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A series of three main experiments aimed to define the place of Caucasian clover (Trifolium 

ambiguum M. Bieb) with respect to white clover (T. repens L.) in temperate New Zealand 

pastures. Experiment 1 used sheep liveweight gain (LWG) on Caucasian clover-ryegrass 

(Lolium perenne L.) (CC-RG) and white clover-ryegrass (WC-RG) pastures to assess the 

relative clover performance under high (High-F: Olsen P 20 /lg/ml, sulphate-S 12 /lg/g) and 

low (Low-F: Olsen P 11 /lg/ml, sulphate-S 7 /lg/g) soil fertility conditions. Mean annual 

sheep LWG on CC-RG was 1178 kg/ha at High-F and 1069 kg/ha at Low-F, and both 

treatments exceeded WC-RG by ~9%. LWG on CC-RG averaged 141 g/head/d compared 

with 129 g/head/d on WC-RG. The greater sheep LWG per hectare was attributed to the 

higher mean clover content (20%) for CC-RG than WC-RG (10%) pastures of similar 

nutritive value. 

Dry matter (DM) production and nitrogen (N) yield (DM production x % N) from CC-RG 

and WC-RG pastures was used to assess the relative seasonal clover performance under 

High-F and Low-F conditions. In High-F, total N accumulation rates (grass plus clover) for 

CC-RG were 0.5-0.7 kg N/ha/d higher than WC-RG from October to February, due to 

double the rate of N accumulation by Caucasian clover. Similarly in Low-F clover N 

accumulation rates were 50-120% greater in CC-RG than WC-RG. In High-F spring clover 

production rates increased by 3.2 kg DM/ha/DC for Caucasian clover compared with 1.3 kg 

DM/ha/DC for white clover as 100 mm soil temperature increased from 6 to 15 DC. In autumn, 

DM production of Caucasian clover decreased more than white clover as soil temperatures 

dropped from 16 to 8 DC. In High-F, annual total and clover DM yields from CC-RG were 

17.5 and 4.4 tlha, respectively, compared with 16.2 and 2.1 tlha from WC-RG. Both pastures 

produced ~ 15.6 tlha of total DM at Low-F, but clover DM was greater for CC-RG at 3.9 t/ha 
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than WC-RG at 2.2 tlha. Thus, Caucasian clover production was greater than white clover 

during spring and summer with the greatest advantage under High-F conditions. 

In Experiment 2 the DM production and water use efficiency (WUE) of each species were 

compared under full irrigation and dryland (non-irrigated) conditions. In their third year, 

sown monocultures of Caucasian clover produced 11.9 t DM/ha when irrigated and 9.3 t 

DM/ha under dryland conditions. Both of these treatments exceeded white clover by -2.5 t 

DM/ha due to -23 kg DMlha/d higher production rates for Caucasian clover during spring 

and summer. Specifically, production rates of irrigated treatments increased by 11 kg 

DM/ha/DC for Caucasian clover compared with 8 kg DM/ha/DC for white clover as mean daily 

air temperature increased from 8 to 16 DC. In late summer/autumn production rates of 

Caucasian clover decreased more than white clover when air temperature dropped from 16 to 

9 DC. Both species had similar water use under irrigated (-913 mm) and dryland (-740 mrn) 

conditions. This gave mean WUE values of -13 and 9 kg DM/mm of water for dryland 

Caucasian and white clovers, respectively. 

Growth (leaf photosynthesis rate) and development (leaf appearance rate on a shoot apex) 

responses of each species to temperature and water status were also measured in Experiment 

2. Leaf photosynthesis rates were -6 /lmol C02/m2/s higher for Caucasian than for white 

clover irrespective of measured air temperatures (7-28 DC) and soil water from 1.00-0.39 of 

water holding capacity (WHC; 580 mm to 1.7 m depth). Both clovers had similar ranges of 

optimum temperature (21-25 DC) and soil water (1.00-0.86 of WHC) for leaf photosynthesis. 

Equally the phyllochron was similar between the two species (126 DCd), but the higher base 

temperature (Tb) for Caucasian (5 DC) than white (1 DC) clover would mean Caucasian clover 

is slower to recover to canopy closure post-grazing. Experiment 2 highlighted the potential of 

Caucasian clover to increase spring and summer clover production, in combination or as the 

sale legume species in both irrigated and dryland grass/clover pastures. 

Experiment 3 evaluated the impact of spring and autumn sowing and ryegrass seeding rate on 

the establishment of Caucasian and white clovers. In spring of the second year, white clover 

content was >15% when sown with 3-12 kg/ha of ryegrass on 24 September (SD1), 9 

November (SD2), or 4 February (SD3), but less than 9% when sown on 31 March (SD4). 

Caucasian clover never exceeded 9% in any treatment. Sowing on SD1-3 with 3-12 kg/ha of 
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ryegrass gave the most successful establishment of white clover but only Caucasian clover 

sown alone in spring produced an adequate legume content in the following spring. 

