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Abstract 

In vivo and in vitro studies of 4-vinylcyclohexene diepoxide in wild-caught 

female brushtail possums (Trichosurus vulpecula) and Norway rats (Rattus 

norvegicus) and its potential as a fertility control agent    

by 

Anna Mae Burd 

 

In New Zealand (NZ), the brushtail possum (Trichosurus vulpecula) poses a major threat to native 

flora and fauna and it is the main wildlife vector for bovine tuberculosis. Primary control utilizes 

lethal means but these methods have limited efficacy long-term and are associated with 

environmental impact concerns. Fertility control has become more popular as it is potentially more 

effective, sustainable and humane. The industrial chemical, 4-vinylcyclohexene diepoxide (VCD) may 

serve as an ideal chemosterilant candidate for investigation. Oral gavage studies have shown that 

VCD reduces the pool of non-regenerating immature ovarian follicles in rodents, resulting in 

premature ovarian failure and sterility. The first objective of these studies was to examine the effects 

of orally administered VCD on female possum ovarian follicle populations. Orally delivered VCD had 

no effect on the primordial follicles of adult female possums and two formulations aimed at 

improving VCD uptake and efficacy did not change this outcome. The second objective examined the 

uptake and metabolism of orally administered VCD in female possums and rats in vivo. VCD 

concentration in the blood of rats was significantly greater than in possums while concentrations of 

VCD in the stomach were comparable between species. VCD dosing did not alter pH of stomach 

contents of possums while that of rats was increased and sustained for 6 hours. VCD-induced 

reductions in ovarian and liver glutathione levels were observed in the rat with no effects in the 

possum. It was determined that the highly acidic environment of the stomach of possums poses an 

initial barrier for orally delivered VCD. Without sufficient quantities of VCD reaching the liver and 

ovaries of possums, it was not possible to compare species differences in metabolism in vivo. The 

third objective examined the fate of VCD when exposed to acidic environments and stomach 

contents and the effects of VCD on liver metabolism in vitro in possums and rats. VCD hydrolysis in 

stomach contents was slower in possums compared with rats suggesting that possum stomach 

contents are able to retain VCD longer, thus potentially modulating VCD toxicity. GSH levels in 

possum liver tissue were less affected when incubated with VCD compared with rats, suggesting an 

increased detoxifying capacity of possums. Preliminary data on the ability of possum liver 

microsomes to convert VCD’s parent compound, 4-vinycyclohexene, to VCD corroborated the GSH 
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findings. Collectively, these findings suggest that VCD may not be suitable for possum fertility control 

when delivered orally in a raw unprotected chemical state. Encapsulation of VCD with an additional 

active compound, triptolide, is being examined as a novel chemosterilant (ContraPest®, SenesTech®, 

Flagstaff, Arizona). The fourth objective examined ContraPest® efficacy in wild-caught female Norway 

rats. The ovarian primordial follicle pools of ContraPest®-consuming rats were reduced compared 

with controls. The proposed protection of the active components within ContraPest® from stomach 

acid by encapsulation may provide the first step for its potential use in possums. Further work 

demonstrating the efficacy of ContraPest® in rodents will be required before further inestigation on 

possums can be proposed. 

Keywords: Brushtail possum, Trichosurus vulpecula, Norway rat, Rattus norvegicus, fertility control, 

pest control, chemosterilant, bait, 4-vinylcyclohexene diepoxide, ovary, follicle, stomach pH, 

glutathione, metabolism. 
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Chapter 1 

General Introduction 

The aim of the studies presented here was to examine a potential fertility control agent, 4-

vinylcyclohexene diepoxide (VCD), for its potential use for control of New Zealand pest mammals, 

specifically the brushtail possum. The first research aim was to examine the effects of an oral VCD 

dose on the primordial follicle populations in adult female possums (Objectives 1a and 1b). Based on 

results obtained from the first objective, the following 3 objectives were formulated using a flow 

diagram developed prior to the start of experimentation (Figure 1.1). The uptake and metabolism of 

orally administered VCD in the possum was next examined (Objective 2a). Comparisons were made 

to that of wild Norway rats and previous literature in rodents. The effects of acid and stomach contents 

of each species were then examined in vitro for their actions on VCD (Objective 2b). The third 

research aim compared differences in the metabolism of VCD and its parent compound, 4-

vinycyclohexene (VCH), between rats and possums (Objectives 3a and 3b). Finally, a novel 

chemosterilant (ContraPest
®
, SenesTech Inc

®
) was examined for its potential as a rodent fertility 

control method in wild-caught Norway rats (Objective 4a and 4b).  Pending successful application for 

its use as a rodent chemosterilant, the formulation and application methods for ContraPest
® 

may 

subsequently provide an opportunity for its use as a control method for possums in New Zealand.  
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Figure 1.1 Flow diagram of potential research objectives based on the outcome derived from the 
initial gavage pilot study in possums.   

 

 Research objectives 1.1

To achieve the aims outlined above the following questions and research objectives were identified: 

1. Will an oral dose of VCD induce primordial follicle reductions in adult female possums?  

a. Identify an effective dosing regimen for orally delivered VCD and examine is effects 

on female possums (Chapter 4) as they relate to: 

i. The general health of the animal 

ii. The primordial ovarian follicle pool of the animal  

b. Investigate potential formulations to improve the uptake and efficacy of orally 

delivered VCD in female possums (Chapter 4) as it relates to: 

i. The general health of the animal 

ii. The primordial ovarian follicle pool of the animal  
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2. Is VCD absorbed from the stomach into the blood of possums in a similar fashion to that of 

rats? Once absorbed, is VCD metabolised in a similar fashion in possums as documented in 

rats? 

a. Examine in vivo differences in VCD-induced ovarian toxicity between possums and 

rats (Chapter 5) as it relates to: 

i. VCD uptake from the stomach into the blood of each species 

ii. The effect of a bolus dose of VCD on the stomach acidity of each species  

iii. VCD’s effects on metabolism as measured by changes in glutathione levels of 

the red blood cells, plasma, liver and ovaries of each species.   

b. Verify in vivo results of possums and rats through in vitro examination of VCD effects 

(Chapter 5) as they relate to: 

i. The effect of acid on VCD over time and concentrations ranges  

ii. The effect of stomach acidity of each species on VCD   

3. Is possum metabolism more similar to that of rats or to that of mice?  

a. Compare and contrast the in vitro metabolism of VCD’s parent compound, 4-

vinylcyclohexene, in possum and rat liver microsomes as measured by cytochrome 

P450 (Chapter 6) 

b. Compare and contrast the in vitro metabolism of VCD in possum and rat liver 

microsomes as measured by glutathione (Chapter 6)  

4. Can ContraPest
®
 serve as a chemosterilant for the control of rodent pests in New Zealand?   

a. Examine palatability and consumption rates of ContraPest
® 

with and without pellet 

food provided (Chapter 7) 

b. Identify and ideal baiting regimen (i.e. efficacy of a pre-feed period) (Chapter 7) 

c. Examine the effects of ContraPest
® 

on the ovarian follicle populations of rats (Chapter 

7)   

 General comments 1.2

The four data chapters in this thesis (Chapters 4-7) have been written as thesis chapters to avoid 

redundancy. However, they will be reformatted as manuscripts as per the requirements of each 
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individual journal. Details on individual publications arising from this thesis are presented in Table 

1.1. 

 

Table 1.1 Manuscript details and status of each chapter. 

Chapter Title Authors Journal Status 

4 

Effects of orally delivered 4-

vinylcyclohexene diepoxide on 

the ovarian follicle populations of 

female brushtail possums 

Burd, AM; Scobie, S; 

Brown, S; Dyer, CA; 

Duckworth, JA 

Wildlife 

Research 

In 

preparation 

5 and 6 

Uptake and metabolism of 4-

vinylcyclohexene diepoxide in 

wild female brushtail possums 

and Norway rats 

Burd, AM; Ketelaars, L; 

van Grinsven, N; van 

der Hee, B; Brown, L; 

Brown, S; Trought, K; 

Duckworth, JA 

PLOS ONE 
In 

preparation 

7 

Examination of a novel bait 

containing 4-vinylcyclohexene 

diepoxide and triptolide in wild 

female Norway rats 

Burd, AM; Mayer, LP; 

Hinds, LA; Barrell, GK; 

Duckworth, JA; Dyer, 

CA 

European 

Journal of 

Wildlife 

Research 

In 

preparation 
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Chapter 2 

Literature review  

 Pests of New Zealand 2.1

Prior to human colonization, the only known mammals present in New Zealand (NZ) were bats and 

pinnipeds. The lack of land-dwelling mammals favoured the evolution of flightless birds such as the 

iconic Kiwi. The first records of land-dwelling mammals arrival to NZ was during Polynesian 

colonization (AD 1250-1300). These included the Kiore (Pacific rat, Rattus exulans) and the Kurī 

(Polynesian domestic dog, Canis familiaris subspecies; extinct) which later interbred with the 

European dog (Canis familiaris). European colonization (from circa 1769) resulted in the introduction 

of 54 mammalian species into New Zealand, some of which have become pests. Of the established NZ 

pests 57% negatively impact 359 threatened taxa (King, 2005). This review will focus on two of the 

most common invasive species in NZ, the brushtail possum (Trichosurus vulpecula) and the Norway 

rat (Rattus norvegicus). I will discuss the nature of their introduction, current lethal control methods 

and the development of non-lethal, fertility control management strategies for these NZ pest species. I 

will present an overview of current fertility control methods being examined with focus on a novel 

chemosterilant, 4-vinylcyclohexene diepoxide (VCD), which shows promise because of its ability to 

induce permanent infertility.   

 The brushtail possum 2.2

In the mid-1850s the Australian brushtail possum was introduced to NZ by European settlers to 

establish a fur trade (Clout and Ericksen, 2000). Controversy over the damaging effects of possums to 

the native forests first arose in the 1920s and continued until 1947 when the NZ Government instituted 

the legalisation of poison baiting and penalized any harbouring or liberation of possums. Between 

1950 and 1970, the need for possum control using poisons grew steadily. By the late 1960s it was 

recognized that possums were likely vectors for bovine tuberculosis (Tb), spurring the Government to 

continue to increase possum control efforts (Clout and Ericksen, 2000). Brushtail possums are now 

considered to be the main wildlife vector for Tb in livestock, thus forming a significant threat to NZ 

dairy, beef and deer product exportation. Presently, possums inhabit 90-95% of mainland NZ (Cowan, 

2000) at densities up to ten times higher than those found in Australia (Cowan, 2005; PCE, 2000). 

Current lethal and non-lethal methods for possum control in NZ are described below.    

 The Norway rat 2.3

The Norway rat was the first of the four rodents in the Muridae family to be unintentionally introduced 

to NZ by European settlers. Since their introduction, they have spread rapidly throughout the North 
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Island and South Island due to their adaptive nature and commensalism with humans. Additionally, it 

has been documented that they have colonized >60 offshore islands (Innes, 2005). Similar to the 

brushtail possum, the Norway rat is a predatory pest on native fauna such as ground-dwelling birds 

like the Kiwi. Furthermore, because they are commensal pests, they cause undesirable effects to 

society, for example gnawing on items such as electrical wiring in homes, cars, and businesses; 

spoiling food by defaecation; damaging food containers; and harbouring of zoonoses (infectious 

diseases that spread from non-human animals to humans). In the hope of negating these effects, 

control methods have been wide spread throughout NZ and are reviewed in detail below. 

 Lethal control methods 2.4

Since the mid-1950s, the NZ Government has employed the use of broad spectrum poisons to control 

pest populations. Sodium monofluoroacetate (also known as 1080), cholecalciferol (Vitamin D3), 

Feratox® (encapsulated cyanide), and brodifacoum have been widely used throughout NZ forests to 

control possums, whereas rodent control has mainly focused on eradication from off-shore islands 

using aerial and ground baiting (primarily with 1080 or brodifacoum) (Cowan, 2005). Recent 

estimates of 2.8 million hectares (10%) of NZ’s land is subject to such control methods (Nugent et al., 

2012). Removal of Kiore (R. exulans), ship (R. rattus) and Norway rats has been highly successful 

with more than half of the populated islands now rodent-free (Innes, 2005). Of the four rodent species 

in NZ, only the ship rat has been specifically targeted on the North and South islands. Because of their 

similarities to possums (impacts, habitat and dispersion) these two species are now routinely co-

targeted in mainland poison operations. Control of the house mouse (Mus musculus) has been 

minimal, mainly due to inadequate understanding of their effects in the environment, and has included 

commercial poisoning, fumigation, trapping and repellent use. Additionally, house mouse populations 

on off-shore islands have been indirectly targeted following 1080 aerial drops aimed at targeting 

possums (Innes, 2005).  

Poison control efforts often report >80% reduction in pest species, though failures do occasionally 

occur. Ingestion of a sub-lethal dose can lead to bait shyness (Hardy et al., 1983), hampering control 

efforts long-term. Reduced interspecific competition can occur due to increased food and resource 

availability for surviving animals, thereby increasing reproduction potential (Clinchy et al., 2001; 

Eason et al., 2011; PCE, 2000). Such effects are most prevalent in rodent species due to their high 

fecundity. Rodents are able to rebound in numbers that can exceed the original population in a short 

period of time. Immigration and re-establishment of pest species following the cessation of control 

operations can also diminish effectiveness (Eason et al., 2011; Green and Coleman, 1984; Isaac, 2005; 

Ji et al., 2004; Nugent et al., 2012). There is also great pressure from the public sector to halt  poison 

control because of its associated costs, need for repeat operations, potential to enter public water-

supply catchments, persistence in soil and plants, potential lethal effects to non-target species and its 

general inhumane nature (Clout, 1999; Eason et al., 2011; PCE, 1994, 2000, 2011; Veitch and Clout, 

2001). Death from cholecalciferol and brodifacoum poisoning can take anywhere from 4-36 days 
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(Eason, 2002) and 15-28 days (Eason et al., 1996) respectively, demonstrating the inhumaneness of 

their use as a form of possum control. In addition, persistence of brodifacoum in possum muscle and 

liver tissues poses a risk for transfer of residues through the food chain into wildlife, domesticated 

animals, and humans (Eason et al., 1996). Studies have shown that ingestion of toxins can occur 

through direct bait consumption or by indirect methods such as feeding on poisoned carcasses. Non-

target species that have been affected include birds, dogs, cats, cattle, sheep, pigs, lizards, frogs and 

invertebrates (Eason, 2002; Notman, 1989; Spurr and Powlesland, 1997). Collectively, these negative 

side effects support the need for a more publically acceptable, effective and sustainable control 

method to reduce and maintain low pest populations, particularly of possums and rodents, throughout 

mainland NZ. One such option may be to target the reproductive output of the target species.   

 Ovarian and follicular development  2.5

Development of the undifferentiated gonad through to folliculogenesis during the oestrous cycle is 

highly conserved in mammalian species. However, differences between eutherians and marsupials do 

exist, especially regarding the timing of events. Using a rodent model, I will review key events in 

ovarian development and follicle maturation taking special note of the differences in possum biology 

where applicable.   

In mice, primordial germ cells (PGCs) are first observed in the endoderm (yolk sac) on gestational day 

(GD) 8 and migrate to the genital ridge by GD 11-12. In possums however, PGCs originate in the 

nephrostomial canals of the mesonephros and can be first observed migrating to the genital ridge just 

before birth (GD 15-17.5) (Ullmann, 1996). Following gonadal ridge formation, the PGCs begin to 

invade and proliferate within the undifferentiated gonad (mouse, GD 14.5; possum, GD 17.5; Figure 

2.1). Gonadal sexual differentiation can be determined by GD 13.5 in the rat (GD 12.5 in the mouse) 

whereas in the possum, this occurs after birth on approximately post natal day (PND) 2 (Eckery et al., 

1996; Hirshfield, 1991).  In both species, differentiation of the testis precedes that of ovarian 

differentiation. Initiation of meiosis in the germ cells (GCs) in rodents is initiated around GD 14.5 and 

by GD 18.5 the maximum amount of GCs is reached (~75,000 in the rat) (Hirshfield, 1991). In the 

possum, germ cell meiosis is initiated around PND 35-40 with the maximum number reached around 

PND 50-70 (Eckery et al., 1996; Shackell et al., 1996).   
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Figure 2.1 Stages of oogenesis (not drawn to scale) during initial follicular recruitment for the 
rodent (mice and rats) and possum. Adapted from Frankenberg et al. (1996). 

 

Following the cessation of mitotic division, GCs begin to transform into oocytes through meiotic 

division. In the rat, meiotic GCs are first observed on GD 17.5 (GD 16.5 in the mouse) while in the 

possum this occurs around PND 35-40 (Eckery et al., 1996; Frankenberg et al., 1996; Hirshfield, 

1991). In both species, mass attrition of the GCs populations occurs shortly after with approximately 

65% (PND 2) and 80% (PND 80-90) of GCs lost to atresia in the rat and possum, respectively. Rat 

primordial follicle formation begins around birth and by PND 2 much of the primordial follicle pool 

has formed (Hirshfield, 1991; McGee and Hsueh, 2000). On the other hand, the primordial follicle 

pool in possums begins to form around PND 50-70 (Eckery et al., 1996; Eckery et al., 2002b; Shackell 

et al., 1996; Ullmann, 1996). These species differences in timing of events is continued throughout the 

transition from primordial to pre-ovulatory follicles with numerous preantral and antral follicles 

present by PND 30 in the rat and ~200 days of possum pouch life (Eckery et al., 1996; Hirshfield, 

1991; Shackell et al., 1996) (Figure 2.1). For clarification, pre-pubertal development of follicles will 

be referred to as initial recruitment whereas post-pubertal follicle development occurring during each 

oestrous cycle will be referred to as cyclic recruitment (Figure 2.2) (McGee and Hsueh, 2000).  
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Figure 2.2 The folliculogenesis life cycle depicting initial and cyclic recruitment of follicles. Adapted 
from McGee and Hsueh (2000). 

 

Rats become sexually mature around 32-36 days of age (Goldman et al., 2007) while possums reach 

sexual maturity at 1 year (Tyndale-Biscoe, 1955). The age at which each species reaches sexual 

maturity reflects the differences in their life cycles (rodents, 1-2 year life span (Berg and Simms, 1960; 

Solleveld et al., 1984); possums, 8-9 years (Clinchy et al., 2004)). The oestrous cycle, which is 

regulated by the hypothalamic pituitary gonadal (HPG) axis feedback loop (Figure 2.3), lasts for 4 to 5 

days in the rat (Goldman et al., 2007) and 26.5 ± 1.3 days in the possum (Duckworth et al., 1998).   

The biphasic pattern of cyclic recruitment of follicles during the oestrous cycle is similar between the 

species with the exception that rodents are polyovulatory while possums are monovulatory (McGee 

and Hsueh, 2000; Rodger et al., 1992). Phase 1 of follicular cyclic recruitment involves maturation of 

a small cohort of primordial follicles and their oocytes (Figure 2.2) (Rodger et al., 1992). Once 

follicular growth is initiated, primordial follicles are committed to either growing to ovulation (i.e. 

dominant follicle) or they will become atretic and die (Figure 2.2) (Crawford et al., 2011). Primordial 

follicles are both nonsteroidogenic and gonadotrophin and steroid hormone independent (Skinner, 

2005). The factors that regulate the initiation and growth of primordial follicles is not well understood, 

although it is widely accepted that local growth factors are involved (Crawford et al., 2011). Details on 
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these local growth factors as they related to eutherians and marsupials are reviewed in Skinner (2005) 

and Crawford et al. (2011), respectively.  

The transition from a primordial follicle to a primary follicle involves several changes. The GCs 

change from squamous to cuboidal (Hirshfield, 1991) and begin expressing follicle stimulating 

hormone (FSH) receptors (Eckery et al., 2002c; McGee and Hsueh, 2000). Theca interstitial cells 

(differentiated stromal cells) are recruited and begin to surround the primary follicles. In eutherians, 

expression of luteinizing hormone (LH) receptors in theca cells is first observed at this stage (McGee 

and Hsueh, 2000). However, in possums, LH receptor expression in theca cells does not occur until the 

time of antrum formation (phase 2, discussed below) (Crawford et al., 2011). In addition, the zona 

pellucida (ZP) begins to form around the oocyte within the primary follicle (Hirshfield, 1991; Mate, 

1998). The ZP is a glycoproteinaceous matrix which functions as a species-selective substrate for 

sperm binding, an agonist for spermatozoon acrosome reaction, defence against polyspermy, and as 

protection for the embryo during the early stages of development until implantation of the blastocyst 

occurs (Mate, 1998; Wassarman and Litscher, 2008). The ZP matrix of mice and possums contains 

three glycoproteins, designated ZP1, ZP2 and ZP3 while a fourth glycoprotein (ZP4) has recently been 

reported in species such as rats, hamsters, humans and monkeys (Ganguly et al., 2008; Hoodbhoy et 

al., 2005; Hughes and Barratt, 1999; Izquierdo-Rico et al., 2009; McCartney and Mate, 1999). The 

follicles and their oocytes continue to grow, increasing both in size and number of GCs present. 

During this time FSH does not seem to be essential, rather it appears to be involved in a facilitating 

manner (Crawford et al., 2011; McGee and Hsueh, 2000). For a full cellular description of each 

follicle stage and the associated follicle diameters for rats and possums refer to the histology section of 

Chapter 3.  

Phase 2 commences when the oocytes have reached their maximum diameters. At this stage only 

growth of the follicles occurs and formation of a fluid-filled antrum begins (Figure 2.2) (McGee and 

Hsueh, 2000; Rodger et al., 1992). Within the cohort of growing follicles, the selection for the most 

dominant follicle is believed to be achieved through the expression of LH receptors in their associated 

GCs. In possums, LH receptor expression can be found in the GCs of all healthy antral follicles 

(Crawford et al., 2011). Thus, selection for the dominant follicle is less clear but it is thought that 

down-regulation of anti-Müllerian hormone (AMH) GC expression may help GC differentiation and 

maturation of the follicle in possum (Crawford et al., 2011). Follicles not selected for ovulation 

undergo atresia (Figure 2.2).   

Gonadotrophin releasing hormone (GnRH), which is derived from the hypothalamus, controls the 

secretion of the gonadotrophins (LH and FSH) from the anterior pituitary gland (Figure 2.3) 

(Crawford et al., 2011; Skinner, 2005). The secretion profiles of LH and FSH in possums is, in many 

ways, very similar to that of eutherians (Crawford et al., 2011). As a follicle develops in preparation 

for ovulation (follicular phase of oestrous cycle), LH induces theca cells to increase the conversion of 

cholesterol to androgens (androstenedione and testosterone) while the GCs begin to increase their 
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capacity to biosynthesize and secrete oestradiol (E2) and progesterone (P4) under the influence of FSH 

(Craig et al., 2011; Skinner, 2005). Ovarian-derived E2 and P4 secretion provides positive feedback on 

the hypothalamus, allowing for increased GnRH secretion and subsequently, LH and FSH secretion 

(Figure 2.3). This positive feedback HPG axis loop increases the levels of circulating LH, FSH, E2 and 

P4. Ovulation of the oocyte is preceded by an LH surge (10-12 hours in rats) which is concomitant 

with an E2 and FSH surge. For successful rupture of the follicle wall and subsequent oocyte release an 

increase of intrafollicular P4 is required (Robker et al., 2009).  

 

 

Figure 2.3 The hypothalamic-pituitary-gonadal (HPG) feed-back loop. Hormonal feedback may be 
positive (+) or negative (-) depending on the stage of the reproductive cycle. GnRH: 
gonadotrophin releasing hormone; FSH: follicle stimulating hormone; LH: luteinizing 
hormone.    

 

After ovulation of the oocyte, the luteal phase of the oestrus cycle begins. It is characterized by the 

luteinisation of the surrounding GCs under the influence of LH forming a progesterone-producing 

organ, the corpus luteum (CL). At the end of an oestrous cycle or pregnancy, prolactin release then 

induces luteolysis (luteal cell death) forming a non-steroidogenic corpus albicans (CA) (Hirshfield, 

1991).  

A clear difference in gestation and lactation lengths exists between rodents and marsupials. In rodents, 

if insemination occurs, then the CL is maintained and continues to secrete P4 to support the pregnancy 
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which lasts for 21 ± 1 days (Whittingham and Wood, 1983). In contrast, pregnancy (16.5 ± 1 day) in 

possums occurs within the luteal phase of the oestrous cycle (26.5 ± 1.3 days) (Duckworth et al., 1998; 

Eckery et al., 2002a; Hinds, 1990). Thus, pregnancy occurs during the period when P4 is being 

secreted by the CL and comprises approximately 60% of the oestrous cycle. There is no evidence that 

pregnancy affects the function of the possum CL although it is required at parturition (Eckery et al., 

2002a; Hinds, 1990). In both rats and possums, the oestrous cycle is suppressed during lactation which 

lasts for 21 ± 1 days for rodents (Whittingham and Wood, 1983) and approximately 6 months for 

possums (Cowan, 1989).  

Clearly, there are considerable differences between rats and possums in the timing of reproductive 

events. However, there are similarities in the stages of development and growth within the ovary. 

Development of a successful fertility control method will require a detailed understanding of the 

reproductive biology of a target species. If the aim is to utilize the same (or a similar) fertility control 

method for several species, understanding of the similarities and differences in their reproductive 

biology becomes even more important. Below I discuss current methods being examined for 

mammalian fertility control with special focus on their relevance for rats and possums.  

 Non-lethal (fertility) control methods 2.6

Research investigating fertility control as an alternative, humane, and non-lethal approach to 

controlling pest populations has increased in recent years. Ideally, an useful contraceptive agent 

should have the following properties: 1) long-term, reversible or permanent sterility; 2) low production 

and application cost; 3) easy delivery to the pest population of interest; 4) minimal or no harmful 

effects on target species other than reduced fertility; 5) no negative impacts on non-target species; and 

6) environmentally neutral (DeNicola et al., 1997; Humphrys and Lapidge, 2008).  Fertility control 

may provide the advantage of reducing toxin application rate, thereby reducing risk of environmental 

contamination, associated application costs, and primary and secondary poison risks to non-target 

species (Duckworth et al., 2006).  

The effectiveness of fertility control in rodent populations has been demonstrated using surgical 

sterilization and sex steroid inhibition. It has been estimated that 70-80% female sterility will be 

required to significantly reduce the population size of a specific species (Chambers et al., 1999b; 

Jacob et al., 2004; Jacob and Matulessy, 2004). Furthermore, fertility control effects may be more 

pronounced in an open field population where rats may be exposed to predation and other 

management strategies, such as the use of rodenticides and traps. Models for brushtail possum 

populations have shown that fertility control can provide a long-term, sustainable approach to 

maintaining pest populations at a low level. Spurr (1981) predicted that a population will return to its 

former level within 10 or 14 years following a 70% or 90% poison kill, respectively. In contrast, if 

70% of a population is permanently sterilized, it will take 23 years for the population to return to its 

former level (Spurr, 1981). Similarly, Barlow (1991) demonstrated that a 70% kill would reduce and 
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sustain low population levels of possums for up to 8 years. In contrast, 50-60% sterilization, followed 

by an annual sterilization rate of 18%, would be sufficient to continually maintain a population at 35-

40% below its natural equilibrium long-term (Barlow, 1991). A five year field study examining the 

effect of surgical sterilization on possum population dynamics demonstrated that a 50% sterility rate 

would reduce per capita recruitment by 50% when a population was close to carrying capacity 

(Ramsey, 2005). Furthermore, studies have shown that fertility control may reduce breeding related 

contact between possums, thereby reducing horizontal disease transmission between animals (Caley 

and Ramsey, 2001; Ramsey, 2007).  

Collectively, these modelling and experimental field studies illustrate that fertility control could offer 

an effective and sustainable alternative method for the long-term control of pest populations in 

addition to the potential to reduce disease transmission between individuals. Current approaches being 

investigated include hormonal manipulation and immunological and chemical sterilization. For the 

purposes of this review only significant findings in rodents and marsupials will be discussed in detail. 

2.6.1 Immunological sterilization  

An immunological fertility control agent works by stimulating an immune response against 

reproductive proteins (or antigens), thereby interfering with reproduction (Arthur et al., 2007; Barlow, 

2000; Miller et al., 1998). Immunological fertility control has been investigated extensively in 

eutherian mammals (Barfield et al., 2006; Barlow, 2000; Chambers et al., 1999a; Gupta and Bansal, 

2010; Hardy et al., 2006) and marsupials such as the tammar wallaby, koala, eastern grey kangaroo 

and the brushtail possum (Bradley et al., 1999; Cowan, 1996; Cowan, 2000; Duckworth et al., 2006; 

Mate and Hinds, 2003; Mate et al., 1998).   

One area of focus for fertility control has been on targeting the ZP proteins surrounding the oocyte. 

Wildlife populations such as feral horses (Equus calballus) (Kirkpatrick et al., 1990), white-tailed deer 

(Odocoileus virginianus) (Kirkpatrick et al., 1995), and captive zoo animals (Frank et al., 2005; 

McShea et al., 1997) are currently being controlled using porcine ZP (pZP) immunocontraceptive 

vaccines (Kirkpatrick et al., 2011). pZP contraceptive control of these species is highly effective (75 – 

100%), although annual boosters are required during the first 2-3 years. pZP is also beneficial because 

it causes minimal behavioural effects, no debilitating side effects and, although infertility is temporary, 

this allows for better control and management of these specific populations over time (Kirkpatrick et 

al., 2011). New vaccine formulations offer greater efficacy and reduced treatment costs (Miller et al., 

1998). The current route of administration is via hand injection after capture or using remote dart 

delivery. Although remote delivery will not be feasible for control of most species (e.g. rodents), in the 

case of large bodied mammals which can be easily accessed routinely in large groups (e.g. captive 

animals; seasonal breeders), such methods are suitable.  

Successful reductions in fertility following immunization with pZP or bacterially produced 

recombinant ZP3 (rZP3) have also been demonstrated in several other species including bonnet 
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monkeys (Bagavant et al., 1994; Govind et al., 2002; Kaul et al., 2001), baboons (Govind and Gupta, 

2000), dogs (Gupta et al., 2011; Mahi-Brown et al., 1985; Srivastava et al., 2002), rabbits (Bhatnagar 

et al., 1992; Dietl et al., 1982; Kerr et al., 1999; Wood et al., 1981), mice (Clydesdale et al., 2004; 

Hardy et al., 2003; Jackson et al., 1998; Li et al., 2007; Lloyd et al., 2003; Millar et al., 1989), 

hamsters (Hasegawa et al., 1992), wallabies (Kitchener et al., 2002), and brushtail possums 

(Duckworth et al., 1999; Duckworth et al., 2007). Again, the current route of administration is via 

injection and therefore alternative routes (i.e. oral/nasal) for ZP delivery have been examined in mice 

(Zhang et al., 2011) and possums (Cui et al., 2010; Duckworth and Cui, 2004; Walcher et al., 2008).  

Bacterial ghost vectors (BGVs) and virus-like particles (VLPs) have been examined as potential 

delivery systems for ZP antigens. BGVs consist of the cell membranes of recombinant bacteria which 

have been genetically engineered to express target reproductive molecules (Mayr et al., 2005) while 

VLPs are lipoprotein nanoparticles artificially created to resemble virus capsids that incorporate target 

reproductive antigens (Pattenden et al., 2005). Both BGVs and VLPs lack genetic material and 

therefore cannot replicate (Cui et al., 2010; Duckworth and Cui, 2004; Walcher et al., 2008). VLPs 

expressing ZP3 have been shown to reduce litter sizes and suppress fertility in mice when 

subcutaneously injected (Choudhury et al., 2009). To date, there have been no reports on orally or 

nasally delivered VLPs expressing ZP antigens. Intranasal co-administration with mouse ZP (mZP) 

DNA and protein vaccines encapsulated in chitosan reduced fertility and mean litter size of female 

C57BL/6 mice while not affecting normal follicular development (Zhang et al., 2011). In female 

possums, oral and intranasal delivery of a BGV expressing possum ZP2 or ZP3 antigens produces 

successful humoral and mucosal immune responses as well as reduced fertilization rates (36% relative 

to controls) (Cui et al., 2010; Duckworth and Cui, 2004; Walcher et al., 2008). It seems that an 

oral/nasal route utilizing BGVs may be feasible for inducing successful ZP-induced 

immunocontraception although further development will be required for its use on large scale pest 

control operations.  

Viral vectored immunocontraception (VVIC) has been examined as a potential immunological control 

agent because of its potential for a low cost-benefit ratio, its natural disseminating properties and it can 

be species-specific (Chambers et al., 1999a; Hardy et al., 2006; McLeod et al., 2008; Redwood et al., 

2008). Murine cytomegalovirus (MCMV) has been examined as a potential vector for the expression 

of a murine ZP3 (mZP3) gene (Farroway et al., 2002; Hardy et al., 2006; Lloyd et al., 2010; Lloyd et 

al., 2003; Redwood et al., 2007; Singleton et al., 2001; Smith et al., 2005). MCMV is a mouse-specific 

betaherpesvirus which is readily carried in wild house mouse populations and is naturally occurring in 

Australia. Anti-mZP3 antibodies block the ability of sperm to penetrate the egg for fertilization, 

thereby inducing infertility (Wassarman, 1999). Laboratory trials have demonstrated infertility in 

nearly all mice inoculated with recombinant MCMV expressing mZP3 (Lloyd et al., 2007; Lloyd et 

al., 2003; O'Leary et al., 2008; Redwood et al., 2005) but infectivity of the modified viruses was 

compromised (Hardy et al., 2006). These findings, however noteworthy, need to be repeated in wild, 

outbred rodent populations. Release of any self-disseminating fertility control agents would require a 
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thorough understanding of their potential impacts and would need to meet local and international 

regulatory requirements to safe guard against unintended consequences (Williams et al., 2001). 

Various VVIC methods have also been examined in possums with varying results. Zheng (2007) 

identified two possum intestinal enteroviruses, W1 and W6, as potential VVICs (Zheng, 2007). 

Infection with the W1 or W6 strain did elicit antibody responses in both captured and wild-dwelling 

possums. However, antibody response was variable, short-lived and distribution of the enterovirus was 

limited (Zheng and Chiang, 2007; Zheng et al., 2010). In Australia, macropod herpesvirus (MaHV) 

infection is common amongst macropod marsupials and at least one strain has been identified and 

tested as a potential vector in NZ possums. Possums infected with MaHV-1 showed transient infection 

at inoculation sites but a systemic and latent infection was not generated (Zheng et al., 2001; Zheng et 

al., 2004). Although there is no evidence that eutherians can be infected with MaHV, it is highly 

pathogenic and can cause negative side effects including transient infertility, lingual ulcers, discharge 

from the eyes and nose and, in extreme cases, death (Speare et al., 1989). Because of these undesirable 

effects and the lack of infectivity, no further research has been reported on the use of MaHV for 

control of NZ possums.  

Other possum-specific viruses that have been identified as potential disseminating delivery systems 

include adenovirus and coronavirus (Rice and Wilks, 1996; Thomson et al., 2002), papillomavirus 

(Perrott et al., 2000), and a type D retrovirus identified as TvERV(D) (Baillie and Wilkins, 2001). 

