Testing Different Types of Benefit Transfer in Valuation of Ecosystem Services: New Zealand Winegrowing Case Studies

Ramesh Baskaran^a, Ross Cullen^a, Sergio Colombo^b

^a Faculty of Commerce, Lincoln University, New Zealand
 ^b IFAPA, University of Grenada, Spain

Funded by Foundation for Research Science and Technology, LINX0303 Ecosystem Services http://ecovalue.uvm.edu/newzealand/

Marlborough & Hawke's Bay Winegrowing Regions

Overview of the presentation

- Problem Statement
- Objectives of the study
- Methods
- Results
- Policy Implications
- Conclusion

Problem Statement

- Adverse environmental impacts on Ecosystem Services (ES) from intensification of winegrowing production
 - Excessive levels of residues in wine from fungicides, pesticides and herbicides
 - Consumer concerns and food safety regulations
 - High risk of toxic chemical (e.g., fungicides and pesticides) reaching groundwater
 - Exceed maximum recommended levels
 - Greenhouse gas emission
 - 3 tonnes of CO₂ equivalent hectare⁻¹year⁻¹ are emitted
 - Close to the average emissions hectare⁻¹ for all NZ agriculture
 - Removal of indigenous biodiversity
 - NZ developed landscapes have lost most of their native biodiversity (e.g., plants, habitats and wildlife)

Objectives of the Study

- Estimate the average Willingness-to-Pay (WTP) of Marlborough and Hawke's Bay households for improving the environmental impact caused by winegrowing practices
- Using the estimated WTP values for Benefit Transfer (BT) analysis
 - Examine the validity of BT
 - Whether it is feasible to conduct the transfer process and assist policy making

Methods

- Choice Modeling (CM) Method
 - Random Parameter Logit (RPL) Model
 - Explicitly considers taste variation among individuals (e.g., heterogeneity preferences)
- Benefit Transfer (BT)
 - Marginal Value Transfer (e.g., unadjusted mean WTP)
 - Function Transfer (e.g., unadjusted Compensating Surplus (CS))
- BT Validity Tests
 - 1. Testing if the Model Parameters are Equivalent
 - 2. Testing if the Mean WTP and CS are Equivalent
 - 3. Testing if the Mean WTP and CS are Transferable

Winegrowing CM Attributes

- 1. Residue in wine
 - Current, organic and zero levels
- 2. Risk of toxic chemicals reaching groundwater
 - High, low and no risk levels
- 3. Greenhouse gas emission per hectare per year
 - Current, 30% reduction and zero net levels
- 4. Native wildlife populations
 - Current, 10% increase and 30% increase
- 5. Cost to household per year for next 5 years
 - NZ\$0, \$15, \$30, \$45, \$60, \$75, \$90

Example of Choice Set

Attributes	Alternative 1	Alternative 2	Status Quo	
Residues in wine	Fewer residues with organic	Zero residues	No change	
Risk of toxic chemicals reaching groundwater	No	Low	High	
GHG emissions hectare ⁻¹ year ⁻¹	Zero net	30% reduction	No change	
Native wildlife populations	30% increase	10% increase	No change	
Cost (\$ per year for the next 5 years)	\$45	\$15	\$0	

Types of Benefit Transfer Tests

Type 1: Differences across populations only (B vs D and A vs C)

Type 2: Differences across sites only (A vs B and C vs D)

Type 3: Differences across sites and equivalent populations but geographic separation (A vs D, D vs F, and A vs E)

Type 4: Differences across sites and different populations (B vs C)

Data Collection

- D-efficient fractional factorial design using Street et al. (2005) procedure created 18 choice sets
 - 6 choice sets with 3 sub-version questionnaires
- 4392 respondents randomly selected from NZ electoral roll for Marlborough and Hawke's Bay regions.

Data Collection

- Sample was divided into 4 strata
 - Marlborough population valuing ES in their own region (MARL)
 - Marlborough population valuing ES in Hawke's Bay region (MARLPOP)
 - Hawke's Bay population valuing ES in their own region (HB)
 - Hawke's Bay population valuing ES in Marlborough region (HBPOP)

Data Collection

- Survey questionnaires were sent to both regions in April 2008
- 1098 respondents selected for each sample
- Total effective response rate
 - 30% MARL
 - 20% HB
 - 18% HBPOP
 - 24% MARLPOP
- Choice data
 - analyzed using NLOGIT 4.0

