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 Abstract 

Effect of different forms of farm dairy effluent, with and without animal urine, 

on nitrification, denitrification and N2O emissions 

 

by 

Siyu Chen 

 

Nitrous oxide (N2O) is one of the most important greenhouse gases. Agricultural soils are the largest 

source of N2O emissions. In New Zealand, the application of farm dairy effluent (FDE) on pasture soils 

is the third largest source of N2O emissions from grazed grassland. Recently, new FDE treatment 

technologies have been developed to separate out solids from liquids to produce treated clear water 

and treated effluent, aimed at recycling water, increasing the storage pond capacity and minimising 

contamination of waterways. However, it is not known how the treated clear water and treated 

effluent would affect the N2O emission factors compared with the standard untreated effluent, and 

whether the treated effluent would interact with animal urine to result in different N2O emission 

factors for the animal urine-N.  

Thus, the objectives of this research were: a) to determine N2O emissions from treated effluents 

(including treated effluent and treated clear water) compared with standard FDE applied to soil; b) to 

determine N2O emissions from treated FDE and standard FDE co-applied with animal urine; c) to 

determine ammonia oxidising bacteria (AOB), ammonia oxidising archaea (AOA), denitrying microbial 

functional genes, and mineral N dynamics following the application of treated FDE and, standard FDE 

with or without urine; and d) to determine the relationships between N2O emissions and the FDE 

properties. 

Two incubation experiments were conducted to measure N2O emissions, mineral N dynamics, soil pH 

and the abundance of AOB, AOA, and denitrifying functional genes (nirS, nirK and nosZ). A Templeton 

silt loam soil was collected from Lincoln University Research Dairy Farm and packed into gas sampling 

jars and soil sampling pottles. FDE and cow urine were collected from Lincoln University Demonstration 

Dairy Farm and FDE was treated to produce treated clear water and treated effluent by the latest 

effluent treatment technology. The treated effluents and the original FDE, with or without animal 
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urine, were applied to the soils, and were incubated at 12°C for 244 days for gas sampling jars and 210 

days for soil sampling pottles.  

Results showed that there were no significant differences among the treated clear water, treated 

effluent or standard FDE in N2O emissions, mineral N dynamics, soil pH and the abundance of AOB, 

AOA, and denitrifying functional genes (nirS, nirK and nosZ). Similarly, when animal urine was co-

applied with the three different effluents, there were also no significant differences among the effluent 

plus urine treatments in these parameters. Therefore, it is concluded that applying the treated effluent 

or treated clear water produced from the new treatment technology will not increase N2O emissions 

nor change the mineral N dynamics, soil pH and the abundance of AOB, AOA, and the denitrifying 

functional genes (nirS, nirK and nosZ), even on the urine patches of grazed pasture soils, compared 

with applying the standard FDE. Future research could assess potential long-term effects on these 

parameters and potential effects on other microbial communities in the soil. 

 

 

Keywords: Nitrous oxide, farm dairy effluent, effluent treatment technology, treated clear water, 

treated effluent, urine, ammonium, nitrate, soil pH, ammonia oxidising bacteria, ammonia oxidising 

archaea, denitrifiers.  
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Chapter 1 

Introduction 

1.1 Introduction 

In New Zealand, dairy farming has been expanding rapidly. In 1982, the population of dairy cattle was 

roughly 3 million and the numbers have increased to nearly 5 million in 2015/16 (Dairy NZ, 2016). 

About 60% of dairy cows are located in the North Island and 40% in the South Island (Fig. 1.1). 

 

Fig. 1.1 Regional distribution of dairy cows in 2015/16 (Dairy NZ, 2016). 

 
Globally, it has been identified that the livestock sector is one of the major contributors to the 

contamination of water and global warming (Di and Cameron, 2016). Greenhouse gases (GHG’s) 

provide radiative forcing in the atmosphere, which can cause the climate to warm (IPCC, 2007). Nitrous 

oxide (N2O) is one of the most important anthropogenic greenhouse gases, which has a global warming 

potential 298 times that of carbon dioxide (CO2) and N2O is the largest contributor to stratospheric 

ozone depletion (IPCC, 2007). N2O is produced in the soil during the processes of nitrification and 
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denitrification. Agriculture is the largest source of N2O emissions, comprising 66% of total N2O 

emissions (Davidson and Kanter, 2014; van der Weerden et al., 2016a). One of the significant factors 

is the increasing application rate of synthetic N fertilisers, which has increased the N2O concentration 

in the atmosphere in recent decades (Davidson, 2009; van der Weerden et al., 2016b). Globally, 

fertiliser use is expected to double between 2006 and 2050 (Sutton and Bleeker, 2013; van der 

Weerden et al., 2016a). In New Zealand, pasture grazing generally occurs all year round owing to the 

mild winter climate (Luo et al., 2013). The intensification in livestock farming has led to a growing 

volume of manure and animal excreta (including urine and farm dairy effluent) being produced, which 

also contribute to the rising atmospheric N2O concentration.  

In New Zealand, the N2O produced from agriculture is high and represented 94.8% of total N2O 

emissions in 2015 (Ministry for the Environment, 2017). N2O emissions from urine and dung excreted 

by the grazing animal accounted for 63% of the agricultural N2O and synthetic N fertiliser accounted 

for 16.1% of the agricultural N2O emissions in New Zealand in 2015 (Ministry for the Environment, 

2017). Dairy cattle excreta is deposited in and around the milking shed and washed and collected into 

a pond or sump (Chung et al., 2013). This is known as farm dairy effluent (FDE), which is the most 

common form of manure collected and applied to pastoral soils in New Zealand (van der Weerden et 

al., 2016a). In New Zealand, the application of FDE on pasture is the third largest source of N2O 

emissions. 

Recently, some new FDE treatment technologies have been developed to separate solids out from the 

liquids and produce treated clear water for re-use and treated effluent (the more concentrated 

effluent  with higher amounts of solids) (Cameron and Di Pers. Comm.). However, it is not known how 

the new treated effluent and treated clear water produced from this treatment technology would 

affect N2O emissions compared with the original standard non-treated FDE, and whether the treated 

FDE would interact with animal urine to result in different N2O emission factors. This research is aimed 

at bridging these knowledge gaps. 

1.2 Aims and objectives 

The aim of this study is to improve knowledge and fundamental understanding of the effect of different 

forms of FDE (including standard FDE, treated clear water and treated effluent), with and without 

animal urine, on N2O emissions, mineral nitrogen dynamics, soil pH and the abundance of ammonia 

oxidising bacteria (AOB), ammonia oxidising archaea (AOA), and denitrifying functional genes (nirS, 

nirK and nosZ). 
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The objectives of this project were: 

a) To determine N2O emissions from treated effluents (including treated effluent and treated clear 

water) compared with standard FDE applied to soil; 

b) To determine N2O emissions from treated FDE and standard FDE co-applied with animal urine; 

c) To determine ammonia oxidising bacteria (AOB), ammonia oxidising archaea (AOA), denitrying 

microbial functional genes, and mineral nitrification rate dynamics following the application of 

treated FDE and standard FDE, with or without urine; 

d) To determine the relationships between N2O emissions and the FDE properties. 

These objectives will be achieved by conducting laboratory incubation studies. 

1.3 Hypotheses 

This research programme tested the following hypotheses: 

a) That the treated effluent and treated clear water would have different N2O emission factors 

compared with the untreated standard FDE when applied to soil; 

b) That there would be different interactive effects between the treated effluents (treated clear 

water and treated effluent) and standard FDE and animal urine when they are co-applied to soil. 

1.4 Structure of the thesis 

Chapter Two of this thesis is the review of previously published literature relevant to the factors 

affecting N2O emissions from nitrification and denitrification. Chapter Three describes the 

experimental design and methods of sampling and analysis in this research. The research results and 

discussion are presented in Chapter Four. Chapter Five summarizes the conclusions of this research 

and provides some suggestions for future research. 
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Chapter 2 

Literature review 

2.1 Introduction 

Nitrous oxide (N2O) is an important greenhouse gas (GHG), which is almost 300 times greater than 

carbon dioxide (CO2) in terms of long-term global warming potential (IPCC, 2007).It is also the largest 

contributor to the depletion of stratospheric ozone (Ravishankara et al., 2009). Mostly, the N2O is 

produced from biological processes, nitrification and denitrification, as a part of the nitrogen (N) cycle 

in soil (Thomson et al., 2012).  

The dominant land use in New Zealand is pastoral agriculture (Di and Cameron, 2017). In grazed 

grassland soils, the N associated with animal excreta (both urine and dung) is an important part of the 

N cycle (Saggar et al., 2013). On average, 290 g N cow-1 day-1 can be returned as excreta by dairy cattle 

in the New Zealand grazing system (Saggar et al., 2004b). In New Zealand, N2O emissions from urine 

and dung excreted by the grazing animal accounted for 63% of the agricultural N2O and synthetic N 

fertiliser accounted for 16.1% of the agricultural N2O emissions in 2015 (Ministry for the Environment, 

2017). Farm dairy effluent (FDE) is the most common form of manure that is collected and applied to 

the pastoral soils, and is the third largest source of N2O emissions in New Zealand (van der Weerden 

et al., 2016a). 

In New Zealand, a series of mitigation options are being considered to decrease N2O emissions from 

grazed farming systems including restricted grazing, using winter feed pads and low N animal feed (Di 

and Cameron, 2002a, 2002b; Kramer et al., 2006; Monaghan et al., 2007; Di and Cameron, 2012). In 

addition, the nitrification inhibitor, dicyandiamide (DCD), has been shown to decrease both NO3
- 

leaching and N2O emissions in grazed pasture soils (Di and Cameron, 2007, 2012). However, the use of 

DCD has been suspended in New Zealand awaiting the establishment of a food standard by the FAO’s 

Codex Committee. 

Nitrous oxide emissions are part of the N cycle in the soil, and are affected by a number of soil, 

environmental and management factors. This review will first provide a brief summary of the N cycle 

in the soil, followed by a review of the factors that affect N2O emissions, and microbial communities 

responsible for the production of N2O. 

2.2 The nitrogen cycle 

There are 18×1015 tonnes of N in the earth’s crust and 3.8×1015 tonnes as nitrogen gas (N2) in the 

atmosphere (McLaren and Cameron, 1996). In the soil, there are four major forms of N: (a) N in organic 
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matter, humus, plant material and animal material; (b) N in soil organisms; (c) ammonium ions, which 

are held by organic matter and clay minerals and, (d) mineral-N forms in soil solution, such as nitrate 

(NO3
-), ammonium (NH4

+), and nitrite (NO2
-) in low concentration. The N cycle in the plant/soil system 

includes three processes: gains, transformations and losses (Fig. 2.1). These processes affect N 

availability for plants and N transformations in the wider environment.  

 

Fig. 2.1 The soil/plant nitrogen cycle (Cameron et al., 2013). 

2.2.1 Gains 

There are four main pathways for soil to gain N: (a) atmospheric returns from atmosphere N and 

juvenile addition; (b) N fertilisers; (c) biological N fixation which is carried out by specific bacteria, such 

as Rhizobia and free-living N2 fixing soil bacteria and (d) animal manure (Fig. 2.1).  