Much work will be required to determine the individual viral infectivity of each potential 

disseminating delivery system and ultimately its ability to reduce possum fertility. In addition, there is 

concern for accidental or intentional (illegal) transfer of a disseminating delivery system to Australia 

where possums are endemic and protected (Gilna et al., 2005). Therefore, if successful, use of a VVIC 

for possum control will need to be carried out with caution.  

Immunization utilizing endogenous hormones has also been widely examined. Gonadotrophin 

releasing hormone (GnRH) is a decapeptide present in both males and females. Multiple reports have 

demonstrated effective blocking of fertility in a range of species with the use of GnRH made 

immunogenic via coupling with various carrier proteins (Gupta and Bansal, 2010; Kirkpatrick et al., 

2011; Miller et al., 1998). Miller et al. (1997) injected Norway rats with GnRH vaccines made 

immunogenic via coupling to the carrier protein keyhole limpet haemocyanin (KLH). Through the 

action of antibodies binding to GnRH, reductions in FSH and LH from the anterior pituitary gland and 

eventual atrophy of the gonads is induced, leading to temporary infertility (Figure 2.3). The authors 

demonstrated 100% infertility in both male and female rats for the duration of the study (12 months) 

and predicted infertility to last through the rodent’s lifetime (1-3 years). However, several booster 

injections over a three month period were required to establish infertility (Miller et al., 1997).  

The GnRH vaccine, GonaCon™, is a single shot, injectable vaccine developed by the USDA National 

Wildlife Research Center (Miller et al., 2004) and has demonstrated long-term infertility (2-4 years) in 

a range of species, both male and female (Kirkpatrick et al., 2011; Mauldin and Miller, 2007). 
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GonaCon™ halts reproduction by eliciting antibodies to native GnRH (Figure 2.3). GonaCon™ was 

examined as a potential management strategy for black-tailed prairie dogs (C. ludovicianus) and the 

high antibody titres indicate that it will likely control prairie dog fertility for ≥1 year (Yoder and 

Miller, 2010). Further work will be required to determine if GonaCon™ will be effective as a 

contraceptive agent for prairie dog populations.  

A long-term study examined the effects of GonaCon™ on the fertility and behaviour of male and 

female tammar wallabies, Macropus eugenii (Snape et al., 2011). GonaCon™ vaccination resulted in 

100% infertility in adult males (>2 years) and females (>4 years) for the duration of the study. 

Behavioural observations during the study revealed that males, when vaccinated as juveniles, showed 

reduced rates of sexual behaviour compared with controls. Interestingly, when control males were 

housed with vaccinated males, they showed decreased rates of agonistic behaviour compared with 

when they were housed with untreated males. Although behavioural changes were observed during the 

study, it was determined that animal welfare was not negatively impacted.   

GonaCon™ use in brushtail possums has demonstrated efficacy and examination into an oral or nasal 

route is underway (Cross et al., 2011). A single injection of GonaCon™ produced anti-GnRH 

antibodies and rendered >70% females infertile for 2 years (Cross et al., 2011). A proof of concept 

study examined the effects of poly(ethylcyanoacrylate) (PECA)  nanoparticles containing D-Lys
6
-

GnRH when administered into the caecum of brushtail possums. Their results demonstrated that 

sufficient bioactive peptide was able to reach the pituitary gland to evoke a response as demonstrated 

by increased blood LH levels (Kafka et al., 2011). Further investigation into potential oral or nasal 

delivery will be necessary for this method to be used in a large-scale operation for control of possum 

populations in NZ.  

At the moment, there remain several limitations to immunological fertility control. These include the 

generally temporary nature of the infertility, the need for repeat exposure to maintain infertility, 

inconsistent responses, and a reliance on an immune response for effectiveness. In some cases animals 

do not generate an immune response to the vaccine (non-responders) (Mann et al., 2009). There is 

concern that if there is a genetic basis to this non-responsiveness then natural selection for non-

responsive progeny may occur over time resulting in populations that develop resistance to the 

reproductive agent (Cowan, 2001; Magiafoglou et al., 2003). Furthermore, modelling studies have 

demonstrated that permanent sterilization will be more effective in reducing and then sustaining lower 

pest populations compared with temporary sterilization (Spurr, 1981), supporting the case for an 

irreversible fertility control management system. In order for such technology to be feasible for wild 

pest populations, an oral route of delivery will be necessary.  

2.6.2 Chemosterilization 

Chemical sterilization (chemosterilization) offers another option for fertility control. A chemosterilant 

can be defined as a chemical, whether endogenous (hormonal manipulation) or exogenous (xenobiotic 
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manipulation), that can induce temporary or permanent sterility (Marsh and Howard, 1970). 

Chemosterilants can inhibit fertility by altering the hormones which control ovarian or testicular 

function (Gao and Short, 1993, 1994a, b) or by directly affecting the function and physiology of the 

ovary or testis.   

Hormonal chemosterilization 

Endocrine signalling by hormones plays a vital role in reproduction (Figure 2.3), thus it was one of the 

first targets for early investigations of fertility control. Hormonal chemosterilization is accomplished 

by suppressing reproductive activity with the use of hormone agonists, antagonists, or toxins.  

Proof of concept studies have been carried out investigating the use of a GnRH toxin conjugate, 

GnRH-PAP (pokeweed antiviral protein) in possums (Eckery et al., 2001). Possum pituitary cells 

cultured with GnRH-PAP showed decreased LH secretion and LH-containing cell numbers suggesting 

that the toxin was able to induce cellular death. Possums treated with GnRH-PAP by injection showed 

depressed circulating levels of LH and FSH although the effect was temporary and hormone levels 

returned to normal within 3 weeks (Eckery et al., 2001). Delivery of GnRH through an oral (or 

oronasal) route of administration in the possum examined the use of the previously discussed VLPs 

(Cross et al., 2011). Orally delivered VLPs chemically conjugated to GnRH (GnRH-VLP) resulted in 

an immune response in possums, although the response was lower than when injected (Cross et al., 

2011).Although these studies demonstrate proof of concept, hormonal sterilization was temporary, 

reversible, not species-specific, and the current routes of administration are not practical for wildlife 

populations.   

A hormonal implant containing a GnRH agonist, deslorelin, has been examined as a potential method 

for fertility control delivery. The action of deslorelin on the anterior pituitary results in suppression of 

steroidal hormone production, follicular development and ovarian cycles (Figure 2.3). Its use as a 

potential fertility control method has been investigated in several marsupials including the brushtail 

possum (Eymann et al., 2013; Eymann et al., 2007; Lohr et al., 2009), the tammar wallaby (M. 

eugenii) (Herbert et al., 2007, 2012; Herbert et al., 2004a; Herbert et al., 2004b, 2005) and the eastern 

grey kangaroo (M. giganteus) (Herbert et al., 2006; Wilson et al., 2013; Woodward et al., 2006). 

Eymann et al. (2007) examined the effects on fertility of subcutaneous deslorelin implants in male and 

female NZ possums. Following deslorelin implantation, female reproduction was inhibited for at least 

one breeding season, but such effects were temporary and reversible while males showed no reduction 

in fertility despite reduced circulating testosterone and FSH levels (Eymann et al., 2007). Similar 

results were reported in brushtail possums in Australia where 80% of treated females showed no 

evidence of breeding at study completion (18 months) (Lohr et al., 2009). Recent examination of the 

effects of deslorelin implants in rodents demonstrated reductions in ovarian weight, pre-antral follicle 

numbers, circulating gonadotrophin levels, and overall disruption of the oestrous cycle (Alkis et al., 

2011; Cetin et al., 2012; Grosset et al., 2012; Smith et al., 2012). The current route of administration 

(surgical implantation or dart gun) (Herbert et al., 2010) and the temporary (6 to 18 months) and 
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reversible nature of this method make it suitable for veterinary or captive (e.g. zoo) animal use. 

However, these same characteristics are not appropriate for wild pest populations, especially 

considering reports on decreased sexual behaviour in many species (Bertschinger et al., 2001; Patton 

et al., 2006; Woodward et al., 2006).  

Hormonal manipulation has also be achieved through the use of the cholesterol mimic, 20,25-

diazacholesterol (DiazaCon™) which inhibits cholesterol production. Cholesterol is required for the 

synthesis of steroid reproductive hormones, such as testosterone and progesterone. Therefore, 

inhibition of cholesterol production indirectly inhibits reproduction. Oral treatment with DiazaCon™ 

has caused reduced reproductive output in black-tailed prairie dogs (Cynomys ludovicianus) (Nash et 

al., 2007) and evidence for its effectiveness has been demonstrated in female grey squirrels (Siurus 

carolinensis) (reduced cholesterol levels (Mayle et al., 2012) and antibody titre response (Yoder et al., 

2011)). Intraperitoneal injection of 20,25-diazacholesterol dihydrochloride (SC 12937) caused 

antispermatogenic and antifertility effects in male Parkes strain mice (Singh and Chakravarty, 2003). 

Although DiazaCon™ administration demonstrates effectiveness via the oral route, the effects have 

been shown to last only up to 6 months and it may not be suitable for wild animal populations if 

alteration of the reproductive hormones affects sexual behaviour. Furthermore, DiazaCon™ is cleared 

slowly and bioaccumulation does occur with repeated treatment (Nash et al., 2007; Yoder et al., 2011).    

Natural compounds occurring in various parts of plants have been found to disrupt or inhibit 

reproduction and therefore have been examined for their contraceptive potential (Tran and Hinds, 

2013). Plant-derived compounds which specifically target the ovary have been identified and a full 

review by Tran and Hinds (2013) discusses their effects when orally administered. Cessation of 

treatment with any of the currently examined plant-derived compounds does result in the return of 

normal fertility (Tran and Hinds, 2013). However, 6 plant species (Azadirachta indica, Hibiscus 

rosasinensis, Melia azedarach, Momordica charantia, Trichosanthes cucumerinas and Tripterygium 

wilfordii) have been identified as potential candidates for contraceptive use as they specifically target 

ovarian follicle development and function (Tran and Hinds, 2013). For the purposes of this review, 

focus will be on the active ingredient, triptolide (Figure 2.4) derived from T. wilfordii (thunder god 

vine). 

Triptolide  

Triptolide (TR) was first discovered to have anti-fertility effects in males (e.g. oligozoospermia and 

asthenozoospermia) (Huynh et al., 2000; Lue et al., 1998; Qian et al., 1986; Qian et al., 1988; Zhen et 

al., 1995) and these effects have been confirmed in wild-caught male laboratory black rats (R. rattus) 

treated with a bait containing TR (Singla et al., 2012). More recently, the effects of orally administered 

TR in females rats have been examined (Liu et al., 2011; Xu and Zhao, 2010). Oral administration of 

60 or 120 µg TR/kg/day for 35 days to female Sprague Dawley (SD) rats caused a significant increase 

in both healthy and apoptotic secondary ovarian follicles compared with controls (Xu and Zhao, 

2010). No observed changes in the primordial or primary follicle pools were noted. Additionally, the 
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oestrous cycles were lengthened in animals receiving the higher TR dose (120 µg TR/kg/day) relative 

to controls (Xu and Zhao, 2010). A similar study examining the effects of orally delivered TR (100, 

200 or 400 µg/kg/day, 90 days) on the fertility of female SD rats found that the two highest TR doses 

caused decreases in ovarian and uterine weight, reduced serum levels of E2 and P4, increased serum 

levels of FSH and LH and overall reduced staining for the presence of the E2 receptor alpha (ERα) in 

the uterus and ovaries relative to controls (Liu et al., 2011). The only observed effect following 

treatment with a low TR dose (100 µg/kg/day; 90 days) was reduced P4 levels and ERα staining 

relative to controls.       

 

 

Figure 2.4 The chemical structure of triptolide (360.4 g/mol).    

 

Lue et al. (1998) first suggested that TR’s method of action was involved in alterations of the 

intracellular calcium (Ca
2+

) influx pattern (Lue et al., 1998). Following specific [
3
H]triptolide-binding 

activity, Leuenroth et al. (2007) identified the Ca
2+

 channel, polycycstin-2 (PC2), as a putative target 

protein for TR binding (Leuenroth et al., 2007). PC2 is a product of a gene mutation found in type 2 

autosomal dominant polycystic kidney disease (ADPKD) and is a member of a subfamily of the 

transient receptor potential (TRP) superfamily (Koulen et al., 2002). It was determined that TR causes 

an increase in intracellular Ca
2+

 release through a PC2-dependent pathway (Leuenroth et al., 2007). 

Signal transduction pathways that control the decision for a cell to divide, differentiate or die are 

activated by increases in intracellular Ca
2+

 (Ermak and Davies, 2002; McKinsey et al., 2002; Orrenius 

et al., 2003). Additionally, intracellular Ca
2+

 influx following cellular stress can be sufficient to trigger 

or modulate apoptosis (Orrenius et al., 2003). Therefore, their findings suggest that TR is acting 

directly on the ovarian follicle populations rather than the steroids involved in the HPG axis (Figure 

2.3). Further evidence suggesting TR’s involvement in calcium-dependant cellular regulation is TR’s 

ability to induce apoptosis in tumor cells as well as sensitizing tumor cells to apoptosis via α-mediated 

tumor necrosis factor (TNF) (Lee et al., 1999) without being mutagenic (Kupchan, 1977; Shamon et 

al., 1997).   
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Current investigation utilizing TR in combination with another chemosterilant, 4-vinylcyclohexene 

diepoxide (VCD), is being undertaken by researchers at SenesTech Inc
®
 (Flagstaff, AZ, USA). 

Preliminary findings from their laboratory have demonstrated that female SD rats consuming a bait 

containing VCD and TR have reduced numbers of primordial, primary and secondary follicles (Dyer 

et al., 2013) as well as reduced litter sizes (Drs L. P. Mayer and C. A. Dyer, unpublished). A full 

review of the ovarian follicle depleting effects of VCD is discussed below.    

Non-hormonal chemosterilization   

Non-hormonal chemosterilants that induce premature ovarian failure could potentially serve as fertility 

control agents due to their permanent fertility-inhibiting characteristics. In a young, cycling ovary, 

recruitment of primordial follicles for development occurs continuously, yet little is known about the 

factors that control this process. After initial recruitment of any given follicle, it can progress through 

several stages of growth (primary, preantral, antral, and pre-ovulatory) to reach ovulation. During the 

process of follicular maturation many follicles and their oocytes undergo atresia (apoptosis or 

programmed cell death) with only ~400 of the ~2 million oocytes contained within primordial follicles 

progressing to ovulation (Hirshfield, 1991; Hirshfield and Midgley Jr, 1978; Palumbo and Yeh, 1994). 

Some recent investigations have suggested that stem-cell populations may exist that could give rise to 

follicular germ cells following ovarian failure, but this concept has yet to be confirmed (Johnson et al., 

2004; White et al., 2012; Zou et al., 2009).  

The immature ovarian follicle pool can be affected by a variety of xenobiotic compounds (see review 

and references cited in Table 2.1). Chemical groups which have been shown specifically to target 

ovarian function in laboratory animals include: chemotherapeutic agents such as cyclophosphamide 

(CPA) and cisplatin; ionizing radiation; polycyclic aromatic hydrocarbons (PAHs; commonly found in 

cigarette smoke) such as 7,12-dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (3-MC), 

and benzo[a]pyrene (BaP); endocrine distruptors such as bisphenol-A (BPA), medroxyprogesterone 

acetate (MAP) and diethylstilboestrol (DES); and occupational chemicals containing an epoxide 

moiety (which are able to bioactivate by epoxidation) such as 1,3-butadiene (BD) and  

vinylcyclohexene (VCH) and its epoxide metabolite 4-vinylcyclohexene diepoxide (VCD). Although 

the xenobiotic mechanisms for ovarian toxicity are not fully understood, in general they target and 

destroy the oocytes located within the follicles which ultimately lead to loss of these follicle structures 

and onset of premature ovarian failure (POF; menopause in humans). Depending on the dosing 

regimen and route of exposure, development of ovarian tumours (granulosa cell tumours, mesothelial 

adenomas, and mixed benign tumours) are often associated with the loss of ovarian follicles. A general 

review of the positive and negative side effects of commonly studied ovarian toxicants is provided in 

Table 2.1. 



 

 

Table 2.1 A summary of commonly studied ovarian toxicants and the positive effects (*as they relate to pest fertility control), and negative effects (**as they 
relate to animal humaneness). Due to the exhaustive bodies of work on these topics, reviews which cover each topic in depth have been provided. 
ΔEffects evident >90 days of daily gavage; ‡Effects also observed in humans. 

Chemical 
Primary 
animal 
model 

*Positive effects **Negative effects 

Benzo(a)pyrene (BaP)(Kappeler and Hoyer, 2012; Mark-

Kappeler et al., 2011a) 
Mouse 

Depletion of primordial and primary ovarian 
follicles via necrosis 

‡Carcinogenic; ovarian tumours 

Bisphenol-A(Cabaton et al., 2013; Kappeler and Hoyer, 2012; Mark-

Kappeler et al., 2011a; Rogers et al., 2013) 
Mouse; rat 

Decreased primordial follicles; increase in growing 
follicles; endocrine disruptor 

Meiotic disturbances; disruption of energy 
metabolism and brain function; alteration 
of immune response 

2-Bromopropane (2-BP)(Ichihara, 2005) Rat 

Depletion of primordial, primary and antral 
follicles; increased rates of follicular atresia; 
disruption of estrous cycle; reduced ovarian and 
uterine weights and ovulated ova 

‡Neurotoxic; ‡hematopoietic depletion; 
reduction of bone marrow (males) 

1,3-butadiene (BD) (Kappeler and Hoyer, 2012; Mark-Kappeler 

et al., 2011a; Maronpot, 1987) 
Mouse Depletion of preantral and antral follicles ‡Carcinogenic 

Cisplatin(Kappeler and Hoyer, 2012; Mark-Kappeler et al., 2011a) Rat 
Depletion of all ovarian follicle types; increased 
atretic secondary and antral follicle numbers 

‡Carcinogenic 

Cyclophosphamide (CPA) (Kappeler and Hoyer, 2012; Mark-

Kappeler et al., 2011a) 
Mouse; rat 

Reduced health and depletion of all ovarian follicle 
types; reduced implantation sites; malformed 
offspring 

‡Mutagenic; ‡carcinogenic 

Diethylstilboestrol (DES) (Kappeler and Hoyer, 2012; Mark-

Kappeler et al., 2011a; Marselos and Tomatis, 1993) 
Mouse; rat 

Reduced oocyte quality; endocrine disruptor; 
reduced litter size 

‡Vaginal carcinomas; ‡Uterine, oviduct and 
ovarian  abnormalities; chromosomal 
aberrations and DNA disruption; genotoxic 
effects 

7,12-Dimethylbenz(a)anthracene (DMBA) 

(Bhattacharya and Keating, 2011; Kappeler and Hoyer, 2012; Mark-

Kappeler et al., 2011a) 
Mouse; rat Depletion of all ovarian follicle types via apoptosis ‡Carcinogenic; ovarian tumours 
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Table 2.1 continued:  

Chemical 
Primary 
animal 
model 

*Positive effects **Negative effects 

Isopropyl methanesulphonate (IMS) (Kappeler and 

Hoyer, 2012; Mark-Kappeler et al., 2011a) 
Mouse Destruction of oocytes within small follicles ‡Mutagenic; ‡carcinogenic; ovarian tumours 

Medroxyprogesterone acetate (MAP)(Barnes and 

Meyer, 1964; Hayden et al., 1989; Keskin et al., 2009; Loretti et al., 2004; 

Oguge and Barrell, 1996) 

Rat; rabbit; 
cat; dog 

Reduced ovulation rate; ‡cessation of ovulation; 
impairment of gestation or parturition; foetal 
death ‡endocrine disruptor 

Abnormal mammary gland growth; ovarian 
cysts; pyometra; cystic endometrial 
hyperplasia 

3-Methylcholanthrene (3-MC) (Kappeler and Hoyer, 2012; 

Mark-Kappeler et al., 2011a) 
Mouse 

Depletion of primordial and primary ovarian 
follicles via necrosis 

‡Carcinogenic; ovarian tumours 

1,4-Di(methanesulfonoxy)-butane (busulfan; 
Myleran) (Bishop and Wassom, 1986; Kappeler and Hoyer, 2012; 

Mark-Kappeler et al., 2011a) 
Mouse; rat 

Destruction of oocytes within small follicles; 
depletion of all ovarian follicle types 

Cytotoxicity; teratogenic; mutagenic; 
hematopoietic depletion; 

Trimethylenemelamin (TEM) (Kappeler and Hoyer, 2012; 

Mark-Kappeler et al., 2011a) 
Mouse Destruction of oocytes within small follicles ‡Mutagenic; ‡carcinogenic; ovarian tumours 

4-Vinylcyclohexene diepoxide (VCD) (Kappeler and 

Hoyer, 2012; Mark-Kappeler et al., 2011a; NTP, 1986) 
Mouse; rat 

Depletion of primordial and primary ovarian 
follicles; ovarian and uterine atrophy 

ΔHyperplasia of the forestomach; Δtoxic 
nephrosis 

 

2
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Of all the known ovotoxic chemicals one in particular, VCD, has been singled out as a model chemical 

for studying ovarian toxicity (Hoyer and Sipes, 1996; Kappeler and Hoyer, 2012; Van Kempen et al., 

2011). VCD, a cyclohexene formed during synthesis of industrial chemicals, is an epoxide metabolite 

of its parent compound, VCH (Figure 2.5). Toxicology studies have shown that a short duration of 

treatment with VCD (3-30 days) specifically targets and depletes the pool of primordial and small 

primary ovarian follicles in rode  ts (Figures 2.2 and 2.6) (Devine et al., 2004; Kao et al., 1999; Mayer 

et al., 2001; Mayer et al., 2002; Sahambi et al., 2008; Smith et al., 1990b). In addition, short duration 

treatment with VCD in rodents results in minimal to nil effects on other organs such as the liver, 

spleen, kidneys, and adrenal glands (Burd, 2009; Haas et al., 2007; Mayer et al., 2004; Mayer et al., 

2010; Muhammad et al., 2009; Sahambi et al., 2008). Reduced ovarian and uterine weights in rodents 

following VCD treatment have been reported (Lohff et al., 2005; Lohff et al., 2006; Mayer et al., 

2004; Mayer et al., 2002; Muhammad et al., 2009; Sahambi et al., 2008) although these are likely 

downstream effects resulting from loss of the ovarian follicle pools and disruption of the HPG axis 

(Figure 2.3).  

 

 

Figure 2.5 Metabolic pathway of VCH and VCD. VCH: 4-vinylcyclohexene; VCD: 4-vinylcyclohexene 
diepoxide; CYP450: cytochrome P450; EH: epoxide hydrolase; GST: glutathione S-
transferase. Adapted from Salyers (1995). 
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Figure 2.6 Ovary schematic depicting the follicular stages and the downstream effects of VCD. 
Histological images, adapted from Mayer et al. (2004), are representative images for a 
(A) healthy and (B) VCD-treated ovary of an adult Sprague Dawley rat. The schematic 
of follicle types within the ovary (C; images not drawn to scale) depicts the order in 
which follicles mature from the most immature (primordial) to pre-ovulatory (antral) 
as well as the post-ovulatory structures (corpus luteum, corpus albicans).   

 

In order to simulate human worker exposure the National Toxicology Program (NTP) investigated the 

toxicological effects and carcinogenic activity of VCD over a 14-day, 13-week, and 2-year study in 

male and female rats and mice (NTP, 1986). The most prevalent effects were following 2 years of 

daily gavage with VCD (200 or 400 mg/kg/day) which included forestomach hyperplasia, adenomas 

and carcinomas, ovarian neoplasms and death. The NTP concluded that there was clear evidence for 

VCD-induced carcinogenicity following chronic exposure to the chemical (NTP, 1986). However, 

such extreme dosing regimens are not required to induce ovarian senescence; rather acute, short 

duration treatment is sufficient with no reported mutagenic or carcinogenic side-effects (Burd, 2009; 

Haas et al., 2007; Mayer et al., 2004; Mayer et al., 2010; Muhammad et al., 2009; Sahambi et al., 

2008). Therefore, concern for its potential carcinogenic properties is not warranted for use of VCD as 

an ovotoxic model or chemosterilant. A large body of work has been dedicated to understanding 

VCD’s follicle-depleting mode of action and its metabolic pathways. Here I will review the current 

body of knowledge on VCD with focus on its use as a potential chemosterilant for pest mammals.   
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VCD: method of action  

Studies in rodents to elucidate the mode of action of VCD-induced follicular depletion initially 

determined that VCD treatment increases the natural process of atresia (Fernandez et al., 2008; Hu et 

al., 2001a; Hu et al., 2001b; Hu et al., 2006; Kao et al., 1999; Mayer et al., 2002; Springer et al., 

1996a; Takai et al., 2003). The selective nature of VCD ovarian toxicity is believed to be due to the 

poor ability of primordial and primary follicles to convert VCD to its inactive tetrol metabolite (Flaws 

et al., 1994). VCD treatment increases the expression and activation of bax and Bad (proteins that 

promote apoptosis), caspase-3 (a proteolytic enzyme present during induction of apoptosis), and 

mitogen activated protein kinases (MAPKs which are associated with intracellular signalling pathways 

for apoptosis) (Hoyer et al., 2001; Hoyer and Sipes, 2007). However, more recent findings suggest that 

these effects may reflect downstream responses to VCD induced ovarian toxicity rather than initiating 

effects (Figure 2.7) (Fernandez et al., 2008; Keating et al., 2009; Keating et al., 2010; Mark-Kappeler 

et al., 2010; Mark-Kappeler et al., 2011b).   

 

 

Figure 2.7 Currently proposed VCD method of action in primordial and primary follicles. Adapted 
from P. J. Devine (unpublished). 
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Fernandez et al. (2008) examined cell survival signal pathways in immature follicle populations of 

post natal day (PND) 4 Fischer 344 rat ovaries following in vitro exposure to VCD. Findings revealed 

that VCD treatment reduced oocyte-derived Kit mRNA, a pro-survival gene, which preceded an 

increase in granulosa cell-derived Kitl mRNA (Fernandez et al., 2008). The ligand for KIT, KITL is 

produced in granulosa cells and is able to initiate folliculogenesis, stimulate oocyte and primordial 

follicle development, and act as an antiapoptotic factor on primordial follicles. These findings suggest 

that the oocyte may be initially affected by VCD and as a feedback response to decreased oocyte 

survival signals the granulosa cells produce more KITL. Furthermore, addition of exogenous KITL 

resulted in a dose-dependent attenuation of VCD-induced primordial follicle loss, supporting the 

suggestion that VCD compromises the KIT/KITL survival signalling pathway of primordial and 

primary follicles (Figure 2.7) (Fernandez et al., 2008).   

A study was conducted to determine if KIT was directly targeted by VCD as the ovarian toxic 

mechanism in immature follicles (Mark-Kappeler et al., 2011b). Results demonstrated that a change in 

KIT receptor phosphorylation is an initial and critical component of VCD-induced ovarian toxicity, 

supporting previously reported findings (Figure 2.7). Furthermore, the high expression of oocyte 

derived KIT and granulosa cell derived KITL during immature follicle growth helps to explain and 

support evidence for the ability of VCD to target primordial and primary follicle populations while not 

affecting other tissues in the body. Although other tissues expressing KIT may be a target of VCD, 

such tissues are able to repair themselves whereas primordial follicles are incapable of being replaced 

following cellular destruction. This may explain why there are no observed long-term effects in other 

tissues following VCD exposure and, hence, the physiological specificity of VCD on immature follicle 

populations.  

To examine further the role of VCD in the KIT/KITL signalling pathway, Keating et al. (2009) studied 

the role of phosphatidylinositol-3 kinase (PIK3) inhibition on VCD induced ovarian toxicity (Figure 

2.7). KIT activates the PIK3 kinase signalling pathway which has been shown to activate and recruit 

immature follicles (Reddy et al., 2005). Using LY294002 to inhibit the PIK3 signal pathway, the 

primordial follicle pool was protected from VCD-induced follicle loss while primary follicle numbers 

were depleted. The authors concluded that primordial follicles are not the direct target of VCD; rather 

VCD targets and destroys small primary follicles, resulting in increased recruitment of primordial 

follicles into the primary follicular pool (Keating et al., 2009). In fact, Mark-Kappeler et al. (2010) 

demonstrated supporting results when examining anti-Müllerian hormone (AMH) protein expression 

during VCD treatment. AMH protein is expressed in granulosa cells of maturing primary follicles and 

inhibits primordial follicle recruitment into the growing follicle pool. Results showed that AMH 

protein expression was reduced following VCD treatment. The authors concluded that the reduced 

expression of AMH protein following VCD treatment may be contributing to the acceleration of 

primordial follicle recruitment thought to be caused by VCD (Mark-Kappeler et al., 2010).    
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To elucidate further the role of PIK3 and its downstream signal pathway members, Keating et al. 

(2010) examined time points prior to VCD-induced ovarian toxicity in vitro using post natal day 

(PND) 4 Fischer 344 rat ovaries. Their results demonstrated that the initial effects of VCD are a result 

of altered sub-cellular oocyte-derived distributions of KIT protein and two downstream signals of 

PIK3, phosphorylated AKT (pAKT) and forkhead transcription factor family (FOXO3) proteins 

(Figure 2.7). AKT has been shown to play an important role in the PIK3 signalling pathway and 

FOXO3 is involved in regulation of primordial follicle recruitment (Castrillon et al., 2003; Reddy et 

al., 2005). VCD-induced ovarian toxicity was not associated with changes in mRNA encoding the Kit, 

Akt1, and Foxo3 genes. Therefore, it seems that VCD is targeting the post-translational protein 

signalling pathway and that any decrease in gene transcription is a subsequent response. Overall, these 

findings seem to indicate that VCD-induced ovarian toxicity is targeting the oocyte rather than 

granulosa cells in primordial and primary follicles (Keating et al., 2010).  

VCD: metabolism and detoxification   

4-Vinylcyclohexene (VCH), the parent compound of VCD, is metabolized to VCD in a Phase I 

reaction (also referred to as biotransformation) primarily by the hepatic-derived enzyme superfamily 

cytochrome P450 (CYP450) (Doerr-Stevens et al., 1999; Doerr et al., 1996; Springer et al., 1996c) 

(Figure 2.5). Phase I metabolism is usually a prerequisite for Phase II conjugative metabolism (also 

known as detoxification) wherein lipophilic compounds are converted to more water-soluble 

metabolites for excretion (Rushmore, 2002; Xu et al., 2005). Through Phase II reaction, VCD is 

further metabolized in the liver and, to a lesser extent, in the ovary to a non-active tetrol metabolite 

([1,2-dihydroxy] ethyl-1,2-dihydroxycyclohexane) (Figure 2.5) though the action of microsomal 

epoxide hydrolase (mEH) and glutathione-S-transferase (GST) (Cannady et al., 2002; Devine et al., 

2001; Flaws et al., 1994; Keating et al., 2008a; Keating et al., 2008b; Salyers, 1995). mEH catalyses 

the hydration of alkene epoxides and arene oxides while GST catalyses glutathione (GSH) conjugation 

with compounds to increase their elimination from the body.  

It has been hypothesized that VCD ovarian toxicity is largely due to repeat exposure, thereby 

overwhelming and ultimately reducing the capacity of the detoxifying enzymes. Keating et al. (2008a) 

demonstrated in vitro that continual exposure to VCD in B6C3F1 mouse ovaries initially increases 

expression of GST enzymes (day 4). However, by day 6 to 8 there was no change in GST expression 

compared to controls, suggesting the overwhelming nature of repeated VCD treatment on the ovarian 

detoxifying pathways (Keating et al., 2008a). In a follow-up study, the authors demonstrated GST’s 

ability to down regulate pro-apoptotic activity, thereby increasing its protective role in the ovary 

(Keating et al., 2008a). It was revealed that GSTp is able to form a protein complex with the pro-

apoptotic c-jun N-terminal kinase (JNK) and its downstream molecule c-jun, thereby down-regulating 

their activity (Hu et al., 2002; Keating et al., 2010). Collectively these studies suggest that the VCD 

can be readily detoxified. However, with repeated or continual exposure, the detoxifying enzymes can 

become overwhelmed, allowing VCD-induced ovarian toxicity to surpass enzymatic activity.    
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Species differences in VCD uptake and metabolism have been demonstrated in laboratory-bred mice 

and rats (Kao et al., 1999; Keller et al., 1997; Salyers, 1995; Smith et al., 1990a; Smith et al., 1990b). 

It has been demonstrated that VCD distributes faster from the blood into the tissues of mice compared 

with rats while excretion of VCD metabolites was primarily through the urine in both species (Salyers, 

1995; Smith et al., 1990a). In addition, VCD metabolites are eliminated faster in rats and the urinary 

metabolite profile of each species suggests different pathways for VCD metabolism (Salyers, 1995; 

Smith et al., 1990a). Comparison of enzymatic metabolism of VCH and VCD revealed that mice have 

higher Phase I metabolic activity but slower Phase II activity rates compared with rats, resulting in the 

capability of mice to metabolise VCH faster than rats. As VCH is detoxified to VCD via CYP450, 

VCD accumulates faster in mice compared with rats due to their slower Phase II activity and are mice 

are therefore more susceptible to VCD-induce ovarian toxicity (Doerr-Stevens et al., 1999; Doerr et 

al., 1996; Smith et al., 1990a; Smith et al., 1990b).  

VCD: effective oral fertility control method?  

In order for VCD to be an effective fertility control agent for pest species it must be deliverable by an 

oral route. In an assessment of VCD as a potential fertility control management strategy, several 

studies have examined the effects of oral VCD administration on the fertility of female rats (Burd, 

2009; Herawati et al., 2010). Two paired long-term breeding studies examined oral VCD 

administration effects on the fertility of female SD rats and their in utero exposed female offspring 

(Burd, 2009). Primordial follicle counts from pregnant females orally dosed with 500 mg VCD/kg for 

10 days (gestational days 8-17) were reduced by 82% compared with controls. When exposed in utero 

to VCD, female offspring primordial follicle counts were reduced by 28% and 31-35% of controls 

(500 mg VCD/kg, gestational days 6-20 and 8-17, respectively) (Burd, 2009). It is well understood 

that the biological properties of the placenta allow small (<1000 g/mol), lipid-soluble molecules, such 

as VCD (140.14 g/mol), to cross rapidly in a flow-dependent manner (Morgan, 1997). Thus, the 

properties of VCD would suggest that placental transfer of the chemical would occur readily. The 

follicle reducing effects of VCD have also been examined on outbred wild population of female 

ricefield rats (R. argentiventer). Results demonstrated that 15 days of oral gavage with VCD (0, 500 or 

750 mg/kg/day) caused a dose dependent decline in primordial follicle numbers (Herawati et al., 

2010).  

Effectiveness of orally delivered VCD on the fertility of male rats and mice has also been examined 

(Hooser et al., 1995; Schmuki, 2009). Male mice intraperitoneally injected with VCD (40 – 320 

mg/kg/day; 5 – 30 days) had reduced testicular weights and testicular damage. Cessation of treatment 

resulted in recovery of the testicular tissue (Hooser et al., 1995) suggesting that if fertility effects had 

occurred, such effects were likely reversible. Fifteen days of oral VCD gavage (500 mg/kg/day) 

caused SD rat testicular and epididymal weights to increase (day 47 post-treatment). No effects on 

reproductive function of treated males were reported (Schmuki, 2009). These findings in male rodents 

are not surprising considering the continual nature of the spermatogenesis cycle (Clermont, 1972; 
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Clermont and Harvey, 1967) and demonstrate VCDs specificity in its permanent sterilizing effects on 

female reproduction.   

