The Ovine Lens Cytoskeleton

A Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science

> At Lincoln University

> > by

Joshua D. McDermott

Lincoln University 2007

Abstract of a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science.

THE OVINE LENS CYTOSKELETON

Joshua D. McDermott

The lens of the eye is a vital tissue in the visual system, responsible for the collection and focusing of light on to the retina. Comprised of epithelial cells at differing stages of differentiation, the transparency of the lens is dependent on the highly ordered crystalline structure of lens proteins. The lens consists of several proteins including crystallins (α , β , γ) that make up 90% of the soluble protein, and the lens cytoskeletal proteins. Cytoskeletal proteins contribute only a fraction of the total lens protein, but are thought to play an important role in the establishment and maintenance of transparency. Calpain-induced degradation of these proteins may be involved in the development of cataracts. This has been an area of research at Lincoln University where a flock of sheep genetically predisposed to cataract maintained as a cataract development model.

The aim of this research was to investigate the distribution of cytoskeletal proteins in the lens, and to examine the effects of calpain proteolysis on these proteins, with the goal of establishing the role of the lens cytoskeletal proteins in the ovine cataract model. A combination of techniques was used including immunohistochemistry, which required the development of a specific protocol for ovine lenses. Cytoskeletal proteins were identified using immunohistochemistry in lens tissue sections and exhibited characteristic distributions. Actin displayed preferential distribution in the short sides of the fibre cells in the cortex of the lens but was absent in the lens nucleus, while spectrin in the cortex and nucleus was associated with the fibre cell membrane. Filensin was observed in the outer cortex of lens sections associated with the fibre cell membrane and cytoplasm, although the pattern of localisation was indistinct due to the abundance of filensin breakdown products. Vimentin displayed membrane and cytoplasmic association in the outer cortex that diminished toward the lens nucleus, with membrane associated vimentin only persisting in the deeper regions of the cortex and nucleus.

Additionally, the effect of novel calpain inhibitors (*Cat0059* and *Cat811*) in preventing proteolysis of lens cytoskeletal protein was investigated and compared with calpain inhibitors developed elsewhere (*SJA6017*). The inhibitors were tested at between 10 and 0.1 μ M (100 nM). All inhibitors were effective at 10 μ M. *SJA6017* provided significant protection to vimentin at 1 μ M. *Cat0059* was found to protect spectrin and filensin at 1 μ M, but not vimentin, while inhibitor *Cat811* was found to protect spectrin only. *SJA6017* added to assays at 100 nM offered significant protection to spectrin, and *Cat0059* was found to protect filensin at spectrin to a significant degree at 100 nM, indicating the novel inhibitors were comparable to those developed elsewhere in terms of their effectiveness.

Taken together, the evidence presented in this thesis shows the cytoskeletal proteins as crucial elements in the lens. Their pervasive presence coupled with evidence that lens cytoskeletal proteins are sensitive to calpain-induced proteolysis that is inhibited with novel calpain inhibitors suggests that the lens cytoskeletal proteins may be useful targets in cataract prevention for future research.

Keywords: Lens, immunohistochemistry, cytoskeleton, actin, spectrin, vimentin, filensin, fluorescence, microscopy, calpain, proteolysis, inhibitor, cataract.

TABLE OF CONTENTS

ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF FIGURES AND TABLES	viii
ABBREVIATIONS	xi
Section 1 – Introduction and Literature Review	1
1.1 The Lens	1
Lens Function	
Lens Structure	
1.2 Components of the Lens	4
The Lenticular Cytoskeleton	
Spectrin	
Actin	
Tubulin	
Intermediate Filaments	
Vimentin	
Filensin, CP49 and Beaded Filaments	
Structure and Assembly Characteristics of the Beaded Filament	
Functions and Roles in the Lens of the beaded filament	
Membrane Associated Proteins	
Crystallins	
α -crystallin	
β - and γ -crystallin	
1.3 Calpain and the Lens	15
Calpain Activation & Regulation	
Calpain Inhibitors	
Calpain inhibitors as anticataract agents in animal models	
1.4 The Lens Cytoskeleton and Cataract	22