2.2.2 Transformation 

In the soil, N can be transformed into different forms through many chemical and biochemical 

reactions. Soil organic matter, including animal manure, microorganisms and dead plants and animals, 

is transformed into ammonium ions (NH4
+) by mineralisation. Through nitrification, NH4

+ is 

transformed into nitrite (NO2
-) and nitrate (NO3

-) by specific nitrifying bacteria. Ammonium and nitrate 

can also be transformed into organic forms through the process of immobilisation by soil 

microorganisms. 
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2.2.3 Losses 

Nitrogen can be lost from soil through leaching or through gaseous emissions in the forms of N2, N2O 

and NO by denitrification, or in the form of ammonia by volatilization. Nitrogen is also lost from the N 

cycle through removal in plant and animal products (Fig. 2.1). 

2.3 Nitrification and denitrification 

In the soil/plant N cycle system, nitrification and denitrification are two important processes that 

produce N2O. Through nitrification, NH4
+ is converted to NO2

- and then to NO3
- by nitrifying microbes 

under aerobic conditions (Fig. 2.2) (Di et al., 2014). N2O is a by-product that can be produced during 

nitrification. In the process of NH4
+ oxidation, there are two stages, the conversion of NH4

+ to NH2OH 

(Equation 2.1) by amoA ammonia monooxygenase and from NH2OH to NO2
- by hydroxylamine 

oxidoreductase (Equation 2.2) (Bothe et al., 2000).  

NH3 + O2 + 2H+ + 2e-→NH2OH + H2O                                                                (2.1) 

  NH2OH + H2O→NO2
- + 5H++ 4e-                                                                        (2.2) 

The transformed NO2
- is rapidly oxidised to NO3

-. N2O is produced chemically because of the 

decomposition of NH2OH during the oxidation of NH4
+ (Braker and Conrad, 2011).  

For over a century, ammonia oxidising bacteria (AOB) was thought to mostly perform in the first and 

rate-limiting step of nitrification, the oxidation of NH3 to NH2OH (Kowalchuk and Stephen, 2001; Di and 

Cameron, 2017). However, it was found recently that the populations of ammonia oxidising archaea 

(AOA) in a range of soils were more abundant than AOB (He et al., 2007; Prosser and Nicol, 2008; Di 

and Cameron, 2017). This suggested that AOA could potentially have a greater role than AOB in 

ammonia oxidation. However, further research has found that the activity and population abundance 

of AOB and AOA in ammonia oxidation can vary depending on soil and environmental conditions (Di 

and Cameron, 2017). This will be discussed in Section 2.4. 

Denitrification is the reduction of NO3
- or NO2

- to NO, N2O and N2 gases under anaerobic conditions 

(Fig. 2.2). Under anaerobic conditions, heterotrophic denitrifiers use NO3
- or NO2

- to replace O2 as the 

electron acceptor for the oxidation (van Spanning et al., 2007) and release N2O and N2 and gain energy. 

Nitrate can be reduced to NO2
- by nitrate reductase (encoded by the narG gene). The nitrite reductase 

(encoded by nirS and nirK genes) reduces NO2
- to NO. N2O and N2 are produced because of the 

reduction of NO by nitric oxide reductase and nitrous oxide reductase (nosZ), respectively. N2O is 

released as an intermediate product.  
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Fig. 2.2 Nitrification and denitrification processes with associated enzymes and functional genes 

(adapted from Di et al. (2014)). 

2.4 Factors affecting nitrification, denitrification and N2O emissions 

2.4.1 Soil moisture content 

Soil moisture content plays a significant role in nitrification, denitrification and N2O emissions since it 

affects the soil aeration status (Cameron et al., 2013). For example, Osborne et al. (2016) reported that 

nitrification increased with increasing moisture content but only whilst the soil remained aerobic. 

Under aerobic conditions, nitrification occurs and N2O can be produced under certain soil conditions 

(Fig. 2.3) (Di et al., 2014). Maag and Vinther (1996) reported that when soil moisture content increased, 

the N2O-N produced from nitrification increased. Less than 60% of water filled pore space (WFPS) is 

found as the optimal soil moisture content for nitrification, since the O2 or substrates are not restricted 

(Bateman and Baggs, 2005). WFPS between 35% and 60% leads to N2O emissions which is produced 

predominantly by autotrophic nitrification (Bateman and Baggs, 2005). A similar result was reported 

by Ussiri and Lal (2013) (Fig. 2.4).  

 

Fig. 2.3 The processes of nitrification (Cameron et al., 2013). 
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Fig. 2.4 A generalized schematic indicating the relationship between water-filled pore space (WFPS) 

of soils and relative fluxes of N2O and N2. N2O can be produced by both nitrification and 

denitrification and N2 is produced by denitrification (Ussiri and Lal, 2013). 

Under anaerobic conditions, denitrification occurs producing N2O and N2 gases(Di et al., 2014). The 

rate of denitrification increases significant when soil moisture content is greater than field capacity 

(FC) (Mosier et al., 1986; de Klein and van Logtestijn, 1996; Saggar et al., 2009; Cameron et al., 2013). 

Thus, the losses of N due to denitrification are greatest in late-autumn, winter and early-spring and 

under the conditions of heavy rainfall or irrigation (Phillips et al., 2007; Cameron et al., 2013).  

Since nitrification and denitrification can be affected by soil moisture content, the emissions of N2O 

are also impacted. The relationship between WFPS and N2O/N2 flux is shown in Fig. 2.4. The emissions 

of N2O produced by nitrification or denitrification change depending on the WFPS. Di et al. (2014) 

found that the N2O emissions from urine-treated soil were dominantly driven by soil moisture content. 

The total N2O emissions at 100% and 130% soil FC were 9 and 400 times that at 60% FC, respectively 

(Di et al., 2014). The soil becomes increasingly anaerobic when soil moisture content increases, which 

leads to higher denitrification rates and N2O emissions. It was also reported by Banerjee et al. (2016) 

that the N2O emissions in wetter soils were higher than those in drier soils. Higher N2O emissions can 

occur when WFPS is around 60% because of the combination of autotrophic nitrification and denitrifier 

nitrification since the limitation of O2 may occur in a short term (Bateman and Baggs, 2005). However, 

a decrease of N2O emission was shown when WFPS was higher than 90% because the conversion of 

N2O to N2 occurs under complete anaerobic conditions (Smith et al., 1998). In addition, the emission 

N2O by nitrification N2O by denitrification N2
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of N2O is high when soil moisture alternates between wetting and drying since both nitrification and 

denitrification occur and the N2O produced cannot be reduced to N2 because there is insufficient time 

(Sherlock et al., 1992). 

The growth of ammonia oxidisers (AOB and AOA) and denitrifiers can also be affected by soil moisture 

content. It was reported by Di et al. (2014) that the abundance of the AOB amoA gene in the urine 

treatment increased with the increase of soil moisture content. The AOA amoA gene also increased 

with soil moisture content but it was higher in the control than in the urine treatment. At low soil 

moisture content (60% FC), the growth of both AOB and AOA was restricted (Di and Cameron, 2017).  

According to Di et al. (2014) the abundance of measured denitrifier genes all increased with the 

increase of soil moisture content, except narG. Although most denitrifiers are facultative aerobes, they 

can use various forms of nitrogen oxides as electron acceptors in place of O2 when under anaerobic 

conditions (Wrage et al., 2001). In addition, the growth of microbial communities was limited when 

the soil was too dry (< 60% FC) (Di et al., 2014). 

2.4.2 Temperature 

Under higher temperatures, nitrification and denitrification rates are both higher, compared with rates 

under low temperatures. Avrahami et al. (2003) found that the N2O release rate increased steadily 

between 4 and 37°C (Fig. 2.5) after a short-term temperature adaptation when ammonium was not a 

limitation. About 35-50 % of N2O production was released through nitrification between 4 and 25°C, 

and nitrification was most active at the intermediate temperatures, i.e. 15-25°C. However, it was 

reported by Hu et al. (2014b) that the rates of nitrification at high temperatures, such as at 25°C, 35°C 

and 40°C, were significantly greater than the rates under lower temperatures (Fig. 2.6). The process of 

nitrification is inhibited at the lower temperature because of the reduction in microbial activity. In 

addition, the rate of denitrification can also be enhanced with the increase in temperature (Dobbie 

and Smith, 2001; Cameron et al., 2013). It was reported by de Klein and van Logtestijn (1996) that 

when temperature increased from 10°C to 20°C, a 10-fold increase in denitrification rate was recorded.  

Cooler temperatures result in lower microbial activity, higher N2O solubility and a slower gas diffusion, 

which leads to lower N2O emissions (Sherlock et al., 1992). However, because of the incomplete 

denitrification and the low proportion of N2O converted to N2, thus N2O emissions were reported to 

be higher when soil temperature was below 15°C (Keeney et al., 1979). It was reported by Keeney et 

al. (1979) that because of incomplete denitrification, even though the denitrification rate was low 

under 15°C, the amount of N2O released was equivalent to that under 25°C. For N2O emitted from 

nitrification, the emission rate at 5°C was 3 times higher than that at 20°C (Maag and Vinther, 1996). 
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This is because NO3
- accumulates at low temperatures, which results in an increase of the nitrifiers’ 

contribution to N2O emissions. 

 

Fig. 2.5 Pattern of N2O production and percentage contribution of nitrification and denitrification to 

total N2O emission after 5 days of incubation at different temperatures. Stacked bars indicate 

percentage contribution of nitrification and denitrification to total N2O emission (white, nitrification; 

grey, denitrification), and squares indicate rates of total N2O emission. Mean ± SE; note that x-axis 

is not to scale (Avrahami et al., 2003). 

2.4.3 Soil texture 

N2O emissions are reported to be lower in free-draining soils than in poorly drained soils (Luo et al., 

2010). It was reported by Jamali et al. (2016) that greater N2O emissions occurred in fine-textured soil 

than in free-draining soils, in the order: clay loam>loam>sand. The authors explained that the hydraulic 

conductivity, porosity, water-holding capacity and aeration status were different in the different soil 

types, and these affected soil moisture content. Similar results were also reported by Lan et al. (2013) 

and Wlodarczyk et al. (2011). 

However, contradictory results have been reported by some other researchers. It was found by Rafique 

et al. (2011) that higher N2O emissions were produced from free-draining podzols, compared with 

poorly drained gley soils. This was because the porosity in the podzols was higher, which led to an 

enhancement of nitrification rate. Moreover, soil is frequently waterlogged in gley soils, which causes 

a very high WFPS and almost completely anaerobic conditions (Rafique et al., 2011). This reduces the 

nitrification rate in the soil and the denitrification pathway may be more complete, leading to less 

production of N2O gas. 
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Fig. 2.6 Effect of temperature and moisture on the net nitrification rate in three soil microhabitats. 

Different capital letters indicate significant differences in net nitrification rate of the same 

temperature among different soil moistures; different small letters denote significant differences 

among different temperatures in the same soil moisture (P< 0.05). Error bars represent the standard 

errors of the mean values for three replicates (Hu et al., 2014b). 

