, 10% [w/w] 

acrylamide: bisacrylamide, 0.224 M Tris–HCl (pH 7.5), 0.05% gelatine, 0.06% TEMED, 0.06% 

[w/v] ammonium persulfate. Stacking gel contained 3.85% polyacrylamide gel (3.85% [w/w] 

bisacrylamide, 0.1% [v/v] TEMED, 0.1% [w/v] ammonium persulfate, and 0.125 M Tris–HCl, pH 6.8). 

The resolving gel was first added to Bio-Rad Mini-PROTEAN® 3 Casting Frame and immediately 

smoothing the gel surface by adding isobutanol. Isobutanol was washed out by RO water and blotted 

dry after 30 minutes of solidifying. Then stacking gel was added, and the teeth-comb was inserted to 

produce loading wells. The comb was unplugged after solidifying (30 minutes) the stacking gel and the 

trapped air in wells was flushed out using RO water. 

Mini-Protean III electrophoresis (Bio-Rad Laboratories, Hercules, CA) tank was set inside the insulated 

icebox with a magnetic stirrer to maintain the chilling temperature. Pre-electrophoresis was 

performed for 30 minutes using a running buffer (25 mM Tris-HCI, pH 8.3; 192 mM glycine, 1mM EGTA, 

1 mM DDT) at 150 V before loading the samples. Loading samples were prepared by mixing 6X 

concentrated loading buffer (1X = 0.04 M Tris-HCl (pH 6.8), 6.5% Glycerol, 0.005% bromophenol blue) 

with standardised protein sample 1:6 (v/v) ratio. Prepared samples were loaded onto the gels in 

zymography system and run at 125 V for 3 hours at chilling temperature. The gels were incubated 

overnight using 20 mM Tris-HCl buffer (pH 7.4). Then gels were stained in 20 mL GelCode® Blue Stain 

Reagent (Thermo Fishaer Scientific, Illinois, US) for one hour and washed in distilled water overnight. 

6.2.7 Tricine SDS–PAGE electrophoresis 

Novex™ Tricine 10-20% mini Pre-Cast Gel (Life Technologies, California, US) was used to identify the 

low molecular protein bands using loading samples containing 20 µg purified proteins obtained from 

gel filtration. Purified protein fractions were lyophilized before using in tricine gels. The 4 µg.µL-1 of 

sample protein was mixed in 3:1 (v/v) with Novex™ Tricine SDS 4X Sample Buffer (No: LC1676, Thermo 

Scientific) and incubated at 70 ˚C for 15 minutes in the water bath. The gel cassette was rinsed with 

ionised water and the tape was peeled off from the bottom of the cassette. The Gel combs were gently 

pulled off in one smooth motion. Sample wells were rinsed with 1X Novex™ Tricine SDS Running Buffer 

(No: LC1675, Thermo Scientific). Gels were set up in the Mini-Cell tank and locked into place according 
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to the XCell SureLock™ Mini-Cell manual (IM-9003). Inner and outer chambers were filled with the 1X 

running buffer. Cathode chamber buffer level exceeded the level of the wells. The loading samples 

containing 20 µg protein were added to tricine gel wells including 7 µl of Spectra™ Low Range Protein 

Ladder (No: 26628, Thermo Scientific). 

The gels were allowed to run for 70 minutes at a constant voltage of 125 V. After completing the 

electrophoresis, the gels were removed from the XCell SureLock™ Mini-Cell and the gels were taken 

out from cassettes for staining. The gels were fixed for 15 minutes on rocker using 20 mL fixing solution 

(50% methanol: 7% acetic acid) to prevent leaching out of proteins. After fixing each gel was washed 

three times in RO water (5 min each) and stained in 20 mL GelCode® Blue Stain Reagent (Pierce, 

Thermo Fisher Scientific) for one hour with gentle shaking on the rocker. Stained gels were washed in 

distilled water overnight to reveal the bands.  

6.2.8 Peptide purification   

Ultrafiltration using 10 kDa membrane 

Frozen hydrolysates were thawed overnight and filtered through 45 µM filter paper under 

vacuum, then hydrolysates were filtered through Amicon® ultra-4 10 K membrane (MWCO, 10,000; 

Amicon Co., Beverly, MA) filter units with 7500 g centrifugal force for 20 minutes and filtrates were 

freeze-dried. Freeze-dried filtrate sample (1 g) was dissolved in 4 mL buffer (20 mM phosphate buffer, 

pH 7) and centrifuged at 15770 g for 10 minutes at 4 ˚C using Centra GP6R centrifuge (Thermo IEC, 

Needham Heights, MA, USA) to separate the clear supernatant. This supernatant was introduced to 

the gel-filtration column for further experiments. 

Ultrafiltration using 3 kDa membrane 

After fractionation (refer 6.2.8-Fractionation), concentrated fractions were passed through 3 

kDa membrane Amicon® ultra-0.5 (MWCO, 3000; Amicon Co., Beverly, MA) using 14000 g centrifugal 

force for 20 minutes at 4 ˚C using Centra GP6R centrifuge (Thermo IEC, Needham Heights, MA, USA). 

Filtrate was used for peptide sequencing. 

Preparation of gel filtration column  

The gel media (Sephadex™ G-25, Medium, 100 g) was allowed to swell in excess (1 L) buffer 

(20 mM sodium phosphate buffer, pH 7.2) including 0.05% (W/V) sodium aside in cold room (4 ± 2 ˚C) 

for overnight. Media slurry was degassed under vacuum for 20 minutes before pouring into the 

column. The column XK 26/100 (Amersham Pharmacia Biotech) was used for this experiment. First, 

the empty column was rinsed with 0.01 M Sodium Hydroxide and RO water. Then cleaned column was 

levelled and mounted to stand vertically using sprit level. The column end piece was connected to a 

syringe and filled the same buffer using the syringe to ensure no air bubbles were trapped under the 
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net. The column was flushed with buffer leaving few mL at the bottom. Then pre-prepared media 

slurry was re-suspended and poured into the column through the wall with one continues motion with 

the help of a glass rod. The buffer was filled to form a meniscus at the top of the column. From the 

adaptor (upper-end piece) air bubbles were removed by drawing the buffer using a syringe. The 

adaptor was Inserted at an angle into the column, ensuring that no air was trapped under the net. 

Adaptor O-ring was adjusted to give a sliding seal on the column wall. The adaptor was pushed slowly 

down the column so that any air in the tubing was displaced by eluent. All tubing connections were 

made as bubble-free eluent connection between the column and FPLC machine (BIOLOGIC DUOFLOW 

™, Bio-Rad, California). The adaptor was Locked in position on the gel surface and the column was 

packed at 10 mL/min until the gel bed had reached a constant height. Packing was continued until the 

gel bed was stable and re-positioned the adaptor on the gel surface as necessary. The column was 

calibrated using potassium chromate and blue dextran to determine the void volume. 

Fractionation 

After ultra-filtration, the peptide supernatant (4 mL) was filtered through a 0.45 μm sterile 

syringe filter and was introduced onto the pre-prepared Sephadex G-25 column (2.6×100cm). The 

column was eluted as a flow rate of 5 mL min-1 buffer (20 mM sodium phosphate buffer, pH 7.2) with 

collection of 8 mL fractions and the protein of the column eluent measured at 280 nm. The fractions 

were pooled according to UV peaks at 280 nm. The time-lapse of 32-41, 50-66, 77-93 min kiwifruit 

extract fractions, 35-43, 50-67, 73-93 min FP31K fractions and 2-13, 23-35, 37-42, 43-53, 63-75, 77-95 

min FP60k fractions were pooled separately. The pooled fractions were freeze-dried and re-dissolved 

with 2 mL of buffer (50 mM borate buffer, pH8.2). The fractions were passed through 3 kDa membrane 

(refer 6.2.8- Ultrafiltration using 3KDa membrane) and used for peptide sequencing. Meanwhile, ACE 

inhibitory activity of each pooled fractions was determined using ACE inhibitory assay (refer 6.2.10.) 

 

6.2.9 Peptide sequencing 

Sample desalting 

The highest active (ACE inhibitory activity) pooled fraction from each enzyme digestion was 

used for peptide sequencing. The samples were desalted by binding the peptides to a C18 Empore™ 

disk and eluted with 70% acetonitrile (ACN) in 0.1% formic acid (FA). The eluted peptides were then 

dried down in a vacuum centrifuge and resuspended in 50 µl 0.1% FA prior to injection on the mass 

spectrometer. 
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Mass spectrometric analysis 

The mass spectrometric analysis was carried out on a nanoflow Ultimate 3000 UHPLC (Dionex 

Softron GmbH, Germering, Germany) coupled to Impact II mass spectrometer equipped with a 

CaptiveSpray source (Bruker Daltonik, Bremen, Germany). For each sample, 1 µL of the sample was 

loaded on a C18 PepMap100 nano-Trap column (300 µm ID x 5 mm, 5 micron 100Å) at a flow rate of 

3000 nl/min. The trap column was then switched in line with the analytical column ProntoSIL C18AQ 

(100 µm ID x 150 mm 3-micron 200Å). The reverse-phase elution gradient was from 2% to 20% to 45% 

B over 60 min, total 88 min at a flow rate of 600 nL/min. Solvent A was LCMS-grade water with 0.1% 

Formic acid; solvent B was LCMS-grade ACN with 0.1% FA. 

Amino acid sequences were identified in data-dependent MS/MS mode, where the acquisition 

speed was 2 Hz in MS and 1-32 Hz in MS/MS mode depending on precursor intensity. Ten precursors 

were selected in the m/z 150-2200 range, with 1-8 charged peptides selected. The analysis was 

performed in positive ionization mode with a dynamic exclusion of 60 sec.  

The BIOPEP data base was used to identify amino acid sequences which matched known ACE 

inhibitory peptides (Minkiewicz, Iwaniak, & Darewicz, 2019). The bovine bioactive peptide data was 

used to identify the source of proteins and cryptides. 

6.2.10 Inhibition of angiotensin 1-converting enzyme (ACE) assay 

Inhibition of angiotensin 1-converting enzyme (ACE) was measured using the colourimetric 

assay described by Jimsheena and Gowda (2009). Hydrolysate samples (32 μL) were mixed with 5 μL 

of angiotensin-converting enzyme (1 UmL-1) (#A6778, Sigma-Aldrich Corporation, Missouri, USA) in 

600 µL microcentrifuge tubes. Sample tubes were Incubated at 37°C for 10 minutes in water bath. 