1.5 The Use of Immunohistochemistry to Study the Lens	23
Principles of Immunohistochemistry	
Immunohistochemistry in the Lens	

Section 2 – Experimental Rational	27
2.1 Aim of Current Investigation	27
2.2 Hypothesis	27
2.3 Outline of Sections	27

Section 3 – Optimisation of a Protocol for Processing Ovine Lenses for	or
Immunohistochemistry	29
3.1 Introduction	29
3.2 Methods	30
3.3 Experiment 1 – PFA Fixed Paraffin-Embedded Sections	30
3.3.1 Methods	30
Sample Collection	

Histology	
Staining Procedure	
Morphological Assessment & Imaging	
3.3.2 Results	33
3.4 Experiment 2 – Fresh Frozen Lenses with Fixation Post Cryosectioning	36
3.4.1 Methods	36
3.4.2 Results	36
3.5 Experiment 3 – PFA Fixation-Cryoprotection-Cryosectioning	40
3.5.1 Methods	40
Sample Collection & Tissue Processing	
3.5.2 Results	41
3.6 Experiment 4 – Cataractous Lenses	44
3.6.1 Methods	44
Sample Collection & Tissue Processing	

3.6.2 Results

	vi
3.7 Discussion	50
3.7.1 Final Protocol	58
Section 4 – Calpain-induced Proteolysis of the Lens Cytoskeleton	60
4.1 Introduction	60
4.2 Materials and Methods	61
Sample Collection	
Extraction of Urea-soluble protein fraction (USF) from lens homogenates Band	
Identification by Western Immunoblot	
Calpain Inhibitor Assay	
Separated Protein Band Optical Density Analysis	
4.3 Results	68
Extraction of USF Proteins	
Optical Density Assessment	
USF Optical Density Measurements	
Calpain Inhibitor Assay	
• Cat0059	74
• Cat811	75
• SJA6017	76
4.4 Discussion	78

Section 5 – Immunhistochemical Localisation of Cytoskeletal	Proteins
in the Ovine Lens	83
5.1 Introduction	83
5.2 Methods	85
Tissue Collection	
Western Immunoblotting	
Processing of lenses for immunohistochemistry	
Immunohistochemical Localisation	
5.3 Experiment 1 – Spectrin	88
5.3.1 Methods	88

5.3.2 Results	88
Immunoblotting	
Immunohistochemical Localisation	
5.4 Experiment 2 – Actin	95
5.4.1 Methods	95
5.4.1 Results	95
Immunoblotting	
Immunohistochemical Localisation	
5.5 Experiment 3 – Vimentin	99
5.5.1 Methods	99
5.5.2 Results	99
Immunoblotting	
Immunohistochemical Localisation	
5.6 Experiment 4 – Filensin	105
5.6.1 Methods	105
5.6.2 Results	105
Immunoblotting	
Immunohistochemical Localisation	
5.7 Discussion	113
Spectrin	114
Actin	115
Vimentin	118
Filensin	120
Section 6 – Conclusions and Future Directions	126
6.1 Overall Conclusion	126
6.2 Future Directions	120
	127
Acknowledgments	129
References	131
PUBLICATIONS ARISING FROM THIS THESIS	159

vii

Figure 1.1	Schematic diagram of a mammalian lens, illustrating salient points of lens structure	2
Figure 1.2	Internal Circulation System in the Lens	4
Figure 1.3	Proposed Activation Mechanism of Calpain by Calcium	19
Table 3.1	Summary of Results of Fixation and Sectioning Protocols Attempted with Adult Ovine Lenses	30
Figure 3.3.1	Paraffin Embedded Lenses	35
Figure 3.4.1	Fresh Frozen Lenses	38
Figure 3.5.1	PFA-Cryoprotect-Cryosection Lenses	42
Figure 3.6.1	Cataractous Lenses	47
Figure 3.6.2	Late Cataract Lens Morphology	49
Table 3.2	Summary of Results of Fixation and Sectioning Protocols Attempted with Adult Ovine Lenses	57
Figure 4.1	Theoretical basis of Optical Density measurements	65
Figure 4.2	Flow chart outlining general procedure employed in this set of experiments	67
Figure 4.3	Dilution Series Optical Density Measurements	69
Figure 4.4	SDS-PAGE of USF Time-Series Assay	71