2.4.4 Soil pH 

Both nitrification and denitrification rate can be affected by soil pH. The process of nitrification is 

sensitive to soil pH (Curtin et al., 1998; Jiang et al., 2015). Darrah et al. (1986) reported that the relative 

nitrification rate reached the highest point when soil pH was around 6.5 (Fig. 2.7). The optimal range 

of soil pH for nitrifying bacteria is from 4.5 to 7.5 (McLaren and Cameron, 1996). In very acid soils, the 

toxicity of Al and/or the deficiencies of Ca and Mg may inhibit nitrification (McLaren and Cameron, 

1996). In addition, nitrification rate, especially NH3 oxidation, is significantly lower when soil pH is less 

than 5.5 since NH3 is protonated to NH4
+ at a low pH. When the pH decreases to 5.0 or lower, the 

activity of nitrifiers becomes negligible (Foth, 1997). In alkaline soils, the toxicity of NH3 may become 

a limitation of nitrifiers activity (McLaren and Cameron, 1996).  
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Both AOA and AOB are players of ammonia oxidation (Che et al., 2015). The growth and activity of AOB 

and AOA can be affected by soil pH (Luo et al., 2007; Di and Cameron, 2017). In acidic soil ecosystems, 

archaea may play an important role in ammonia oxidation (He et al., 2007; Yao et al., 2011; Zhang et 

al., 2012; Che et al., 2015; Jiang et al., 2015) since they can adapt to extreme environment conditions 

(Di et al., 2010). If high N concentrations do not inhibit AOA growth then AOA may become significant 

in NH3 oxidation under strongly acidic conditions (He et al., 2012; Zhang et al., 2012; Hu et al., 2014a; 

Di and Cameron, 2017). Robinson et al. (2014) reported that when the urine substrate was applied to 

soil, AOA growth was favoured in the acid soil treatment once the urine was hydrolysed (after day 28), 

and AOB growth was favoured in the alkaline treatment. 

The rate of denitrification is also affected by soil pH (McLaren and Cameron, 1996). The rate of 

denitrification increases with the increase of soil pH (ŠImek and Cooper, 2002; Hansen et al., 2014). 

Compared with neutral or alkaline soils, the denitrification rate is slower in acid soils (Nägele and 

Conrad, 1990; ŠImek and Cooper, 2002; Fageria and Baligar, 2008), especially when the pH is less than 

5 (McLaren and Cameron, 1996). However, denitrification can still occur when soil pH is as low as 3.5 

(Parkin et al., 1985). The optimum soil pH for denitrifying organisms is between 7 and 8 (Sherlock et 

al., 1992).  

The product ratio of N2O:N2 from denitrification is impacted by the level of soil acidity (Saggar et al., 

2013). Čuhel et al. (2010) reported that with a decrease of pH, the N2O/ (N2O+ N2) ratio increased 

because of the changes in the total denitrification activity (Fig. 2.9B). In acid soils, N2O appears as the 

dominant product frequently (Christensen, 1985) and the N2O: N2 ratio increases at lower soil pH 

(Nägele and Conrad, 1990; Liu et al., 2010; Saggar et al., 2013; Samad et al., 2016). Robinson et al. 

(2014) reported that the total N2O emissions were significantly higher in acid-treated soils than in the 

untreated native and alkaline-treated soils when urine (700 kg N ha-1) was applied. When soil was at a 

high pH level, complete denitrification was favoured, which produced more N2 than N2O (Fig. 2.8a) 

(Čuhel et al., 2010).  

2.4.5 Organic carbon 

Organic carbon (C) can affect the denitrification process (Giles et al., 2017). Denitrification can be 

stimulated by increasing the amount of readily available organic C, such as from animal excreta 

deposition and organic waste applications to soil (de Klein et al., 2001; Di and Cameron, 2003; Cameron 

et al., 2013). Since most of the denitrifiers are heterotrophs, the addition of organic C not only 

stimulates the respiration and growth of microbes in the soil but also provides the organic C needed 

by the denitrifiers (Cameron et al., 2013). Therefore, heterotrophic denitrification is often limited by 

labile C in agricultural soils (Saggar et al., 2013). In most soils, the rate of denitrification decreases with 

soil depth since both the microbial population and the organic matter content are higher at the soil 
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surface (Rolston, 1981). In addition, any process that can impact the C mineralisation rate in soils, such 

as incorporation of crop residue, root exudates, organic or inorganic fertiliser application, 

temperature, liming and drying-wetting, can have a major effect on the rate of denitrification. The 

application of farm effluents has been shown to increase N2O emissions by enhancing the soil C 

availability (Bhandral et al., 2007).  

 

Fig. 2.7 Relative nitrification rate (RNR) expressed as a fraction of the maximum rate, as a function 

of pH in the short-term nitrification assay (Darrah et al., 1986). 

N2O production was positively correlated with total C, and highly correlated with water soluble organic 

C (Burford and Bremner, 1975) (Fig. 2.9). This is because water soluble C can be used by the denitrifying 

bacteria, resulting in higher N2O emissions. Compared with ammonium-based fertilisers, the 

application of urea fertiliser leads to increased denitrification rates because of the direct supply of 

dissolved organic C from urea and an increase of soil C solubilisation from an increase in soil pH caused 

by urea hydrolysis (Barton et al., 1999). However, N2O emissions have also been reported to be 

reduced by applying urea fertiliser with a C source (green manure and wheat straw), compared with 

applying urea fertiliser alone (Aulakh et al., 2001). This is probably because of the dissimilatory nitrate 

reduction to ammonium (Matheson et al., 2002) or microbial immobilisation of some of the added N 

(Tiedje, 1988). In addition, it is generally considered that the ratio of N2O: N2 decreases with the 

enhancement of C availability (Saggar et al., 2013).  
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the same time (Ministry for the Environment, 2017). The rate of nitrification and denitrification are 

influenced by the increased availability of N (including NH4
+ and NO3

-) (Cameron et al., 2013). Cardenas 

et al. (2010) reported that the emissions of N2O were increased with the increase in the application 

rate of N fertilisers (Fig. 2.10).  

The type of N fertiliser also affects N2O emission levels. In some field studies, the N2O from oxidised N 

fertilisers (nitrate based) was higher than reduced N fertilisers (Smith et al., 2012; Hinton et al., 2015). 

Eckard et al. (2006) found that nitrate fertiliser released more N2O than urea fertiliser and N2O 

emissions were positively correlated to N fertiliser application rate (Fig. 2.11). However, some other 

studies reported conflicting results, where reduced N forms had higher N2O emissions (Lebender et al., 

2014; Soares et al., 2016). Kroeze (1994) found that anhydrous NH3 fertiliser produced higher N2O 

emissions, compared with NH4
+ and urea, while NO3

- fertiliser led to the lowest N2O emission levels. 

Since many factors can affect nitrification and denitrification, the comparative advantages of oxidised 

or reduced N fertilisers regarding N2O emission potential strongly depend on weather and site specific 

conditions (Snyder et al., 2009; Tierling and Kuhlmann, 2018). In addition, it was found from several 

field studies that more N2O can be emitted from urea than ammonium N forms (Tenuta and 

Beauchamp, 2003). Tierling and Kuhlmann (2018) reported 2.7-3.8 fold higher cumulative N2O 

emissions from urea than from ammonium sulphate, and N2O emission rates from urea were 

accompanied by elevated soil nitrite levels while those of ammonium sulphate were not. This indicated 

that the alkalizing hydrolysis of urea increased the risk of nitrite accumulation and thus higher N2O 

emissions as well. 

 

Fig. 2.10 N2O flux related to fertiliser-N applied in three study sites (Cardenas et al., 2010). 
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Fig. 2.11 Predicted annual N2O emissions with increasing N fertiliser application rates with two 

different fertilisers; urea (closed diamond) and nitrate (open triangle) (Eckard et al., 2006). 

2.5 N2O emissions from farm dairy effluent (FDE) 

In New Zealand, dairy cows deposit the majority of their excreta (dung and urine) onto pastures in a 

typical outdoor grazing system. Commonly, only the excreta that is deposited in and around the milking 

shed is managed actively (Chung et al., 2013). These excreta are washed from the milking parlour and 

yard into a pond or sump. Farm dairy effluent (FDE) is a combination of dairy cow excreta and wash-

down water from the dairy cow milking shed and the associated yards. This FDE is the most common 

form of manure collection applied to the pastoral soils in New Zealand (van der Weerden et al., 2016a). 

The concentration of dry matter (DM) classifies the produced effluent into FDE, slurries or solids (Li et 

al., 2015b). FDE contains less than 5% DM whilst the DM content of slurry is between 5 and 15%. Solid 

manure contains more than 15% DM (Longhurst et al., 2012). 

The application of FDE on New Zealand pastures is the third largest source of N2O emissions (van der 

Weerden et al., 2016a). The ‘Emission factor’ (EF) is used to describe the proportion of excreta N that 

is emitted as N2O-N (Cameron et al., 2013). For animal manures, the range of emission factors is from 

0% to 5% (de Klein and van Logtestijn, 1996; Cameron et al., 2013). Currently, the New Zealand 

emission factor for FDE is 0.25% (Ministry for the Environment, 2017). Some reported EF values of FDE 

are given in Table 2.1. Many factors can affect the EF of FDE, such as season and prior excreta 

deposition.  

There are two reasons why N2O emissions are increased by applying FDE. One is because of the 

addition of N and available C, and another is because of the enhancement of soil moisture and the 

increase of anaerobic conditions in the soil (Bhandral et al., 2007). Higher N2O emissions can result 

from the high total N concentrations in FDE (Li et al., 2015b). Some reports show that there is a 
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significant relationship between FDE total N concentration and N2O EF (Fig. 2.12). Li et al. (2015a) 

reported that some other components such as C content in FDE can also affect the EF of FDE.  

Since there is a range of C concentrations in FDE, the different amounts of organic C applied will affect 

soil denitrifiers, and subsequently impact denitrification rate and N2O emissions (Cameron et al., 2013). 

The growth and respiration of microorganisms will be stimulated by adding effluent C to soils. Pelster 

et al. (2012) suggested that FDE contained greater C content than pig manure and that this was the 

reason why a higher N2O EF was recorded for FDE. Compared with inorganic N fertiliser, FDE leads to 

higher N2O EF because the denitrification activity is increased by the increased C availability and/or by 

the decline of soil aeration and the increase of respiration (Barton and Schipper, 2001). A significant 

exponential relationship between N2O EF and C concentration in effluent was found by Li et al. (2015b) 

through analysing results reported in the literature (Fig. 2.13). They explained that the increase of N2O 

EF may be not only because of the enhancement of C content but also because of some other factors. 

The highest N2O emissions are not necessarily caused by applying fresh FDE, which contains the highest 

C concentration (Laubach et al., 2015). It was suggested by Bhandral et al. (2007) that both availability 

of C and N within FDE, and C:N ratio can influence the denitrification rate and the N2O:N2 emission 

ratio.  

Table 2.1 N2O emission factors resulting from land application of FDE.  

