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Abstract 
 

New Zealand is internationally renowned for having some of the finest and most challenging 

trout fishing in the world.  However, due to continuing development and angling pressure 

many fishing sites are showing signs of environmental degradation and over fishing.  This 

trend is almost certain to continue into the future given continued population and economic 

growth.  Understanding the determinants of site choice, preference heterogeneity and anglers’ 

substitution patterns is fundamentally important to fishery managers who have the difficult 

task of maintaining quality angling experiences on a number of fishing sites, managing 

angling pressure and maintaining license sales. 

 

Recent advances in simulation techniques and computational power have improved the 

capability of discrete choice models to reveal preference heterogeneity and complex 

substitution patterns among individuals.  This thesis applies and evaluates a number of state-

of-the-art discrete choice models to study angler site choice in New Zealand.  Recreation 

specialisation theory is integrated into the analysis to enhance the behavioural representation 

of the statistical models. 
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A suite of models is presented throughout the empirical portion of this thesis.  These models 

demonstrate different ways and degrees of explaining preference heterogeneity as well as 

identifying anglers’ substitution patterns.  The results show that North Canterbury anglers’ 

preferences vary considerably.  Resource disturbances such as riparian margin erosion, 

reduced water visibility and declines in catch rates can cause significant declines in angler use 

of affected sites, and at the same time non-proportional increases in the use of unaffected sites.  

Recreation specialisation is found to be closely related to the types of fishing site conditions, 

experiences and regulations preferred by anglers.  Anglers’ preference intensities for fishing 

site attributes, such as catch rates, vary across different types of fishing sites.  This location 

specific preference heterogeneity is found to be related to specialisation.  Overall, the 

empirical findings indicate that conventional approaches to modelling angler site choice which 

do not incorporate a strong understanding of angler preference heterogeneity can lead to 

poorly representative models and suboptimal management and policy outcomes. 
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Chapter 1 

Introduction 
 

1.1  Background 
 

Individuals’ preferences, which are important determinants of their behaviour, are diverse.  

Such heterogeneity is evident in recreational contexts, including angling, where anglers seek 

different types of experiences in different settings (e.g., Bryan 1977).  In order to optimally 

manage recreational fishery resources it is important to understand anglers’ choice behaviour, 

their underlying preferences, the nature and extent of preference heterogeneity and their 

effects upon the resource on which the sport relies.  

 

During the past three decades there has been a rise in the interest, application and econometric 

advancement in discrete choice models (DCM) (Train 1998; Train 2003).  The interest in 

DCMs in recreation, environmental and natural resource economics has been motivated by the 

analytical framework’s usefulness for revealing preferences, non-market values and 

forecasting behaviour (Bennett & Blamey 2001; Hanley et al. 2003; Scarpa & Alberini 2005).  

Discrete choice models, which are part of the family of random utility models (RUMs), 

explain individuals’ choice(s) from alternatives using indirect utility functions comprised of 

observed and unobserved components (McFadden 1974). The observed, or deterministic 

component of utility comprises variables ‘observed’ by the researcher measuring attributes of 

the alternatives and decision-maker, plus estimated coefficients, i.e., preference parameters 

indicating the relative influence of these variables on choice 1

                                                 
1 Research may also include other variables such as contextual choice influences. 

.  The unobserved or stochastic 

component of utility contains behavioural influences not explained deterministically (Luce 

1959; Marschak 1960).  These influences are represented in each alternative’s utility function 

by an error term.  Because individuals’ levels of unobserved utility are unknown, an 

assumption must be made regarding their distribution.  
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The conventional multinomial logit (MNL) model (McFadden 1974), which uses maximum 

likelihood estimation, has error terms that are independently and identically distributed (IID) 

extreme value type 1 (EV1).  While MNL is simple to estimate, it is very inflexible because 

coefficients are estimated as fixed estimates (implying individuals have identical preferences) 

and the independence from irrelevant alternatives (IIA) property is implied.  The IIA property 

dictates that the ratio of choice probabilities for any pair of alternatives is independent of any 

other alternative (Luce 1959).  As a result, an MNL model cannot capture unexplained taste 

variation in deterministic utility and predicts very rigid patterns of substitution which may not 

reflect those exhibited in the data (Ben-Akiva & Lerman 1985).  Over time, a number of 

econometric developments have led to DCMs with considerably more flexibility than MNL.   

The evolution in DCMs began with models that relaxed the IID assumption to allow 

correlation and heteroscedasticity in unobserved utility, e.g., nested logit (McFadden 1978), 

cross nested logit (CNL) (Vovsha 1997) and heteroscedastic extreme value (HEV) (Bhat 

1995).  In the mid 1990’s interest in the field shifted toward models which incorporated more 

flexible ways of capturing taste variation in deterministic utility.  Latent class multinomial 

logit (LC-MNL) models started this trend by allowing individuals’ tastes to be represented as 

finite distributions over latent classes (Swait 1994).  While LC-MNL can be estimated 

relatively easily and can incorporate covariates to inform class membership, the model 

maintains the IID assumption within classes.  And so, through the mid 1990’s, research was 

limited to models which either relaxed the IID assumption or incorporated a limited amount 

of random preference heterogeneity in deterministic utility.  In the late 1990’s increases in 

computer speed and developments in estimation techniques (e.g., Börsh-Saupan & 

Hajivassiliou 1993) led to the estimation feasibility and breakthrough of the highly flexible 

mixed logit (ML) model (Train 1998; Train 2003). 

 

Mixed logit refers to a generalised modelling framework which uses simulation-assisted 

estimation to allow random taste heterogeneity and a full relaxation of IID while maintaining 

a tractable kernel EV1 error term (Train 2003).  The ML framework includes: (i) random 

parameters [i.e., random parameters logit (RPL)] to allow preference coefficients in observed 

utility to follow continuous distributions to capture taste heterogeneity over the population 

(Train 1998); (ii) error components to allow heteroscedaticity and any pattern of correlation 



 12 

between unobserved utilities (Brownstone et al. 2000) and (iii) extensions, which allow both 

random parameters and error components to be decomposed to capture additional 

understanding of the specific tastes of individuals (Greene et al. 2006; Greene & Hensher 

2007). 

 

In recent years ML has been applied in a wide range of fields such as transport (e.g., Greene & 

Hensher 2007), health economics (e.g., Borah 2006), food choices (e.g., Jaeger & Rose 2008), 

corporate takeovers (e.g, Jones & Hensher 2007), and recreation and natural resource 

economics (Train 1998; Scarpa & Alberini 2005).  Applications have tended to specify either 

random parameters (e.g., Train 1998) or error components (e.g., Brownstone & Train 1999).  

However, given sufficient data quality it is possible to incorporate both simultaneously (e.g., 

Scarpa et al. 2005; Scarpa et al. 2007; Campbell et al. 2008; Hu et al. 2008).  In the ML 

model, including random parameters, error components and extensions, there is a flexible and 

powerful framework for elucidating preference heterogeneity, substitution patterns and 

determinants thereof from choice data.  The ML framework and its potential further 

application and enhancement with recreation specialisation theory provide the central focus of 

this research. 

 

Recreation specialisation (RS), first conceptualised by Bryan (1977) suggests that 

recreationists’ behaviours, preferences and cognitions are related to specialisation.  

Specialisation is a multidimensional concept measured by indicators of experience, skill and 

commitment (Bryan 1977; Scott & Shafer 2001).  Anglers with low specialisation are 

expected to prefer fishing with others and higher bag limits (but not place great emphasis on 

catching large quantities of fish).  Due to their limited awareness and involvement anglers 

with low specialisation are not expected to be very aware of, or concerned with, resource 

disturbances.  Recreation specialisation theory predicts that with increasing experience, skill 

and commitment individuals’ preferences and cognitions undergo a transformation.  As 

anglers specialise they are expected to become particular about the settings in which they fish, 

emphasise catching more and larger fish, prefer to fish alone or with close peers and prefer 

regulations which conserve the fish stock.  Due to their high level of awareness and 

involvement, specialised anglers are expected to be relatively more concerned about and 
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averse to resource disturbances.  Research has found that specialised anglers place greater 

value on non-catch related aspects of fishing sites (Oh et al. 2005; Oh & Ditton 2006), have a 

more complex representation of the activity (Ditton et al. 1992; Fisher 1997; Miller & Graefe 

2000) and ability to describe site attributes with greater specificity (Schreyer & Beaulieu 

1986).   

 

Since Bryan’s (1977) initial conceptualisation, RS has been given a considerable amount of 

attention in the leisure studies literature (e.g., Ditton et al. 1992; Miller & Graefe 2000; Lee & 

Scott 2004; Oh & Ditton 2006; Dorow et al. 2009).  This growing literature has stimulated 

important measurement and conceptualisation debate which is still largely unresolved (e.g., 

Scott & Shafer 2001).   

 

1.2  Aims 
 

This thesis is focused on the application of advanced DCMs, namely ML and to a lesser extent 

LC-MNL, to understand preference heterogeneity and substitution patterns among recreational 

anglers.  Recreational specialisation theory is integrated into some of these models.  This 

linkage provides the opportunity for cross-pollenisation between RS and discrete choice 

methodology by improving the explanation of angler preference heterogeneity within the 

context of a DCM, testing RS theory and refining the measurement and conceptualisation of 

RS.  McFadden (2001, p. 12) has suggested such a linkage: 

 

“What lies ahead for discrete choice analysis? While it has shown itself to be 
capable of giving good answers to a broad array of policy questions, some 
possibilities for development of the approach are still to be realised.  The 
potentially important roles of information processing, perception formation and 
cognitive illusions are just beginning to be explored and behavioural and 
experimental economics are still in their adolescence. The economic theory of 
consumers will be enriched by behavioural evidence.  I believe that the RUM 
hypothesis for decision-making, modified to give a much larger role for the role of 
experience and information in the formation of perceptions and expression of 
preferences, will be able to explain most economic choice behaviour in the field 
and in the laboratory”. 
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Advanced DCMs and their linkage with RS are applied and tested in this thesis using the case 

of New Zealand recreational trout fisheries.  New Zealand is internationally regarded as 

having some of the world’s best trout fishing given the country’s diverse range of scenic 

streams, rivers and lakes.  Most of these waters contain self-sustaining stocks of large wild 

trout which are known for being extremely difficult to catch at times (Hill & Marshall 1985).  

Specialised angling techniques and equipment have been developed, and are used by trout 

fishers for particular types of waters and conditions (Hill & Marshall 1985).  The case study 

focuses on the North Canterbury region of the South Island which covers a large geographical 

area and contains a wide variety of fishing sites ranging from large mainstem-braided rivers 

and small lowland streams to backcountry rivers and lakes (Unwin & Image 2003; Unwin 

2009).  In the past two decades some of these fishing sites have experienced resource 

disturbances including: riparian margin erosion, reduced water visibility, loss of trout stocks 

and invasion by Didymomosphenia geminata (Didymo) (e.g., Young & Huryn 1999; Hayes 

2002; Davies-Colley et al. 2004; Young et al. 2005).  Didymo is a freshwater diatom which 

covers river substrates and lake margins causing nuisance to anglers and changes to aesthetics 

(e.g., Sutherland et al. 2007).  Angler pressure and congestion is also occurring at greater 

levels on some waters, reducing trout catchability (Young & Hayes 2004) and the opportunity 

for angler solitude (Walrond 2001).  The influence that these effects have on angler choice 

behaviour is not well understood. 

 

There is strong evidence that angler activity in North Canterbury is changing.  In the past two 

decades North Canterbury has experienced license sale volatility and large scale 

redistributions in where anglers are fishing (Unwin & Image 2003; Unwin 2009).  This is 

problematic for fishery managers because it can lead to the overfishing of some fragile waters 

(e.g., Young & Hayes 2004) and falling revenue which limits managers’ ability to manage the 

fisheries (Abernathy 2006).  Resource disturbances have been implicated as possible drivers 

of the changes in angler activity.  However, empirical support is very limited.  Given fishing 

site diversity, angler diversity and the unknown influence of the various kinds of resource 

disturbances on angler choice behaviour, the case of North Canterbury provides rich grounds 

for applying flexible DCMs integrated with RS theory to study the determinants of angler site 

choice. 
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1.3  Contributions 
 

This research focuses on applying and enhancing flexible DCMs with additional theory to 

improve behavioural understanding and representation.  Through this focus the thesis makes a 

number of contributions.  Broadly, the applied econometric contributions relate to the 

application of advanced DCMs and evaluation of their performance compared to more 

conventional approaches on a number of statistical and predictive criteria.  Via this approach a 

number of fishery management issues are addressed: 

 

• How do changes to water visibility, catch rates, angler encounter rates, trout size, bag 

limit regulations, the quality of riparian margins, and the presence of Didymo influence 

trout angler choice behaviour?   To what extent do anglers’ preferences differ? 

 

• What is the nature of anglers’ substitution patterns?  Are they proportional or non-

proportional?  Given environmental degradation of lowland streams what is likely to 

happen to use of other fishing sites? 

 

• Do anglers’ preferences for fishing site attributes, e.g., catching an additional trout, 

differ in intensity on different types of fishing sites?   

 

This thesis also makes a number of contributions to the literature on RS, including the 

demonstration of a number of approaches for linking RS with DCMs.  The motivation is to 

understand the relevance of RS indicators in determining preference and to test whether 

individuals’ preferences and choice processes are consistent with their levels of specialisation. 

 

Several other smaller scale contributions are made by this thesis.  These will be discussed in 

the appropriate chapters. 
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1.4  Outline of the thesis 
 

The following section outlines the contents of the thesis chapters.  

 

• Chapter 2 begins with a discussion of the underpinnings of random utility theory 

including sections that deal with particular DCM forms including: MNL, various 

generalised extreme value (GEV) models, LC-MNL, ML and extended ML.  This 

progression approximately follows chronology and improvements in flexibility.  Each 

model’s properties, merits and limitations are discussed.  Relevant literature is reviewed. 

 

• Chapter 3 describes the RS concept and theory as well as measurement issues. 

 

• Chapter 4 explains in detail the case of New Zealand recreational trout fisheries 

including: (i) angler use and its significance, (ii) the different types of fishing sites, (iii) 

the different kinds of resource disturbances, and (iv) recent trends in angler activity. 

 

• Chapter 5 reports the research design process, including focus groups, experimental 

design generation, survey construction, piloting and administration. This is followed by 

descriptive statistics of the data collected. 

 

• Chapter 6 explores extended ML models, which simultaneously specify random 

parameters plus error components.  These models capture both preference heterogeneity 

for observed fishing site attributes and variance differences in stochastic utility at the 

alternative level.  The error components are independent of the random parameters and 

fully relax the IID property.  The model is further generalised to control for 

heterogeneity in the random parameter means and heteroscedasticity in the variances of 

the random parameters as well as error components using anglers’ self reported skill 

levels.  The performance of the extended ML models is evaluated against MNL and LC-

MNL models using a scenario which simulates environmental degradation to lowland 

streams.   
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• Chapter 7 describes different approaches for integrating RS in discrete choice analysis.  

One approach analyses RS indicators individually.  The second approach analyses 

variables which identify individuals’ levels of specialisation.  Different models, LC-

MNL, MNL, multinomial logit-error component (MNL-EC) and extended ML models, 

are used to test these different ways of operationalising RS.  

 

• Chapter 8 investigates whether anglers’ preference intensities for fishing site attributes 

differ across backcountry rivers, lowland streams, mainstem-braided rivers and lakes.  

After reviewing relevant literature and drawing out the management and policy 

implications, MNL and MNL-EC models are estimated with generic and alternative 

specific parameters.  Auxiliary statistical tests are applied to determine whether the 

estimated site specific coefficients are statistically different. 

 

• Chapter 9 investigates alternative specific preference heterogeneity among specialised 

anglers. 

 

• Chapter 10 synthesises the findings, discusses limitations and suggests opportunities for 

future research. 
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Chapter 2  

Discrete Choice Models 
 

2.1  The behavioral foundation of discrete choice models 
 
Neo-Classical micro-economic consumer theory suggests that individuals are rational 

decision-makers and when faced with a choice between alternatives, choose the alternative, 

given a budget constraint and underlying preferences, which maximises utility.  Lancaster 

(1966) broadens this view, suggesting that an alternative’s utility can be decomposed into 

attribute components.  Random utility theory (RUT), originated by Thurston (1927) and later 

developed by Luce (1959) and Marschak (1960), views the decision process from the 

researcher perspective.  In RUT, the decision modelling process is probabilistic, because while 

the decision-maker has full knowledge of the determinants of choice (i.e., attributes), the 

researcher does not.  Therefore, the researcher, due to incomplete information, cannot 

perfectly predict individuals’ decisions.   

 

Discrete choice models (DCMs) integrate RUT into a framework in which utilities estimated 

for individuals’ alternatives are specified with indirect utility functions composed of observed 

(deterministic) and unobserved (stochastic) components2.  The deterministic component of 

utility is comprised of attributes of the alternative observed by the researcher (or other 

influences on choice, e.g., decision maker characteristics or interactions of these variables), 

plus estimated coefficients.  The stochastic component of utility is comprised of: i) 

unobserved utility, ii) unobserved preference heterogeneity, iii) estimation error and iv) 

measurement error which arise from the use of proxy variables (Manski 1977)3

                                                 
2 This thesis will interchangeably use the terms deterministic and observed utility as well as the terms stochastic 
and unobserved utility. 

.  Stochastic 

utility is represented by an additive error term.  An assumption must be made for the 

distributional form that the error term takes (Manski 1977).  This assumption is extremely 

3 It is for this reason that stochastic utility can more generally be referred to as the unobserved effects. 
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important because it impacts model flexibility and the assumptions made about individuals’ 

tastes and substitution patterns. 

 

Discrete choice models utilise data on individuals’ decision outcomes as well as the attributes 

which comprise the alternatives in individuals’ ‘choice set(s)’.  Variability in attribute levels 

(i.e., qualities or quantities) across choices and/or alternatives is required to estimate 

coefficients which are indicative of the relative importance of those attributes to the decision 

outcome.  These parameters are interpreted as individuals’ preferences for constituent 

attributes.  

 

Formally, let the utility (U) of individual angler i=1,…,N for each alternative (j) be a function 

of a vector of attributes (x) describing the alternative4

 

. Vector β represents anglers’ 

preferences, which the analyst wishes to estimate.  In this specification the vector β is not 

individual-specific, as denoted by the absence of subscript i.  ε represents the unobserved 

portion of utility.  Each individual’s level of unobserved utility for each alternative is treated 

as random.  Formally, let i’s utility for alternative j be defined as: 

Uij  =  βxij + εij                                                                          (1.0)

  

The probability (P) of alternative j being chosen by individual i can be expressed as the 

probability that the utility of alternative j exceeds the utility of all other alternatives q: 

                                                

Pij = Prob  [Uij >  Uiq]                          ∀q ≠ j                          (1.1)

  

Substituting (1.0) into (1.1) gives: 

             

 Pij = Prob  [βxij + εij  >  βxiq + εiq]  ∀q ≠ j                                    (1.2) 

 

Through algebraic manipulation: 

                                                 
                                                 
4 Vector x can also include contextual influences and characteristics of the individual. 
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 Pij       =  Prob  [βxij - βxiq  >  εiq - εij]  ∀q ≠ j                   (1.3) 

 

Equation 1.3 states that the probability that individual i chooses alternative j is simply the 

probability that the difference in observed utility βxij - βxiq is greater than the difference in 

unobserved utility εiq - εij. 

 

2.2  The multinomial logit model 
 

The assumption that unobserved utilities for each alternative are independently and identically 

distributed (IID) extreme value type 1 (EV1) produces the MNL model (McFadden 1974) and 

allows the unobserved utility difference εiq - εij and equation 1.3 to have a closed form solution 

which can be calculated analytically.  In most software and applications the variance 2σ  of 

each jε  is set to one.  Maximum likelihood procedures are used to estimate β .  The 

probability that the choice outcome iy  is alternative j from all alternatives available to the 

individual can be expressed as the logit formula (Train 2003, pp. 38-41; 78-79):   

 

( )
∑ =

==
J

q iq

ij
i jyP

1 )x(exp

)x (exp     

µβ

µβ
                                          (2)

                                                           

where μ is a scale parameter which is inversely related to the variance of ε (Ben-Akiva & 

Lerman 1985).  For MNL,   

 

22 6/ σπµ = ,                         (3) 

 

However, the scale parameter cannot be specifically identified in any particular model because 

of confounding with the vector of utility parameters (Swait & Louviere 1993)5

 

.   

                                                 
5 Recent developments in ‘scale heterogeneity’ multinomial logit (S-MNL) and generalised multinomial logit (G-
MNL) models allow one to separate scale from the vector of utility parameters (Fiebig et al. 2009). 
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2.2.1  Multinomial logit model limitations 
 

While the MNL model is the most commonly used DCM, it has three extremely restrictive 

properties (Train 2003; Hensher et al. 2005).  

 

2.2.1.1  Heterogeneity 
 

The MNL model produces parameter estimates which assume that individuals have 

homogeneous preferences for observed attributes, i.e., vector β represents population means.  

Two convenient, but limiting, approaches have been used to incorporate systematic (not 

random) heterogeneity in deterministic utility while maintaining the basic MNL model.   

 

First, individual characteristics or other covariates can be interacted (multiplied) with attribute 

values.  Parameters can then be estimated for each interaction term to reveal the effect that the 

two variables have in concert upon utility (e.g., Adamowicz et al. 1997; Morrison et al. 1999; 

Bauer et al. 2004).  However, studies have found that significant unobserved heterogeneity 

remains even after interactions with demographic variables and attributes are specified 

(Scarpa et al. 2005; Hynes et al. 2008). 

 

Second, a two step process comprising an exogenous market segmentation technique, such as 

cluster analysis, can segment individuals into cohorts (e.g., Oh & Ditton 2006).  Separate 

MNL models are estimated for each cohort.  This segmentation approach is problematic 

because it does not reveal a full population preference distribution and secondly because it 

results in a very large number of preference parameters (depending on the number of cohorts).  

These parameters cannot be directly compared across cohorts because of differing scale 

effects (Ben-Akiva & Lerman 1985).  In order draw comparisons across models estimated 

from different samples scale differences must be considered.  Approaches which solve the 
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scale difference issue include: comparing ratios of coefficients, e.g., willingness to pay (WTP) 

estimates, the “nested logit trick” Hensher et al. (2008), and the Swait & Louviere (1993) test.   

 

2.2.1.2  Non-correlation and homoscedasticity 
 

The MNL model is based on the assumption that the error terms associated with each 

alternative have unit variance and are uncorrelated.  In other words, the covariance matrix has 

ones on the diagonal and zeros in all off-diagonal elements.   This assumption is unlikely to 

hold in practice.  To illustrate how unobserved utility can be correlated across alternatives 

consider a scenario where individuals’ choices among fishing sites are influenced by scenic 

attributes not observed by the researcher.  Because the salient scenic attributes are unobserved 

by the researcher their influence becomes embedded in unobserved utility.  Consequently, the 

error terms of the alternatives with common scenic attributes are correlated.  However, an 

MNL model, because of the IID assumption, cannot identify these relationships.  Similarly, in 

a repeated choice situation in which individuals’ choices are consistently influenced by the 

same scenic attributes, error terms become correlated not only across alternatives but also 

across choice situations.  Again, the MNL model cannot identify this pattern of correlation.  

Correlation in unobserved utilities has important implications when forecasting. 

   

2.2.1.3  Forecasting  
 

The MNL model, as a result of the IID assumption, exhibits the independence from irrelevant 

alternatives (IIA) property (Luce 1959).  The IIA property dictates that the ratio of choice 

probabilities for any pair of alternatives is independent of any other alternative.  Multinomial 

logit will predict, given the addition, elimination, or qualitative change to a particular 

alternative that anglers will substitute to other alternatives in a proportional manner (Ben-

Akiva & Lerman 1985).  

 

To demonstrate the effect of the IIA property on model forecasts, consider a situation in 

which: 
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• Initially, anglers have three fishing sites available.  Call these Backcountry River (A), 

Lowland Stream and Lake (Table 2-1).  Each site maintains an equal probability 

(33.3%) of being chosen (as depicted in column 1). 

 

• A fourth fishing site, Backcountry River (B), which had been closed to anglers because 

of concerns over the spread of an invasive algae, Didymo geminata (Didymo) is 

reopened. 

 

• The Backcountry River B has scenic characteristics identical to Backcountry River A.  

However, these scenic attributes are not entered deterministically in the MNL model. 

 

 

Table 2-1: An example of how the MNL model can bias forecasts   
Pre-reopening Post-reopening MNL forecast

Backcountry River B closed 16.6% 25%
Backcountry River A 33.3% 16.6% 25%
Lowland Stream 33.3% 33.3% 25%
Lake 33.3% 33.3% 25%

  100% 100% 100%       
 

As a result of the reopening Backcountry River B half of the anglers previously fishing 

Backcountry River A substitute to Backcountry River B.  The anglers fishing at the Lake and 

Lowland Stream do not change their behaviour.  Consequently, the Backcountry River A and 

Backcountry River B now have an equal probability of being chosen (16.6%) while the choice 

probabilities of the Lowland Stream and Lake alternatives remain unchanged at their previous 

levels (column 2).  Importantly, the relative choice probabilities between alternatives have 

now changed (i.e., the probability of choosing the Backcountry River A compared to the 

Lowland Stream has gone from 33.3% / 33.3% =1 to 16.6% / 33.3% = .5).  The MNL model 

predicts a very different outcome by assuming proportionate changes in choice probabilities 

(i.e., the probability of choosing the Backcountry River A compared the Lowland Stream does 

not change 33.3% / 33.3% =1; 25% / 25% = 1).  The forecast is biased because the similarity 
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in unobserved utilities between the Backcountry River A and B were not identified by the 

MNL model due to the IID assumption.  This simple illustration demonstrates the importance 

of using models which relax IID to identify important patterns of correlation in unobserved 

utility.  The illustration also raises the importance for researchers to observe as many salient 

influences on individuals’ site choices as possible to reduce the content in the unobserved 

component of utility.  “The consensus is that a good error is a zero error; that is, it is desirable 

to expand on the systematic term thereby reducing the disturbance term” (Ben-Akiva et al. 

2002, p. 171).  However, capturing all utility systematically is virtually impossible in most 

choice contexts, not the least angling where “the hefty cost of collecting detailed data for 

diffuse locations and the presence of characteristics such as aesthetic appeal, secludedness, or 

fish catch that are hard to measure make unobserved characteristics [utility] an undeniable 

reality in recreation demand modelling” (Murdock 2006, p. 1-2).   

 

2.2.2  Multinomial logit model applications 
 

Multinomial logit is the basis for many of the more flexible models which maintain an EV1 

disturbance, e.g., generalised extreme value (GEV), latent class multinomial logit (LC-MNL) 

and mixed logit (ML) models.  Often studies reporting these more advanced models will 

report an MNL model for comparison.  Therefore, examples of MNL, even in the recreation, 

environmental and natural resource economics literatures, are numerous - too numerous to 

cover in detail.  Examples of recreational angling site choice studies that have reported MNL 

include, Bockstael et al. (1989); Parsons & Needleman (1992); Feather (1994); Watson et al. 

(1994); McConnell et al. (1995); Oh & Ditton (2006) and Dorow et al. (2009).  

 

In summary, the limitations of the MNL model are widely recognized in the choice modelling 

literature and have been from early on (e.g., Williams 1977; Daly & Zachary 1978; McFadden 

1978).  Over the past thirty years a number of models and extensions to MNL have been 

developed to improve realism and behavioural understanding.  The next sections cover the 

major developments starting with early innovations which partially relaxed the IID 

assumption.   
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2.3  Generalised extreme value models 
 

Generalised extreme value models (GEV) refer to a family of logit models which partially 

relax the IID assumption, but maintain an EV1 functional form.  The various GEV members 

are differentiated by how they relax the “independence” and/or “identically distributed” part 

of the IID assumption.  There are a large number of GEV variants.  The primary models are 

nested logit (NL), cross-nested logit (CNL), generalised nested logit (GNL) and 

heteroscedastic extreme value (HEV).  The next section provides an overview of these 

particular GEV models, identifies their strengths, discusses their limitations and briefly refers 

to relevant applications.  Generalised extreme value models are not applied in this thesis and 

therefore formal specifications are omitted.  More in-depth coverage and discussion of GEV 

models can be found in Train (2003), Hess (2005) and Swait (2006).  Ortuzar (2001) provides 

a review of the historical development of NL models.  

 

2.3.1  Nested logit 
 

The NL model (Williams 1977; Daly & Zachary 1978; McFadden 1978) partially addresses 

the problem of correlation in unobserved utilities (Ben-Akiva & Lerman 1985).  Correlated 

error terms imply substitutability, i.e., a high cross elasticity.  The NL model partially relaxes 

the IID assumption by allowing the “nesting” of alternatives thought to share similarities in 

unobserved utility.  Nesting partially relaxes the constant variance assumption and allows 

covariance in the unobserved utility of alternatives within common nests. Nesting can occur 

on multiple levels.  Nested logit assumes the correlation between alternatives in different nests 

is zero.   