As previously mentioned, researchers at SenesTech Inc
®
 (Flagstaff, AZ, USA) have established 

efficacy of the chemosterilant bait, ContraPest
®
, at reducing the immature and pre-antral follicle pools 

in adult female SD rats. The current formulation of ContraPest
®
 contains both VCD and TR. 

Therefore, because TR is known to reduce male and female fertility (e.g. oligozoospermia and 

asthenozoospermia) (Huynh et al., 2000; Lue et al., 1998; Qian et al., 1986; Qian et al., 1988; Zhen et 

al., 1995), this may provide an additional avenue for the control of pest mammals.        

Recently, VCD’s use as a chemosterilant for Australian and NZ marsupials has been proposed. 

Although the timing of follicle development and maturation in marsupials and rats is different (as 

previously discussed in section 2.5), the underlying events are similar. Therefore, it can be postulated 

that VCD-induced primordial follicle depletion observed in rodents may have an equivalent effect in a 

marsupial species. To date, there is only one published report on the effects of VCD in marsupials 

(Koehn, 2008). Adult female and male tammar wallabies (Macropus eugenii) were treated with 

subcutaneous (s.c.) injections of 0, 46 or 183 mg VCD/kg/day for 15 days (n = 5-6/treatment) or with 

intramuscular (i.m.) injections of 0 or 100 mg/kg/day VCD for 9 and 15 days (n = 2-3/treatment). 

There were no changes in the primordial follicle pool of treated animals which may, in part, be due to 

the low robustness of the study (i.e. low sample size) or the route of administration. In addition, 

injection site reactions occurred in all VCD treated groups (males and females), requiring cessation of 

treatment on day 5 in one group (183 mg VCD/kg/day) (Koehn, 2008). Considering the severity of 

injection site reactions in captive wallabies, investigation of the possibility for an oral route of VCD 

administration is warranted for wild-dwelling marsupials such as the NZ brushtail possum.  

 Summary 2.7

There is an on-going need for sustainable, effective, humane and affordable methods of pest control in 

NZ. The chemosterilant VCD could potentially satisfy such needs as it is an orally active compound 

that causes permanent infertility in female mammals. The purpose of the studies reported here was to 

examine the effects of orally delivered VCD on wild-caught adult female possums’ health, internal 

organs and immature ovarian follicle populations. Potential species differences in the fate and 

metabolism of VCD were also examined in vivo and in vitro in wild female rats and possums. In 

addition, the palatability and follicle depleting effectiveness of ContraPest
® 

(SenesTech Inc
®
) was 

tested in wild-caught female Norway rats.  
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Chapter 3 

General Methodology  

 Reagents 3.1

4-Vinylcyclohexene diepoxide (batch # BCBB9360 and BCBC1500) was purchased from Sigma-

Aldrich (Auckland, NZ; cat. 94956). Sunfield sunflower oil, used as a carrier liquid for VCD and for 

vehicle control, was purchased from Tasti Products Ltd (Auckland, NZ). Cyclohexanone, purchased 

from May and Baker LTD, Dagenham, England (cat. BC00595) and 4-vinyl-1-cylohexene 1,2-epoxide 

(VCH 1,2-isomer; lot #MKBL783V; cat. 106-86-5) were used as internal standards for gas 

chromatography. Ethyl acetate, used to extract VCD and its metabolites, was obtained from Fisher 

Scientific (cat. 141-78-6). Attane™ isoflurane, purchased from Bomac Laboratories Ltd (Auckland, 

NZ; cat. 26675-46-7), was used as a general inhalation anaesthetic during gavage procedures. Sodium 

pentobarbital, used as the euthanizing agent, was purchased from ProVet (Auckland, NZ).   

 Animals  3.2

Mature female brushtail possums (live weight 2.5 - 4.0 kg) and Norway rats (live weight 100 - 300 g) 

were captured in North Canterbury, NZ using cage traps set along farmland-bush margins. Animals 

were housed and acclimatized indoors for 4 - 6 weeks in individual cages with constant temperature 

(20 ± 5°C) and a light:dark cycle that followed the external environmental photoperiod. On a daily 

basis, animals were provided with cereal-based pellets formulated for possums or rats (CRT Reliance 

Feeds, Rolleston, NZ), fresh fruit and vegetables and water ad libitum. All experimental procedures 

were carried out with the approval of the Animals Ethics Committee of Landcare Research, Lincoln 

and in accordance with Part 6 of the New Zealand Animal Welfare Act 1999. 

 Glutathione analysis 3.3

Glutathione (GSH) activity levels in red blood cells (RBCs), plasma and hepatic (liver) and ovarian 

tissues were analysed using methods described in the GSH assay kit (Sigma, cat# CS0260) with the 

following changes: a stock solution of 10 mM GSH was stored in aliquots for up to 3 months at -20°C 

and then diluted down to create the GSH standards as needed; 96-well plates were kept on ice until 

commencement of the 5 min incubation; the plate was shaken for 5 seconds prior to absorbency 

reading to ensure even distribution of sample and reagents; the plate reader was kept at 37°C during 

readings. To reduce enzymatic degradation, all samples were slowly defrosted on ice prior to analysis 

and all samples were run in triplicate. Total GSH content (nmol/µL or mg tissue) in each sample was 

calculated using the following formula: [ΔA412/min(sample) * dil]/[ΔA412/min(1 nmole) * vol] where 

ΔA412/min(sample) is the slope generated by the sample with background absorbency removed;  
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ΔA412/min(1 nmole) is the slope generated from the standard curve for 1 nmole of GSH; dil is the 

dilution factor of the original sample; and vol is the volume (mL) of sample in the reaction. Final GSH 

concentrations were then converted to µmol and multiplied by the 5-sulfosalicylic acid (SSA) dilution 

factor (RBCs and plasma, 1x; liver and ovary, 28x) to achieve µmol GSH per µL or mg of tissue. For 

details on the GSH standard curve please refer to section 3.6.1.   

 Gas chromatography assay sample preparation 3.4

VCD and its metabolites were extracted and quantified on gas chromatography (GC) by placing 

samples into glass scintillation vials and then VCD extracted by the addition of two times the sample 

volume of ethyl acetate (EA) containing an internal standard. In three successive rounds, samples were 

vortex mixed for 30 seconds and then shaken for 10 minutes at 200 rpm. Phases were separated by 

centrifugation at 3,000 x g for 10 minutes and the organic layer analysed for VCD quantification as 

outlined in section 3.5.  

 Gas chromatography analysis 3.5

VCD quantification in biological samples was achieved utilizing a 6890N Network GC (Agilent 

Technologies) equipped with a DB5-ms column (60 m x 0.25mm; J&W Scientific, Folsom, CA) and a 

flame ionization detector (FID). The nitrogen carrier gas flow rate was 0.5ml/min. The FID gas flow 

rates for hydrogen and air were 50 and 400 ml/min respectively, with a combined flow of 60ml/min. 

Split injection was used with a split ratio of 20:1, a spit flow of 10.5 ml/min and a total flow of 13.6 

ml/min at 15 psi. The injection volume was 1.0 µL. The initial oven temperature was held at 100°C 

and then ramped up to 130°C at a rate of 2°C/min and held at the final temperature of 200°C at a rate 

of 13°C/min for 15 minutes. The injection and detector temperatures were held at 250°C and 280°C, 

respectively. VCD chromatography revealed two peaks. Thus, VCD was quantified by first adding 

together the area under the curve (AUC) for each VCD peak. Total VCD AUC and the internal 

standard AUC were then compared against the standard curve of each corresponding analyte for total 

VCD recovery and correction factors for loss due to methods. The retention times for the analytes 

were as follows: VCD peak 1, 10.8 min; VCD peak 2, 11.0 min (Figure 3.1); VCH, 2.7 min (Figure 

3.2); VCH 1,2-isomer, 4.7 min (Figure 3.3); cyclohexanone, 3.4 min (Figure 3.4); ethyl acetate, 2.0 

min (Figures 3.1 – 3.4). All samples were run in triplicate. The practical quantitation limit (PQL) for 

VCD was 0.371 mM. For details on the VCD and internal standard curve and assay validation test 

refer to section 3.6.2. 
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Figure 3.1 Representative image of a gas chromatograph of 4-vinylcyclohexene diepoxide (VCD; 
0.913 mM). VCD peak 1, 10.825 minutes; VCD peak 2, 11.014 minutes; ethyl acetate, 
2.049 minutes. 

 

 

Figure 3.2 Representative image of a gas chromatograph of 4-vinylcylohexene (VCH; 0.87 mM). 
VCH, 2.738 minutes; ethyl acetate, 1.937 minutes. 
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Figure 3.3 Representative image of a gas chromatograph of 4-vinyl-1-cylohexene 1,2-epoxide (VCH-
isomer; 1.05 mM). VCH-isomer, 4.77 minutes; ethyl acetate, 2.049 minutes. 

 

 

Figure 3.4 Representative image of a gas chromatograph of cyclohexanone (1.18 mM). 
Cyclohexanone, 3.4 minutes; ethyl acetate, 2.05 minutes.  
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 Preparation of standard curves 3.6

3.6.1 GSH 

Standard GSH samples were created by diluting a stock solution of GSH (10 mM in ultrapure water; 

w/v) with a 5% solution of 5-sulfosalicylic acid, creating a standard GSH range from 0.78 to 50 µM. 

All standards were run in duplicate and were made fresh for each run. The standard curve was 

generated by subtracting the background absorbency from each standard absorbency reading and then 

the average absorbency of each standard pair was calculated and graphed against the standard 

concentration range (Figure 3.5).  

 

 

Figure 3.5 Representative image of a standard curve for glutathione (GSH). 

 

3.6.2 VCD, VCH and VCH 1,2-isomer 

For each chemical, standards were made up fresh for each run in EA and then diluted down to the 

desired concentration. All standards were run in triplicate. For the standard curve for each chemical, 

refer to Figures 3.6 to 3.9.   
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Figure 3.6 Representative image of standard curves for upper 4-vinylcyclohexene diepoxide (VCD) 
concentration range (A; 5.0 – 100 mg/mL) and lower VCD concentration range (B; 5.0 – 
1000 µg/mL).   
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Figure 3.7 Representative image of a standard curve for 4-vinylcyclohexene (VCH). 

 

 

Figure 3.8 Representative image of a standard curve for 4-vinyl-1-cylohexene 1,2-epoxide (VCH 1,2-
isomer). 
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Figure 3.9 Representative image of a standard curve for cyclohexanone. 

 

 Histology and Follicle Analysis 3.7

For each species, ovaries were trimmed of fat, weighed and placed into 10% neutral-buffered formalin 

solution for 48 hours and then transferred to 70% ethanol until processing. Ovaries were paraffin-

embedded, serially sectioned (5 µm), mounted, and stained with Harris hematoxylin and Eosin Y (1%) 

prior to cover-slip application. Ovarian follicles were counted in every 20
th
 section to avoid double 

counting of larger follicles. To ensure consistency, follicles were assessed by the same examiner who 

was blinded to experimental conditions. Follicles were identified based on the following criteria: 

primordial (oocyte surrounded by a single layer of ≥ 50% elongated flattened granulosa cells; rat, ≤ 

20µm diameter; possum, ≤ 60 µm diameter; Figure 3.10); primary (oocyte surrounded by a single 

layer of ≥ 50% cuboidal granulosa cells; rat, 20-70 µm diameter; possum, 60-200 µm diameter; Figure 

3.11); secondary (oocyte surrounded by two or more layers of cuboidal granulosa cells as well as a 

somatic layer that may or may not contain a fluid filled antrum with a diameter less than the oocyte; 

rat, 70-390 µm diameter; possum, 200-450 µm diameter; Figure 3.12); and antral (oocyte surrounded 

by multiple layers of granulosa cells containing a fluid filled antrum with a diameter larger than the 

oocyte; rat, 80-320 µm diameter; possum, > 450 µm diameter; Figure 3.13) (Hirshfield and Midgley 

Jr, 1978; Pedersen and Peters, 1968). The corpus luteum (CL) was comprised of healthy, uniformly-

sized luteal cells (rat, >320 µm diameter; possum, >4 mm diameter; Figure 3.14). Total primordial and 

primary follicle counts were estimated using a correction factor formula (Gougeon and Chainy, 1987) 

as follows: Nt = (N0 x St x ts)/(S0 x d0) where Nt : total number of follicles, N0 : number of follicles 

observed in the ovary, St : total number of sections in the ovary, ts : thickness of the section (µm), S0 : 

total number of sections observed, and d0 : mean diameter of the nucleus of that follicle type. Counts 

for secondary and antral follicles and copora lutea were directly collated.   
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Figure 3.10 Representative image of primordial ovarian follicular structures (T. vulpecula, x40). 
Primordial follicles were classified as an oocyte surrounded by a single layer of 
elongated flattened granulosa cells; rat, ≤ 20µm diameter; possum, ≤ 60 µm diameter. 
Oocyte (oo); nucleus (nu); granulosa cells (gc). 

 

 

Figure 3.11 Representative image of primary ovarian follicular structures (T. vulpecula, x40).  
Primary follicles were classified as an oocyte surrounded by a single layer of ≥ 50% 
cuboidal granulosa cells; rat, 20 - 70 µm diameter; possum, 60 - 200 µm diameter. 
Oocyte (oo); nucleus (nu); granulosa cells (gc). 
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Figure 3.12 Representative image of secondary ovarian follicular structures (T. vulpecula, x40). 
Secondary follicles were classified as an oocyte surrounded by two or more layers of 
cuboidal granulosa cells as well as an additional somatic layer that may or may not 
contain a fluid filled antrum with a diameter less than the oocyte; rat, 70 - 390 µm 
diameter; possum, 200 - 450 µm diameter. Oocyte (oo); nucleus (nu); nucleolus (no); 
granulosa cells (gc). 

 

 

Figure 3.13 Representative image of antral follicular structures (T. vulpecula, x25). Antral follicle 
were classified as an oocyte surrounded by multiple layers of granulosa cells 
containing a fluid filled antrum with a diameter larger than the oocyte; rat, 80 - 320 
µm diameter; possum, > 450 µm diameter. Oocyte (oo); nucleus (nu); antrum (an); 
granulosa cells (gc). 
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Figure 3.14 Representative image of corpus luteum (CL) within possum (T. vulpecula) ovarian tissue 
(x10). A CL was classified as a postovulatory follicle containing luteal cells; AF: antral 
follicle; rat, >320 µm diameter; possum, >4 mm diameter. 

 

 Statistical analysis  3.8

Statistical significance was established at α=0.05. Normally distributed data were analysed by 

Student’s t-test or one-way ANOVA (analysis of variance). Tests for normality (Shapiro-Wilk) and 

variance (Levene) were performed to ensure that ANOVA assumptions were not violated. Non-

normally distributed data were analysed using a Mann-Whitney or Kruskall-Wallis test. Where 

appropriate, Box-Cox transformations were performed for non-normally distributed data. All data 

were analysed in using JMP® 10.2 (SAS, Cary, NC) software. Data are presented as means ± SEM 

(standard error of the mean).  
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Chapter 4 

Effects of orally delivered 4-vinylcyclohexene diepoxide on the 

health and ovarian follicle populations of female brushtail possums  

 Introduction 4.1

Throughout New Zealand the brushtail possum (Trichosurus vulpecula) poses a serious threat to 

native fauna and flora and, through its role as a primary vector of the disease, bovine tuberculosis, to 

the health of domestic livestock and feral game species (Cowan, 2005). Current methods for control 

include poisons and trapping. Although effective in the short-term, there are public concerns about the 

animal welfare and environmental impacts of conventional lethal control methods (PCE, 2011). New 

cost-effective and more humane approaches to possum control are needed. 

Fertility control has received much interest as an alternative and more publicly acceptable method of 

pest control.  One approach is to utilize chemicals that specifically target the reproductive function of 

pest species and can induce permanent sterility (Marsh and Howard, 1970; Mauldin and Miller, 2007). 

4-Vinylcyclohexene diepoxide (VCD), an organic compound formed during industrial processes and 

used as a reactive diluent for diepoxides and epoxy resins, shows potential as a chemosterilant in 

mammals. Toxicology studies in rodents have shown that VCD reduces the pool of primordial ovarian 

follicles, resulting in a rapid onset of ovarian senescence and permanent sterility (Kao et al., 1999; 

Springer et al., 1996b; Springer et al., 1996c).  

VCD-induced reductions in immature follicle populations have primarily been achieved via injection 

(intramuscular or intraperitoneal) of the chemical (Hoyer and Sipes, 2007). However, to utilize VCD 

as a fertility control agent for pest species, an oral route for exposure will be essential. A paired 

reproductive study demonstrated that 10 days of VCD treatment (500 mg/kg/d) during gestation 

caused an 82% depletion of parental dam primordial follicles compared with controls. Additionally, 

offspring exposed in utero to 10 or 15 days of VCD (500 mg/kg/d) had a 28% and 31-35% reduction 

in primordial follicles compared with controls, respectively (Burd, 2009). Oral dosing of female 

Sprague Dawley laboratory rats with 500 or 750 mg/kg VCD for 15 consecutive days caused 58% and 

88% depletion of primordial follicles, respectively (Dr. L.A. Hinds, CSIRO, Australia, unpublished 

data).  Orally administered VCD has also been demonstrated to reduce the immature follicle pool in 

wild ricefield rats (R. argentiventer) in a dose dependant manner (Herawati et al., 2010). Collectively, 

these studies demonstrate that VCD can reduce the immature follicle populations in rodents through 

the oral route of delivery.  

To date, no studies on the efficacy of orally-delivered VCD have been undertaken in marsupial species 

such as the brushtail possum. The purpose of the studies reported here was to: 1) investigate the effects 
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of orally administered VCD on the health and ovarian follicle populations of adult female possums; 2) 

identify the optimal dosage and duration of treatment to induce primordial follicle depletion; and 3) 

identify formulations to improve the efficacy of orally delivered VCD in adult female possums.  

 Materials and Methods 4.2

4.2.1 Reagents 

VCD, sunflower oil, Attane™ isofluorane, and sodium pentobarbital were obtained from vendors and 

used for experimental procedures as previously outlined in Chapter 3. Quick-EZE
®
 tablets (780 mg 

CaCO3, 130 mg Mg CO3 and 130 mg Mg2O8Si3 per tablet), used as an antacid pre-treatment, were 

obtained from Nestle (Auckland, NZ). Intralipid
®
 (20% fat emulsion containing glycerol, 22.3 g/L; 

triglycerides, 202 g/L; and phospholipids, <0.5 g/L), a sterile lipid emulsion, was used as a gavage 

carrier liquid and was purchased from Pharmatel (Auckland, NZ; cat. 835041-54). Liquid carbon 

dioxide, purchased from BOC (Christchurch, NZ), was used to freeze teeth to the microtome base for 

aging analysis. 

4.2.2 Animal procedures  

For each study, possums were randomly allocated into treatment groups using a randomized block 

design stratified by live weight prior to trial start. Under anaesthesia (5% isoflurane in O2 at 2 L/min) 

blood samples (2-3 mL) were collected from the ventral tail vein prior to trial start and on the final 

treatment day and plasma was stored at -20°C for analysis (see section 4.2.4). Possums were 

anesthetized daily and, once lightly sedated, gavaged with control or treatment solution (3.5 – 8.5 mL). 

Gavage tubes consisted of commercially purchased vinyl tubing (ID 3 mm, OD 5 mm, 30 cm long) 

attached to a 3-way stop cock and a 10 mL syringe. For each treatment group one tube was used and 

tubes were discarded daily. Live weight was measured daily prior to treatment to adjust VCD dose and 

monitor general animal health during the study. In an attempt to minimize handling and anaesthetic 

stress, possums were prepared for anaesthesia by transferring each possum in their nest box to the 

treatment area. Isofluorane was administered through a tube directly into the nest box. Following 

treatment, possums were placed back into their nest box and transferred into their cage before 

regaining consciousness, thus allowing the animal to wake naturally in a safe and familiar 

environment. Animals were visually monitored for up to 4 hours post-treatment.  

Treatment protocol for Study 1 

Animals were gavaged daily for 13 days with sunflower oil (vehicle control, n = 8), or a low dose of 

VCD (500 mg/kg mixed 1:3 w/v) in oil (n = 8) or a high dose of VCD (750 mg/kg mixed 1:3 w/v) in 

oil (n = 8). The treatment duration and selected doses were based on previous rodent studies 

demonstrating significant immature follicle depletion following oral treatment (Burd, 2009; Herawati 

et al., 2010).  
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Treatment protocol for Study 2 

To improve the effectiveness of oral VCD two new formulations were tested. These included a 

lipoprotein formulation (Intralipid
®
 20%) shown to improve uptake and palatability of VCD in rodents 

(Dr. C. A. Dyer, SenesTech Inc., USA, pers. comm.) and the use of antacids (Quick-EZE
®
 tablets) to 

reduce the breakdown of VCD to its inactive tetrol metabolite by acid conditions in the stomach. Both 

formulations were predicted to increase the uptake and effectiveness of VCD. Animals were gavaged 

daily for 10 days in 2 blocks of 5 days with 2 rest days between treatment phases. Control groups 

included (1) 2.05 mL/kg  lipoprotein solution (Intralipid 20%; n = 6), (2) 3.0 mL antacid pre-treatment 

solution (containing 1.275 g of powdered Quick-EZE
®
 tablets; 956.3 mg CaCO3, 156.8 mg Mg CO3, 

156.8 mg Mg2O8Si3) suspended in distilled water followed by 2.05 ml/kg sunflower oil (n = 6), or (3) 

2.05 ml/kg sunflower oil only (n = 6). Hereafter control treatment groups will be reported as C-IT 

(group 1), C-QE (group 2), and C-O (group 3). VCD treatment groups included (1) 750 mg VCD/kg 

mixed 1:3 (w/v) in lipoprotein solution (n = 10) or (2) 3.0 mL antacid pre-treatment solution 

(containing 1.275 g powdered Quick-EZE® tablets suspended in distilled water) followed by 750 mg 

VCD/kg mixed 1:3 (w/v) in sunflower oil (n = 10). Hereafter VCD treatment groups will be reported 

as VCD-IT (group 1) and VCD-QE (group 2).  

4.2.3 Tissue collection 

Prior to euthanization, intracardiac blood was collected into lithium heparinised tubes and then 

animals were euthanized with an intracardiac injection of pentobarbitone (125 mg/kg) and the 

following tissues excised, trimmed of fat, weighed and examined for gross pathology: complete 

reproductive tract, ovaries, liver, kidneys and adrenal glands. In addition, the length and width of each 

uterus, vaginal culs-de-sac and ovarian follicles (>1 mm) were recorded. Unovulated follicles and 

ovulation sites were enumerated. Ovaries, adrenal glands, kidneys and a portion of the liver were fixed 

in 10% buffered-neutral formalin solution for histological analysis.  

4.2.4 Inductively coupled plasma optical emission spectrophotometer analysis 

To determine if calcium toxicity was occurring following the pre-treatment with antacid, total calcium 

(Ca) and magnesium (Mg) were measured in pre- and post-treatment plasma collected from Study 2 

animals. Plasma samples were diluted 1:5 (w/v) with ultrapure water to for analysis preparation. 

Samples were analysed with an axially aligned inductively coupled plasma optical emission 

spectrophotometer (ICP-OES) (Varian 720, Mulgrave, Australia). The ICP ultrasonic seaspray 

nebulizer and cyclonic spray chamber operating conditions and flow injection system used are listed in 

Table 4.1. Calibration standards and internal standards were serially diluted from Merck ICP standard 

solutions.  
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Table 4.1 Inductively coupled plasma optical emission spectrophotometer (ICP-OES) instrumental 
parameters employed for the determination of total plasma calcium and magnesium 
concentration. 

Forward power 1.2 kW 

Nebulizer flow rate 0.9 L/min 

Plasma gas flow rate 15.0 L/min 

Auxiliary gas flow rate 1.5 L/min 

Solution uptake rate 1.0 mL/min 

Analytical wavelengths Ca: 370.6, Mg: 279.6 

 

4.2.5 Tooth cementum analysis 

To determine the age of individual possums the cementum deposition layers were counted using an 

adaptation of published methods (Clout, 1982; Pekelharing, 1970). The right mandible of each animal 

was boiled in water for 1-2 hours and the second and third molars removed. Teeth were decalcified for 

4 hours in the commercial decalcifying agent RDO (Clout, 1982) and then gently rinsed with water. 

Using a freezing microtome (Reichert Jung 1205, Vienna, Austria) 10 - 20 sections (20 µm) were cut 

serially through the cementum peninsula (central portion of tooth between the roots). Sections were 

mounted onto glass slides and air dried for 24 hours. Slides were stained with Erlich’s haematoxylin 

and water (50:50 v/v) for one hour and then gently rinsed with water and a coverslip applied. 

Cementum layers (narrow dark-staining bands) were counted at x40 or x100 magnification on 3 - 5 

sections to determine the age of each animal. To ensure consistency, cementum layers were assessed 

by a single examiner who was blinded to experimental conditions. 

4.2.6 Histology and follicle analysis 

Ovaries, liver and kidneys were trimmed of fat, weighed and then prepared for histological 

examination as previously outlined in Chapter 3. Complete blood counts were measured at Gribbles 

Veterinary (Christchurch, NZ) and analysis performed as outlined in section 4.2.8. Liver and kidney 

sections were assessed by an experienced veterinary pathologist (Gribbles Veterinary) for signs of 

abnormal pathology. The qualitative remarks were divided into 5 major categories of background 

changes for each tissue. The liver background categories included: 1) lymphocyte aggregates within 

lobules or cells (range: few; moderate; many); 2) macrophage clusters; 3) periacinar hepatocytes 

containing brown granular material (range: few; moderate; many); 4) Kupffer cells containing brown 

granular material (range: few, moderate; many); 5) hepatocytes containing brown granular material 

(range: few, moderate; many). Kidney background changes included: 1) collecting tubules containing 

dark blue granular material in lumen; 2) outer cortical, focal infiltrate of lymphocytes (range: single; 

few; many); 3) scattered granules containing black material; 4) tubules with syncytial-like cells; 5) 

tubules that lack the eosinophilia and have large nuclei. For each sample, a score ranking from 0-3 was 

applied as follows: 0 = 0 to 1 categories present; 1 = 1 to 2 categories present; 2 = 2 to 3 categories 

present; 3 = 4 to 5 categories present.  
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4.2.7 In vitro stomach pH analysis 

The effects of Quick-EZE
® 

(QE) and Intralipid
®
 (IT) on stomach pH of possums were analysed in 

vitro. Stomach contents from four female possums were pooled and the initial pH measured. Stomach 

contents were then divided into 5 gram aliquots and treated in triplicate as follows: 1) control (no 

additives); 2) low QE dose (214.0 µL); 3) high QE dose (500.0 µL); 4) low IT dose (83.0 µL); 5) high 

IT dose (123.0 µL). The low QE dose was calculated by dividing the sample size (5.0 g) by a high 

average weight of possum stomach contents (70.0 g), resulting in 7.14 % w/w. This percentage was 

then multiplied by the volume of QE dose provided in the study (3.0 mL), resulting in a 214.0 µL of 

QE spike treatment. The high QE dose was calculated by dividing the sample size (5.0 g) by a low 

average weight of possum stomach contents (30.0 g), resulting in 16.7 % w/w. This percentage was 

then multiplied by the volume of QE dose provided in the study (3.0 mL), resulting in a 500.0 µL of 

QE spike treatment.  

Intralipid treatment was calculated based on the treatment regimen outlined in study two (controls, 

2.05 mL Intralipid/kg; VCD, 2.05 mL VCD mixed 1:3 v/v with Intralipid/kg). The low dose, 

representing VCD treatment, was calculated by dividing an average VCD Intralipid dose (2.05 mL/kg 

* 3.0 kg live weight = 6.15 mL dose * 67.0 % (1:3 v/v) = 4.12 mL Intralipid) by an average weight of 

possum stomach contents (50.0 g), resulting in an 83.0 µL Intralipid spike treatment. The high dose, 

representing control treatment, was calculated by dividing an average Intralipid dose (2.05 mL/kg * 

3.0 kg live weight = 6.15 mL Intralipid) by an average weight of possum stomach contents (50.0 g), 

resulting in a 123.0 µL Intralipid spike treatment. Treatment vials were vortex mixed for 15 seconds 

and the pH measured at 5, 45 and120 minutes post-treatment. Stomach vials were kept in a 37ºC water 

bath during the length of the experiment to replicate in vivo conditions.  

4.2.8 Statistical analysis  

All general statistical procedures were run as previously mentioned in Chapter 3. In addition, live 

weights during treatment were analysed using a repeated measure test with animal identification as a 

random variable and treatment group defined by time. Ovarian follicle estimates were tested for 

covariance to ovarian weight and animal age at death and normalized where appropriate. Live weight 

covariance was determined for all post mortem organ weights. Data were normalized to live weight 

where appropriate by dividing the organ weight by live weight. Individual pre- and post-treatment 

CBC data from Study 1 were analysed against reference ranges using a Z-test. Additionally, mean 

CBC pre-treatment levels were tested against post-treatment levels to determine if any time-dependent 

effects had occurred. Liver and kidney histological reports were analysed using a Wald test with an 

ordinal logistics fit.  



 

 46 

 Results   4.3

4.3.1 Study 1 

Treatment and necropsy parameters 

Animal live weight, food consumption and body condition were monitored daily during treatment (13 

days). Animals lost an average of 19.3 grams of live weight per day, regardless of treatment (p < 

0.0001; Figure 4.1). Following treatment on day one, 5 of 8 animals treated with a low VCD dose 

(500mg/kg) and 2 of 8 animals treated with a high VCD dose (750 mg/kg) vomited. On treatment day 

2 only one animal treated with a high dose of VCD vomited. No other adverse signs were reported 

during treatment across all groups. Animal age was similar across all treatment groups (p > 0.713) 

with an average age of 3.47 ± 0.31 years (Table 4.2). There were no significant differences between 

control and VCD treatment groups in final live weight (p > 0.494) or the weights of the liver (p > 

0.980), paired kidneys normalized to live weight (p > 0.171), paired adrenal glands (p > 0.927), paired 

uterine tracts (p > 0.351), or paired ovaries (p > 0.483) (Table 4.2). The data from three animals were 

removed from the study due to: 1) on treatment day 9, one control animal was mistakenly given a 

VCD dose (500 mg/kg); 2) one control animal was found to be 10 years old and, thus, considered to be 

an outlier; and 3) one VCD treated animal (500 mg/kg) was found dead in her cage on the final day of 

treatment. A necropsy revealed normal appearance and parameters for the oesophagus, trachea, lungs 

and vital and reproductive organs. There were no signs of aspiration; however, the gastrointestinal 

tract appeared pale and contained loose, watery stool. The cause of death was undetermined.  
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Figure 4.1 Change in live weight (as % starting weight) of wild-caught female brushtail possums 
during 13 days of daily oral VCD administration (0, 500 or 750 mg/kg; Study 1). Control 
(oil only), n = 6; 500 mg VCD/kg/d, n = 7; 750 mg VCD/kg/d, n = 8. Vertical bars 
represent ± SEM. 

 

Table 4.2 The effect of VCD administration on live weight (LW) and somatic and reproductive 
tissues of wild-caught female brushtail possums during Study 1.  Data are means ± 
SEM. 

 

Toxicology results 

Complete blood counts (CBC) were measured pre- and post-treatment to check for general toxicity. 

CBC results revealed differences between pre- and post-treatment levels across all treatment groups in 
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Treatment day 

Control 500 mgVCD/kg 750 mgVCD/kg

Measured parameter 
Treatment group 

Control VCD low dose (500 mg/kg) VCD high dose (750 mg/kg) 
N 6 7 8 

Age at death (year) 3.8 ± 0.7 3.6 ± 0.5 3.1 ± 0.5 
Final LW (kg) 2.83 ± 0.09 3.01 ± 0.09 2.86 ± 0.14 

Liver weight (g/kg LW) 21.1 ± 0.57 21.4 ± 1.40 21.2 ± 1.0 
Paired kidney weight (g) 12.4 ± 0.41 12.5 ± 0.53 11.3 ± 0.46 
Paired adrenal weight (g) 0.42 ± 0.03 0.42 ± 0.03 0.43 ± 0.02 

Paired uteri weight (g) 13.1 ± 1.84 13.4 ± 3.35 8.98 ± 1.69 
Paired ovary weight (g) 0.29 ± 0.03 0.28 ± 0.04 0.23 ± 0.04 
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haematocrit (HCT; p < 0.014), mean cell volume (MCV; p < 0.008), mean cell haemoglobin 

concentration (MCHC; p < 0.0001), neutrophils (p < 0.008), lymphocytes (p < 0.017), and eosinophils 

(p < 0.027). However, these effects were not treatment related (p > 0.057; Table 4.3). Pre- and post-

treatment CBC levels were also tested against the mean reference range for each parameter. The data 

revealed that post-treatment MCHC levels of controls and low dose VCD treatment groups were 

significantly higher than the reference range (p < 0.002 and p < 0.001, respectively; Table 4.3). 

Animals treated with a high dose of VCD had elevated MCHC levels compared with the reference 

range both pre- and post-treatment (p < 0.032 and p < 0.0001, respectively; Table 4.3). There were no 

other differences between pre- or post-treatment CBC parameters when compared with their 

corresponding reference ranges (p > 0.087; Table 4.3). The liver enzymes gamma-glutamyl transferase 

(GGT) and glutamate dehydrogenase (GLDH) were measured to determine liver toxicity. There were 

no treatment differences in GGT or GLDH levels across all treatment groups (p > 0.109 and p > 0.407, 

respectively; Table 4.3).   

 



 

 

Table 4.3 Haematological and liver enzyme parameters of wild-caught female brushtail possums recorded pre- and post-treatment during Study 1. Reference 
ranges were obtained from Gribbles Veterinary (Christchurch, NZ). Ŧ indicates post-treatment levels are different (p < 0.05) from pre-treatment 
levels; * indicates levels are different (p < 0.05) from the reference range. Data are means ± SEM. 