 

Soil type Country N source N input N2O emission Emission  Reference

(kg N ha-1) (kg N ha-1) factor (%)

FDE(Spring) 23.9 1.357 2.00

FDE(Summer) 25.2 1.922 4.90

Treated FDE (Autumn) 21.8 0.382 2.00

Treated FDE (Winter) 13 0.102 0.80

Untreated FDE (Autumn) 61 0.585 2.20

Untreated FDE (Winter) 49.3 0.153 0.30

Treated piggery FDE (Autumn) 27.5 0.585 2.20

Treated piggery FDE (Winter) 23.1 0.13 0.60

Silt loam New Zealand Fresh FDE 100 2.34 0.62 (Li et al., 2016)

Fresh FDE(Spring) 98 1.62 1.65

Fresh FDE(Summer) 101 0.01 0.01

Fresh FDE(Autumn) 101 0.57 0.56

Stored FDE(Spring) 60 0.48 0.80

Stored FDE(Summer) 53 0.13 0.25

Stored FDE(Autumn) 100 0.27 0.27

FDE 23.9 0.493 2.00

FDE 25.2 1.433 5.70

FDE 18 0.449 2.50

Silt loam New Zealand Piggery effluent 368 6.99 1.90 (Khan, 1999)

Sandy loam New Zealand FDE 400 1.2 0.30 (Khan, 1999)

FDE 50 0.015 0.03

FDE 50 0.004 0.01

Fresh FDE 100 0.14 0.14

Stored FDE 100 0.03 0.03

Sandy loam

(Bhandral et al., 2010)

(Bhandral et al., 2007)

(Li et al., 2015a)

(Luo et al., 2008)

Silt loam

Sandy loam

Silt loam

Silt loam

New Zealand

New Zealand

New Zealand

New Zealand

New Zealand (Saggar et al., 2004)

(Li et al., 2014)
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2.6 Methods to reduce N2O emissions 

A number of methods have been proposed to reduce N2O emissions from pasture applied FDE and 

increase the N use efficiency (Saggar et al., 2013).  

Reducing the numbers of animal livestock is the simplest approach to decreasing N2O emissions (Li et 

al., 2015b). However, reducing the number of animals is unlikely to be acceptable from a financial 

perspective. Increasing milk production efficiency from dairy cows and growing meat-producing 

animals more quickly will potentially reduce N2O emissions since N excretion would be decreased 

(Satter et al., 2002; de Klein and Eckard, 2008). Reduced N content in effluent can decrease the applied 

effluent N so that the potential risk can be minimised. Keeping a better N balance in feeding rations by 

avoiding excessive N in diet will reduce effluent N concentration (Li et al., 2015b). Decreasing the crude 

protein (CP) content of animal diets can also reduce N excretion (Hristov et al., 2011). 

Nitrification inhibitors can reduce N losses by reducing the nitrification rate in soil (Di and Cameron, 

2002b; Cameron et al., 2013). It was reported by Li et al. (2014) that using dicyandiamide (DCD) at 10 

kg ha-1 just before applying FDE resulted in a 51% - 90% decrease in N2O emissions, compared with 

applying untreated FDE. It was reported by Li et al. (2015a) that 10 kg ha-1 of DCD decreased the N2O 

emission factor by 40-80% and 24-84% from fresh FDE and stored FDE, and reduced the N2O emission 

factor by 69-76% and 60-70% from fresh manure and stored manure, respectively. In addition, they 

also reported that DCD was more effective during the spring and autumn to reduce N2O emissions than 

in summer. However, the use of DCD in New Zealand has been suspended awaiting the establishment 

of a standard for food by the FAO’s Codex Committee.  

Choosing the optimal timing of FDE application can improve the N use efficiency of FDE by plants. Key 

soil and climatic factors should be considered, such as soil drainage and rainfall, before applying FDE 

(Li et al., 2015b). It was found by Luo et al. (2008) that up to 96% of N2O emissions were reduced when 

effluent was strategically applied to pastures under the condition of dry soil-moisture status. Both N2O 

emissions and N leaching could be potentially reduced by decreasing the use of FDE in wet winter and 

spring (Houlbrooke et al., 2004). Saggar et al. (2013) suggested that the application of the right amount 

of effluent close to the time that the nutrients are needed by the crop is the best strategy of N losses 

reduction.  

A high application rate of FDE increases the availability of N and C in soil so that denitrification is 

promoted, generally leading to higher N2O emissions (Saggar et al., 2004a). The particular production 

system depends the level of optimum N concentration in applied FDE (Li et al., 2015b). Computer 

models such as, Overseer® are useful tools to build a nutrient budget to guide the application of FDE 

on farm. 
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In addition, a pre-treatment that decreases the pH level to less than 7 before FDE is applied to pasture 

can reduce the emissions of NH3 (Petersen and Sommer, 2011). Addition of nitric or sulphuric acid to 

the effluent can reduce NH3 losses by up to 75% (Ndegwa et al., 2011). In the following application, 

N2O emissions can be potentially reduced by the acidification of FDE and the effluents with reduced C. 

It was suggested that the emissions of NH3 and N2O were significantly lower after applying digested 

and acidified FDE than untreated FDE (Li et al., 2015b). 

Recently, advanced FDE treatment technologies have been developed to separate the solids in the FDE 

from the liquid in order to recycle the water in FDE to wash the farm yards and reduce the size of 

effluent pond required to store the FDE. These treatment technologies produce treated effluent (the 

effluent with greater amounts of solids) and treated clear water (which can be re-used for washing the 

yard) with properties which are different from the original un-treated FDE in terms of solid contents 

and organic C content (Cameron and Di, pers. comm) (see more details in Materials and methods in 

Chapter 3). These different properties may impact on the nitrifying and denitrifying microbes in the 

soil, the nitrification rate dynamics and subsequently N2O emissions. However, there is a lack of 

detailed knowledge and understanding about the effect of the application of treated effluent and 

treated clear water to the soil on microbial processes and N2O emissions. There is therefore a need to 

conduct scientific studies to determine the impacts of these treated effluents on soil microbial 

activities and N2O emissions compared with the standard FDE in order to understand potential impacts 

and develop appropriate management strategies to reduce N2O emissions. 

2.7 Conclusions 

N2O is produced during the processes of nitrification and denitrification. Nitrification, denitrification 

and the N2O emission rate can be affected by many factors, such as soil moisture, temperature, soil 

texture, soil pH, soil organic C and N fertiliser application. FDE is an important source of N2O emissions 

in New Zealand. FDE with different properties may produce different N2O emission factors. The 

relationships between the treated FDE (treated clear water and treated effluent, using the latest FDE 

treatment technology) and N2O emissions and soil microbes are unclear. In addition, it is not clear if 

the treated FDE would have a different interactive effect when co-applied with animal urine compared 

with the standard FDE. Therefore, there is a need to determine the effect of the treated FDE compared 

with the standard FDE on N2O emissions, nitrifying and denitrifying microbes, and possible interactive 

effects on these parameters when the treated FDE is co-applied with animal urine onto soil. 
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Chapter 3 

Materials and methods 

3.1 Introduction 

Two parallel laboratory incubation studies were conducted to determine the impact of applying three 

different types of effluents on soil nitrification rate dynamics and nitrous oxide (N2O) emissions. One 

experiment was conducted to determine the effect of the effluents, with or without animal urine, on 

N2O emissions. At the same time, a companion experiment was conducted to determine the effect of 

the different effluents, with or without animal urine, on mineral nitrification rate dynamics and the 

abundance of ammonia oxidising bacteria (AOB) and archaea (AOA), and denitrifying functional genes 

(nirS, nirK, nosZ (I)and nosZ (II)).  

3.2  Experiment preparation and setup 

3.2.1 Soil 

A Templeton silt loam, classified as Immature Pallic soil (Hewitt, 1993); Udic Haplustepsts (Soil Survey 

Staff, 2014), was used in this study. The top 10 cm of soil was collected from the Lincoln University 

Research Dairy Farm, about 20 km south of Christchurch (43°38′S, 172°27′E), thoroughly mixed, with 

the roots and stones removed, and sieved through a 5 mm sieve (Fig. 3.1). The properties of the soil 

are shown in Table 3.1. The annual rainfall in the region is about 650 mm, and the annual average 

temperature is about 12.1°C. The soil moisture content was measured, by drying 6 replicate samples 

for 24 hours at 105°C in the oven, and was 16.97 % on average. The soil was acclimatised in the 

incubator at 12°C for one week before treatments were applied. 

3.2.2 Farm dairy effluent 

Farm dairy effluent was collected from the Lincoln University Demonstration Dairy Farm. A farm 

effluent treatment technology has been developed at Lincoln University to separate the solids out from 

the effluent in order to purify and recycle the water to wash the yard. The treatment technology 

involves adding a ferric iron (Fe3+) compound to coagulate the colloidal solids in the FDE in a treatment 

tank (Cameron and Di, pers. comm). Once the solids are settled at the bottom of the treatment tank, 

which takes about 30-60 minutes after treatment application, the treated clear water (about the top 

two thirds of the tank) has a turbidity less than 50 NTU and can be used to recycle the water for 

cleaning the farm yard (Fig. 3.2). The treated effluent (the more concentrated effluent that has settled 

at the lower part of tank) is emptied out of the tank and put in the storage pond before being irrigated 

to pasture when conditions are suitable. The properties of the original FDE, the treated clear water, 
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at the equivalent of 100 kg N ha-1 and the urine was applied at the equivalent of 700 kg N ha-1 

(equivalent to 91 mg N kg-1 dry soil and 636 mg N kg-1, respectively). 

 

 

Fig. 3.2 Different types of effluent. From left to right is standard FDE, treated effluent and treated 

clear water, respectively. 

 

 

Fig. 3.3 The collection of cow urine from the Lincoln University Demonstration Dairy Farm.  
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Table 3.1 The properties of the soil used in this study. 

 

Table 3.2 Original properties of the three different types of effluent used in this study. 

 

Table 3.3 Description of the treatments. 

 

Property Value

Organic matter (g kg-1) 5.0

Total Nitrogen (g kg-1) 2.7

Total Carbon (g kg-1) 29.0

pH (H2O) 6.1

Olsen P (mg kg-1) 45.7

CEC (cmolc kg
-1

) 13.3

Exchangeable Calcium (cmolc kg-1) 7.5

Exchangeable Magnesium (cmolc kg-1) 1.2

Exchangeable Potassium (cmolc kg-1) 1.0

Exchangeable Sodium (cmolc kg
-1

) 0.3

Base saturation (%) 74.0

Sulphate Sulphur (mg kg-1) 6.7

Chemical property Standard FDE Treated clear water Treated effluent

Turbidity (NTU) 2277.0 10.7 4882.7

Total solid (g m-3) 4233.3 1706.7 11266.7

pH 7.2 5.9 5.9

Total nitrogen (g m
-3

) 495.0 311.0 570.0

Ammonium (g m
-3

) 115.3 119.0 121.0

Nitrate + nitrite (g m
-3

) 0.1 4.0 2.8

Total phosphorus (g m-3) 42.0 0.8 77.7

Dissolved reactive phosphorus (g m-3) 23.3 0.0 0.0

Total carbon (g m-3) 1270.0 655.0 2933.3

Soluble carbon (g m-3) 713.3 596.7 670.0

cBOD (g m
-3

) 936.7 520.0 1390.0

Fe
 
 (g m

-3
) 9.3 10.7 794.0

FDE type Urine Replicates

(100 kg N ha
-1

) (700 kg N ha
-1

)

1 Water (0) 0 4

2 Standard FDE 0 4

3 Treated clear water 0 4

4 Treated effluent 0 4

5 Water (0) 700 4

6 Standard FDE 700 4

7 Treated clear water 700 4

8 Treated effluent 700 4

Treatment 

number
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The pottles for soil sampling and the jars for N2O gas sampling were placed inside the incubator 

following a randomized block design. The incubator was set to a temperature of 12°C (simulating the 

autumn/winter soil temperature in New Zealand). 

The experimental design for the trials was a randomized block design with four replicates of each 

treatment (Table 3.3). Treatments were randomly numbered and allocated to pottles and jars and 

were randomly placed within each block inside the incubator. The soil moisture content was adjusted 

to and maintained at field capacity during the incubation (30% gravimetric water content), which 

equalled 56.4% water filled pore space (WFPS).  