 

Recall the fishing site choice scenario in section 2.2.1.3 involving four fishing site alternatives 

named; Backcountry River A, Backcountry River B, Lowland Stream, and Lake.  In this 

scenario, the Backcountry River A and B error terms were correlated due to scenic attributes 

not captured deterministically.   
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Figure 2-1 depicts a two level nesting structure which could be used to identify correlation in 

unobserved utility.  The Backcountry River A and B are placed into a ‘Backcountry nest’ to 

capture similarity between these two alternatives, e.g., scenic attributes (bottom of Figure 2-

1).  Further up the nesting structure, all river-based alternatives are nested into a ‘River nest’ 

to capture potential similarity on another level, e.g., shared access attributes.  The higher level 

nests include the variance at the lower levels. 

 

Figure 2-1: Example of a nesting structure 

 
 
 
 
  
 
 
 
 
 

 

 

 

 

 

 

Nesting is an arbitrary process which involves empirically testing different tree structures 

(e.g., Hauber & Parsons 2000)6

 

.  Various statistical criteria can be used to guide this process.  

If differences in variance are not present, as identified by non-significant inclusive value (IV) 

parameters (i.e., the ratio of the scale parameters between nests equals one), then the NL 

model collapses to an MNL model (Greene 2007). 

 

                                                 
6 Hensher (1999) demonstrates how the HEV model can be used as a search engine for identifying the 
appropriate nesting structure.  
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2.3.1.1   Limitations 
 

The key feature of NL is that it allows alternatives’ unobserved utility variances to differ.  

While NL allows some correlation within nests, it does not allow correlation between nests.  

Conventional NL maintains an MNL-like structure for its deterministic component of utility7

 

.  

Therefore, a NL model is limited in its ability to incorporate preference heterogeneity in 

systematic utility.  While the standard NL does not allow for a panel data formulation to 

control for an individual’s persistent unobserved tastes across choice situations an extension, 

the repeated NL, does (e.g., Morey et al. 1993).   

2.3.1.2   Applications 
 

Like MNL, the NL model has numerous applications and still appears in the literature (e.g., 

Jones & Hensher 2007).  Numerous recreation fishing site choice studies have employed NL.  

For instance, Morey et al. (1993) use a repeated NL model to address both Penobscot River 

anglers’ site choice and number of trips per season; Jones & Lupi (1999) employ NL to 

investigate how a varying range of fishing activities included in the choice set (i.e., the 

comparative substitutability of fishing sites) affects welfare measures for trout and salmon 

anglers fishing the Great Lakes and other inland fisheries.  Other examples of NL applications 

in fishing site contexts include, but are not limited to: Morey et al. (1991), Hauber & Parsons 

(2000) and Morey et al. (2002).  Many of these studies did not report MNL base models to 

determine to what degree NL specifications and nesting structures improved statistical fit or 

forecast accuracy.  Jones & Hensher (2007) studied corporate takeovers and evaluated the 

predictive performance of MNL, NL, LC-MNL and ML models.  Briefly, these authors find 

that, “the nested logit model has performed better than basic MNL, but still trails mixed logit 

and latent class by significant margins” (Jones & Hensher 2007, p. 1215).   

 

                                                 
7 The distinction ‘conventional’ is made because in a few instances research (Hess 2005; Hess et al. 2005;  
Gopinath et al. 2005) has estimated hybrid random parameters models with closed form NL (GEV) error 
structures.  
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2.3.2  Generalised nested logit 
 

Generalised nested logit (GNL) is an extension to the NL model which allows correlation 

between alternatives in different nests to be non-zero (e.g., Wen & Koppleman 2001).  This 

provides greater flexibility in the estimation of substitution, or cross-elasticity, between 

alternative sites compared to NL.  This is accomplished by ‘cross nesting’, i.e., allowing 

alternatives to appear in more than one nest.  Figure 2-2 modifies Figure 2-1 to depict an 

example of where the Backcountry River B is cross nested, appearing in two separate nests 

(the Backcountry and Backcountry River B/Lake nests) to allow for additional patterns of 

correlation.  

 

Figure 2-2: Example of a cross-nesting structure  

 
 
 
  
 
 
 
 
 

 

 

 

 

 

 

2.3.2.1  Limitations 
 

Like NL, GNL’s deterministic component of utility is analogous to MNL.  As a result, GNL is 

limited in its ability to incorporate random preference heterogeneity in deterministic utility.  

These limitations were previously described in sections 2.2.1.1 and 2.2.1.2. 
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2.3.2.2  Applications 
 

The GNL model [including special cases: the paired combinatorial logit model (Chu 1989; 

Koppelman & Wen 2000), cross nested logit (CNL) (e.g., Vovsha 1997; Bhat & Guo 2004); 

the ordered generalised extreme value model (Small 1987) and the product differentiation 

model (Bresnahan et al. 1997) is less common than NL.  Hunt et al. (2007) provide a recent 

application of the GNL model (CNL specifically) to a recreation problem involving a revealed 

preference study of 431 fishing sites.  Hunt et al. (2007) found: (i) CNL provided an 

improvement in statistical fit over MNL, but not over NL, (ii) “CNL revealed a much more 

complex pattern of spatial substitution among fishing sites than either the MNL or NL 

models” (p. 169), and (iii) no systematic differences in anglers’ welfare estimates between 

CNL and MNL. 

 

2.3.3  Heteroscedastic extreme value  
 

The HEV model (Bhat 1995) does not have a closed form solution and allows the variances of 

alternatives’ errors disturbances to be heteroscedastic.  Error heteroscedasticity is translated 

into differing scale factors for each alternative which affects coefficient estimates in observed 

utility by either scaling them up or down relative to other alternatives.  Each alternative (but 

not each individual decision maker) is allowed to have a different scale factor.  For 

identification purposes the scale factor of one of the alternatives is set to 1.  Heteroscedasticity 

allows freedom from the IIA property and differential cross elasticities among alternatives.  

The HEV model, unlike NL and GNL, maintains independence among alternatives’ error 

terms.   
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2.3.3.1  Limitations 
 

The HEV model does not allow for any pattern of correlation between alternatives’ sj 'ε or 

across individual’s repeated choices.  Further, the HEV model, like all conventional GEV 

variants, maintains the MNL-like structure for the deterministic component of utility8

 

.    

2.3.3.2  Applications 
 

HEV was initially developed and applied by Bhat (1995) to study inter city travel mode 

choice.  Bhat (1995) found the HEV model to be superior to the MNL model in predicting 

complex substitution patterns in transportation mode choice.  Munizaga et al. (2000) 

compared HEV with different model structures (e.g., MNL, NL, multinomial probit) using 

simulated data with heteroscedasticity between two groups of alternatives.  Munizaga et al.’s 

(2000) results showed that in the case of heteroscedasticity across alternatives, the HEV (also 

MNP and NL) performed better than MNL in policy analysis.  Examples of other HEV 

applications include those in Louviere et al. (2000).  Searches through the published literature 

suggest the HEV model has not been applied to study recreation site choice.  

 

2.3.4  Generalised extreme value model summary 
 

Generalised extreme value models relax the IID assumption.  While the different GEVs relax 

the IID assumption in different ways, and to varying degrees, none completely relaxes all 

aspects of the assumption.  All conventional GEV models are limited because they do not 

allow for the incorporation of random preference heterogeneity in observed utility.  

Conventional GEV models are essentially MNL models with flexible disturbances.       

 

 

 

                                                 
8 Again the word conventional is carefully used here because there are exceptions.  Hensher (1999) specifies a 
latent class-HEV model in which preference coefficients are allowed to follow finite mixture distributions to 
capture taste heterogeneity.  
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2.4  Latent class multinomial logit choice models 
 

Latent class choice models (Gupta & Chintagunta 1994; Swait 1994) incorporate preference 

heterogeneity into deterministic utility through a simultaneous estimation process that 

estimates the joint probability of whether a particular individual chooses an alternative and 

belongs to a class of individuals who share identical characteristics and preferences.  The most 

common form of latent class choice model is the latent class multinomial logit (LC-MNL) 

model.   

Following Greene (2007), the probability that individual i, during choice situation s, chooses 

alternative j, is conditioned on their membership of class C.  
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where the utility function is described as:             

Uijs =  βcxijs + εijs                                                                              (5) 

Notice that the vector βc is specified as a class specific vector (denoted by the subscript c).  

The LC-MNL assumes that given class assignment C, the choice situations are independent 

and induces the restrictive IIA property within classes.   

Individuals’ class memberships are not observed by the analyst but may be (although it is not 

necessarily) informed by characteristics of the individual such as skill level, level of 

specialisation, or income.  Let Hic represent the prior probability of membership of class c for 

individual i taking the form of the MNL. 
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where zi represents observable characteristics of the individual which enter the model for class 

membership.  In order to identify the model the Cth parameter vector is normalised to zero.  
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This vector is represented by a constant term.  The probability that individual i chooses 

alternative j is expressed as: 

 

iccj

C

cij HPP ×Σ=
= |1

                       (7) 

 

The LC-MNL estimates coefficients for each pre-specified class C.  The distribution of 

coefficients over classes can be visualised as a finite distribution of preference points which 

captures preference heterogeneity over the population.  Increasing the number of classes 

specified in the model may allow for further differentiation of tastes.  However, at some point 

too much class differentiation causes a loss in statistical fit and interpretation becomes 

difficult due to the large number of estimated parameters that arise from estimating numerous 

classes. 

 

2.4.1  Limitations 
 

While LC-MNL relaxes IID between classes, it does not relax IID within classes (e.g., 

Provencher et al. 2002)9.  Each class maintains its own disturbance with variance equal to 

one10

                                                 
9 One exception is Hensher et al. (1999) where a LC-HEV model is generated to study intercity travel mode 
choice. 

.  There are a number of statistical criteria which can be used to identify the optimal 

number of classes, e.g., Akaike Information Criterion (AIC), corrected AIC (crAIC) (which 

penalises for extra parameters estimated), or Bayesian Information Criteria (BIC).  These 

criteria are described in Chapter 5.  Conventional specification tests such as the likelihood 

ratio test are not valid (Hynes et al. 2008).  However, AIC, AICr and BIC have been shown to 

be inconsistent.  For example, Hynes et al. (2008) found with the same data set the BIC 

statistic suggested the existence of six classes, AIC two classes, and crAIC nine!  To assist in 

the class specification decision Scarpa & Thiene (2005) recommend factoring the class 

10 Recently, Magidson & Vermunt (2007) have developed procedures to estimate extended latent class models in 
the Latent Gold Choice software.  This extended specification overcomes the constant scale assumption of LC-
MNL.  This is important because if the constant scale assumption (across classes) is violated, “the predictions 
contain additional amounts of error as well as potential bias” (Vermunt & Magidson 2007, p. 1). 
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specification decision also on: (i) the significance of parameter estimates, and (ii) the 

meaningfulness of the parameter signs. 

 

Finally, while relatively easy to estimate, LC-MNL is limited because it cannot identify 

continuous taste distributions.  Research by Elrod & Keane (1995) and Allenby & Rossi 

(1999) suggest that specifying taste distributions over a finite number of points instead of 

continuously underestimates the extent of heterogeneity. 

 

2.4.2  Applications 
 

A number of recreation-based studies have employed LC-MNL.  Boxall & Adamowicz (2002) 

investigated systematic utility differences among Boundary Water canoeists in Canada using 

attitudinal measures of motivations to inform the identification of classes.  Scarpa & Theine 

(2005) investigated preference heterogeneity among Italian Alpine Club rock climbers.  

Provencher et al. (2002) investigated serial correlation and preference heterogeneity among 

Lake Michigan salmon anglers and Provencher & Bishop (2004) used the same case to 

evaluate the forecasting ability of LC-MNL compared to RPL and MNL.  Provencher & 

Bishop (2004) found no model to be clearly superior to the others.  Morey et al. (2006) 

investigated class differences solely on the use of attitudinal responses (no choice data) to 

questions relating to boat fees, species catch rates and fish consumption advisories.  Scarpa et 

al. (2007) investigated the existence of latent classes among Italian hikers in terms of their 

total demand for days out, using years of experience and socio-economic variables.  Hynes et 

al. (2008) used LC-MNL to investigate kayakers’ site choices.  

 

2.5  Mixed logit 
 

Mixed logit (ML) (Train 1998; 2003) refers to a generalised modelling framework which 

maintains an EV1 disturbance, but uses simulated maximum likelihood estimation to allow 

coefficients to be estimated over a distribution (e.g., normal).  For a review of simulation 

methods see Hajivassiliou & Ruud (1994).  There are two general ML specifications, the 
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random parameters specification and the error components specification.  The different 

specifications allow heterogeneity to be expressed in the different components of the model.  

While research has tended to employ either random parameters or error components, both may 

be used in concert (e.g., Greene & Hensher 2007). 

 

The ML model initialises with an MNL model.  Random parameters are created by simulating 

(taking draws) around the MNL estimates according to a pre-specified distribution.  

Procedures can use random draws or smart draws such as Halton or shuffled Halton draws to 

improve estimation efficiency (Bhat 2003; Train 2003, p. 236).  An algorithm11

 

, guided by the 

log-likelihood (LL) function, is used in the simulation process to maximise the LL.  The 

model converges when the LL function is maximised.  This next section describes the RPL 

specification and its possible extensions, followed by a section which describes the error 

component specification and its extension.  The final section shows how random parameters 

can be estimated along with error components. 

2.5.1  Random parameters specification 
 
The RPL model is a special case of ML which allows preference coefficients in deterministic 

utility to be estimated over continuous distributions, representing preference heterogeneity 

over the population.  These taste distributions involve both mean and variance estimates.  If 

variance parameters are insignificant (implying zero taste variation), the RPL model collapses 

to MNL.  There is a great deal of latitude in investigating different distributional forms (e.g., 

normal, lognormal, triangular).  Random parameters logit can be estimated using a panel 

formulation which allows correlation across individual’s choices and relaxes IID.  

Incorporating variance around parameter means overcomes the restrictive IIA property (Train 

1998; 2003). 

Drawing directly from Greene (2007), the starting point is to assume the MNL depiction from 

(2), this time including alternative specific constants (ASCs), αj, and allowing for multiple 

choice situations, (s) per individual i. Alternative specific constants measure the mean effect 

                                                 
11 Newton-Raphson is a commonly used algorithm for this procedure. 
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of unobserved utility for alternatives and may be included for all choice model forms 

previously discussed, though they have been withheld up until now for simplicity.  One ASC 

must be normalized for identification purposes.  Typically, this normalisation is set to zero.  

Therefore, up to J-1 ASCs may be estimated where J is the number of alternatives in 

individuals’ choice sets. 
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The ML RPL specification takes form by allowing individual parameter estimates iβ  in the 

vector β where: 

 ikkkik νσββ +=                       (9) 

In this formulation βk is the population mean, νik is individual specific heterogeneity with 

mean zero and standard deviation equal to one, and σk is the standard deviation of the 

distribution of βik around βk. The analyst observes x and choices, and estimates βk and σk.  

Specification testing of different distributions, e.g., normal, lognormal, uniform or triangular, 

determines the appropriate distributional form.  Constraints can also be placed on the 

distribution so that the variance can be a function of the mean.  For instance, a triangular 

distribution can be constrained so that the spread is equal to the mean.  This insures that the 

entire distribution falls on either side of zero (e.g., Greene et al. 2006; Greene & Hensher 

2007). 

The benefit of RPL is that it can capture the entire population taste profile. This is in contrast 

to MNL and GEV models which can only identify the population mean with a fixed 

coefficient, or have to rely on interactions to capture systematic taste differences.   

Random parameters can identify taste differences in the absence of the interactions. As noted 

earlier, studies (e.g., Scarpa et al. 2005; Hynes et al. 2008) have found significant unobserved 

heterogeneity remains even after interactions with demographic variables and attributes are 
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specified.  This suggests that fixed estimate/interaction approaches miss large amounts of 

important behavioural information.  

Train (1998) first introduced RPL using individual level data, in an investigation of damages 

to recreational trout angling in Montana caused by mining operations12

 

.  Train (1998) found 

statistically significant variation in angler preferences and found RPL offered an improvement 

in statistical fit compared to MNL.  Since Train’s pioneering study, RPL has been increasingly 

applied in numerous disciplines such as health economics (e.g., Borah 2006), food choices 

(e.g., Jaeger & Rose 2008), household choices (e.g, Revelt & Train 1998), corporate takeovers 

(Jones & Hensher 2007) and transport (e.g., Greene et al. 2006).  In a recreational angling 

context, Phaneuf et al. (1998) found RPL to significantly improve model performance when 

investigating individuals’ site choices in the Wisconsin Great Lakes Region.  Breffle & Morey 

(2000), in their application to Maine and Eastern Canadian Atlantic salmon anglers, found that 

RPL explained choices significantly better than MNL and that “restricting preferences to be 

homogeneous often leads to significantly different mean consumer surplus estimates” (Breffle 

& Morey 2000, p.2).  Provencher & Bishop (2004) investigated the out-of-sample forecasting 

performance of MNL, LC-MNL and RPL in an application to salmon angling on Lake 

Michigan.  They found that both LC-MNL and RPL revealed statistically significant 

preference heterogeneity among anglers and improved model fit over MNL.  Hunt et al. (2005) 

investigated site choices among moose hunters in Northwest Ontario and Boxall & 

Adamowicz (2002), site choices among Boundary Water canoeists in Canada.  Searches 

through the published literature suggest that there have been only a small number of RPL 

applications in recreational fisheries (Train 1998; Phaneuf et al. 1998; McConnell &Tseng 

1999; Breffle & Morey 2000; Provencher & Bishop 2004; Murdock 2006). 

 

 

                                                 
12 Boyd & Mellman (1980) and Cardell & Dunbar (1980) were actually the first to apply RPL.  However, their 
model used aggregate share data rather than data for each decision-maker.  This simplification was required at 
the time due to computational constraints. 
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2.5.2  Random parameters plus control for heterogeneity and heteroscedasticity 
 
The random parameter specification can be further extended to control for heterogeneity and 

heteroscedasticity in the random parameter means and variances, respectively.  This feature 

allows research to incorporate an understanding of both systematic and random preference 

heterogeneity in deterministic utility.  This is accomplished by re-parameterising (i.e., 

decomposing) random parameter means and variances with covariate data.  A small body of 

research has used this procedure to decompose random parameter means (e.g., Greene et al. 

2006; Hynes et al. 2008) and variances (e.g., Greene et al. 2006; Greene & Hensher 2007).  

 

To allow σik to be heteroscedastic the specification (x) is extended to: 

 ]'exp[ ikkik hrωσσ =                     (10) 

where ωk are parameters which capture variance heterogeneity in the random parameters in 

systematic utility and hri  are observed variables of the individual (e.g., angler’s skill level). 

Greene & Hensher (2007) use the heteroscedastic random parameter formulation and found 

that gender has a statistically significant influence on individuals’ preferences for in-vehicle 

travel time and fares.  

The means are allowed to be heterogeneous according to observed variables (zi ) of the 

individual where δk are parameters which capture the mean shift.  Βik can now be specified as: 

 ikikikkik z νσδββ +′+=             (11) 

Hynes et al. (2008), in a kayaking application, control for heterogeneity in means of the 

random parameters using the individual’s self-rated level of kayaking skill.  Hynes et al. 

(2008) found preference intensities for water quality and star quality rating of kayaking sites 

to be related to skill level.  Other studies which have decomposed random parameter means 

outside of environmental and recreation studies include Bhat (1998), Bhat & Zhao (2002) and 

Greene et al. (2006).  Searches through the published literature suggest that no studies in the 

environmental and recreation economics literatures have controlled for heteroscedasticity in 

random parameters. 
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2.5.3  Error components 
 
The previous section demonstrated extensions to the RPL model which control for 

heterogeneity and heteroscedasticity in the random parameters.  However, this formulation 

depends on the selection of random parameter distributions and covariate data (e.g., anglers 

level of specialisation) to identify preference heterogeneity with residual heterogeneity left in 

the constant variance EV1 assumption (Greene & Hensher 2007).  An RPL model can be 

further generalised to incorporate error components which accounts for residual unobserved 

preference heterogeneity not identified by the random parameters.  Error components allow 

unrestricted patterns of inter-alternative correlation and heteroscedastic variances.  The 

estimation procedure for error components is the same as for random parameters.  Error 

components are typically estimated with normal distributions and can be specified for each 

alternative (alternative specific error components).  Parameters are arrived at which maximize 

the simulated LL.  Examples of applications of error components specifications include 

Brownstone & Train (1999), Herriges & Phaneuf (2002), Greene & Hensher (2007) and 

Jaeger & Rose (2008).   

From Greene (2007), the most basic form of the error components model adapts the MNL 

model (specification 2) with alternative specific error components (Eim) indexed by 

m=1,……M.  Eim is normally distributed Eim ~ N[0,1].  θm is the scale factor for error 

component m, and s allows for multiple choice situations.  Notice that βs are not individual 

specific.    
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where          SsJj ,.....1,,......1 ==  

Specification 12 is known as a multinomial logit-error component (MNL-EC) model. More 

elaborate forms of correlation can be handled by nesting and/or cross-nesting error 
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components.  This allows multiple alternatives to appear in the same error component, 

allowing alternatives to appear in more than one nest.  An alternative specific MNL-EC 

specification is analogous to an HEV model.  A nested MNL-EC specification is analogous to 

a NL model.  And, a cross-nested MNL-EC specification is analogous to a GNL model.  Any 

pattern of error correlation can be handled by the MNL-ECs within one model by 

simultaneously specifying alternative specific, nested and cross nested error components.  The 

MNL-EC model, therefore, has the combined flexibility of NL, GNL and HEV. 

To further generalize (12) to account for sources of heteroscedasticity in the distribution of εj 

the model becomes: 
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where exp(γ'm hei) is heteroscedasticity in the variance of the error terms which is captured by, 

hei, characteristics of individual i (e.g., skill level or specialisation).   

 

2.5.3.1  Random parameters with error components  
 
Error components can be estimated in addition to the random parameter specification (8), (e.g., 

Scarpa et al. 2005; Scarpa et al. 2007; Campbell et al. 2008; Hu et al. 2008).  This 

formulation allows account to be taken of: (1) random taste variation in deterministic utility, 

as well as (2) heteroscedasticity and (3) correlation in unobserved utility.  Hess (2005, p. 263) 

concludes from six different case-studies that if random parameters and error components are 

not both used there is a “risk of producing biased results, with the findings in relation to the 

modelled phenomenon, say random taste heterogeneity, being masked by the effects of the 

unmodelled phenomenon, say correlation between the unobserved part of utility of different 

alternatives”.  These effects are so important to differentiate that Hess (2005, p. 263) goes on 

to say that, “researchers should always strive to jointly allow for random taste heterogeneity 

and correlated error-terms, with the help of a GEV mixture model, or an appropriately 

specified MMNL model [A combined random parameters and error component model]. 



 40 

Although some risk of confounding still persists even with such advanced models, this is 

much reduced when compared to the more basic approaches.”   

From Greene (2007), a random parameters error components (RP-EC) model is specified as: 
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where Eim are individual specific random error terms and, as before, m indexes individual error 

terms.  Eim is normally distributed Eim ~ N[0,1], and θm is the scale factor for error component 

m.  To allow alternatives to appear in the same nest, djm is equal to 1 if Eim appears in the 

utility for alternative j and 0 otherwise. 

Few studies (e.g., Greene & Hensher 2007; Jaeger & Rose 2008) have simultaneously 

specified random parameters and error components.  Herriges & Phaneuf (2002, p. 1077) 

report, “dramatic increases in the richness of site substitution patterns captured via the 

inclusion of richer patterns of error correlation”.  Hess (2005) suggests that controlling for 

heterogeneity in observed and unobserved components of utility is important for 

unconfounding the sources of preference heterogeneity and reducing parameter bias. 

 

2.5.3.2  Random parameters with error components plus control for heterogeneity and  
  heteroscedasticity 
 
To further generalise (15) to account for sources of heteroscedasticity in the distribution of εj 

the model becomes: 
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where exp(γ'm hei) is heteroscedasticity in the variance of the error terms captured by hei, 

characteristics of the individual (e.g., skill level or specialisation).  The extended RP-EC  

specification (16) represents the most flexible DCM, according to Greene (2007) by allowing:   

• Random parameters to capture taste distributions for observed variables. 
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• Decomposition of random parameter means and variances with covariates to control for 

heterogeneity and heteroscedasticity. 

• Error components (including alternative specific, nests and cross nests) to capture 

unobserved heterogeneity not captured by the random parameters and random parameter 

decomposition terms. 

• Decomposition of error components with covariates to control for heteroscedasticity. 

• Full relaxation of the IID assumption and fully flexible substitution patterns. 

 

Searches through the published literature suggest only one application of this fully extended 

ML model.  Greene & Hensher (2007) build on Greene et al. (2006) to add error components 

to the RPL specification and determine the extent to which age influences heteroscedasticity 

in the error components.  Studies in the environmental and recreational literatures have not, to 

this author’s knowledge, controlled for heteroscedasticity in random parameters and error 

components. 

 

2.5.4   Mixed logit limitations 
 

The flexibility of ML comes at a cost.  Namely, estimation can be a time consuming process 

as different numbers of draws, random parameter distributional forms, and error component 

nesting structures are explored (e.g., Greene & Hensher 2003; Hess 2005).  Due to the 

complex estimation procedures and added number of parameters a number of identification 

and normalisation issues can arise with ML (Walker et al. 2007).  In general, these issues arise 

due to difficulty of identifying a global maximum for the LL function using simulation in 

situations involving complex model specifications with a large number of random parameters 

and error components.   

 

The topic of identification and normalisation, though important, has had a limited amount of 

research (Ben-Akiva & Bolduc 1996; Walker 2001; Chiou & Walker 2007; Walker et al. 
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2007).  Typically, research has suggested ensuring identification by verifying parameter 

stability as the number of draws increases (e.g., Greene & Hensher 2003).  This involves 

systematically testing different numbers of draws.  A model is presumed to be identified 

when: i) it achieves parameter stability, ii) estimated parameters are consistent with prior 

expectations and iii) and it maximises the LL function.  Research has shown, using both 

synthetic and real data, that ML models achieve better results in terms of (i-iii) when data 

involves a large number of choice observations and high attribute level variability (Ben-Akiva 

et al. 2001; Munizaga & Alvarez 2005; Cherchi & Ortu zar 2008).    

 

2.6  Multinomial probit  
 

Briefly, MNP allows disturbances to follow normal distributions rather than the EV1 used in 

logit-based models (Hausman & Wise 1978; Daganzo 1979).  Multinomial probit allows 

heteroscedasticity and non-zero covariances, however the model is difficult to estimate due to 

the requirement to integrate multiple normal distributions and the use of the GHK13

 

 simulator 

to evaluate choice probabilities (see Keane (1994, 1997b) and Swait 2006).  The MNP has not 

seen widespread application, because it is more difficult to program and is less common than 

ML in software packages. 

Like ML, MNP can be estimated with normally distributed attribute weights and/or normally 

distributed error components.  Examples of MNP include Brownstone & Train (1999) who 

found that the use of a probit GHK simulator requires more estimation time than a ML 

simulator, that ML and MNP predict similar substitution patterns and that the MNP model 

obtained a slightly higher simulated LL value than ML.  The authors suggest that the LL 

difference was probably due to simulation variance.   

 

 

 

 

                                                 
13 See Hajivassiliou & Ruud (1994) for a description of the GHK simulator. 
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2.7  Discrete choice model summary  
 

Discrete choice models have become popular and powerful tools for studying choice.  This 

chapter provides an overview of the model developments14

                                                 
14 There are a large number of DCM variants which, while uncommon, have also appeared in the literature over 
time such as ML models with GEV disturbances (e.g., Hess 2005; Gopinath 2005) latent class with 
heteroscedastic extreme value disturbances (Hensher et al. 1999) and mixed-probit (e.g., Brownstone & Train 
1999).  While these were not covered in the review, they serve to illustrate the continued research thrust to push 
the structural boundaries of DCMs. 

 which have occurred since the 

early 1970s.  It shows that the simplicity and convenience of MNL comes at the cost of 

flexibility in handling preference heterogeneity and maintaining forecast accuracy.  