Then 13 μL of substrate solution (5 mM hippuryl-L-histidyl-L-leucine, 50 mM sodium borate buffer, 0.3 

M NaCl, pH 8.2) was added to each of the samples to initiate the reaction. Samples were further 

incubated for one hour at 37°C and 25 μL of 1 M HCl was added to quench the reaction. For colour 

development, 100 μL of pyridine and 50 μL of benzene sulfonyl chloride were added to each tube and 

tubes were shaken vigorously for 10 seconds to form yellow colour. The tubes were left to cool on ice 

for five minutes and 200 µl was transferred to a clear 96-well microplate and absorbance were 

measured at 410 nm using a plate reader (415-2080-FLUOstar Omega, Ortenberg, Germany) within 

one hour. The negative control contained 32 μL of buffer (50 mM sodium borate buffer, 0.3 M NaCl, 

pH8.2) and the positive control contained 32 μL of 10 μM captopril instead of sample hydrolysate. The 

standard curve was constructed using hippuric acid at various concentrations from 100 μM to 1 mM. 

The percentage of ACE inhibition was calculated based on equation 6. 

𝐴𝐶𝐸 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 % = 100 −
𝑇𝐻𝐴

𝐶𝐻𝐴
× 100………….. Equation 6 
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Where THA is the mean concentration of hippuric acid in test wells and CHA is the average 

concentration of hippuric acid in the negative control wells. 

Half maximal inhibitory concentration (IC50 value) was determined for the samples. Each 

peptide sample was assayed with different protein concentrations to generate the Inhibition curve. 

The IC50 value was taken from the protein concentration of the inhibition curve, which corresponded 

to half of the maximal inhibition. 

6.2.11 Statistical analysis 

The data generated by repeating the experiments for different parameters were compiled and 

analysed using SPSS (IBM SPSS Statistics V22.0, Armonk, NY, USA). All experiments were performed in 

triplicate (n=3) and all data were reported as means and standard deviation. Differences between the 

treatments were analysed by one-way analysis of variance, at the 0.05 level of significance. When the 

ANOVA was significant (P < 0.05), means were separated by a pairwise comparison using Tukey’s 

comparison test. 
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6.3 Results and discussion 

6.3.1 Protein profile of proteases 

Analysis of enzyme protein profile is important to determine the purity of proteases. 

Figure 6.2 presents the analysis of soluble protein content of fungal proteases (FP31k, FP60k) and 

kiwifruit extract on SDS‐PAGE. Fungal protease FP31k showed protein bands from 10 kDa to 50 kDa 

and FP60k protease showed protein bands above 25 kDa. Ha et al. (2013) reported similar patterns 

for FP31k and FP60k with most of the bands present below 50 kDa and above 20KDa, respectively. 

There were four bands in the kiwifruit extract which putatively correspond to actinidin, thaumatin‐

like protein, KiTH and Kirola proteins (Gong, Morton, Bhat, Mason, & Bekhit, 2019). Actinidin, which 

is an active protease in kiwifruit extract, has been reported with a molecular mass within the range of 

25.2 to 30 KDa (Boland & Hardman, 1973; Miraghaee, Mostafaie, Kiani, & Kahrizi, 2011; Richardson, 

Ansell, & Drummond, 2018). 

The protein hydrolysing ability was evaluated by using gelatine zymography for all the 

enzymes (Figure 6.3). Both FP31k and FP60k proteases showed a major band as a gelatine hydrolysing 

patch on the upper half of the gel. Actinidin, which is the main digestive protease in kiwifruit (EC 

3.4.22.14) (Boland, 2013), showed a band in the lower half of the gel. Results suggest that FP31K and 

FP60K proteases have high molecular weight in comparison to the actinidin. All enzymes were active 

and had the ability to digest gelatine.  
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Figure 6.2 SDS-PAGE protein profile of protease enzymes (kiwi, kiwi fruit extract; FP31k, 31k fungal 
protease; FP 60k, 60k fungal protease; protein 20 µg were loaded in each sample lane) 
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6.3.2 Activity and specific activity of the proteases (FP31 K, FP60 and kiwi fruit 
extract) 

It is important to standardise the activity of the enzymes in these digestions. Table 6.1 

presents the activity and specific activity (Unit/mg protein) of the enzymes as assessed by Z-Lys-pNP 

peptide assay. Kiwifruit extract had the highest specific activity (1 U/mg protein) followed by FP31K 

and FP60k proteases. The proteases FP31K and FP60K were present in solid powder form and their 

activity was measured as 17.8 U/g and 20 U/g, respectively. Kiwifruit extract was present in liquid form 

and activity was 39.6 U/mL 

 

Table 6.1 Activity of kiwi fruit extract, FP31k and FP60K fungal protease 

Enzyme 
Specific activity (U/mg 

protein) 
Activity 

U/g sample U/mL 

FP31K 0.26±0.02 b 17.78±0.01b - 

FP60K 0.07±0.01 c 20.00±0.13a - 

Kiwifruit 
extract 

1.09±0.06 a - 39.56±2.04 

* U=Unit = µmol/min 
* Mean ± Standard deviation in the same column followed by different superscript differ significantly at p<.05 
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Figure 6.3 Gelatine zymography; FP31K, 31K fungal proteas; FP60K, 60K fungal protease; Kiwi, fresh 
kiwi fruit extract. (2×10-4 units were loaded in each sample lane 
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6.3.3 Proteolysis of minced beef lung 

The hydrolytic patterns of beef lung subjected to protease incubation for 8 hours are presented from 

gel ‘A’ to ‘D’ in Figure 6.4. Gel ‘A’ presents the hydrolysis of blank sample without addition of any 

enzymes. Intensity of all bands did not change with the time of hydrolysis indicating that there was 

limited or no protein degradation without added protease during the 8 hours. Beef lung hydrolysate 

produced by the hydrolysis with kiwifruit extract (Figure 6.4B) showed reduced intensity of most of 

protein bands above 25kDa with time and most of the bands had totally disappeared by 8 hours of 

digestion. It shows a strong hydrolysing ability of kiwi fruit extract for beef lung proteins. Hydrolysis 

with fungal proteases FP31k and FP60k protein band hydrolysing is illustrated in C and D respectively. 

There was more protein degradation in FP31k than in FP60K. Similar results were recorded by Ha et 

al. (2013) who observed greater hydrolysis of connective tissue by FP31k in comparison to FP60k 

during first 30 minutes. 
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Figure 6.4 Protein profile (SDS-PAGE) of beef lung digestion for 0 to 8 hours with FP31K, FP60K and Kiwifrut extract 
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6.3.4 Degree of hydrolysis of minced beef lung with incubation time 

Degree of hydrolysis of beef lung protein during incubation time of 0 to 8 hours was also measured as 

TCA-soluble protein and is presented in Figure 6.5. Fungal protease FP31k showed the highest degree 

of hydrolysis (98%) after 8 hours followed by FP60K and kiwi fruit extract. Jang and Lee (2005) 

prepared beef rump hydrolysate with different protease enzymes and the degree of hydrolysis was 

measured using a similar method. It took them more than 12 hours to achieve 50% of hydrolysis. In 

our study, beef lungs were boiled which may have increased the hydrolysis by gelatinising the collagen 

of beef lungs, reported to contain high percentage of collagen (Francis & Thomas, 1975b), making it 

more vulnerable to hydrolysis (Zhang, Olsen, Grossi, & Otte, 2013). By cleaving the hydrogen bonds of 

adjacent polypeptide collagen chains (helix-coil transition) and by exposing the inner sites in the triple-

helix structure of collagen, boiling increases the susceptibility of collagen to enzymatic hydrolysis 

(Zhang, Li, & Shi, 2006). Kiwifruit enzymes are not able to access the crosslinked triple helix  of  collagen 

but once this has been opened up  with heat treatment, it shows the protease activity (Sugiyama et 

al., 2005). Some Aspergillus oryzae strains like Mi153 do have collagenase activity (Wanderley, Neto, 

Filho, Lima, & Teixeira, 2017) but there is no reported activity with either the FP31K or FP60K 

proteases. 

 Hydrolysis of the blank sample (without enzymes) was lowest throughout the incubation 

period which showed the significance of proteases during protein hydrolysis. 

The TCA protein solubilisation method is a well-documented and widely used method in many 

publications. But non-hydrolysed small peptides can be found in the soluble phase instead of the 

hydrolysed free amino acids (Moraise et al., 2013). Rutherfurd (2010) argued that accuracy of the 

method depended on the type of hydrolytic enzymes and the size of the hydrolysed peptides. These 

possible factors may have had an influence on the very high degree of hydrolysis rate (98%) in our 

results (Figure 6.5). 
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6.3.5 ACE inhibitory activity of beef lung hydrolysates with different enzymes and 
incubation time 

All hydrolysed samples were analysed for ACE inhibitory activity at different times and are presented 

in Table 6.2. The highest ACE inhibitory activity was recorded for Kiwi extract at 2 hours, FP31k extract 

at 6 hours and FP60k extract at 8 hours of incubation (67.4%, 71.1% and 67.3%, respectively).   

Mirdhayati et al. (2016) and Jang and Lee (2005) also found no relationship between the ACE inhibitory 

activity and hydrolysis time during beef rump and goat meat digestion, respectively. Maximum ACE 

inhibitory activities of our hydrolysates were higher than the crude hydrolysate reported by 

Mirdhayati et al. (2016) and Jang and Lee (2005). 

 

Table 6.2 ACE inhibitory activity (%) of enzymatic hydrolysates from beef lung mince at different 
incubation hours 

Enzymes  Digestion hours 

0 2 4 6 8 

Kiwi 39.8±1.1d 67.4±1.1a 46.1±4.9c 44.4±2.9c 60.7±1.9b 

FP 31K 38.7±2.3d 49.2±1.3c 57.9±1.9b 71.1±0.4a 50.7±0.8c 

FP 60K 40.7±2.9d 54.1±5.2c 64.9±1.6b 47.0±1.8c 67.3±0.8a 

The hydrolysates with highest ACE-inhibitory activity (Kiwi extract-2h, FP31k-6h and FP60k-8h) were 

further compared to the control without enzymes (meat-only-blank), control without beef lung 

(enzyme-only-blank) and 10 nM captopril as a positive control (Figure 6.6). All enzymes were able to 

cause 20% to 30% ACE inhibition in the absence of beef lung. Duttaroy (2015) also reported the ACE 

inhibition potential of Kiwifruit extract, but there are no reports of FP 31K and FP 60K ACE inhibitory 

activity in the literature. Non –hydrolysed beef also caused 30-40% inhibition of ACE activity. The 

FP31K protease showed 27% and 35% ACE inhibition in enzyme-only-blank and beef lung-only-blank 

respectively. Captopril at 10nM caused a 77% inhibition of ACE activity. A similar range of results were 

also presented by Ryder, Bekhit, McConnell, and Carne (2016). 