3.2.4 Gas sampling jars 

There were 32 glass jars (1 litre) used in the N2O emissions sampling trial (Fig. 3.4). Each jar was packed 

with 600 g soil (dry equivalent) to a bulk density of 1 g cm-3. The effluent and cow urine treatments 

were applied evenly over the soil surface (Table 3.4). The total weight of each jar (without lid) was 

recorded. The maintenance of soil moisture content (30%) was done twice a week, after taking gas 

samples and in between gas sampling, by the addition of de-ionized water until the jar reached the 

recorded weight. There were two 1 cm diameter holes in the lid of the sampling jar to allow aeration. 

 

Fig. 3.4 Incubation jars inside the incubator for N2O sampling. 
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3.2.5 Soil sampling pottles 

A total of 32 pottles were established for soil sampling to determine nitrification rate dynamics, 

ammonia oxidisers and denitrifiers (Fig. 3.5). Each pottle contained 500 g of soil (dry equivalent). After 

the effluent and urine treatments were applied, the soil was thoroughly mixed (Table 3.5). Subsamples 

of soil were taken after 1, 7, 14, 28, 63, 91, 119, 154 and 210 days of incubation to determine the NH4
+, 

NO3
-, pH, AOB, AOA, nirS, nirK, nosZ and soil moisture content. There were two 1 cm diameter holes in 

the lid of soil sampling pottle to allow aeration. The weight of each pottle (without lid) was recorded 

after each subsampling in order to maintain soil moisture content by adding de-ionized water. The 

maintenance of soil moisture content was done twice a week as described for the gas sampling jars. 

Table 3.4 The volumes of effluents and/or cow urine applied to the incubation jars. 

 

Table 3.5 The volumes of effluents and/or cow urine applied to the soil sampling pottles. 

 

3.3 N2O gas sampling and analysis 

The method used to measure N2O gas emissions in this study was similar to that of Hutchinson and 

Mosier (1981). During N2O sampling, the gas jars were taken out of the incubator and the lids were 

removed and replaced with gas sampling lids, which contained a rubber septum, tap and needle (Fig. 

3.6). During each sampling event, a 10 mL gas sample was taken, 30 minutes apart (one at time 0, and 

one 30 minutes later), and was injected into a pre-evacuated 6 mL glass vial using a hypodermic needle 

Treatment Water Standard FDE Treated clear water Treated effluent Urine Replicates

(mL) (mL) (mL) (mL) (mL)

1 91 0 0 0 0 4

2 55 36 0 0 0 4

3 55 0 36 0 0 4

4 55 0 0 36 0 4

5 36 0 0 0 55 4

6 0 36 0 0 55 4

7 0 0 36 0 55 4

8 0 0 0 36 55 4

Treatment Water Standard FDE Treated clear water Treated effluent Urine Replicates

(mL) (mL) (mL) (mL) (mL)

1 75 0 0 0 0 4

2 45 30 0 0 0 4

3 45 0 30 0 0 4

4 45 0 0 30 0 4

5 45 0 0 0 45 4

6 0 30 0 0 45 4

7 0 0 30 0 45 4

8 0 0 0 30 45 4
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and 60 mL syringe. Before taking the gas sample, the air in the jar was mixed 3 times by recirculating 

10 mL of air three times using the syringe.  

After gas sampling, the soil moisture content was maintained by weighing each jar and adding de-

ionized water to achieve the initial weight. The incubation lids were then replaced before returning 

the jars to the incubator. N2O gas samples were taken twice a week for the first 70 days and then taken 

weekly for the remainder of the study. The glass vial rubber septum was replaced after each sampling. 

 

Fig. 3.5 The soil sampling pottles inside the incubator.  

 

Fig. 3.6 An example of N2O gas sampling. Top left: the gas sampling lids used. Bottom left: A syringe 

was used to mix the gas and then inject 10 mL into an evacuated vial. Middle: the preparation just 

before gas sampling. Right: gas sampling lids in place. 
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The concentration of N2O was measured using a gas chromatograph (SRO8610 linked to a Filson 222XL 

autosampler) using an Electron Capture Detector (ECD) (SRI Instruments, USA). N2O gas emissions were 

calculated by comparing the N2O concentration in the two samples (A and B) extracted from the 

headspace of the incubation jars. A preliminary study showed a linear increase of N2O during the 30 

min sampling interval.  

The hourly N2O emissions for each sampling day were calculated using the following equation: 

𝑁2𝑂 𝑓𝑙𝑢𝑥 =
(𝑐1 − 𝑐0) × 𝐻𝑉 × 𝑃 × 𝐶𝐿 × 𝑀𝑁2𝑂 × 𝐶𝑚𝑔

(𝑡1 − 𝑡0) × 𝑆𝐴 × 𝑅 × 𝑇𝐾
 

Where: 

N2O flux = Hourly N2O emissions (mg N2O-N m-2 hr-1) 

c0 = N2O concentration at t0 (μL L-1) 

c1 = N2O concentration at t1 (μL L-1) 

HV = Headspace volume of the chamber (L)* 

P = Atmospheric pressure (1 atm) 

CL = Conversion factor μL to L (0.000001 L μL-1) 

MN2O = Molecular weight of N in N2O (28.01 g mol-1) 

Cmg = Conversion factor μg to mg (1000 mg μg-1) 

t0 = Time 1st sample taken (0 hours) 

t1 = Time 2nd sample taken (0.5 hours) 

SA = Surface area of gas jar (0.0064 m2) 

R = Universal gas constant (0.0821 L atm mol-1 K-1) 

TK = Temperature (K) ** 

* Chamber headspace volume (HV) = SA (0.0064 m2) × headspace height (m) × 1000(L m-3).  

** Temperature (°C) at the soil surface (12°C). 
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The hourly N2O emissions were used to calculate daily emissions by assuming it represented the 

average hourly flux of the day (de Klein et al., 2003). The cumulative N2O emissions were calculated by 

integrating the calculated daily N2O fluxes and linearly interpolating between measurements for each 

jar.  

The emission factor (EF) of N2O was calculated for each treatment in each block using the following 

equation: 

𝐸𝐹(%) =
 𝑁2𝑂-𝑁 𝑡𝑜𝑡𝑎𝑙 (𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) − 𝑁2𝑂-𝑁 𝑡𝑜𝑡𝑎𝑙 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑁 (𝑎𝑝𝑝𝑙𝑖𝑒𝑑)
× 100 

Where: 

EF (%) = Emission factor (N2O-N emitted as % effluent and/or urine applied) 

N2O-N total (treatment) = Total N2O emissions (kg N ha-1) from effluent or urine treatments 

N2O-N total (control) = Total N2O emissions (kg N ha-1) from the control 

Total N (applied) = Total N application rate (kg N ha-1) 

3.4 Soil sampling and analysis 

In total, 9 batches of soil subsamples were taken after 1, 7, 14, 28, 63, 91, 119, 154 and 210 days of 

incubation to determine the concentration of mineral N (including NH4
+ and NO3

-), soil moisture 

content, soil pH and the abundance of AOB, AOA, and denitrifying functional genes (including nirS, nirK 

and nosZ) (Fig. 3.7). For each sampling date, the 32 pottles were removed from the incubator. Soil 

moisture content was maintained before taking the subsamples, by weighing each pottle and adding 

de-ionized water to the recorded weight. 

 

Fig. 3.7 Taking soil subsamples. 
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3.4.1 Soil moisture content 

The soil moisture content was maintained during the experiment. However, an accurate moisture 

content at the time of sampling was confirmed by taking a subsample. Approximately 20 g of soil from 

each pottle was dried in an oven for 24 hours at 105°C and then reweighed. The calculation of soil 

moisture content used the following formula: 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =
𝑤𝑒𝑡 𝑠𝑜𝑖𝑙 (𝑔) − 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)

𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)
× 100 

3.4.2 Soil mineral nitrogen 

Five grams of soil were taken for each pottle and placed into a labelled 50 mL PP Labserv disposable 

centrifuge tube. Then 25 mL of 2 M KCl solution was added into each tube to extract NH4
+ and NO3

-. 

The tubes were shaken for one hour at the speed of 120 oscillations per minute on a Ratek Platform 

Mixer (Fig. 3.8). The samples were then centrifuged at 4000 rpm for 10 minutes on a Thermo Multifuge 

3S-R Centrifuge and then filtered through 110 mm Advantec 5 C filter paper into 30 mL PP Labserv 

white cap vials (Fig. 3.8). Two blanks were prepared. The extracts were frozen at -20°C until analysed 

by Flow Injection Analyser (FIA) (FOSS FIAstar 5000 Flow Injection Analyser with SoFIA software version 

2.00). 

Ammonium-N was determined using a gas diffusion membrane on the FIA. Sodium hydroxide was 

added to increase the pH of the sample stream. All the ammonium ions present were converted into 

ammonia gas. The ammonia gas diffused into an indicator stream through the membrane. The 

indicator stream changed colour from red to blue with measurement made at 590 nm. The extent of 

the colour change was proportional to the concentration of ammonium ions (NH4
+-N) present in the 

sample.  

Nitrate-N was analysed by initial reduction of nitrate-N to nitrite-N using a packed cadmium reduction 

coil in the FIA, followed by the reaction of nitrite-N with sulphanilamide/NED to form an azo dye 

compound. The intensity of this compound was determined spectrophotometrically at 540 nm.  

3.4.3 Soil pH 

Fifteen grams of soil were weighed from each pottle and placed into a labelled 70 mL specimen bottle. 

Then, 25 mL de-ionized water was added, and the bottle shaken well. Subsamples were settled 

overnight (at least 12 hours) before measuring pH by a pH meter (Mettler Toledo SevenCompact) (Fig. 

3.9). 
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Fig. 3.8 KCl extraction. Left, soil subsamples shaken with 25 mL KCl; right, filtering. 

 

 

Fig. 3.9 Soil pH measurement. 

3.4.4 Functional gene abundance quantification 

The abundance of AOB, AOA (amoA) and denitrifier functional genes (nirS, nirK, nosZ (Clades I and II) 

were analysed as follows. The subsamples from the pottles were collected at the soil sampling dates 

above and were frozen at -20°C until analysis using the method described by Di et al. (2014). 

DNA extraction 

DNA was extracted from 0.25 g soil subsamples using NucleoSpin® Soil Kit (Macherey-Nagel,Düren, 

Germany) according to the manufacturer’s instructions. From each pottle, 0.25 g soil was collected as 
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subsample and transferred to a NucleoSpin® bead tube. Then, 700 μL buffer SL2 and 150 μL enhancer 

SX was added into the tube and then processed in the MP FastPrep-24 for 1 min at a speed of 4.0 m s-

1 to homogenize the samples. The samples were centrifuged for 2 min at a speed of 11000 g. The 

supernatant was transferred to a new tube and then 150 μL Buffer SL3 was added. The samples were 

vortexed for 5 sec to mix before incubated for 5 min at 4°C, and then centrifuged at 11000 g for 1 min. 

700 μL of supernatant was loaded up from the previous step and transferred to a NucleoSpin® inhibitor 

removal column (red ring) in a collection tube and then centrifuged at 11000 g for 1 min. This step was 

repeated once. In each column, 250 μL Buffer SB was added and then vortexed for 5 sec. A Nucleospin® 

soil column (green ring) was placed on a collection tube. Then, a 550 μL sample was loaded onto the 

green-ring column, centrifuged for 1 min at 11000 g and then the flowthrough was discarded and 

returned the column back into the collection tube. This step was repeated with the remaining sample. 