Summarising, early econometric developments, including GEV models (McFadden 1978; 

Williams 1977; Daly & Zachary 1978) and MNP models (Hausman & Wise 1978; Daganzo 

1979) focused on relaxing the IID assumption.  These models provided only partial solutions 

to the problems embodied in MNL because they maintained the constraints on how preference 

heterogeneity could be revealed in observed utility.  Latent class multinomial logit addressed 

this latter problem to a degree, but could not at the same time fully relax the IID assumption 

(Swait 1994).  The ML model and its various extensions provide the advantages of both GEV 

and LC-MNL models under one framework with added flexibility (Train 2003; Greene & 

Hensher 2007).  While research has tended to employ the RPL specification (e.g., Train 1998; 

Breffle & Morey 2000; Provencher & Bishop 2004; Hynes et al. 2008) error components 

(Brownstone & Train 1999) can be specified in addition to random parameters to account for 

residual preference heterogeneity and identify additional patterns of inter-alternative 

correlation.  However, estimating a large number of random parameters and error components 

may lead to identification problems if data are not of sufficient quality (Munizaga & Alvarez 

2005; Cherchi & Ortuzar 2008).  Mixed logit extensions can be used to explain the sources of 

heterogeneity and heteroscedasticity (e.g., Greene & Hensher 2007) embodied in the random 

parameters and error components.  Searches through the published literature suggest that 

extensions to control for heteroscedasticity have not been explored within the recreation, 

environmental and natural resource economics literatures.  Table 2-2 summarises the 

chronological development of DCMs which maintain an EV1 disturbance, along with a 
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comparison of their flexibility.  Table 2-3 summarises, compares and contrasts the strengths 

and limitations of the DCM model forms which will be applied in this thesis.
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Table 2-2: Chronology and comparison of flexibility of discrete choice models using an extreme value type 1 disturbance 
 

High
●

Moderate ●

Low ● ● ● ● ● ●

High ●
● ●

Moderate ● ● ● ●

Low ●

MNL NL LC-MNL HEV CNL RPL MNL-EC GNL
1974 1978 1994 1995 1997 1998 1998 2001 2006 2009

●

Flexibility for revealing 
preference heterogeneity in 
observed utility

Flexibility for revealing 
correlation, heteroscedasticity 
and preference heterogeneity 
in unobserved utility

Note: These dates approximate the first published empirical applications using individual level choice data.  

Extended ML

●
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Table 2-3: Summary of the strengths and weaknesses of the different discrete choice models applied in this thesis  
(adapted from Jones & Hensher 2007) 

MNL MNL-EC LC-MNL RP-EC

Calculation ●Closed form solution ●Closed form solution

Estimation difficulty

●Minimal ●Moderately time consuming ●Minimal ●Very time consuming

Applications

Data requirements ●Less demanding data quality 
requirements

●Demanding data quality requirements ●Less demanding data quality 
requirements

●Highly demanding data quality requirements

  
Unobserved Utility   "ε" ●Strictly maintains IID ●Partially relaxes IID ●Random parameters partially relax IID, error 

components completely relax IID

● IIA

●Error components allow for 
heteroscedastic error terms

●Nested error structures capture potential 
correlation across nests

●Decomposition of error components to 
control for heteroscedasticity

●Error components allow for heteroscedastic 
error terms
●Decomposition of error components to control 
for heteroscedasticity

Observed Utility       "V"

Expected estimation time

●Gaining popularity●Uncommon

●Low level of behavioural 
definition and richness

●Low level of behavioural definition and 
richness

●Partial open, partial closed form solution 
requires analytical integration and maximum 
simulated likelihood to estimate model 
parameters

●Partial open, partial closed form 
solution requires analytical integration 
and maximum simulated likelihood to 
estimate model parameters

●High level of behavioural definition and 
richness.  Includes additional estimates for 
random parameters, heterogeneity in means and 
decompositions in variances (these influences are 
effectively treated as 'white noise' in basic 
models).

●Moderate level of behavioural 
definition and richness 

●Identificaiton issues due to simulated 
log likelihood

●Identification issues due to simulated log 
likelihood

●Provides one set of globally 
optimal parameter estimates

●Few applications have used both random 
parameters and error components simultaneously

●Provides one set of globally 
optimal parameter estimates

●Overcomes IIA property completely● IIA within classes

●Overcomes IIA property completely

●Nested error structures capture 
potential correlation across nests

●Widely used 
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Chapter 3  

Recreation Specialisation 
 

3.1.  Introduction 
 

Chapter 2 described discrete choice models (DCMs) and their evolution.  It was shown that 

these statistical methods have become powerful tools for revealing preferences and forecasting 

angler choice behaviour.  To further enhance the behavioural realism and representation of 

DCMs, research has suggested and demonstrated that additional behavioural theory can be 

woven into the DCM framework (Walker 2001; Ben-Akiva et al. 2002; Hunt 2005; Oh & 

Ditton 2006; Adamowicz et al. 2008; Dorow et al. 2009).  Hunt (2005, p. 165) recommends: 

 

“Future researchers should begin to employ more general methods that make 
much less rigid assumptions about choice behaviour.  Researchers should also try 
to link behavioural theories of anglers to choice modelling approaches. This 
linkage would further develop an understanding of factors that affect anglers’ site 
choices, participation decisions, site substitutability [and] varying preferences”. 
 
 

This chapter describes the theory of recreation specialisation (RS), which will be incorporated 

with a number of DCMs in the empirical portion of this thesis to enhance the behavioural 

representation and explanation of North Canterbury angler site choice.   

 

3.2  Recreation specialisation 
 

Recreation specialisation, first conceptualised by Bryan (1977), was developed as a 

framework for explaining diversity in recreationists’ choice behaviours.  Recreation 

specialisation predicts that anglers’ behaviours, including their preferences and cognitions, are 

systematically related to their level of specialisation.  Specialisation is a multidimensional 
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concept consisting of indicators of experience, skill and commitment (Bryan 1977; Scott & 

Shafer 2001) allowing recreationists to be arranged along a continuum from low to high 

specialisation (Bryan 1977).  Over time, individuals may (but not necessarily) progress to 

higher levels of specialisation.  Progression is generally the exception rather than the rule 

(Kuentzel & Heberlein 2008). 

 

Recreation specialisation predicts (Bryan 1977) that anglers with low specialisation (that is for 

example, those who rank angling low in importance relative to their other recreation activities, 

participate infrequently, have low skill and are not highly committed) are not particular about 

the type of fishing site (i.e., setting), are relatively unconcerned about resource disturbances or 

catching a large number of fish, prefer fishing with others and prefer higher bag limits (Bryan 

1977; Oh & Ditton 2006).  As anglers begin to specialise, catching more fish becomes more 

important.  However, with the most highly specialised anglers catch is believed to be de-

emphasised (Bryan 1977).  Highly specialised anglers are expected to be relatively more 

concerned about resource disturbances, particular about the settings in which they fish, 

emphasise catching larger fish and prefer management regulations which conserve the fish 

stock.  Research has found that specialised anglers have been found to place greater value on 

non-catch related aspects of fishing sites (Bryan 1977; Oh et al. 2005; Oh & Ditton 2006), 

have a more complex representation of the activity (Ditton et al. 1992; Fisher 1997; Miller & 

Graefe 2004) and ability to describe site attributes with greater specificity (Schreyer & 

Beaulieu 1986).   

 

In his original study in the intermountain region of Montana, Idaho and Wyoming, Bryan 

(1977) identified four types of anglers ranging from low to high specialisation: Occasional 

Fishers, Generalists Fishers, Technique Specialist Fishers and Technique-setting Specialist 

Fishers.  From Bryan (1977):  

 

Occasional Fishers - fish infrequently because they are new to the activity and have 
not established it as a regular part of their leisure, or because it simply has not become 
a major interest. 

 
 Generalist Fishers - have established the sport as a regular leisure activity and use a 
 variety of techniques. 
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 Technique Specialist Fishers - specialise in a particular method, largely to the 
 exclusion of other techniques. 
 
 Technique-setting Specialist Fishers - highly committed anglers who specialise in 
 method and have distinct preferences for specific water types on which to practice the 
 activity. 
 

Bryan’s typology is not canonical, nor mutually exclusive (Bryan 1977; 2001).  Rather the key 

in Bryan’s typology is the hierarchy of specialisation with behaviours and preferences tending 

from the general to the particular (Bryan 1977).   

 
Since Bryan’s (1977) initial conceptualisation, RS has received considerable attention in the 

leisure studies literature, with applications spanning a range of activities including bird 

watching (Lee & Scott 2004), hunting (Miller & Graefe 2000) and sailing (Kuentzel & 

Heberlein 1997).   

 

3.3  Measuring recreation specialisation 
 

While it is generally accepted that RS is a multidimensional construct, a key issue in the 

literature has been determining which dimensions and constituent indicators characterise 

specialisation (Bryan 1977; Scott & Shafer 2001; McFarlane 2004; Oh & Ditton 2006).  Over 

time, research has experimented with a large number of dimensions and indicators (e.g., Bryan 

1977; McFarlane 2004; Oh & Ditton 2006).  To clarify, the term dimensions refers to the 

broad characteristic categories which embody the RS essence, e.g., experience, skill and 

commitment.  The term indicators refer to proxies of those dimensions.  Examples of 

indicators of the experience dimension are: years fishing, number of days angling per year and 

the relative importance of angling in one’s life compared to other recreation activities (e.g., 

Bryan 1977; Scott & Shafer 2001; Oh & Ditton 2006). 

 

The proliferation of dimensions and constituent indicators used in research has led to 

inconsistencies and disputes.  For instance, “there remains little agreement about how 

precisely to characterise and measure the construct” (Scott & Shafer 2001, p. 325-326); “while 
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Bryan’s introduction of the new conceptual framework about 30 years ago stimulated 

numerous research efforts, conceptualisation and measurement differences remain” (Oh & 

Ditton 2006, p. 370) and, “the lack of consistent conceptualisation of the dimensions that 

constitute specialisation and the [indicator] variables used in its measurement have been cited 

as a limiting factor in the advancement of specialisation research” (McFarlane 2004, p. 311).   

 

Recently, experience15

 

, skill and commitment dimensions have become generally accepted, or 

at least commonly used, dimensions in the published literature (e.g., Scott & Shafer 2001; 

McFarlane 2004; Oh & Ditton 2006).  Table 3-1 provides a two-way comparison of the 

indicator variables used to represent each of these dimensions by studies which have linked 

RS with discrete choice models (DCMs).  

Table 3-1: Comparison of recreation specialisation indicator variables by study and 
dimension 
 

Experience/Behavioural 
Study/application

McFarlane (2004) ●years of experience.
  Vehicle-based camping

Oh & Ditton (2006)
  Angling

●importance of fishing 
compared to other activities

●days fished in the last year in 
saltwater

●number of camping trips per 
year

●Principal components 
analysis found three factor 
levels from 13 Likert scale 
questions

●self-reported general 
bush skill

Skill Commitment

●days fished in the last year in 
freshwater

●self-perceived skill in 
saltwater
●subjective constraint of 
developing fishing skill

●member of a fishing club or 
organisation
●replacement value of fishing 
equipment

●number of trips to the study 
site in the past 10 years

●self-perceived skill level 
in all fishing activity 

 
 
 
Rules have not been developed for determining the appropriate number of indicators 

necessary to represent each of the three dimensions.  There have been judgement differences 

about which indicators constitute the various dimensions.  For instance, Scott & Shafer (2001) 

view the indicator the relative importance of the activity in one’s life as experiential (i.e., 

behavioural), while Oh & Ditton (2006) view it as an indicator of commitment.   

 

                                                 
15 Scott & Shafer (2001) and Oh & Ditton (2006) refer to the experience dimension as the ‘behavioral’ 
dimension. To avoid confusion with choice behaviour this thesis adopts the term ‘experience’. 
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Only a small number of studies have used quantitative statistical methods to investigate 

whether individuals’ choice behaviours are consistent with their level of specialisation.  The 

majority of these studies have investigated particular RS dimensions/indicators in isolation.   

For example McIntyre (1989) investigated commitment and McFarlane et al. (1998) 

investigated experience.  Kuentzel & Heberlein (1992) investigated five specialisation 

dimensions (experience, commitment, media involvement, organisations and hunt style), 

finding no clear connection on any of these to hunters’ site choices.  McFarlane (2004) 

investigated the association between experience, skill and commitment dimensions on site 

choice of vehicle based campers in Alberta, Canada, using an ordered multinomial logit 

(MNL) model, finding that campers with more familiarity with campgrounds, higher skill 

levels, and higher commitment scores, were more likely to choose unmanaged campgrounds.   

 

A few studies have explored the inter-relationship of indicator variables (e.g., Kuentzel & 

McDonald 1992; Kuentzel & Heberlein 1992; Scott et al. 1999; Lee & Scott 2004).  For 

example, Ditton et al. (1992) used regression analysis to determine how well variability in the 

indicator, participation frequency, is explained by other indicators of RS.   Lee & Scott (2004) 

used confirmatory factor analysis (CFA) to determine the ‘loadings’ of particular indicators 

onto pre-existing RS clusters.  It is important to note that these approaches look only at the 

inter-relationships of indicator variables.  They do not investigate the relationship between 

indicator variables and individuals’ choice behaviours, preferences or cognitions. 

 

Only two published studies have analysed specialisation and angler site choice according to an 

overall measure of specialisation by incorporating numerous dimensions/indicators to derive 

each individual’s level of specialisation.  Oh & Ditton (2006) used a two step process 

involving cluster analysis (CA) to create three different specialisation groups (which they 

termed advanced, intermediate and casual) using a number of indicator variables which were 

transformed into a small number of factor scores using CFA.  Separate MNL models were 

then used to estimate preferences for each group.  In general, Oh & Ditton’s (2006, p. 369) 

findings accorded with theory and “each specialization group showed a notably different 

pattern of preference”.  Dorow et al. (2009) used an almost identical approach to study 

heterogeneity of preferences among European eel anglers for regulation changes and the 
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associated welfare changes.  They found that different groups of anglers exhibited distinct 

preferences for catching eels and regulations.  However, counter to theoretical expectations, 

Dorow et al. (2009) found that more specialised eel anglers were more averse to restrictive 

regulations aimed at conserving the eel stock.   

 

3.4  Summary 
 
This chapter has made the following important points about the RS concept.  Anglers can be 

arranged along a continuum of specialisation from low to high.  Recreation specialisation 

theory predicts that anglers vary in their choice behaviour, preferences and cognitions 

according to their level of specialisation.  Anglers with low specialisation are predicted to be 

relatively less concerned about fishing site setting and resource disturbance, prefer higher bag 

limits and prefer fishing with others.  As anglers begin to specialise, catching more fish is 

expected to become more important.  Highly specialised anglers are particular about the 

setting they fish, prefer conservation of fish stocks, emphasise the importance of catching 

larger fish and are concerned with resource disturbance and prefer solitude.  Highly 

specialised anglers have different cognitions including a more complex representation of the 

activity and ability to describe site attributes with greater specificity.  Despite RS’s initial 

purpose as a management and predictive tool few studies have actually tested whether anglers 

choose sites or maintain preferences according to their level of specialisation.  While it is 

generally accepted that RS is a multidimensional construct the lack of a formalised system for 

measuring RS has caused inconsistencies and debate.  Recent research has conceptualised RS 

with experience, skill and commitment dimensions.  More empiricism is needed to determine 

the association between particular dimensions and choice behaviour/preferences.  

Understanding of these deep linkages would inform future measurement and conceptualisation 

of RS. 
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Chapter 4 

New Zealand Recreational Trout Fisheries 
 

4.1   Introduction 
 

Chapter 1 introduced a recreational fishery management problem which involved a need to 

understand the link between trout angler activity and resource disturbances in the North 

Canterbury region of New Zealand.  Chapter 2 identified discrete choice models (DCMs) as 

analytical tools suitable for studying this relationship.  Chapter 3 described a theory of 

recreationist behaviour which can be used to enhance the analysis.  This Chapter examines the 

case of North Canterbury recreational trout fisheries.  First, the broader New Zealand context 

is described.  The discussion then focuses in on North Canterbury and includes descriptions of 

the different types of fishing sites, the various forms of resource disturbances and recent 

trends in angler activity.  

 

4.2  New Zealand recreational salmonid angling: An overview 
 

New Zealand is internationally renowned for its scenic rivers and lakes, many of which have 

exceptional water clarity, large wild trout, low angler densities and virtually unrestricted 

public access (Unwin 2009).  Brown trout Salmo trutta and rainbow trout Oncorhynchus 

mykiss were introduced in the 1860s (McDowall 1990) and quickly established wild self-

sustaining populations in many rivers and lakes.  In the 1970s, overseas anglers started 

visiting New Zealand en mass, triggering the establishment of guiding and lodging services.  

Combined use of New Zealand recreational salmonid (trout and salmon) fisheries is 

substantial (Unwin & Image 2003; Unwin 2009).  Nationally, full season adult license sales 

have averaged around 70,000.     
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In the past two decades there have been three large-scale National Angler Surveys (NAS), 

sponsored by Fish and Game New Zealand (FGNZ) to estimate national and regional 

salmonid angling activity according to angler visits to different types of fishing sites and 

stretches16

 

.  On the national level, angling effort by residents has been relatively constant with 

an estimated 1.16 million, 1.11 million and 1.20 million angler days per year (ADPY) spent 

by residents for the 1994/1995, 2001/2002, and 2007/08 seasons, respectively (Unwin 2009).  

While overseas anglers are known to make up only a relatively small percentage of total 

angling effort, (69,100 ± 2,800 ADPY or 5.4% of total angling effort), they represent 12.7% 

of license sales and a high proportion (≥50%) of total use on some backcountry rivers of the 

South Island (Unwin 2009).   

The total economic value of New Zealand recreational salmonid fisheries is not known.  A 

few studies have estimated individual use values of particular angling rivers.  For example, 

Kerr & Greer (2004) estimated the economic values of the Rangitata River for recreational 

angling to be between $1.4 and $4.5 million per annum (adjusted to July 2000 levels using the 

consumers’ price index). 

 

4.3  North Canterbury context 
 

North Canterbury comprises part of the eastern South Island.  The region is defined by the 

Southern Alps in the west, the Rakaia River in the south and the Conway River in the north. 

Extensive plains cover much of North Canterbury from the foothills to the sea.  The main city, 

Christchurch, has a population of 348,435 (Statistics New Zealand 2006).  North Canterbury 

has significant variation in its climate, topography and geology giving rise to a wide range of 

waters which support trout fisheries.  The NAS categorises these different types of fishing 

sites as mainstem rivers, backcountry rivers, headwaters, lowland rivers, small and large lakes, 

and reservoirs and canals, according to geographical setting, nature, size and adjacent land use 

(Unwin & Image 2003; Unwin 2009).  These different types of fishing sites are now 

                                                 
16 This survey does not count the fisheries in the Taupo Conservancy which are administered by the Department 
of Conservation.  The 1994/1995 and 2001/2002 NAS tracked only residential angling activity.  The 2007/2008 
survey included overseas anglers. 
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described.  Note that because the North Canterbury region does not feature many reservoir or 

canal fisheries (or receive much angler use on these sites) they are omitted from the following 

description and subsequently from this research.   

 

4.3.1  Mainstem rivers 
 

Mainstem rivers flow across expansive valleys or plains out to sea.  Flow in places is 

concentrated through a single channel while at other reaches the flow braids out into smaller 

channels over a shifting substrate of gravel and fine sediment.  Agricultural land use adjacent 

to mainstem rivers is either extensive or intensive, depending on location.  Mainstem river 

trout stocks are often dynamic, dictated by season, temperature, flow patterns, flood events 

and food supplies.  Trout size varies considerably.  Mainstem rivers are typically large to very 

large and have relatively lower water visibility compared to other fishing sites, particularly 

those in the backcountry.  Examples of North Canterbury mainstem rivers include: the Rakaia, 

Waimakariri, mid to lower Hurunui and mid to lower Waiau (Unwin & Image 2003; Unwin 

2009).  These mainstem rivers, while supporting trout fisheries, are predominantly used by 

salmon anglers. 

 

4.3.2  Backcountry rivers 
 

Backcountry rivers flow through a diverse range of landscapes including steep-sided valleys 

flanked by native beech forests, terraced flats with scrub and matagouri and open plains with 

tussock grasses.  In some cases individual backcountry rivers, in just a short distance (e.g., 20 

kilometers), pass through a diverse range of landscapes and environments.  Backcountry rivers 

tend to be small to medium in size and flow over a moderate gradient with substrates 

comprised of large boulders, stone and gravel. Where there is adjacent agricultural land use, it 

is extensive rather than intensive.  During stable weather periods water visibility is high, 

ranging upwards of eight meters.  Backcountry river trout are on average male, resident, 

relatively large and become increasingly difficult to capture with angling pressure (Young & 
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Hayes 2004).  Examples of North Canterbury backcountry rivers are the: Hope, Poulter, and 

North and South Branches of the Hurunui (Unwin & Image 2003; Unwin 2009). 

 

4.3.3  Headwaters 
 

Headwater fishing sites refer to the uppermost sections or tributaries of Backcountry rivers 

which flow through pristine, remote areas.  These fishing sites are typically accessed by 

helicopter or hiking tracks.  Headwaters tend to be small in size and flow over a moderate to 

steep gradient with substrates comprised of large boulders and stone.  During stable weather 

periods water visibility is exceptionally high.  Trout in headwaters are extremely sensitive to 

angling pressure (Young & Hayes 2004).  There are only a few North Canterbury rivers which 

can be considered truly remote headwater fisheries, e.g., the Esk and the Upper Waiau 

including its tributaries the Henry and Ada. 

 

4.3.4  Lowland rivers 
 

The most prominent feature of lowland rivers is that they flow through areas with intensive 

agricultural land use and urban development into mainstem rivers, estuaries, lakes or directly 

out to sea.  Lowland rivers tend to be small to medium sized and flow over a shallow gradient 

with substrates comprised of loose sediment, mud, gravel and aquatic weed.  The flow of 

lowland rivers is often supplied or supplemented from underground aquifer systems.  Lowland 

rivers typically have areas with grassy banks supported by willows.  Like mainstem rivers, 

trout populations in lowland rivers tend to be dynamic and range in size, though on average 

they tend to be small to medium sized.  Examples of North Canterbury lowland rivers are the: 

Selwyn, LII, Harts Creek, Kaiapoi, and the South Branch of the Waimakariri (Unwin & Image 

2003; Unwin 2009). 
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4.3.4  Lakes 
 

North Canterbury features many small and a few large lakes.  These are predominantly located 

in inland, high country areas.  Agricultural land use adjacent to North Canterbury lakes tends 

to be extensive dry land grazing, with the exception of Lake Ellesmere which borders an area 

of intensive agriculture.  Trout sizes range considerably, with some lakes (e.g., Lyndon) 

supporting high numbers of small trout while others (e.g., Hawdon) support low numbers of 

large trout.  A number of North Canterbury lakes receive periodic stocking to supplement the 

wild trout stocks. 

 

4.4  Angling techniques and equipment 
 

The high water clarity and large average trout size, particularly on backcountry rivers, has 

given rise to a popular style of fishing known as ‘sight-fishing’.  When anglers sight-fish they 

use polarised sunglasses to spot individual trout then typically cast to them using light weight 

fly-fishing tackle with ‘nymphs’ or ‘dry flies’ that imitate natural insects.  While sight fishing 

is most commonly employed on backcountry rivers, the technique is also used on other types 

of fishing sites (Kent 2006).  A range of other techniques are used by anglers, adapted to 

particular fishing sites and conditions (Hayes & Hill 2005; Kent 2006).  For example, anglers 

employ ‘blind casting’ techniques on fishing sites with lower water visibility and high trout 

densities.  Instead of casting to individual trout, anglers blind cast either randomly or 

systematically to cover the water.  Techniques and equipment used by fishers on lakes 

sometimes can be, but are not necessarily, altogether different than those employed on rivers 

with personal watercraft, downriggers and fish-finding sonar providing examples of 

techniques not used elsewhere (Kent 2006).   
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4.5  Resource disturbances 
 

North Canterbury’s water resources have come under increasing land and recreational use 

pressure.  As a result, marked environmental and ecological changes have, and are expected to 

continue to occur.  This section provides an overview of the major changes.  

 

 4.5.1  Agriculture and the shift toward intensive practices 
 

In the past two decades North Canterbury has experienced a marked increase in intensive 

horticulture and dairy farming (White 2007).  It is well documented that intensive agricultural 

practices have caused a number of adverse effects to North Canterbury’s waters (Cullen et al. 

2006; Hughey et al. 2007).  These effects include: 

 

• Diminished or intermittent in-stream flows as a result of water extraction (e.g., Irwell 

River, Kent 2000) which has reduced trout habitat, spawning areas and trout stocks 

(Harding et al. 1999; Hayes 2002). 

 

• Increased fertiliser application and urine from stock have caused increases in 

phosphorus and nitrogen levels in the water.  This has altered aquatic systems, and 

caused loss of biodiversity, eutrophication and toxic algal blooms (Young & Huryn 

1999).  

 

• Non-point and point source pollution from effluent discharge has degraded water quality 

and visibility and has led to high bacteria levels (Young et al. 2005). 

 

• Unfenced riparian margins and non-bridged stream crossings have led to riparian margin 

erosion and increases in sediment loads in waterways from stock.  This has reduced 

available trout cover, spawning grounds, water visibility and affected trout feeding 

behaviour (Young & Huryn 1999; Hayes 2002; Davies-Colley et al. 2004). 
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Degradation to North Canterbury Lowland streams has been rapid with “…73% of [North 

Canterbury] spring-fed lowland streams in 2005 in poor ecological health – up from 27% in 

1999” (Holland 2006 p. 98).  

 

4.5.2  Didymomosphenia geminata 

Didymosphenia geminata (Didymo), also known as "rock snot", is a freshwater diatom which 

was first discovered in New Zealand in 2004.  Didymo is easily transferred from one 

waterway to another and is currently established in approximately 70 South Island river and 

lake sites.  In North Canterbury Didymo is present in the Hurunui, Rakaia and Clarence rivers 

(www.biosecurity.govt.nz/didymo accessed 2009).   

Didymo manifests itself differently depending on season, location, substrate material, flow 

velocity and water alkalinity (Sutherland et al. 2007).  During blooms, Didymo forms a thick 

brown and white mat and stalks which completely cover the substrate.  At other times the 

algae can be latent.  Rivers with stable substrates, low alkalinity and moderate flows appear, 

from empirical evidence, to be those most seriously affected by Didymo (Sutherland et al. 

2007).  Lowland rivers, because of their low flow velocity, fine sediment-based substrate and 

high nutrient levels, particularly those which are spring-fed, appear to be less susceptible to 

Didymo (Sutherland et al. 2007).  The known effects of Didymo on aquatic life, trout size, 

trout populations and trout feeding habits are still extremely limited. 

Direct impacts to anglers of Didymo include aesthetic degradation and nuisance effects by 

fouling gear (particularly weighted nymph and lure techinques) and creating difficulty landing 

trout (e.g., Sutherland et al. 2007).  Biosecurity New Zealand has declared the South Island a 

“controlled area” for Didymo and while waterways are open to individuals, they are legally 

obligated to prevent Didymo’s spread by thoroughly cleaning personal gear 

(www.biosecurity.govt.nz).  It is unclear what impact Didymo has on angler behaviour 

(Unwin 2009). 
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4.5.3  Angler congestion 
 

A recent study by Walrond (2001) on angler use of backcountry rivers in Nelson-Marlborough 

and Otago indicates that anglers are averse to encounters with other anglers.  The study found 

that the intensity of aversion was related to river accessibility; in general, anglers were less 

tolerant of encounters on the more inaccessible rivers.  Walrond (2001) suggests that the 

major reason why anglers are sensitive to encounters on backcountry river fisheries is due to 

the behavioural changes of trout caused by angling pressure.  To reduce angler encounter rates 

FGNZ has piloted a special backcountry licensing system on the Greenstone and Caples 

Rivers in Otago (Strickland & Hayes 2003; 2004). 

 

4.5.4  Trout catchability 
 

Angling pressure is known to cause changes in trout behaviour.  In particular trout become 

more difficult to catch with additional angling pressure.  Young & Hayes (2004) found that 

after being fished to and/or captured, brown trout in a remote river in Kahurangi National Park 

would not resume feeding in the open for up to three days, and exhibited signs of reduced 

catchability.  The study also found that on a less remote backcountry river brown trout were 

less sensitive to angler pressure, emerging sooner to resume feeding after being fished to. 

 

4.6  Regional trends in North Canterbury 
 

In 2007/2008 11,685 full season licenses were sold in North Canterbury and the region 

received a total of 200.1 ± 8.6 thousand angler days.  This constitutes 15.7% of total national 

use (excluding the Taupo Conservancy).  Angling in North Canterbury by overseas visitors 

constitutes an estimated 2.3% of the total, which is minimal compared with other South Island 

regions (Unwin 2009).  While NAS statistics do not suggest much change in angler activity on 

the national level, the story is very different on a regional and local level in North Canterbury 

where angler activity is by far the most volatile out of any of the twelve FGNZ regions 

(Unwin 2009) 
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From the 1994/1995 season angling activity in North Canterbury, in terms of total angling 

effort by New Zealand residents, has fluctuated sharply (Table 4-1)17

 

.  Total resident angler 

use fluctuated from 166.7 ± 9.7 thousand angler days in 1994/1995 to 118.0 ± 5.2 and 195.4 ± 

8.6 thousand anglers days in the 2001/2002 and 2007/2008 seasons.  Angler use of mainstem 

rivers follows this same pattern, falling from 116.6 ± 8.7 thousand angler days in 1994/1995 

to 78.0 ± 4.8 thousand angler in 2001/2002 days, then rebounding to 139.9 ± 7.7 thousand 

angler days in 2007/2008.  A similar, but more drastic pattern occurred in the use of lowland 

rivers which fell sharply from 30.7 ± 3.5 thousand angler-days in 1994/1995 to 12.3 ± 1.2 

thousand angler-days in 2001/2002, slightly rebounding to 16.6 ± 2.7 thousand angler-days in 

2007/2008.  