 

 

 

* Mean ± Standard deviation in the same row followed by different superscript differ significantly at p<.05 
Kiwi, kiwifruit extract; FP31, FP31 fungal protease; FP60, FP60 fungal protease 
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6.3.6 Peptide purification and identification 

 Selected fractions of crude proteins (FP31k-6h, Kiwi extract-2h and FP60k-8h) were purified 

using a Sephadex™ G-25 100×26 cm gel filtration column. Sephadex G-25 gel matrix is generally used 

for separation of low molecular proteins (Hagel & Janson, 1992) and yields low fractionation molecular 

range (1 kDa to 5 KDa). This technique was employed in our study because very low molecular weight 

peptides (2-12 amino acyl residues) are responsible for the ACE inhibitory activity (Byun & Kim, 2002; 

Gu, Li, Liu, Yi, & Cai, 2011; Ryder et al., 2016). The longer column was important for better resolution 

of protein peaks, however, it produced broad peaks with greater volume (Healthcare, 2010). The 

protein fractions had low concentrations and were concentrated before further analysis. Figure 6.7,6. 

8 and 6.9 presents the well-separated peaks of proteins using 280 nm UV detector of fast protein 

liquid chromatography (FPLC) System-(BIOLOGIC DUOFLOW ™ 10 system, Bio-Rad, California, USA). 

Standardised ACE inhibitory percentages have been mentioned corresponding to each protein peak in 

Figure 6.7 to 6.9. 

 Figure 6.7 illustrates that the kiwi fruit extract produced three main peaks and the ACE 

inhibitory activity increased with the elution time. Similarly, for fungal protease 31K and 60K, the ACE 

inhibitory activity also increased with the time (Figures 6.8, 6.9). All enzyme hydrolysates exhibited 

the highest ACE inhibitory activity at the last peak of eluted protein between 80 to 90 minutes (Figures 

6.7-6.9). During Gel filtration chromatography larger molecules are eluted first and smallest peptides 

are eluted last from the column. These results further confirm that ACE inhibition is associated with 
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low molecular weight peptides. These results are in agreement with previously reported studies (Gu 

et al., 2011; Halim, Yusof, & Sarbon, 2016; Ryder et al., 2016). 

 

 
Figure 6.7 Fractionation of protein hydrolysates of beef lungs with Kiwifruit extract on a Sephadex 

G-25 gel filtration column and ACE inhibitory activity of pooled tubes 
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Figure 6.8 Fractionation of protein hydrolysates of beef lungs with FP31k protease on a Sephadex 

G-25 gel filtration column and ACE inhibitory activity of pooled tubes 

 
 
 
 

 
Figure 6.9 Fractionation of protein hydrolysates of beef lungs with FP60k protease on a Sephadex 

G-25 gel filtration column and ACE inhibitory activity of pooled tubes. 
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6.3.7 Tricine SDS-PAGE 

Tricine SDS-PAGE gels are used to illustrate low molecular weight proteins which cannot be 

identified through Bis-Tris SDS-PAGE gels (Schagger & Jagow, 1987). Figure 6.10 presents the tricine 

gel with a molecular weight range of below 40 KDa. Proteins of selected high active eluted fractions 

appeared below 1.7 KDa confirming the lower weight of highly active peptides. Ultrafiltration with 3 

KDa membranes for these fractions enriched them for low molecular weight peptides. ACE inhibition 

of the fractions increased after 3 KDa filtration (Table 6. 3), however, no difference was observed in 

the protein bands on the tricine gel (Figure 6.10) 

 

 

6.3.8 Changes of IC50 values throughout the process 

Table 6.3 illustrates the IC50 value for ACE-Inhibitory activity of protein hydrolysates produced 

from beef lungs using different enzymes during the purification steps. IC50 value is defined as a 

minimum protein concentration (mg/mL) required to inhibit 50% of ACE activity. IC50 value of enzyme 

hydrolysate produced by kiwi fruit extract reduced more than half to 0.67±0.007 mg/mL by only 

filtering the fractions through a 10 KDa membrane. Membrane filtration is an economic way of 

producing cheap bioactive peptides which requires low technical skills compare to other technologies 

and can be easily achieved in industrial processes (Yang et al., 2019). Passing the fractions of kiwi fruit 

extract, FP31K and FP60K hydrolysates through the gel filtration and 3 KDa ultrafiltration purified the 

proteins which changed their IC50 values to 52 ± 3, 24 ± 1 and 29 ± 5 (µg/mL), respectively. IC50 values 

of beef lung hydrolysates recorded in our study are lower than IC50 values reported for goat meat 
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hydrolysate by Jamhari et al. (2013); Mirdhayati et al. (2016). However, the IC50 value in our study for 

captopril (positive control) was 1.4 ng/mL which was very high inhibition activity in comparison to our 

purified protein fractions. Our results are within the range reported for beef hydrolysates (IC50 values 

of 23 to 24 µg/mL) by Jang and Lee (2005). 

 

Table 6.3 IC50 values of ACE inhibitory activity of protein hydrolysates during purification (mg/mL) 

Protein hydrolysates 

Purification steps 

Enzymatic 
hydrolysate 

UF* 10 KD 
extract 

Gel filtered fraction 
(highest activity peaks) 

UF* 3 KD extract 

Kiwi 1.41±0.02b 0.67±0.007c 0.098±0.002b 0.052±0.003a 

FP31K 1.81±0.01a 1.53±0.02a 0.0423±0.011a 0.024± 0.001c 

FP60K 1.76±0.02a 1.05±0.004b 0.044±0.003c 0.029±0.005b 

*UF, Ultrafiltration (Through 10KD/ 3KD membrane)  
* Mean ± Standard deviation in the same column followed by different superscript differ significantly at p<.05 

 

6.3.9 Peptide identification 

The fractions with highest ACE inhibitory activity were analysed using mass spectrometry for 

amino acid sequences for peptides. Table 6.4 presents the peptide sequences found in the in different 

beef lung fractions. Many ACE inhibitory peptides have been reported to contain 2 to 12 amino acid 

residues (Byun & Kim, 2002) and high proportion of our results were also within the same range.  A 

total of 193 peptides were identified from FP31k bovine lung hydrolysates. Six tetrapeptides were 

identified and only of the identified 18 peptides had more than 12 amino acids. Ninety percent of the 

peptides were 4 and 12 amino acids. A hexa-peptide, Val-Ser-Pro-Gly-Met-Pro, was identified as a 

likely ACE inhibitory peptide even though it was not in in the BIOPEP database. Peptides which initiate 

with valine (V), leucine (L) or isoleucine (I) and terminate with proline (P) have been reported to have 

a strong ACE inhibitory activity by several studies (Matsumura, Fujii, Takeda, Sugita, and Shimizu 

(1993); Hrynkiewicz, Iwaniak, Bucholska, Minkiewicz, and Darewicz (2019). Based on this evidence Val-

Ser-Pro-Gly-Met-Pro peptide sequence may have strong ACE inhibitory activity 

The second highest activity was reported from FP60K digested fractions (Table 6.3) which 

showed peptide sequences in Table 6.4. A total of 55 peptides were identified from FP60K 

hydrolysates. This hydrolysate contained 93% of its peptides between 4 to 12 amino acids. The 

percentage of smaller peptide pool corresponds to the ACE inhibitory activity according to the results 

of Ryder et al. (2016). None of the peptides had characteristics which would suggest ACE inhibitory 

activity. 

A total of 378 different peptide sequences were found in the Kiwifruit extract hydrolysate 

(Table 6.4). The lowest ACE inhibitory activity was observed in Kiwifruit extract hydrolysate, and it had 
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the lowest (81%) smaller peptide pool in between 4 to 12 amino acids compared to the FP31K and 

FP60K hydrolysates. 

Parent proteins of amino acid sequences were determined from the bovine protein database, and 

many of the peptides did not have corresponding proteins (Table 6.5). FP31K and FP60K fungal 

protease derived peptides mainly from bovine serum albumin (BSA) and structural proteins like 

collagen, actin, myosin and filamin. BSA is the most abundant blood serum protein in bovine 

(Assadpour & Jafari, 2019) and bovine lungs may contain a high amount of BSA due to lung containing 

a significant amount of blood. Further, Table 6.4 showed the presence of globin A1 like blood-related 

proteins. The peptides of kiwifruit extract hydrolysate mainly originated from structural proteins with 

collagens, elastin, and filamins prominent (Table 6.4). The highest number of (94) peptides were 

derived from Collagen chains with 48 peptides from collagen α-2(I) chain and 17 peptides from 

collagen α-1(I) chain. Elastin produced 79 peptides the next most abundant proteins, globin C1, filamin 

A, haemoglobin β, histone H2A type 2-C and heat shock protein β-1 produced 20, 8,7,7 and 7 peptides 

respectively (Table 6.4). These results  confirmed high proportion of collagen in bovine lungs (Francis 

& Thomas, 1975b). Other sarcoplasmic proteins and membrane proteins were also represented in the 

peptide pool.  

Peptide sequencing had a limited ability to identify di-peptides and tri-peptides and identified 

tetrapeptides as the lowest amino acid sequences. Due to this limitation, cryptids were analysed to 

reveal amino acid sequences buried within the peptides (Pimenta & Lebrun, 2007) with known ACE 

inhibitory activity. These cryptid results were presented in Table 6.6 for each enzyme hydrolysates. 

The ACE inhibitory activities of hidden amino acid sequences were revealed through this process, and 

there is a high possibility to produce these smaller ACE inhibitory peptides which may be unidentified 

due to limited technical ability. 