 

Measured parameter Reference range 
Pre-treatment Post-treatment 

Control 
VCD low dose (500 

mg/kg) 
VCD high dose (750 

mg/kg) 
Control 

VCD low dose (500 
mg/kg) 

VCD high dose (750 
mg/kg) 

Sample size N/A 6 7 8 6 7 8 
Red blood cells (1012/L) 5.1 – 7.2 5.73 ± 0.30 6.04 ± 0.22 5.91 ± 0.20 5.50 0.24 5.73 0.33 6.16 0.31 

Haemoglobin (g/L) 114 - 169 130.2 ± 5.80 132.4 ± 5.27 136.6 ± 3.83 124.8 4.94 126.3 8.41 141.4 5.75 
Haematocrit (%) 35 – 51 0.39 ± 0.02 0.40 ± 0.01 0.41 ± 0.01 Ŧ0.37 ±  0.01 Ŧ0.36 ± 0.02 Ŧ0.40 ± 0.02 

Mean cell volume (fL) 64 – 77 67.0 ± 1.44 64.6 ± 0.69 67.4 ± 1.24 Ŧ66.5 ± 1.06 Ŧ64.0 ± 0.65 Ŧ65.5 ± 1.0 
Mean cell haemoglobin (pg) 20-30 22.8 ± 0.31 21.9 ± 0.40 23.0 ± 0.27 22.8 ± 0.31 22.0 ± 0.44 23.1 ± 0.30 

Mean cell haemoglobin 
concentration (g/L) 

317 – 329 332.8 ± 4.06 333.3 ± 3.17 *335.9 ± 4.45 
* Ŧ341.5 ± 

1.78 
* Ŧ343.0 ± 5.78 * Ŧ 351.9 ± 1.99 

White blood cells (109/L) 2.3 – 14.3 7.97 ± 1.16 9.31 ± 1.40 9.48 ± 1.25 7.80 ± 0.94 8.97 ± 1.32 9.35 ± 1.0 
Neutrophils (109/L) 1.4 – 5.1 2.98 ± 0.59 3.44 ± 0.70 2.61 ± 0.49 Ŧ 3.50 ± 0.55 Ŧ 4.17 ± 1.26 Ŧ 4.43 ± 0.74 

Lymphocytes (109/L) 0.8 – 13.2 4.48 ± 1.15 5.19 ± 0.87 5.99 ± 1.05 Ŧ 3.87 ± 0.74 Ŧ 4.17 ± 0.77 Ŧ 4.33 ± 0.85 
Monocytes (109/L) 0.1 – 0.5 0.37 ± 0.15 0.37 ± 0.11 0.50 ± 0.08 0.28 ± 0.06 0.51 ± 0.15 0.44 ± 0.07 
Eosinophils (109/L) < 1.2 0.12 ± 0.03 0.33 ± 0.10 0.33 ± 0.11 Ŧ 0.10 ± 0.03 Ŧ 0.16 ± 0.04 Ŧ 0.18 ± 0.10 
Basophils (109/L) < 0.4 0.0 ± 0.0 0.01 ± 0.01 0.08 ± 0.04 0.03 ± 0.02 0.0 ± 0.0 0.01 ± 0.01 

Gamma-glutamyl transferase (IU/L) 0.0 – 10.0 N/A N/A N/A 4.17 ± 0.48 6.0 ± 0.58 7.38 ± 1.68 
Glutamate dehydrogenase (IU/L) 0.0 – 10.0 N/A N/A N/A 17.8 ± 3.26 18.3 ± 5.07 22.5 ± 3.77 

4
9 
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Follicle counts 

To determine if primordial follicle counts decrease with age or are correlated with ovarian weight, 

covariance was first determined for each variable. The data demonstrate no correlations between 

primordial follicle counts and age or ovarian weight (p > 0.943 and p > 0.095, respectively). There 

were no statistical differences in primordial follicle counts of animals dosed with a low (500 mg/kg) or 

a high concentration of VCD (750 mg/kg) compared to controls (p > 0.687, Figure 4.2).  

 

 

Figure 4.2 Effect of daily oral administration (13 days; Study 1) of VCD on mean total primordial 
ovarian follicle estimates in wild-caught female brushtail possums. Counts were 
recorded from the left ovary of each animal and total counts estimated using a 
correction factor formula (Gougeon and Chainy, 1987). Control (oil only), n = 6; 500 mg 
VCD/kg, n = 6; 750 mg VCD/kg, n = 7. Vertical bars represent + SEM. 

 

4.3.2 Study 2 

Treatment and necropsy parameters 

Animals were monitored daily for food consumption, body condition and live weight during treatment 

(10 days). Food consumption and body condition of animals appeared normal yet animals lost weight 

across all treatment groups during the 10 day study (p < 0.0001; Figure 4.3). Furthermore, VCD-IT 

and VCD-QE treatment resulted in a greater loss of live weight relative to control groups (p < 0.0002). 

Two VCD-IT animals vomited following treatment on day 2 while only one VCD-QE animal vomited 

following treatment on day 4. No other adverse signs were observed during treatment. Animal age was 

not significantly different across all treatment groups (p > 0.262) with an average age of 2.69 ± 0.31 

years (Table 4.4). There were no significant differences between control and VCD treatment groups in 
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final live weight (p > 0.641) or the weights of the liver (p > 0.249), paired kidneys (p > 0.181), paired 

adrenal glands (p > 0.689), paired uteri tract (p > 0.768), or paired ovaries (p > 0.514) (Table 4.4). 

Five animals were removed from the study due to various reasons: 1) one VCD-IT animal had lost 

>10% live weight by day 6 and was removed from further treatment, 2) one C-O animal was found to 

be 15 years old, thus, considered to be an outlier, and 3) three VCD-QE animals died during treatment. 

A full necropsy was performed for each animal. The oesophagus, trachea, lungs and somatic and 

reproductive organs of all animals appeared normal. Although there were no signs of aspiration in any 

of the animals, the gastrointestinal tract of two animals appeared pale and contained loose, watery 

stool. The cause of death was undetermined.  

 

 

Figure 4.3 Change in live weight (as % starting weight) of wild-caught female brushtail possums 
during 10 days of daily oral VCD administration (0 or 500 mg/kg; Study 2). Oil-only 
control (C-O), n = 6; Control + antacid pre-treatment (C-QE), n = 6; Intralipid control (C-
IT), n = 6; 750 mg VCD/kg carried in oil + antacid pre-treatment (VCD-QE), n = 7; 750 
mg VCD/kg carried in Intralipid (VCD-IT), n = 9. * indicates different (p < 0.05) from 
control. Vertical bars represent ± SEM. 
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Table 4.4 The effect of VCD administration on live weight (LW) and weight of somatic and 
reproductive organs of wild-caught female brushtail possums during Study 2. Data are 
means ± SEM. 

 

Toxicology results 

To determine if animals pre-treated with an antacid were affected by the high calcium levels in the 

Quick-EZE
®
 tablets, total calcium (Ca) and magnesium (Mg) levels were measured in pre- and post-

treatment plasma on ICP-OES. When Ca and Mg levels were compared within treatment groups, there 

were no significant differences between pre- and post-treatment levels among all groups (p > 0.091; 

Figure 4.4). Comparison of pre- and post-treatment Ca and Mg levels between oil-only controls and 

control and VCD animals pre-treated with antacids revealed no significant differences (p > 0.171; 

Figure 4.4).  

When control groups for liver scores were compared with each other, there were no differences in 

scores (p > 0.588) so control data were pooled. Findings revealed no treatment effects in the liver of 

VCD-QE or VCD-IT treated animals when compared against controls (p > 0.339). For the kidney, the 

C-QE group had significantly higher scores than C-IT and C-O groups (p > 0.024; Table 4.5) and 

therefore control groups were not pooled. The data revealed no significant differences in kidney scores 

following treatment when control groups were compared with their corresponding VCD groups (p > 

0.401; Table 4.5).  

Measured 
parameter 

Treatment group 

Oil control  
(C-O) 

Antacid + oil 
control (C-QE) 

Intralipid 
control (C-IT) 

Antacid + VCD (750 
mg/kg) in oil  

(VCD-QE) 

VCD (750 mg/kg) in 
Intralipid (VCD-IT) 

Sample size 5 6 6 7 9 
Age at death 

(year) 
2.2 ± 0.7 3.0 ± 0.8 2.8 ± 0.9 1.9 ± 0.6 3.3 ± 0.6 

Final LW (kg) 2.85 ± 0.09 2.99 ± 0.08 3.12 ± 0.12 3.04 ± 0.12 3.00 ± 0.11 
Liver weight (g) 63.3 ± 5.49 65.9 ± 4.09 68.0 ± 7.23 79.8 ± 5.91 69.7 ± 4.10 
Paired kidney 

weight (g/kg LW) 
4.81 ± 0.18 4.99 ± 0.28 4.42 ± 0.15 4.96 ± 0.17 4.62 ± 0.13 

Paired adrenal 
gland weight (g) 

0.30 ± 0.03 0.31 ± 0.02 0.33 ± 0.04 0.30 ± 0.04 0.29 ± 0.02 

Paired uteri 
weight (g) 

7.79 ± 1.18 8.38 ± 1.57 13.9 ± 3.95 9.82 ± 1.73 12.2 ± 4.35 

Paired ovary 
weight (g) 

0.42 ± 0.05 0.37 ± 0.04 0.40 ± 0.07 0.31 ± 0.03 0.33 ± 0.04 
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Figure 4.4 Effect of daily oral administration (10 days; Study 2) of VCD on total plasma calcium and 
magnesium concentrations measured in female brushtail possums before and after 
treatment. Oil-only control, n = 6; Control + antacid pre-treatment, n = 6; 750 mg 
VCD/kg carried in oil + antacid pre-treatment, n = 7. Vertical bars represent ± SEM. 

 

Table 4.5 Histopathological scores (see text) of liver and kidneys of wild-caught female brushtail 
possums following oral treatment with two formulations aimed at improving the 
follicle depleting effects of VCD (Study 2). Values with different superscript letters are 
significantly different (p < 0.05). Data are means ± SEM. 

 

Follicle counts  

Age and ovarian weight covariance with primordial, primary and secondary follicle estimates were 

examined. It was determined that age was not correlated with follicle counts (p > 0.054). However, 

ovarian weight was correlated with primary (p < 0.002) and secondary (p < 0.015) follicle numbers but 
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Measured 
Parameter 

Treatment group 

Oil control 
(C-O) 

Antacid + oil 
control (C-QE) 

Intralipid 
control (C-IT) 

Antacid + VCD (750 
mg/kg) in oil (VCD-QE) 

VCD (750 mg/kg) in 
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N 5 6 6 7 9 

Liver 1.8 ± 0.2 2.0 ± 0.26 2.17 ± 0.31 2.29 ± 0.36 2.11 ± 0.35 

Kidneys 
0.8 ± 

0.37AC 2.0 ± 0.26B 
0.83 ± 
0.31ABC 1.85 ± 0.4ABC 1.11 ± 0.35ABC 
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not with primordial follicle counts (p > 0.095). Therefore, primary and secondary follicle counts were 

normalized to ovarian weight and then checked for treatment differences. There were no differences in 

primordial, primary or secondary follicle counts of C-QE compared with VCD-QE (p > 0.336) and C-

IT compared to VCD-IT (p > 0.615; Figures 4.5 and 4.6). There were no significant differences in the 

control group’s primordial, primary or secondary follicle counts (p > 0.254). Therefore, all control 

group data were pooled for comparison against VCD treatment groups. Compared with controls, there 

were no significant differences in VCD-IT and VCD-QE primordial, primary and secondary follicle 

counts (p > 0.367; Figures 4.5 and 4.6).  

 

 

Figure 4.5 Effect of daily oral administration (10 days; Study 2) of VCD on mean total primordial 
ovarian follicle counts in wild-caught female brushtail possums. Counts were recorded 
from the left ovary of each animals and total counts estimated using a correction 
factor formula (Gougeon and Chainy, 1987). Oil-only control (C-O), n = 5; Control + 
antacid pre-treatment (C-QE), n = 6; Intralipid control (C-IT), n = 6; 750 mg VCD/kg 
carried in oil + antacid pre-treatment (VCD-QE), n = 8; 750 mg VCD/kg carried in 
Intralipid (VCD-IT), n = 9. Vertical bars represent + SEM. 
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Figure 4.6 Effect of daily oral administration (10 days; Study 2) of VCD on mean total primary and 
secondary ovarian follicle counts in wild-caught female brushtail possums. Counts 
were recorded from the left ovary of each animals and total counts estimated using a 
correction factor formula (Gougeon and Chainy, 1987). Oil-only control (C-O), n = 5; 
Control + antacid pre-treatment (C-QE), n = 6; Intralipid control (C-IT), n = 6; 750 mg 
VCD/kg carried in oil + antacid pre-treatment (VCD-QE), n = 8; 750 mg VCD/kg carried 
in Intralipid (VCD-IT), n = 9. Vertical bars represent ± SEM. 

 

Formulation effects on stomach contents pH  

The effects of Quick-EZE
® 

(QE) and Intralipid
®
 (IT) on stomach contents pH of possums were 

analysed in vitro. Addition of a low dose of the antacid Quick-EZE to possum stomach caused the pH 

to rise from 1.37 (starting pH) to 4.33 ± 0.08 within 5 minutes. The pH then stabilized at 5.19 pH ± 

0.03 by 45 minutes and remained at that pH up to 120 minutes. Similarly, a high dose of Quick-EZE 

caused possum stomach pH to quickly rise from 1.37 to 5.25 ± 0.06 within 5 minutes. At 45 minutes, 

the pH reached 6.17 ± 0.01 and stabilized at 6.68 ± 0.07 by 120 minutes. Treatment with a low and 

high dose of Intralipid resulted in minimal pH change with time (120 min) from 1.37 (starting pH) to 

1.69 ± 0.06 and 1.38 ± 0.07, respectively. Control stomach contents did not alter during the 120 

minute trial period (pH 1.37-1.38 ± 0.04).  
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 Discussion 4.4

The chemosterilant VCD was examined as a potential humane and sustainable pest control method for 

NZ brushtail possums. The primordial ovarian follicle pools of possums orally treated with either 500 

or 750 mg VCD/kg for 13 consecutive days were unaffected compared with controls. Previous studies 

examining the effects of oral administration of VCD (500 mg/kg) in Sprague Dawley rats have 

demonstrated significant primordial follicle depletion after 10 (Burd, 2009), 15 or 30 (Schmuki et al., 

2011) consecutive days. One possible reason for the lack of effects observed here is the highly acidic 

stomach environment of brushtail possums. Possum stomach contents pH ranges between 1.0 and 2.0, 

regardless of food consumption or digestion (Drs. J. A. Duckworth & F. Molinia, pers. comm.). 

Conversely, rodent stomach contents pH ranges between 3.2 (fed) and 3.9 (fasted) (McConnell et al., 

2008). When VCD is exposed to a pH of 1.0 in vitro, >99.9% of VCD is hydrolysed within 3 minutes 

(Chapter 6). It was hypothesized that the highly acidic stomach environment of the possum hydrolysed 

the VCD dose before the compound could be absorbed and then reach the target sites in the ovary. 

Therefore, a second study was designed to reduce the potential acidic breakdown of VCD in the 

possum stomach.   

Two formulations which were believed to protect and improve the oral efficacy of VCD were 

examined. The first formulation utilized a pre-treatment with the antacid Quick-EZE
® 

prior to dosing 

possums with VCD carried in oil. Previous work had shown that the gastric contents pH of possums 

orally gavaged with a suspension containing two Quick- EZE
® 

tablets was increased and remained 

elevated (pH 4.5-6.5) for at least seven hours (Drs. J. A. Duckworth & F. Molinia, pers. comm.).  It 

was predicted that an oral pre-treatment of antacids would reduce stomach acidity prior to VCD 

administration, thereby decreasing VCD hydrolysis. Results show that ten days of oral VCD treatment 

(750 mg/kg) administered with an antacid pre-treatment had no effect on immature follicle populations 

compared with controls. When possum stomach contents were incubated in vitro with a comparable 

Quick-EZE
® 

dose, the pH was increased from 1.37 to 5.19 – 5.25 within 5 minutes of exposure. These 

in vitro results support previous reports (Drs. J. A. Duckworth & F. Molinia, pers. comm.) and suggest 

that Quick-EZE
® 

may have been able to reduce the acidic breakdown of VCD to some extent. 

Nevertheless, the treatment did not appear to have any observable effects on the ability of orally 

delivered VCD to deplete immature follicle populations in the ovaries of VCD treated possums.  

The second approach to improve the oral efficacy of VCD was the use of a lipoprotein emulsion, 

Intralipid
®
, as an alternative carrier liquid for VCD. Intralipid

®
 is a sterile, homogenous fat emulsion 

containing soybean oil (20%), egg yolk phospholipids (1.2%) and glycerine (2.25%) and is readily 

absorbed across the gastric lining. VCD is lipophilic in nature and should therefore readily incorporate 

into lipid components of a carrier such as Intralipid
®
. In addition, previous studies have demonstrated 

that Intralipid
®
 improves the palatability of VCD in rodents (Dr. C. A. Dyer, pers. comm.). It was 

predicted that replacing the normal carrier liquid (oil) with Intralipid would improve VCD absorption 

from the gastric lining into the blood and may provide some protection from acidic degradation. VCD 
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(750 mg/kg) carried in Intralipid had no depleting effect on the immature follicle populations of 

possums. In vitro examination of possum stomach contents pH following Intralipid addition only 

slightly altered the pH from 1.37 to 1.71 after two hours. Therefore, despite the potential ability of 

Intralipid to increase VCD absorbency, it is likely that it was unable to protect VCD from the highly 

acidic environment of the possum stomach.   

The effect of orally delivered VCD on the health and body condition of female possums was also 

examined. Thirteen consecutive treatment days resulted in weight loss, irrespective of treatment. The 

possible cause of weight loss across all treatment groups may be a result of anaesthetic and handling 

stress. Wild brushtail possums living in Australia showed stress signs (wobbliness, low body mass) 

and decreased numbers of pouch young and reduced adult survivability following routine monitoring 

and handling procedures (Clinchy et al., 2001). During the trials reported here all attempts were made 

to keep animal stress to a minimum. However, it is likely that the possums experienced some stress as 

a result of repeated handling and anaesthesia as evidenced by the reduced weight gain observed across 

all treatment groups. 

To determine if any VCD-induced toxicity effects were occurring, internal organs were examined 

following each study and complete blood counts (CBC) and liver enzyme levels were analysed 

following Study 1. Oral VCD administration (10-13 days, 500-750 mg/kg) did not have any obvious 

effects on somatic or reproductive organs. These results could be expected based on similar VCD 

dosing regimens in rodents (Ito et al., 2009; Kodama et al., 2009; Muhammad et al., 2009). 

Comparison of pre- versus post-treatment CBC levels revealed that all animals, regardless of 

treatment, demonstrated altered CBC levels that were indicative of stress. However, only one 

parameter (MCHC) was outside of the reference range suggesting any stress-induced effects were 

minimal. In addition, liver enzyme levels and liver and kidney histological samples indicated normal 

organ function. Taken together, these data suggest that there were no VCD-induced toxicity effects, 

rather the altered CBC results were likely due to stress caused by repeated daily handling and 

anaesthesia. Similar haematological reports have been observed in wild possums following capture 

(Buddle et al., 1992).  The blood profiles of those animals returned to levels similar to that of 

frequently captured possums following caged housing for 1-3 weeks (Buddle et al., 1992) suggesting 

habituation to handling and the housing environment.  Thus it can be postulated that the altered CBC 

parameters reported here would return to similar levels measured during pre-treatment upon 

elimination of daily handling and anaesthesia.    

Possums treated for 10 days with VCD carried in Intralipid or an antacid pre-treatment followed by 

VCD carried in oil lost more live weight than controls. The weight loss cannot be attributed simply to 

the high dose of VCD delivered (750 mg/kg) as possums treated with the same VCD dose for 13 days 

did not experience significant weight loss associated with treatment. Rather it is likely that the 

formulations (Intralipid and antacids) used to increase VCD efficacy may have indirectly augmented 

weight loss. VCD-related effects on weight gain and food intake have been observed in rodents (Burd, 
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2009; Haas et al., 2007; Muhammad et al., 2009). It is possible that the formulations did in fact protect 

VCD to some extent, causing prolonged gastrointestinal exposure to VCD and the resulting effects on 

food intake and weight gain. It must be noted that food consumption during the studies was not 

measured directly, but rather observed. VCD treatment may have caused internal irritation resulting in 

VCD treated animals consuming less food than controls and thus affecting weight gain. VCD has been 

shown to cause irritation to the oesophagus, skin and stomach in rodents following long-term VCD 

treatment (NTP, 1986). Although the formulations to increase VCD efficacy may have worked, there 

may still have been insufficient amounts of the chemical reaching the target organs, ovaries, to induce 

follicle depleting effects.  

Potential VCD related deaths occurred during each study. One VCD treated animal (500 mg/kg) was 

found dead on the final day in Study 1 and three VCD animals receiving an antacid pre-treatment died 

during Study 2. Although most of the internal organs appeared normal, three of the four animals 

showed signs of irritated gastrointestinal tracts and disruption of water balance (pale tissue containing 

watery stool). It was initially speculated that the animals receiving VCD with an antacid pre-treatment 

died as a result of calcium toxicity from the Quick-EZE
® 

tablets. However, the post-treatment calcium 

and magnesium levels were similar to levels measured during pre-treatment. Therefore, it is more 

likely that these animals died as a result of VCD treatment rather than calcium toxicity following 

antacid administration. What may have occurred is that the antacid associated protection of VCD 

caused increased irritation to the gastrointestinal tract from prolonged VCD exposure (NTP, 1986). 

Thus is seems that, to some extent, VCD may have been protected from hydrolysis in the stomach, 

thereby enabling increased treatment related effects.  

VCD dosing regimens and formulations examined here had no obvious effect on the pool of immature 

follicles in healthy adult female possums. The use of Intralipid or antacid pre-treatment to increase 

VCD absorbency did seem to work as evidenced by treatment related weight loss, although it appears 

that insufficient levels of the chemical reached the ovaries to induce follicle depletion. Further 

understanding of the uptake and metabolism of VCD in the possum will be necessary if the chemical 

is to be considered for use as a chemosterilant. Therefore, in the following chapter the differences in 

enzymatic metabolism and uptake and distribution of orally delivered VCD in possums and rats will 

be investigated.   
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Chapter 5 

Fate and metabolism of 4-vinylcyclohexene diepoxide in wild-

caught female brushtail possums and Norway rats: a comparative 

study 

 Introduction 5.1

In the previous chapter the effects of orally administered 4-vinylcyclohexene diepoxide (VCD) on the 

health and ovarian follicle populations of adult female possums was examined. Two formulations 

aimed at improving the absorbency and efficacy of orally delivered VCD (Study 2) in possums was 

also investigated. There were no decreases in the immature ovarian follicular pools in healthy adult 

female possums when they were orally dosed with VCD. However, the observed treatment-related live 

weight loss during Study 2 suggested that there were some VCD treatment-related effects and that 

formulations may have increased VCD absorbency to some degree. The dosing regimens tested in 

those trials were similar to ones used in previous studies that demonstrated significant primordial 

follicle depletion following oral VCD treatment in the rat (Burd, 2009; Herawati et al., 2010; Mayer et 

al., 2010). The lack of observed effects on possum ovarian primordial or primary follicle populations 

suggests differences in the uptake, metabolism, and fate of VCD in possums compared with rats and 

thus merits examination.       

4-Vinylcyclohexene (VCH), the parent compound of VCD, is metabolized to VCD in a Phase I 

reaction primarily by the hepatic-derived enzyme superfamily cytochrome P450 (CYP450) (Doerr-

Stevens et al., 1999; Doerr et al., 1996; Springer et al., 1996c). Phase I metabolism is usually a 

prerequisite for Phase II conjugative metabolism wherein lipophilic compounds are converted to more 

water-soluble metabolites for excretion (Rushmore, 2002; Xu et al., 2005). Through Phase II reaction, 

VCD is further metabolized in the liver and, to a lesser extent, in the ovary to a non-active tetrol 

metabolite ([1,2-dihydroxy] ethyl-1,2-dihydroxycyclohexane) through the action of microsomal 

epoxide hydrolase (mEH) and glutathione-S-transferase (GST) (Cannady et al., 2002; Devine et al., 

2001; Flaws et al., 1994; Keating et al., 2008a; Keating et al., 2008b; Salyers, 1995). mEH catalyses 

the hydration of alkene epoxides and arene oxides while GST catalyses conjugation of reduced 

glutathione (GSH) with compounds to increase their elimination from the body.  

Species differences in VCD uptake and metabolism have been demonstrated in laboratory-bred mice 

(Mus musculus) and laboratory-bred Norway rats (Kao et al., 1999; Keller et al., 1997; Salyers, 1995; 

Smith et al., 1990b). A disposition study revealed that VCD distributes faster from the blood into the 

tissues of mice compared with rats while excretion of VCD metabolites was primarily through the 

urine in both species (Salyers, 1995). It was also demonstrated that VCD metabolites are eliminated 
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faster in rats and the urinary metabolite profile of each species suggests different pathways for VCD 

metabolism (Salyers, 1995). Comparison of enzymatic metabolism of VCH and VCD revealed that 

mice have higher Phase I metabolic activity but slower Phase II activity rates compared with rats, 

resulting in the capability of mice to metabolise VCH faster than rats. As VCH is detoxified to VCD 

via CYP450, VCD accumulates faster in mice compared with rats due to their slower Phase II activity 

and mice are therefore more susceptible to VCD-induced ovarian toxicity (Doerr-Stevens et al., 1999; 

Doerr et al., 1996; Springer et al., 1996c). It is possible to speculate that a similar species difference in 

VCD metabolism may exist between possums and rats. Therefore, the studies reported here examined 

the rate of VCD clearance from the stomach and uptake into the blood in wild-caught adult female 

brushtail possums and wild-caught Norway rats. In addition, hepatic and ovarian levels of GSH were 

measured to detect any metabolic changes in both species.  It was predicted that possums would 

metabolize VCD to its non-active tetrol metabolite more rapidly than rats.  

 Materials and Methods 5.2

5.2.1 Reagents 

VCD, sunflower oil, cyclohexanone, ethyl acetate, Attane™ isoflurane, and sodium pentobarbital were 

obtained from vendors and used for experimental procedures as previously described in Chapter 3. 

5.2.2 Possum experimental procedures 

Possums (n = 24) were randomly allocated into treatment groups using a randomized block design 

stratified on live weight prior to trial start. Under anaesthesia (5% isoflurane in O2 at 2 L/min) blood 

was collected from the tail vein prior to gavage treatment (control time point 0). Possums were then 

gavaged with a single bolus dose of sunflower oil (vehicle control, n = 8) or VCD (750 mg/kg mixed 

1:3 w/v) in oil (n = 8). Gavage tubes consisted of commercially purchased vinyl tubing (3 mm 

diameter, 30 cm length) attached to a 3-way stop cock and a 10 mL syringe. A different tube was used 

for each treatment group and tubes were discarded daily. Possums were divided into three sub-groups 

which were killed at different time points (either at 0 or 15 minutes or 24 hours post-treatment). For 

group 1 possums (n = 4 per treatment) animals were killed immediately after treatment with an 

intracardiac pentobarbitone overdose (125 mg/kg). For group 2 possums (n = 4 per treatment), while 

under anaesthesia, blood was collected at 1, 3, 5, 10 and 15 minutes post-treatment from the tail vein. 

Group 2 possums were then killed at 15 minutes post-treatment with an intracardiac pentobarbitone 

overdose (125 mg/kg). For group 3 possums (n = 4 per treatment), blood was collected from the tail 

vein at 5, 15, 30, 60, 120 and 360 minutes post-treatment. Animals remained under anaesthesia during 

the 5 and 15 minute time points. For all other time points possums were re-anaesthetised to obtain 

each blood sample. At 24 hours post-treatment, group 3 possums were anaesthetised and a final blood 

sample collected via intracardiac injection and then animals were then euthanized with an intracardiac 

pentobarbitone overdose (125 mg/kg). For each animal, no more than 5% of circulating blood volume 
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(2.0-4.0 mL/time point) was collected to ensure normal circulatory function (Diehl et al., 2001). All 

blood samples were collected into lithium heparin vacutainer tubes (BD Vacutainer®), inverted 

several times and then prepared for GSH or gas chromatography (GC) measurements as outlined 

below. The liver and ovaries were immediately removed and prepared for GSH measurements as 

stated below. The stomach was excised, contents removed and weighed, the pH measured and contents 

prepared for GC analysis as outlined below. The reproductive tract, adrenal glands and kidneys were 

each weighed separately and then placed into 10% neutral-buffered formalin.     

5.2.3 Rat experimental procedures 

Rats (n = 56) were randomly allocated into treatment groups using a randomized block design 

stratified on live weight prior to trial start. Under anaesthesia (5% isoflurane in O2 at 2 L/min) rats 

were gavaged with a single bolus dose of sunflower oil (vehicle control, n = 2-4 per time point) or 

VCD (750 mg/kg mixed 1:3 w/v) in oil (n = 2-4 per time point) using a steel gavage feeding tube (1.2 

mm diameter, 76.2 mm length). Blood (3.0 ± 1.0 mL) was collected at 0, 5, 15, 30, 60, 120, 180 or 360 

minutes post-treatment by intracardiac puncture into lithium heparin vacutainer tubes (BD 

Vacutainer®), inverted several times and then prepared for GSH or GC measurements as outlined 

below. Animals were then euthanized at each of the above time points with an intracardiac 

pentobarbitone overdose (125 mg/kg). The liver and ovaries were immediately removed and prepared 

for GSH measurements as outlined below. The stomach was excised, contents removed and weighed, 

the pH measured and then prepared for GC analysis as outlined below. The reproductive tract, adrenal 

glands and kidneys were each weighed separately and then placed into 10% neutral-buffered formalin.  

5.2.4 Glutathione assay sample preparation  

Blood treatment 

Blood (0.5 mL) was placed into an Eppendorf tube and centrifuged for 5 minutes at 1,500 x g. Plasma 

was removed and placed into an Eppendorf tube wherein 1 times the sample volume of ice-cold 5% 

w/v 5-sulfosalicylic acid (SSA) solution was added to deproteinize the sample. The plasma sample 

was vortex mixed for 10 seconds, incubated at 4°C and then centrifuged for 10 minutes at 10,000 x g. 

The supernatant (~400 µL) was transferred to a cryostat vial, snap frozen with liquid nitrogen and 

stored at -80°C until analysis. In two successive rounds, the red blood cells (RBCs) were suspended 

and washed in 3 times the sample volume with 1x neutral-buffered saline solution (PBS), centrifuged 

for 5 minutes at 1,500 x g and then the supernatant discarded. PBS contained 1368.9 mM NaCl, 26.8 

mM KCl, 101.4 mM Na2HPO4 and 17.6 mM KH2PO4. An equal volume of ice-cold 5% SSA solution 

was added to the volume of RBCs and then vortex mixed for 10 seconds, incubated at 4°C and then 

centrifuged for 10 minutes at 10,000 x g. The supernatant was transferred to a cryostat vial, snap 

frozen with liquid nitrogen and stored at -80°C until analysis.  
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Liver and ovary treatment 

Whole liver and individual ovary weights were recorded. Ovaries were individually snap frozen whole 

with liquid nitrogen and the right ovary was stored at -80°C while the left ovary was placed into 

aluminium foil in preparation for deproteinization treatment with SSA. The liver was perfused with 

ice- cold 1x PBS and then the left lateral lobe (LLL) was removed and placed into aluminium foil, 

sealed and snap frozen with liquid nitrogen. The remaining liver was cut into 5-10 gram pieces, snap 

frozen and stored at -80°C. Individually, the left ovary and the LLL were broken into small pieces 

using a mallet and then 0.1 - 0.2 g measured into an ice-cold glass homogenizer and 7 times the 

sample weight of ice-cold 5% SSA was added and tissue homogenized with 10 passes of the pestle 

while on ice. The solution was incubated at 4°C for 10 minutes and the homogenate transferred to a 

conical tube and centrifuged at 10,000 x g for 10 minutes. Supernatant aliquots (1.0 mL) were placed 

into cryostat vials and snap frozen with liquid nitrogen and stored at -80°C until analysis.  

5.2.5 Gas chromatography analysis 

For each species, VCD was extracted from the stomach contents with the addition of 2 times the 

stomach weight of extraction solution (ES; ethyl acetate containing 1.18 mM cyclohexanone as the 

internal standard). VCD was extracted from the blood of each animal by collecting 2 aliquots of 0.5 

mL whole blood and then adding 2 times the volume of ES. Extraction methods and VCD 

quantification on GC were performed as outlined in Chapter 3. Final VCD concentrations in blood and 

stomach contents are represented as µmoles VCD/L ES, unless otherwise stated.  

To determine the percentage of VCD recovered in the stomach of each animal the total estimated VCD 

concentration in the stomach immediately following gavage was first calculated as follows. The 

amount of VCD stock administered to the animal (mL) was multiplied by the VCD concentration in 

the gavage liquid (365.33 mg/mL oil) and then divided by the amount of ES (mL) added to the sample 

tissue. Because ES was always added at the same rate (2 times the stomach contents weight), VCD 

concentration were standardized to stomach volume for each animal. The amount of recovered VCD 

(mg/mL ES; determined by GC) was then divided by the estimated VCD concentration (mg/mL ES) in 

the stomach and the resultant multiplied by 100. These calculations assume equal rate of acid-induced 

VCD hydrolysis and absorption (uptake) into the gastrointestinal epithelium between species and 

therefore must be accepted with caution.   

5.2.6 Glutathione analysis 

GSH concentration (nmol/µL or mg tissue) in RBCs, plasma and  hepatic (liver) and ovarian tissues 

were analysed using methods described in the GSH assay kit (Sigma, cat# CS0260) with changes as 

outlined in Chapter 3.   
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5.2.7 Statistical analysis 

All general statistical procedures were run as described in Chapter 3. In addition, the concentrations of 

VCD and GSH were analysed using a repeated measure test with animal identification as a random 

variable and treatment group defined by time.  

 Results  5.3

5.3.1 VCD concentration in blood and stomach tissue of possums and rats 

The amount of VCD recovered in the blood and stomach of rats and possums following a bolus dose 

(750 mg/kg) was quantified by GC. At 15 minutes post-gavage the stomach contents of possums 

contained 57.4 ± 20.2 % (90.74 ± 34.3 mM VCD) of the calculated initial dose (158.68 ± 19.77 mM 

VCD) and by 24 hours no VCD was detected (Table 5.1). Following gavage, VCD was detected in 

possum blood up to 15 minutes post-gavage, (Table 5.2).  

VCD was detected in rat stomach contents up to 6 hours post-gavage (Table 5.1). Of the calculated 

initial dose (156.64 ± 15.99 mM VCD) the amount of VCD recovered from the stomach contents of 

rats was substantial from 3 to 120 minutes post-gavage (27.5 – 50.1 % of given dose) but was reduced 

after 180 minutes post-gavage (18.1 – 21.4 % of given dose) (Table 5.1). VCD levels in rat blood were 

elevated initially but declined rapidly and were very low at 31 minutes post gavage (Table 5.2).  

At 15 minutes post-treatment there was no significant difference between species in the proportion of 

VCD dose recovered from the stomach (p > 0.944; possum, 57.4 ± 20.2 % of dose; rat, 43.2 ± 2.42 % 

of dose; Table 5.1). However, there were significantly higher levels of VCD present in the blood of 

rats compared with that of possums from 3 to 30 minutes post-treatment (p < 0.037; Table 5.2). For 

further between-species comparisons the aim was to collect data from rats at 24 hours. However, 

VCD-treated rats did not survive past 7 hours. This was presumably a direct result of the VCD-related 

treatment because the control rats survived perfectly well. It is not understood why the wild-strain of 

Norway rat, when dosed with VCD, is unable to survive to 24 hours as survivability in laboratory 

Norway rats dosed daily for 10-30 days with similar oral VCD regimens is well documented (Burd, 

2009; Schmuki et al., 2011). Thus, this discrepancy may be due to the wild strain being unable to cope 

with VCD treatment. A necropsy revealed normal appearance and parameters for the oesophagus, 

trachea, lungs and vital and reproductive organs and there were no signs of aspiration in each rat. The 

cause of death was undetermined. 
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Table 5.1 Change in VCD concentration in the stomach (mM) of female brushtail possums and 
Norway rats following a single oral dose of oil or VCD (750 mg/kg) suspended in oil 
(1:3 v/v). Statistical significance was set at p < 0.05. Data are means ± SEM; individual 
data are listed for sample sizes < 2. 