A very different pattern in angling effort was observed for use of lakes and backcountry 

rivers, which steadily rose for the period from 1994/1995 to 2007/2008 (see Table 4-1).   

 

Table 4-1: North Canterbury annual trends in estimated fishing site usage by New 
Zealand residents  
(angler days X 1000 ± 1 SE), 1994/1995 to 2007/2008 (adapted from Unwin 2009) 

Mainstem rivers 116.6 ±  8.7 78.0 ±  4.8 139.9 ±  7.7
Lowland rivers 30.7 ±  3.5 12.3 ±  1.2 16.6 ±  2.7
Small Lake 11.2 ±  1.4 10.4 ±  0.7 15.4 ±  1.8
Large Lake 8.2 ±  1.4 10.2 ±  0.9 15.2 ±  1.7
Backcountry 2.4 ±  0.7 5.0 ±  0.5 7.1 ±  1.0
Headwater 0.3 ±  0.3 1.1 ±  0.3 1.1 ±  0.4
Canal 2.3 ±  1.2 0.0 ±  0.0 0.0 ±  0.0
Reservoir 0.0 ±  0.0 1.0 ±  0.5 0.2 ±  0.1

166.7 ±  9.7 118.0 ±  5.2 195.4 ±  8.6

2007/20082001/20021994/1995

 

 
Angling in North Canterbury is centred on the unpredictable Chinook salmon fisheries in the 

region’s mainstem rivers, e.g., Rakaia, Waimakariri, Hurunui and Waiau (Unwin & Image 

2003; Unwin 2009).  Salmon runs are known to dominate the region’s angling focus to a 

                                                 
17 Data for overseas angler use was not collected in the 1994/1995 and 2001/2002 NAS and therefore, the data 
presented here includes only New Zealand resident anglers.  Note: the term resident includes anglers from across 
all of New Zealand, not just North Canterbury.   
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greater extent than in any other part of the country (Deans et al. 2004, Unwin 1997, 2009).  

License sales and use of North Canterbury’s mainstem rivers (which support those salmon 

runs) are known to be highly correlated with salmon runs.  The salmon run was particularly 

poor in 2001/2002 and strong in 2007/2008 (Unwin 2009), as were license sales and use of 

mainstem rivers (Table 4-1).  While angler use volatility in North Canterbury is partially 

explained by the quality of salmon runs, salmon runs alone do not explain why use of lowland 

rivers, lakes and backcountry rivers have fluctuated at the same time, as these latter types of 

sites are predominantly, if not entirely, trout fisheries.  Resource disturbances, as well as other 

factors, are more likely causes of changing patterns in use of lowland rivers, lakes and 

backcountry rivers.      

    

4.7  Summary 
 

This chapter first provided an overview of the history and significance of New Zealand 

freshwater recreational angling in terms of angler participation and use of fisheries.  The 

particular case of North Canterbury recreational trout fisheries was then described.  This 

description included the different types of fishing sites, the types of angler techniques used at 

those sites, environmental degradation and other angler effects occurring and, finally, recent 

trends in angling activity.  Data were provided which indicated that the spatial distribution of 

angler activity in North Canterbury, as well as license sales, has been dynamic.  This is 

problematic for managers.  Drops in license sale revenues, even if temporary, impairs Fish & 

Game’s ability to manage the fisheries. Redistribution of angler effort can increase angling 

pressure at particular sites, which may lead to overfishing, reduced trout catchability and 

reduced opportunity for angler solitude. In turn, these effects may negatively influence license 

sales.  While there is reason to believe that resource disturbances are underlying causes of the 

changes in angler activity, it is difficult to draw conclusions from the NAS data and license 

sale data because trout and salmon angling activity is aggregated.  While the quality of salmon 

runs is known to be strongly related to use of mainstem rivers and license sales, the quality of 

salmon runs does not immediately explain why use of lowland rivers has declined sharply or 

why use of lakes and backcountry rivers, which are predominantly or solely trout fisheries, 

have increased.  Resource disturbances occurring on lowland waters caused by intensified 
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land use practices and well as angling pressure are possible drivers.  However, the many 

different kinds of resource disturbances, occurring simultaneously (e.g., reduced water 

visibility, riparian margin erosion, Didymo and loss of trout stocks), make understanding their 

individual effects on angler activity extremely difficult.  By understanding the individual 

impacts on anglers fishery managers would be given improved understanding of how to 

manage particular kinds of sites and attributes of those sites.  Similarly, managers could 

benefit from knowledge of how management regulations, such as bag limits or measures to 

control angler congestion, influence use of  particular kinds of sites.  Research of this kind is 

extremely limited in New Zealand.  The North Canterbury context, with its diverse range of 

fishing sites, changing patterns in angler activity and various forms of resource disturbances 

occurring at different waters and in different intensities, provides strong motivation for the 

study of angler site choice. 
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Chapter 5  

Research Design 
 

5.1  Introduction and context 
 

Chapter 4 described a fishery management problem involving changing patterns in angler 

activity in the North Canterbury region of New Zealand and their possible link to resource 

disturbances and other effects related to angling pressure.  Chapter 2 identified discrete choice 

models (DCM) as powerful tools for understanding choice behaviour.  High quality choice 

data are essential for estimating DCMs, particularly advanced mixed logit (ML) specifications 

(Munizaga & Alvarez 2005; Cherchi & Ortu zar 2008), which offer more flexibility for 

determining substitution patterns compared to simpler model forms (Train 2003).  This 

chapter describes the research and experimental design process used to create a choice 

experiment which was realistic to anglers, provided sufficient motivation for response, 

addressed the fishery management problem defined in Chapter 4 and promoted the collection 

of a large amount of high quality data. 

 

To estimate a choice model, data are needed on individuals’ choice responses (the dependent 

variable), individual characteristics, and attribute levels which comprise the alternatives in 

individuals’ choice sets (independent variables).  There are two types of choice data: revealed 

preference (RP), and stated preference (SP).  As the terms imply, RP data captures 

individuals’ actual choice responses to actual alternatives in real settings and SP captures 

individuals’ choice responses to alternatives in hypothetical scenarios created by researchers.  

Both RP and SP techniques have different advantages and disadvantages and it is largely the 

case-by-case needs and constraints of research which dictate the use of either data paradigm.  

The following section describes the advantages and disadvantages of RP and SP in the context 

of North Canterbury freshwater trout angling.   
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5.2  Revealed versus stated preference 
 

The fundamental advantage of RP data is that it captures actual behavior.  As Mark & Swait 

(2004, p. 564) argue, “the advantage of RP data is that it is based on actual decisions; thus, 

there is no need to assume that consumers will respond to simulated product markets as they 

do to actual market situations.  This characteristic gives RP data high face validity”.  The 

drawbacks of RP data include: difficulty specifying alternatives when a high number of 

alternatives exist (and as a corollary, the question of which alternatives to include in each 

individual’s choice set), difficulty measuring or obtaining information on attributes and 

attribute levels of the alternatives and, finally and critically, RP data are often impacted 

negatively by collinearity as attribute levels can be closely correlated in real life settings 

(Hensher et al. 1999).  Careful consideration of the North Canterbury trout angling context 

validated some of these RP concerns.  For example, North Canterbury has: i) a large number 

of fishing sites (> 100 according to the South Island Sports Fishing Regulations 2008-2009 

guidebook, www.fishandgame.org.nz)18, ii) highly localised and variable weather patterns 

which cause difficulty in measuring dynamic fishing site conditions (attribute levels), e.g., 

water visibility (e.g., Hunt 2005) 19

 

, and iii) some North Canterbury fishing sites have very 

similar attribute levels which are correlated.  For example, many backcountry sites have 

similar water visibility, trout sizes, catch rates and travel distance from Christchurch.   

Similarities in attribute levels and the shared relationships between attributes would likely 

cause multi-collinearity problems if RP data were used. 

Stated preference, in contrast to RP, can avoid multi-collinearity problems and there is no 

“measurement” of attribute levels.  Stated preference data are also time and cost efficient to 

collect (Hensher et al. 1999), and useful for assessing, ex ante, environmental conditions or 

management regimes that may not currently exist.  While there has been debate whether stated 
                                                 
18 McFadden recommends 60 choice observations are needed for each alternative to achieve reliable parameter 
estimates.  Therefore, adequate choice data for the 100+ fishing sites in North Canterbury would require no less 
than 6000 choice observations (Hensher, Rose & Greene 2005).  In North Canterbury, many fishing sites receive 
less than 60 angler visits per year in practice which prohibits the inclusion of all fishing sites into the study frame 
(Unwin & Brown 2003). 
19 Two broad approaches have been used to generate attribute measurements in the literature for RP.  One 
approach is to gather data from objective measurements, the other approach is to use perception measurements, 
that is to ask respondents or expert focus groups what they perceive the attribute levels are.  Regardless of 
whether attribute level measurements were perceived or objective this would be a burdensome and difficult task. 
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intentions translate into actual behavior, a body of research has shown the SP validity 

concerns are largely unfounded (e.g., Burke et al. 1992; Carson et al., 1994; Adamowicz et al. 

1998; Hensher et al. 1999; Blamey & Bennett 2001; Loureiro et al. 2003).  Relatively few 

recreational angling site choice studies have used SP data (Aas et al. 2000, Banzhaf et al. 

2001; Oh & Ditton 2006).  Given data availability RP and SP data can be combined to exploit 

their strengths while minimising existing weaknesses (e.g., Adamowicz et al. 1994; Swait 

1994; Swait et al. 1994). 

 

5.3  Experimental design literature review 
 

Stated preference data are commonly collected in choice experiments (CE) (Louviere & 

Hensher 1982; Louviere & Woodworth 1983), in which respondents are shown scenarios 

consisting of alternatives described by attributes with various attribute levels.  Variation in 

attribute levels within and across choice scenarios imposes tradeoffs for individuals and is the 

key to the revelation of individuals’ preferences.  An important consideration therefore, is the 

type of experimental design to use (e.g., Scarpa & Rose 2008).  In the past research has most 

commonly employed either random or orthogonal designs (e.g., Hahn & Shapiro 1966) which 

maintained attribute level balance.  Orthogonality refers to the non-correlation of attribute 

level configurations.  Attribute level balance refers to designs in which particular attribute 

levels occur a proportionate number of times across alternatives (Huber & Zwerina 1996).  

Research has questioned the importance of orthogonality and attribute level balance criteria 

and alternative “efficient” experimental designs which depart from these criteria are now 

emerging (e.g., Rose & Bliemer 2004; Bliemer & Rose 2005; Ferrini & Scarpa 2007; Scarpa 

& Rose 2008).  These more sophisticated approaches have been shown to reduce standard 

errors associated with parameter estimates by using information “priors” of individuals’ 

preferences to improve experimental design efficiency (e.g., Ferrini & Scarpa 2007; Scarpa & 

Rose 2008).  The outcome is choice experiments which attain statistically significant 

parameter estimates with smaller sample sizes, or more reliable parameter estimates given a 

fixed sample size (Bliemer & Rose 2005).   
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Bayesian D-efficient designs are one form of efficient experimental design which minimises 

the D-error, or determinant of the asymptotic variance-covariance (AVC) matrix.  The AVC 

matrix is an approximation of the true variance-covariance matrix (e.g., Ferrini & Scarpa 

2007; Rose et al. 2008).  As the D-error becomes smaller, a design becomes more efficient.  

Jaeger & Rose (2008) and Rose et al. (2008) explain the theory behind, and construction of, 

Bayesian D-efficient designs.  Other types of efficient designs, each based on different criteria 

for evaluating efficiency, include A, B, S, and C-efficient designs.   Scarpa & Rose 2008 

compare these different designs and conclude: (i) that D-error type designs are the best option 

for producing model results that minimise both the standard errors and covariances of the 

parameter estimates, (ii) C-efficient designs are optimal if the objective is to estimate 

willingness to pay measures, (iii) S-efficient designs perform best in situations when research 

is constrained to very small sample sizes, and (iv) B-efficient designs perform relatively 

poorly and should be avoided.    

 

There are different strategies for generating priors.  One strategy uses relevant literature to 

inform and guide the selection of priors.  In the absence of relevant literature, theory can also 

be used to guide ‘guesses’ as to what signs the priors take.  A better approach is to directly 

generate priors through administering pilot choice experiment surveys to a representative 

population of individuals20

 

.   

An important part of the experimental design process is the selection of the alternatives, 

attributes, attribute levels and ranges and the number of choice situations to assign each 

individual (Hensher et al. 2005).  Another important question is whether to use qualitative or 

quantitative attribute measures.  Design literature typically advises the use of three to six 

alternatives (Arentze et al. 2003; Caussade et al. 2005).  However, this is not a strict rule as in 

particular contexts too few alternatives, attributes and attribute levels may diminish the CE 

realism and lead to a poor understanding of individual choice.  Likewise, too much 

complexity can lead to cognitive burden and poor data quality.  Relevance plays an important 

role in the cognitive burden of the choice experiment (Cummings & Taylor 1998). 

                                                 
20 This is because there may be incompatibility when integrating priors from other studies which involve 
different decision contexts. 
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5.4  Experimental design generation 
 

In light of the anticipated difficulties with an RP approach, an SP choice experimentation 

approach was adopted to study North Canterbury anglers’ fishing site choices.  A CE 

approach also provided an efficient means for gathering angler-specific data which could be 

used to identify each angler’s level of specialisation (Bryan 1977).  The process adopted in 

this research for choice set generation, attribute identification and attribute levels setting 

included literature review (e.g., Hunt 2005), consultation with Fish and Game New Zealand 

(FGNZ) and fishery scientists, focus groups and survey pretests.  

 

5.4.1  Alternative, attribute and attribute level specification 
 

The practical motivation behind the research was to address FGNZ management concerns 

relating to the changes to angler activity documented by the NAS.  Therefore, names of the 

alternatives in the experimental design closely reflected the NAS fishing site categorisation.  

However, strict adherence to the NAS fishing site categorisation method would have required 

eight fishing site alternatives, plus a non-fishing alternative.  Because canal, reservoir and 

headwater fishing site categories each comprise less than 1.1% of total usage in North 

Canterbury (Table 4-1, Chapter 4) they were excluded from this research.  Slight 

modifications were made to the remaining NAS alternative names to improve clarity and 

ensure that the alternatives were as collectively exhaustive and mutually exclusive as possible; 

mainstem river was modified to include mainstem-braided river, and lowland river was 

redefined as lowland stream.  Finally, small and large lakes were combined into a single 

category, Lake.  Adding the option to not fish produced the following set of alternatives: 

 

• Mainstem-braided river 

• Backcountry river 

• Lowland stream 

• Lake 
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• Not fish 

 

A fishing site attribute candidate list was generated from a literature review of: i) recreational 

angling site choice DCM studies (Chapter 2) and, ii) local literature describing the resource 

disturbances which are occurring on New Zealand fishing sites (e.g., Young & Huryn 1999; 

Hayes 2002; Davies-Colley et al. 2004).  Focus groups comprised of anglers with diverse 

backgrounds, along with further consultation with FGNZ21

 

, identified nine salient attributes 

with regard to the North Canterbury context: 

• Cost 

• Travel Time 

• Angler Encounters 

• Water Visibility 

• Catch 

• Trout Size 

• Bag Limit 

• Riparian Margin  

• Didymo 

 

The research followed Hensher (2004, 2006a, 2006b) by keeping attribute level ranges as 

wide as possible while at the same time maintaining realism (Cummings & Taylor 1998).  

Hensher suggests that attribute level range influences parameter estimates and potential mis-

specification is more likely to occur when attribute level range is narrow as opposed to wide.  

Bag limit, riparian margin and Didymo attributes were described with two attribute levels and 

the remaining attributes were described by three attribute levels.  The use of three attribute 

levels allows non-linear preference effects to be explored (Hensher et al. 2005). 

 

Considerable care was taken to ensure that the attribute levels selected provided realistic 

choice scenarios (Cummings & Taylor 1998).  For example, backcountry rivers typically have 

                                                 
21 Part of this research has been funded by FGNZ.  They were included in the attribute selection process so that 
the final selection of attributes would address some of their major resource concerns. 
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much higher water visibility, larger average trout size and are more costly and time consuming 

to access than other fishing site types.  Consequently, the study favoured alternative specific 

attribute levels which would reflect these differences (Table 5-1). To further maintain realism 

in the choice tasks, highly unrealistic attribute level combinations were not used; in particular 

these were scenarios with high cost and low travel times.  In addition, the attribute levels for 

Didymo: “present” and Riparian Margin: “erosion due to stock” were unbalanced, appearing 

33% of the time in all fishing site alternative scenarios across the whole of the experimental 

design to more closely reflect the current status of most North Canterbury fishing sites.  

Attribute level balance, i.e., Didymo: “present” and Riparian Margin: “erosion due to stock” 

appearing in 50% of choices, would have been unrealistically high. 

 

 Table 5-1: Experimental design attribute levels         

Cost (NZD) $30, $60, $90 $60, $90, $120 $20, $40, $60 $60, $90, $120

One Way Travel Time 
(Minutes)

30,60,90 60,90,120 20,40 ,60 60,90,120

Angler Encounters 0,1,2 0,1,2 0,1,2 0,1,2

Water Visibility (Meters) 1,3,5 2,5,8 1,3,5 1,3,5

Angler Catch 1,3,5 1,3,5 1,3,5 1,3,5

Trout Size (lbs) 2, 3.5, 5 3.5, 5, 6.5 2, 3.5, 5 2, 3.5, 5

Bag Limit 0,2 0,1 0,2 0,2

Riparian Margin Pristine, Pristine, Pristine, Pristine, 
Erosion due to 

stock
Erosion due to 

stock
Erosion due to 

stock
Erosion due to 

stock

Didymo Present, Present, Present, Present, 
Not Present Not Present Not Present Not Present

Lake
Mainstem-

Braided River
Backcountry 

River
Lowland 
Stream 

 
 

 

Generating and fine tuning the experimental design and internet survey instrument used to 

deliver the CE to anglers was an iterative process involving four stages.   
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5.4.1.1  Stage one 
 

During the first stage of the experimental design generation an optimal orthogonal design, 

which had 108 treatment combinations, was created using Ngene (Choicemetrics 2009).  This 

design was piloted using a hard copy survey instrument with anglers in the Nelson Trout 

Fisher Club and the Marlborough Angling Club.  Respondents (n=52) were asked to complete 

four choice scenarios each.  A multinomial logit model (MNL) was estimated from this 

sample data.  This process provided important feedback pertaining to choice task complexity, 

realism, the suitability of the tentative alternatives, attributes and attribute levels, and priors 

which were integrated into more sophisticated experimental design at stage two. 

 

5.4.1.2  Stage two 
 

Stage two of the design process involved the construction of the internet survey instrument 

using a Bayesian D-efficient design with 96 treatment combinations generated using priors 

collected at stage one.  Internet survey instrumentation was chosen over hard copy format due 

to advantages relating to cost and time savings (Dillman 2007).  The survey consisted of 

multiple frames informing respondents of the nature of the choice experiment, definitions and 

examples of the fishing site alternatives, attributes and attribute levels, along with directions 

and examples for completing the choice scenarios.  Each respondent was asked to complete 

six choice scenarios and a moderate number of questions relating to their angling background 

to allow identification of their level of specialisation. Andrew Collins of Bullabara and 

Associates was hired to assist in the construction of the internet survey instrument and its 

implementation onto a server which was initially trialled with six anglers in personal interview 

format to resolve any coherency issues.  The survey, which was designed to take 15 minutes, 

was approved by the Lincoln University Human Ethics committee.   

 

5.4.1.3  Stage three 
 

Stage three of the process involved piloting the internet survey instrument in the Central South 

Island region, the region immediately to the south of North Canterbury, to allow further 
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pretesting of the survey and refinement of the priors.  Central South Island region anglers 

were identified through the FGNZ license holder database.  Respondents were asked to 

complete the full survey, which included six choice scenarios, and were allowed one week to 

respond.  Responses from 62 anglers resulted in 372 choice responses.  An MNL model 

estimated from this data was used to update the priors to further refine the Bayesian D-

efficient design.   

 

5.4.1.4  Stage  four 
 

Stage four of the process involved administering the finalised internet survey instrument. An 

improved Bayesian D-efficient design with 96 treatment combinations was blocked into 16 

randomised sets of six choice questions to eliminate order bias.  This design had a D-error of 

0.00886 and was optimised for a main-effects MNL model.  While the design could have been 

optimised for more sophisticated model forms (e.g., random parameters) the approach taken 

erred on the side of caution given the absence of a strong understanding of extent of taste 

heterogeneity in the target sample frame22.The sampling frame included the 6405 anglers with 

email contacts in the FGNZ database listed for the North Canterbury region23.  An email from 

FGNZ invited survey participation and described the nature of the survey, its relevance, and 

provided a web link to the survey.  One reminder email notice was sent one week after the 

initial invitation. The survey ran for two weeks in April 200824

                                                 
22 D-efficiency criteria were used instead of C or S efficiency, because the sample size was not constrained and 
the objective was to produce model results that minimised both the standard errors and covariances of the 
parameter estimates, rather than estimating willingness to pay measures (Scarpa & Rose 2008).   

.  In order to motivate 

participation, respondents were eligible for entry into a draw to win their choice of a Sage fly 

rod or a $1000 gift certificate to a New Zealand based fishing and hunting store.  

23 This list includes anglers who purchased a license in or through the North Canterbury regional office and 
therefore includes North Canterbury residents, as well as some overseas anglers and residents of other New 
Zealand regions. 
24 Note: the initial plan was to study the Nelson-Marlborough region.  However, because of a relatively small 
sample frame in Nelson-Marlborough, as a precaution, surveys were run in both the North Canterbury and 
Nelson-Marlborough regions.  Slight modifications were made to alternative names to reflect actual regional 
differences in fishing site types.  In particular the Nelson-Marlborough survey used the names (Mainstem river, 
Backcountry river, Lowland stream, Braided river, not fish).  Attributes, levels and descriptions were the same in 
both surveys as was the formatting and wording of the survey instruments.  The Nelson-Marlborough survey 
resulted in (n=301) respondents.  While this was sufficient to conduct the analysis the larger North Canterbury 
data set (n=813) was adopted for the analysis here.  
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Figure 5-1 depicts a screen shot of a choice scenario from the finalised internet survey 

instrument.  Appendix (A) contains the full set of sample screen shots from the internet 

survey. 

 

 

Figure 5-1: Example of a choice scenario  
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5.5  Conceptual framework of the research design  
 

Figure 5-2 depicts the conceptual framework of the research design (adapted from Jaeger & 

Rose 2008). 

 

Figure 5-2: Conceptual framework of the research design 
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5.6  Results 
 

Usable responses were received from 813 of the 6405 individuals in the sample.  It is not 

known how many of the email invitations that were sent were received by the intended 

recipients, so the actual response rate is unknown, but it is greater than the 12.7% indicated by 

the figures above.  These responses resulted in 4878 completed choice scenarios. Average 

survey completion time was 14 minutes and 57 seconds.  The median respondent: 

 

• Was between 41 and 50 years of age;  

• Had 22 years of fishing experience; 

• Fished 11-20 days per year; 

• Earned $60,000 – $80,000 personal income; 

• Fishing was their second most important recreational activity.   

• Had intermediate fishing skill. 

 

Only 8% of respondents were internationally based, with 84% living in Canterbury. Ninety 

five percent of participants were male, 19% belonged to fishing clubs, and 64% used the 

internet to access fishing-related information. Lakes were the most commonly fished waters, 

being fished by 76% of survey participants. Lakes were also the water type the anglers fished 

most often (26% of participants said they fished most often on Lakes). Corresponding figures 

for other water types were: backcountry rivers (73%, 23%), braided rivers (72%, 22%), 

mainstem rivers (65%, 19%), and lowland streams (50%, 9%). 

 

5.7  Statistical analysis 
 
Maximum or simulated maximum likelihood estimation is used in the estimation of logit 

models.  Values of coefficients are arrived at which maximize log-likelihood (LL).  The 

higher the LL value (smaller negative number) the better the model fit.  The likelihood ratio 

(LR) statistical test is one means used to test the significance of relative improvements in 
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model fits for nested models.  The LR test statistic is -2(LLbase model – LLestimated model) ~ χ²  

(difference in the number of parameters).  The McFadden R² statistic is the most common measure of both 

overall and relative model fits (Hensher et al. 2005).  Higher McFadden R² values suggest a 

better overall fit25

 

.  The Akaike and Bayesian Information Criteria (AIC and BIC) are two 

additional measures which can be used to compare models with different numbers of 

parameters.  The AIC is a relative measure of improvement in LL with respect to an increase 

in the number of parameters estimated.  AIC = (-2LL + 2k)/n, where k = is the number of 

parameters and n is the sample size. BIC = (-2LL +k*ln(n))/2.  Lower AIC and BIC scores are 

preferred.  Nlogit 4.0 (Econometric Software 2007) was used to conduct all model estimation.  

In all estimated models presented in the following chapters the attributes Didymo and riparian 

margin were effects coded.  All other attributes were entered as interval-scaled continuous 

variables (Hensher et al. 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
25 McFadden R² = 1-(LLestimated model/ LLbase model). It is important to note that the McFadden R² statistic is not 
analogous to the R² statistic used in ordinary least squares estimation (Hensher, Rose & Greene 2005 p. 338). 
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Chapter 6 

Taste Heterogeneity and Complex Substitution Patterns   
 

6.1  Introduction  
 

Chapter 2 described extended mixed logit (ML) choice models which incorporate random 

preference heterogeneity in deterministic utility as well as heteroscedasticity and correlation in 

unobserved utility.  The potential outcome is a single model which is highly descriptive and 

predictive.  Chapter 4 identified a fishery management problem in North Canterbury involving 

resource disturbances and changes in angler activity.  Chapter 5 described the design of the 

choice experiment to study this problem.  This chapter applies extended ML models to explore 

the link between resource disturbances on lowland streams and angler activity in North 

Canterbury.  This linkage is complicated because of: (i) the numerous forms of resource 

disturbance, e.g., Didymomosphenia geminata (Didymo), riparian margin erosion and declines 

in water visibility and, (ii) angler preference heterogeneity (e.g., Bryan 1977; Train 1998).  

 

Preference diversity adds complexity to the problem of understanding how fishing site 

attributes (and changes in the quality thereof) influence angler decisions of whether and where 

to fish (Train 1998).  This is because anglers are known to place different emphasis on catch 

rates or trout size, ability to take fish home (or otherwise) and resource disturbances (Bryan 

1977).  The numerous other influences on angler site choice, which are specific to the angler 

and type of fishing site, but which are difficult to observe from the practitioner’s perspective,  

make unobserved utility a reality (Murdock 2006) and important pieces of information which 

need to be addressed in the utility construct (Hess 2005).  Similarity among alternatives 

implies substitutability.  Depending on the degree of substitutability of alternatives, 

degradation, or closure to one fishing site may cause anglers to redistribute predominantly to 

another or, in the case of varying substitutability, exhibit complex substitution patterns.   
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Redistributions in trout angler activity, particularly to backcountry rivers is problematic 

because it can lead to angler congestion (e.g., Walrond 2001), overfishing and reduced trout 

catchability (Young & Hayes 2004).  A variety of conditions can lead to reduced fishing 

license sales and the consequent reduction in revenue is problematic for managers as it 

reduces their ability to maintain the fisheries, and provide services to anglers (Abernathy 

2006).  The National Angler Survey (NAS) data along with longitudinal license sale data 

suggest a complex story of preference heterogeneity, non-proportional substitution patterns 

and participation opt-out among New Zealand trout anglers (Unwin 2009; Chapter 4).   

To improve understanding of angler substitution patterns and the extent to which angler 

preferences differ for resource disturbances, angler congestion, and regulations, this chapter 

employs the latent class multinomial logit (LC-MNL) model and ML models to analyse the 

survey data.  The different models are compared with one another and with the multinomial 

logit (MNL) model on the basis of statistical fit, predictive performance and information 

revelation. 

This chapter is arranged as follows.  First outputs from a MNL model, three class LC-MNL 

model and three different extended ML models with random parameters and error components 

are described.  Then these models are then used to forecast anglers’ likely responses to a 

scenario involving disturbance to riparian margins, water visibility and catch rates at lowland 

stream fishing sites.  Forecasts from the different models are compared.  The chapter 

concludes with a discussion which identifies some management implications from the 

findings. 

 

6.2  Data analysis 

6.2.1  Multinomial logit 
 

Parameter estimates in the MNL model (M1) carry expected signs (Table 6-1).  Higher cost 

and travel time were both evaluated negatively, as were damaged riparian margins and 

Didymo infestations. The parameter for encounters with other anglers was negative but not 

significant. Higher water visibility was evaluated positively, as was catching more trout, 
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bigger trout and higher bag limits. The alternative specific constants (ASCs) capture the mean 

effect of unobserved utility for each fishing site relative to not going fishing.  The positive and 

significant Backcountry ASC indicates that, on average, the unobserved utility anglers receive 

from backcountry rivers is greater than the utility received by not fishing. 