Identified ACE inhibitory peptides should have the ability to reach the bloodstream through 

the gastrointestinal tract. Generally, ACE inhibitory peptides are shorter peptides which less accessible 

to gastrointestinal enzyme degradation (Matthews & Payne, 1980) and could be absorbed without 

further hydrolysis. Roberts, Burney, Black, and Zaloga (1999) has reported the evidence of potential 

absorbance of peptides larger than di- and tri- peptides using a rat bioassay. Further ACE inhibitory 

peptide with 8 amino acids was derived by the Saiga et al. (2008) with strong ACE inhibitory effect. 

The anti-hypertensive effect of this peptide was confirmed with the in vivo rat-bioassay by showing 

the significantly low blood pressure level. 
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Table 6.4 Summary table of the number of peptides with parent proteins following digestion of 
bovine lungs with different proteases 

Parent Protein FP31K digestion 
(number of 
peptides) 

FP60K digestion 
(number of 
peptides) 

Kiwi fruit extract 
digestion 
(number of 
peptides) 

Actin- aortic smooth muscle 3 3 0 

Actin, cytoplasmic 2 0 0 4 

AGER, splice variant 8 1 0 0 

Annexin A6 1 0 0 

Collagen α-1(I) chain 0 0 17 

Collagen α-1(II) chain 0 0 2 

Collagen α-1(III) chain 0 0 3 

Collagen α-1(XV) chain 0 0 1 

Collagen α-1(XVII) chain 0 0 3 

Collagen α-2(I) chain 3 2 48 

Collagen α-2(IV) chain 0 0 7 

Collagen α-2(V) chain 0 0 1 

Collagen α-2(VI) chain 0 0 3 

Collagen α-2(VIII) chain 0 0 1 

Collagen α-3(IV) chain 0 0 1 

Collagen α-3(V) chain 0 0 2 

Collagen α-3(VI) chain 0 0 4 

Collagen α-5(IV) chain 0 0 2 

Decorin 0 0 2 

Elastin 0 0 79 

Epsin 1 2 0 0 

Ezrin 0 0 2 

Fibrinogen α chain 0 1 0 

Filamin A 1 1 8 

Gelsolin 0 0 1 

Globin A1 3 0 1 

Globin C1 0 0 20 

Heat shock cognate 71 (HSC71) 1 0 0 

Hemoglobin subunit α 0 0 4 

Hemoglobin β 2 0 7 

Histone H2A type 2-C 0 0 7 

Histone H4 1 0 0 

HNRP-H2 1 0 0 

HNRP-L 1 0 0 

HSP 70 0 0 1 

HSPB1 0 0 7 

HSPG2 2 0 0 

LAMC1 0 0 1 

LIMD 1 0 0 1 

M130 1 0 0 

MAPKISS 0 0 2 

Myosin light chain 3 1 0 0 

Myosin light chain 3 1 0 0 
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Myosin regulatory light chain 2 2 0 0 

Myosin-1 0 1 0 

Myosin-7 2 0 0 

Niban apoptosis regulator 2 1 0 0 

PDIA6 1 0 0 

Peroxiredoxin-5, mitochondrial 1 0 0 

PGRMC 1 3 0 

PGRMC 2 0 1 0 

Reticulon 2 1 4 

Serum albumin 8 3 0 

Tensin-1 4 0 0 

Tensin-2 1 0 0 

Tight junction protein 1 1 0 0 

TtRLC 1 0 0 

Vimentin 1 0 0 

zyxin 1 0 0 

β-lactoglobulin 1 0 0 

    

Total sequenced peptides 193 54 378 

 
* M130=Scavenger receptor cysteine-rich type 1 protein M130, PGRMC= Progesterone receptor membrane component, 
EFEMP1=EGF containing fibulin extracellular matrix protein 1, HSP70= Heat Shock Protein70, HSPB1=Heat shock protein β-
1, ASM=Aortic smooth muscle, HSPG2= Heparan sulfate proteoglycan 2, AHSG=alpha-2-HS-glycoprotein, Hsc71=Heat shock 
cognate 71 kDa protein, Adenylyl CAP=Adenylyl cyclase-associated protein, SDC2=Sushi domain containing 2, 
TtRLC=Tryptophan--tRNA ligase- cytoplasmic, AGER=Advanced glycosylation end product-specific receptor-splice variant 8, 
SPTAN1=Spectrin alpha non-erythrocytic 1, MAPKISS= MAPK-interacting and spindle-stabilizing protein-like, PDIA6= Protein 
disulfide isomerase family A member 6, LAMC1= Laminin subunit gamma 1, HNRP-L= Heterogeneous nuclear 
ribonucleoprotein L-like, MLC-2= Myosin regulatory light chain 2, LIMD1=LIM domain-containing protein 1, HNRP-
H2=Heterogeneous nuclear ribonucleoprotein H2 
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Table 6.5 Bovine lung peptide digestion with different proteases (A- FP31K protease B- FP60K protease C-Kiwifruit extract) 

A 

Bovine lung peptide digestion with FP31K protease 

Parent protein peptides Peptide 
Length 

Parent protein peptides Peptide 
Length 

Actin, ASM TERGYSF 7 Myosin light chain 3 IKIEFTPEQIEEFKEAFTLFDR 22 

Actin, ASM VPIYEGY 7 Myosin regulatory light chain 2 EAPGPINFTVFLQMFGEK 18 

Actin, ASM YELPDGQVIT 10 Myosin regulatory light chain 2 PEETILNAFKVFD 13   

AGER, splice variant 8 SPQGDPWDS 9 Myosin-7 QLEAEKLELQSALEEAEASLEHEEGK 26 

Annexin A6 DFPDFNPS 8 Myosin-7 QLEAEKLELQSALEEAEASLEHEEGKILR 29 

Collagen α-2(I) chain FDGDFY 6    

Collagen α-2(I) chain FGFDGDF 7 Reticulon WDPSPVS 7 

Collagen α-2(I) chain GFDGDFY 7 Reticulon WDPSPVSS 8 

Complement factor B DFENGEYWP 9 M130 GEGSGPIW 8 

Epsin 1 TDPWGAPV 8 Serum albumin AFDEKLF 7 

Epsin 1 TDPWGAPVS 9 Serum albumin AWSVARL 7 

Filamin A DLGDGVY 7 Serum albumin ELLYY 5 

Globin A1 DSFSNGM 7 Serum albumin ELLYYA 6 

Globin A1 LLGNVLVVVLAR 12 Serum albumin ELLYYAN 7 

Globin A1 PENFKLLGNVLVVVLAR 17 Serum albumin GEYGFQN 7 

HSC71 DLGGGTF 7 Serum albumin NKYNGVFQ 8 

Hemoglobin β FESFGDL 7 Serum albumin RHPYFYAPELLYYANK 16 

Hemoglobin β FESFGDLS 8 Vimentin YTSSPGGVY 9 

HNRP-H2 YGGGYGGYDD 10  FP31K 5 

HNRP-L EFGPISY 7  AAPSAPWVGA 10 

Histone H4 TLYGFGG 7  AGGPASAQG 9 

Major allergen β-lactoglobulin VAGTWYSLAMAASDISLLDAQSAPLR 26  APGSYDFG 8 
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PGRMC YLGDDY 6  ASFSNF 6 

Myosin light chain 3 IEFTPEQIEEFKEAFTLFDR 20  ASSGGGGGGLM 11 

 AVVEPYN 7  FDGDF 5 

 AWGPGLE 7  FDISSFADL 9 

 DEFPF 5  FDLL 4 

 DFGFLD 6  FDNRGGGGF 9 

 DFGPNGEV 8  FDSDWGEF 8 

 DFPGF 5  FELF 4 

 DFSGAVY 7  FELVN 5 

 DFSSCQA 7  FETF 4 

 DLRFQ 5  FGLGTPE 7 

 DPAGPPEASV 10  FHSADARGG 9 

 DPVNF 5  FPHFD 5 

 DQGGAGLE 8  FPVGF 5 

 DSGGPGGAGGGA 12  GEFPGGLM 8 

 DSWDGSDATVF 11  GFDGDF 6 

 DYLDVGF 7  GFFDPN 6 

 EAASGTPSP 9  GGAGVGAGGQGP 12 

 EDKAGFRS 8  GGGGAAGGPQ 10 

 EDSGDYPLTM 10  GGGGGGPGGGGGG 13 

 EFMDGQP 7  GGGGGGQAP 9 

 ELMF 4  GGGGGLGGGLGN 12 

 ELSYGY 6  GGGGGSGGGGGGGA 14 

 EMWLSK 6  GGGGGSGPPSV 11 

 ERGYSFTTT 9  GGVCGGGAGG 10 

 ESGGPANGTP 10  GPIGPVG 7 

 ETFNTPAMY 9  GPLGPPGPS 9 

 ETGAPGVAVAPG 12  GPPADPWGGT 10 

 EVQIGGPGS 9  GPPPSADG 8 
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 EWPLL 5  GPQGPPGSIGPQ 12 

 FDGASGLP 8  GSEPIQY 7 

 GTWNPGRP 8  PFGSVPF 7 

 GYSSGSPVY 9  PGFGGEPGPQ 10 

 HGGTTADM 8  PGPINFTVFLQMFGEK 16 

 IDSPGPE 7  PMMPGMLM 8 

 KAFPGML 7  PSKEPEFDPSKIKIEFTPEQIEEFKEAFTLFDR 33 

 LDLL 4  PSSPDWGTF 9 

 LDSPGPE 7  QALSYRE 7 

 LELYYA 6  QDSLGGNA 8 

 LPEEWSQ 7  QDWTGGK 7 

 LPGGPGPSP 9  QDWTGGKE 8 

 MAGGGPEP 8  QDWTGGKEF 9 

 MDPDLLGSKGEKGDPGLPGIPGVAGP
KGYQ 30 

 
QIDDGWMY 8 

 MLGDAIM 7  QKVVAGVAN 9 

 MLGPSLSPGQD 11  QLLY 4 

 MMSSTSN 7  QLSYGYD 7 

 MPASPNP 7  QLSYGYDE 8 

 MPGDF 5  QMNALGP 7 

 MSGLLGPGGM 10  QNDPWTPT 8 

 NDPWTPT 7  QNGGTCTHG 9 

 NFENPFY 7  QPIDDGWM 8 

 NFGTPEFL 8  QPNAAGSEC 9 

 NFVAF 5  QTALVELLK 9 

 NFVAFV 6  QYEAY 5 

 NGGGSIN 7  SAFSNF 6 

 NQNDPWTPT 9  SAGGGSGGGI 10 

 NTMLTF 6  SEGPIQY 7 
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 NVPIYEGY 8  SFGDL 5 