Time 
(minutes) 

Species 

Possum Rat 
Control treatment VCD treatment Control treatment VCD treatment 

0 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 
1 - - - - 
3 - - 0.0 ± 0.0 (n = 4) 82.7 ± 15.3 (n = 4) 
5 - - 0.0/0.0 (n = 2) 40.4/91.7 (n = 2) 

15 0.0 ± 0.0 (n = 4) 90.7 ± 34.3 (n = 4) 0.0 ± 0.0 (n = 4) 58.4 ± 35.4 (n = 4) 
30 - - 0.0/0.0 (n = 2) 49.2/81.1 (n = 2) 
60 - - 0.0/0.0 (n = 2) 58.2/82.6 (n = 2) 

120 - - 0.0/0.0 (n = 2) 27.6/36.4 (n = 2) 
180 - - 0.0 ± 0.0 (n = 4) 29.2 ± 4.7 (n = 4) 
360 - - 0.0 ± 0.0 (n = 4) 23.4 ± 5.9 (n = 4) 

1440     
(24 hours) 

0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) - - 

 

Table 5.2 Change in VCD concentration in the blood (µM) of female brushtail possums and Norway 
rats following a single oral dose of oil or VCD (750 mg/kg) suspended in oil (1:3 v/v). * 
indicates difference (p < 0.05) between VCD-treated possums and VCD-treated rats. 
Data are means ± SEM; individual data are listed for sample sizes < 2. 

Time 
(minutes) 

Species 

Possum Rat 

Control treatment VCD treatment 
Control 

treatment 
VCD treatment 

0 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 
1 0.0 ± 0.0 (n = 8) 221.7 ± 0.07 (n = 8) - - 

3 0.0 ± 0.0 (n = 4) 192.0 ± 0.09 (n = 4) 0.0 ± 0.0 (n = 4) 
*1048.7 ± 137.5 (n = 

4) 

5 0.0 ± 0.0 (n = 8) 178.7 ± 79.5 (n = 8) 0.0/0.0 (n = 2) 
*480.5/*1412.6 (n = 

2) 
10 0.0 ± 0.0 (n = 8) 31.9 ± 1.02 (n = 8) - - 
15 0.0 ± 0.0 (n = 8) 2.45 ± 1.38 (n = 8) 0.0 ± 0.0 (n = 4) *385.1 ± 211.9 (n = 4) 
30 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0/0.0 (n = 2) *94.5/*115.5 (n = 2) 
60 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0/0.0 (n = 2) 0.0/0.0 (n = 2) 

120 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0/0.0 (n = 2) 0.0/0.0 (n = 2) 
180 - - 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 
360 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) 

1440       
(24 hours) 

0.0 ± 0.0 (n = 4) 0.0 ± 0.0 (n = 4) - - 

 

5.3.2 Gastric pH levels following treatment 

The pH of stomach contents following VCD treatment for each species is reviewed in Table 5.3. 

Compared with controls, the pH of possum stomach contents treated with VCD was elevated by 
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212.5% and 150.0% of controls at 15 minutes and 24 hours, respectively; however this trend was not 

significant (p > 0.100 and p > 0.238, respectively). Rat stomach pH did increase by 30.4% of controls 

by 15 minutes post-treatment although this was not significant (p > 0.065). The mean pH of rat 

stomach contents treated with VCD did increased from 3 to 360 minutes post-treatment compared with 

controls (p < 0.031; control mean, 3.17 ± 0.28 pH; VCD mean, 4.29 ± 0.18 pH). There were no 

between-species differences in stomach pH at 15 minutes following treatment (control, p > 0.221; 

VCD, p > 0.637; Table 5.3).  

 

Table 5.3 Gastric pH levels in the stomach contents of female brushtail possums and Norway rats 
following a single oral dose of oil or VCD (750 mg/kg) suspended in oil (1:3 v/v). 
Statistical significance was set at p < 0.05. Data are means ± SEM; actual values are 
listed for sample sizes < 2. 

Time 
(minutes) 

Species 

Possum Rat 

Control treatment 
VCD treatment 

(n = 8) 
Control treatment VCD treatment 

0 1.00 ± 0.2 (n = 4) 1.13 ± 0.13 (n = 4) 2.88 ± 0.13 (n = 4) 2.88 ± 0.32 (n = 4) 
1 - - - - 
3 - - 3.50 ± 0.50 (n = 4) 3.75 ± 0.25 (n = 4) 
5 - - 0.5/3.5 (n = 2) 4.0/5.0 (n = 2) 

15 1.00 ± 0.0 (n = 4) 3.13 ± 1.05 (n = 4) 3.25 ± 0.25 (n = 4) 3.75 ± 0.25 (n = 4) 
30 - - 2.0/3.5 (n = 2) 4.0/5.0 (n = 2) 
60 - - 3.0/4.0 (n = 2) 4.0/5.0 (n = 2) 

120 - - 0.5/4.5 (n = 2) 4.0/6.0 (n = 2) 
180 - - 3.67 ± 0.33 (n = 4) 3.50 ± 0.50 (n = 4) 
360 - - 3.67 ± 0.60 (n = 4) 4.83 ± 0.17 (n = 4) 

1440       
(24 hours) 

0.50 ± 0.29 (n = 4) 2.50 ± 1.66 (n = 4) - - 

 

5.3.3 GSH concentration in the blood and liver and ovarian tissue of possums and 
rats 

To determine if any differences in VCD metabolism exist between possums and rats, GSH 

concentration was measured in hepatic and ovarian tissues of each species. Because possums served as 

their own controls their pre-treatment (baseline control) GSH concentration in plasma and RBCs were 

compared against post-treatment levels within each group to determine if there were any effects on 

GSH concentration as a result of anaesthesia or handling stress. Within each group, there were no 

significant differences between pre- and post-treatment GSH concentration in RBCs (p > 0.331; Figure 

5.1) and plasma (p > 0.237; Figure 5.2). Therefore, any differences between groups can be attributed 

to effects of the VCD-related treatment.    

Possum plasma and RBC GSH concentrations were not significantly different between treatment 

groups (p > 0.059; Figures 5.1 and 5.2). Both control and VCD treated possum hepatic GSH levels 
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were significantly decreased 15 minutes after treatment (p < 0.011 and p < 0.008, respectively). 

Twenty four hours after treatment, VCD treated possum hepatic GSH levels were increased compared 

to their pre-treatment and 15 minute post-treatment levels, although this was not significant (p > 0.202 

and p > 0.061, respectively; Figures 5.3). Compared to their pre-treatment levels, ovarian GSH levels 

of control treated possums were elevated at 15 minutes (p < 0.022) and 24 hours post-treatment (p < 

0.019) (Figure 5.4). Similarly, elevated ovarian GSH levels of VCD treated possum were observed at 

15 minutes (p < 0.019) and 24 hours post-treatment (p < 0.019) compared with their pre-treatment 

levels (Figure 5.4). 

The effect of VCD treatment on GSH concentration in rat RBCs, plasma, liver and ovaries was 

examined. VCD treatment of rats caused significant decreases in mean GSH concentration in the 

RBCs (p < 0.029; -15.0% of control mean) and in liver (p < 0.0001; -77.5% of control mean) and 

ovarian tissues (p < 0.019; -83.0% of control mean) during the 6 hours following treatment (Figures 

5.1, 5.5 and 5.6 and Table 5.4). Mean plasma GSH concentration in VCD-treated rats was decreased 

by 25.9% of control mean, although this was not significant (p > 0.206; Figure 5.2 and Table 5.4).  

Species comparisons were made between GSH concentration of possums and rats 15 minutes 

following treatment. Rat RBC and plasma GSH levels at pre-treatment and 15 minutes post-treatment 

were lower than that of possums; however this was not significant (p > 0.06; Figure 5.7 and 5.8). Pre-

treatment hepatic GSH levels were similar between rats and possum, regardless of treatment (p > 

0.087; Figure 5.9). However, 15 minutes post-treatment, VCD-treated rat hepatic GSH levels were 

significantly lower than that of control and VCD treated possums (p < 0.002). Pre-treatment ovarian 

GSH concentrations of control and VCD treated rats were significantly higher than that of possum pre-

treatment levels (p < 0.001; Figure 5.10). However, regardless of the elevated ovarian GSH levels of 

rats at pre-treatment, VCD-treated rats were significantly decreased compared to both control and 

VCD-treated possums 15 minutes post-treatment (p < 0.022).  
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Figure 5.1 Red blood cell GSH levels of female brushtail possums and Norway rats following a 
single oral dose of oil or VCD (750 mg/kg) suspended in oil (1:3 v/v). Rats, n = 
2/treatment at 1, 3, 5, 10, 30, 60 and 120 minutes post-treatment; n =4/treatment at -
1 (pre-treatment), 15, 180 and 360 minutes post-treatment. Possums, n = 4/treatment 
at -1 (pre-treatment), 1, 3, 5, 10, and 15; n = 4/treatment at 30, 60, 120, 360 minutes 
and 24 hours post-treatment. Time axis is plotted on a logarithmic scale where -1.0 
represents the pre-treatment sample. Statistical significance was set at p < 0.05. 
Vertical bars represent ± SEM. 
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Figure 5.2 Plasma GSH levels of female brushtail possums and Norway rats following a single oral 
dose of oil or VCD (750 mg/kg) suspended in oil (1:3 v/v). Rats, n = 2/treatment at 1, 3, 
5, 10, 30, 60 and 120 minutes post-treatment; n =4/treatment at -1 (pre-treatment), 
15, 180 and 360 minutes post-treatment. Possums, n = 4/treatment at -1 (pre-
treatment), 1, 3, 5, 10, and 15; n = 4/treatment at 30, 60, 120, 360 minutes and 24 
hours post-treatment. Time axis is plotted on a logarithmic scale where -1.0 
represents the pre-treatment sample. Statistical significance was set at p < 0.05. 
Vertical bars represent ± SEM. 
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Figure 5.3 Average hepatic GSH levels of female brushtail possums following a single oral dose of 
oil or VCD (750 mg/kg) suspended in oil (1:3 v/v). Control treatment, n = 4/time point; 
VCD treatment, n = 4/time point. Values with difference letters are significantly 
different (p < 0.05). Vertical bars represent ± SEM. 
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Figure 5.4 Average ovarian GSH levels of female brushtail possums following a single oral dose of 
oil or VCD (750 mg/kg) suspended in oil (1:3 v/v). Control treatment, n = 4/time point; 
VCD treatment, n = 4/time point. Values with difference letters are significantly 
different (p < 0.05). Vertical bars represent ± SEM. 
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Figure 5.5 Hepatic GSH levels of female Norway rats following a single oral dose of oil or VCD (750 
mg/kg) suspended in oil (1:3 v/v). N = 2/treatment at 1, 3, 5, 10, 30, 60 and 120 
minutes post-treatment; n =4/treatment at -1 (pre-treatment), 15, 180 and 360 
minutes post-treatment. Time axis is plotted on a logarithmic scale where -1.0 
represents the pre-treatment sample. * indicates different (p < 0.05) from control. 
Vertical bars represent ± SEM. 
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Figure 5.6 Ovarian GSH levels of female Norway rats following a single oral dose of oil or VCD (750 
mg/kg) suspended in oil (1:3 v/v). N = 2/treatment at 1, 3, 5, 10, 30, 60 and 120 
minutes post-treatment; n =4/treatment at -1 (pre-treatment), 15, 180 and 360 
minutes post-treatment. Time axis is plotted on a logarithmic scale where -1.0 
represents the pre-treatment sample. * indicates different (p < 0.05) from control. 
Vertical bars represent ± SEM. 
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Figure 5.7 RBC GSH levels of wild-caught female brushtail possums and Norway rats during pre-
treatment and 15 minutes following a single oral dose of oil or VCD (750 mg/kg) 
suspended in oil (1:3 v/v). Rats, n = 4/treatment/time point; possums, n = 
4/treatment/time point. Statistical significance was set at p < 0.05. Vertical bars 
represent ± SEM. 

 

 

Figure 5.8 Plasma GSH levels of wild-caught female brushtail possums and Norway rats during pre-
treatment and 15 minutes following a single oral dose of oil or VCD (750 mg/kg) 
suspended in oil (1:3 v/v). Rats, n = 4/treatment/time point; possums, n = 
4/treatment/time point. Statistical significance was set at p < 0.05. Vertical bars 
represent ± SEM. 
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Figure 5.9 Hepatic GSH levels of wild-caught female brushtail possums and Norway rats during pre-
treatment and 15 minutes following a single oral dose of oil or VCD (750 mg/kg) 
suspended in oil (1:3 v/v). Rats, n = 4/treatment/time point; possums, n = 
4/treatment/time point. Values with different letters are significantly different (p < 
0.05). Vertical bars represent ± SEM. 

 

 

Figure 5.10 Ovarian GSH levels of wild-caught female brushtail possums and Norway rats during 
pre-treatment and 15 minutes following a single oral dose of oil or VCD (750 mg/kg) 
suspended in oil (1:3 v/v). Rats, n = 4/treatment/time point; possums, n = 
4/treatment/time point. Values with different letters are significantly different (p < 
0.05). Vertical bars represent ± SEM. 

 

A 

A 

A 

B 

A 

C 

A 

C 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

Rat control Rat VCD Possum control Possum VCD

G
SH

 (
n

m
o

l/
m

g 
ti

ss
u

e
) 

A 

A 

A 

B 
C D C 

D 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

P
re

-t
re

at
m

en
t

1
5

 m
in

 p
o

st
-g

av
ag

e

Rat control Rat VCD Possum control Possum VCD

G
SH

 (
n

m
o

l/
m

g 
ti

ss
u

e
) 



 

 75 

 Discussion 5.4

In an attempt to ascertain species differences in VCD-induced ovarian toxicity of wild Norway rats 

and brushtail possums, the fate and metabolism of orally administered VCD was examined. VCD was 

detected in the blood of possums and rats as early as 1 to 2.5 minutes following treatment, 

demonstrating that VCD, once present in the stomach, is rapidly absorbed. The concentration of VCD 

in the blood was significantly greater in rats compared with possums. One reason for this could be that 

the amount of VCD available for absorption from the stomach into the blood was higher in the rats. 

However, 15 minutes after treatment there were no differences in the amount of VCD recovered in the 

stomach contents of each species. It is reasonable to assume that any VCD not present in the stomach 

had either been absorbed into the blood stream or was rapidly hydrolysed by stomach acid. Therefore, 

these differences in blood VCD concentration during the first 15 minutes following treatment may 

suggest differences in the stomach environment or the VCD uptake rate for each species.   

VCD, when exposed to acidic environments, is hydrolyzed to an inactive tetrol metabolite (Figure 

2.5). The pH of possum stomach contents ranges between 1.0 and 2.0 and does not appear to be 

affected by time since feeding (Drs J. Duckworth & F. Molinia, pers. comm.). Conversely, pH of 

rodent stomach contents ranges between 3.2 (fed) and 3.9 (fasted) (McConnell et al., 2008). 

Considering these species differences in stomach pH it is plausible to assume that VCD administered 

orally to possums would be hydrolysed at a faster rate than in rats. Fifteen minutes after VCD 

treatment, the stomach pH of both possums and rats was elevated but this effect was more pronounced 

in the possum stomach (possum: pH increase of 212% of control; rat: pH increase of 30% of control). 

These species differences in stomach pH following oral administration of VCD may explain why VCD 

was still detected in the blood of rats for at least 30 minutes post-treatment and why VCD had 

disappeared by 10 to 15 minutes post-treatment in the possums. However, as there were only three 

measurements of stomach pH recorded from the possums, these conclusions should be treated with 

some caution.  

VCD treatment caused GSH depletion in the liver and ovary of the rat up to 6 hours following 

treatment. Previous studies in rats and mice treated with VCD show similar patterns wherein GSH is 

reduced from 1 to 6 hours following treatment (Giannarini et al., 1981; Salyers, 1995). Rodent studies 

have also revealed that the two expoxides of VCD are substrates for GSH conjugation which form 

VCD-monoGSH and VCD-diGSH adducts (Rajapaksa, 2007). In mice, VCD-monoGSH and VCD-

diGSH adducts do form in both the liver and ovaries and by 24 hours post-treatment it is presumed 

that the adducts are excreted via the urine or bile (Salyers, 1995) as levels are undetectable (Rajapaksa, 

2007).  

Conversely, VCD treatment of possums did not cause hepatic or ovarian GSH levels to differ from 

controls. However, it must be noted that there are only two post-treatment time points at which 

samples were collected. One possibility is that VCD did induce reductions in possum GSH levels that 

were missed by this sampling regimen. Interestingly, hepatic and ovarian GSH levels of the VCD 
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treated possums were higher at 24 hours than at pre-treatment and 15 minutes. Previous research has 

demonstrated that following initial VCD-induced GSH reduction in rodents hepatic and ovarian GSH 

levels rebound and surpass both their initial levels and those of controls by 25 hours (Salyers, 1995). 

This rebound effect of liver GSH following initial depletion in rodents is common and elevated GSH 

can be sustained for several days (Viña, 1990). It is possible that the elevated GSH levels of VCD-

treated possums measured at 24 hours were responding in a similar fashion. If so, this would give 

support to the possibility that VCD-induced effects were occurring to some degree in the liver and 

ovaries of possums. VCD-treated rats did not survive to 24 hours so it is not possible to speculate 

whether a similar pattern in overcompensation of GSH would have occurred during this study.  

An alternative and more likely explanation for the lack of effects to possum GSH levels is that there 

were insufficient amounts of VCD reaching the liver and ovaries in the possums to impact on GSH 

metabolism in those tissues. This is supported by the low levels of VCD detected in possum blood and 

similar patterns observed in GSH levels of control possums at 24 hours. It is more likely that the 

observed increase in GSH levels measured at 24 hours represents a recovery (rebound) period 

following anaesthetic-induced GSH reduction. Possums were continuously kept under anesthesia for 

approximately 15 to 17 minutes during pre- and post-treatment blood sampling. Hepatic GSH levels in 

both control and VCD-treated possums at 15 minutes post-treatment are slightly reduced compared to 

pre-treatment levels which may be indicating effects from anesthesia. Although published studies have 

demonstrated that isoflurane/O2 anaesthesia does not affect plasma GST levels (Allan et al., 1987; 

Hussey et al., 1988) or induce hepatotoxicity in rodents and humans (Raper et al., 1987), the present 

observation could be interpreted as evidence for isoflurane having hepatotoxic effects in the possum.   

There were no differences in hepatic GSH pre-treatment levels of untreated (control) rats and 

possums. Following treatment with VCD GSH levels in the liver and ovary of rats were much lower at 

15 minutes than in the possums. At first glance, this may seem to suggest that the rat is more sensitive 

to VCD-induced GSH detoxification but again the very low amount of VCD measured in the blood of 

the possums indicates that there may have been insufficient levels of VCD reaching the liver and 

ovaries of possums to induce any reductions in GSH. The limited number of data points available from 

this study makes it difficult to compare VCD detoxification rates between possums and rats. It is well 

established that there are species differences in metabolism between laboratory-bred mice and rats 

(Kao et al., 1999; Keller et al., 1997; Salyers, 1995; Smith et al., 1990b) and so it is possible that there 

are differences in VCD metabolism between possums and rats. In rodents, metabolism of VCD is also 

achieved through the action of EH (Hoyer and Sipes, 2007; Van Kempen et al., 2011). Measurement 

of EH content following VCD treatment in possums may bring to light potential species differences in 

VCD metabolism. It was my aim to examine VCD-induced effects on hepatic and ovarian EH levels in 

each species. However, the methods were beyond the scope of this project.   

Potential similarities or differences between possum and rat metabolism may further be explained by 

examining other metabolic pathways. 4-Vinylcyclohexene (VCH), the parent compound of VCD, is 
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metabolized to VCD in a Phase I reaction primarily by CYP450 (Doerr-Stevens et al., 1999; Doerr et 

al., 1996; Springer et al., 1996c). Rats and marsupials, including possums, the tammar wallaby 

(Macropus eugenii) and the koala (Phascolarctos cinereus), have demonstrated similarities in the 

content, activity and inhibition of CYP450 (Stupans et al., 2001). Although the effect of VCH 

treatment has not been compared between rats and possums, it can be hypothesised that because of 

these CYP450 similarities, possums may metabolize VCH via a Phase 1 reaction in a similar fashion 

to that of rats. It may be further hypothesized that similarities in Phase II reactions (i.e. GSH and EH) 

exist between these two species. In this report, untreated rats and possums showed similarities in 

hepatic GSH content, supporting the potential for species similarities in Phase II metabolism. 

However, without a broader understanding of the effects of VCD on the content and activity of 

possum Phase II metabolism little can be concluded on the differences or similarities between rats and 

possum metabolism.   

The dietary evolution of possums may suggest a potential enhanced ability for metabolic clearance of 

xenobiotics such as VCD. Brushtail possums evolving in Australia relied greatly on specific 

Eucalyptus species, which are high in plant secondary metabolites (PSMs), as their major food source 

(Stupans et al., 2001). As a result of this dietary specialization, it has been postulated that they evolved 

highly efficient Phase I and II enzyme systems for metabolism of PSMs. Therefore, although there 

may be species similarities in the GSH content, it is possible that possums are simply more efficient at 

metabolizing xenobiotics such as VCD. A study examining the toxicity of a commonly used poison, 

brodifacoum, demonstrated that the length of sickness and time to death were shorter in Norway rats 

compared with possums at the same dose per kg live weight (Littin et al., 2000). There were no 

species differences in absorption and distribution of the poison (Littin et al., 2000), therefore 

suggesting that rats have reduced detoxification capacity compared to possums. In addition, it has been 

demonstrated that carnivorous marsupials are able to metabolize the commonly used poison, sodium 

monofluoroacetate (1080), more readily than carnivorous eutherians of comparable size and diet (feral 

cat, Felis catus; dingo, Canis familiaris dingo) (McIlroy, 1981). Collectively, these studies suggest 

that marsupials possess an enhanced metabolic ability for detoxifying xenobiotics such as VCD than 

that of rodents.  

In order to utilize VCD as a chemosterilant for wild pest populations such as possums and rats, it 

should be deliverable through an oral route. The data presented here support the conclusion that the 

high acidic environment of the possum stomach poses an initial barrier for orally delivered VCD. If 

sufficient quantities of VCD were able to overcome the high stomach acidity of possums, the 

questions would be whether ovarian toxicity could occur or would the presumed high efficiency of the 

possums phase II hepatic reaction negate any possible effects on the ovarian follicle populations? It 

was our aim to provide proof-of-principle for VCD-induced primordial follicle depletion in possums 

through in vitro ovarian follicle culture. However, due to the difficulties discussed in Chapter 6, these 

trials were not conducted. Therefore, examination of VCD and VCH in vitro hepatic metabolism in 
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possums and rats is described in the following chapter. In addition, there is an exploration of the in 

vitro effects of stomach acidity on VCD hydrolysis for each species.      
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Chapter 6 

The fate of 4-vinylcyclohexene diepoxide in blood and stomach 

tissues and its effects on liver metabolism of female brushtail 

possums and Norway rats  

 Introduction 6.1

In the previous chapter the effects of orally delivered VCD on stomach acidity and on VCD’s 

chemical clearance rates, its uptake into the blood, and its effects on liver and ovarian glutathione 

(GSH) levels in possums and rats were examined. VCD treatment resulted in rat stomach pH 

increasing within 5 minutes of treatment and it remained elevated for up to 6 hours whereas the pH of 

possums’ stomachs did not change. The highly acidic nature of possums’ stomach contents (pH 

between 1.0 and 2.0; Drs J. Duckworth & F. Molinia, pers. comm.) and their ability to maintain low 

pH levels following VCD treatment would infer that VCD hydrolysis should occur rapidly; yet some 

of the VCD dose was still detected at similar levels in both rats and possums at 15 minutes post 

treatment. This, in combination with the lower VCD levels detected in possum blood compared with 

that of rats, may indicate that the stomach contents of possums are able to absorb and protect the 

chemical from acid hydrolysis to some degree.  

Protection of VCD may prolong absorption of the chemical from the stomach and intestines into the 

blood. It is believed that VCD’s ovarian toxicity is largely due to repeated exposure, thereby 

overwhelming and ultimately reducing the capacity of the detoxifying enzymes (i.e. liver and ovarian 

derived GSH and epoxide hydrolase)  (Hu et al., 2002; Keating et al., 2008a; Keating et al., 2010). 

Therefore, the presumed slower rate of VCD absorption in the possum gastrointestinal tract may in 

fact prove serendipitous as it could offer a prolonged period of time for the detoxifying enzymes to 

become overwhelmed by repeated, slow exposure to VCD.  

It was further speculated in Chapter 5 that the dietary evolution of possums may explain, in part, why 

VCD is not effective at reducing their immature ovarian follicle populations. Brushtail possums 

evolving in Australia consumed specific Eucalyptus leaves, which are high in plant secondary 

metabolites (PSMs) (Stupans et al., 2001). As a result of this dietary specialization, it has been 

postulated that possums have evolved highly efficient Phase I and II enzyme systems for metabolism 

of PSMs. Therefore, it was proposed that possums would likely metabolise VCD more rapidly and 

efficiently compared with rats; presuming sufficient quantities of VCD were able to reach the liver and 

ovaries.  

The studies presented here first examine the in vitro effects of acid on VCD hydrolysis and whether 

the presence of stomach contents of each species alters the rate of hydrolysis. VCD’s effects on GSH 
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are further examined through in vitro incubation of liver tissue from possums and rats with VCD. It 

was predicted that the stomach contents of possums would absorb, retain, and protect VCD more 

effectively than those of rats, thereby providing a potential protection mechanism of possums against 

xenobiotic toxicity. In addition, it was predicted that possum liver tissue would metabolize VCD more 

readily than the liver tissue of rats. 

A pilot study examining potential differences in phase I metabolism of each species was also 

investigated. 4-Vinylcyclohexene (VCH), the parent compound of VCD, is metabolized to VCD in a 

Phase I reaction primarily by the hepatic-derived enzyme superfamily cytochrome P450 (CYP450) 

(Doerr-Stevens et al., 1999; Doerr et al., 1996; Springer et al., 1996c). Therefore, liver microsomes of 

possums and rats were incubated in vitro with VCH and changes to CYP450 concentrations compared 

over time. It was predicted that possums would be more efficient than rats at metabolizing VCH.    

 Materials and Methods   6.2

6.2.1 Reagents 

VCD, VCH 1,2-isomer, cyclohexanone, ethyl acetate, sunflower oil, Attane™ isofluorane, and sodium 

pentobarbital were obtained from vendors and used for experimental procedures as previously 

mentioned in Chapter 3. M199 medium (M4530) was purchased from Sigma-Aldrich (Auckland, NZ). 

4-vinyl-1-cyclohexene (VCH; lot #A0332276; cas. 100-40-3) was purchased from Acros Organics 

(New Jersey, USA). Sodium hydrosulphite, glycerol and sucrose were purchased from Sigma-Aldrich 

(Auckland, New Zealand). EDTA and TrisCl , used to create buffers, were purchased from BDH 

(Radnor, USA). Carbon monoxide was purchased from BOC gases (Wellington, New Zealand).  

6.2.2 Animal procedures  

Animals (rats, n = 6; possums, n = 11) were anaesthetized (5% isoflurane in O2 at 2 L/min) and once 

sedated blood samples were collected via intracardiac puncture into lithium heparinised tubes (BD 

Vacutainer®) and then treated as outlined below. Animals were euthanized with an intracardiac 

injection of pentobarbitone (125 mg/kg). The stomach was excised and the contents removed, weighed 

and pH measured using pH indicator strips (Merck) and then treated as outlined below. The liver was 

immediately removed, weighed and then prepared for GSH or CYP450 analysis as outlined below. 

6.2.3 VCD hydrolysis in a range of acidic environments 

In order to better understand the effects of acid on VCD hydrolysis, VCD was exposed to a range of 

acid environments for a set period of time. The physiological buffer solution, M199, was used as the 

standard diluent for all experimental procedures. In a pilot study, the effect of diluting with ultrapure 

water and M199 were compared to ensure that the additives in the M199 medium were not influencing 

VCD hydrolysis or protecting VCD from acid degradation. The pH of the ultrapure water was adjusted 

to 1.0 or 2.5 pH (± 0.2) while M199 was adjusted to 1.0, 2.5, or 5.0 (± 0.2). Both diluents were 
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warmed to 21 ± 1 °C and then aliquoted into glass scintillation vials (2.0 mL/vial). VCD (0.0, 1.84, 

3.69, 5.53, or 7.40 mM; mixed 1:3 v/v in oil) was added to each of the solution combinations, mixtures 

were vortex mixed for 15 seconds and then placed in a shaking incubator (300 rpm, 21°C) for 15 

minutes. Reactions were then terminated by the addition of 2 times the sample volume of ethyl acetate 

(EA) containing the internal standard 4-vinyl-1-cyclohexene-1,2-isomer (VCH-isomer; 1.05 mM). 

VCD and its tetrol metabolites were extracted from each solution in three successive rounds wherein 

vials were vortex mixed for 30 seconds and shaken for 10 minutes at 500 rpm. Phases were separated 

by centrifugation (3000 x g for 10 min, 21°C) and three aliquots (500 µL) of the organic layer (top 

layer) were placed into 2.0 mL amber Crimp-Top vials. The samples were run on gas chromatography 

(GC) in triplicate and VCD quantified as outlined in Chapter 3. Following this pilot study there was 

some evidence that a portion the VCH-isomer (internal standard) was degraded during the EA 

extraction step. This was indicated by the presence of VCD in the control vials (no VCD added) 

following acid treatment. An additional trial utilizing the internal standard cyclohexanone (1.18 mM) 

was run as verification for the presence of VCD in the control vials. Following positive confirmation, 

the effect of VCH-isomer conversion to VCD was thereafter corrected by subtracting the 

concentration of VCD in control samples from the VCD concentrations in each corresponding 

treatment vial. From these studies it was determined that there were no differences in the hydrolysis 

rate of VCD diluted in either water or M199. Therefore, all subsequent experiments used M199 as the 

diluent.      

6.2.4 VCD hydrolysis in stomach contents and blood 

Stomach treatment 

The effect of stomach acid and stomach contents on VCD hydrolysis was examined in possum and 

rats. To mimic temperatures found in vivo, in vitro conditions were matched by incubating the 

stomach contents of each species at 37°C throughout the experiment. The pH of possum stomach 

contents ranges between 0.5 and 2.0 (Chapter 5; Drs J. Duckworth & F. Molinia, pers. comm.) while 

that of a rodent stomach ranges between 0.5 and 3.7 (Chapter 5). For between-species comparisons 

and to standardise pH levels across replicates, the pH of possum stomach contents was adjusted to 1.0 

± 0.1 or 2.5 ± 0.1 (i.e. typical possum in vivo pH range) and rodent stomach contents were adjusted to 

a pH of 2.5 ± 0.1 (i.e. typical rat in vivo pH range). Stomach contents were collected fresh from 

animals just prior to the trial starting. For each species, equal aliquots of stomach contents (0.1 – 0.2 g) 

were placed into glass scintillation vials and 4 times the sample volume of M199 (heated to 37°C) was 

added and the pH of each sample was then altered to within ±0.1 of desired range. For each unique 

treatment a corresponding blank (M199 only, equal pH and volume as stomach contents) and a 

corresponding neutral blank (pH 7.0) were examined at each time point. To avoid stomach contents 

adhering to the sides of the container, samples were centrifuged for 2 minutes (3000 x g at 37°C) to 

ensure all stomach contents were retained within the solution. Reactions began by the addition of VCD 

(0.0, 1.22 or 2.43 mM mixed 1:3 v/v in oil) and gently vortex mixed (500 rpm) for 15 seconds to 
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ensure even distribution throughout the stomach contents matrix. Samples were placed into a shaking 

incubator at 37°C and reactions terminated at 3, 5, 10, 15, 30, 60, 120 and 360 minutes with the 

addition of EA containing the internal standard, VCH-isomer. VCD was extracted and samples 

prepared for GC analysis as stated in section 6.2.3.  

Whole blood treatment 

The aim of this experiment was to examine if VCD is affected by the blood matrix as it is transported 

to the target organ, the ovary. Whole blood (3.0 - 4.0 mL) was collected into lithium heparin 

vacutainer tubes (BD Vacutainer®) which were inverted several times, and then kept at 37°C during 

the experimental period. For each species’ blood sample, two treatments were prepared in glass 

scintillation vials: A) whole blood (0.167 – 0.375 mL) diluted with 4 times the sample volume of 

M199 (heated to 37°C) or B) whole blood only (0.67 – 1.5 mL; volumes were matched to treatment 

A). A corresponding blank (M199 only; final volume matched to treatments A and B) was also 

examined at each time point. Reactions began by the addition of VCD (0.0, 0.185 or 0.364 mM mixed 

1:3 v/v in acetone) and gently vortex mixed (500 rpm) for 15 seconds to ensure even distribution 

throughout the blood matrix. Samples were placed into a shaking incubator at 37°C and reactions 

terminated at 3, 10, 15, 20, and 30 minutes with the addition of EA containing the internal standard, 

VCH-isomer. VCD was extracted and samples prepared for GC analysis as stated in section 6.2.3. 

6.2.5 Glutathione assay sample preparation and analysis 

The effect of VCD on possum and rat Phase II metabolism was examined by measuring in vitro 

changes in hepatic GSH concentrations. Originally the aim was also to examine in vitro the effect of 

follicle stage (primordial, primary, and secondary follicles) on the GSH response to VCD; hence, the 

selection of M199 as the sample diluent. However, follicle isolation techniques (Flaws et al., 1994) 

proved difficult and we could not procure sufficient amounts of ovarian tissue from appropriately aged 

animals (pouch young aged 80-100 days:  age at which primordial follicles are first formed) (Eckery et 

al., 1996) during the course of the studies. Attempts at in vitro culturing of 1 x 1 mm explants (Wandji 

et al., 1996) from the cortex of adult possum ovaries were also made (D. Eckery, personal comm.). 

Although harvesting of the explants was successful, the resulting tissue destruction resulted in low 

follicle survival rates. In addition, primordial follicles were not evenly distributed throughout the 

cortex of each ovary and therefore very large replicates would be required to obtain statistically 

significant results. It was evident that variation would likely affect the power of any statistical analyses 

and solving such difficulties was beyond the scope of this project.  

For each species, livers were perfused with ice-cold PBS and then placed into aluminium foil, sealed 

and snap frozen with liquid nitrogen. Individually, frozen livers, wrapped in aluminium foil, were 

broken into small particles using a mallet and then combined into one liver stock preparation. Initially, 

microsomes, prepared as outlined for the CYP450 experiments (section 6.2.6), were utilized for these 

GSH experiments. However, interference with the microsomal buffers occurred when running the 
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GSH assay. In addition, purified microsomal GSH concentrations were below the detection limit. 