 
Table 6-1: Summary of the MNL (M1) and LC-MNL (M2) models 

Class 1 Class 2 Class 3
Attributes
Cost -0.007 *** -0.007 *** -0.007 *** -0.007 ***
Travel time -0.006 *** -0.007 *** -0.007 *** -0.007 ***
Water visibility 0.049 *** 0.081 *** 0.063 *** -0.005
Catch 0.111 *** 0.274 *** 0.075 *** 0.003
Trout size 0.159 *** 0.288 *** 0.172 *** 0.100 ***
Bag limit 0.188 *** 0.051 0.351 *** 0.045
Riparian margin erosion -0.412 *** -0.335 *** -0.418 *** -0.730 ***
Didymo -0.273 *** -0.091 -0.329 *** -0.636 ***
Encounters -0.033 -0.227 *** 0.081 *** -0.047

Mainstem-braided ASC 0.128 0.883 * -0.296 0.925 ***
Backcountry ASC 0.603 * 2.170 *** -0.897 *** 1.939 ***
Lowland ASC -0.158 0.845 * -0.592 *** -0.075
Lake ASC 0.128 0.651 -0.857 *** 2.193 ***

Constant -0.367 1.280 *** 0.000
Skill 0.644 *** -0.454 ** 0.000
Class Probability 0.317 0.475 0.208

Parameters
AIC
BIC
LL
McFadden psuedo-R²

Note: ***, **, * = Significance at 1%, 5%, 10% level

LC-MNL M2MNL M1

2.942
2.959

39

2.852
2.801

13

-7187.842
0.0518

-6816.690
0.1349

 
 

6.2.2  Latent class multinomial logit 
 

The three class LC-MNL model (M2, Table 6-1) incorporates a limited degree of taste 

variation.  Model M2 is preferred over model M1 on AIC, BIC, and the McFadden pseudo-R² 

criteria and reveals different types of anglers according to taste heterogeneity and skill level.  

Since the LC-MNL M2 and MNL M1 models are not nested, a likelihood ratio (LR) test is not 
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appropriate (e.g., Greene & Hensher 2003).  The probabilities of anglers being members of 

class 1, 2 or 3 are 31.7%, 47.5% and 20.8%, respectively.  Both the cost and travel time 

parameters are fixed across the three classes, because the primary interest of the research is to 

understand anglers’ preferences for fishing site attributes (e.g., catch rates, regulations and 

resource disturbances).   

Skill level is an important determinant of class allocation, with class 1 membership positively 

associated with more skilled anglers, while class 2 membership was negatively associated 

with more skilled anglers.  The class 3 skill-level parameter was fixed to allow model 

identification.  Noticeably different preference structures are evident between classes.  Class 1 

anglers have relatively stronger preference intensities for water visibility, catch rate and trout 

size compared to the other classes.  Class 1 anglers view angler encounters negatively, while 

Class 2 anglers view angler encounters positively.  Bag limits are not a significant influence 

on the choices of class 1 anglers while they are found to be a positive and significant influence 

for class 2 anglers.  Didymo and riparian margin, where statistically significant, are negative 

influences on anglers fishing site choices, with class 3 anglers most averse to these resource 

disturbances. 

 

6.2.3  Mixed logit  
 

Coefficients for the observed site attributes in mixed logit models (M3-M5, Table 6-2) were 

estimated using triangular distributions. Constraints were placed on spread parameters (and 

hence on heterogeneity) for water visibility, catch, trout size, riparian margin and Didymo 

parameters so that the spreads would equal the absolute values of the means.  Hensher & 

Greene (2003) show that when the spread parameter is constrained to equal the mean (i.e., 

jkkjk Tβββ +=  where jT  is a triangular distribution), the density rises linearly to the mean 

from zero and declines to zero at twice the mean. Therefore, the distribution falls between 

zero and jkβ .  This procedure ensures that the distribution with bounded support falls on 

either side of zero and affords a behaviorally sensible approach where such an outcome is 

expected a priori.  Empirically, the triangular distribution is easy to interpret, avoids the 
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problem of long tails associated with drawing from a log-normal distribution and is gaining 

popularity in the literature (e.g., Hensher & Greene 2003; Hensher et al. 2005; Greene et al. 

2006; Greene & Hensher 2007).  Parameter estimates from the LC-MNL model M2 were used 

to inform the selection of which parameters to constrain and which ones not to.  To maintain 

consistency with model M2 the cost and travel time parameters were estimated as fixed 

parameters.  While fixing the cost and travel time parameters limited understanding of 

preference heterogeneity for these attributes, this approach was favored because it reduced the 

model complexity in order to promote identification (Walker et al. 2007).  As noted before, 

the primary interest of the research is, specifically, to understand anglers’ preferences for 

attributes directly associated with fishing sites (e.g., catch rates, regulations and resource 

disturbances).  Like M1, models M3-M5 estimate generic parameters for all fishing site 

alternatives.  Note, in Table 6-2 the random coefficients for the observed site attributes are 

characterised by their spreads, while the error components, which were estimated with normal 

distributions, are characterised by their standard deviations.  Shuffled Halton draws were 

specified in preference to regular Halton draws because they provide better coverage of the 

distribution space when estimating a large number of parameters (Bhat 2003; Train 2003, p. 

236).  The estimation of M3-M5 was a time consuming process whereby various numbers of 

draws (r), were specified to determine parameter stability (Chiou & Walker 2007).  Parameter 

stability was achieved when r=750.  

Model M3 (Table 6-2) incorporates random parameters plus error components (RP-EC).  

Model M4 extends model M3 by adding heterogeneity around the error component standard 

deviations.  Model M5 extends model M4 by adding heterogeneity in the means and around 

the spreads of the random parameters. 
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Table 6-2: Summary of the RP-EC (M3-M5) models  

Mean Spread Mean Spread Mean Spread
Attributes
Cost -0.006 *** fixed -0.005 *** fixed -0.010 *** fixed
Travel time -0.004 *** fixed -0.004 *** fixed -0.009 *** fixed
Water visibility 0.117 *** 0.117 *** 0.118 *** 0.118 *** 0.050 ** 0.050 **
Catch 0.227 *** 0.227 *** 0.228 *** 0.228 *** 0.156 *** 0.156 ***
Trout size 0.341 *** 0.341 *** 0.343 *** 0.343 *** -0.009 0.009
Bag limit 0.212 *** 1.007 *** 0.212 *** 1.003 *** 0.323 *** 1.143 ***
Riparian margin erosion -0.631 *** 0.631 *** -0.632 *** 0.632 *** -0.637 *** 0.637 ***
Didymo -0.471 *** 0.471 *** -0.471 *** 0.471 *** -0.553 *** 0.553 ***
Angler encounters -0.022 0.684 *** -0.020 0.692 *** -0.023 0.906 ***

Mainstem-braided ASC -1.193 *** -1.220 *** 0.198
Backcountry ASC -1.325 *** -1.423 *** 0.642 *
Lowland ASC -1.431 *** -1.454 *** -0.204
Lake ASC -1.694 *** -1.726 *** 0.005

Water visibility *Skill 0.021
Catch * Skill 0.012
Trout size * Skill 0.212 ***
Bag limit * Skill -0.096 **
Riparian margin erosion * Skill 0.021
Didymo * Skill 0.102 **
Angler encounters * Skill -0.033

Water visibility * skill 0.000
Catch * skill 0.930 ***
Trout size * skill 2.255 *
Bag limit * skill -0.140
Riparian margin erosion * skill 0.534 ***
Didymo * skill 0.568 ***
Angler encounters * skill -1.038

Error components
(Mainstem, Lowland) nest 0.848 *** 0.710 *** 0.746 ***
Backcountry 1.313 *** 0.959 *** 0.921 ***
Lake 1.258 *** 1.219 *** 1.050 ***

(Main,Low) * Skill 0.157 0.138
Backcountry * Skill 0.262 ** 0.337 ***
Lake * Skill 0.018 0.180 **

Parameters
AIC
BIC
LL
McFadden psuedo-R²

Note: ***, **, * = Significance at 1%, 5%, 10% level

2.788 2.792 2.780
-6749.226 -6745.517 -6657.407

0.1435 0.1439 0.1551

Control for heteroscedasticity in the 
standard deviation of the error 
components

18

RP-EC M3          RP-EC M4

Heterogeneity in the mean of random 
parameters

21
2.764 2.764 2.734

35

Stdev. Stdev. Stdev.

Control for heteroscedasticity in the 
spread of the random parameters

RP-EC M5
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Based on statistical criteria (e.g., AIC, BIC and the McFadden pseudo-R²) model M3 offers an 

improvement in fit over the LC-MNL model M2.  Similar to model M1, all parameters in 

model M3 have expected signs and are significant except for angler encounters, which was 

non-significant.  However, the spread parameter for encounters was statistically significant, 

indicating wide ranging preference heterogeneity among anglers for angler encounters - some 

anglers view angler encounters very negatively, for others the effect of encounters is 

innocuous and others view angler encounters positively.  This finding was concealed by the 

MNL model M1.   

The ASCs for all fishing site alternatives are statistically significant with a negative sign.  This 

result may seem slightly counter-intuitive, however one must bear in mind that this does not 

suggest that, all things considered, anglers prefer the not fish option.  Instead the negative 

ASCs suggest that the mean effect of the influences and preference heterogeneity which have 

not been accounted for systematically have relatively less utility than the not fish option. What 

is of empirical interest is change in the relative signs in the ASCs from the MNL specification 

to that of the mixed logit specification in model M3.  One plausible explanation for the sign 

switching is that model M3 systematically explained relatively more of the positive influences 

on individuals’ site choices in deterministic utility, thus leaving content which on average had 

less utility than the not fish option.  Constraints placed on the triangular distributions may 

have influenced this result.  Model M3 specified three error components, although more could 

have been specified according to Walker et al.’s (2007) order condition.  One of these error 

component structures nested the Mainstem-braided river and Lowland stream alternatives 

(Main, Low).  The reasoning behind this decision related to the geographical proximity and 

commonalities in scenic and environmental features found in many lowland streams and 

mainstem-braided rivers when contrasted with backcountry rivers and lakes.  The two 

remaining error components captured the standalone unobserved utility variances for the 

Backcountry river and Lake alternatives.  All error components are statistically significant, 

which shows that there is a substantial amount of preference heterogeneity associated with the 

fishing site alternatives not accounted for by the random parameters.  The relatively large 

coefficient on the Backcountry river error component, compared to the Lake and Main-Low 

nested error components indicates that there is more variance in unobserved utility for 

backcountry rivers.   
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Model M4 extends model M3 by controlling for error component heteroscedasticity using 

anglers’ self reported skill levels.  The Backcountry*skill parameter is positive and 

statistically significant suggesting that anglers with higher skill level have greater unobserved 

utility variance than less skilled anglers.  The (Main, low)*skill and Lake*skill parameters are 

positive but not statistically significant, which suggests that a relationship between skill level 

and unobserved utility variance does not exist for those alternatives.  Model M4 offers an 

improvement in fit over M3 (χ²=7.418; df =3; p=0.0597).  

Model M5 further extends model M4 (χ²=176.22; df =14; p<0.00001) by adding two 

additional sources of information:  controlling for heteroscedasticity in the spreads of the 

random parameters and controlling for heterogeneity in the random parameter means, again 

using anglers’ skill levels.  Model M5 reveals that as angler skill level increases, preference 

intensities for catch become stronger, and aversions for Didymo infestation become weaker 

(i.e., less negative).  The negative coefficient on the bag limit*skill parameter suggests that as 

angler skill level increases preference intensities for the option to take an additional trout 

home decrease.  The heteroscedasticity parameters capture an additional source of angler 

heterogeneity in the spread estimates of the random parameters.  The positive and statistically 

significant signs for the catch*skill, trout size*skill, Didymo*skill and riparian margin 

erosion*skill show that as angler skill level increases so too does the variation in preferences 

for the respectively named attributes.  For example, this suggests that there is greater 

preference heterogeneity among skilled anglers for catch rates, trout size, Didymo infestation 

and riparian margin erosion, compared to anglers with lower skill level.  The ASC in model 

M5 for backcountry river is positive and statistically significant, which indicates the mean 

effect of what is not accounted for in systematic utility, is on the average positive.  No other 

ASCs are statistically significant. 

 

6.3  Prediction 
 
The advanced logit models elucidated, to varying degrees, both the extent and some of the 

source of preference heterogeneity among North Canterbury anglers.  To test model 

performance, so far, this chapter has relied on statistical criteria such as the LR test, 
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McFadden R², BIC and AIC.  For all cases the more advanced specifications, despite 

additional parameters, significantly improved model fit, with M5 performing the best.   

To further explore the performance of the different DCMs a scenario is simulated and models 

M1-M5 are used to forecast the change in the probability of anglers choosing each alternative 

(this effectively reveals direct and cross-elasticities).  A scenario is specified which roughly 

simulates the resource disturbances which have occurred on North Canterbury lowland 

streams: 50% decrease in water visibility, 50% decrease in catch rate and appearance of 

riparian margin erosion.  For simplicity the scenario assumes that all other fishing sites are 

unaffected.  The status quo scenario sets each fishing site’s attribute levels at the averages of 

attribute levels for that type of site in the experimental design (Table 5-1).  It should be noted 

that the values reported here are based on an un-calibrated stated preference choice model, and 

do not reflect actual market shares, thus caution should be exercised when interpreting the 

actual choice probabilities.  However, the primary interest here is to investigate the change in 

behavioural response (captured by the change in choice probabilities) which is forecast by the 

various models.  If non-proportional substitution patterns are present the advanced logit 

specifications would be expected to reflect these in contrast to model M1 which maintains the 

independence from irrelevant alternatives (IIA) property.  The IIA property dictates that the 

ratio of choice probabilities for any pair of alternatives is independent of any other alternative 

(Luce 1959; Ben-Akiva & Lerman 1985). 

Table 6-3 presents three columns of data.  The first column lists the predicted choice 

probabilities of anglers choosing each alternative in the status quo scenario.  Note, that these 

probabilities are based on a constants only model (i.e., only ASCs).  The second column lists 

the predicted choice probabilities of anglers choosing each alternative based on the simulated 

scenario and the full model (ASCs plus all estimated coefficients).  The third column 

calculates the percentage change in choice probabilities from columns one and two.  Briefly, 

given the resource disturbances, model M1 predicts that the probability of anglers selecting 

the Lowland stream alternative decreases by 48.22% while the probability of selecting the 

Mainstem-braided river, Backcountry river, Lake and not-fish option increase by 12.90%, 

13.36%, 11.76% and 12.47%, respectively.  The first point of interest is the precipitous drop 

in the Lowland stream choice probability.  Secondly, as anticipated, the MNL model M1 
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maintains relatively proportional substitution patterns, which is an artefact of IIA.  This is 

evidenced by the relatively uniform increase in the choice probabilities of the unaffected sites 

and the not-fish option.  The probability changes are not perfectly uniform, as would be 

expected with IIA, because the status quo does not include the full model with estimated 

variable coefficients (it just includes ASCs)26

The LC-MNL model M2 allowed a limited degree of angler heterogeneity to be revealed as 

well as a partial relaxation of the IID property (IIA is still maintained within classes).  Model 

M2 predicts a decrease in probability of selecting the Lowland stream alternative of 48.73%, 

which is almost identical to model M1.  However, model M2 predicts non-proportional 

substitution patterns with choice probabilities increasing for the Mainstem-braided river, 

Backcountry river, Lake and not-fish options by 15.80%, 11.61%, 10.39%, 18.15% 

respectively.  The non-uniform change in choice probabilities of the unaffected sites and the 

not-fish option clearly indicate that IIA has been overcome. 

.  This same condition applies for models M2-

M5.  

The RP-EC model M3 predicts changes in choice probabilities distinctly different to model 

M1 and model M2.  Firstly, model M3 predicts a 62.55% reduction in anglers selecting the 

Lowland stream alternative, which is noticeably larger than model M1 and model M2.  

Secondly, model M3 predicts a higher rate of substitution to Mainstem-Braided river 

alternative.  Substitution to the Backcountry river and Lake alternatives are relatively lower 

but have similar rates (see Table 6-3).  Again, the non-uniform change in choice probabilities 

of the unaffected sites and the not-fish option clearly indicate that IIA has been overcome.  

Model M4 which controls for unobserved heterogeneity at the alternative level predicts a 

pattern of substitution very similar to model M3.  Model M5, which controls for heterogeneity 

in the random parameter means and heteroscedasticity in the random parameter spreads and 

error component standard deviations, predicts a 52.85% reduction in choice probability for the 

Lowland stream alternative, and non-proportional substitution patterns tending toward the 

Mainstem-braided river option.  

 

                                                 
26 Nlogit’s (4.0) simulation feature imposes that the base scenario uses a constants only model. 
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Table 6-3: Scenario analysis: Lowland stream degradation 
 

Status quo 
(constants only) Post-scenario

MNL M1 Choice probability Choice probability
% change in choice 

probability

Lowland 20.96% 10.85% -48.22%
Mainstem-braided 21.81% 24.63% 12.90%
Backcountry 30.62% 34.71% 13.36%
Lake 17.01% 19.02% 11.76%
Not Fish 9.60% 10.80% 12.47%
Total 100.00% 100.00%

LC-MNL M2

Lowland 21.42% 10.98% -48.73%
Mainstem-braided 23.11% 26.76% 15.80%
Backcountry 30.21% 33.72% 11.61%
Lake 16.86% 18.61% 10.39%
Not Fish 8.41% 9.93% 18.15%
Total 100.00% 100.00%

RP-EC M3

Lowland 21.01% 7.87% -62.55%
Mainstem-braided 21.81% 26.71% 22.44%
Backcountry 30.64% 34.93% 14.01%
Lake 17.28% 19.60% 13.42%
Not Fish 9.25% 10.89% 17.66%
Total 100.00% 100.00%

RP-EC M4

Lowland 21.31% 7.96% -62.64%
Mainstem-braided 22.12% 27.13% 22.68%
Backcountry 29.74% 34.04% 14.45%
Lake 17.43% 19.80% 13.61%
Not Fish 9.40% 11.07% 17.71%
Total 100.00% 100.00%

RP-EC M5

Lowland 21.10% 9.95% -52.85%
Mainstem-braided 21.73% 25.85% 18.94%
Backcountry 30.24% 33.86% 11.97%
Lake 17.51% 19.60% 11.92%
Not Fish 9.42% 10.74% 14.04%
Total 100.00% 100.00%  
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6.4  Discussion & management implications 
 
This chapter contributes to the literature by applying advanced ML models which: (i) reveal 

both the extent and source of heterogeneity among individuals in observed and unobserved 

utility according to anglers’ skill levels and, (ii) are able to identify complex substitution 

patterns (Greene et al. 2006; Greene & Hensher 2007). 

Background data collected on trout anglers suggests that the majority of anglers fishing North 

Canterbury use multiple types of sites and methods while fewer anglers tend to target one type 

of fishing site to the exclusion of others.  On the whole this indicates a relatively flexible 

population likely to be willing to transfer activity between locations according to conditions.  

Although some anglers have strong preferences for particular waters the advanced logit 

models (M3-M5) indicate that anglers on the whole are indeed willing to transfer their fishing 

effort to alternative sites and that this pattern of substitution is non-proportional. The 

implication is that loss of some waters has the potential to significantly increase angler 

pressure on other waters.   

The role of respondent heterogeneity is apparent. Both the LC-MNL and ML models indicate 

that there are distinct differences in tastes between anglers. These taste heterogeneities are 

consistent with other recent discrete choice recreation studies (Train 1998; Breffle & Morey 

2000).  It was clear from this research that while the LC-MNL model was able to identify 

finite preference differences between anglers the ML models provided a richer understanding 

of preference heterogeneity by revealing population preference profiles over a continuous 

distribution. 

In the past researchers believed that ML was limited in its capacity to reveal sources of 

heterogeneity.  For instance, “while these procedures [mixed logit] incorporate and account 

for heterogeneity, they are not well-suited to explaining the sources of heterogeneity” (Boxall 

& Adamowicz 2002, p. 422) and “although the random parameters  approach is useful to 

assess the extent of preference heterogeneity, the typical absence of an explanation for the 

source of preference heterogeneity limits the usefulness of the approach for managers (i.e., 

one typically assesses the extent and not the causes of the variability in preferences)” (Hunt 

2005, p. 160).  Extensions to the ML model adopted here overcome these limitations.   
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ML extensions identified that some preference heterogeneity, both in the random parameters 

and error components, could be explained by angler skill level.  Bryan (1977) hypothesised 

that skill level is one of the key indicators of specialisation.  Though this chapter investigates 

only one of the constituent dimensions of specialisation, skill level, the models M2 and M5 

are consistent with Bryan’s (1977) hypotheses.  For model M2, members of class 1 fit the 

mould of highly specialised anglers; these anglers are more likely to be highly skilled, are 

averse to encounters with others, are not concerned with bag limits and prefer to catch larger 

trout. The positive signs on the trout size and water visibility parameters and negative signs on 

the encounters and bag limits parameters for class 1 anglers are consistent with Bryan’s 

conjecture that specialised anglers have strong positive preferences for larger size fish, and are 

more negatively affected by environmental degradation. Class 2 anglers fit the mould of 

anglers with relatively low specialisation.  The contrast between the two latent classes 

emphasises the need for fisheries managers to understand and account for angler heterogeneity 

in managing freshwater fisheries.  Model M5 revealed similar findings - as anglers increase in 

skill, preference intensities for trout size increase and for bag limits decrease.  Further, anglers 

become less averse to Didymo infestation.  This latter finding, which was also identified by 

model M2, is in contrast to what specialisation theory suggests, i.e., anglers become more 

sensitive to resource disturbance with increasing specialisation.  Research on ecological 

effects of Didymo on invertebrate density, dynamics and trout stocks and so forth, are limited 

at this point in time, because Didymo is such a recent phenomenon (Sutherland et al. 2007).  

However, there have been some anecdotal reports from anglers suggesting that trout stocks (in 

some cases) may actually benefit from Didymo infestation due to higher invertebrate 

densities.  If this is true then perhaps more highly skilled anglers are more astute about these 

collateral benefits and as a result have less of an aversion to Didymo.  Finally, the finding that 

more highly skilled anglers have greater variance in unobserved utility is consistent with 

Bryan’s hypothesis that specialised anglers have more complex representations of the activity 

(Ditton et al. 1992; Fisher 1997; Miller & Graefe 2000).  Complex representations entail a 

larger number and variation in attributes (grounded in both positive and negative utility) that 

enter anglers’ decision processes.  This ultimately will cause greater variance in unobserved 

utility.   The question arises as to why the interactions for each site were not significant?  A 

plausible reason is that North Canterbury backcountry rivers and lakes (lakes are 
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predominantly located in the interior backcountry areas), compared to mainstem and lowland 

waters, tend to have far more variation in scenery, native vegetation, nuisance sand flies and 

accessibility.  The increased likelihood that these kinds of unobserved effects enter the 

decision processes of more skilled anglers may explain, at least partly, why variance increases 

with skill for just these particular fishing sites.  Chapter 7 deals more thoroughly with this 

issue.    

 

While the models reported here systematically explained some of the random heterogeneity 

captured in the ML models using angler skill level, it may be possible to gain a better 

understanding of preference heterogeneity by incorporating a larger number of specialisation 

indicator variables or aggregate measures of specialisation (Bryan 1977).  This is the focus of 

the next chapter. 
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Chapter 7   

Recreation Specialisation and Angler Site Choice 
 

7.1  Introduction 
  

The extended mixed logit (ML) models developed in Chapter 6 outperformed the multinomial 

logit (MNL) and latent class-multinomial logit (LC-MNL) models to a considerable degree in 

terms of providing better fits, unrestricted substitution patterns and greater revelation of 

preference heterogeneity among anglers.  Chapter 6 demonstrated the capability of extensions 

to ML which control for heteroscedasticity in both random parameters and error components.  

The purpose of this chapter is to build from the ML models developed in Chapter 6 by using 

multidimensional measures of recreation specialisation (RS) to provide a theoretically-based 

explanation of the nature of preference heterogeneity and heteroscedasticity among North 

Canterbury anglers (Bryan 1977).  In general, linking RS with discrete choice models (DCMs) 

is a relatively unexplored avenue.  This gap in the literature provides scope for investigating 

different approaches for integrating RS in discrete choice analysis. 

 

7.2  Recreation specialisation  
 

Chapter 3 described the RS concept.  Briefly, RS is a multidimensional concept measured by 

indicators of experience, skill and commitment (Scott & Shafer 2001; McFarlane 2004; Oh & 

Ditton 2006).  Recreation specialisation predicts that anglers with low specialisation (e.g., 

those who rank angling low in importance relative to their other recreation activities, 

participate infrequently, have low skill and are not highly committed), like being able to take 

fish home, prefer fishing with others, are not particular about where they fish, and are 

relatively unconcerned about resource disturbances and catching lots of fish.  Highly 

specialised anglers, on the other hand, are predicted to have a different set of preferences and 
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cognitions.  Specialised anglers are expected to prefer to fish alone or with close peers, be 

very particular about the setting in which they fish, emphasise catching larger and more fish, 

prefer catch-and-release type regulations which conserve the fish stock and be relatively more 

concerned about resource disturbances.  Highly specialised anglers have been found to place 

greater value on non-catch related aspects of fishing sites (Bryan 1977; Oh et al. 2005; Oh & 

Ditton 2006), have a more complex representation of the activity (Ditton et al. 1992; Fisher 

1997; Miller & Graefe 2000) and have the ability to describe site attributes with greater 

specificity (Schreyer & Beaulieu 1986).   

 

Despite the high level of attention given toward the RS concept (at the time of writing Bryan’s 

(1977) paper had been cited 358 times according to google.scholar), review of the published 

literature revealed that only two studies have integrated the RS concept with DCM to test 

whether anglers’ choice behaviours (i.e., preferences) are consistent with their levels of 

specialisation.  Oh & Ditton (2006) used specialisation to study heterogeneity of preferences 

for red drum angling regulations.  Dorow et al. (2009) studied heterogeneity of preferences 

among European eel anglers.  Both studies used very similar two-step processes to integrate 

RS into discrete choice analysis.  In step one, Oh & Ditton (2006) and Dorrow et al. (2009) 

used cluster analysis (CA)27 to identify specialisation groups according to a number of 

indicators.  Each study used unlabelled choice experiments and identified three separate 

cohorts which they termed advanced, intermediate and casual.  Separate MNL models were 

then used to estimate preferences for each cohort.  While this approach is one way to integrate 

RS into discrete choice analysis, it results in multiple models28

                                                 
27 In confirmatory factor analysis variability among individuals’ indicator variables are explained and modelled 
as linear combinations involving a fewer number of factor scores, plus error terms.  CFA allows research to 
determine if the loadings of indicator variables conform to pre-established theory (e.g., McFarlane 2004; Oh & 
Ditton 2006).The CA approach ‘clusters’ individuals based on shared similarities and dissimilarities using 
indicator variables (Chipman & Helfrich 1988; McIntyre & Pigram 1992; McFarlane 1994,1996; Scott & 
Thigpen 2003; Dorow et al. 2009).  Statistical criteria are used to assist in the determination of the number of 
latent ‘cohorts’.   

.  These models and their 

parameters can be cumbersome to interpret and compare due to scale issues (Ben-Akiva & 

Lerman 1985).  This chapter describes and applies two alternative approaches for integrating 

28 The reason why multiple models must be estimated is because cohorts are not interval scaled.  This means that 
the difference in specialisation between groups is not necessarily proportional.  Therefore cohort variables cannot 
be interacted with attributes or included in a LC-MNL model without dummy or effects coding.  Dummy or 
effects coding each specialisation cohort and interacting these variables also results in a very large number of 
parameters. 
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RS into discrete choice analysis which avoid scale issues and the requirement to employ 

multiple models.   

 

7.2.1  Analysing individual recreation specialisation indicators: An empirical             
 approach 
 

An alternative approach to Oh & Ditton (2006) and Dorrow et al. (2009) for integrating RS is 

to analyse RS indicators individually (e.g., McIntyre 1989; Kuentzel & Heberlein 1992; 

Boxall & Watson 1998; McFarlane 2004).  Treating RS indicators individually has some 

advantages.   First, it provides understanding of the particular relationships of each 

dimension/indicator with individuals’ choice behaviours.  Some dimensions/indicators may 

have weak, strong or different relationships to individuals’ preferences altogether.  Second, 

treating dimensions/indicators individually in analysis avoids the problem of having to 

indentify individual’s aggregate level of specialisation.   

 

In the context of a DCM the empirical approach compared to a theoretical approach (which 

will be described shortly) has some disadvantages.  First, it results in a large number of 

estimated parameters – this number is dependent upon the number of indicators and the ways 

in which the indicators enter the model.  Second, incorporating a large number of indicators 

could lead to interpretation and identification issues in the extended ML model, as well as 

high estimation time outlays from specification testing.   

 

To avoid identification issues and high estimation time outlays from specification testing, 

conventional DCMs can be used.  One approach uses an LC-MNL model to segment anglers 

into latent classes according to taste differences and specialisation indicators.  Alternatively, 

an MNL model could be used with specialisation indicators ‘interacted’ with site attributes.  