Figure 4.5	USF Time Course Assay – Change in Cytoskeletal Proteins Over an Hour in the Presence of Calpain	72
Figure 4.6	SDS-PAGE Illustrating the Efficacy of Calpain Inhibitors at 0.1-1 μM (top) and 10 μM (bottom)	73
Figure 4.7	Relative Lens Cytoskeletal Protein Proteolysis in the Presence of Calpain and Calcium – Processed Dose-Response Data for <i>Cat0059</i>	74
Figure 4.8	Relative Lens Cytoskeletal Protein Proteolysis in the Presence of Calpain and Calcium. – Processed Dose-Response Data for <i>Cat811</i>	75
Figure 4.9	Relative Lens Cytoskeletal Protein Proteolysis in the Presence of Calpain and Calcium – Processed Dose-Response Data for <i>SJA6017</i>	76
Table 4.1	Summary Data: Efficacy of Calpain Inhibitors in Preventing Proteolysis of Lens Cytoskeletal Proteins in the Presence of Calpain	78
Figure 5.3.1	Spectrin Immunoblot	89
Figure 5.3.2	Spectrin Distribution in the Ovine Lens	90
Figure 5.3.3	Other Spectrin Localisation Results	93
Figure 5.4.1	Actin Immunoblot	95
Figure 5.4.2	Cross-sections of Cortical Fibre Cells Showing Actin Distribution	97
Figure 5.5.1	Vimentin Immunoblot	99
Figure 5.5.2	Vimentin Distribution in the Cortex of the Ovine Lens	100
Figure 5.5.3	Vimentin in the Lens Nucleus	103

Figure 5.6.1	Filensin Immunoblot	106
Figure 5.6.2	Cytoplasmic Filensin	107
Figure 5.6.3	Filensin Distribution in the Outer Cortex and Nucleus	109
Table 5.7.1	Summary of Findings Relating to Immunohistochemical Localisation of Cytoskeletal Proteins in the Ovine Lens	113
Figure 5.7.1	TRITC/488 Signal	120

ATA	aurintricarboxylic acid
AQP-	aquaporin
BCA	bicinchoninic acid
Bfsp2	human CP49 gene
CP49	phakinin
CP115	filensin
Cx-	connexion
DTT	dithiothreitol
E64	trans-epoxysuccinyl-L-leucylamido-4-guanidino-butane
F-actin	filamentous actin
FITC-lectin	fluorescein isothiocyanate conjugated lectin
g	gravity
G-actin	globular actin
IgG	immunoglobulin G
IHC	immunohistochemistry
LBCF	lens based cell free

Lectin	Triticum vulgaris lectin
LDS	lithium dodecyl sulphate
Lp-	lens specific calpain isoforms
MDa	mega Dalton
МеОН	methanol
MIP	major intrinsic protein
NFDM	non-fat dairy milk
O.C.T.	optimal cutting temperature
0.D.	optical density
PBS	phosphate-buffered saline
PI	propidium iodide
PFA	paraformaldehyde
R ²	coefficient of determination
SJA6017	N-[4-fluorophenylsulfonyl]-L-valyl-L-leucinal
TBS	tris-buffered saline
TTBS	tween-20/tris-buffered saline
Tris-HCl	tris-hydrochloride

TRITC	tetramethylrhodamine isothiocyanate
TRITC-lectin	tetramethylrhodamine isothiocyanate conjugated lectin
Tween-20	polyoxyethylene (20)sorbitan monolaurate
USF	urea soluble fraction
v/v	volume per volume
w/v	weight per volume