Therefore, supernatant 9000 (S9) liver fractions were prepared by adding 2.5 g of liver stock into an 

ice-cold glass homogenizer and then 4 times the volume of ice-cold PBS was added and tissue 

homogenized with 10 passes of the pestle while on ice. The homogenate was transferred to conical 

tubes and centrifuged at 10,000 x g for 30 minutes at 4°C. The concentrated supernatant was then 

transferred to cryostat vials and immediately snap frozen. The protein content of the S9 fraction was 

measured using the Bradford protein assay (Bio-Rad Laboratories) using bovine serum albumin (BSA) 

as a standard.  

For each species, the S9 fraction was slowly defrosted on ice to prevent activation or denaturing of 

enzymes. The solution was diluted to a protein content of 15 mg/mL using ice-cold PBS and then 

divided into two glass scintillation vials. One vial was kept on ice while the other vial was placed in a 

boiling water bath (100 ± 5°C) for 10 minutes to ensure all protein was denatured and then the sample 

was divided evenly into two glass scintillation vials, creating two treatments: 1) negative control: heat-

shocked S9 fraction (no additives); 2) negative treatment: heat-shocked VCD-treated S9 fraction (7.13 

mM). Samples were allowed to cool to room temperature before trial start. The live S9 fraction sample 

kept on ice was divided evenly into two glass scintillation vials, creating two treatments: A) positive 

control: live S9 fraction (no additives); and B) positive treatment: live VCD-treated S9 fraction (7.13 

mM). Live sample vials were then placed into a shaking incubator (37⁰C) for 10 minutes at 200 rpm to 

allow enzymes to activate. The trial began with the addition of VCD into the live and heat-shocked 

treated vials. At 0, 5, 10, 15, 20 30, 45 and 60 minutes 100 µL of each solution was removed, placed 

into a cryostat tube and snap frozen with liquid nitrogen. All vials were kept in a heated shaker (37°C) 

during the incubation period and all experimental procedures were run in duplicate. 

In preparation for GSH concentration quantification, all samples were slowly defrosted on ice. 

Samples were then deproteinized by removing 20 µL of sample and adding it to 560 µL (28 times the 

sample volume) of ice-cold 5% SSA. Samples were incubated at 4°C for 10 minutes and then 

centrifuged at 10,000 x g for 10 minutes at 4°C. GSH concentration (nmol/mg protein solution) was 

measured in triplicate for each sample using methods described in the GSH assay kit (Sigma, cat# 

CS0260) with changes as outlined in Chapter 3.    

6.2.6 CYP450 pilot study 

Hepatic CYP450 sample preparation  

For each species, livers were perfused with ice-cold PBS and then snap frozen with liquid nitrogen. 

For each species, (possums, n = 8; rats, n = 8) the livers of individual animals were combined to make 

one stock, wrapped in aluminium foil and then broken into small particles using a mallet. 

Approximately 5 g of liver stock was measured into an ice-cold glass homogenizer and 4 times the 

sample volume of GET buffer (20% glycerol, 0.5M EDTA, 1.0M TrisCl, pH 7.4) was added and liver 

homogenized with 15 passes of the pestle. The homogenate was then aliquoted into ultracentrifuge 
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tubes and centrifuged at 9000 x g for 30 minutes at 4⁰C using a Beckman JL-90 ultracentrifuge fitted 

with a JA-20 rotor. The supernatant was pooled and then transferred into ultracentrifuge tubes and 

centrifuged at 105,000 x g for 60 minutes at 4⁰C. The supernatant was discarded and the pellet 

suspended with SET buffer (1.0 mL/g organ weight; 25% sucrose, 0.5M EDTA, 1M TrisCl, pH 7.4). 

To ensure the pellet was well redistributed, the mixture was transferred to an ice-cold homogenizer 

and homogenized with 5 passes of the pestle while on ice. The homogenate was transferred back into 

ultracentrifuge tubes and centrifuged at 105,000 x g for 60 minutes at 4⁰C. The supernatant was 

discarded and the pellet suspended in GET buffer (1.0 mL/g organ weight). The suspension was snap 

frozen (1.0 mL aliquots) in liquid nitrogen and stored at -80⁰C until analysis. Protein content was 

analysed using the Bradford protein assay (Bio-Rad Laboratories) using BSA as a standard.  

CYP450 assay method development and validation 

Optimization of carbon monoxide exposure method and incubation time 

To determine the optimal method for measuring CYP450 content in possum and rat hepatic 

microsomes, two carbon monoxide (CO) exposure methods were tested and compared (Choi et al., 

2003; Omura and Sato, 1964). For each species, hepatic microsomes were transferred from a -80⁰C 

freezer into a -20⁰C freezer for 30 minutes and then placed on ice to allow samples to defrost slowly. 

Microsomes were diluted to 1.0 mg protein/mL with GET buffer and then bubbled with CO for 30 

seconds (0.5 mL aliquots in glass scintillation vials) (Omura and Sato, 1964) or placed into a 96-well 

flat bottom plate (200 µL aliquots). The plate was then placed into a CO chamber (Figure 6.1), the 

chamber was sealed and then CO was allowed to flow freely into the chamber for 2 minutes (0.5 

L/min) while on a shaker (300 rpm) (Choi et al., 2003). The exit hose was placed into a water-filled 

beaker to ensure gas flow was continuous. The CO chamber was located within a fume hood to avoid 

any potential harm from gas vapours. For each method, following CO treatment samples were 

transferred into disposable cuvettes (10mm light path; LPI, Italy) and the baseline absorbency 

recorded. The haemoproteins in the sample were then reduced (solubilized) by the addition of 5.0 mg 

of sodium hydrosulphite (SHS) powder, left to stabilise for 2 minutes, and then the resulting spectra 

between 400 and 500 nm were measured (Omura and Sato, 1964). It was determined that the CO 

chamber (Choi et al., 2003) would be the most appropriate method to use as both methods offered 

similar repeatability but absorbency readings were higher for each species (Figure 6.2) and sample 

analysis would be more efficient and precise when using the CO chamber.  
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Figure 6.1 The carbon monoxide (CO) chamber (15 x 10 x 4 cm). A 96-well flat bottom plate 
containing samples is placed inside the chamber, the chamber is sealed and then CO is 
allowed to flow freely into the chamber. The exit hose was placed into a water-filled 
beaker to ensure gas flow was continuous. All procedures were carried out within a 
fume hood. Adapted from Choi et al. (2003). 

 

 

Figure 6.2 Comparison of absorbency potential of female possum and rat hepatic microsomes using 
the CO chamber or the CO bubbling method. Absorbance (ABS) was measured 
between 400 and 500 nm.   
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Optimization of CO chamber incubation time 

To determine the optimal CO chamber incubation time, hepatic microsomes were diluted to 1.0 mg 

protein/mL GET buffer and 6 samples (200µL) were prepared as follows. Three replicates were 

designated as reduced P450 (PR) samples (negative control). To prevent the P450-CO complex 

forming in these PR samples, the wells were sealed with tape to ensure no CO access. The other 3 

samples were designated as reduced P450-CO complex (PC) samples (positive control) and the wells 

were allowed full exposure to the CO chamber environment. In addition, the PR and PC samples were 

kept at a maximum distance from each other within each plate to further ensure separate treatment 

parameters were met.  The plate was then placed into the CO chamber, the chamber was sealed and 

CO administered for 0 to 12 minutes as previously described. The plate was removed from the CO 

chamber, the PR sample tape was removed and PR and PC samples reduced with 10.0 µL of a 0.5 M 

SHS solution (in ultrapure water) (Choi et al., 2003) using a multichannel pipette. SHS, when in a 

liquid state, oxidizes on contact with air. Therefore, SHS powder was pre-measured before each 

experiment and ultrapure water was added just prior to its use (< 2 minutes). Absorbance was 

measured at 450 nm (Soret peak) and 490 nm (Isobestic point) on a microplate reader (VarioSkan 

Flash, Thermo Scientific, USA) at 37⁰C. The change in absorbency was calculated using the following 

formulas: ΔAPC = APC450 – APC490 and  ΔAPR = APR450 - APR490, where ΔAPC is the absorbance of 

the P450-CO complex (PC) sample and ΔAPR is the absorbance of the P450-reduced (PR) sample 

(Choi et al., 2003). The absorbency difference was calculated by subtracting ΔAPC from ΔAPR. The 

concentration of CYP450 was calculated using the following formula: [CYP450](mM/mg microsomal 

protein) = ΔAPC - ΔAPR)/91 where 91 is the millimolar difference extinction coefficient (Omura and 

Sato, 1964). An optimal incubation time of 2 minutes within the CO chamber was selected (Figure 

6.3). 

 

 

Figure 6.3 Optimization of CO chamber incubation time for female possum and rat hepatic 
microsomes. 
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Optimization of SHS reduction volume 

To determine the optimal SHS reduction volume hepatic microsomes (possum or rat) were diluted to 

1.0 mg/mL and then 3 replicates (200 µL) for each PR or PC treatment were placed into the wells of a 

96-well flat bottom plate. The PR samples were sealed with tape, the plate placed into the CO chamber 

and samples exposed to CO as previously described. The plate was then removed from the CO 

chamber, the PR sample tape was removed and samples were reduced with 0.0, 5.0, 10.0 or 15.0 µL of 

a 0.5 M SHS solution and then the difference in absorbency measured as previously described. It was 

determined that a volume of 10.0 µL of SHS was most stable and efficient at reducing the 

haemoproteins in each species (Figure 6.4). 

 

 

 

Figure 6.4 Optimization of SHS volume addition for reduction of female possum (A) or rat (B) 
microsomes. 
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Optimization of protein content  

To determine the optimal protein concentration for each species, hepatic microsomes were diluted to 

0.0, 0.05, 0.09, 0.19, 0.38, 0.75, 1.5, 3.0 or 6.0 mg protein/mL in GET buffer. Three aliquots of 200 

µL per concentration were added to a 96-well flat bottom plate and placed into the CO chamber for 2 

minutes, reduced with 10.0 µL of SHS and the difference in absorbency measured as previously 

described. Changes in absorbency showed a strong linear relationship over time and a 1.0 mg/mL 

protein concentration was selected for subsequent assays (Figure 6.5).   

 

 

Figure 6.5 Optimization of microsomal protein content for female possum and rat hepatic 
microsomes. 
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treatment: live VCH-treated microsomes (0.0, 4.0 or 8.1 mM). Live sample vials were then placed into 

a shaking incubator (37⁰C) for 10 minutes at 200rpm to allow microsomes to activate. The trial began 

with the addition of VCH to the live and dead treatment vials. Vials were placed into a shaking 

incubator (37°C, 200 rpm) and at each time point (possums: 3, 10, 15, 30, 60 and 120 minutes; rats: 3, 

15, 30, 60 and 120 minutes) 6 aliquots of 200 µL were removed from each treatment and transferred to 

a 96-well flat bottom plate. Three aliquots of each treatment were designated as PR samples and tape 

was placed on these wells to ensure no CO access. In addition, the PR and PC samples were kept at a 

maximum distance from each other within each plate to ensure treatment parameters were met. The 

plate was then placed into the CO chamber, exposed to CO, samples reduced with 10.0 µL SHS and 

the difference in absorbency was recorded as previously described. Three readings (0, 1, and 2 

minutes) were collected and the average absorbency was used to calculate cytochrome P450 

(CYP450) content as outlined above.       

6.2.7 Statistical Analysis    

All general statistical procedures were run as previously outlined in Chapter 3. The concentrations of 

VCD and GSH were analysed using a repeated measure test with treatment group defined by time.  

 Results   6.3

6.3.1 VCD hydrolysis in a range of acidic environments 

To determine the effects of acid on VCD hydrolysis, VCD was incubated at room temperature (21 ± 1 

°C) in a range of acid levels (1.0, 2.5 or 5.0) in either ultrapure water or M199 medium and then the 

percentage of the total VCD dose remaining after 15 minutes was compared with a VCD dose 

incubated in a neutral environment (pH 7.0). There were no differences in VCD hydrolysis when 

incubated in water or M199, regardless of pH (p > 0.117). Therefore, only the effect of the medium 

M199 on VCD will be reported in detail. Incubating two concentration levels of VCD (1.84 or 3.69 

mM) in an M199 pH-neutral solution for 15 minutes resulted in 44.4 ± 0.13 and 70.5 ± 0.22 %, 

respectively, of the total chemical concentration being hydrolysed (Figure 6.6). At an acidity level of 

pH 1.0 and 2.5, 99.9 ± 0.01 and 99.0 ± 0.02 %, respectively, of VCD was hydrolysed, regardless of the 

initial concentration (Figure 6.6 and Table 6.1). A pH of 5.0 caused 88.0 ± 2.0 % of VCD to 

hydrolyse, regardless of the initial concentration (Figure 6.6). Acid significantly reduced VCD 

concentrations (1.84, 3.69, 5.53, or 7.38 mM) at all pH exposure levels (1.0, 2.5, or 5.0 pH) compared 

with a pH of 7.0 (p < 0.015; Figure 6.6). 
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Figure 6.6 The effect of acid on VCD hydrolysis when incubated in pH-altered M199 at 21 ± 1 °C for 
15 minutes. Following incubation, remaining VCD was extracted using ethyl acetate 
and quantified on GC. Percentages above each data set represent the amount of VCD 
that was hydrolysed during incubation. Levels not connected by the same letter are 
significantly different (p < 0.05). Vertical bars represent + SEM.    

 

Table 6.1 Percentage of VCD hydrolysed when incubated for 15 minutes at a pH of 2.5 in M199 at 
room temperature (21 ± 1 °C), M199 medium heated to biological temperature (37 ± 1 
°C) or the stomach contents of rats or possums mixed 1:4 (v/v) in M199 medium 
heated to 37 ± 1 °C. Data are means ± SEM.      
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6.3.2 VCD hydrolysis in stomach contents  

VCD was incubated in pH-controlled M199-diluted stomach contents (1:4, v/v; 37 ± 1 ºC) of rats or 

possums or in pH-controlled M199 only (37 ± 1 ºC) and the rate of chemical hydrolysis was compared 

between species and treatments. When 1.22 mM VCD was incubated in the stomach contents of rats 

(pH 2.5), VCD was only detected at minute 3 of incubation (Figure 6.7). A higher dose of VCD (2.43 

mM) incubated in rat stomach contents (pH 2.5) resulted in the chemical being detected up to 15 

minutes but by 30 minutes it was undetectable (Figure 6.8). When rat stomach contents were 

neutralized (pH 7.0), incubation with 1.22 or 2.43 mM VCD resulted in chemical concentrations 

peaking at 5 or 10 minutes then dropping off and stabilizing from 15 to 120 minutes (p > 0.169) and 

by 360 minutes VCD concentrations had fallen significantly (p < 0.005; Figures 6.7 and 6.8). 

Incubation of 2.43 mM VCD at pH 2.5 resulted in a lower mean VCD concentration in rat stomach 

contents compared with M199 only (p < 0.049; Figures 6.8 and 6.9).  

Possum stomach contents at a pH of 1.0 caused 100 % hydrolysis of VCD by 3 minutes, regardless of 

the initial chemical concentration (p < 0.001; Figures 6.7 and 6.8). Similarly, VCD incubated at 1.0 pH 

in M199 only was 100 % hydrolysed within 3 minutes (p < 0.001; Figure 6.9). When the pH in 

possum stomach was raised to 2.5, VCD concentrations (1.22 or 2.43 mM) were highest at 3 to 5 

minutes and then consistently dropped after 10 minutes until no VCD was detected at 120 minutes 

(Figures 6.7 and 6.8). There were no differences in VCD concentration incubated in possum stomach 

contents (pH 2.5) or M199 only (pH 2.5) from 3 to 60 minutes (p > 0.077; Figures 6.8 and 6.9). 

However, at 120 and 360 minutes VCD concentrations levels were significantly lower in possum 

stomach contents than in M199 (p < 0.023 and p < 0.009, respectively). VCD (1.22 or 2.43 mM) 

incubated in neutralized possum stomach contents had a peak concentration at 5 minutes and then 

remained somewhat stable for up to 360 minutes of incubation (Figures 6.7 and 6.8). There were no 

differences in VCD concentrations in neutralized possum stomach contents compared with neutralized 

M199 (p > 0.081) with the exception of lower VCD levels in possum stomach contents at 30 and 60 

minutes (p < 0.0004 and p < 0.022, respectively; Figures 6.8 and 6.9).   

Incubation in stomach contents at pH 2.5 resulted in higher concentrations of VCD, regardless of 

initial dose, in possums compared with rats (p < 0.001; Figure 6.7 and 6.8 and Table 6.1). 

Additionally, VCD was detected for a longer period of time in possum stomach contents (1.22 mM: up 

to 60 min; 2.43 mM: up to 120 min) compared with rat stomach contents (1.22 mM: up to 3 min; 2.43 

mM: up to 15 min). When a low dose of VCD (1.22 mM) was incubated in a neutralized stomach 

environment, more VCD was recovered in possum stomach contents then that of rats (p < 0.023; 

Figure 6.7 and 6.8). However, there were no between-species differences in VCD concentration 

following incubation with a high dose in a neutral environment (2.43 mM; p > 0.605).  
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Figure 6.7 The effects on 1.22 mM VCD when incubated in pH-controlled rat or possum stomach 
contents (37 ± 1 °C). At each time point, VCD was extracted from a subsample using 
ethyl acetate and quantified on GC (n = 3 – 6 replicates/time point). Values not 
connected by the same letter are different (p < 0.05). Vertical bars represent ± SEM. 
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Figure 6.8 The effects on 2.43 mM VCD when incubated in pH-controlled rat or possum stomach 
contents (37 ± 1 °C). At each time point, VCD was extracted from a subsample using 
ethyl acetate and quantified on GC (n = 3 – 6 replicates/time point). Values not 
connected by the same letter are different (p < 0.05). Vertical bars represent ± SEM. 
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Figure 6.9 The effect of acid and heat (37 ± 1 °C) on VCD hydrolysis when incubated in pH-altered 
M199. At each time point, VCD was extracted from a subsample using ethyl acetate 
and quantified on GC (n = 3 – 6 replicates/time point). Values not connected by the 
same letter are different (p < 0.05). Vertical bars represent ± SEM. 
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The addition of M199 to the blood of each species did result in lower VCD concentrations throughout 

the incubation period (p< 0.026; Figure 6.11 and Table 6.2). However, there were no differences in the 

rate of VCD hydrolysis in M199-diluted blood of each species compared with M199 only (p > 0.201; 

Table 6.2). There were no between-species differences in VCD concentrations over time when 

incubated in M199-diluted blood (0.185 mM VCD, p > 0.061; 0.364 mM VCD, p > 0.429) or in 

undiluted blood (0.185 mM VCD; p > 0.071) of each species (Figures 6.10 and 6.11). However, when 

0.364 mM VCD was incubated in undiluted blood of each species, more VCD was recovered from rat 

blood than that of possums (p < 0.001; Figures 6.10 and 6.11).       

 

 

Figure 6.10 VCD concentration over time when incubated in undiluted blood or diluted blood 
(M199, 1:4, v/v) of female rats (n = 6) or M199 only. Values not connected by the same 
letter are different (p < 0.05). Vertical bars represent ± SEM. 
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Figure 6.11 VCD concentration over time when incubated in undiluted blood or diluted blood 
(M199, 1:4, v/v) of female possums (n = 11) or M199 only. Values not connected by 
the same letter are different (p < 0.05). Vertical bars represent ± SEM. 
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Table 6.2 VCD in whole diluted or undiluted blood of possums or rats or in M199 only. VCD was 
incubated for 0, 3, 5, 10, 15, 20 or 30 minutes whole blood or whole blood diluted (1:4, 
v/v) in M199 (37°C). Data are means ± SEM.    

Matrix 
Amount of VCD 

added (mM) 
Amount of VCD (mM) 

remaining at 20 minutes 
Rate of VCD change 

over time 

Rat whole blood 

0.00 0.00 ± 0.00 - 

0.185 0.07 ± 0.007 -1.1 µM/min 

0.364 0.14 ± 0.005 -1.5 µM/min 

Rat whole blood 
diluted in M199 

0.00 0.00 ± 0.00 - 

0.185 0.03 ± 0.010 -0.4 µM/min 

0.364 0.09 ± 0.004 -1.0 µM/min 

Possum whole blood 

0.00 0.00 ± 0.00 - 

0.185 0.06 ± 0.005 +0.2 µM/min 

0.364 0.13 ± 0.002 +0.9 µM/min 

Possum whole blood 
diluted in M199 

0.00 0.00 ± 0.00 - 

0.185 0.05 ± 0.008 +0.2 µM/min 

0.364 0.10 ± 0.008 +0.1 µM/min 

M199 only @ 37°C 

0.00 0.00 ± 0.00 - 

0.185 0.04 ± 0.004 -0.4 µM/min 

0.364 0.09 ± 0.008 -0.1 µM/min 

 

6.3.4 Hepatic GSH concentrations following in vitro incubation with VCD 

The effect of VCD on liver metabolism was examined in rat and possum hepatic GSH concentrations 

following in vitro incubation with VCD. Incubation with VCD (7.13 mM) caused GSH concentrations 

in live S9 hepatic cells of rats to decrease significantly from 1 to 60 minutes compared with live 

controls (p < 0.001; Figure 6.12). There were no differences in GSH concentration in heat-shocked 

control and heat-shocked VCD-treated rat S9 hepatic cells (p > 0.211; Figure 6.12). GSH levels 

overall were lower in heat-shocked VCD-treated rat S9 hepatic cells compared with live VCD-treated 

cells, although this was not significant (p > 0.054; Figure 6.12). GSH concentrations in rat S9 hepatic 

cells were lower in heat-shocked controls than that of live controls (p < 0.04). 

Live possum S9 hepatic cells incubated in VCD had no differences in GSH concentration from that of 

live controls from 0 to 10 minutes (p > 0.081; Figure 6.13). However, from 15 to 60 minutes VCD 

treatment caused GSH levels to decrease significantly compared with controls (p < 0.049; Figure 

6.13). There were no differences in GSH concentration in heat-shocked controls compared with live 

controls (p > 0.081) and heat-shocked VCD-treated possum S9 hepatic cells (p > 0.392; Figure 6.13). 

GSH levels overall were lower in heat-shocked VCD-treated possum S9 hepatic cells compared with 

live VCD-treated cells, although this was not significant (p > 0.192; Figure 6.13).  

Between-species comparisons revealed that mean GSH concentrations in live, untreated possum S9 

hepatic cells (0.95 ± 0.03 nmol/mg protein content) were 10.3% lower than those of untreated rats 

(1.06 ± 0.01 nmol/mg protein content; p <0.0001). However, treatment with VCD resulted in the GSH 
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concentrations in rat S9 cells being reduced by 76.8% (0.09 ± 0.05 nmol/mg protein content) 

compared with VCD-treated possums (0.38 ± 0.11 nmol/mg protein content; p <0.001). Within 1 

minute of VCD addition, rat GSH levels were reduced by 72.6% of controls and by 30 minutes 100% 

of the GSH stock was depleted. On the other hand, possum GSH levels at 1 minute post-VCD addition 

were reduced by only 34.3% of controls but by 30 minutes 98.1% of their GSH stock was depleted. 

There were no between-species differences in mean GSH concentrations in heat-shocked controls or 

heat-shocked VCD-treated S9 hepatic cells (p > 0.166).  

 

 

Figure 6.12 Change in rat hepatic GSH levels following in vitro incubation with 7.13 mM VCD. N = 3 
replicates/time point; levels not connected by the same letter are different (p < 0.05). 
Vertical bars represent ± SEM. 
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Figure 6.13 Change in possum hepatic GSH levels following in vitro incubation with 7.13 mM VCD. 
N = 3 replicates/time point; levels not connected by the same letter are different (p < 
0.05). Vertical bars represent ± SEM. 

 

6.3.5 CYP450 concentration following in vitro incubation with VCH 

VCH-induced Phase I metabolism was examined in rats and possums by measuring the liver 

concentration of CYP450 following in vitro incubation with VCH. Compared with controls, mean 

CYP450 concentration in rat microsomes was significantly reduced following incubation with VCH 

(4.0 mM, p < 0.0001; 8.1 mM, p < 0.0004; Figure 6.14). There were no differences in mean CYP450 

concentrations between heat-shocked rat microsomes treated with a high dose of VCH (8.1 mM) and 

the heat-shocked controls (p > 0.081). However, heat-shocked rat microsomes treated with a low dose 

of VCH (4.0 mM) had reduced mean concentrations of CYP450 compared with heat-shocked controls 

(p < 0.002; Figure 6.14). 

Mean CYP450 concentrations in possum microsomes were significantly reduced following incubation 

with VCH (4.0 or 8.1 mM) compared with controls (p < 0.0001; Figure 6.15). There were no 

differences in mean CYP450 concentrations in heat-shocked possum microsomes treated with VCH 

compared with heat-shocked controls (4.0 mM, p > 0.417; 8.1 mM, p > 0.120; Figure 6.15). 
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There were significant differences in the CYP450 concentrations of control-treated (p < 0.0001) and 

heat-shocked (p < 0.008) rat and possum hepatic microsomes. Mean rat CYP450 levels in live and 

heat-shocked microsomes were 71.8 ± 2.42 % and 80.3 ± 74.5 % lower, respectively, than levels 

measured in possums. In addition, mean CYP450 levels measured in rat VCH-treated microsomes (4.0 

or 8.1mM) were 77.1 ± 11.4 and 83.3 ± 8.4 % lower, respectively, compared with possums. Three 

minutes after addition of VCH, rat CYP450 levels in live microsomes were reduced by 97.7% (4.0 

mM) and 100% (8.1 mM) to that of live controls. On the other hand, possum CYP450 levels in live 

VCH-treated microsomes were not reduced below those of controls until 10 (8.1 mM; 6.0%) and 30 

minutes (4.0 mM; 79.6%). 

 

 

Figure 6.14 Changes in female rat hepatic CYP450 concentration levels following in vitro incubation 
with VCH (4.0 or 8.1 mM). Time scale is represented by Log10 (minute) where -1 
represents pre-treatment CYP450 levels. Levels not connected by the same letter are 
different (p < 0.05). N = 6 replicates/time point. Vertical bars represent ± SEM. 
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Figure 6.15 Changes in female possum hepatic CYP450 concentration levels following in vitro 
incubation with VCH (4.0 or 8.1 mM). Time scale is represented by Log10 (minute) 
where -1 represents pre-treatment CYP450 levels. Levels not connected by the same 
letter are different (p < 0.05). N = 6 replicates/time point. Vertical bars represent ± 
SEM. 

 

 Discussion 6.4
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At a pH of 1.0, 100% of VCD was hydrolysed within minutes of incubation in possum stomach 

contents. These data support the hypothesis that a large portion of an oral VCD dose is quickly 

reduced once it arrives in the stomach of possums. Furthermore, as with the in vivo studies, the 

proposed protective effects of possum stomach contents were demonstrated when the pH was 

increased to 2.5. Higher concentrations of VCD were recovered in the stomach contents of possums 

(up to 60 or 120 minutes) compared with rats (up to 3 or 15 minutes). Both rats and possums were fed 

the same pelleted diet. Thus, the contents of their stomachs would have been very similar suggesting a 

species effect in their ability to retain VCD in the stomach. VCD is a lipophilic chemical and, although 

lipid content was not measured, reasons for these between-species differences at pH 2.5 may be that 

the stomach contents of possums contain a higher proportion of lipids than those of rats. Alternatively, 

the species difference may be due to differences in particle size of the digesta or rates of stomach 

emptying which would influence the rate of VCD degradation. It is difficult to determine how relevant 

this between-species difference is in vivo as the average stomach contents pH range for possums is 

usually pH 1.0 to 2.0, significantly lower than in the rat. 

VCD, when incubated in whole blood of possums and rats, was not affected and its chemical 

concentration remained stable. This finding seems to suggest that the blood is not involved in a 

detoxifying capacity; rather it primarily serves as a transportation medium for VCD. However, in these 

in vitro studies the only observation recorded was the presence (or disappearance) of VCD over time 

with no measurements of the detoxifying agents (i.e. GSH or epoxide hydrolase). Following an oral 

dose of VCD, mean intracellular GSH content in red blood cells of rats was decreased (Chapter 5). 

This suggests that, given sufficient levels of VCD present in the blood, GSH may serve a 

detoxification role to some degree. It should be noted that, in the plasma, much of the GSH originates 

from the liver and thus serves as an indicator of liver GSH content (Viña, 1990). In addition, 

extracellular GSH has a short half-life (1.9 min in the mouse) (Viña, 1990) suggesting that any GSH 

detoxification occurring in the blood is likely to be a result of red blood cell-derived GSH action rather 

than plasma-derived GSH. In the in vitro studies presented here, an NADPH regeneration system was 

not employed. Glutathione reductase, the enzyme responsible for converting glutathione disulphide 

(GSSG) to GSH, is NADPH-dependant and without a suitable in vitro culture set-up, the reformation 

of GSH from GSSG was not possible (Akerboom and Sies, 1980). Thus, while VCD concentrations 

appeared to be stable over time, the contribution of GSH cycling to the detoxification of VCD may 

have been underestimated in the present study.    

VCD incubation with possum and rat hepatic S9 cell fractions caused GSH levels to become depressed 

and species differences in the timing and degree of GSH depletion were evident. VCD-induced 

reduction of rat liver GSH content occurred within the first minute (69.8% reduction of controls) and 

this was comparable to the reduction in GSH levels measured in the rat at 1 minute following an oral 

VCD dose (Chapter 5; 70.5% reduction of controls). Although GSH content in possum liver cells was 

also reduced following incubation with VCD, this occurred at a slower rate compared with rats. These 

results support the hypothesis that possums have a higher capacity for detoxifying xenobiotics, such as 
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VCD, compared with rats. From this it can be presumed that, even if sufficient quantities of VCD were 

able to avoid degradation by the high stomach acidity of possums, the increased hepatic metabolism of 

VCD would likely negate any potential effects on fertility.  

CYP450 levels were reduced in both possum and rat liver microsomes following 2 hours of incubation 

with VCD’s parent compound, VCH. Treatment with VCH has been shown to induce hepatic CYP450 

levels in mice (Doerr-Stevens et al., 1999; Fontaine et al., 2001a; Fontaine et al., 2001b). However, 

these studies measured CYP450 induction following 10 days of daily intraperitoneal (i.p.) injections 

with VCH (7.5 mmol/kg/day) and therefore the increase in CYP450 levels over a long period of time 

is not surprising. Smith et al. (1990b) reported reduced hepatic CYP450 content levels 1 hour 

following an i.p. dose of VCH. However, the CYP450 inhibitor, chloramphenicol, was utilized as a 

pre-treatment and therefore CYP450 reductions were likely a direct result of chloramphenicol. The 

effect of VCH on CYP450 content without the use of a chloramphenicol pre-treatment was not 

examined (Smith et al., 1990b).    

To my knowledge, examination of the short-term effect (<1 day) of VCH on hepatic CYP450 levels 

has not been examined in vivo nor in vitro. It is difficult to determine if the results presented here 

would be a true reflection of the short-term effects of VCH on CYP450 levels experiences in vivo. 

However, studies examining the short-term effects of various other xenobiotics have reported reduced 

or inhibited activity levels of CYP450 from 1 to 24 hours following treatment (Gueguen et al., 2006; 

Vuppugalla and Mehvar, 2004). It should be noted that the pilot in vitro study presented here did not 

utilize an NADPH regenerating system. Therefore, similar to the GSH studies, it is possible that the 

reduction in CYP450 reflected loss of NADPH over time and thus a suspension of CYP450 activity 

(Vernieulcn, 1996). However, the methods utilized to measure CYP450 did not require an NADPH 

regeneration system on a short-term time scale (Choi et al., 2003). Therefore, the change in CYP450 

level from 0 to approximately 15 minutes is likely to be a true reflection of VCH’s effects, whereas 

any interpretation of data past 15 minutes should be made with caution.    

Indications for species differences in CYP450 content and response to VCH treatment were noted. The 

reduced levels of CYP450 content in untreated (control) microsomes of rats compared with possums 

suggest that possums may have a higher capacity for Phase I metabolism. This is further supported by 

species differences in the pattern of CYP450 reduction following VCH treatment. CYP450 levels in 

rat hepatic microsomes were rapidly decreased within 3 minutes following the addition of VCH and 

remained depressed until 120 minutes. On the other hand, possum CYP450 levels did not begin to 

drop until approximately 15 to 30 minutes after the addition of VCH. The delay in possum CYP450 

reduction may have been partly due to the higher CYP450 content of their microsome levels prior to 

trial start compared with rats. Nevertheless, the delay in VCH-induced CYP450 reduction observed in 

possums suggests that rat’s capacity for metabolizing VCH may not be as robust as possums. These 

data reflect and are supported by the between-species differences observed in the GSH data previously 

discussed here.    
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The potential differences between possums and rats in VCH and VCD metabolism may reflect similar 

differences to those previously reported between mice and rats (Keller et al., 1997; Smith et al., 1990a; 

Smith et al., 1990b). Mice have an increased capacity for VCH metabolism yet they are more 

susceptible to VCD treatment due to reduced hepatic and ovarian GSH and epoxide hydrolase activity 

compared with rats (Salyers, 1995; Smith et al., 1990a). These species similarities between possums 

and mice suggest that possums may respond to in vivo VCH treatment in a similar fashion to that of 

mice. Further speculation on these species similarities would indicate that possums should be 

susceptible to VCD-induced effects. Yet, results presented in Chapters 4 and 5 showed that a VCD 

gavage dose which induces follicle loss in rodents (500 – 750 mg/kg/day) (Burd, 2009; Herawati et al., 

2010), when administered to possums, had no effect on the immature follicle populations of possums 

nor did it induce hepatic or ovarian GSH changes. The GSH data presented here clarify these results 

and support the hypothesis that possums have a higher capacity for Phase I and II metabolism than 

rats.  

In preparation for the CYP450 and GSH experiments, the aim was to create negative control and 

negative VCD-treated samples by submerging the S9 liver fractions in boiling water for 10 minutes. 

Although this was successful for the CYP450 enzyme experiment, the GSH data suggest otherwise. 

GSH levels in heat-shocked samples were similar to live, nonheat-shocked samples indicating that this 

method was not successful and may have been inappropriate for the inactivation of GSH. GSH, a 

tripeptide, plays a vital role in cellular protection from environmental insults including toxic 

chemicals, ionizing radiation, and heat (Arrick and Nathan, 1984). Cellular thermotolerance can be 

achieved short-term (<1 hour) through the action of heat-shock proteins and their facilitation of the 

GSH-redox cycle (Baek et al., 2000; Kregel, 2002). Intracellular GSH levels will increase in response 

to temperatures of 43 to 45.5°C for up to 1 hour with reversal effects occurring past 1 hour (Mitchell et 

al., 1983; Russo et al., 1984). In the study reported here, the boiling temperature reached 100 ± 5 °C 

and coagulation of denatured proteins was visualized. It is difficult to imagine that intracellular GSH 

would survive for 10 minutes at such an extreme temperature yet GSH levels in the heat-shocked 

samples indicate activity was still present. Regardless, VCD treatment seems to have amplified the 

reduction of GSH levels in heat-shocked possum and rat samples to some degree. Future work should 

utilize a GSH inhibitor for a true reflection of negative control and treated samples.  