CM Results

- On average, respondents are willing to pay more for increases in the quality and/or quantity of each attribute regardless of their residency
- WTP for reduced chemical residues in organically produced wine (RESORG) is not significant for all samples
- Risks of contamination in groundwater quality for all samples
 highly valued
 - most important attribute

CM Results

• Values for MARL sample are higher compared to other samples

Mean annual CS estimates per household associated with different policy options

Attribute	Current	Policy 1	Policy 2	Policy 3	Policy 4
Wine residue	0	Organic	Zero	Organic	Zero
Water quality	0	Low risk	No risk	Low risk	N <u>o r</u> isk
GHG reduction	0	30%	Zero	30%	0
Biodiversity increase	0	10%	30%		
HB CS (\$)		147.35	164.69	136.81	108.41
HBPOP CS (\$)		156.17	175.13	134.87	104.88
MARL CS (\$)		287.54	317.44	232.41	193.03
MARLPOP CS (\$)		227.90	235.04	203.30	174.94
POOLED CS (\$)		191.76	207.48	162.27	131.21

- On average, respondents are willing to pay more for higher levels of improvement
- Indicate the importance of attribute tradeoffs
 - Policy 1 and Policy 3 shows biodiversity effect reduces WTP by 12%
 - Policy 2 and Policy 4 trading offs GHG and biodiversity reduces WTP by 34%

- 1. Testing if the Model Parameters are Equivalent
 - Swait and Louviere (1993) grid search technique
 - All the BT types rejected the null hypothesis (i.e., significant differences exist between the two sites)
 - the two model parameters are different
 - BT is invalid
 - Only POOL & MARL and POOL & MARLPOP samples have no significant differences – BT is valid

- 2. Testing if the Mean WTP and CS are Equivalent
 - Poe et al. (2005) complete combinatorial method
 - HB & HBPOP
 - POOL & HBPOP
 - POOL & MARLPOP

Do not reject the null hypothesis (i.e., no significant differences exist between the sites)

Marginal value (WTP) and benefit function (CS) are equivalent – BT is valid

- Kristofersson and Navrud (2005)
 - suggest possibility of Type II Error null hypothesis
 - (i.e., of failing to reject the H_0 that WTP are the same when it is false)
 - suggest incorporating tolerance limit when testing for welfare measure

- 3. Testing if the Mean WTP and CS are Transferable
 - Johnston and Duke (2008) proposed an alternative equivalence test for non-normal welfare distributions
 - Called the two one-sided convolutions test TOSC
 - It incorporates both Poe et al. (2005) and Kristofersson and Navrud (2005)
 - Two different tolerance limits (TL) 50% and 80% are used at $\alpha = 0.10$ level
 - If TL is increased to 80%, more WTP and CS values can be transferred across sites and populations.

3. Testing if the Mean WTP and CS are Transferable (*Cont.*)

Example :

Summary of BT Results

• The validity tests show mixed results – did not demonstrate strong plausibility of transferring the estimated values

Example:

The Equivalent Test for Model Parameters opposed the benefit function transfer

In contrast, the Equivalent Test for WTP suggested otherwise

• Statistically, BT is not a reliable approach for transferring the winegrowing ES benefits generated using CM

Summary of BT Results (Cont.)

- Despite controlling factors that can affect the accuracy of BT
 - survey instrument
 - model specifications
 - valuing the same resource change
 - time period
 - similar demographic profile
- Difficult to select either one of them as the "study" site to transfer values

Policy Implications

- Successful application of BT methods remains a challenge
- The three tests performed to validate BT not able to convince the policymakers about the merit of BT
- Acceptable levels of transfer error depends on the analyst's experience and professional judgment
 - How expensive would it be to conduct a new study?
 - What level of error would the values from a new study have?
 - How critical is preciseness of the attribute values to the analyst?
- Be cautious when applying BT approach
- Wrong policy decision may lead to large welfare loss and misallocation of resources

Conclusion

- Respondents value programs that result in significant:
 - Total reduction in toxic chemical residue content in wine
 - Reduction in risks of toxic chemicals reaching groundwater
 - Reduction in greenhouse gas emissions
 - Increase in natural and native biodiversity
- Validity tests provide conflicting results of whether to follow the transfer process
- Further research in the development of conventional BT approach is needed
- BT depends on the professional judgment of the analyst need to consider tradeoff between the risks of
 - 1. Under/over-estimated WTP values
 - 2. Saving in time and money/resources of conducting a new study
 - 3. Making costly policy decision mistakes