Fixed parameters could then be estimated for each interaction term.  These interaction 

parameters would determine the relationship between the indicators and individuals’ 

preferences (e.g., Adamowicz et al. 1997; Morrison et al. 1999; Bauer et al. 2004).  However, 

individual RS indicators are likely to be correlated, which makes estimating a number of 

interactions problematic.  This is because if the interaction variables are correlated model 
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estimation procedures have difficultly teasing apart the separate influences.  Consequently, the 

standard errors on the estimates increase significantly which negatively impacts parameter 

statistical significance.  While analysing a suite of indicators empirically is one option for 

integrating RS in discrete choice analysis, the essence of RS theory suggests that anglers can 

be arranged along a “continuum” of specialisation (Bryan 1977, p. 31).  A continuum implies 

that each individual maintains an identifiable level of specialisation. 

 

7.3  Analysing recreation specialisation: a theoretical approach  
 

The literature reveals two broad approaches which have been used to identify individuals’ 

specialisation: clustering approaches and the simple aggregation method (SAM).  The issues 

with CA or combined CFA/CA approaches were previously described.  The SAM uses a 

system in which for each individual, the sum of all indicator scores identifies their level of 

specialisation (e.g., Wellman et al. 1982; Donnelly et al. 1986; Williams & Huffman 1986; 

Virden & Schreyer 1988; Miller & Graefe 2000; Valentine 2003).  The SAM affords a 

convenient alternative to CA approaches for identifying individuals’ specialisation and has a 

number of advantages.  It is computationally convenient and potentially identifies a high 

number of specialisation levels consistent with the RS concept as a “continuum” and a 

“process” (Bryan 1977; Scott & Shafer 2001) 29

 

.  The SAM allows individuals on the 

‘specialisation extremes’ (i.e., non-specialised and extremely specialised individuals) to be 

identified whereas CA may misidentify these individuals by bundling them with specialisation 

cohorts (e.g., Oh & Ditton 2006; Dorrow et al. 2009).  Identifying specialisation level with 

one variable is much more parsimonious than the CA approaches and improves the feasibility 

of employing the flexible extended ML models with specialisation as an independent variable 

(which is the main objective of this chapter).     

 

 
                                                 
29 Research which has used CA has commonly specified four or fewer levels.  For instance, Oh & Ditton (2006) 
and Dorow et al. (2009) identified three levels of specialisation which they termed casual, intermediate and 
advanced.  This low level of RS differentiation may oversimplify and limit the analysis between specialisation 
and preference. 
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7.4  Chapter Outline 
 

Incorporating RS with DCMs provides the opportunity to better understand the determinants 

of angler preferences, test RS theory and make measurement and conceptualisation 

contributions toward the RS concept.  In view of gaps in the literature and the limitations of 

using CA approaches for integrating RS into discrete choice analysis this chapter explores 

alternative approaches.  The chapter is arranged as follows.  First, the RS indicator variables 

and coding system used in the analysis are discussed.  Next, outputs from five different 

models are reported.  The first two models (LC-MNL and MNL) investigate RS indicators 

empirically.  The following MNL, multinomial logit-error component (MNL-EC), and random 

parameters-error component (RP-EC) models incorporate RS using the SAM.  The findings 

from the different approaches are described and the chapter concludes with a discussion on the 

implications of incorporating RS within DCMs. 

 

7.5  Measuring recreation specialisation among New Zealand trout anglers 
 

The internet survey which was used to obtain the choice experiment data (Chapter 4) included 

a number of RS indicator variable questions.  These questions were designed to include 

experience, skill, and commitment dimensions of the specialisation construct (as described in 

chapter 3).  The indicators: (i) number of days per year angling (daysyear), (ii) years angling 

(yearsfish), and (iii) the importance ranking of fishing compared to other activities in one’s 

life (rankfish), covered the experience dimension.  The indicators: (iv) skill level (skill), and 

(v) the importance of improving skill level, covered the skill dimension.  The indicators: (vi) 

the importance of trout fishing in one’s life (impfish), and (vii) angling club membership 

(clubmemb) covered the commitment dimension (Scott & Shafer 2001; McFarlane 2004; Oh 

& Ditton 2006)30

                                                 
30 Note: the dimensions which indicator variables belong to rests largely on interpretation.  The objective in this 
research was not to formalise a system for allocating indicators to various dimensions.  Instead the focus is on 
determining the effect that individual indicators and groupings thereof have on preferences.  

.   Finally, respondents were asked their age and income levels.  Table 7-1 

describes the RS indicator variables and coding system.   
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Table 7-1: Specialisation indicator variables including age and income 
 

Variable Name Variable Description Coding

rankfish 0 = 3rd or lower
1 = 2nd
2 = 1st 

daysyear How many days per year do you typically go trout fishing? 0 = 1-10
1 = 11-20
2 = 21≤

yearsfish How many years have you been trout fishing? An integer

skill 0 = Novice
1 = Intermediate
2 = Advanced

impskill How important is improving your level of angling skill and knowledge 0 = Not important
1 = Moderately important
2 = Highly important

impfish How important is trout fishing in your life? 0 = Not important
1 = Moderately important
2 = Highly important

clubmemb Are you a member of an angling club? 0 = No
1 = Yes

income What is your annual personal income? 0 = Under $20,000 5 = $100,001 - $120,000
1 = $20,000 - $40,000 6 = $120,001 - $140,000
2 = $40,001 - $60,000 7 = $140,001 - $160,000
3 = $60,001 - $80,000 8 = Over $160,000
4 = $80,001 - $100,000 I would rather not say

age What is your age? 0 = 18-30 4 = 61-70
1 = 31-40 5 = 71-80
2 = 41-50 6 = Over 80 years of age
3 = 51-60 I would rather not say

In comparison to other recreational activities you participate in how does trout angling 
rank in importance?

Relative to other New Zealand trout anglers what best reflects your angling skill level?
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7.6   Empirical approaches for integrating recreation specialisation in analysis 

7.6.1  A latent class multinomial logit model 
 

A three class LC-MNL model (equation 4, Chapter 2) (M6) was estimated with all site 

attributes plus the seven RS indicator variables, as well as age and income (Table 7-2)31

 

.  Like 

model M2, the cost and travel time parameters were fixed across the three classes.  The 

probability that anglers belong to class 1, 2 or 3 is .303, .427 and .225 respectively.  Using the 

specialisation construct (Bryan 1977) the specialisation of the three classes can be evaluated 

by comparing attribute coefficients for each class and using indicator variable coefficients to 

identify the characteristics of individuals in each class.  If the empirical LC-MNL approach is 

useful then both site attribute coefficients and indicator variables should display systematic 

relationships according to RS theory.  Class expectations are: 

• One class of anglers (highly specialised) should show greater positive preferences for 

improved water visibility, catch rates and trout size, indifference or negative utility 

from increasing bag limits, and greater aversion to encounters with other anglers and 

resource disturbances.  These individuals would be expected to fish more often, have 

more experience, view angling as highly important in their life and compared to other 

recreation activities, have high skill, place greater importance on improving skill level 

and be likely to be members of angling clubs. 

 

• A second class of anglers (low specialisation), compared to the other classes would be 

expected to show relatively less preference intensity for improved water visibility, catch 

rates and trout size, higher positive utility from increasing bag limits and angling 

encounters, and be less averse to resource disturbances.  These individuals would be 

expected to fish less often, have less experience, view angling as not important in their 

life and compared to other recreation activities, have low skill, place less importance on 

improving skill level and not be members of angling clubs. 

 

                                                 
31 The MNL model M1 (described in Chapter 5) reappears in Table 7-2 to provide a base of comparison. 
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• The third class should fall in between the other two classes in terms of preference 

intensities. 

 

 

The preference structures of the three classes in M6 for site attributes resemble those found in 

the LC-MNL model M2 (as discussed in Chapter 6).  While preference heterogeneity is 

evident, comparison of the classes, according to RS theory, does not provide clear evidence of 

specialisation.  Instead the findings are mixed.  For instance, while class 1 anglers show 

stronger tastes for higher water visibility, larger trout, restrictive bag limits and angling alone 

(suggesting specialisation), they were found to have less aversion to riparian margin erosion 

than members of other classes as well as no statistically significant preference for Didymo. 

 

The RS indicator parameters provide additional evidence that members of class 1 are more 

specialised, however, the evidence is not compelling.  Class 1 anglers tend to have higher skill 

(skill) and place greater importance on improving skill (impskill) – suggesting high 

specialisation.  Class 2 anglers, who appear least specialised, are more likely to rank angling 

as not very important in their lives’ (impfish) and low in importance compared to their other 

recreation activities (rankfish) - suggesting lower specialisation.  However, contrary to 

expectations of highly specialised anglers, class 1 anglers do not rank angling high in terms of 

overall importance in their lives (impfish) or relative importance compared to other recreation 

activities (rankfish) and they tend to fish less (daysyear) and have fewer years experience 

(yearsfish).  Finally, class 1 and 2 anglers are almost equally likely to be members of angling 

clubs.  Age and income did not play a role in determining class membership.  

 

Finally, class 1 anglers’ alternative specific constants (ASCs) for all fishing sites (except 

Lake) are statistically significant and positive suggesting that class 1 anglers’ unobserved 

utility (on average) for these respective alternatives are greater than the utility received from 

the option to not fish.  Nearly the opposite was found of class 2 anglers. Unobserved utility for  

Class 2 anglers at all sites (except mainstem-braided rivers) is less than the utility received 

from the option to not fish.  These findings suggest that all things remaining equal class 2 

anglers are more likely to choose not to go fishing. 
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Table 7-2: Summary of the LC-MNL (M6) model which incorporates individual 
specialisation indicator variables 

Class 1 Class 2 Class 3
Attributes
Cost -0.007 *** -0.007 *** -0.007 *** -0.007 ***
Travel time -0.006 *** -0.007 *** -0.007 *** -0.007 ***
Water visibility 0.049 *** 0.078 *** 0.067 *** -0.003
Catch 0.111 *** 0.295 *** 0.078 *** -0.001
Trout size 0.159 *** 0.298 *** 0.160 *** 0.129 ***
Bag limit 0.188 *** 0.008 0.366 *** 0.081 **
Riparian margin erosion -0.412 *** -0.330 *** -0.407 *** -0.737 ***
Didymo -0.273 *** -0.082 -0.301 *** -0.664 ***
Encounters -0.033 -0.209 *** 0.086 ***

Mainstem-braided  ASC 0.128 1.207 ** -0.303 0.841 ***
Backcountry ASC 0.603 * 2.424 *** -0.843 *** 1.904 ***
Lowland  ASC -0.158 1.139 ** -0.614 *** 0.020
Lake ASC 0.128 0.887 -0.835 *** 2.079 ***

Constant -0.557 2.222 ***
Rank -0.192 -0.511 **
Daysyear -0.371 * 0.077
Yearsfish -0.028 *** -0.022 **
Skill 1.115 *** 0.223
Impskill 0.464 * -0.159
Impfish 0.163 -0.603 **
Clubmemb 0.653 * 0.614 *
Income 0.000 -0.001
Age 0.003 0.002

Class Probability 0.303 0.472 0.225
Parameters
AIC
BIC
LL
McFadden psuedo-R²
Note: ***, **, * = Significance at 1%, 5%, 10% level

MNL M1

2.942
55

2.792

-7187.842
0.0518

2.959

13

2.865
-6780.402

0.1395

LC-MNL M6

 
 

7.6.2  A multinomial logit model 
 

The second approach for analysing individual RS indicators empirically incorporates a MNL 

model (equation 2, Chapter 2) with RS indicators interacted with alternative site attributes 

(Table 7-3).  Because estimating interactions for all RS indicators and site attributes would 

have resulted in 63 interaction terms, only four RS indicators (daysyear, skill, impfish, 
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rankfish) were included in the analysis.  These indicators were carefully selected to represent 

each of the three respective RS dimensions: experience, skill and commitment (Scott & Shafer 

2001; McFarlane 2004; Oh & Ditton 2006)32

 

.  The cost and travel time site attributes were not 

interacted. The estimated interaction effects identify the relationship between RS indicators 

and individuals’ preferences for site attributes. 

The estimated site attribute parameters in model (M7) follow those reported in model M1 with 

a few notable exceptions – while the water visibility, catch and trout size parameters were 

significant in model M1 they are not significant in model M7.  This is because the interaction 

terms in model M7 have explained much of the choice information associated with these 

attributes. 

 

Ten out of the 28 interaction terms are significant.  The positive sign on the water visibility * 

skill interaction term suggests that anglers with higher skill have stronger preferences for 

improved water visibility.  Similarly, anglers with higher skill have stronger preferences for 

catching larger trout.  Anglers who rank fishing as highly important in their lives also have 

stronger preferences for improved water visibility, catching more trout and restrictive bag 

limits.  Anglers who rank fishing high in relative importance to their other recreation activities 

have stronger preferences for improved catch rates and catching larger trout but also stronger 

aversion to Didymo.  Anglers who fish more often prefer higher bag limits – this was the only 

significant interaction found for the RS indicator daysyear.  No other statistically significant 

relationships were found.  Part of the reason why only 10 of the 28 interaction terms were 

significant may be partly due to correlation among the indicator variables (hence interaction 

terms).  Appendix B presents a table showing the calculated correlations among individual RS 

indicator variables. 

 
 
 
 

                                                 
32 Note: Scott & Shafer (2001) suggest that the relative importance indicator i.e., rankfish belongs in the 
behaviour dimension while Oh & Ditton (2006) suggest that this respective indicator is of the commitment 
dimension.   
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Table 7-3: Summary of the MNL (M7) model which includes interactions of individual 
specialisation indicator variables  

MNL M1
Attributes Mean Mean Interactions 
Cost -0.007 *** -0.008 *** Water visibility * Daysyear -0.012
Travel time -0.006 *** -0.006 *** Water visibility * Rankfish -0.002
Water visibility 0.049 *** -0.008 Water visibility * Skill 0.024 *
Catch 0.111 *** 0.020 Water visibility * Impfish 0.043 ***
Trout size 0.159 *** -0.001 Catch * Daysyear -0.006
Bag limit 0.188 *** 0.451 *** Catch * Rankfish 0.027 *
Riparian margin erosion -0.412 *** -0.380 *** Catch * Skill 0.010
Didymo -0.273 *** -0.226 *** Catch * Impfish 0.054 ***
Encounters -0.033 0.085 Trout size * Daysyear -0.010

Trout size * Rankfish 0.080 ***
Mainstem-braided ASC 0.128 0.231 Trout size * Skill 0.050 ***
Backcountry ASC 0.603 * 0.706 ** Trout size * Impfish 0.030
Lowland ASC -0.158 -0.080 Bag limit * Daysyear 0.075 ***
Lake ASC 0.128 0.225 Bag limit * Rankfish -0.022

Bag limit * Skill -0.053
Bag limit * Impfish -0.234 ***
Riparian margin erosion * Daysyear 0.015
Riparian margin erosion * Rankfish -0.050
Riparian margin erosion * Skill 0.025
Riparian margin erosion * Impfish -0.034
Didymo * Daysyear 0.011
Didymo * Rankfish -0.106 ***
Didymo * Skill 0.053
Didymo * Impfish -0.020
Encounters * Daysyear 0.031
Encounters * Rankfish -0.082 **
Encounters * Skill -0.032
Encounters * Impfish -0.036

Parameters 41
AIC 2.898
BIC 2.898
LL -7053.579
McFadden psuedo-R² 0.0695
Note: ***, **, * = Significance at 1%, 5%, 10% level

MNL M7

13
2.942

0.0518

2.959
-7187.842

 
 

7.7  Theoretical approaches for integrating recreation specialisation in 
analysis 
 

While models M6 and M7 treated RS indictors individually, models M8-M10 analyse 

variables which identify individuals’ levels of specialisation via the SAM.  Extensive 

specification testing was conducted using different SAM measures which incorporated 
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different numbers of indicator variables from Table 7-1.  Contrary to intuition, SAM measures 

which incorporated all seven indicators did not result in the best model fit, as judged by the 

McFadden pseudo-R², AIC and BIC statistics.  While not every possible combination of 

indicators was tested, it was found that a SAM measure which incorporated just three of the 

seven RS indicators (rankfish, skill and impfish) yielded the best model fits out of those tested.  

Importantly, rankfish, skill and impfish cover each of the three constituent dimensions of 

specialisation according to Scott & Shafer (2001).  Therefore, the SAM measure, which 

simply summed the three indicators for each individual, without weighting, was both 

parsimonious and theoretically sound. 

 

7.7.1  A multinomial logit model 
 

The MNL model M8 (equation 2, Chapter 2) interacts the SAM-derived RS variable with all 

site attributes except cost and travel time (Table 7-4).  All model M8 interaction terms are 

statistically significant except for the riparian margin erosion*RS interaction term.  The 

positive signs on the water visibility*RS, catch*RS and trout size*RS interaction terms provide 

evidence that anglers with higher specialisation have stronger preferences for high water 

visibility, catching more trout and bigger trout.  The negative signs on the bag limit*RS, 

Didymo*RS and encounters*RS interaction terms provide evidence that anglers with higher 

specialisation prefer restricting bag limits and show greater aversion to Didymo and angler 

encounters.  These results closely follow theoretical expectations (Bryan 1977). 

 

Briefly, the estimated parameters for water visibility, catch and trout size while significant in 

model M1 are no longer significant in model M8.  This is because the RS interaction terms 

have explained much of the choice information associated with these respective attributes.  

There are two notable differences between models M1 and M8.  First, the M8 angler 

encounters coefficient becomes significant.  This suggests that once specialisation is 

controlled for, anglers prefer to encounter other anglers.  Secondly, the M8 bag limit 

coefficient increases substantially in magnitude suggesting that once specialisation is 

controlled for, anglers prefer to be able to keep more fish.   
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7.7.2  A multinomial logit-error component model 
 

Model M9 (equation 14, Chapter 2) generalises model M8 by adding error components to 

capture unobserved utility variance differences (heteroscedasticity) at the alternative level.  

These error components are decomposed with the SAM-derived RS variables.  Similar to the 

models M3-M5 in Chapter 6, alternative specific error structures were estimated for the 

Backcountry river and Lake alternatives while the Mainstem-braided and Lowland 

alternatives were nested.  Other nesting structures could have been applied, however to 

maintain consistency with Chapter 6, models M9 and M10 maintained a similar structure to 

models M3-M5.  Parameter stability in model M9 was achieved with 500 shuffled Halton 

draws (Bhat 2003; Train 2003; Chiou & Walker 2007).  

 

The estimated coefficients for the site attributes are similar to those in model M8 with the 

exception that the Backcountry river ASC is no longer significant.  All error components are 

statistically significant, indicating that there is substantial amount of heterogeneity in 

unobserved utility at the alternative level.  The larger coefficient on the Lake error component 

indicates there is comparatively greater variance in unobserved utility for the Lake alternative 

compared to the other sites. 

 

In model M9 all interaction terms are statistically significant - the riparian margin erosion*RS 

interaction term is now found to be statistically significant. The negative sign on this 

interaction term suggests that more highly specialised anglers are more averse to riparian 

margin erosion, following theoretical expectations (Bryan 1977).  All other interaction terms 

follow those described in model M8.  The positive sign on the Backcountry river*RS 

coefficient suggests that as specialisation increases so too does heteroscedasticity in 

unobserved utility for backcountry sites. 
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Table 7-4: Summary of the MNL (M8), MNL-EC (M9), and RP-EC (M10) models which 
include SAM-derived RS variables 

Mean Mean Mean Mean Spread
Attributes
Cost -0.007 *** -0.007 *** -0.008 *** -0.010 *** fixed
Travel time -0.006 *** -0.006 *** -0.007 *** -0.009 *** fixed
Water visibility 0.049 *** -0.001 0.022 -0.002 0.002
Catch 0.111 *** 0.017 0.022 -0.083 *** 0.083 ***
Trout size 0.159 *** -0.014 0.030 0.079 *** 0.079 ***
Bag limit 0.188 *** 0.442 *** 0.446 *** 0.446 *** 1.202 ***
Riparian margin erosion -0.412 *** -0.363 *** -0.414 *** -0.511 *** 0.511 ***
Didymo -0.273 *** -0.188 *** -0.246 *** -0.415 *** 0.415 ***
Angler encounters -0.033 0.107 ** 0.099 * 0.040 0.024

Mainstem-braided ASC 0.128 0.230 0.083 0.208
Backcountry ASC 0.603 * 0.699 ** 0.372 0.577 *
Lowland ASC -0.158 -0.073 -0.264 -0.182
Lake asc 0.128 0.223 -0.160 -0.013

Water visibility *RS 0.016 *** 0.012 ** 0.022 ***
Catch * RS 0.029 *** 0.034 *** 0.068 ***
Trout size * RS 0.053 *** 0.053 *** 0.053 ***
Bag limit * RS -0.077 *** -0.072 *** -0.071 ***
Riparian margin erosion * RS -0.019 -0.025 ** -0.035 *
Didymo * RS -0.031 ** -0.029 *** -0.011
Encounters * RS -0.045 *** -0.042 *** -0.030 *

Water visibility * RS 0.873
Catch * RS 0.449 ***
Trout size * RS 0.396 ***
Bag limit * RS -0.073
Riparian margin erosion * RS 0.240 ***
Didymo * RS 0.279 ***
Encounters * RS 0.691 *

Error components
(Main, Low) 0.757 *** 0.878 ***
Backcountry 0.937 *** 0.889 ***
Lake 1.090 *** 1.098 ***

(Main,Low) * RS 0.038 -0.014
Backcountry * RS 0.069 * 0.120 ***
Lake * RS 0.016 0.050

Parameters
AIC
BIC
LL
McFadden psuedo-R²

Recreation Specialisation (RS) variable

-6615.957

35

0.1402

20

Note: ***, **, * = Significance at 1%, 5%, 10% level

2.924 2.813 2.763
-7074.840 -6775.125

0.16040.0667

MNL M1

Stdev. Stdev.

0.0518

26

Interactions/Heterogeneity around the 
random parameter means

MNL M8 MNL-EC M9 RP-EC M10

2.898 2.778 2.717

Heterogeneity around the spread of 
random parameters

Heterogeneity around the standard 
deviations of the error components

-7187.842

13
2.942
2.959

 



 105 

7.7.3  A random parameters-error component model 
 

The success of the MNL-EC model M9 motivated the estimation of a model which adds 

random parameters and decompositions of the random parameter means and spreads.  The RP-

EC model formulation M10 is similar to M5 which was applied in Chapter 5.  Like model M5, 

model M10 was estimated using triangular distributions and 750 shuffled Halton draws (Bhat 

2003; Train 2003; Chiou & Walker 2007).  The site attributes were estimated as generic 

across all sites for parsimony.  Constraints were placed on spread parameters for the water 

visibility, catch, trout size, riparian margin and didymo parameters so that the spreads would 

equal the mean values of the distributions.  The bag limit and angler encounter parameters 

were not constrained.  Cost and travel time parameters were estimated as fixed parameters.  

Model M10 specifies the same error component structure as M3-M5, and M9.  Whereas 

model M5 investigated the relationship between skill level and preference, model M10 use the 

multidimensional SAM-derived RS variable. 

 

The decompositions of the random parameter means are similar to the interaction effects in 

models M8 and M9.  Specifically, model M10 finds that anglers with higher specialisation 

have stronger preference intensities for higher water visibility, catching more trout, catching 

bigger trout and forrestrictive bag limits.  Likewise, these anglers also have stronger aversions 

to riparian margin erosion and angler encounters.   

 

The heterogeneity around the spreads of the random parameters captures additional sources of 

angler heterogeneity.  The positive and statistically significant signs for catch*RS, 

troutsize*RS, Didymo*RS, riparian margin erosion*RS and encounters*RS indicate that 

specialised anglers’ preferences differ to a greater extent than do anglers with low 

specialisation.  

 

Like model M9, all model M10 error components are statistically significant.  The statistically 

significant Backcountry river*RS variable suggests that specialised anglers exhibit more 

variability in their preferences for unobserved utility at backcountry rivers. 
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The majority of the estimated random parameter means (and spreads) are statistically 

significant.  The random parameter means for water visibility and encounters are not 

significant.  One random parameter mean estimate stands out - the catch parameter, which is 

statistically significant, but negative.  This result was counterintuitive.  Extensive specification 

testing and literature review was conducted to determine the cause of the sign change on the 

catch parameter.  Greene et al. (2006), pp. 87-88 note that, 

 

“the introduction of interaction terms [e.g., RS], …., designed to uncover variance 
heterogeneity can no longer guarantee that the parameter distribution will be limited to one 
side of zero, despite constraints imposed on the underlying distribution” and “a significant, 
non-zero value for [ωk, i.e., the variance heterogeneity parameter]33

η

 may allow for parameter 
estimates of either sign, given that the parameter estimate is no longer solely dependent on the 
draw,  (conditional or otherwise) from [a known empirical distribution (e.g., triangular)], but 
also upon the additional information imparted through ]'exp[ ikk hrωσ .  As such, even if all 
draws from [the triangular distribution] are constrained to one side of zero, the addition of 

]'exp[ ikk hrωσ  within the estimate of marginal utility for attribute k, 

]]'exp[[ˆ[ ηωσσυββ ××+= ikkkkkk hr  allows for the possibility that some random parameter 
estimates will not be of the desired sign.  Although we do not show it here, this same issue 
exists when decomposing the mean of random parameter distributions to uncover sources of 
heterogeneity. Whilst the literature has identified the need to employ distributions that dictate 
the sign of random parameters, research on the impact of accommodating heterogeneity 
around the mean of random parameter distributions and variance heterogeneity appears to be 
absent (see Hensher 2004)”.   
 
The unexpected sign on the catch parameter is unlikely to bear any consequence on model 

forecasts as much of the utility residing in the catch attribute is explained by the 

decomposition parameters. 

 

7.8  Comparison of model fits  
 

Table 7-5 compares the fits between models M1, M7, M8, M9 and M10 based on AIC, BIC 

and a likelihood ratio (LR) test.  These statistical criteria are described at the end of Chapter 4.  

Model M6 cannot be compared directly with models M1, M7, M8, M9 and M10 because it is 

not nested with these models (e.g., Greene & Hensher 2003)   There is overwhelming 
                                                 
33 Note: the notation used in this thesis is slightly different than that of Greene, Hensher & Rose (2006).  For 
consistency, the thesis notation (pp. 30-31) is maintained and substituted into the quotation. 
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evidence, based on all statistical criteria that going from model M1 to M7, from M1 to M8, 

from M8 to M9 and from M9 to M10 produces better fits.   

 

Table 7-5: Comparison of model fits of models (M1) and (M7-M10) 
 

Form Interactions LL Parameters AIC BIC

M1 MNL None -7187.842 13 2.942 2.959

M8 MNL SAM -7074.840 20 2.898 2.924

M9 MNL-EC SAM -6775.125 26 2.778 2.813

M10 RP-EC SAM -6615.957 35 2.717 2.763

Likelihood Ratio Test  

(daysyear, skill, 
impfish, rankfish)

M8 vs M1    (χ2=226; df =7; p<0.0001)

M9 vs M8    (χ2=599; df =6; p<0.0001)

M10 vs M9  (χ2=318; df =9; p<0.0001)

41 2.898 2.898 M7 vs M1  (χ2=269; df =28; p<0.0001)M7 MNL -7053.579

 
 

There is a very large improvement in going from model M8 to M9.  This is due to two 

reasons.  First, the panel formulation allows the six choices made by each individual to be 

correlated.  Second, the error components were able to identify a substantial amount of 

preference heterogeneity resident in unobserved utility not identified by the fixed site attribute 

coefficients or interaction terms in M8. 

 

7.9  Discussion 
 

While the models developed in Chapter 6 focus primarily on understanding the extent of 

preference heterogeneity, this chapter focused primarily on developing the understanding of 

the source of heterogeneity using RS theory (Bryan 1977; Scott & Shafer 2001).  From a 

fishery management perspective it is important to understand how various types of anglers are 

affected by resource disturbances, regulations or policies, particularly from the perspective of 

maintaining a license sales base and sustainable use of fisheries.  From the perspective of 

modelling behaviour, explaining as much variability as possible (deterministically) is 

important because it reduces the information embodied in the stochastic disturbance term and 

leads to forecasts with greater certainty (Hensher et al. 2005).   

 

Despite 30 years of support in the leisure studies literature, few studies have linked the RS 

concept with an analytical framework to investigate whether individuals’ choice behaviours 
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(including preferences and cognitions) accord with their level of specialisation (e.g., 

McFarlane 2004; Oh & Ditton 2006; Dorow et al. 2009).  This gap in the literature provided 

motivation for exploring a number of different methods for integrating RS with DCMs.   

 

The first approach analysed RS indicators empirically.  This resulted in a very large number of 

estimated parameters.  To handle this problem, LC-MNL and MNL models were used because 

they could be estimated relatively quickly and avoided potential identification issues with ML.  