The findings presented here support the previous results and hypotheses presented in Chapter 5. The 

rapid hydrolysis of VCD in the presences of varying acidity levels was described. The greater ability 

of possum stomach contents to retain and thus inadvertently protect VCD from acid degradation 

compared with rats provides some explanation for why possums may be less susceptible to VCD 

ovarian toxicity. Evidence for the proposed increased capacity of possum liver tissue to detoxify VCD 

compared with rats’ livers presented here is corroborated by the similar effect of VCH on CYP450 

concentrations in each species. Initial considerations of these data suggest that VCD may not be a 

suitable agent for fertility control in possums. However, a full summation of these findings and those 
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presented in Chapters 4 and 5 plus their implications for VCD’s use in possums and rats will be 

provided in the General Discussion (Chapter 8).  
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Chapter 7 

Examination of a novel rodent fertility control bait, ContraPest®: 

palatability, acceptance and health and reproduction effects in wild-

caught female Norway rats 

 Introduction  7.1

The studies reported here examined the intake and palatability of ContraPest
®
 in wild-caught female 

Norway rats (Rattus norvegicus) and its effects on the health and ovarian follicle populations of 

treated animals. ContraPest
®
 bait has been developed by researchers at SenesTech, Inc

®
 (Flagstaff, 

Arizona, USA) for control of rodent pest populations. The current formulation contains the orally 

active ingredients, 4-vinylcyclohexene diepoxide (VCD), an industrial chemical, and triptolide (TR), a 

plant extract from the thunder god vine (Tripterygium wilfordii). Extensive toxicological studies have 

demonstrated the efficacy of VCD at reducing the pool of primordial and small primary ovarian 

follicles in mice and rats while not directly affecting numbers of preantral and antral follicles 

(Danilovich and Sairam, 2006; Hoyer et al., 2001; Mayer et al., 2004; Mayer et al., 2002). In addition, 

it has been demonstrated that orally-delivered VCD is effective at reducing the immature ovarian 

follicle pool of laboratory bred Norway rats (Burd, 2009; Mayer et al., 2010; Schmuki et al., 2011) and 

their in utero exposed offspring (Burd, 2009) as well as immature follicle numbers in wild-caught 

ricefield rats (R. argentiventer) (Herawati et al., 2010). TR, on the other hand, targets the pool of 

larger developing follicles, specifically the secondary follicle population, by reducing the number of 

developing follicles and increasing the number of atretic follicles (Liu et al., 2011; Xu and Zhao, 

2010). In addition, treatment with TR has been shown to reduce circulating oestrogen and 

progesterone (P4) levels, increase circulating levels of follicle stimulating hormone (FSH) and 

luteinizing hormone (LH), and to cause prolonged oestrous cycles in laboratory-bred rodents (Liu et 

al., 2011; Xu and Zhao, 2010).  

Preliminary results have demonstrated that ContraPest
®
 is effective in reducing the primordial, 

primary and secondary ovarian follicle populations of adult female Sprague Dawley (SD) rats 

following 15 days of bait consumption (Dyer et al., 2013). Investigation of the long-term fertility 

effects in female SD rats following ContraPest
®
 consumption is underway (Drs. L.P. Mayer and C. A. 

Dyer, personal comm.). In an effort to determine if similar effects can be achieved in wild rodents, 

researchers at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in 

Australia have examined the effects of ContraPest
®
 consumption in wild house mice (M. domesticus). 

Initial findings revealed high palatability and acceptance rates and up to 50% depletion of primordial 
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follicles in mice presented with control emulsion or ContraPest
® 

emulsion (Dr. L.A. Hinds, 

unpublished).  

To date, no work has been undertaken examining the effectiveness of ContraPest
®
 as a chemosterilant 

in wild Norway rats. The studies described in this chapter were designed to examine if consumption of 

ContraPest
®
 by wild-caught female Norway rats would achieve similar findings to those reported for 

the laboratory strain of Norway rats and for wild mice. In the first study a liquid ContraPest
®
 emulsion 

was tested in wild type Norway rats to determine: 1) effects on general health and food and water 

consumption, 2) palatability, and 3) the effectiveness of pre-baiting with control (non-active) emulsion 

on acceptance of the active formulation. The second study tested the addition of a sweetener, sodium 

saccharine, to the liquid formulation of ContraPest
®
 and examined the effects on: 1) emulsion 

acceptance rates, 2) effects on general health and food and water consumption, and 3) effects on 

ovarian follicular populations.   

 Materials and Methods 7.2

7.2.1 Reagents 

VCD, cyclohexanone, Attane™ isoflurane, and sodium pentobarbital were obtained from vendors and 

used for experimental procedures as previously described in Chapter 3. Control emulsion and 

ContraPest
®
 emulsion was developed and provided by SenesTech Inc

® 
(Flagstaff, AZ, USA). The 

proprietary formulation was a mixture of food grade, generally regarded as safe (GRAS) emulsifier, 

soy bean oil (80%), laboratory grade water (20%) with different concentrations of microencapsulated 

VCD and TR. Saccharin was used as an emulsion sweetener for Study 2 (Necta Sweet, NSI 

Sweeteners Inc, Lincolnshire, IL, USA).      

7.2.2 Gas chromatography analysis of VCD concentration contained within 
ContraPest® emulsion  

Two batches of emulsion were prepared by SenesTech Inc
®
 in Flagstaff, Arizona for use during the 

studies and air transported to New Zealand by courier. Study 1 used emulsion from batch 1 while 

Study 2 used emulsion from batch 2. The effect of international transportation time and temperature on 

VCD stability within the ContraPest
®
 emulsion was examined within 4 ± 2 days of emulsion arrival 

using gas chromatography (GC). It must be noted that TR concentration analysis was not performed 

after arrival in NZ as the addition of this active compound was decided shortly before the emulsion 

was prepared and no suitable method for quantifying TR was available.  

For each batch, two 1.0 mL aliquots were collected into glass scintillation vials upon arrival and 

following each trial completion (± 3 days). VCD was extracted from the emulsion by the addition of 

three times the sample volume of extraction solution (ES; ethyl acetate containing 1.18 mM 

cyclohexanone as the internal standard). Extraction methods and VCD quantification on GC were 

performed as outlined in Chapter 3. To determine VCD extraction efficiency from the emulsion 
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matrix, three equal aliquots of control emulsion were spiked with 1.0 mg VCD/mL (7.134 mM). The 

samples were vortex mixed and then VCD was extracted as previously described. VCD extraction 

efficiency from VCD-spiked control emulsion was 36.9 %. Therefore, VCD concentrations in 

ContraPest
®
 emulsions were estimated by dividing the measured concentration of VCD by the 

emulsion extraction efficiency, 0.369 ± 0.03.   

7.2.3 Temperature stability analysis of VCD contained within the ContraPest® 
emulsion  

The stability of VCD contained within the ContraPest
®
 emulsion at different temperatures was 

examined to determine if temperature and time affect VCD concentration. VCD concentrations in 

batches were measured by colourimetric analysis in Arizona prior to being transported.  Upon arrival, 

control and ContraPest
®
 emulsion was stored at 4°C until use. Emulsion was prepared for the 

temperature stability experiment by collecting three 5.0 mL aliquots of control emulsion or 

ContraPest
®
 emulsion and treated as follows: 1) control emulsion (no VCD added); 2) control 

emulsion spiked with 0.913 mM VCD; or 3) ContraPest
®
 emulsion. Samples were stored at 4, 21 or 

37°C and, on days 0, 1, 3, 6, and 20, two 0.5 mL samples were collected from each treatment vial and 

VCD extracted and quantified on GC as previously described in Chapter 3. VCD extraction efficiency 

from VCD-spiked control emulsion was 39.8 %. Therefore, VCD concentrations in ContraPest
®
 

emulsions were estimated by dividing the measured concentration of VCD by the emulsion extraction 

efficiency, 0.398.   

7.2.4 Study 1 

At the beginning of the study water and pellet consumption and live weight (LW) were monitored 

daily for 6 days to determine normal reference ranges for each animal. Rats often display neophobic 

behaviour (avoidance of novel stimuli) (Barnett, 1958; Mitchell, 1976). Therefore, to reduce any 

potential influence of neophobia, a 50 mL glass beaker, intended to hold the emulsion during the trial, 

was placed into a wire rack in the corner of each cage (Figure 7.1A). On a daily basis, fresh water was 

added to the glass beaker to allow animals to acclimate to consuming from the beaker. Animals were 

then randomly allocated into two groups (G) using a randomized block design stratified by LW during 

the monitoring phase. In the first treatment phase (P1; choice trial) animals were offered either control 

(group 1, phase 1; G1P1; n = 4) or ContraPest
®
 emulsion (group 2, phase 1; G2P1; n = 6) at a rate of 

5-10% LW for 6 nights (Figure 7.2). The concentration of the active ingredients within the 

ContraPest
®
 emulsion was 2.96 mM (8.3 mg/kg LW) for VCD and 5.55 µM for TR (100 µg/kg). LW 

and consumption of pellets, water and control and ContraPest
®
 emulsion were measured and recorded 

each day. Palatability of control and ContraPest
®
 emulsion was determined with the following 

formula: (emulsion consumption weight) / [(pellet consumption weight) + (emulsion consumption 

weight)]. Beakers were cleaned and refilled with fresh emulsion each day. To determine evaporation 

rates, 3 water containers and 3 beakers containing control or ContraPest
®
 emulsion were placed evenly 
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throughout the room and replaced as necessary. Evaporation rates for water and control and 

ContraPest
®
 emulsion were recorded and subtracted from their corresponding daily consumption rates 

each day. The presence of faeces within the emulsion or signs of emulsion being spilt were recorded. 

These aberrations were often accompanied by consumption measurements registering above 0.5 g 

when it was believed that the animal did not consume any emulsion. Based on these observations, it 

was decided that if an animal’s consumption rate was below <0.6% mg emulsion/g LW/day, then 

consumption would be registered as zero. Percentage LW rates of water and pellet consumption were 

determined by dividing the consumed weight (g) by the animal’s LW (g) and multiplying by 100. 

In the second phase (P2) to determine if pre-feeding with control emulsion would increase subsequent 

acceptance of the active ContraPest
® 

emulsion formulation, the animals which were previously fed 

with control emulsion (G1P1) were switched to pellets plus ContraPest
®
 emulsion for 6 nights (G1P2) 

(Figure 7.2). Emulsion storage conditions, the amount of emulsion provided, evaporation rate 

measurements and the consumption of pellets, water, and emulsion were collected and consumption 

rates calculated as stated for P1. 

To examine the acceptance rate of ContraPest
®
 emulsion when offered as the only source of food 

animals which were provided with ContraPest
®
 emulsion in the first phase (G2P1) were placed into a 

no choice trial (phase 2, G2P2; Figure 7.2). During the no choice trial, pellets were removed and only 

ContraPest
®
 emulsion and water were provided. Before treatment started an end point for the no 

choice trial was put in place wherein the trial would be stopped, emulsion removed and pellets 

replaced if animals experienced significant LW loss (>10 %) since trial start. Following the no choice 

trial (P2) animals were rested for 24 hours prior to the commencement of phase 3. 

In the third phase (P3) to examine whether exposure to ContraPest
®
 would influence palatability of the 

non-active control emulsion (i.e. cause aversion), G2 animals were offered control emulsion and 

pellets for 3 nights (G2P3) (Figure 7.2). Emulsion storage conditions, the amount of emulsion 

provided, evaporation rate measurements and the consumption of pellets, water, and emulsion were 

collected and consumption rates calculated for P2 and P3 as stated for P1. 
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Figure 7.1 Representative images of cage set up during the monitoring phase (A) and treatment 
phases (B). During the monitoring phase, water was provided in the glass beaker 
which was intended to contain the emulsions during treatment. When treatment 
began, the water glass was replaced so that control and active emulsions could be 
provided in the glass beaker.   

 

A 

B 
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Figure 7.2 Study 1 trial design for Group 1 and 2. 

 

7.2.5 Study 2 

A new formulation of ContraPest
®
 emulsion containing an artificial sweetener (ContraPest

®
-S), 

saccharin (1.94 mg/mL), was examined for its effects on palatability, animal health and immature 

ovarian follicle populations. One week prior to trial start a 50 mL glass beaker was placed into each 

animal’s cage and fresh water added daily as outlined in Study 1 (Figure 7.1A). At trial start water and 

pellet consumption and LW were monitored daily for 4 days to determine normal reference ranges for 

each animal (Figure 7.3). In addition, all animals were pre-fed with control emulsion at a rate of 5-

10% LW for 4 days. Animals were then randomly allocated into treatment groups using a randomized 

block design stratified by LW during the pre-feeding phase. Animals were provided with pellets plus 

control or ContraPest
®
-S emulsion at a rate of 5-10% LW for 15 days in 2 blocks with 7 rest days 

between treatment phases (7-8 days per phase; Figure 7.3). The concentration of the active ingredients 

within the ContraPest®-S emulsion was 4.68 mM (13.1 mg/kg LW) for VCD and 11.0 µM for TR 

(200 µg/kg). Emulsion storage conditions, the amount of emulsion provided, evaporation rate 

measurements and the consumption of pellets, water, and emulsion were collected and consumption 

rates calculated as stated for Study 1. Animals were euthanized 3 days post-treatment with an 

intracardiac injection of pentobarbitone (125 mg/kg). The liver, kidneys, adrenal glands, uterus, and 

ovaries were excised, trimmed of fat, weighed, examined for gross pathology and then fixed in 10% 
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neutral-buffered formalin for histological purposes. The eyes were removed and treated as outlined 

below for age analysis.  

 

 

Figure 7.3 Study 2 trial design. 

 

7.2.6 Rodent aging  

Animal age was determined using methods described by Hardy, Quy and Huson (1983) with some 

modifications. Eye balls were fixed in 10% neutral-buffered formalin for 4 weeks. Eye balls were then 

slit open and the lenses removed by applying light pressure. Lenses were individually stored in open-

topped Eppendorf tubes and air dried for 67 hours at 80 ± 1 °C. Lenses were weighed and then 

reweighed at 115 hours to verify stability of lens weights. To minimize atmospheric moisture 

absorbance, lenses were removed from the oven individually immediately prior to being weighed. 

Animal age was determined using the following female-specific, species-specific correction formula: 

Y = (10
xm + b

) – 22 where Y: age in days, x: paired lens weight (mg), m: 0.021 (slope); b: 1.297 

(intercept); and 22 represents the average gestation length in days for R. norvegicus (Hardy et al., 

1983).  

7.2.7 Histology and follicle analysis 

Ovaries were trimmed of fat, weighed, prepared for histological examination, analysed and quantified 

as previously outlined in Chapter 3.  

7.2.8 Statistical analysis   

All general statistical procedures were run as previously outlined in Chapter 3. In addition, LW and 

water, pellet and emulsion consumption rates during treatment were analysed using a repeated 

measure test with animal identification as a random variable and treatment group defined by time as a 



 

 113 

covariant. Ovarian follicle estimates were tested for covariance with ovarian weight and animal age 

and normalized where appropriate. LW covariance was determined for all organ weights and data were 

normalized to LW where appropriate.   

 Results   7.3

7.3.1 Concentration analysis of ContraPest® emulsion 

Initial concentrations of VCD in each ContraPest
®
 emulsion were 57.6 mM (batch 1) and 50.3 mM 

(batch 2) (Table 7.1). On average, international transportation resulted in hydrolysis of 1.96 ± 0.3 mM 

VCD per day. At the end of each study, the concentration of VCD in batch 1 and 2 was estimated to be 

2.96 ± 0.06 and 4.68 ± 0.35 mM, respectively (Table 7.1). It should be noted that the methods used to 

quantify VCD pre-transportation (colorimetric analysis) differ from that of post-transportation (gas 

chromatography). Therefore, the differences in VCD concentrations between pre- and post-

transportation should be accepted with caution. To determine if VCD loss was a result of potential 

high temperatures during shipment or natural hydrolysis within the emulsion matrix, the VCD 

concentration in unopened bottles (batch 2; stored at 4°C) was measured at 11 and 47 days post-

emulsion creation. VCD hydrolysis in VCD-spiked control emulsion and ContraPest
® 

emulsion during 

storage at the research facility (4ºC) occurred at a rate of 0.13 ± 0.07 and 0.05 ± 0.03mM/day, 

respectively.   

 

Table 7.1 The concentration of VCD contained within ContraPest® emulsion batches 1 and 2 prior to 
international transport and following trial end. Initial VCD concentrations were 
measured by colorimetric analysis. Final VCD concentrations were measured by gas 
chromatography. Data are means ± SEM. 

Batch 
number 

Initial 
concentration 
of VCD (mM) 

Final 
concentration 
of VCD (mM) 

Percentage of 
VCD loss due to 

international 
transport, 

storage and time 

Time from 
emulsion 

production 
(AZ) to arrival 

(NZ) (days) 

Time from trial 
start to final 

VCD 
measurement 

(days) 

Batch 1 57.6 2.96 ± 0.06 94.9 % 15 14 
Batch 2 50.25 4.68 ± 0.35 90.7 % 7 28 

 

7.3.2 Temperature stability analysis of ContraPest® emulsion 

To further understand the rate of natural hydrolysis and the effect of temperature on VCD contained 

within ContraPest
®
 emulsion, a temperature stability study was performed. When stored at 4°C, the 

VCD concentration in VCD-spike control emulsion and ContraPest
®
 emulsion was not affected by 

time or temperature. In fact, the VCD concentration in both emulsions increased slightly from day 1 to 

day 20 which was likely due to evaporation (p < 0.001; Figures 7.4 and 7.5). Storage of emulsions at 

21°C caused VCD concentrations to decline steadily from 3 – 20 days and this effect was emphasised 
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when emulsions were stored at 37°C (p < 0.0001; Figures 7.4 and 7.5). VCD loss per day in VCD-

spike control emulsion and ContraPest
®
 emulsion was 0.04 and 0.17 mM/day, respectively, when 

stored at 21°C and 0.05 and 0.22 mM/day, respectively, when stored at 37°C. 

 

 

Figure 7.4 The effect of time and temperature on VCD hydrolysis within control emulsion spiked 
with 0.913 mM VCD. Replicates at each time point were analysed in triplicate on gas 
chromatography. Values with different letters are significantly different (p <0.05). 
Vertical bars represent ± SEM. 
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Figure 7.5 The effect of time and temperature on VCD hydrolysis within ContraPest® emulsion 
(batch 2). Replicates at each time point were analysed in triplicate on gas 
chromatography. Values with different letters are significantly different (p <0.05). 
Vertical bars represent ± SEM. 

 

7.3.3 Study 1   

Choice study (Group 1 and 2, phase 1) 

During the monitoring phase, there were no significant differences between groups in percentage 

weight gain or water and pellet consumption (p > 0.364; Figures 7.6 - 7.8). When these parameters 

were compared between the monitoring phase and phase 1 (P1), there was no change in the mean LW 

of each group (p > 0.295; Figure 7.8). Animals offered control emulsion (G1) consumed less water (p 

< 0.012; Figure 7.6A) and pellets (p < 0.037; Figure 7.7A) on average compared with their 

consumption levels measured during the monitoring phase. Animals offered ContraPest
®
 emulsion 

(G2) consumed the same amount of pellets (p > 0.667; Figure 7.6B) but significantly more water (p < 

0.014; Figure 7.7B) during P1 than during the monitor phase. During treatment, G2 animals consumed 
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more pellets (p < 0.017; Figure 7.7) and gained more weight (p < 0.014; Figure 7.8) than G1 control 

animals.  

The ContraPest
®
 emulsion consumption rate of G2 animals was significantly reduced compared with 

G1 consumption of control emulsion throughout P1 (p < 0.0001, Figure 7.9 and Table 7.2). All G1 

animals consumed control emulsion on a regular basis (Table 7.3). However, of the G2 animals, 3 rats 

did not consume ContraPest
®
 emulsion while the other 3 consistently consumed throughout P1 (Table 

7.3).  

 

 

 

Figure 7.6 Water consumption in wild-caught female rats during Study 1 for group 1 (A; n = 4) and 
group 2 (B; n = 6). Values with different letters are significantly different (p < 0.05). 
Vertical bars represent ± SEM. 
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Figure 7.7 Pellet consumption in wild-caught female rats during Study 1 for group 1 (A; n = 4) and 
group 2 (B; n = 6). Values with different letters are significantly different (p < 0.05). 
Vertical bars represent ± SEM. 
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Figure 7.8 Percentage live weight change in wild-caught female rats during Study 1 for group 1 (A; n 
= 4) and group 2 (B; n = 6). Values with different letters are significantly different (p < 
0.05). Vertical bars represent ± SEM. 
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Figure 7.9 Emulsion consumption in wild-caught female rats during Study 1 for group 1 (A; n = 4) 
and group 2 (B; n = 6). Values with different letters are significantly different (p < 
0.05). Vertical bars represent ± SEM. 
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Table 7.2 Consumption parameters for control and ContraPest® emulsion for group 1 (G1, n = 4) and group 2 (G2; n = 6) rats during Study 1 and control-treated 
(C; n = 8) and ContraPest®-treated (CP; n = 9) rats during Study 2. Statistical significance was set at p < 0.05. LW: live weight. For each measured 
parameter, values with different letters are different (p <0.05). Data are means ± SEM. 

Measurement 
Parameter 

Study 1 Study 2 

Phase 1 Phase 2 Phase 3 Monitoring Phase Treatment Phase 
G1 G2 G1 G2 G2 C CP C CP 

Emulsion provided 
Control + 

pellets 

ContraPest® 

(batch 1) + 
pellets 

ContraPest® 
(batch 1) + 

pellets 

ContraPest® only    
(batch 1) 

Control + 
pellets 

Control + 
pellets 

Control + 
pellets 

Control + 
pellets 

ContraPest® 
(batch 2) + 

pellets 
VCD concentration 

(mM) in ContraPest® 
N/A 2.96 ± 0.1 2.96 ± 0.1 2.96 ± 0.1 N/A N/A N/A N/A 4.68 ± 0.7 

VCD consumption 
(mg/kg LW/day) 

N/A A3.68 ± 0.95 B20.0 ± 5.0 B15.7 ± 4.1 N/A N/A N/A N/A B14.7 ± 1.2 

TR consumption 
(µg/kg LW/day) 

N/A A17.8 ± 4.6 B96.3 ± 24.1 B75.6 ± 19.8 N/A N/A N/A N/A B88.6 ± 7.0 

Emulsion intake 
(mg/g LW/day) 

AB68.6 ± 
6.7 

E8.9 ± 2.3 C33.3 ± 3.4 C37.8 ± 9.9 
C45.4 ± 

9.2 

A73.3 ± 
6.4 

A72.4 ± 
5.3 

B58.5 ± 
1.9 

D22.4 ± 1.8 

Emulsion palatability 
AEF0.58 ± 

0.03 
B0.08 ± 0.02 CD0.36 ± 0.03 N/A 

D0.32 ± 
0.06 

EF0.59 ± 
0.03 

E0.64 ± 
0.03 

F0.58 ± 
0.01 

G0.25 ± 0.02 

1
20 



 

 121 

Effect of pre-feeding with control emulsion (Group 1, phase 2) 

During P2, G1 animals previously offered control emulsion were offered ContraPest
®
 emulsion to 

determine the effects of pre-feeding on palatability. Animals consumed significantly less ContraPest
®
 

emulsion during P2 compared with control emulsion consumed during P1 (p < 0.0001; Figure 7.9A 

and Table 7.2). Of the four rats, 2 rats consumed ContraPest
®
 emulsion at a similar rate as measured 

during P1 (Table 7.3). However, the other 2 rats’ consumption of ContraPest
®
 emulsion was decreased 

compared with P1. G1 rats consumed significantly more ContraPest
®
 emulsion (p < 0.0001) during P2 

compared with G2 rats consumption during P1 (Figure 7.9 and Table 7.2).   

The amount of VCD consumed by G1 animals during P2 was compared with previous reports 

demonstrating VCD-induced ovarian primordial follicle reduction with oral gavage. G1’s mean 

consumption of VCD during P2 (20.0 ± 5.0 mg VCD/kg LW/day) was 96.0 % lower than the amount 

of VCD that would be delivered through via oral gavage (500 mg VCD/kg LW/day) (Table 7.2). 

Similarly, TR consumption by G1 rats during P2 was compared with previous reports demonstrating 

TR-induced ovarian follicle effects through oral gavage. G1 rats’ mean consumption of TR during P2 

(96.3 ± 24.1 µg TR/kg LW/day) was only 3.8 % lower than the amount of TR that would be delivered 

through an oral gavage route (100 µg TR/kg LW/day) (Table 7.2).  

There were no changes in G1 LW (p > 0.955) or pellet (p > 0.273) and water consumption (p > 0.113) 

between P1 and P2 (Figures 7.3A – 7.5A). When P2 parameters were compared against the monitoring 

phase, there were no changes in G1 LW (p > 0.435, Figure 7.5A). However, G1 water (p < 0.006; 

Figure 7.6A) and pellet (p < 0.043; Figure 7.7A) consumption were significantly lower during P2.    

No choice study (Group 2, phase 2) 

G2 animals previously offered ContraPest
®
 emulsion for 6 days (P1) were placed into a no choice trial 

for 48 hours (P2) to measure the acceptance rate of the ContraPest
®
 emulsion. When given no other 

food option, G2 animals consumed more water (p < 0.008; Figure 7.6B) and ContraPest
®
 emulsion (p 

< 0.006; Figure 7.9B and Table 7.2) during P2 compared with P1. However, G2 animals lost a 

significant amount of LW (-9.1 ± 0.58 %; p < 0.008; Figure 7.8B) and therefore the no choice 

treatment was stopped after 48 hours due to animal welfare concerns.  

Choice trial (Group 2, phase 3) 

Following a 24 hour rest period, G2 animals were moved into the third trial phase (P3) wherein they 

were offered control emulsion (3 days) for an intake comparison with ContraPest
® 

emulsion. G2 

animals consumed significantly more control emulsion during P3 than ContraPest
®
 emulsion during 

P1 (p < 0.05; Figure 7.9B and Table 7.2). In contrast, there were no differences between control 

emulsion consumed during P3 and ContraPest
® 

emulsion consumed during P2 (p > 0.073).  

To determine if control emulsion consumption rates during P3 were affected by the previous exposure 

to ContraPest
® 

emulsion during P1 and P2, a comparison was made between G2P3 and G1P1 control 

emulsion consumption rates. G2 animals consumed less control emulsion during P3 compared with 
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that of G1 animals during P1, although this was not significant (p > 0.073; Figure 7.9 and Table 7.2). 

Of the G2 rats, the 2 which did not consume ContraPest
® 

emulsion during P1 again did not consume 

control emulsion during P3 (Table 7.4). 

 There were no changes in G2 water (p > 0.088; Figure 7.6B) or pellet (p > 0.975; Figure 7.7B) 

consumption between P1 and P3. However, G2 water consumption dropped significantly during P3 

compared with P2 (p < 0.023). G2 mean LW dropped significantly during P2 (p < 0.002) and, 

although it recovered slowly during P3, it was still significantly lower (p < 0.042) compared with P1 

(Figure 7.8B).  

 

Table 7.3 Consumption parameters of control or ContraPest® for individual animals in group 1 
during phase 1 and 2 (Study 1). Data are means ± SEM. 

Treatment phase Rat A Rat B Rat C Rat D 

Phase 1           
(6 days) 

Emulsion consumption           
(mg emulsion/g LW/day) 

39.1 ± 6.8 72.8 ± 10.9 108.4 ± 9.5 54.0 ± 5.6 

Percentage emulsion intake 
relative to LW 

3.9 ± 0.7 % 7.3 ± 1.1 % 10.8 ± 1.0 % 5.4 ± 0.6 % 

Phase 2          
(6 days) 

Emulsion consumption           
(mg emulsion/g LW/day) 

38.0 ± 4.7 45.0 ± 5.3 30.7 ± 8.6 19.4 ± 4.4 

Percentage emulsion intake 
relative to LW 

3.8 ± 0.5 % 4.5 ± 0.5 % 3.1 ± 0.9 % 1.9 ± 0.4 % 

 

Table 7.4 Consumption parameters of control or ContraPest® for individual animals in group 2 
during phase 1, 2 and 3 (Study 1). Data are means ± SEM. 

Treatment phase Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 Rat 6 

Phase 1   
(6 days) 

Emulsion consumption           
(mg emulsion/g LW/day) 

22.1 ± 
8.3 

0.5 ± 
1.2 

0.1 ± 
0.6 

0.0 ±  
0.7 

9.4 ±  
2.6 

22.1 ±  
4.8 

Percentage emulsion intake 
relative to LW 

2.2 ± 
0.8% 

0.0 ±  
0.1 % 

0.0 ±  
0.1 % 

-0.1 ±  
0.1 % 

0.9 ±  
0.3 % 

2.22 ±  
0.5 % 

Phase 2   
(2 days) 

Emulsion consumption           
(mg emulsion/g LW/day) 

23.9 ± 
1.4 

42.0 ± 
41.0 

40.0 ± 
38.6 

43.6 ±  
43.6 

43.4 ±  
32.7 

33.9 ±  
7.0 

Percentage emulsion intake 
relative to LW 

2.4 ±  
0.1 % 

4.2 ±  
4.1 % 

4.0 ±  
3.9 % 

4.4 ±  
4.4 % 

4.3 ±  
3.3 % 

3.4 ±  
0.7 % 

Phase 3   
(3 days) 

Emulsion consumption           
(mg emulsion/g LW/day) 

84.0 ± 
15.9 

2.2 ± 
0.6 

30.6 ±  
9.9 

0.2 ±  
0.4 

78.0 ±  
10.2 

77.5 ±  
4.2 

Percentage emulsion intake 
relative to LW 

8.4 ±  
1.6 % 

0.2 ±  
0.1 % 

3.1 ±  
1.0 % 

0.0 ±  
0.0 % 

7.8 ±  
1.0 % 

7.8 ±  
0.4 % 
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7.3.4 Study 2 

Treatment parameters  

ContraPest
®
 emulsion containing the artificial sweetener (ContraPest

®
-S), saccharin, was examined for 

its effects on palatability, animal health and immature ovarian follicle populations. To determine if 

there were any changes between the monitoring/pre-feed phase and treatment phase, LW and 

consumption of pellets and water were compared within each group. LW change and consumption of 

water, pellets and control emulsion of the controls were unaltered between the phases (p > 0.104; 

Figures 7.10 - 7.13). Similarly, the percentage LW gain of the ContraPest
®
-S group during treatment 

did not differ between phases (p > 0.436; Figure 7.13). However, the ContraPest
®
-S

 
group consumed 

more water and pellets during treatment compared with the pre-feeding phase (p < 0.001) and when 

compared with controls during treatment (p < 0.001; Figures 7.11 and 7.12). Throughout the trial all 

animals gained weight, regardless of treatment (p < 0.001; Figure 7.13).  

Animals were pre-fed with control emulsion for 4 days to optimize the acceptance of ContraPest
®
-S 

emulsion. During the 4 day pre-feed phase, both groups consumed an average of 72.9 ± 4.1 % of the 

total amount of control emulsion offered (Figure 7.10 and Table 7.2). When switched to ContraPest
®
-S 

emulsion, consumption rates fell by 69.1% during the 15 day treatment period (p < 0.0001; Figure 

7.10 and Table 7.2). Interestingly, consumption of control emulsion during treatment also fell by 

20.2% (p < 0.033; Table 7.2). The minimum and maximum consumption of control emulsion during 

treatment was 50.3 ± 3.96 and 73.5 ± 6.81 mg/g LW/day, respectively. The minimum and maximum 

consumption of ContraPest
®
-S emulsion was 1.75 ± 0.61 and 57.3 ± 4.36 mg/g LW/day, respectively. 

Of the 9 rats offered ContraPest
®
-S emulsion, 2 consumed <0.6% g emulsion/g LW, 3 consumed 0.6 – 

2.0% g emulsion/g LW, and the remaining 4 consumed 3.2 – 3.5% g emulsion/g LW.  

The amount of VCD consumed during Study 2 was compared with previous reports demonstrating 

VCD-induced ovarian primordial follicle reduction through oral gavage. The amount of VCD 

consumed during the trial (14.7 ± 1.2 mg VCD/kg LW/day) was 97.1% lower than the amount of VCD 

that would be delivered through an oral gavage route (500 mg VCD/kg LW/day). This figure was 

minimally affected when the animals which did not consume ContraPest
®
-S emulsion on a regular 

basis (<0.6% g emulsion/g LW) were removed from the data set (23.3 ± 4.1 mg VCD/kg LW/day; 

95.3% decrease).   

Similarly, the amount of TR consumed during Study 2 was compared with previous reports 

demonstrating TR-induced ovarian follicle effects through oral gavage. The mean consumption of TR 

during the trial (88.6 ± 7.0 µg TR/kg LW/day) was 11% lower than the amount of TR that would be 

delivered through an oral gavage route (100 µg TR/kg LW/day). When the animals which did not 

consume ContraPest
®
-S emulsion on a regular basis were removed from the data set, TR consumption 

(140.8.0 ± 24.5 µg TR/kg LW/day) was 40.9% higher than that of an oral TR dose.  
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Dietary choices in rats are often influenced by social interactions and with age and experience, animals 

learn avoidance of and preferences for certain food items (Galef and Clark, 1971). Therefore, animal 

age and consumption rates of control or ContraPest
®
-S emulsion were examined for correlations. 

There were no age correlations indicated in animals consuming control emulsion (p > 0.790; Figure 

7.14). Conversely, there was a positive correlation for age and ContraPest
®
-S emulsion consumption 

(p < 0.032; Figure 7.14).  

 

 

Figure 7.10 Emulsion consumption rates in wild-caught female rats during Study 2 (control, n = 8; 
ContraPest®-S, n = 9). * indicates different (p <0.05) from control. Vertical bars 
represent ± SEM. 
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Figure 7.11 Water consumption rates in wild-caught female rats during Study 2 (control, n = 8; 
ContraPest®-S, n = 9). * indicates different (p <0.05) from control. Vertical bars 
represent ± SEM. 
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Figure 7.12 Pellet consumption rates in wild-caught female rats during Study 2 (control, n = 8; 
ContraPest®-S, n = 9). * indicates different (p < 0.05) from control. Vertical bars 
represent ± SEM. 
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Figure 7.13 Percentage live weight change in wild-caught female rats during Study 2 (control, n = 8; 
ContraPest®-S, n = 9). Vertical bars represent ± SEM. 
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Figure 7.14 Emulsion consumption levels of wild-caught female rats during Study 2 graphed against 
animal age (months). Vertical and horizontal bars represent ± SEM. 

 

Comparisons of emulsion consumption between Study 1 and 2 

To determine if the addition of the sweetener saccharin would increase palatability, the consumption 

rates of sweetened control and ContraPest
®
-S emulsion during Study 2 was compared with 

consumption rates during Study 1. There were no differences in consumption of sweetened or 

unsweetened control emulsion (p > 0.601; Table 7.2). Pre-feeding with control emulsions resulted in 

greater intake of unsweetened ContraPest
®
 (Study 1, G1P2: 33.3 ± 4.1 mg/g LW/day) than that of 

ContraPest
®
-S emulsion (Study 2: 22.3 ± 1.72 mg/g LW/day) (p < 0.015; Table 7.2).       