There was 500 μL buffer SB added to each Nucleospin® soil column and centrifuged for 30 sec at 11000 

g with the flowthrough discarded. This step was repeated using 550 μL buffer SW1. Then 700 μL buffer 

SW2 was added to each column, vortexed for 2 sec and centrifuged for 30 sec at 11000 g with the 

flowthrough discarded. This step was repeated once. The columns and collection tubes were then 

centrifuged for 2 min at 11000g to make the columns dry. To elute DNA, the green-ring columns were 

transferred to the new collection tubes and 100 μL of buffer SE were added to each column. The 

samples were incubated at room temperature for 1 min with the lids open before centrifuged with the 

lids closed for 30 sec at 11000 g. Purified DNA was eluted with 100 µL of Elution buffer and was stored 

at -20°C until analysis by real-time qPCR. 

Real-time qPCR analysis 

The abundance of AOB amoA, AOA amoA, nirS, nirK, nosZ (I) and nosZ (II) was measured using real-

time qPCR on a Rotor-GeneTM 6000 (Corbett Life Science). CAS-1200 Robotic liquid handling system 

was used to set up all PCR reactions (Corbett Life Science, Australia). All the soil DNA extraction samples 

were diluted 1:10 with deionized water and used as a template in PCR reactions. The primer pairs used 

are shown in Table 3.6. A 1.5 μL aliquot of 1:10 diluted template soil genomic DNA was mixed with 8 

μL of SYBR Premix Ex Taq (TaKaRa, Nori Biotech, Auckland, New Zealand), and 0.4 μL-1.6 of each primer 

(final concentrations of each primer pair combination used was shown in Table 3.6) was added into 16 

μL reaction mixture. The running of PCR was in accordance with the temperature profiles shown in 

Table 3.6. After the amplification, a melting curve analysis was done to confirm the specificity of PCR 

product by measuring the fluorescence continuously during the increase of temperature from 72°C to 

99°C. Then the data was analysed by Rotor Gene 6000 series software 1.7. 
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Table 3.6 The primer pairs and PCR conditions used in real-time qPCR analysis. 

 

Standard curves for real-time qPCR were performed using the following process. The primers 

aforementioned in Table 3.6 were used to amplify AOB amoA, AOA amoA, nirS, nirK, nosZ I and nosZ II 

from the extracted DNA. To purify the products of PCR, a clean-up kit (Axygen) was used and then 

cloned into the pGEM-T Easy Vector (Promega, Madison, WI). The resulting clones were then 

transformed into Escherichia coli JM109 competent cells (Promega) according to manufacturer’s 

instruction. After the transformation, E. coli cells were grown on LB plates overnight at 37°C. Then ten 

to fifteen bacterial colonies from the LB plate were individually inoculated into a 3 mL LB broth medium 

and incubated in an orbital incubator-shaker at 37°C and 250 rpm overnight. The plasmids were then 

extracted from overnight cultures using PureLinkTM Quick Plasmid Miniprep Kit (Life Technologies, 

Auckland, New Zealand). To generate the PCR amplicons containing each gene of interest, the plasmids 

were then used as a template in the reactions of PCR with T7 and SP6 primers. Further details can be 

found in Di et al. (2014). 

Target group Primer name Sequence (5'-3') Length of

amplicon

(bp)

Primer final

concentration

(nM)

Thermal profile Amplification

efficiency

(R
2
 >0.99)(%)

References

Bacterial amoA amoA1F 5'-GGGGTTTCTACTGGTGGTGGT-3' 491 250 96-98 (Rotthauwe et al., 1997)

amoA2R 5'-CCCCTCKGSAAAGCCTTCTTC-3'

Archaeal amoA Arch-amoAF 5'-STAATGGTCTGGCTTAGACG-3' 635 250 92-94 (Francis et al., 2005)

Arch-amoAR 5'-GCGGCCATCCATCTGTATGT-3'

nir S cd3af 5'-GTSAACGTSAAGGARACSGG-3' 410 750 93-95 (Michotey et al., 2000)

R3cd 5'-GASTTCGGRTGSGTCTTGA-3' (Throbäck et al., 2004)

nir K FlaCu 5'-ATCATGGTSCTGCCGCG-3' 474 780 98-100 (Hallin and Lindgren, 1999)

R3Cu 5'-GCCTCGATCAGRTTGTGGTT-3'

nos Z (I) nosZ-F 5'-CGYTGTTCMTCGACAGCCAG-3' 424 750 94-99 (Kloos et al., 2001)

nosZ1622R 5'-CGSACCTTSTTGCCSTYGCG-3' (Throbäck et al., 2004)

nos Z (II) nosZ-II-F 5'-CTIGGICCIYTKCAYAC-3' 698 1000 76-81 (Jones et al., 2013)

nosZ-II-R 5'-GCIGARCARAAITCBGTRC-3'

95°C for 2 min - × 1

cycle;

95°C for 20 s, 57°C for

30 s, 72°C for 30 s,

85°C for 10 s - × 40

cycles;

95°C for 2 min - × 1

cycle;

95°C for 30 s, 50°C for

30 s, 72°C for 45 s,

80°C for 10 s - × 40

cycles;

95°C for 2 min - × 1

cycle;

95°C for 20 s, 55°C for

20 s, 72°C for 30 s,

 80°C for 10 s - × 40

cycles;

95°C for 2 min - × 1

cycle;

95°C for 45 s, 55°C for

45 s, 72°C for 45 s,

85°C for 20 s - × 40

cycles;

95°C for 2 min - × 1

cycle;

95°C for 20 s, 55°C for

30 s, 72°C for 30 s,

85°C for 10 s - × 40

cycles;

95°C for 2 min - × 1

cycle;

95°C for 20 s, 55°C for

30 s, 72°C for 30 s,

85°C for 15 s - × 40

cycles;
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Chapter 4 

The effect of different forms of effluent, with and without animal 

urine, on nitrification, denitrification and N2O emissions 

4.1 Introduction 

N2O is one of the most significant non-CO2 greenhouse gases because it has a global warming potential 

around 298 times greater than CO2 (IPCC, 2007) and is also becoming the largest contributor to 

stratospheric ozone depletion (Ravishankara et al., 2009). In New Zealand, 93.7% of N2O emissions are 

from agricultural soils (Ministry for the Environment, 2017). The widespread use of nitrogenous 

fertilisers and increasing inputs of manure are partly responsible for the increase of N2O emissions 

(Reay et al., 2012). In New Zealand, N2O emissions from urine and dung excreted by the grazing animal 

accounted for 63% of the agricultural N2O and synthetic N fertiliser accounted for 16.1% of the 

agricultural N2O emissions in 2015 (Ministry for the Environment, 2017). In grazed grassland, around 

70%-90% of the ingested N is returned to the animal-grazed pastures and approximately 80% of that 

is in the form of urine (Di and Cameron, 2017). Urine makes a greater contribution to gaseous N losses 

than N fertiliser (Saggar et al., 2013).  

Farm dairy effluent (FDE) is the most common animal manure collected and applied to grazed 

grassland in New Zealand. FDE is a mixture of animal excreta and wash-down water in the milking shed 

(van der Weerden et al., 2016a). FDE represents around one-quarter of lactating dairy cattle excreta 

on New Zealand dairy farms (Luo et al., 2013). The application of FDE onto pasture land can  recycle 

the nutrients which improves soil fertility and increases farming system sustainability (Luo et al., 2008). 

However, it is also a source of N2O emissions from soils. The high total N concentration, the addition 

of available C and the increase of soil moisture content and anaerobic conditions are the reasons for 

the enhancement of N2O emissions after FDE application (Bhandral et al., 2007). In New Zealand, the 

application of FDE on pastures is the third largest source of N2O emissions from agriculture (van der 

Weerden et al., 2016a).  

It has been reported by van der Weerden et al. (2016a) that the mean emission factor (EF) of FDE is 

usually around 0.5% to 1%. Recently, new FDE treatment technologies have been developed where 

the solids are separated out from the liquid to produce treated effluent (with increased solid content 

compared with the standard FDE) and treated clear water (with significantly reduced solid content) 

(Cameron and Di, pers. comm.). However, there is currently no information available on potential 

impacts of these different types of effluents on N2O emissions, nitrification, denitrification, and 
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nitrifiers and denitrifiers in the soil. This Chapter (4) reports the results from a laboratory incubation 

study to assess the impacts of these different effluents on these parameters. 

4.2 Materials and methods 

4.2.1 Experiment methods 

Details of the materials and methods have been described in Chapter Three. Only a brief summary is 

presented here. 

Two parallel laboratory incubation studies were conducted to determine the impact of applying three 

different types of effluents on N2O emissions, soil nitrification rate dynamics, soil pH and abundance 

of ammonia oxidising bacteria (AOB) and archaea (AOA), and denitrifying functional genes (nirS, nirK, 

nosZ I and nosZ II).  

4.2.2 Experimental design 

Both experiments, involving (1) jars for gas sampling and (2) pottles for soil sampling, were laid out in 

randomized complete block designs with eight treatments and four blocks, simultaneously in the same 

incubator. The treatment structure was a 4 (effluent types) by 2 (urine, or not) factorial.  

4.2.3 Statistical analysis 

All variables were statistically analysed using analysis of variance for a randomized complete block 

design. For N2O-N emissions (and the emission factor) plus NH4-N and NO3-N variables, the data values 

were an order of magnitude different between “no urine” and “urine” treatments, so these two sets 

of treatments were analysed separately (to avoid violating the essential ANOVA assumption of 

homogeneity of variance). For all other variables, data from all eight treatments were analysed as a 4 

x 2 factorial with 4 blocks.  In the cases of AOA and AOB, data values were logarithmically transformed 

prior to analysis to ensure the homogeneity of variance assumption was met.   

4.3 Results 

4.3.1 Soil moisture content 

During the incubation period, the soil moisture content was adjusted to and maintained at around 30% 

of gravimetric water content (Fig. 4.1). 
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Fig. 4.1 Soil moisture content over the experiment period. The error bars represent the standard 

error of the mean (n=4). 

4.3.2 N2O emissions 

Daily emissions 

The application of the different effluents alone resulted in significantly higher daily N2O emissions 

compared to the control straight after application (P<0.05, Fig. 4.2a). However, there was no significant 

difference in daily N2O emissions between the different effluent treatments. Daily N2O emissions 

decreased rapidly with time, reaching background levels after about 30 days. 

The application of the different effluents plus animal urine also significantly increased daily N2O 

emissions compared to that in the control straight after application. However, daily N2O emissions 

decreased slightly before rising again, reaching peak values of between 68 and 109 g N2O-N ha-1 day-1 

about 75 and 100 days after treatment application (Fig. 4.2b). The peak daily N2O emissions recorded 

between 75 to 100 days were significantly higher in the effluent plus urine treatments compared to 

that in the urine alone treatment (P<0.05). However, there was no significant difference among the 

standard FDE plus urine, treated clear water plus urine and treated effluent plus urine treatments. 

Daily N2O emissions gradually declined with time reaching background values in about 250 days after 

treatment application.  
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Total emissions 

Total N2O emissions from the standard FDE and treated effluent were significantly higher than that 

from the control (P<0.05), but there was no significant difference in total N2O emissions between the 

treated clear water and control (Fig. 4.3a). The difference in total N2O emissions was not significant 

between the three different effluent treatments (P>0.05). 