In general, the three class LC-MNL model (M6) did not reveal clear specialisation differences 

among latent classes.  While a two class model provided stronger evidence of specialisation, it 

resulted in a poorer overall model fit and so it was not reported.  The result from the three 

class model corroborates Oh & Ditton (2006, p. 375) who found the LC-MNL model “did not 

provide coherent results for specialisation [indicator] variables”34

 

.   

The MNL model (M7) incorporating RS indicator interactions provided a slightly better 

understanding of the relationship between specialisation indicators and preference for site 

attributes.  Most of the statistically significant interactions followed theoretical expectations, 

however a large number were insignificant.  In particular, frequency of participation was 

found only to be weakly related to individuals’ preferences for site attributes.  This 

demonstrates that individual indicators (and dimensions) have different relationships to, and 

ability to explain preferences (Scott & Shafer 2001).  While it was beyond the scope of this 

chapter, the more rigorous and extensive empirical investigation of additional RS indicators 

would provide important insight which could contribute to the measurement and 

conceptualisation debate35

 

 involving which indicators best represent specialisation and in turn 

predict behaviour (e.g., Scott & Shafer 2001).  Correlation among RS indicators is an issue 

which limits the number of indicators which can be incorporated into the analysis.  

The SAM approach avoided estimation of multiple models or employing an extremely large 

number of effects coded variables as well as correlation issues.  While basic and relatively ad 

hoc, the SAM generated RS variables provided parsimonious, easily interpreted and intuitive 

                                                 
34 Note: this model is only mentioned in passing and is not formally reported in Oh & Ditton (2006). 
35 E.g., “There remains little agreement about how precisely to characterise and measure the construct” (Scott & 
Shafer 2001, p. 325-326).   
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results, which accorded with theoretical expectations.  Significant relationships were found 

between RS and all observed attributes in model M9 and most observed attributes in models 

M8 and M9. 

 

While the MNL model M8 was successful in showing how preference intensities for observed 

site attributes are related to specialisation, an important motivation of this chapter was to 

develop the flexible ML models from Chapter 6 to incorporate RS.  It was shown that 

preferences for observed site attributes (catching more trout, larger trout, riparian margin 

erosion, Didymo, encounters with anglers) and unobserved components of utility (for the 

Backcountry river alternative in particular) increase with specialisation.  In practice this 

suggests that managing recreational fishing resources for highly specialised anglers is 

relatively more complicated than it is for anglers with low specialisation; highly specialised 

anglers are likely to require a larger number of management regimes to cover their greater 

range of tastes.  An important question is why specialised anglers’ preferences differ more?  

Heteroscedasticity in observed site attributes and unobserved effects are two separate issues.  

The following two paragraphs address each one. 

 

Greater variance for observed site attributes among specialised anglers may be the result of 

different forms (not levels) of specialisation (Kuentzel & Heberlein 2006).  For example, 

some anglers might be backcountry river specialists and specifically focus on using light fly 

tackle and ‘sight fishing’ for trout which are typically large, few and far between, and difficult 

to catch (Young & Hayes 2004).  These types of specialists are more likely to be intolerant of 

angler encounters, prefer high water visibility, and place greater emphasis on catching large 

trout (Walrond 2001; Young & Hayes 2004).  Other anglers may be mainstem-braided river 

specialists and specifically focus on using heavy-duty gear and blind fishing techniques to 

target sea run trout.  When fishing sea run trout in the lower reaches and mouths of mainstem-

braided rivers low water visibility is advantageous and angler densities are often high due to 

joint salmon angling.  Mainstem-braided river specialists are likely to be more tolerant of 

angler encounters (because many of these fishers will be targeting salmon and because of the 

expectation of a high number of angler encounters), prefer low water visibility and place 

greater emphasis on higher catch rates.  These examples demonstrate how disparities in 
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preferences can emerge and be maintained by specialised anglers.  This is in contrast to 

beginner or occasional anglers, who are generally not concerned with fishing site setting and 

are far more interested in catching a fish or two and being able to take those fish home (Bryan 

1977).  This illustration also raises the question of whether preference parameters for observed 

site attributes should be estimated as alternative specific (as opposed to generic) to account for 

site specific tastes.  This issue is investigated in Chapter 8. 

 

The reason why specialised anglers have greater variance in the unobserved utility for 

backcountry rivers is not exactly clear.  This is because there is no way to determine what is in 

the unobserved component of utility.  Before offering a few possible causes it is helpful to 

clarify the nature of this problem.  From Chapter 2, the unobserved effects contain: i) 

unobserved utility, plus ii) unobserved preference heterogeneity, iii) estimation error and, iv) 

measurement error (Manski 1977).  The ASCs measure the mean of the unobserved effects 

(for J-1 alternatives).  In essence the error components capture the variance around the mean 

of the ASCs.  The decompositions of these error variances determine whether variance 

increases or decreases according to covariates.  This chapter found that for the Backcountry 

river alternative, error variance increases according to specialisation.  It is not likely that this 

variance phenomenon is related to (iii) and (iv).  This is because all alternatives included the 

same generic parameter estimates and so estimation or measurement error would be equal 

across alternatives.  Therefore, the variance phenomenon is more likely related to differences 

in: (i) specialised anglers’ unobserved utilities (unobserved attributes) and, (ii) unobserved 

preference heterogeneity related to those unobserved attributes.  As noted in chapter 6, 

Backcountry rivers tend to have more variation, in scenery, native vegetation, nuisance sand 

flies and accessibility compared with other fishing sites.  The greater number and variation in 

unobserved influences of backcountry rivers, along with specialised anglers’ awareness of 

these, is likely the reason why variance increases with specialisation (Schreyer & Beaulieu 

1986).    

 

Additional research is needed to understand the nature of specialisation and heteroscedastcity, 

particularly for unobserved utility.  This relationship is important because the variance of 

unobserved utility is linked to the scale term (Ben-Akiva & Lerman 1985; Swait 1993).  The 



 111 

scale term either scales up or down coefficients in the observed portion of utility.  Almost all 

of past DCM research has treated this scale term as a constant (all individuals have scale 

homogeneity) except for Breffle & Morey (2000) and Fiebig et al. (2009).  If alternatives’ 

unobserved components of utility are heteroscedastic, yet the scale term is treated as a 

constant, coefficients in the observed portion of utility become biased for particular 

individuals.  New research is focusing on relaxing the constant scale assumption through its 

random parameterisation (Fiebig et al. 2009).  However, instead of treating the scale term as a 

random distribution across individuals it may be possible to add deeper insight by segmenting 

the scale term according to specialisation heterogeneity.  This may be the key to further 

improving the understanding and prediction of choice behaviour within the DCM framework. 
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Chapter 8   

Alternative-specific Preference Heterogeneity 
 

8.1   Introduction 
 

Past recreational angling site choice literature (e.g., Train 1998; Morey et al. 2002) and 

Chapters 6 and 7 of this thesis, have made the assumption that anglers’ marginal (dis)utilities 

for observed fishing site attributes do not vary from site to site.  In other words, anglers have 

been assumed to receive the same utility from catching a trout in a backcountry river as they 

do in a lake, and so forth.  This assumption is embodied in generic, rather than alternative 

specific, coefficient estimates for observed attributes in each alternative’s utility function36

 

.  

While a generic specification produces a relatively parsimonious model it may fail to capture 

the presence of alternative specific preference heterogeneity (ASPH).  Failure to address 

ASPH may overlook relevant behavioural information which has important management and 

policy implications.  This chapter investigates this issue. 

Recreation site choice research employing discrete choice models (DCMs) (e.g., Hunt et al. 

2005; Hanley et al. 2003) is now commonly estimating coefficients in observed utility using 

continuous (e.g., Train 1998) or finite mixture distributions (Boxall & Adamowicz 2002; 

Provencher & Bishop 2004) to account for heterogeneity.  Repeatedly, research (including 

Chapters 5 and 6 of this thesis) has found anglers to exhibit a significant amount of random 

preference heterogeneity even after coefficients are decomposed with angler characteristics 

(e.g., level of specialisation, Chapter 7).  While it is econometrically parsimonious to capture 

preference heterogeneity for observed site attributes for all fishing sites with a single generic 

variance parameter, a significant portion of this ‘randomness’ may be systematically related to 

a deeper source of taste variation - ASPH.  That is, the random taste variation identified by 

generic random terms may be caused by the site-specific tastes that anglers have for particular 
                                                 
36 Alternative specific constants (ASCs) capture utility differences across alternatives.  However, ASCs only 
identify the mean utility of unobserved attributes.   
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attributes, according to fishing site context.  One can visualise ASPH as a set of finite 

preference points distributed over the population of alternatives.  If not accounted for, ASPH 

may be misinterpreted as random heterogeneity across individuals in a generic coefficient. 

 

Understanding ASPH for observed site choice attributes has important management 

implications.  For instance, anglers may view encounters negatively on some fishing sites 

(e.g., backcountry rivers, Walrond 2001), but non-negatively on lakes, where fishing pressure 

has less of an impact on trout catchability (Young & Hayes 2004), and where trout densities 

are higher.  Similarly, anglers’ preference intensities for catching trout may differ according to 

fishing site type and location.  In North Canterbury, trout in backcountry rivers are known to 

be almost entirely wild, whereas in lakes a significant portion originate from artificial stocking 

practices (e.g., Lake Lyndon).  In a generic random parameters specification this alternative 

specific heterogeneity may be misinterpreted or confounded with taste heterogeneity between 

individuals.  Enacting a strategy to control congestion or calculate natural resource damage 

assessments (NRDA) on all fishing sites based on information from a generic congestion 

coefficient in the presence of ASPH (even though disturbance around the mean is accounted 

for) may lead to a suboptimal outcome.  

 

Alternative specific preference heterogeneity has important implications for policy and 

conducting NRDA.  For instance, Train (1998) and Morey et al. (2002) used DCMs to inform 

the State of Montana about damages to trout streams caused by the mining operations of the 

Atlantic Richfield Co. (ARCO).  Their purpose was to estimate the compensation needed to 

make anglers just as well off as before the damage occurred to trout stocks at particular 

fishing sites.  In each case, the research collected choice and alternative data from a number of 

fishing sites spread over a large geographical area.  Following standard practice, Train (1998) 

and Morey et al. (2002) specified generic parameters to estimate anglers’ marginal utility for 

trout stocks.  These generic coefficients assume that anglers’ marginal utilities for additional 

trout stocks (and catch rates) are identical across different fishing sites.  While Train’s (1998) 

single generic random parameter for trout stock found significant taste heterogeneity, this 

apparently ‘random’ heterogeneity may have been caused by systematic differences in anglers 

tastes for trout stocks at the different fishing sites.  If trout stock values for the damaged site 
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were systematically related to outlying tails of the distribution then substituting in the generic 

coefficient value for the affected site could bias the level of damage assessment either up or 

down for a specific site.   

 

Choice research outside of recreation studies has explored the significance of context, space 

and site specific tastes.  Jaeger & Rose (2008) found context is an important influence on food 

choice.  Campbell et al. (2009) found spatial differences in individuals’ willingness to pay for 

landscape improvements in Ireland.  Greene et al. (2006) and Green & Hensher (2007) specify 

alternative specific parameters for common attributes such as in-vehicle travel time and egress 

time for public and private modes of transportation and found marginal utility differences 

across alternatives.  This chapter contributes to this literature by investigating whether 

anglers’ marginal (dis)utilities for observed site attributes differ across fishing sites.  New 

Zealand recreational trout fisheries provide an example of a recreation context where 

recreationists choose from fishing sites which have a number of similar attributes, but differ 

markedly in their natural characteristics.  It is contended that important information which 

could improve resource management, policy and NRDA is lost when the influence of 

observed attributes is assumed to be invariant across sites.   

 

To investigate whether New Zealand anglers exhibit ASPH for observed fishing site attributes, 

models are estimated with both alternative specific and generic parameter specifications for 

site attributes.  These models are compared on the basis of various statistical criteria and the 

Delta Method test (Klein 1953; Casella & Berger 1990) is used to evaluate whether site-

specific parameters are significantly different from one another.  

 

In order to test the ASPH hypothesis a multinomial logit (MNL) model (M11) was estimated 

with alternative specific parameters for observed site attributes (Table 8-1). Cost and travel 

time parameters were estimated as generic.  Initially, model M11 was estimated with 

alternative specific coefficients for all observed site attributes (except for cost and travel 

time).  However, none of the alternative specific coefficients for the encounters variable were 

significant.  Therefore, encounters were consolidated into a single generic coefficient.  The 
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MNL (M1) model which is reproduced in Table 8-1 with generic coefficients is described in 

Chapter 6.   

 

All M11 parameter estimates carry expected signs.  Higher cost and travel time were both 

evaluated negatively, as were all site specific coefficients for damaged riparian margins and 

Didymo infestation.  Likewise, for all sites better water visibility was evaluated positively, as 

were catching more trout, bigger trout and increased bag limits.  The ASCs indicate the mean 

effect of all unobserved influences on anglers’ choice for each fishing site alternative, relative 

to the not fish option. The positive and significant ASC for the Lake alternative indicates that, 

ceteris paribus, what has been left out of the model for the Lake alternative has higher utility 

than not going fishing.  The remaining ASCs are not significant.   

 

While statistical tests are necessary for confirmation, at this point comparison of the 

alternative specific coefficients strongly suggests ASPH (Table 8-1).  For instance, according 

to M11: 

 

• Higher water visibility on mainstem-braided rivers and backcountry rivers is relatively 

more important to anglers than higher water visibility on lowland streams and lakes. 

 

• Anglers gain more utility from catching additional trout, larger trout and taking them 

home from a backcountry river compared to all other sites.  

 

• Anglers are most averse to riparian margin erosion on backcountry rivers, however, 

there does not appear to be much difference between aversion to erosion to riparian 

margins on any of the river-based alternatives. 

   

• Anglers are relatively more averse to Didymo infestation on mainstem-braided and 

backcountry rivers than they are to Didymo infestation on lowland streams and lakes.   
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Table 8-1: Summary of the MNL (M11) and MNL-EC (M12) models which  
account for alternative specific preference heterogeneity 

Attributes
Cost -0.007 *** -0.0061 *** -0.0072 ***
Travel time -0.006 *** -0.0049 *** -0.0065 ***

Water visibility Generic 0.049 ***
Water visibility Mainstem 0.0806 *** 0.1139 ***
Water visibility Backcountry 0.0681 *** 0.0856 ***
Water visibility Lowland 0.0523 ** 0.0644 **
Water visibility Lake 0.0427 * 0.0510 *

Catch Generic 0.111 ***
Catch Mainstem 0.1221 *** 0.1568 ***
Catch Backcountry 0.1904 *** 0.2354 ***
Catch Lowland 0.1223 *** 0.1411 ***
Catch Lake 0.0710 *** 0.0926 ***

Trout size Generic 0.159 ***
Trout size Mainstem 0.2253 *** 0.2824 ***
Trout size Backcountry 0.2632 *** 0.3494 ***
Trout size Lowland 0.1398 *** 0.1727 ***
Trout size Lake 0.1012 *** 0.1303 ***

Bag limit Generic 0.188 ***
Bag limit Mainstem 0.1907 *** 0.2303 ***
Bag limit Backcountry 0.2759 *** 0.3420 ***
Bag limit Lowland 0.1481 *** 0.1727 ***
Bag limit Lake 0.1733 *** 0.2248 ***

Riparian Margin Generic -0.412 ***
Riparian Margin Mainstem -0.4632 *** -0.5534 ***
Riparian Margin Backcountry -0.4767 *** -0.6112 ***
Riparian Margin Lowland -0.4484 *** -0.5304 ***
Riparian Margin Lake -0.3754 *** -0.4708 ***

Didymo Generic -0.273 ***
Didymo Mainstem -0.3795 *** -0.4498 ***
Didymo Backcountry -0.3614 *** -0.4465 ***
Didymo Lowland -0.2231 *** -0.2856 ***
Didymo Lake -0.2376 *** -0.2819 ***

Encounters Generic -0.033 -0.0361 -0.0416

Mainstem ASC 0.128 -0.3580 -0.1154
Backcountry ASC 0.603 * -0.4541 -0.4140
Lowland ASC -0.158 -0.1188 0.3422
Lake ASC 0.128 0.4368 * 0.8595 *

Error components
Mainstem-braided 1.0000
Backcountry 1.2850 ***
Lowland 0.7329 ***
Lake 1.0315 ***
Not fish 1.5452 ***
Parameters
AIC
BIC
LL
McFadden R²
Note: ***, **, * = Significance at 1%, 5%, 10% level

2.959

0.1441
-7187.842

0.0518

2.983 2.816

0.0541
-7170.878 -6744.067

MNL (M1)

31
2.942

36
2.769

13
2.942

MNL (M11) MNL-EC (M12)
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The MNL M11 McFadden R² statistic is relatively poor (0.0541) suggesting that much of the 

variability in individuals’ site choices, despite taking account of ASPH for observed fishing 

site attributes, has not been explained.  Section 8.3 applies additional statistical tests to 

determine whether the observed alternative specific coefficients are statistically different from 

one another. 

 

To investigate ASPH further, error components are added to M11 to produce M12 

(Brownstone et al. 2000).  The multinomial logit-error component (MNL-EC) model M12 

specification not only permits the variances around the means of the unobserved effects to be 

heteroscedastic, it also allows for correlation over individuals’ repeated choices (Train 2003).  

Model M12 was estimated with five alternative specific error structures, one for each 

alternative to capture alternative specific variance heterogeneity around the mean of 

unobserved utility for each alternative, including the ‘not fish’ option.  According to Walker et 

al.’s (2007) equality condition the alternative specific error component with the smallest 

variance was normalised to promote model identification37

 

.  As recommended by Walker et 

al.’s (2007) the error component with the smallest variance was identified by first estimating 

the model without normalisation imposed.  This procedure identified the Mainstem-braided 

river error component as having the smallest variance.  Next, the same model was re-

estimated with the Mainstem-braided error structure normalised to one.  Whereas previous 

models in Chapters 6 and 7 required 750 shuffled Halton draws to reach parameter stability, 

the MNL-EC model M12 reached parameter stability with 500 draws.  This is because M12 

has fewer random parameters.   

All alternative specific coefficients for observed site attributes in M12 maintain the same 

pattern as in M11.  The observed site attribute coefficients in M12 have the appearance of 

being larger, however, this is only due to a scale effect (see Ben-Akiva & Morikawa 1990).  

The four estimated error components (Backcountry, Lowland, Lake and ‘not fish’) are 

statistically significant.  A statistical test could not be conducted on the Mainstem-braided 

error component because of the normalisation imposed.  The ‘not fish’ error component is 

                                                 
37 The validity and method for carrying out this procedure via Nlogit 4.0 was confirmed via correspondence with 
William Greene. 
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largest, suggesting that there is relatively more unobserved utility variance for the ‘not fish’ 

option compared to the fishing site options.  Out of the fishing site options the Backcountry 

river error component is largest and the Lowland stream smallest which gives an indication of 

the relative differences in unobserved utility variance.  Section 8.3 applies tests to provide 

statistical support to this conclusion.  The addition of the five alternative specific error terms, 

plus panel specification, produced a marked improvement in model fit.    

 

8.2  Generic versus site-specific parameters 
 

Table 8-2 compares the fits between models M1, M11, and M12 based on AIC, BIC and a 

likelihood ratio (LR) test.  These statistical criteria are described in section 5.7 of Chapter 5.  

The evidence is mixed as to whether adding additional parameters going from specification 

M1 to M11 produces a better fitting model.  The AIC statistic does not change, the BIC 

statistics grows larger suggesting that M11 is not a better fitting model, whereas the LR test 

suggests the opposite.  

 

The evidence is strong that the MNL-EC model M12 is a better fitting model than M1 

according to AIC, BIC and the LR test.  Likewise, evaluations of the same statistical criteria 

indicate that M12 is a better fitting model than M11. 

 

Table 8-2: Comparison of model fits (M1, M11, and M12) 
 

Form Site-
specific

LL Parameters AIC BIC Likelihood Ratio Test  (Specific vs Generic) 

M1      MNL No -7187.842 13 2.942 2.959
M11 MNL Yes -7170.878 31 2.942 2.983 M11 vs M1    (χ2=33.928; df =18; p<0.012)
M12 MNL-EC Yes -6744.067 36 2.769 2.816 M12 vs M1   (χ2=887.55; df =23; p<0.000)

M12 vs M11   (χ2=853.62; df =5; p<0.000)  
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8.3  Marginal rates of substitution 
 

Marginal rates of substitution (MRS) are estimated to test for differences in preferences for 

the same attribute at different sites.  Each MRS equals one in the absence of ASPH.  An MRS 

significantly different from one is indicative of the existence of ASPH.  Because MRS is a 

ratio of two estimated parameters confidence intervals must take account of variances for 

both, as well as their covariance.  The Delta method (Klein 1953; Casella and Berger 1990), 

which is based on a Taylor’s series expansion of a function of parameters, is used to derive 

confidence intervals for MRS and to test the significance of differences from unity.  

 

Only Backcountry river coefficients are compared, though further tests could have been 

applied to draw out relationships between other alternative specific coefficients.  That is the 

MRS numerator always assumes an alternative specific Backcountry coefficient, e.g., water 

visibility, and the denominator interchanges the respective coefficient for other alternatives.  

Table 8-3 reports the results for the Delta tests applied to both M11 and M12 models. 

 

The columns highlighted in gray in Table 8-3 report the p-values.  One minus the p-value is 

the probability that MRS is statistically different from one.  For model M11 statistically 

significant differences, at the 10% level (p-value ≤ .10), are found between: 

 

• Catching an additional trout at a backcountry river and all other fishing site alternatives. 

 

• Catching larger trout size at a backcountry river compared to for lakes and lowland 

streams.  

 

• Didymo infestation on backcountry rivers and lowland streams.  

 

Model M12 improves upon model M11 by finding additional significant differences in 

anglers’ MRS for:  

 
•  Riparian margin erosion on backcountry rivers compared to lakes; 
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•  Didymo infestation on backcountry rivers compared to lakes.  

 

Further, with a few exceptions, model M12 produces smaller p-values than model M11 for the 

MRS test statistic (see columns highlighted in grey in Table 8-3).
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Table 8-3: Marginal rates of substitution for observed site attributes for the MNL (M11) and MNL-EC (M12) models 

Coefficients MRS Sd(MRS) Z (MRS=1) p (Z) MRS Sd(MRS) Z (MRS=1) p (Z)

Water visibility Backcountry (/)
Water visibility Lake 1.59 0.99 -0.60 0.55 1.68 1.07 -0.63 0.53
Water visibility Lowland 1.30 0.62 -0.49 0.63 1.33 0.58 -0.57 0.57
Water visibility Mainstem-braided 0.84 0.28 0.55 0.58 0.75 0.23 1.06 0.29

Catch Backcountry (/)
Catch Lake 2.68 1.01 -1.67 0.09 2.54 0.89 -1.73 0.08
Catch Lowland 1.56 0.33 -1.68 0.09 1.67 0.37 -1.83 0.07
Catch Mainstem-braided 1.56 0.33 -1.70 0.09 1.50 0.31 -1.64 0.10

Trout size Backcountry (/)
Trout size Lake 2.60 0.93 -1.71 0.09 2.68 0.92 -1.82 0.07
Trout size Lowland 1.88 0.46 -1.91 0.06 2.02 0.46 -2.22 0.03
Trout size Mainstem-braided 1.17 0.20 -0.85 0.40 1.24 0.20 -1.16 0.24

Bag limit Backcountry (/)
Bag limit Lake 1.59 0.44 -1.36 0.17 1.52 0.48 -1.09 0.28
Bag limit Lowland 1.86 0.56 -1.54 0.12 1.98 0.68 -1.44 0.15
Bag limit Mainstem-braided 1.45 0.34 -1.31 0.19 1.49 0.42 -1.16 0.25

Riparian margin erosion Backcountry (/)
Riparian margin erosion Lake 1.27 0.18 -1.46 0.14 1.30 0.17 -1.80 0.07
Riparian margin erosion Lowland 1.06 0.13 -0.47 0.64 1.15 0.13 -1.14 0.25
Riparian margin erosion Mainstem-braided 1.03 0.12 -0.25 0.81 1.10 0.13 -0.83 0.41

Didymo Backcountry (/)
Didymo Lake 1.52 0.34 -1.51 0.13 1.58 0.34 -1.70 0.09
Didymo Lowland 1.62 0.32 -1.94 0.05 1.56 0.28 -1.99 0.05
Didymo Mainstem-braided 0.95 0.13 0.35 0.72 0.99 0.13 0.05 0.96

M11 M12
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The Delta Method statistical test can also be applied to investigate whether the error 

component estimates in model M12 are statistically different for one another, that is, whether 

the ratios of individual error component variances are statistically different from one.  Briefly, 

the p-values reported in the last column of Table 8-4 indicate that there is strong statistical 

evidence that all four estimated error components (Backcountry river, Lowland stream, Lake 

and ‘not fish’) are different from one another. 

 

Table 8-4: Marginal rates of substitution for error components from the MNL-EC (M12) 
model 
 

Coefficients MRS Sd(MRS) Z (MRS=1) p (Z)

Backcountry river error component (/)
Not Fish error component 0.83 0.08 2.12 0.03
Lake error component 1.25 0.12 1.99 0.05
Lowland stream error component 1.75 0.26 2.93 0.00

Lowland stream error component (/)
Not Fish error component 0.47 0.07 7.69 0.00
Lake error component 0.71 0.11 2.57 0.01

Lake error component (/)
Not Fish error component 0.67 0.07 4.86 0.00  
 

8.4  Discussion 
 

Recent choice research in fields outside of recreational angling has addressed context, spatial 

influences and the alternative specific marginal utilities for common attributes across 

alternatives.  This chapter contributes to this literature by investigating ASPH for fishing site 

attributes.  Fundamental and key to this investigation was the use of a labelled choice 

experiment (Louviere & Hensher 1982; Louviere & Woodworth 1983) and underlying 

experimental design (e.g., Rose et al. 2008; Scarpa & Rose 2008), to allow variation in 

attribute levels within and across alternatives.   

 

When several statistical tests, which assessed the standard errors around the MRS, were 

applied less than half of the Backcountry river alternative specific coefficients were found to 

be statistically different from the respective alternative specific coefficients.  While tests did 
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not confirm that anglers have ASPH for all attributes, some important discoveries were made.  

For instance, according to model M12 it was found that anglers value catching an additional 

trout in a backcountry river 2.54 times more than they do in a lake; increasing trout size is 

(2.68, 2.02, 1.24) times more valuable to anglers in a backcountry river than on a lake, 

lowland stream and mainstem-braided river, respectively.  Riparian margin erosion is a larger 

concern on backcountry rivers then it is on lakes (1.30 times more) and Didymo infestation on 

backcountry and mainstem-braided rivers concerns anglers more than its presence on lowland 

streams and lakes.   

 

The finding that the addition of error components in model M12 produced more reliable 

estimates of individuals’ preference parameters in observed utility is evidenced by an increase 

in the number of statistically significant MRS test statistics and generally lower p-values.  

This empirical finding corroborates past research (e.g., Hess 2005) which suggests that models 

which maintain the IID assumption confound observed and unobserved utility and can bias 

parameter estimates in observed utility. 

 

Why do anglers exhibit ASPH?  One hypothesis is that in practice common fishing site 

attributes are actually not so common.  For instance, Didymo infestation in backcountry and 

mainstem-braided rivers is typically thicker and more persistent than on lowland streams and 

lakes (e.g., Sutherland et al. 2007).  Backcountry river brown trout are typically resident, 

male, older on average and harder to catch than their counterparts in the other fishing sites 

(Jellyman & Graynoth 1994; Young & Hayes 2004) such as lakes where a significant portion 

of the trout stocks originate from exogenous stocking.  Similar differences occur with the 

riparian margin attribute and the ecological and environmental effects of erosion across the 

different fishing sites.  The survey instrument did not describe these plausible natural attribute 

differences.  It could be hypothesised that more specialised anglers would be aware of nuances 

and have developed preferences related to these nuances in so called “common” site attributes.  

The next chapter investigates this issue. 

 

While tests were not conducted to determine the extent to which heterogeneity in a generically 

specified random coefficient (as in Chapters 5 and 6) is caused by ASPH, the models 
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presented here depict how ASPH can be interpreted as a distribution of preference points over 

a population of alternatives.  To provide further differentiation further analysis could be 

conducted to estimate random alternative specific parameters instead of relying on fixed 

estimates.  However, estimating separate random parameters for the large number of 

alternative specific coefficients is computationally burdensome (Train 2003).  Past 

recreational angling site choice research has assumed that individuals’ preferences for 

observed site attributes are not specific at the alternative level (e.g., Train 1998; Provencher & 

Bishop 2004).  In conclusion, the significant differences in alternative specific site attributes 

in the models in this chapter reveal an important layer of behavioural information not 

addressed previously and raise further questions related to underlying assumptions and 

complexity of modelling recreation demand across a number of characteristically different 

sites. 
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Chapter 9 

Recreation Specialisation and Alternative-specific Preference 
Heterogeneity 
 
 

9.1  Introduction 
 
 
The models developed in Chapter 6 found wide-ranging preference heterogeneity among 

North Canterbury anglers according to the random parameters which assumed a generic 

specification.  When the investigation went further and deeper it was found that some of this 

heterogeneity embodied by the random generic terms was explained by angler specialisation 

and a phenomenon termed alternative specific preference heterogeneity (ASPH).  This short 

chapter ties these concepts together to investigate ASPH among specialised anglers.  It is 

hypothesised that specialised anglers maintain definite forms of ASPH because specialised 

anglers are known to have refined setting preferences, as well as more experience with and 

awareness of which types of conditions (i.e., attribute qualities) constitute favourable angling 

experiences on different waters (Bryan 1977).  A multinomial logit error component (MNL-

EC) model is used to investigate this hypothesis. 