Necropsy parameters 

There were no significant differences in post mortem LW or the weights of liver, paired kidneys, 

paired adrenal glands, uterine or paired ovaries between treatment groups (p > 0.2275; Table 7.5). In 

addition, there were no differences in age between treatment groups (p > 0.891; Table 7.5).  
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Table 7.5 Animal age, live weight (LW) and somatic and reproductive tissue weights in wild-caught 
female rats when offered control or ContraPest®-S emulsions daily for 15 days during 
Study 2. Somatic and reproductive tissues were normalized to final LW. Statistical 
significance was set at p < 0.05. Data are means ± SEM. 

 

Ovarian follicle estimates  

There was no correlation between age or ovarian weight with primordial, secondary and antral 

follicles (p > 0.132). However, age and CL counts were positively correlated (p < 0.001). Therefore, 

CL counts were normalized to age prior to examining for treatment effects by dividing the CL counts 

by animal age. Animals receiving ContraPest
®
-S emulsion had fewer primordial follicles (827.7 ± 

198.87) than controls (1312.0 ± 160.30); however this was not significant (p < 0.076; Figure 7.15). 

Because not all animals consumed ContraPest
®
-S emulsion (n = 2), primordial follicle counts were re-

examined in the rats which consumed emulsion on a regular basis (>0.6% g emulsion/g LW; n = 7). In 

this group, primordial follicle counts were significantly reduced in rats which consumed ContraPest
®
-

S emulsion (592.59 ± 131.76) when compared with controls (1307.53 ± 181.69; 54.7% reduction; p < 

0.009; Figure 7.15). Rats which did not consume ContraPest
®
-S emulsion were within the range of 

control animals (1650.48 ± 434.44). There were no significant differences in numbers of secondary (p 

> 0.683) and antral (p > 0.909) follicles or CL (p > 0.757) between treatment groups (Figures 7.16 and 

7.17). There was a trend for reduced secondary follicles in rats which consumed ContraPest
®
-S 

emulsion (10.29 ± 1.43) compared with controls (13.25 ± 1.30); however this was not significant (p > 

0.132, 22.4% reduction). Rats which did not consume ContraPest
®
-S emulsion were within the range 

of control animals (13.50 ± 0.5).  

 

Measured parameter 
Treatment group 

Control ContraPest® 
N 9 9 

Age at death (month) 7.11 ± 0.77 7.25 ± 0.71 
Final LW (g) 234.8 ± 17.6 257.6 ± 17.5 

Liver (mg/mg LW) 42.2 ± 1.4 43.4 ± 1.4 
Paired kidney (mg/mg LW) 6.94 ± 0.29 7.44 ± 0.29 

Paired adrenal gland (mg/mg LW) 0.40 ± 0.03 0.39 ± 0.02 
Uterus (mg/mg LW) 1.97 ± 0.17 1.99 ± 0.24 

Paired ovary (mg/mg LW) 0.29 ± 0.02 0.30 ± 0.02 
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Figure 7.15 Mean total primordial ovarian follicle estimates in wild-caught female rats when 
offered control or ContraPest®-S emulsions daily for 15 days during Study 2. Counts 
were recorded from the left ovary of each animal and total counts estimated using a 
correction factor formula (Gougeon and Chainy, 1987). Control, n = 8; animals which 
did not consume ContraPest®-S, n = 2; animals which did consume ContraPest®-S, n = 7. 
* indicates different (p < 0.05) from control. Vertical bars represent + SEM. 
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Figure 7.16 Mean total secondary ovarian follicle estimates in wild-caught female rats when 
offered control or ContraPest®-S emulsions daily for 15 days during Study 2. Counts 
were recorded from the left ovary of each animal and total counts estimated using a 
correction factor formula (Gougeon and Chainy, 1987). Control, n = 8; animals which 
did not consume ContraPest®-S, n = 2; animals which did consume ContraPest®-S, n = 7. 
Vertical bars represent ± SEM. 
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Figure 7.17 Mean total antral ovarian follicle counts and corpus luteum counts in wild-caught 
female rats when offered control or ContraPest®-S emulsions daily for 15 days during 
Study 2. Counts were recorded from the left ovary of each animal. Control, n = 8; 
animals which did not consume ContraPest®-S, n = 2; animals which did consume 
ContraPest®-S, n = 7. Vertical bars represent ± SEM. 

 

 Discussion 7.4

To find a more humane and sustainable alternative solution for pest control in NZ, the chemosterilant 

emulsion, ContraPest
®
, was examined for its palatability and effects on animal health and the ovarian 

follicle populations of wild-caught Norway rats. The ultimate success of ContraPest
® 

as a pest control 

method will lie in its ability to be delivered as bait that is palatable, effective and able to induce 

permanent fertility cessation in females.  

Consumption rate of ContraPest
® 

emulsion during each study was less than that of the control 

emulsion, indicating that rats were able to detect the active components (whether the aversion is to 

VCD or TR, or both is yet to be determined). Within rodent genomes, rats have ~1400 functional 

olfactory receptors (or ~6% of its genes) whereas humans have only ~400, thus highlighting the 

importance of olfaction in this species (Ache and Young, 2005).  To help overcome the highly 

developed sense of smell in rodents, the active ingredients were microencapsulated within the 

emulsion. It is believed that microencapsulation of VCD and TR helps to reduce their olfactory and 

palatability deterring effects (Dyer et al., 2013). In addition, microencapsulation of these active 

components may help improve their uptake into the gastrointestinal tract as well as provide the 

chemicals with a protective barrier from stomach acid (Carr et al., 1996; Florence, 2005; Jani et al., 
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1990). VCD, when in direct contact with the oral or nasal cavity, can cause irritation and lesions 

(personal observation) as well as epithelial hyperplasia of the fore stomach (NTP, 1986). It must be 

noted that these pathological findings were a result of oral gavage doses (200 – 5000 mg/kg/day, 14 

days to 2 years) far above what would be achieved through consumption of VCD contained within 

ContraPest
® 

emulsion. Nevertheless, microencapsulation of VCD and TR should help to reduce 

potential irritation during consumption of the emulsion bait.   

The reduced intake of ContraPest
® 

emulsion compared with controls would suggest that rats were able 

to detect some chemical traces within the emulsion. This may have been due to incomplete removal of 

any unincorporated active ingredients during washing or due to the microcapsules breaking down 

during international shipping and storage. The temperature stability study demonstrated that VCD, 

when stored at 4°C, is relatively stable. ContraPest
® 

emulsion was stored at 4°C following arrival at 

the research facility and throughout the course of each study. Therefore it can be assumed that 

microcapsule degradation was minimal throughout each study period. However, during international 

transport (batch 1: 15 days; batch 2: 7 days), it is reasonable to assume that the ContraPest
® 

emulsions 

would have been exposed to warmer temperatures (>21°C; ambient) which have been shown to affect 

VCD, regardless of whether the chemical is microencapsulated or not. In fact, VCD concentrations in 

the ContraPest
® 

emulsions were substantially reduced following international transport (95%) and this 

was likely a result of microcapsule degradation due to warm transportation temperatures. Thus, 

reduced ContraPest
® 

emulsion consumption may have, in part, been due to release and hydrolysis of 

the active ingredients from the microcapsules resulting in olfactory and palatability chemical 

detection. Despite the deterring effects from the active ingredients, rats did consume ContraPest
® 

to 

some degree, demonstrating that the emulsion formulation used during these studies was somewhat 

successful.  

Pre-feeding with control emulsion increased the acceptance of ContraPest
® 

emulsion but did not 

completely overcome the aversion. It is well understood that rodents are neophobic (avoidance of 

novel stimuli) (Barnett, 1958; Mitchell, 1976) and often require time to adjust to changes in their 

environment and food sources. The practice of pre-baiting with a non-toxic bait has been utilized in an 

attempt to increase poison control operation success and to help overcome ‘conditioned bait aversion’ 

(Buckle and Smith, 1994) . In an open field environment, pre-baiting draws in animals from 

surrounding areas and allows the animals to habituate to the bait, the bait boxes and any potential 

environmental changes that may have occurred as a result of human interference. In these studies, 

animals were exposed to a water-filled glass beaker for 6-7 days prior to the start of the trial in order to 

reduce any potential rejection of emulsion as a result of neophobic behaviour. No avoidance behaviour 

was noted. In the first study, consumption rates of ContraPest
® 

emulsion with and without pre-feeding 

with control emulsion confirmed the effectiveness of the pre-feeding period. Thus, in the second 

study, a pre-feeding strategy was adopted to optimize intake of the ContraPest
® 

emulsion.   
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Interestingly, during each study ~50% of rats consumed ContraPest
® 

emulsion at comparable levels to 

those observed during the control emulsion pre-feed period while the other rats consumed ContraPest
® 

emulsion either at very low levels or not at all. It is not clear why this 50/50 split was observed across 

the studies. However, in any population, animals that do not respond to treatment (i.e. non-consumers, 

non-responders) will inevitably exist. A study examining neophobic tendencies of wild Norway rats in 

geographically separated areas revealed that, on average, 8-10% of individuals show no neophobic 

behaviours while 4-10% show extreme neophobia (Macdonald et al., 1999). It is possible that we were 

observing similar results on a smaller scale.     

There was a positive correlation between age and ContraPest
®
-S emulsion consumption during Study 

2. It was observed that older animals consumed more ContraPest
®
-S

 
emulsion per gram live weight 

compared with that of younger animals. Although this finding was unexpected, it may be that the older 

animals were more willing to sample the emulsion in small quantities while the younger animals 

avoided the emulsion all together. Dietary choices in rats are often influenced by social interactions 

and with age and experience, animals learn avoidance of and preferences for certain food items (Galef 

and Clark, 1971; Galef et al., 1992). Rats typically consume their meals in small bouts and, when 

offered new food items, they will often take a small sample and only return to that food item pending 

no ill effects (Jensen et al., 1983; Lee and Clifton, 2002; Macdonald et al., 1999). Such behaviours are 

believed to result in bait shyness following a sub-chronic dose of poisoned bait (Barnett and Spencer, 

1949; Bhardwaj and Khan, 1979). Full avoidance of the emulsion would indicate that the olfactory 

cues alone were able to deter some of the rats. Consumption of ContraPest
®
-S emulsion by the older 

animals could indicate that they were either not detecting the active ingredients or that they found no 

ill effects from consuming the emulsion and therefore no avoidance behaviour developed. In addition, 

the rats which did consume ContraPest
®
-S emulsion regularly may have been showing preference for 

the non-active ingredients (e.g. saccharine, high lipid content), whether for their masking effects of the 

active ingredients or for their palatability preferences, or both.         

Saccharin was employed during Study 2 to help disguise any potential deterring factors from the 

active components in the ContraPest
® 

emulsion. Research has demonstrated that female rats prefer 

sweetened water to unsweetened water and, when given a choice between glucose or saccharine, they 

prefer the latter (Mook, 1974; Valenstein et al., 1967). Surprisingly, there was no effect from the 

addition of a sweetener on consumption rates of ContraPest
®
-S emulsion. ContraPest

® 
emulsion is a 

mixture of oil and water (20:80%, v/v). Because consumption rates of ContraPest
® 

emulsion following 

a control pre-feed period were higher during Study 1 compared with Study 2, this may indicate that the 

rats were in fact showing preference for the lipids in the emulsion rather than the saccharine. It has 

been suggested that a rats preference for sweetened solutions is in fact an indicator for a fluid food 

source (thus informational) rather than for pleasure (Mook, 1974). When offered a choice between 

saccharin-sweetened or bland liquid diets, rats rarely showed preference between the two. Thus, if 

there are food-associated cues present, sweetness becomes redundant (Mook, 1974). In addition, rats 

offered minced liver, flour, wheat grains and sugar did sample from all food types but sugar was 



 

 135 

consumed the least (Barnett, 1956). Therefore, it is possible that the rats were consuming ContraPest
®
-

S
 
emulsion for its fat source rather than for its sweetened properties.   

Alternatively, the lack of success with the use of saccharine may be that the active ingredients in the 

ContraPest
®
-S emulsion overpowered the smell and taste of the sweetener, negating any potential 

benefits. The VCD content was higher in the batch used during Study 2 and this may have caused an 

increased deterrent effect. Saccharine has been used in the past to mask rat olfactory cues of toxins 

(e.g. lithium chloride) presented in a liquid state (Rusiniak et al., 1976). When given a choice between 

saccharine-sweetened liquid with or without toxins, it was more difficult for rats to distinguish 

between the liquids but still possible (Rusiniak et al., 1976). Nevertheless, the proposed benefits of the 

sweetener did not increase the palatability of the ContraPest
®
-S emulsion in the present case.  

For successful application of ContraPest
® 

as a rodent control method, it will be imperative to reduce, 

remove or disguise any potential olfactory or palatability deterrents. Currently, researchers at 

SenesTech
® 

(Flagstaff, AZ, USA) are working on reducing the olfactory and palatability cues in 

ContraPest
® 

emulsion. Their preliminary work in adult female laboratory-bred Sprague Dawley rats 

has demonstrated high consumption rates of 6-10% of their live weight in new formulations of 

ContraPest
® 

emulsion (Drs. C.A. Dyer and L.P. Mayer, unpublished data).  

When rats were offered ContraPest
®
-S, primordial follicle populations were significantly reduced in 

those animals that consumed the emulsion. This result is promising considering that the VCD dose in 

ContraPest
®
-S was 95% below that of a VCD dose (500 mg/kg/day) which has shown efficacy in 

depleting the immature ovarian follicle pool in rats by oral gavage  (Burd, 2009; Herawati et al., 2010; 

Mayer et al., 2010). In addition, the level of primordial follicle reduction in this study (54 - 64.1%; 15 

days; 14.7 – 20.0 mg/kg/day) is comparable to oral gavage studies in rats (58 - 88%, 15 days, 500 – 

750 mg/kg/day; Dr. L. A. Hinds, CSIRO, Australia, unpublished data). One reason for the primordial 

follicle reducing success of ContraPest
®
-S

 
may be due to the incorporation of VCD into the 

microcapsules as previously discussed. Encapsulation of VCD likely protected the chemical from 

acidic breakdown or digestion in the gastrointestinal tract or alternatively by promoting uptake across 

the mucosal surfaces into the blood (Carr et al., 1996; Florence, 2005; Jani et al., 1990).  

The success of ContraPest
®
-S in reducing the primordial follicle pool of consuming rats may also, in 

part, be due the feeding behaviour of rats. Rat feeding behaviours have been extensively studied in 

both laboratory- and field-based settings (Berdoy and MacDonald, 1991; Bernstein, 1975; Galef and 

Clark, 1971; Galef et al., 1992; Galef Jr and Giraldeau, 2001). Rats typically consume their meals at 

night in small bouts (1-3 g food/meal; 10-15 meals/day) (Jensen et al., 1983; Lee and Clifton, 2002) 

with females foraging in multiple small trips while male forage trips are fewer and longer (Macdonald 

et al., 1999). It has been hypothesized that VCD ovarian toxicity is largely due to repeat exposure, 

thereby overwhelming and ultimately reducing the capacity of the detoxifying enzymes glutathione 

(GSH) and epoxide hydrolase (EH) (Keating et al., 2008a). Thus, because of the nature of female rat 

feeding habits, it is likely that the rats in Study 2 were continually ingesting VCD on a nightly basis. If 
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indeed this was the case, the detoxifying enzymes could become overwhelmed, allowing for the 

follicle-reducing effects of VCD to occur over the span of the nocturnal feeding window. It seems that 

the rodent feeding patterns may prove serendipitous for the use of ContraPest
®
 as a rodent fertility 

control agent.  

Interestingly, there was no observed effect of TR on the secondary follicle populations in ContraPest
®
-

consuming rats. A recent study by Dyer et al. (2013) examined the effects of a bait containing 1% 

VCD plus three different concentrations of TR on the ovarian follicle populations of laboratory bred 

Sprague Dawley female rats. Ovarian follicle counts (primordial, secondary, antral) were reduced and 

no corpora lutea (CL) were present in animals consuming a bait containing VCD (1%) + a medium 

dose of TR (50 µg/kg) for 15 days compared with controls.  However, 15 days of bait consumption 

with VCD (1%) plus a low (25 µg/kg) or high (100 µg/kg) dose of TR did not affect the ovarian 

follicular pools compared with controls. In fact, the number of CL’s was increased in the low and high 

TR dose groups compared with controls (Dyer et al., 2013).  

The reason for TR’s ability to cause effects to the follicle pool based on dosage level is not clear. It is 

thought that TRs method of action is through alteration of the intracellular calcium influx pattern 

(Leuenroth et al., 2007; Lue et al., 1998). Signal transduction pathways that control the decision for a 

cell to divide, differentiate or die are activated by increases in intracellular calcium concentrations 

(Ermak and Davies, 2002; McKinsey et al., 2002; Orrenius et al., 2003). Thus, TRs ability to increase 

intracellular calcium levels can lead to cessation of follicular development and the onset of follicular 

apoptosis. Assuming sufficient quantities of TR were reaching the ovaries of rats which consumed 

ContraPest
®
-S, it is likely that apoptosis of the secondary follicle pool would have occurred. The 

numbers of healthy secondary follicles were reduced in rats which consumed ContraPest
®
-S

 
when 

compared with rats which did not consume ContraPest
®
-S. Although this was not significant, the 

lower secondary follicle numbers may indicate TR-induced apoptosis of the secondary follicle pool 

was occurring. Without quantitative measurement of atretic secondary follicles in rats which 

consumed ContraPest
®
-S, we can only speculate on the potential effects from TR contained within the 

ContraPest
®
-S emulsion. 

Results presented here and by Dyer et al. (2013) suggest a possible interaction between VCD and TR 

which may be enhancing their effects on the primordial follicle pool. As previously discussed, the 

concentration of VCD that was being consumed during this study was well below that of an effective 

oral dose yet primordial follicles were significantly reduced. Dyer et al. (2013) observed this same 

effect in the medium TR dose group. A report on the effects of TR alone (60 or 120 µg/kg/day, 35 

days) showed that the number of healthy and atretic secondary follicle numbers were increased while 

the primordial follicle pool was unaffected (Xu and Zhao, 2010). As expected, TR-induced 

suppression of follicle development resulted in an accumulation of secondary follicles with no impact 

on the primordial follicle pool. It is possible that the reduction in primordial follicles observed here is 

strictly a result of VCD’s effects, although evidence for potentiation of VCD plus TR is evident.     
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The studies presented here have demonstrated the effectiveness of a pre-baiting system and its ability 

to increase the palatability of ContraPest
®
 emulsion. Microencapsulation of the active components 

seems to have protected the chemicals from warm temperatures encountered during international 

transportation and from stomach acidity and digestion sufficiently to induce effects on the immature 

follicle pool of ovaries in consuming rats. Although the VCD concentration in the ContraPest
®
-S 

emulsion was well below an average gavage dose, consumption rates were sufficient to reduce the 

primordial follicles pools of ContraPest
®
-consuming rats to levels comparable with those observed in 

oral gavage studies. Collectively, these studies have provided evidence that ContraPest
®
 shows 

potential as a chemosterilant bait for control of rodent populations. Successful application of 

ContraPest
®
 will required an understanding of foraging behaviours of the target species. Reduction or 

elimination of potential deterring effects from the environment (i.e. bait, bait boxes) and within the 

emulsion itself (i.e. active components) will be essential for success. Increased protection of the active 

components within ContraPest
® 

from warmer temperatures during international transport and 

laboratory and field use will also prove efficacious.  
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Chapter 8 

Synthesis and Conclusions  

 Chapter summary 8.1

The aim of the studies presented in this thesis was to examine the potential of the chemosterilant, 4-

vinylcyclohexene diepoxide (VCD), for fertility control of New Zealand (NZ) pest mammals, 

specifically the brushtail possum. To achieve this aim four main objectives were identified: 1) 

determine if an oral VCD dose delivered to female possums would result in the depletion of their 

ovarian primordial follicle pools (Chapter 4); 2) examine the uptake and metabolism of orally 

administered VCD in rats and possums (Chapter 5); 3) investigate the in vitro metabolic differences 

and effects of acid and stomach contents on VCD in rats and possums (Chapter 6); and 4) Investigate 

the potential use of ContraPest
®
 as a chemosterilant for the control of rodent pests in NZ (Chapter 7). 

This chapter synthesises the results obtained from this research and presents recommendations for 

improvement and future study. In addition, the implications of these findings for science and 

vertebrate pest management are discussed.       

 Summary of thesis findings 8.2

The main findings of this research were: 

1. VCD, when orally delivered does not induce primordial follicle depletion in adult female 

possums. 

a. The health of animals was not affected by VCD dosing. However, there was evidence 

that anaesthetic-induced stress and handling stress may negatively impact on the 

animal’s well-being. 

b. There was no evidence that Intralipid and QuickEZE
®
, two formulations believed to 

improve VCD uptake and efficacy, were effective in the possum.  

2. VCD-induced toxicity was less evident in possums compared with rats. It was hypothesized 

that this was due to a combination of the possum’s stomach contents being naturally more 

acidic resulting in greater protection (i.e. containment) of VCD in their stomach compared 

with rats. The ability of possum stomachs to contain and inadvertently protect VCD was 

evidenced by: 

a. In vitro VCD hydrolysis in the stomach contents (pH 2.5) of possums was less 

compared with rats  
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b. Reduced in vivo levels of VCD measured in the blood of possums compared with the 

blood of rats    

c. Ovarian and liver glutathione (GSH) levels of possums were unaffected whereas rat 

GSH levels in each tissue were depleted following in vivo treatment  

3. The capacity to metabolize VCD and its parent compound, 4-vinylcyclohexene (VCH), appear 

to be greater in possums compared with rats as evidenced by: 

a. Higher in vitro concentrations of hepatic CYP450 in untreated possum microsomes 

compared with rat 

b. Reduced in vitro effects of VCH on hepatic CYP450 levels in the possum compared 

with that of the rat 

c. Reduced in vitro effects of VCD on hepatic GSH levels in the possum compared with 

that of the rat  

4. Rats consuming an emulsion of ContraPest
®
 had reduced ovarian primordial follicle 

populations. In addition, it was determined that:  

a. Pre-feeding with control emulsion proved efficacious for increasing the acceptance of 

ContraPest
®
 emulsion 

b. Consumption rates of ContraPest
®
 emulsion were unaffected by the addition of a 

sweetener (saccharine) 

 Synthesis of findings  8.3

8.3.1 Possums 

The findings presented here have demonstrated that an oral dose of VCD does not induce primordial 

follicular depletion in the ovaries of possums. The lack of VCD-induced ovarian toxicity is likely due 

to a combination of factors. First, the typical in vivo pH of possum stomach contents ranged between 

0.5 and 1.0 while that of the rat ranged between 0.5 and 3.6 (Chapter 5). Because VCD hydrolysis is 

pH dependant (Chapter 6), these natural pH differences between species would suggest that VCD 

hydrolysis in the stomach of possums would occur more rapidly compared with the rat. In the possum, 

this initial effect would likely hydrolyse a large portion of the VCD dose to its inactive tetrol form, 

ultimately reducing the amount of VCD available for absorption into the blood. The use of an antacid, 

QuickEZE
®
, was employed to help reduce the hydrolysis of VCD following oral gavage (Chapter 4). 

Although dosing possums with bicarbonate or QuickEZE
®
 formulations increases and maintains a 

higher pH in stomach contents (pH 5.0 – 6.5 for 3 – 7 hours), this formulation did not affect VCD 

ovarian toxicity in vivo.  
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Secondly, differences in digestion of possums and rats may also be contributing to differences in VCD 

efficacy. Species differences in food retention times, food passage, and partitioning of fluid 

components from solid food would all contribute to VCD containment time within the stomach and 

ultimately VCD efficacy. VCD was more readily contained in the stomach contents of possums 

compared with rats (Chapter 6). Foods in the stomach of possums are not well mixed; so much so that 

discrete, homogenous food layers can often be identified in the order they were eaten (Nugent et al., 

2000). Such an effect may inadvertently provide protection of VCD from acid hydrolysis, resulting in 

reduced rates of VCD uptake from the stomach and intestines into the blood stream of possums. If 

sufficient amounts of VCD were retained in the stomach, uptake of VCD may in fact be occurring 

over a longer period of time in the possum. This, in combination with the feeding behaviour of possum 

(1-3 bouts per night with 2-3 hours between each bout) (Nugent et al., 2000) could seem serendipitous 

considering that VCD ovarian toxicity is believed to occur due to repeat exposure to by overwhelming, 

and ultimately reducing, the capacity of the detoxifying enzymes (Hu et al., 2002; Keating et al., 

2008a; Keating et al., 2010). However, daily oral dosing with VCD for 10 or 13 days (Chapter 4) did 

not affect the immature ovarian follicle pools of possums. Thus, it can be predicted that either the 

concentration of VCD was insufficient to induce ovarian toxicity or hepatic and ovarian detoxifying 

enzymes remained functional and at high enough levels to metabolise VCD efficiently. It is likely a 

combination of these two factors that explains why, in part, VCD is ineffective when administered to 

possums.  

Third, there was no effect of VCD on stomach acidity of possums following oral gavage (Chapter 5). 

On the other hand, the stomach contents pH of rats was increased and remained elevated for up to 6 

hours. This would imply that, in the possum, any VCD not contained by the stomach contents or taken 

up into the blood stream would be exposed to a highly acidic degrading environment, ultimately 

reducing VCD concentrations in the stomach even further. In the rat, however, acid hydrolysis of VCD 

in the stomach would not occur as quickly and the amount of VCD available for uptake into the blood 

would be greater than that of possums. In fact, this was demonstrated by higher levels of VCD 

measured in the blood of rats over a longer period of time compared with possums (Chapter 5).  

Fourth, hepatic GSH concentration levels of possums were not as severely depleted in vivo (Chapter 5) 

and in vitro (Chapter 6). These findings together suggest that possums have a higher capacity to 

detoxify VCD compared with rats. The GSH results were further corroborated by the in vitro CYP450 

results. Possum hepatic CYP450 levels were both higher and more robust than that of rats when 

exposed to VCD’s parent compound, VCH, in vitro. Considering these issues, greater effort to protect 

VCD from acid degradation in the stomach and improve its uptake into the blood will be needed if a 

VCD-induced follicle-depleting effect is ever to be achieved in the possum. Further discussion on the 

requirements needed for consideration of VCD’s use in possums is discussed below.       
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8.3.2 Rats 

The findings presented here have confirmed previous reports examining the effects of VCD on hepatic 

and ovarian metabolism as measured by GSH. The fate and uptake of VCD, once present in the rat 

stomach, was also revealed (Chapter 5 and 6). In addition, the first study on the use of the potential 

chemosterilant, ContraPest
®
, for its effects on the ovarian follicle populations of wild Norway rats was 

conducted here (Chapter 7). As previously discussed for the possum, several factors affect the degree 

to which VCD-induced ovarian toxicity will occur; and, in the case of the rat, these factors appear to 

be advantageous.   

First, in contrast with the possum, the in vivo stomach contents pH range of rats was higher and 

overall less acidic (control mean, 3.17 ± 0.28 pH; Chapter 5) implying that the rate of acid hydrolysis 

of VCD was likely to be slower in the rat stomach. Usually following consumption of food, the 

stomach pH of a rat decreases in order to aid digestion (McConnell et al., 2008) and therefore might 

increase the rate of acid hydrolysis in the stomach. Interestingly, however, the effect of a bolus dose of 

VCD/oil caused the stomach pH of rats to increase (Chapter 5) which would increase both the 

availability of VCD for absorption into the blood as well as prolong the period over which VCD 

would be available for absorption. This effect was corroborated by higher levels of VCD in the blood 

of rats over a longer period of time compared with possums following an oral bolus dose of VCD 

(Chapter 5). The pH of rat stomach contents following consumption of the ContraPest® emulsion was 

not measured but it is possible that a similar effect on pH may have occurred. Regardless, the 

encapsulation of VCD and triptolide contained within the ContraPest
®
 emulsion is likely to have 

protected them to some degree, from acid degradation in the stomach and concomitantly aided their 

absorption into the blood stream.       

Second, the feeding behaviour of rats (i.e. multiple small feeding bouts) may actually increase the 

efficacy of VCD due to repeated and continual exposure to the chemical (Chapter 7). Repeated 

exposure to VCD is thought to cause reduced capacity of the detoxifying enzymes glutathione (GSH) 

and epoxide hydrolase (EH) (Keating et al., 2008a). Third, the capacity of rats to metabolize VCD in 

vivo, as measured by their liver and ovarian GSH concentrations, was lower than that of possums 

(Chapter 6). This finding was corroborated by the reduced capacity of rat liver S9 cell fractions to 

metabolize VCD and VCH in vitro compared with that of possum liver S9 cell fractions (Chapter 6). 

The combination of rat feeding behaviour and their reduced capacity to metabolize VCD demonstrate, 

in part, why VCD reduces their primordial and primary ovarian follicle numbers.      

 Recommendations for future study  8.4

If future consideration for VCD’s use in the possum is undertaken, it will be imperative to demonstrate 

that VCD is ovotoxic in the possum. It was my aim to develop an ovarian culture system for the 

possum (Figure 1.1) in order to provide proof-of-concept for VCD ovarian toxicity although 

unforeseen issues (as discussed in Chapter 6) prevented this objective being achieved. Species 
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similarities in ovarian folliculogenesis (reviewed in Chapter 2) allow for speculation that VCD’s 

effects on the ovaries of possums may be similar to the effects observed in rats. However, the findings 

presented in Chapters 4, 5 and 6 suggest that, even if VCD ovarian toxicity was demonstrated with an 

in vitro culture system, the issues associated with stomach acidity and metabolism would likely negate 

any potential effects of orally delivered VCD on the ovaries of possums.  

Although these issues may be difficult to overcome, there are methods which may protect VCD from 

breakdown in the gastrointestinal tract and increase its efficacy once absorbed into the blood stream 

and which should be considered for future research. Formulations such as those found in the 

ContraPest
®
 emulsion (i.e. encapsulation of active ingredients, lipid emulsion matrix for increased 

absorption) may prove efficacious for future use in the possum. Evidence was presented in Chapter 4 

which suggested that an antacid pre-treatment may have protected VCD from acid degradation in the 

stomach of possums to some degree. Thus, antacid inclusion as an additional emulsion ingredient or 

outer coating around bait may be considered for future formulations.  

Second, additional in vivo or in vitro examination of the capacity of possums to metabolize VCD may 

aid in developing different formulations for VCD and their potential application for possum control. A 

reassessment of the ovarian, gastric and metabolic effects following an oral VCD dose in combination 

with protective formulations (i.e. encapsulation) should be considered.  

Third, if additional in vitro studies are to be carried out for the possum, several areas for improvement 

should be noted. First, the effects on both ovarian GSH and EH should be measured in vitro to 

determine the full effects of VCD and the capacity of the possum ovary to metabolise it. Assuming an 

in vitro ovarian culture system is not developed for the possum, ovarian S9 cell fractions (as outlined 

in Chapter 6) could be utilized as an alternative for such experiments. Secondly, a re-evaluation of 

liver metabolism, as measured by GSH and EH and their associated inhibitors, should be performed in 

conjunction with an in vitro culture protocol (i.e. inclusion of an NADPH regeneration system) to 

mimic in vivo conditions as closely as possible. Third, it may be useful to measure the rate of 

disappearance of VCD (Chapter 5) from hepatic and ovarian tissues under in vitro conditions. Such 

results would help to confirm the rate of conversion of VCD to its inactive tetrol metabolites by these 

tissues. This, in turn, could also be useful if future examination of the effects of VCD’s parent 

compound, VCH, on possum metabolism were to be undertaken. Collectively, in vitro examination of 

VCD (or similar compounds) may help in the formulation of methods to improve VCD efficacy for 

fertility control in the possum.     

 Implications for vertebrate pest management   8.5

To my knowledge, the findings presented on the effects of orally applied VCD in possums were the 

first of their kind. The summation of these findings indicates that the use of VCD for the control of 

fertility in the possum is not plausible at this time. Furthermore, the implication of these findings in 

the possum is that VCD may not be an effective management tool for other marsupials or eutherians 
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species with similar physiology or dietary habitats. It has been hypothesized that possums are effective 

metabolizers of VCD due to their dietary evolution (i.e. consumption of eucalypt foliage which is high 

in plant secondary metabolites (PSMs); Chapter 4). Thus, it may be hypothesized that species which 

regularly consume foliage high in PSMs would likely respond to VCD treatment in a similar manner 

to that of possums.  

To date, the only other examination of VCD’s effects on a marsupial were carried out on the tammar 

wallaby (Macropus eugenii) (Koehn, 2008). Fifteen days of subcutaneous or intramuscular injections 

of VCD did not reduce immature ovarian follicle pools of treated females. Although no direct 

correlations can be made, it is possible that, in part, the lack of VCD effects were due to the tammar 

wallaby having evolved an efficient metabolic capacity for detoxifying xenobiotics such as discussed 

and demonstrated here for the possum. In fact, tammar wallabies and koalas have shown similarities in 

their metabolism of xenobiotics to that of possums (Stupans et al., 2001) further supporting the 

hypothesis that VCD’s effects on the ovarian follicular pools of species which regularly consume 

foliage high in PSMs may be similar.  

The success of ContraPest
®
 emulsion at reducing the primordial follicle pools of wild Norway rats 

(Chapter 7) is encouraging for its potential use as a fertility control management strategy for rodents. 

For successful application of a chemosterilant, such as ContraPest
®
, future work will require several 

aspects for development and investigation. First, reduction or elimination of deterring odour and taste 

cues from the active ingredients within the bait may be necessary, especially for species, such as 

rodents, which rely on their highly sensitive olfactory and gustatory cues to identify acceptable food 

sources (Jensen et al., 1983; Lee and Clifton, 2002; Macdonald et al., 1999). If an ideal chemosterilant 

emulsion or bait can be produced which demonstrates high acceptability by a species then 

consideration for its use in the field could begin. It will be important to understand the effects of the 

fertility control bait on all components of the population of interest such as males, pregnant females, 

lactating females and juveniles. In addition, the effects of the bait on non-target species and the 

environment will need to be to be undertaken.   

Other factors that may improve bait acceptance for the species of interest would be identification of an 

optimal pre-baiting protocol and how the bait should be applied within the environment. Pre-baiting 

with non-active emulsion increases the acceptance and intake of the active emulsion formulation 

(Chapter 7). In addition, pre-baiting may reduce or prevent neophobic-induced behaviours (Barnett, 

1958; Buckle and Smith, 1994; Mitchell, 1976), thus further increasing acceptance of the active 

formulation. It would be advantageous to utilize local knowledge and vertebrate pest control experts, 

where possible, to improve the success of each baiting scheme (Buckle and Smith, 1994). For 

international applications, it will be important to further understand the effects of transportation time 

and temperature on all active ingredients within the fertility control bait. The effect of time and 

temperature on the active ingredients would also apply for developing bait strategies in the field.        
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Development and integration of a new pest control product, such as a chemosterilant, will require an in 

depth understanding of its impacts on the species of interest. The impact of a chemosterilant will vary 

depending on the species’ ability to absorb, metabolize, and detoxify the active components as well as 

the efficacy of the active components on the target organ and its downstream effects on fertility. For 

the successful application of a chemosterilant bait, its acceptance and palatability needs to be 

understood in the target species. Understanding the reproductive biology (i.e. age at first litter, size of 

litters) of the target species may also aid in development of treatment protocols and strategies for 

dealing with acute (i.e. mouse plagues) and chronic pest populations.   
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