 PATGAANGLN 10  VSPGMP 6 

 SGYPGAGGYP 10  VYSSTSN 7 

 SLPGACAANP 10  WDTANNPL 8 

 SPTQGAGPAGL 11  WDTANNPLY 9 

 SPVPSATE 8  WGDPSVE 7 

 SVSLDTGFP 9  WLGSSSATN 9 

 SWQEGDT 7  WNGPVGV 7 

 TDYALF 6  WNPPEGASPN 10 

 TEPWDPL 7  WVSGLSGYTD 10 

 TSAPGFP 7  YDLYDTSAGEGTY 13 

 TTGSGGAGG 9  YEGFDF 6 

 TTNGPTES 8  YGPEGPY 7 

 VDPVNF 6  YPASTVCP 8 

 VEPIPWN 7  YQPEYLY 7 

 VGTHGGSGGGAGP 13  YSGVGSGP 8 

 VIQYFAVIAAIGDR 14  YVGDF 5 

 VNPTVFF 7  YYDSPSVN 8 
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 B 

Bovine lung peptide digestion with FP60K protease 

Parent protein Peptides Peptide 
Length 

Parent protein peptides Peptide 
Length 

Actin, ASM NVPIYEGY 8  ELSYGY 6 

Actin, ASM NWDDMEK 7  EYEAY 5 

Actin, ASM VPIYEGY 7  FASPDDR 7 

Collagen α-2(I) chain GFDGDFY 7  FDGDF 5 

Collagen α-2(I) chain GPSGGGYEF 9  FDGDFY 6 

Fibrinogen α chain PSSPDWGTF 9  FDGDYF 6 

Filamin A AWGPGLE 7  FDLF 4 

PGRMC YGPEGPY 7  FDVF 4 

Myosin-1 QVEQEKSEIQAALEEAEASLEHEEGKILR 29  FETF 4 

ND WNDPSVQ 7  FGASPP 6 

PGRMC YLGDDY 6  FSTF 4 

PGRMC 2 YGPAGPY 7  LQEGW 5 

Reticulon WDPSPVSS 8  LQEWGY 6 

Serum albumin DAFLGSFLYEYSR 13  LQEWGY 6 

Serum albumin GLVLIAFSQYLQQCPFDEHVK 21  LQEWGYA 7 

Serum albumin LGEYGFQNALIVR 13  LYGYE 5 

 ACVVDQ 6  NFGNEF 6 

 ADGSYF 6  QDWTGGKEF 9 

 AWGGPL 6  QFHL 4 

 DFVF 4  QLSYGY 6 

 DWTGGKEF 8  QLSYGYD 7 

 EFHL 4  QYEAY 5 

 ELLYY 5  SFGDL 5 
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 SYGGSL 6  SFSNGM 6 

 SYDF 4  SSGLY 5 

 TYFPH 5  YSCFLF 6 

 WAGAPP 6  YSVY 4 
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C 

Bovine lung peptide digestion with kiwifruit extract 

Parent protein peptides Peptide 
Length 

Parent protein peptides Peptide 
Length 

Actin, cytoplasmic 2 DDDIAALVVDN 11 Collagen α-1(I) chain GPAGPPGFPGAVG 13 

Actin, cytoplasmic 2 DSYVGDEAQSKRGILT 16 Collagen α-1(I) chain GPIGPVG 7 

Actin, cytoplasmic 2 VAPEEHPVLL 10 Collagen α-1(I) chain GPPGFPGAVG 10 

Actin, cytoplasmic 2 VFPSIVG 7 Collagen α-1(I) chain IAGQRGVVG 9 

Adenylyl CAP SGSDDSASRSALF 13 Collagen α-1(I) chain ISVPGPMG 8 

AHNAK nucleoprotein FPDVEFDIK 9 Collagen α-1(I) chain ISVPGPMGPSGPR 13 

AHNAK nucleoprotein GPQITGPSVE 10 Collagen α-1(I) chain KSGDRGETGPAGPAGPIGPVG 21 

AHNAK nucleoprotein GPQITGPSVEG 11 Collagen α-1(I) chain LSVPGPM 7 

AHNAK nucleoprotein LPSLEGGLN 9 Collagen α-1(I) chain QLSYGYDEK 9 

AHNAK nucleoprotein VDINFPKVE 9 Collagen α-1(I) chain QLSYGYDEKSTG 12 

Aldehyde oxidase 1 YPQAPVVMG 9 Collagen α-1(II) chain GLPGPPGPSG 10 

α-1B-glycoprotein SPAGPEAQFELR 12 Collagen α-1(II) chain SPGPAGPIG 9 

α-2-HS-glycoprotein SVVVGPSVVA 10 Collagen α-1(III) chain ERGAPGPQGPPGAPG 15 

Calponin-1 LTPEYPELG 9 Collagen α-1(III) chain EYEAYDVK 8 

Carbonic anhydrase 3 ASYDPGSAKTILN 13 Collagen α-1(III) chain NVGLAGLT 8 

Carbonic anhydrase 3 EPPVPLVR 8 Collagen α-1(XVII) chain GPQGPPGSIGPQG 13 

Carbonic anhydrase 3 SSAENEPPVPLVR 13 Collagen α-1(XVII) chain GVPGAPGIPG 10 

Collagen α-1(V) chain GPAGPMGLT 9 Collagen α-1(XVII) chain PVGPAGLPG 9 

Collagen α-1(I) chain AGPAGPIGPVG 11 Collagen α-2(I) chain AAGAPGPQGPVGPVG 15 

Collagen α-1(I) chain AGPIGPVG 8 Collagen α-2(I) chain AAGATGARGLVG 12 

Collagen α-1(I) chain GERGFPGLPGPSG 13 Collagen α-2(I) chain AAGPTGPIG 9 

Collagen α-1(I) chain GFPGADGVA 9 Collagen α-2(I) chain AGAPGPQGPVGPVG 14 

Collagen α-1(I) chain GPAGPAGPIG 10 Collagen α-2(I) chain APGPAGARGSDGSVGPVGPAGPIG 24 

Collagen α-1(I) chain GPAGPAGPIGPVG 13 Collagen α-2(I) chain APGPQGPVGPVG 12 



112 
 

Collagen α-1(I) chain GPAGPIGPVG 10 Collagen α-2(I) chain ARGSDGSVGPVGPAGPIG 18 

Collagen α-2(I) chain ASGPPGFVG 9 Collagen α-2(I) chain LPGIDGRPGPIGPAG 15 

Collagen α-2(I) chain AVGPRGPSGPQ 11 Collagen α-2(I) chain PVGPAGPIG 9 

Collagen α-2(I) chain AVGPRGPSGPQG 12 Collagen α-2(I) chain QFDAKGGGPGPMG 13 

Collagen α-2(I) chain EIGPAGPPGPPGL 13 Collagen α-2(I) chain QPGAVGPA 8 

Collagen α-2(I) chain EIGPAGPPGPPGLR 14 Collagen α-2(I) chain QPGAVGPAG 9 

Collagen α-2(I) chain ENGPVGPTGPVG 12 Collagen α-2(I) chain QPGAVGPAGIR 11 

Collagen α-2(I) chain GAAGLPGVA 9 Collagen α-2(I) chain RSGETGASGPPGFVG 15 

Collagen α-2(I) chain GAAGLPGVAG 10 Collagen α-2(I) chain SAGPPGFPG 9 

Collagen α-2(I) chain GAAGPTGPIG 10 Collagen α-2(I) chain SGETGASGPPGFVG 14 

Collagen α-2(I) chain GAPGPQGPVGPVG 13 Collagen α-2(I) chain SVGPVGPAGPIG 12 

Collagen α-2(I) chain GENGPVGPTGPVG 13 Collagen α-2(I) chain TPGPQGLLG 9 

Collagen α-2(I) chain GETGASGPPGFVG 13 Collagen α-2(I) chain VGLPGLL 7 

Collagen α-2(I) chain GEVGLPGLS 9 Collagen α-2(IV) chain EMGPQGPLGSHGGYT 15 

Collagen α-2(I) chain GEVGPAGPNGFA 12 Collagen α-2(IV) chain EVGPTGDFG 9 

Collagen α-2(I) chain GFPGSPGNIGPAG 13 Collagen α-2(IV) chain EVGPTGDFGDIG 12 

Collagen α-2(I) chain GGPGPMGLM 9 Collagen α-2(IV) chain GLPGAPGAVGTPG 13 

Collagen α-2(I) chain GIDGRPGPIGPA 12 Collagen α-2(IV) chain IAIERGPVGPQG 12 

Collagen α-2(I) chain GIDGRPGPIGPAG 13 Collagen α-2(IV) chain TPGITGIPQ 9 

Collagen α-2(I) chain GLPGVAGSVG 10 Collagen α-2(IV) chain YTGPPGLQG 9 

Collagen α-2(I) chain GPAGARGSDGSVGPVGPAGPIG 22 Collagen α-3(IV) chain EMGKPGLPG 9 

Collagen α-2(I) chain GPAGPAGPRGEVG 13 Collagen α-5(IV) chain GPPGSPGLPG 10 

Collagen α-2(I) chain GPPGESGAAGPTGPIG 16 Collagen α-5(IV) chain GQPGIPGLPGDPGYP 15 

Collagen α-2(I) chain GPQGPVGPVG 10 Collagen α-2(V) chain GVQGPEGKLGPLG 13 

Collagen α-2(I) chain GPRGFPGSPGNIGPAG 16 Collagen α-3(V) chain EPGPRGLIGPR 11 

Collagen α-2(I) chain GPRGFPGSPGNIGPAGKEGPVG 22 Collagen α-3(V) chain GEPGPRGLIGPR 12 

Collagen α-2(I) chain GPVGPTGPVG 10 Collagen α-2(VI) chain DIANTPHELY 10 

Collagen α-2(I) chain GSDGSVGPVGPAGPIG 16 Collagen α-2(VI) chain DPGIEGPIG 9 

Collagen α-3(VI) chain LSDAGITPLF 10 Collagen α-2(VI) chain NVVPTVVAVG 10 
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Collagen α-3(VI) chain QSGVVPFILQ 10 Collagen α-3(VI) chain DAGITPLF 8 