The application of the three different effluents plus animal urine resulted in significantly higher total 

N2O emissions (at between 8.77 and 7.67 kg N2O-N ha-1) than that in the water plus urine treatment 

(at 5.79 kg N2O-N ha-1) (P<0.05). However, there was no significant difference between the standard 

FDE plus urine, treated clear water plus urine and treated effluent plus urine treatments (P>0.05, Fig. 

4.3b). 

4.3.3 Soil ammonium 

The application of the standard FDE, treated clear water and treated effluent all resulted in significantly 

higher NH4
+-N concentrations in the soil, reaching between 77.9 and 63.1 mg NH4

+-N kg-1 soil, than that 

in the control straight after application (at 1.3 mg kg-1 NH4
+-N soil) (P<0.05, Fig. 4.4a). The NH4

+-N 

concentration in the treated clear water treatment was slightly higher than those in the standard FDE 

and treated effluent during the first 7 days (P<0.05). The NH4
+-N concentration declined rapidly with 

time reaching background values about 30 days after treatment application. 

The application of animal urine resulted in a significant increase in NH4
+-N concentration in the soil 

well above those in the effluent only treatments (Fig. 4.4a and b). The NH4
+-N concentrations in the 

effluents plus urine treatments were higher than those in the urine alone treatment throughout most 

of the incubation period. The NH4
+-N concentration decreased rapidly with time (Fig. 4.4b). There was 

no significant difference in the NH4
+-N concentration among the standard FDE plus urine, treated clear 

water plus urine and treated effluent plus urine treatments. 

4.3.4 Soil nitrate 

The application of the different effluents resulted in significantly higher NO3
--N concentrations in the 

soil than those in the water (control) treatment (P<0.05, Fig. 4.5a). Similar NO3
--N concentrations were 

recorded in the three different effluent treatments. 

The application of urine resulted in significantly higher NO3
--N concentrations than those in the effluent 

only treatments (cf. Fig. 4.5 a and b). However, there was no significant difference in NO3
--N 

concentrations between the different effluent plus urine treatments (P>0.05, Fig. 4.5 b). 
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Fig. 4.2 Daily N2O-N emissions. (a): Effluent treatments; (b): Effluents plus urine treatments. The 

error bars represent the standard error of the mean (n=4). 

 

 

 

0

5

10

15

20

25

0 25 50 75 100 125 150 175 200 225 250

N
2O

-N
 f

lu
x 

(g
 N

2O
-N

 h
a-1

 d
ay

-1
)

Days since treatment application

Water (0)

Standard FDE

Treated clear water

Treated effluent

0

50

100

150

200

250

0 25 50 75 100 125 150 175 200 225 250

N
2
O

-N
 f

lu
x 

(g
 N

2O
-N

 h
a-1

 d
ay

-1
)

Days since treatment application

Water (0)

Water+Urine

Standard FDE+Urine

Treated clear water+Urine

Treated effluent+Urine

a

b



 40 

 

 

Fig. 4.3 Total N2O-N emissions over the experiment period. (a): Effluent treatments; (b): Effluents 

plus urine treatments. The error bars represent the standard error of the mean (n=4). The treatments 

with different lower-case letters are significantly different at P<0.05. Note the difference in the y-

axis scale between the Figure a and b. 
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Fig. 4.4 Soil ammonium-N concentration. (a): Effluent treatments; (b): Effluents plus urine 

treatments. The error bars represent the standard error of the mean (n=4). Note the difference in 

the y-axis scale between a and b. 
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Fig. 4.5 The nitrate-N concentration. (a): Effluent treatments; (b): Effluents plus urine treatments. 

The error bars represent the standard error of the mean (n=4).  
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4.3.5 Soil pH 

The application of the three effluents decreased the soil pH from 6.2 at the start of the incubation to 

between 5.0 and 5.5 after 14 days of incubation (Fig. 4.6a). There was no significant difference in soil 

pH between the effluent treatments (P>0.05). 

However, the application of animal urine in addition to the effluents increased the soil pH to 7.6 at the 

start, which then declined to between 4.7 and 4.2 after 60 days of incubation (Fig. 4.6b). There was no 

significant difference in soil pH between the different effluent plus urine treatments (P>0.05). 

4.3.6 Functional gene abundance 

AOB 

The application of the dairy effluents increased the AOB amoA gene copy numbers to between 

6.75×107 and 7.65×107 copies g-1 soil after 14 days of incubation (Fig. 4.7a). These AOB amoA gene 

copy numbers were significantly higher than that in the control (P<0.05). The AOB abundance then 

gradually declined over time, particularly after 120 days of incubation. There was no significant 

difference in AOB abundance among the three effluent treatments (P>0.05). 

The application of animal urine plus the different effluents increased the AOB amoA gene copy 

numbers to between 1.69×108 and 1.93×108 copies g-1 soil after 28 days of incubation (Fig. 4.7b). These 

peak AOB amoA gene copy numbers were significantly higher than those in the effluent treatments 

without urine (P<0.05). The AOB abundance then declined rapidly dropping to similar levels to those 

in the control after 210 days of incubation. There was no significant difference in the AOB abundance 

among the different effluent plus urine treatments. 

AOA 

The AOA amoA gene copy numbers remained relatively stable between 0 and 150 days of incubation. 

The AOA abundance then increased after 210 days of incubation (Fig. 4.8a). There was no significant 

difference among the effluent treatments throughout the entire incubation period (P>0.05). 

The AOA amoA gene copy numbers in the effluent plus urine treatments were similar to those in the 

effluent only treatments between 0 and 90 days (Fig. 4.8b). The AOA abundance then decreased after 

90 days of incubation to levels significantly below those in the control and all the effluent only 

treatments (P<0.05, Fig. 4.8b). There was no significant difference in AOA amoA gene copy numbers 

among the different effluent plus urine treatments (P>0.05). 
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Fig. 4.6 The soil pH. (a): Effluent treatments; (b): Effluents plus urine treatments. The error bars 

represent the standard error of the mean (n=4).  
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Fig. 4.7 AOB amoA gene abundance in the soil. (a): Effluent treatments; (b): Effluents plus urine 

treatments. The error bars represent the standard error of the mean (n=4).  
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nirS 

Generally speaking, the application of the different effluents did not result in significant changes in the 

nirS gene copy numbers (Fig. 4.9a). 

The nirS gene copy numbers in the effluent plus urine treatments were similar to those in the effluent 

without urine treatments between 0 and 90 days of incubation (Fig. 4.9b). However, the nirS gene 

abundance in the urine treatments decreased significantly to levels below those in the control and 

effluent treatments between 90 and 210 days (P<0.05). However, there was no significant difference 

in nirS gene copy numbers among the different effluent plus urine treatments. 

nirK 

Similar to the patterns of the nirS gene, the application of the different effluents did not have a major 

effect on the nirK gene copy numbers (Fig. 4.10a). 

The nirK gene copy numbers in the effluent plus urine treatments were generally similar to those in 

the effluent without urine treatment between 0 and 90 days of incubation. However, the nirK gene 

abundance then declined to levels significantly below those in the control and the different effluent 

treatments between 90 and 210 days (P<0.05, Fig. 4.10b). There was no significant difference in nirK 

gene copy numbers among the different effluent plus urine treatments (P>0.05). 

nosZ I 

The application of the effluents did not significantly affect the nosZ I gene copy numbers throughout 

the incubation period (Fig. 4.11a). 

The application of urine plus the different effluents resulted in similar nosZ I gene copy numbers as 

those in the effluent without urine treatments between 0 and 90 days of incubation (Fig. 4.11b). 

However, the nosZ I gene copy numbers decreased to below those in the control treatments between 

90 and 210 days of incubation. There was no significant difference in nosZ I copy numbers among the 

different effluent plus urine treatments (P>0.05). 

nosZ II 

The changing patterns in nosZ II gene copy numbers were very similar to those of nosZ I gene copy 

numbers as described above (Fig. 4.12 a and b). 
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Fig. 4.8 AOA amoA gene abundance in the soil. (a): Effluent treatments; (b): Effluents plus urine 

treatments. The error bars represent the standard error of the mean (n=4).  
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Fig. 4.9 nirS gene abundance in the soil. (a): Effluent treatments; (b): Effluents plus urine treatments. 

The error bars represent the standard error of the mean (n=4).  
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Fig. 4.10 nirK gene abundance in the soil. (a): Effluent treatments; (b): Effluents plus urine 

treatments. The error bars represent the standard error of the mean (n=4).  
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Fig. 4.11 nosZ I gene abundance in the soil. (a): Effluent treatments; (b): Effluents plus urine 

treatments. The error bars represent the standard error of the mean (n=4).  
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Fig. 4.12 nosZ II gene abundance in the soil. (a): Effluent treatments; (b): Effluents plus urine 

treatments. The error bars represent the standard error of the mean (n=4).  
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4.4 Discussion 

4.4.1 N2O emissions 

FDE and animal urine are major sources of the greenhouse gas N2O in New Zealand. N2O accounts for 

about 20.6% of the agricultural greenhouse gases in New Zealand (Ministry for the Environment, 2017). 

Therefore, it is important to ensure the effluent treatment technology aimed at recycling water, 

increasing the storage pond capacity and minimising microbial contamination of waterways do not 

inadvertently increase N2O emissions. Results from this incubation study showed that despite the 

differences in composition of the treated effluent and treated clear water compared with the standard 

FDE, the N2O emissions from the three different effluents were similar. This would indicate that the 

effluent treatment technology that has been developed to recycle the water would not lead to 

increased N2O emissions when the treated effluent and treated clear water are applied to the soil. The 

N2O emission factors from the three types of effluents, ranging from 0.03% to 0.10%, were lower than 

the standard 0.25% emission factor used for the 2017 National Greenhouse Gas Inventory Report 

(Ministry for the Environment, 2017).  

The emission factors of the animal urine-N applied together with the different animal effluents, ranging 

from 0.8% to 1.2% were similar to the 1% EF for animal urine used in the New Zealand greenhouse gas 

inventory calculations (Ministry for the Environment, 2017). The significantly higher emission factors 

of the urine-N when co-applied with the different effluents compared with the urine plus water 

treatment were probably because of an interaction between the organic C in the effluent and urine-N 

in the soil. It is known that organic C can enhance denitrification thus leading to increased N2O 

emissions (de Klein et al., 2001; Di and Cameron, 2003; Cameron et al., 2013). However, it is important 

to note that the emission factor of treated clear water or treated effluent co-applied with urine-N were 

the same as that in the standard FDE plus animal urine treatment. The lack of a significant difference 

in N2O emissions among the three types of effluents, with or without urine, was probably because the 

difference in effluent properties between the effluent types was not large enough to lead to different 

N2O emissions. More research is needed to verify these results under field conditions. The initial pulse 

of N2O emissions straight after effluent and urine application was probably because of a priming effect 

following the application of the effluents (Fig. 4.2 a and b).   

4.4.2 Mineral nitrogen dynamics 

Although the NH4
+-N concentrations declined with time following the application of the different 

effluents, with or without urine, as a result of nitrification, the nitrification rates were similar in the 

different effluent treatments (Fig. 4.4). Similarly, the NO3
--N concentrations in the different effluent 

treatments also increased in a similar pattern among the effluent only treatments, or among the 

effluent plus urine treatments (Fig. 4.5). This would indicate that the different effluents produced 
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similar nitrification rates in the soil. Therefore, the treated clear water and treated effluent from the 

new effluent treatment technology would result in similar nitrification rates as that from the untreated 

original effluent when applied to soil.  