 

There are two motivations for this chapter and the application of the MNL-EC model.  First, 

to deepen the understanding of site specific tastes among specialised anglers.  Second, to 

generate a choice model that: (i) is relatively computationally convenient, (ii) avoids complex 

stochastic representations of taste heterogeneity in deterministic utility, and (iii) allows 

heteroscedasticity and correlation in unobserved utility.  This type of model specification 

follows the philosophy of Louviere & Swait (forthcoming, p. 5) who state that,  

 
“One should first focus on strong specification of the mean or systematic utility 
(by which we specifically don’t mean complex stochastic representations of taste 
heterogeneity), then specify the stochastic utility variance (i.e., the diagonal or the 
error covariance), thirdly focus on the off-diagonals of the covariance matrix, and 
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then finally loop back and put the icing on the cake with considerations like taste 
heterogeneity”. 

 

 

9.2  A multinomial logit-error component model 
 

In the spirit of Louviere & Swait (forthcoming) the MNL-EC model M13 (equation 12, 

Chapter 2) specifies: 

 

1) Alternative specific parameters for all site attributes except cost and travel time (to 

develop a strong specification of systematic utility). 

 

2) Five alternative-specific error components (to specify the stochastic utility variance).  

The Mainstem-braided river error component is fixed to promote identification 

(Walker et al. 2007). 

 

3) Two additional error components.  One nests the Lowland stream and Mainstem-

braided river alternatives together.  The second nests the Backcountry river and Lake 

alternatives together.  These nests allow additional patterns of correlation (i.e., off-

diagonals in the covariance matrix). 

 

4) Interaction effects for all alternative site attributes except for cost and travel time 

with specialisation variables generated via the simple additive method (SAM) in 

Chapter 7 (to allow taste heterogeneity without the use of random parameters).   

 

While this specification results in a large number of estimated coefficients, only six of these 

parameters require simulation (i.e., the error components).  Model M13 (Table 9-1) was 

estimated with 500 shuffled Halton draws (Bhat 2003; Train 2003; Chiou & Walker 2007).   

 

It is evident that a number of site attribute parameters lose their statistical significance 

compared to the MNL model M1 (described in section 6.2 of Chapter 6).  This is because 
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some (or much) of the information has now been identified by the interactions with the 

variables which identify individuals’ specialisation.  Almost all interactions follow a priori 

expectations (Bryan 1977).  As an overview, it is apparent that for some attributes 

specialisation is a strong determinant of ASPH on all fishing site alternatives.  For other 

attributes, specialisation is only found to have a relationship with one of the four fishing site 

alternatives.  Specifically, improved water visibility is only found to be a statistically 

significant driver of specialised anglers’ site choice of backcountry rivers.  This was expected 

given that sight fishing, a technique employed by skilled anglers on backcountry rivers, 

requires high water clarity.  On the other hand, techniques employed on mainstem-braided 

rivers and lowland streams do not rely on sight-fishing to the extent that they do on 

backcountry rivers.  Specialised anglers have stronger preferences for catching more trout on 

all fishing sites than less specialised anglers.  A similar finding occurs with trout size - 

however, the relatively large trout size Backcountry interaction term suggests that specialised 

anglers are particularly concerned with catching bigger trout on backcountry rivers.  However, 

this assertion is speculative and needs additional statistical support to be validated.  

Specialised anglers are found to have stronger preferences for restrictive bag limits on all 

fishing sites compared to less specialised anglers.  Finally, model M13 finds that specialised 

anglers are particularly more concerned with riparian margin erosion on lakes, Didymo on 

backcountry rivers as well as angler encounters on backcountry rivers compared to less 

specialised anglers.  The latter two results were expected a priori.  This is because blooms of 

Didymo are known to be thicker and more prolific in backcountry rivers compared to lowland 

streams and lakes (Sutherland et al. 2007), and reduced trout catch-ability (as a result of 

angler pressure) is more of an issue in backcountry rivers (particularly those that are remote, 

Young & Hayes 2004).   

 

Like in model M11 and M12 (Chapter 8) the positive and significant alternative specific 

coefficient for the Lake alternative indicates that, ceteris paribus, what has been left out of the 

model for the Lake alternative has higher utility than to ‘not fish’.  The remaining ASCs are 

not significant. 
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Table 9-1: Summary of the MNL-EC (M13) model specified with alternative specific parameters and recreation  
specialisation variable interactions 

Mean
Attributes Interactions with RS Error components

Water visibility Mainstem-braided 0.084 0.010 Mainstem-braided 1.000
Water visibility Backcountry 0.001 0.025 *** Backcountry 1.062 ***
Water visibility Lowland 0.105 ** -0.013 Lowland 0.589 ***
Water visibility Lake 0.046 0.001 Lake 0.947 ***
Catch Mainstem-braided 0.017 0.043 *** Not fish 1.385 ***
Catch Backcountry 0.092 0.042 *** (Mainb, Low) 0.192
Catch Lowland 0.007 0.042 *** (Back, Lake) 0.669 ***
Catch Lake 0.014 0.034 **
Trout size Mainstem-braided 0.136 ** 0.045 ***
Trout size Backcountry 0.124 * 0.064 *** ASCs
Trout size Lowland 0.029 0.047 *** Mainstem-braided ASC -0.137
Trout size Lake 0.030 0.051 *** Backcountry ASC -0.328
Bag limit Mainstem-braided 0.445 *** -0.066 *** Lowland river ASC 0.329
Bag limit Backcountry 0.759 *** -0.115 ** Lake ASC 0.804 *
Bag limit Lowland 0.365 *** -0.061 **
Bag limit Lake 0.464 *** -0.073 *** Cost -0.008 ***
Riparian Margin Mainstem-braided -0.448 *** -0.036 Travel time -0.006 ***
Riparian Margin Backcountry -0.587 *** -0.009
Riparian Margin Lowland -0.494 *** -0.013
Riparian Margin Lake -0.268 ** -0.062 *
Didymo Mainstem-braided -0.349 *** -0.036
Didymo Backcountry -0.274 ** -0.053 **
Didymo Lowland -0.225 ** -0.019 Parameters 68
Didymo Lake -0.293 *** 0.000 AIC 2.750
Encounters Mainstem-braided 0.093 -0.047 BIC 2.840
Encounters Backcountry 0.215 * -0.083 *** LL -6663.709
Encounters Lowland 0.060 -0.037 McFadden psuedo-R² 0.1543
Encounters Lake 0.015 -0.003
Note: ***, **, * = Significance at 1%, 5%, 10% level
Recreation specialisation (RS) variable

MNL-EC M13
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Five of the six estimated error components are statistically significant (a statistical test was not 

applied to the alternative specific Mainstem-braided error component because of its 

normalisation).  The ‘not fish’ error component variance is largest suggesting that there is 

relatively more unobserved utility variance for the ‘not fish’ option compared to the fishing 

site options.  Out of the fishing site options the Backcountry river error component is largest 

and the Lowland stream is smallest, which gives an indication of the relative differences in 

unobserved utility variance.  The error component nest (Back, Lake) is significant, suggesting 

additional patterns of correlation between the Backcountry and Lowland alternatives not 

identified by the alternative specific structures.  The (Mainb, low) error nest was insignificant. 

 

The overall fit of model M13 (Table 9-2) is relatively strong compared to alternative specific 

models M11 and M12 which were reported in Chapter 8.  According to the McFadden 

pseudo-R² and AIC test statistics Model M13 performs better than both M11 and M12.  

However, according the BIC test statistics (which penalises more for additional parameters) 

model M12 outperforms both models M11 and M13. 

 

Table 9-2: Comparision of model fits (M11, M12, and M13) 
 

Form Site-specific Interactions LL Parameters AIC BIC
M11 MNL Yes No -7170.878 31 2.942 2.983
M12 MNL-EC Yes No -6744.067 36 2.769 2.816
M13 MNL-EC Yes RS -6663.709 68 2.750 2.840

Likelihood Ratio Test  

M13 vs M11   (χ2=854; df =37; p<0.0001)
M13 vs M12   (χ2=161; df =32; p<0.0001)  

 

9.3  Discussion 
 

This brief chapter sought to explain angler preference heterogeneity systematically with fixed 

parameters as opposed to relying on a stochastic treatment and determine whether specialised 

anglers exhibit different forms of ASPH.  While the MNL-EC model, specified with 

alternative specific parameters with RS interactions, resulted in a very large number of 

parameters, a very fine level of detail was achieved.  It is contended that this information is 

more beneficial to fishery managers then a purely random treatment of heterogeneity with a 

generic parameter.  It has been noted in this thesis that managing angler congestion has 



 130 

become a highly topical issue for Fish and Game New Zealand (FGNZ).  Managers are 

typically concerned with managing particular waters for particular kinds of anglers.  While 

models in Chapters 6 through 8 did not provide clear evidence of where and who to manage 

congestion for, model M13 identified that managing angler encounter rates is only an issue on 

backcountry rivers for a limited number of specialised individuals.        

 

“The consensus is that a good error is a zero error; that is, it is desirable to expand on the 

systematic term thereby reducing the disturbance term” (Ben-Akiva et al. 2002, p.171).  

Despite building up a strong deterministic component of utility by incorporating site specific 

parameters and specialisation interactions, a significant amount of information remained in 

unobserved utility.  The error components were instrumental in identifying variance 

differences as well as inter-alternative correlation.  While random parameters could have been 

added, they were largely obviated by the use of error components which were able to identify 

unobserved taste heterogeneity at the alternative level.   

 

This chapter concludes the empirical investigation of North Canterbury angler site choice.  It 

demonstrates an alternative to a random parameter treatment of heterogeneity where observed 

heterogeneity is explained by a large number of fixed coefficients and the residual unobserved 

heterogeneity is explained by a small number of error components.  This type of specification 

is relatively easy to estimate, allows for complex substitution patterns, and produces a high 

level of detail regarding angler preferences. 
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Chapter 10 

Summary, Conclusions and Directions for Future Research 
 

 

This chapter summarises, reflects on and draws conclusions from the research embodied in 

this thesis.  Important findings, challenges and avenues for future research are discussed. 

 

10.1  Research objectives and design 
 

The North Canterbury region constituted a particularly challenging and important region to 

study because of its diverse range of fishing sites, large angler base, unique resource 

disturbance problems and volatile angler activity patterns.  The core objective of this thesis 

was to develop a strong understanding of preference heterogeneity and substitution patterns.  

This was accomplished by using a framework of stated preference choice experimentation, 

advanced discrete choice modelling and applied recreation specialisation (RS) theory. 

 

The close working relationship developed with anglers during the design of the study was 

critical to enabling development of a stated preference study design that was realistic to 

anglers (Cummings & Taylor 1998), could be applied over the internet, provided sufficient 

motivation for anglers to participate, and allowed revelation of their underlying preferences.  

Modelling the decisions regularly faced by anglers, with large numbers of alternatives and 

many salient attributes that vary across sites, is a complex statistical task requiring a large 

amount of high quality data (Munizaga & Alvarez 2005; Cherchi & Ortu zar 2008).  The series 

of survey pilots was essential to identifying appropriate alternatives, attributes, attribute levels 

and generating priors to continually improve the efficiency of the experimental design.  

Internet application, while incurring substantial setup costs, allowed a large amount of data to 

be collected relatively quickly and cheaply.   
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The progression in the choice modelling literature was closely followed.  At the beginning of 

the PhD (2006), extensions to mixed logit (ML) were being developed (Greene et al. 2006; 

Greene & Hensher 2007).  It was on this new frontier that the research was focused.  The main 

objective was to capture within one model a strong understanding of taste variation for 

observed site attributes as well as correlation and heteroscedasticity in the unobserved utilities 

for different sites.  Then, develop these models further by weaving in RS theory to explain 

heterogeneity and heteroscedasticity in the random parameters and error components.  The 

target of this integrated approach (e.g., Walker 2001; Adamowicz et al. 2008) was to develop 

models which revealed both random and systematic heterogeneity, as well as were highly 

capable of identifying individuals’ substitution patterns.  Over the course of the data analysis 

hundreds of extended ML models were estimated, though only a handful of these are reported 

in the thesis.  This process led to a number of important findings, challenges, and an evolution 

in understanding of where and how to account for heterogeneity.      

 

At the beginning of the choice analysis it was evident that the conventional MNL model 

specified without interactions or site-specific attributes performed poorly.  This was 

anticipated given the model’s highly restrictive assumptions, the difficult North Canterbury 

context, the large number of alternatives included in the design and the diverse group of 

anglers.  When more flexible modelling procedures were applied (Chapter 6) wide-ranging 

taste heterogeneity was evident.  The research found that even after random parameters were 

employed there was still a substantial amount of unexplained preference heterogeneity.  Error 

components were instrumental in accounting for this residual preference heterogeneity, which 

differed across alternatives.  The extended ML models clearly outperformed the more basic 

MNL and LC-MNL models in terms of fitting the data better and revealing heterogeneity and 

substitution patterns.  Chapter 6 made a contribution by evaluating the performance of these 

extended ML models which have not appeared in the recreation or environmental economics 

literatures.  The models were shown to reveal important behavioural insights, such as the 

relationship between heteroscedasticity and skill level.  To achieve greater explanatory power, 

as well as provide a theoretical basis for evaluating the model parameters, the research then 

integrated multidimensional measures of RS which included measurements of anglers’ skill 

levels. 
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Despite 30 years of support in the literature only two studies had used both RS and DCM to 

investigate angler site choice (Oh & Ditton 2006; Dorow et al. 2009).  Both of these studies 

used very similar procedures involving cluster analysis (CA) to identify a small number of 

specialisation cohorts, relatively simple unlabelled experimental designs and estimation of 

separate conventional MNL models for each cohort.  The purpose of Chapter 7 was to 

demonstrate other more straightforward approaches for operationalising RS as well as more 

sophisticated modelling procedures which could avoid the use of multiple models and ensuing 

scale issues.  While the empirical approach did not necessarily lead to a parsimonious model 

(or the best way to ultimately operationalise specialisation), it was shown to be useful for 

providing a means for evaluating the relative contribution of individual indicators towards 

explaining preference.  Due to the absence of a rigorous theoretical model of specialisation, 

and the limitations imposed by CA approaches, the simple aggregation method (SAM) for 

identifying each individual’s level of specialisation was adopted (e.g., Wellman et al. 1982; 

Donnelly et al. 1986; Williams & Huffman 1986; Virden & Schreyer 1988; Miller & Graefe 

2000; Valentine 2003).  The SAM proved to be convenient, parsimonious and very effective.  

The major advantage of the SAM is that RS could be integrated with the extended ML models 

without having to use an extremely large number of parameters or multiple models.  Using the 

SAM-derived RS variables, all of the estimated interaction parameters in multinomial logit-

error component (MNL-EC) model M9 were statistically significant and followed theoretical 

expectations.  These same results were replicated in the fully extended ML model M10 which, 

in addition, controlled for heteroscedasticity finding that preference heterogeneity in both 

observed site attributes and unobserved utility increases (becomes more diverse) with 

specialisation.  In general, the integration of RS into the analysis, particularly with the SAM-

derived RS variables, led to significantly better fitting models and new and improved insights 

into anglers’ choice processes.   

 

It is important to note that the use of extended ML models did not come without a cost.  

Namely the random parameters methods for revealing heterogeneity in deterministic utility 

were extremely time-consuming because of the requirements for specification testing with 

different distributional forms for each of the attributes.  Exploring the extensions to control for 
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heterogeneity and heteroscedasticity in the random parameters with a large number of 

covariates increased the specification testing time considerably.  It was found that only a 

relatively small number of individual specialisation indicator variables could be used to 

decompose each random parameter.  When the number of covariates increased to beyond 

three, statistical significance was generally lost, due to some correlation among the 

specialisation indicator variables.  This problem, along with the large number of parameters 

which would have resulted, prohibited the investigation of individual RS indicators within the 

random parameters specification.  

 

Despite the integration of RS with the extended ML models to explain the sources of 

heterogeneity, there remained a significant amount of unexplained taste variation in the 

random parameters.  This remaining unexplained heterogeneity, as well as the high estimation 

outlays encountered with a random parameter treatment, motivated investigation of other 

potential sources of preference heterogeneity.  Personal observation, literature review and 

discussions with experts led to a hypothesis that anglers have site specific tastes not only for 

factors unseen, but also for those observed.  For example, catching a trout or seeing another 

angler had different marginal utilities according to the fishing site alternative (e.g., mainstem-

braided river versus a backcountry river).  This led to the hypothesis of alternative specific 

preference heterogeneity (ASPH), which was subsequently tested and found to be an 

important layer of choice influence.  The array of alternative specific parameters, for any one 

particular attribute, could be viewed as a finite preference distribution across sites (not 

individuals).  While generic random parameters embody this distribution, the important 

alternative specific information is not made explicit.  This finding, specification and treatment 

of heterogeneity, is important because it can improve managers’ understanding of which sites 

and attributes of those sites are relatively most important to manage in order to maximise 

angler welfare.  For example, improving catch rates, maintaining Didymo free environments 

or restoring riparian margins.  It was argued in Chapter 8 that failure to account for ASPH 

could bias natural resource damage assessments (e.g., Train 1998; Morey et al. 2002) either 

up or down. 
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The findings in Chapters 7 and 8 motivated the research to take one final step to investigate 

the relationship between ASPH and specialisation.  Evidence was found that site-specific 

preferences are strongly linked with specialisation.  Chapter 9 demonstrated that it was 

possible to explain a large amount of choice variability systematically with site specific 

parameters interacted with specialisation variables instead of relying on stochastic 

representations using a generic parameter specification.  Explaining heterogeneity 

systematically in this new way is advantageous because it reduces model identification issues 

and produces a richer, more definitive, understanding of the nature of preference 

heterogeneity.  The knowledge derived from estimating a large number of models in this study 

suggest that is highly important to develop a strong understanding of heterogeneity in 

systematic utility.  A sound approach is to first explain as much choice variability as possible 

deterministically, then, after ASPH and RS have been explored, focus on building in random 

taste heterogeneity.  Error components should then be used to identify residual unobserved 

preference heterogeneity, as well as correlation among alternatives.   

 

10.2  Avenues for future research  
 

The research embodied in this thesis leads to a large number of possibilities for further 

exploration of the RS concept with DCMs.  One potential avenue could investigate preference 

heterogeneity among different kinds (not levels) of specialisation.  Bryan’s (1977) initial 

conceptualisation of RS suggested that as anglers specialise their setting preferences become 

more particular, tending toward spring-creek fishing sites which have demanding yet 

predictable conditions.  Recent specialisation research suggests that the single trajectory view 

(i.e., specialists tending toward just one type of site) is too narrow and that specialisation 

occurs over numerous pathways (Kuentzel & Heberlein 2006).  Over the course of this 

research numerous forms of setting-specialisation became apparent.  For example, there was 

evidence of anglers who specialised solely in fishing backcountry rivers - to the exclusion of 

other types of waters.  Similarly there was evidence of lake, lowland and mainstem-braided 

river setting-specialisation.  It can be hypothesised that setting specialists, due to focusing of 

their efforts on different types of fishing sites, will develop, over time, more specific tastes.  If 

sites have strong characteristic differences it is likely that, viewed as a whole, specialised 
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anglers’ preferences will diverge.  While this research did not differentiate between kinds of 

setting-specialisation, the finding that specialists (when bundled together) showed increasing 

preference heterogeneity as identified by model M10 in Chapter 7 supports this hypothesis.    

 

There a number of ways in which the multiple specialisation trajectory hypothesis can be 

explored.  One simple way could use the existing data and segment anglers according to 

where they most prefer to fish in practice.  Separate models, which account for specialisation 

(e.g., model M9 in Chapter 7), could be estimated for each group.  A better approach builds in 

important design considerations, recognising setting-specialists, by definition, tend to choose 

one type of site, or not go fishing.  Therefore, a design which includes a number of different 

types of fishing site alternatives is inefficient.  To improve efficiency, research could employ 

designs which pivot off each respondent’s current behaviour or knowledge base (e.g., Hensher 

2004; Layton & Hensher 2008; Rose et al. 2008).  For example, backcountry river-setting 

specialists could be administered a design which only includes backcountry rivers, but offers 

different conditions on backcountry river alternatives, and the option to not fish.  Models 

could then be estimated which investigated backcountry-specialists’ fishing site choice(s).  

This type of research design would provide a better understanding of site specific tastes of 

specialised individuals and also greater understanding of the nature and source of 

heteroscedasticity in unobserved utility, which is highly important given its relationship to the 

scale term.   

 

Another potential avenue for future research is to utilise emerging development in ‘scale 

heterogeneity’ multinomial logit (S-MNL) and generalised multinomial logit (G-MNL) 

models to account for differences in scale across respondents according to specialisation 

(Bryan 1977).  The G-MNL and S-MNL models (Fiebig et al. 2009) allow coefficients in 

deterministic utility to be scaled up or down for individuals according to their individual level 

of variance in unobserved utility, reflecting that some individuals exhibit very random 

behaviour while others behave more predictably.  Currently, the applications in Fiebig et al. 

(2009) assume that scale follows a random (lognormal) distribution, and their attempts to 

parameterise scale distributions with observed covariates and measures of task complexity 

were unsuccessful.  The authors state that, “clearly more work is needed in this topic” (Fiebig 
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et al (2009, p. 24).  With the statistically significant relationships found in this thesis between 

RS and heteroscedasticity in the unobserved utility, it seems highly likely that SAM-derived 

RS measures can be used to identify scale heterogeneity.  Segmenting the scale term via RS 

could result in the next substantial breakthrough in terms of understanding and predicting 

choice behaviour within the DCM framework. 

 

Other avenues for advancing and testing the DCM - RS framework developed in this thesis 

include: utilising revealed preference (RP) data (or better yet, combining RP with stated 

preference (SP) data, (e.g., Von Haefen & Phaneuf 2008), and (ii) extending the framework to 

other recreational activities, such as hunting. 

 

10.3  Conclusions 
 
This thesis has made a number of significant contributions to the literature by: (i) developing, 

demonstrating and evaluating a number extended ML models; (ii) integrating these models 

with RS theory; (iii) identifying the importance of exploring alternative specific (rather than 

assuming generic) preference parameters in a model of recreation site choice, and finally, (iv) 

demonstrating that ASPH is strongly related to RS.  The application of the internet survey 

instrument, as well as the labelled (alternative-specific) Bayesian D-efficient experimental 

design, constitute new, innovative steps forward in recreation and environmental demand 

modelling.  Finally, much of the work developed in this thesis, and the practices adopted, have 

relevance to a broad audience concerned with modelling choice behaviour, and are not 

restricted to the recreational angling case explored here. 

 

Clearly, individuals’ choice behaviours are complex and heterogeneous, making deterministic 

explanation of all influences on choice impossible in practice.  Whether research accounts for 

heterogeneity in deterministic utility with purely stochastic representations using random 

parameters or drills down deeper to understand the underlying sources of heterogeneity is an 

important decision which is dictated by the experimental design and/or data quality and data 

availability.  Such possibilities should, however, be carefully considered prior to data 

collection.  Regardless, it is important to evaluate the entire utility construct (i.e., elements in 
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both observed and unobserved components of utility).  The findings from this research are 

clear.  Methods which oversimplify anglers’ choice processes risk generating poorly 

representative models which will likely lead to suboptimal management and policy outcomes.   
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Appendix A: Screen shots of the internet survey 
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Appendix B: Correlations among individual specialisation indicator variables  
 

rankfish daysyear yeasrsfish skill impskill impfish clubmemb income age
rankfish 1.000
daysyear 0.459 1.000
yeasrsfish 0.156 0.157 1.000
skill 0.425 0.422 0.492 1.000
impskill 0.313 0.286 -0.127 0.087 1.000
impfish 0.610 0.433 0.191 0.439 0.381 1.000
clubmemb 0.179 0.238 0.062 0.178 0.213 0.203 1.000
income 0.016 -0.085 0.048 0.100 0.029 0.050 0.046 1.000
age 0.125 0.040 0.590 0.217 -0.121 0.070 0.062 0.061 1.000  
 


	Abstract
	Acknowledgements
	Chapter 1
	Introduction
	1.1  Background
	1.2  Aims
	1.3  Contributions
	1.4  Outline of the thesis

	Chapter 2
	Discrete Choice Models
	2.1  The behavioral foundation of discrete choice models
	2.2  The multinomial logit model
	2.2.1  Multinomial logit model limitations
	2.2.1.1  Heterogeneity
	2.2.1.2  Non-correlation and homoscedasticity
	2.2.1.3  Forecasting

	2.2.2  Multinomial logit model applications

	2.3  Generalised extreme value models
	2.3.1  Nested logit
	2.3.1.1   Limitations
	2.3.1.2   Applications

	2.3.2  Generalised nested logit
	2.3.2.1  Limitations
	2.3.2.2  Applications

	2.3.3  Heteroscedastic extreme value
	2.3.3.1  Limitations
	2.3.3.2  Applications


	2.3.4  Generalised extreme value model summary
	2.4  Latent class multinomial logit choice models
	2.4.1  Limitations
	2.4.2  Applications

	2.5  Mixed logit
	2.5.1  Random parameters specification
	2.5.2  Random parameters plus control for heterogeneity and heteroscedasticity
	2.5.3  Error components
	2.5.3.1  Random parameters with error components
	2.5.3.2  Random parameters with error components plus control for heterogeneity and    heteroscedasticity

	2.5.4   Mixed logit limitations

	2.6  Multinomial probit
	2.7  Discrete choice model summary

	Chapter 3
	Recreation Specialisation
	3.1.  Introduction
	3.2  Recreation specialisation
	3.3  Measuring recreation specialisation
	3.4  Summary

	Chapter 4
	New Zealand Recreational Trout Fisheries
	4.1   Introduction
	4.2  New Zealand recreational salmonid angling: An overview
	4.3  North Canterbury context
	4.3.1  Mainstem rivers
	4.3.2  Backcountry rivers
	4.3.3  Headwaters
	4.3.4  Lowland rivers
	4.3.4  Lakes

	4.4  Angling techniques and equipment
	4.5  Resource disturbances
	4.5.1  Agriculture and the shift toward intensive practices
	4.5.2  Didymomosphenia geminata
	4.5.3  Angler congestion
	4.5.4  Trout catchability

	4.6  Regional trends in North Canterbury
	4.7  Summary

	Chapter 5
	Research Design
	5.1  Introduction and context
	5.2  Revealed versus stated preference
	5.3  Experimental design literature review
	5.4  Experimental design generation
	5.4.1  Alternative, attribute and attribute level specification
	5.4.1.1  Stage one
	5.4.1.2  Stage two
	5.4.1.3  Stage three
	5.4.1.4  Stage  four


	5.5  Conceptual framework of the research design
	5.6  Results
	5.7  Statistical analysis

	Chapter 6
	Taste Heterogeneity and Complex Substitution Patterns
	6.1  Introduction
	6.2  Data analysis
	6.2.1  Multinomial logit
	6.2.2  Latent class multinomial logit
	6.2.3  Mixed logit

	6.3  Prediction
	6.4  Discussion & management implications

	Chapter 7
	Recreation Specialisation and Angler Site Choice
	7.1  Introduction
	7.2  Recreation specialisation
	7.2.1  Analysing individual recreation specialisation indicators: An empirical              approach

	7.3  Analysing recreation specialisation: a theoretical approach
	7.4  Chapter Outline
	7.5  Measuring recreation specialisation among New Zealand trout anglers
	7.6   Empirical approaches for integrating recreation specialisation in analysis
	7.6.1  A latent class multinomial logit model
	7.6.2  A multinomial logit model

	7.7  Theoretical approaches for integrating recreation specialisation in analysis
	7.7.1  A multinomial logit model
	7.7.2  A multinomial logit-error component model
	7.7.3  A random parameters-error component model

	7.8  Comparison of model fits
	7.9  Discussion

	Chapter 8
	Alternative-specific Preference Heterogeneity
	8.1   Introduction
	8.2  Generic versus site-specific parameters
	8.3  Marginal rates of substitution
	8.4  Discussion

	Chapter 9
	Recreation Specialisation and Alternative-specific Preference Heterogeneity
	9.1  Introduction
	9.2  A multinomial logit-error component model
	9.3  Discussion

	Chapter 10
	Summary, Conclusions and Directions for Future Research
	10.1  Research objectives and design
	10.2  Avenues for future research
	10.3  Conclusions

	References
	Appendix A: Screen shots of the internet survey
	Appendix B: Correlations among individual specialisation indicator variables