Collagen α-3(VI) chain TPLTTLT 7 Elastin GAGIPGAPGAIPGIG 15 

Collagen α-2(VIII) chain GLPGAPGQGGAPGP 14 Elastin GAGIPGGVA 9 

Collagen α-1(XV) chain TTYSGNSELITF 12 Elastin GAGIPGGVAG 10 

Decorin GLNNLAKLG 9 Elastin GAGVLPGVG 9 

Decorin SSGIENGAFQ 10 Elastin GAGVLPGVGVG 11 

EFEMP1 ASGVVPGGGFVA 12 Elastin GAIPGVPGVG 10 

Elastin AAGGFPGVG 9 Elastin GAVPGAVGLG 10 

Elastin AAQFGLGPGVG 11 Elastin GGGAFAGIPGVGPFG 15 

Elastin AFPGALVPGGPAG 13 Elastin GIGGVGGLG 9 

Elastin AGGAGVLPGVG 11 Elastin GIPGVGPFG 9 

Elastin AGGAGVLPGVGVG 13 Elastin GLAGPGLG 8 

Elastin AGIPGVGPFG 10 Elastin GLPAGVPGLG 10 

Elastin AGLPAGVPGLG 11 Elastin GLVPGAPGAIPGVPGVG 17 

Elastin AGQPFPIG 8 Elastin GQQPGVPLG 9 

Elastin AGQPFPIGGGAGGLG 15 Elastin GVFFPGAGLG 10 

Elastin AGQPFPIGGV 10 Elastin GVGDLGGAGIPG 12 

Elastin AGQPFPIGGVA 11 Elastin GVGDLGGAGIPGGVA 15 

Elastin AGVPGLGVG 9 Elastin GVGGLGVGGLG 11 

Elastin AIPGVPGVG 9 Elastin GVGPGGFPGIG 11 

Elastin ALPGAFPGAL 10 Elastin GVPGGVFFPGAGLG 14 

Elastin APGAIPGVPGVG 12 Elastin GVVPGVG 7 

Elastin APKLPGVGPQA 11 Elastin IGLGPGGVIG 10 

Elastin AVPGAVGLG 9 Elastin IPGVGPFG 8 

Elastin DLGGAGIPGGVA 12 Elastin LGPGGVIG 8 

Elastin GAAGGFPGVG 10 Elastin LPAGVPGLG 9 

Elastin GAGGAGVLPGVG 12 Elastin LPGVGPQA 8 

Elastin GAGGAGVLPGVGVG 14 Elastin LPGVYPGGVLPGAG 14 

Elastin PAVMGAGGVGAGPAGGASVSH 21 Elastin LSPIFPGGAG 10 
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Elastin PGVGVPG 7 Elastin LSPIFPGGAGGLG 13 

Elastin PGVGVPGVGVPG 12 
ELM2 and Myb/SANT 
domain containing 1 GLQPAGPLGQSHLA 14 

Elastin QPFPIGGGAGGLG 13 Ezrin APPPPPVY 8 

Elastin QPGYPGGVGAPGAGGASVSH 20 Ezrin TAPPPPPVY 9 

Elastin SPIFPGGAGGLG 12 Filamin A DGSPVPSSPFQ 11 

Elastin TGAVVPQLG 9 Filamin A DGVPVPGSPF 10 

Elastin VAPGIGLGPG 10 Filamin A DGVPVPGSPFS 11 

Elastin VAPGIGLGPGG 11 Filamin A DGVPVPGSPFSLE 13 

Elastin VAPGIGLGPGGVIG 14 Filamin A FSVEGPSQ 8 

Elastin VAPGVGVVPGVG 12 Filamin A SPAEFIVN 8 

Elastin VGAGVPGLG 9 Filamin A VPYEAGTYSLN 11 

Elastin VGGIGGVGGLG 11 Filamin A YTPVQQGPVG 10 

Elastin VGGIPTF 7 Gelsolin VPFDAATLH 9 

Elastin VGGIPTFG 8 Globin A1 KEFTPVLQ 8 

Elastin VGPGGFPGIG 10 Globin C1 AEALERMF 8 

Elastin VGVAPGIG 8 Globin C1 AEALERMF 8 

Elastin VGVGVPGLG 9 Globin C1 AEYGAEALERMF 12 

Elastin VGVPGLG 7 Globin C1 ASHLPSDFTPAVH 13 

Elastin VGVPGLGVG 9 Globin C1 ASLDKFL 7 

Elastin VGVPGVG 7 Globin C1 ASLDKFLA 8 

Elastin VGVPGVGVPGVG 12 Globin C1 ASLDKFLAN 9 

Elastin VGVVPGVG 8 Globin C1 ASLDKFLANVS 11 

Elastin VPGLGVG 7 Globin C1 AVEHLDDLPGALS 13 

Elastin VPGLGVGVGVPG 12 Globin C1 GAEALERMF 9 

Elastin VPGVGVPG 8 Globin C1 GHAAEYGAEALE 12 

Elastin VPGVGVPGVG 10 Globin C1 GHAAEYGAEALER 13 

Elastin VSTGAVVPQL 10 Globin C1 GHAAEYGAEALERM 14 

Elastin VSTGAVVPQLG 11 Globin C1 GHAAEYGAEALERMF 15 
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Globin C1 PSDFTPAVH 9 Globin C1 LRVDPVNF 8 

Globin C1 SHLPSDFTPAVH 12 Globin C1 NVSTVLT 7 

Globin C1 VDPVNFKLL 9 Histone H2A type 2-C GVLPNIQA 8 

Globin C1 VDPVNFKLLS 10 Histone H2A type 2-C GVLPNIQAV 9 

HSP70 QGAGGPGAGGFG 12 Histone H2A type 2-C IAQGGVLPNIQ 11 

HSPB1 AERRVPFSLL 10 Histone H2A type 2-C SSRAGLQFPVG 11 

HSPB1 AIEGPAYNRALS 12 LAMC1 EANDILNNLK 10 

HSPB1 ALPAAAIEGPAY 12 LIMD 1 SGWSGTPGSDPLL 13 

HSPB1 ALPAAAIEGPAYN 13 MAPKISS APTDPAAAGPLGPWG 15 

HSPB1 IEGPAYNRALS 11 MAPKISS TPSPVPFGPTPTG 13 

HSPB1 QSAEITIPVTF 11 
Niban apoptosis 
regulator 2 QLPSEKLVG 9 

HSPB1 SSLSPEGTLT 10 
Peroxiredoxin-5, 
mitochondrial DAIPSVEVF 9 

Hemoglobin β ADFQKVVA 8 PDIA6 GGAFPTIS 8 

Hemoglobin β DLSTADAVMN 10 Reticulon APLVDFG 7 

Hemoglobin β NEFTPVL 7 Reticulon ATPASAPLVDFG 12 

Hemoglobin β NEFTPVLQ 8 Reticulon GPLPAAPLA 9 

Hemoglobin β QADFQKVVA 9 Reticulon NDFVPPAPR 9 

Hemoglobin β QADFQKVVAG 10 SPTAN1 QWINEKEAALT 11 

Hemoglobin β QADFQKVVAGVA 12 SDC2 TFNNDPADDFTLR 13 

Hemoglobin subunit α LSFPTT 6 Tensin 2 SPTPAFPLA 9 

Hemoglobin subunit α LSFPTTK 7 Tensin-1 DQEPGAFIIR 10 

Hemoglobin subunit α VDPVNF 6 Tensin-1 GSFVSPSPLS 10 

Hemoglobin subunit α VDPVNFKL 8 Tensin-1 SPSGGSTVSFS 11 

HSPG2 ASISGVSLE 9 Tensin-1 TNTPPSPGFG 10 

HSPG2 SPSPGELVF 9 Tight junction protein 1 EPVPLSY 7 

Histone H2A type 2-C AGLQFPVG 8 TtRLC STFFPALQ 8 

Histone H2A type 2-C GGVLPNIQ 8 Zyxin SGYVPPPVT 9 
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Histone H2A type 2-C GVLPNIQ 7  AAQPFLF 7 

 AGVIFPVG 8  AEALEALSY 9 

 ALVELL 6  AFAPVLK 7 

 AMLVAGLE 8  FLAAWP 6 

 ANPLLE 6  FLLRT 5 

 APAPLL 6  FPLPPPPVA 9 

 APDLNLHL 8  FPTTK 5 

 APRTAVVPA 9  GAPSFPLG 8 

 APTPLL 6  GDVGTPGPPGPAG 13 

 AQLPVLL 7  GGAPSFPLG 9 

 ASLFGSVL 8  GPGALQGSGLAPGP 14 

 ASLFGSVL 8  GPIPVAPIG 9 

 ATLNELL 7  GPVGPGLMT 9 

 ATMAAPGGGGAGPPGVGGG 19  GQAVAGSPSP 10 

 CKLVGVGHG 9  GSGHGPR 7 

 DGSAFPFDIEG 11  GVSDPGRR 8 

 DLLALL 6  HPLPTT 6 

 DPFTIKPLD 9  IITADDGSGGPL 12 

 DPLLEL 6  KNPGALL 7 

 DPPANIQLF 9  KPGAEGGAGGGAGAAGGASVSH 22 

 DTPSCPPALL 10  LAGLTL 6 

 EGLPGPQGAPGLMGQ 15  LAGQAGALR 9 

 EIPASVF 7  LAVELL 6 

 ELLL 4  LELPFVK 7 

 ENKYVDSQGHLY 12  LKLPGVL 7 

 EQIPLLVQ 8  LLMPTTK 7 

 ETLLEL 6  LPALL 5 

 EVGGGPGVGYNVN 13  LPAPLVR 7 

 LSTAALE 7  LPGVGVPG 8 
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 LSVPGMP 7  LPSLL 5 