4.4.3 Soil pH 

During the process of nitrification, hydrogen ions (H+) are released (Equation 2.1 and Equation 2.2 in 

Chapter 2), therefore, the soil pH decreased following the application of the effluents or animal urine 

(Fig. 4.6). The pH decline was particularly significant where animal urine was applied because of the 

high rates of NH4
+ applied (Fig. 4.6b). Most of the N in animal urine is urea, which upon hydrolysis in 

the soil releases NH4
+, leading to increased nitrification accompanied by a pH decrease.  

During the first 7 days of the incubation, the soil pH did not decrease significantly but remained around 

7.6 following the urine application (Fig. 4.6b). This was because urea hydrolysis was still occurring and 

the H+ produced by nitrification was neutralized by the OH- produced by the urea hydrolysis (Fig. 4.6b). 

Further nitrification thereafter decreased the pH to between 4.7 and 4.2 after 60 days of the incubation 

(Fig. 4.6b). However, it is important to note that the pH decreased at the same rate among the different 

effluent treatments, and among the different effluent plus urine treatments, again, indicating similar 

nitrification rates among the effluent only treatments, or effluent plus urine treatments. 

4.4.4 Functional gene abundance 

It has been reported that the growth and activity of AOB and AOA may vary depending on soil and 

environmental conditions (Dai et al., 2013; Di et al., 2014; Robinson et al., 2014; Di and Cameron, 

2017). The AOB amoA gene abundance in the different effluent only treatments (including standard 

FDE, treated clear water and treated effluent) showed a similar trend among the different effluent 

treatments. This demonstrated that the effluents treated by the new effluent treatment technology 

had a similar effect on AOB growth in the soil compared with the standard FDE. The NH4
+ contained in 

the different effluents therefore stimulated AOB growth, increasing the AOB abundance above those 

in the control (P<0.05). In contrast, the AOA population abundance did not change significantly until 

the end of the incubation study in the effluent only treatments. In fact, the AOA abundance decreased 

in the urine treatments, showing some inhibition effect on AOA abundance by the high rates of NH4
+ 

in the soil. These results support those of Di et al. (2009); Di et al. (2010); Wang et al. (2011); Di et al. 

(2014) who reported that the abundance and activity of AOB increased in response to the addition of 

NH4
+, whereas AOA did not grow or declined following high rates of NH4

+ application. The similar 

changing patterns of AOB or AOA among the respective effluent only or effluent plus urine treatments, 

again, demonstrated the similar effect of the three effluents on AOB or AOA populations. 
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Generally speaking, the application of the three different effluents alone or when applied together 

with animal urine did not lead to different changing patterns of the denitrifier abundance in the soil 

among the effluent or effluent plus urine treatments. This would indicate that despite the different 

compositions of the three types of effluent, the application of the treated effluent or clear water is 

unlikely to lead to different denitrifier growth compared with the application of the original effluent. 

Although the total organic C content of the three different effluents were different (Table 3.3), the 

amounts of soluble organic C were similar, and it is the soluble organic C that is readily available to 

stimulate microbial activity. This might partly explain the similar denitrifier responses to the 

application of the different effluents (Miller et al., 2009; Cameron et al., 2013). It was indicated by Paul 

and Beauchamp (1989) that denitrification was highly correlated with the concentration of water-

soluble C in manure and suggested that the water-soluble C might be consumed as a primary source 

of C by denitrifiers. 

However, the denitrifier abundance decreased in the effluent plus urine treatments compared with 

the Control at the later stages of the incubation (Fig. 4.9, Fig. 4.10, Fig. 4.11 and Fig. 4.12). Soil pH may 

have played a part in decreasing the denitrifier population abundance in the urine treatments. 

Optimum soil pH for denitrifying organisms was reported to be between 7 and 8 (Sherlock et al., 1992). 

In acid soils, the denitrification rate was low (ŠImek and Cooper, 2002). Therefore, as soil pH decreased 

to below 5.0 after 60 days of incubation and to around 4.4 after 90 days of incubation, this may have 

limited denitrifier growth and activity in the urine treatments. It has previously been reported that the 

copy numbers of denitrifiers in acidic soils were significantly lower than those of soil in neutral pH 

(Čuhel et al., 2010). Denitrification rate has been reported to be slow in acid soils (Fageria and Baligar, 

2008), particularly with pH less than 5 (McLaren and Cameron, 1996). Therefore, soil pH may have 

been an important factor in causing the denitrifier abundance in the urine treatments to decrease 

below that in the Control.  

4.5 Conclusions 

The application of the standard FDE, treated clear water and treated effluent did not lead to different 

N2O emissions, soil pH, nitrification rate dynamics or different abundance of AOB, AOA and denitrifying 

functional genes in the soil. This would indicate that the effluents produced by the new effluent 

treatment technology would have similar N2O emissions as the standard FDE when applied to the soil, 

and would have a similar effect on nitrification rate dynamics and the abundance of AOB, AOA and 

denitrifying populations.  

The hypothesis that “the treated effluent and treated clear water would have different N2O emission 

factors compared with the untreated standard FDE when applied to soil” was therefore rejected. The 

N2O emission factors were similar among these three types of effluents. In this research, the emission 
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factors from the three types of effluents (0.03% to 0.1%) were similar to those reported by van der 

Weerden et al. (2016a) and lower than the emission factor of FDE (0.25%) used in the New Zealand 

greenhouse gas inventory calculations (Ministry for the Environment (2017). 

When urine was co-applied with standard FDE, treated clear water and treated effluent, the N2O 

emissions, soil pH, nitrification rate dynamics and the abundance of AOB, AOA and denitrifying 

functional genes were also similar among the three effluent types. Therefore, the hypothesis that 

“there would be different interactive effects between the treated effluents and standard FDE and 

animal urine when they were co-applied to soil” was also rejected. The emission factor of the urine 

applied ranged from 0.8% to 1.2%, similar to the 1% EF for animal urine used in the New Zealand 

greenhouse gas inventory calculations (Ministry for the Environment, 2017). 
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Chapter 5 

General conclusions and recommendations for future research 

5.1 General conclusions 

In New Zealand, 94.8% of the total nitrous oxide (N2O) emissions came from agriculture (Ministry for 

the Environment, 2017). Farm dairy effluent (FDE) is the most common form of manure collection and 

application to New Zealand pastoral soils and N2O emissions from FDE are the third largest source of 

N2O emissions from agriculture. Recently, new FDE treatment technologies have been developed to 

recycle water, increase the storage pond capacity of the effluent pond on a dairy farm, and reduce 

contamination of water ways. Thus, it is important to find out if the effluent treated by the latest 

treatment technology would increase N2O emissions compared with the standard FDE. In this study, 

the effects of treated clear water and treated effluent were compared with standard FDE, in terms of 

the N2O emissions, mineral N dynamics, soil pH and the abundance of AOB amoA gene, AOA amoA 

gene and denitrifying functional genes (nirS, nirK and nosZ). 

5.1.1 N2O emissions 

Results showed that the N2O emissions from soil receiving treated clear water and treated effluent 

were not significantly different from soil receiving an application of standard FDE. This indicated that 

the application of treated clear water and treated effluent produced by the new treatment technology 

would not increase N2O emissions from soil compared with the application of the original standard 

FDE. Therefore, the hypothesis that “the treated effluent and treated clear water would have different 

N2O emission factors compared with the untreated standard FDE when applied to soil” was rejected. 

The emission factors of the three types of effluents were similar (from 0.03% to 0.10%) and were lower 

than the 0.25% EF value used for the 2015 National Greenhouse Gas Inventory Report (Ministry for 

the Environment, 2017).  

The co-application of urine with the treated clear water and treated effluent also led to similar N2O 

emissions compared with the application of standard FDE plus urine. This, again, demonstrated that 

the treated clear water and treated effluent produced by the latest technology had similar interactive 

effects to standard FDE when co-applied with urine. Patches of animal urine are deposited on the 

grazed pasture soil during grazing. The results from the experiment comparing the different types of 

effluents co-applied with animal urine illustrated that the treated clear water and treated effluent 

produced by the new treatment technology did not increase the N2O emissions even on the urine 

patches. Thus, the hypothesis that “there would be different interactive effects between the treated 

effluents (treated clear water and treated effluent) and standard FDE and animal urine when they are 
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co-applied to soil” is rejected. Additionally, the emission factors of urine-N applied with the different 

animal effluents (ranging from 0.8% to 1.2%) were similar to the 1% EF used for animal urine-N in the 

New Zealand Greenhouse Gas Inventory calculations (Ministry of Environment, 2017).  

5.1.2 Mineral nitrogen 

There was no difference in the ammonium-N (NH4
+-N) concentration and the nitrate-N (NO3

--N) 

concentrations in the soil following the application of the standard FDE, the treated clear water and 

the treated effluent. This indicated that nitrification rate and denitrification rate following the 

application of the three types of effluents were similar. Additionally, the concentrations of NH4
+-N and 

NO3
--N were also similar among the effluent plus animal urine treatments during the experiment 

period. This illustrated that there were similar interactive effects among the three different effluents 

with animal urine on N dynamics in the soils. 

5.1.3 Functional gene abundance 

Despite the differences in composition between the treated clear water, treated effluent, and the 

standard FDE, the abundance of the functional genes (including AOB amoA gene, AOA amoA gene and 

denitrifiers) varied in a similar pattern among the different effluent treated soils. This would indicate 

that when the effluents from the new effluent treatment technology are applied on land, they would 

not have different effects on the functional gene abundance compared with the application of the 

standard FDE. This also supported the results of the similar N2O emissions and N dynamics following 

the application of the three different effluents.  

When animal urine was applied with the standard FDE, treated clear water and treated effluent to the 

soil, the abundance of the functional genes also varied in a similar pattern among the different effluent 

plus urine treatments. Therefore, there was no significance difference in the AOB amoA gene, AOA 

amoA gene and denitrifier abundance in the effluent plus urine treatments. This demonstrated that 

when the treated clear water and treated effluent produced from the new treatment technology are 

applied to the soil together with animal urine, they would have a similar effect on AOB, AOA and 

denitrifiers as that caused by the application of the standard FDE. This would again reject the 

hypothesis that “there would be different interactive effects between the treated effluents (treated 

clear water and treated effluent) and standard FDE and animal urine when they are co-applied to soil”. 

In conclusion, the latest effluent treatment technology aimed at recycling water, increasing the 

effluent storage pond capacity on a dairy farm and reducing the risk of contamination of waterways 

would not increase the N2O emissions nor change the N dynamics, soil pH and the abundance of AOB 

amoA gene, AOA amoA gene and denitrifiers in grazed pasture soil with, or without, urine application. 
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5.2 Future research 

The research reported in this thesis was conducted under controlled conditions in the laboratory. It is 

not clear if these results can be directly transferred to field conditions. Therefore, there is a need to 

conduct similar research under field conditions. 

In addition, this is a short-term study and the effluents were only applied to soil once. Therefore, 

there is a need to conduct long-term studies in the field where the effluents are applied repeatedly 

over multiple years.  

Thirdly, there is also a need to study potential long-term effects of the different effluents on other 

microbial communities that were not included in this project. 

Finally, there is also a need to conduct similar research on other soil types. 
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