 LTAAPLV 7  SGVHTFPAVLQ 11 

 LTLPVL 6  SGVPGVRLL 9 

 LTPLL 5  SLDAYPVLN 9 

 MMPDGTLG 8  SPLPVLT 7 

 MPPLT 5  SQVPPGPTPPLQF 13 

 NEGLPAPIVR 10  SSFAEGLSE 9 

 NPPVGPIG 8  SSYMPEPVT 9 

 PAGGPYGGVGAPAGGGASVSH 21  STALYGESDL 10 

 PFPSGGGGVGAGGGASVGAYT 21  SYMPEPVT 8 

 PGGLLL 6  TAPLGAL 7 

 PPSAVGSPAAAP 12  TAPLQL 6 

 QALPVLL 7  TFPAVL 6 

 QALSYREAVLR 11  TFPAVLQ 7 

 QGLLPVL 7  TLLL 4 

 QNLNDRLA 8  TPFITNPGYDT 11 

 QTLLEL 6  TVFPTT 6 

 RDGGPRGGPA 10  VAPEEHPTLL 10 

 SEGALSPGGLA 11  VAVAGPLG 8 

 SFPLPTLT 8  VDLDVLKSR 9 

 SGVHTFPAVL 10  VEAGALL 7 

    VSPLT 5 
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Table 6.6 Cryptides for ACE inhibitory activity 

BLP digested with FP31K enzyme BLP digested with FP60K enzyme BLP digested with kiwi fruit 
extract 

Sequence BIOPEP data 
base ID 

Sequence BIOPEP data 
base ID 

Sequence BIOPEP data 
base ID 

AA 7590 AA 7590 AA 7590 

AF 7583 AF 7583 AF 7583 

AGP 9058  AGP 9058  AGP 9058  

AP 7584 AP 7584 AGSS 8096 

AR 7742 DA 7606 AP 7584 

AV 8951 DG 7681 AR 7742 

DA 7606 DY 9072  AV 8951 

DAQSAPLRVY 9112  EA 7623 DA 7606 

DG 7681 EG 7622 DG 7681 

DY 9072  EI 7826 EA 7623 

EA 7623 EK 7840 EG 7622 

EG 7622 EY 7752 EI 7826 

EK 7840 FG 7605 EK 7840 

ESAGIH 9002 FGASTRGA 7747 ESAGIH 9002 

EV 7828 FP 3502 EV 7828 

EY 7752 FQ 9076  EY 7752 

FG 7605 GE 7615 FG 7605 

FGASTRGA 7747 GF 7591 FGASTRGA 7747 

FGG 9195  GGY 3515 FP 3502 

FP 3502 GL 7599 FPFEVFGK 3394 

FPFEVFGK 3394 GLY 9033  FQ 9076  

FQ 9076  GP 7512 FQKVVAG 3365 

GE 7615 GPA 3342 FQKVVAK 3366 

GEP 7817 GY 3532 GE 7615 

GF 7591 GYALPHA 3357 GEP 7817 

GGY 3515 HL 7602 GF 7591 

GI 7596 IL 9079  GGY 3515 

GL 7599 LF 3551 GI 7596 

GP 7512 LG 7619 GL 7599 

GPA 3342 PG 7625 GP 7512 

GQ 7610 PL 7513 GPA 3342 

GR 7603 PP 7836 GQ 7610 

GRP 3378 VE 7829 GR 7603 

GV 7608 VF 3384 GRP 3378 

GY 3532 VP 7587 GV 7608 

GYALPHA 3357 VPAAPPK 8544 GY 3532 

IG 7595 VR 7628 GYALPHA 3357 

IL 9079  VY 3492 HL 7602 

IPA 3507 WA 9089  IF 7593 

IW 7544 YAAAT 8699 IG 7595 

KA 7743 YE 
  

9078  IL 9079  
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KG 7604 YG 3553 IPA 3507 

LA 7585 YGG 7647 IRA 3547 

LAA 3539 
  

KF 7692 

LF 3551 
  

KG 7604 

LG 7619 
  

KP 7810 

LKA 7569 
  

LA 7585 

MM 9085  
  

LAA 3539 

MPACGS 9105  
  

LF 3551 

MW 9091  
  

LG 7619 

PG 7625 
  

LKA 7569 

PL 7513 
  

LSPA 3564 

PLG 7510 
  

MM 9085  

PP 7836 
  

MPACGS 9105  

RF 3489 
  

PFPE 3374 

RP 7582 
  

PG 7625 

TE 7830 
  

PKAIP 3742 

TP 9073  
  

PL 7513 

VAA 3518 
  

PLG 7510 

VAGTWY 3509 
  

PP 7836 

VE 7829 
  

PQAFP 3585 

VF 3384 
  

PR 3537 

VG 7594 
  

RA 7588 

VP 7587 
  

RP 7582 

VPAAPPK 8544 
  

RR 7741 

VY 3492 
  

TP 9073  

WL 9107  
  

VAA 3518 

WM 9090  
  

VE 7829 

YAAAT 8699 
  

VF 3384 

YE 9078  
  

VG 7594 

YG 3553 
  

VGVPGGV 8363 

YGG 7647 
  

VP 7587 

YN 9185  
  

VPAAPPK 8544 

YP 3666 
  

VR 7628 

YV 9077  
  

VY 3492 

YVA 9036  
  

VYP 3505 

YYAKPAAVR 8397 
  

YE 9078      
YG 3553     
YGG 7647     
YN 9185      
YP 3666     
YV 9077      
YVA 9036  
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Beef lung hydrolysates have also been reported to produce varieties of bioactive peptides with a 

number of other activities. Webster, Ledward, and Lawrie (1982) produced beef lung hydrolysates 

using heat-treated beef lungs with Neutrase and Alcalase enzymes. The heat-treated beef lungs 

showed above 90% of degree of hydrolysates similar to our results of FP31K hydrolysate in 6.3.4. The 

study of (O'Sullivan et al., 2017) produced beef lung hydrolysates using papain, pepsin, and Alcalase. 

Only the Alcalase beef lung hydrolysates showed significant inhibition of cytokine production in 

RAW264.7 cells. Further, Alcalase bovine lung hydrolysate showed antiproliferative activity above 

0.005% W/V sample concentration. In a separate study, bovine lung hydrolysates produced the 

dipeptidyl peptidase-IV- (DPP-IV; EC 3.4.14.5) and prolyl endopeptidase- (PEP; EC 3.4.21.26) inhibitory 

peptides using Alalase and collagenase enzymes (Lafarga & Hayes, 2017). Pressure-treated bovine lung 

with Alcalase produced bioactive inhibitory peptides with the greatest activity. These had between 2 

and 9 amino acids. These studies indicate the potential of utilising beef lungs as a source of bioactive 

compounds. 

6.3.10 Implications 

The main implication is identifying large number of peptides in purified fractions unexpectedly. More 

purification steps should be involved to achieve this target and reverse-phase HPLC and ion exchange 

chromatography could be a suitable approached for future researches. Di-peptides and tri-peptides 

were not identified in results and this could be a limitation of the mass spectrometry. 

 

6.4 Conclusion 

Anti-hypertensive peptides can be produced from the beef lung hydrolysates of Kiwifruit 

extract, fungal protease 31K and fungal protease 60K. Beef lung hydrolysis of fungal protease 31K 

produced the highest active ACE inhibitory fractions and purified through the ultrafiltration and gel 

filtration. Purified ACE inhibitory peptide of fungal protease 31k exhibited the IC50 value of 24 µg/mL. 

New peptide sequence “Val-Ser-Pro-Gly-Met-Pro” was identified as a possible ACE inhibitory peptide. 
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Chapter 7 

General Discussion 

Beef lungs are an underutilised co-product which has a significant nutritional value. In western 

countries,  beef lungs have a low consumer demand due to strong aesthetic rejection and poor intrinsic 

textural quality (Chávez‐Jáuregui et al., 2003). Processing of beef lung as a food ingredient and 

incorporation into widely consumed foods could act as a vehicle to deliver nutrition to communities 

with high levels of nutrition deficit.  In the first experiment (Chapter 3), durum wheat pasta was used 

as a model food for beef lung supplementation.  Beef lungs that had been dried at 60°C for 32 hours 

were received from ANZCO Foods, New Zealand. These lungs were then ground to prepare beef lung 

powder (BLP).  

BLP in Chapter 3 was reported to have 87% of protein content which is suitable as a protein 

supplement. However, protein sources have different quality levels which depends on their amino acid 

composition (Shaheen et al., 2016). The indispensable amino acid score (IAAS) of BLP was the 

maximum of “1”. This means that BLP contained all the necessary amino acids with required ratios and 

quantities to deliver the nutrition reference pattern of the older child, adolescent or adult. This 

reference pattern (Chapter 3) covers the amino acid requirement of all ages except infants and 0.5 to 

3 years toddlers (FAO, 2011). However, infants are supposed to have exclusive breastfeeding 

(Cernadas, Noceda, Barrera, Martinez, & Garsd, 2003), and toddlers are more comfortable with 

semisolid foods than protein powder. 

In Chapter 3, durum wheat pasta was selected as a model food to incorporate BLP. Because 

pasta is a widely consumed food around the world, BLP supplementation of pasta would be a suitable 

vehicle to introduce beef lungs into the human food chain. BLP 10% incorporation level exhibited more 

positive factors like lowest cooking loss, lighter and yellowish colour values (Chapter 3). Further, 

control pasta IAAS shifted from 0.48 to 0.91 and iron content increased 0.03 to 0.143 mg g-1, after 

supplementation of 10% BLP. The glycaemic response also decreased with the BLP supplementation 

as healthy food. 

The branched-chain amino acids (leucine, isoleucine and valine )  have anabolic properties 

(Holeček, 2018) to build muscles. Leucine is a highly available essential amino acid in BLP followed by 

valine and isoleucine (Chapter 3 and 4), So there is a possibility of using BLP as a muscle-building 

protein supplement. The demand for protein supplements continuously growing and it has had a large 

profit margin for some industries. Using currently undervalued beef lungs to produce protein 

supplement would underpin profitability. Further, processing of beef lungs involved in simple and low-

cost processing techniques (mincing, air-oven drying, grinding) in Chapter 3 and 4 to produce an 

economical end product. These low-cost animal proteins are essential for world hunger countries 
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which have less purchasing ability for costly animal proteins. Further, this beef lung powder could 

prevent the protein and micronutrient deficiencies in malnourished communities. These hunger 

countries are centred in the African region, and there is potential to establish processing facilities their 

as well. 

 Most of the African countries belong to the tropical region, and solar power is a major free energy 

source. So, there is a possibility of establishing solar driers for beef lung drying in African region. 

Further, solar units can easily reach the  50 °C temperature (Chauhan & Rathod, 2020) which is 

recommended temperature for beef lung drying in Chapter 4. Chapter 3 described that beef lungs were 

dried for a long time (32 hours) which was an economic disadvantage. Meat producing temperate 

countries like New Zealand cannot use solar power consistently and have to use electricity or fuel. 

Reducing the BLP drying temperature is identified as a key point in Chapter 4. Then Chapter 4 outlined 

the mincing of beef lungs to reduce the drying time and temperature.  Mincing of beef lungs increased 

the drying surface area and successfully dried at 50 °C, 70 °C and 100 °C temperatures for 23, 11 and 6 

hours respectively. 

 Physicochemical properties of BLP were measured and all BLP powders showed threefold 

higher water-binding capacity (WBC) than sample weight. These high WBC values positively affect 

baking doughs to absorb water (Southward, 2003). In Chapter 4, beef lung powder was mixed with 

semolina dough and the RVA viscosity curve was determined. Chapter 4 described the lowering of 

retrogradation in baking doughs with BLP incorporation. This lowering effect may give additional 

advantage to the baking products like bread and biscuits. Viscosity curves in Chapter 4, showed the 

increasing hardness of semolina dough with the BLP and these results are consistent with the 

increasing hardness of pasta in Chapter 3. So, firm foods like biscuits and cookies may suitable for BLP 

incorporation without changing textural characteristics. Further, increasing percentage of BLP reduced 

the lightness “L” colour values and darker the product; the BLP incorporation could be suitable with 

dark coloured biscuits and cookies without affect the product colour. Beef lungs have been 

incorporated into hot extruded snacks by Chávez‐Jáuregui et al. (2003); Moreira-Araujo et al. (2008). 

So, there is a possibility of producing hot extruded snacks like puffed snacks with dried beef lung 

powder as well. 

Viscosity curves of 50 °C drying were close to the control (semolina only) curve and other 

higher drying temperatures curves were at lower levels. These viscosity differences could occur due to 

protein denaturation at higher temperatures. Further, BLP protein degradation at higher temperatures 

(70 °C and 100 °C) were obvious on the SDS-PAGE protein profile when compared with the 50 °C 

temperature (Chapter 4). Altogether, protein degradation at higher temperature could decrease 

dough viscosity and low temperature drying increase the viscosity. Further, low temperature dried (50 

°C) BLP had pasting properties similar to adding undenatured whey protein and caseinate in Shin et al. 

(2010).  
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Although high temperature drying denature the protein, amino acid profile of BLP was not 

altered except the glycine amino acid. The glycine content significantly increased at 100 °C drying 

which may due to the side chain cleavage of other amino acids at high temperatures. Glycine is not an 

essential amino acid and does not affect the indispensable amino acid score (IAAS) (Rutherfurd, 

Fanning, Miller, & Moughan, 2015). Further, IAAS of BLP cannot be altered with BLP drying 

temperatures due to the consistent behaviour of essential amino acid profile during the drying process.  

BLP powder was further evaluated for the mineral content in Chapter 4, and these results 

correspond with the initially produced BLP in Chapter 3 except the iron content. The whole lung was 

dried in Chapter 3 to produce BLP, but minced beef lungs were used in Chapter 4. The mincing process 

washed off the blood from beef lungs, and this could cause decreasing the 1 mg/g iron content in 

Chapter 3 to 0.6mg/g iron content in Chapter 4. In addition to the physicochemical parameters, it is 

crucial to ensure the safety aspect of the BLP. Total viable count, coliform and yeast & mould were 

counted and all parameters were in safe range after 6 months of storage according to the microbial 

reference guide New Zealand (MPI, 1995). These findings suggest the possibility of safely obtaining 

raw beef lungs from New Zealand slaughterhouses and safely processing of BLP. 

Lipid oxidation is the primary cause of quality deterioration (Ahmed et al., 2016). The 

relationship between the off flavour of lipid oxidation and TBARS value has established the Greene and 

Cumuze (1982). They have reported that the threshold for determining off flavours in beef is 0.6 to 2 

mg MDA in beef. According to that reference, Chapter 4 BLP dried at 50 ˚C to 70˚C temperature is 

convenient for consumption even after six months storage, but BLP dried at 100 ˚C was not suitable 

for consumption after six months of storage by considering the threshold limit as 0.6 mg MDA /Kg. But 

unfortunately, a sensory analysis was not conducted to identify the off flavours due to the constrains 

of obtaining food grade beef lungs which are described in end of Chapter 5. 

Protein oxidation was also limited at 50 ˚C drying temperature, and 50 ˚C was identified as the 

most suitable drying temperature for beef lungs in Chapter 4. The protein oxidation could lead to 

protein aggregation and may cause a reduction of digestibility and negatively impact on the nutritional 

status (Gatellier et al., 2010) as described in Chapter 5.  

Storage conditions of Beef lung powder is crucial in industrial level and Chapter 4 described 

the possibility of storing at room temperature. So, BLP can easily distribute to low income countries at 

low delivery cost without maintaining a cold chain.  However, the higher water affinity of BLP can be a 

problem of industrial level storing and moisture impermeable aluminium pouches can be 

recommended for long term storage. The 50 °C dried beef lung powder showed significantly higher 

water solubility index (WSI) and significantly higher porosity, which could affect the digestion of the 

BLP (Schweigert et al., 1954). Chapter 5 confirmed the higher-level protein digestibility of BLP dried at 

50 °C, and there could be an association with WSI and porosity. 
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Chapter 5 showed the digestion of BLP dried at 50 ˚C, 70 ˚C and 100 ˚C by simulating human 

gastrointestinal digestion. All three samples were highly digested above the 90% digestibility. The 

digestion level was similar to the boiled hairtail (Thichiurus lepturus) fillets digestion Tavares (Tavares 

et al., 2018) and beef, pork, chicken and fish digestion with in vivo dog assay (Faber et al., 2010). The 

50 ˚C dried BLP showed significantly higher (96%) protein digestibility compare with other drying 

temperatures. Further, free amino acid release was also significantly higher in BLP dried at 50 ˚C than 

higher temperatures. Decrease of releasing free amino acid could occur due to the elevated protein 

oxidation of BLP with higher temperatures according to the results of Chapter 4. 

The mineral release was observed during the digestion In Chapter 5 to ensure the nutritive 

value. Higher drying temperatures (70 ̊ C to 100 ̊ C) significantly (p<0.05) reduced the release of copper 

(Cu), iron (Fe) and sulphur(S) and their maximum concentration was seen in raw and 50 ˚C dried 

samples. The soluble iron could convert to an insoluble form due to precipitate with the proteins 

(Garcia et al., 1996; O’Loughlin, Kelly, Murray, FitzGerald, & Brodkorb, 2015). Another meat roasting 

study showed that meat roasting on the conventional oven was reported a significant decline in bio-

accessibility of metal ions  like copper and zinc (Menezes et al., 2018) similar to Chapter 5 results of 

BLP. In overall, beef lungs should be processed in low temperature (50 ˚C) as a mineral supplement for 

better mineral bio-accessibility. 

SDS-PAGE analysis of Chapter 4 illustrated the low molecular proteins in raw beef lungs and 

described the possibility of having bioactive peptides. Chapter 6 focused on producing ACE inhibitory 

peptides from raw beef lungs. Bovine lung hydrolysates were prepared by two fungal proteases 

(FP31K, FP60K) and kiwi fruit extract. In this study IC50 values of beef lung hydrolysates are lower than 

IC50 of goat meat hydrolysates (Jamhari et al., 2013; Mirdhayati et al., 2016). So, beef lungs are more 

suitable to prepare ACE inhibitory peptides by enzymatic digestion. Then, amino acid sequence of ACE 

inhibitory peptide was identified as Val-Ser-Pro-Gly-Met-Pro. Newly identified sequence was not 

recorded previously in the BIOPEP database. Chapter 6 described the possibility of having strong ACE 

inhibitory activity in Val-Ser-Pro-Gly-Met-Pro peptide sequence based on literature evidences 

(Matsumura et al. (1993); Hrynkiewicz et al. (2019). Further research should be carried out to confirm 

the ACE inhibitory activity of the identified amino acid sequence. There is possibility of synthesising 

this amino acid sequence and administrate into live subject to observe the blood pressure lowering 

effect. Chapter 6 confirmed collagen, elastin and bovine serum albumin as dominant proteins in bovine 

lungs by matching sequences with their parental proteins.  

Altogether, beef lung powder (BLP) is a protein and mineral enriched food ingredient which 

compatible with incorporating to starchy foods like semolina pasta. Beef lung powder contains highly 

digestive protein and rich in essential amino acids. Safety of the BLP was assured for the total viable 

count, coliform and yeast & mould with six months of storage. Further, it is advisable to store in a cool 

and dry place within a moisture impermeable aluminium pouch due to high moisture affinity. These 
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characteristics of bovine lung powder make it  suitable for low-income hunger countries to provide 

quality proteins for an affordable price. This project identified the accumulation of underutilised beef 

lungs in major meat-producing countries like New Zealand, and at the same time identified the higher 

prevalence of protein energy malnutrition in low-income hunger countries. This project successfully 

bridged the gap by producing low-cost beef lung protein powder and incorporating into widely 

consumed food. Until establishing a better regulatory system to obtain edible beef lungs, raw beef 

lungs can use to produce ACE inhibitory peptides for the pharmaceutical industries to increase the 

economic value of the bovine lungs. 

7.1.1 Future research 

 
1) Sensory attributes of beef lung powder need to be validated, which was not done in our first 

experimental chapter. So, future researchers should focus on obtaining edible bovine lungs by 

complying with their local food standards. 

 

2) Chapter 5 determined the nutrition release with in vitro digestion, and it will be interesting to 

validate the bioavailability of essential nutrients. Bioavailability of nutrients can be validated 

using the in vitro Caco 2 cell line as a model of the intestinal barrier. 

 

3) A lot of peptides were identified In Chapter 6 from the purified fractions. The number of 

peptides could be reduced   by further purifying the fractions through reverse phase HPLC and 

ion-exchange chromatography. 

 

4) The ACE inhibitory activity of the newly identified peptide sequence (Val-Ser-Pro-Gly-Met-Pro) 

needs to be further validated for future pharmaceutical uses. For instance, chemically 

synthesised peptide sequence can be administrated into the diet of spontaneously 

hypertensive rats to demonstrate the lowering blood pressure.  
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Appendix A 

Ethical approval for sensory evaluation of beef lung powder 

incorporated semolina pasta 
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