Growth and development characteristics responsible for slow establishment of Caucasian 

clover were identified in a controlled environment study. A Tb of <4°C was found for all 

three species. The thermal time (Tt) requirement for 7S% germination was lower for 

Caucasian (46 °Cd) and white (40 °Cd) clovers than ryegrass (76 °Cd). All three species 

required -112 °Cd for SO% emergence and -214 °Cd for first leaf appearance. The 

phyllochron for primary stem leaves was slower for Caucasian (109 °Cd) than white (94 °Cd) 

clover and ryegrass (101 °Cd). Axillary leaves and tillers of ryegrass first appeared after 373 

°Cd compared with 440 °Cd for axillary leaves and S32 °Cd for stolons of white clover. In 

contrast, axillary leaves of Caucasian clover first appeared after 990 °Cd and crown shoots 

first appeared after 1180 °Cd. Consequently, white clover and ryegrass plants had more 

leaves (-IS.2 /plant) and faster shoot relative growth rates (-0.062 mg/mg/d) than Caucasian 

clover (S.l/plant and 0.049 mg/mg/d, respectively). Small differences in root/shoot ratio 

between species were considered to be a minor contributor to slow establishment of 

Caucasian clover. Slow establishment of Caucasian clover was explained by its delayed 

axillary leaf and shoot development, and resultant slow relative growth rate compared with 

white clover and ryegrass. Successful Caucasian clover establishment in fertile soils is 

therefore most likely to occur in the absence of competition from either ryegrass or white 

clover. 

Key words: clover content, dry land, establishment, irrigation, nitrogen fixation, nitrogen 

yield, perennial ryegrass, photosynthesis, phyllochron, secondary shoot development, sheep 

liveweight gain, soil fertility, Trifolium ambiguum M. Bieb, Trifolium repens, water use 

efficiency. 
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Chapter 1 

General introduction 

1.1 Background 

Legumes in pastures reduce reliance on fertiliser nitrogen (N) inputs, complement seasonal 

growth patterns of grasses, and enhance animal performance. However, a lack of clover 

persistence in pastures is recognised as a major limitation worldwide (Marten et al., 1989). 

White clover is the legume that is used most commonly across all livestock production 

systems and regions in New Zealand (Caradus et al., 1995). It is suited to moderate to high 

fertility soils and moist conditions. However, white clover does not persist well on low 

fertility soils and in drought conditions (Woodfield and Caradus, 1996). As a consequence, 

many pastures in New Zealand are legume deficient and N inputs, pasture production and 

animal performance are all below the site potential (Caradus et al., 1996; Ettema and Ledgard, 

1992). 

Caucasian clover is a rhizomatous perennial legume with a potentially wide range of 

adaptation in temperate pastures (Bryant, 1974; Taylor and Smith, 1998). Exceptional winter 

hardiness, persistence in low-input conditions (Daly and Mason, 1987; Virgona and Dear, 

1996), tolerance to drought (Watson et al., 1998; Woodman et al., 1992), and tolerance to 

frequent defoliation (Allan and Keoghan, 1994; Peterson et al., 1994a) have increased interest 

in the potential of Caucasian clover as a component in pasture-based livestock production 

systems. These characteristics have been attributed to its extensive root and rhizome system 

(Forde et al., 1989; Peterson et al., 1994b). 

Caucasian clover shares many attributes with white clover, including its high nutritive value 

(Allinson et al., 1985). Its major distinction from white clover is that it perenniates 

underground vegetatively with rhizomes rather than surface stolons (Forde et al., 1989). It 

also forms an extensive taproot system that has been shown to persist for over 13 years 

(Strachan et al., 1994) whereas the taproot of white clover dies within 2 years (Brock et al., 

2000; Westbrooks and Tesar, 1955). These morphological characteristics confer an advantage 

to Caucasian clover over white clover in the tolerance of drought and defoliation. However, 

Caucasian clover has a disadvantage in that as a seedling a greater proportion of carbon is 
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partitioned below ground making it less competitive for light and therefore slower to establish 

than white clover (Forde et al., 1989). 

An important research goal is to define the range of adaptation of Caucasian clover so its 

potential to replace or complement reliance on white clover can be maximised. The main role 

of Caucasian clover may be as the long-term legume component of permanent pastures where 

abiotic (e.g. temperature, water status, soil fertility) and/or biotic (e.g. grazing management, 

pests, diseases) factors limit white clover productivity and persistence. High country 

experiments have confirmed the superiority of Caucasian clover over white clover for 

persistence in infertile soil (Daly and Mason, 1987) and dryland conditions (Woodman et al., 

1992) and in a range of grazing managements (Allan and Keoghan, 1994). These results 

prompted further studies that have shown Caucasian clover out-performed white clover in 

irrigated (Moss et al., 1996) and dryland (Watson et al., 1996) conditions in more productive 

lowland ryegrass-based pastures. However, in each example the influence of environmental 

factors was expressed either in isolation or in terms of the effect on growth or abundance of 

Caucasian clover. This approach limits the application of results to zones outside the 

experimental area. Examining the physiological basis for responses provides greater insight 

and explanations and offers confidence for recommendations of the suitability and role of 

Caucasian clover for New Zealand pastures in general. 

Any advantage in Caucasian clover would be shown by a higher legume content compared 

with white clover grown in the same environmental conditions. Assuming a similar nutritive 

value, any increase in legume content should also increase animal performance (Askin et al., 

1987; Hyslop et al., 2000; Stevens et al., 1993). Indeed this will depend on the seasonal 

growth pattern and ability to fix N2 in response to abioticlbiotic factors. Caucasian clover is 

winter dormant but displays greater warm season growth and potentially has higher water-use 

efficiency than white clover. By comparing the major growth (photosynthesis) and 

development (leaf appearance) characteristics of Caucasian and white clovers, the species­

specific responses to temperature and soil moisture can be quantified physiologically to aid 

the interpretation of their range of adaptation. 

Despite its positive attributes in established pastures, the slow establishment of Caucasian 

clover is a major problem limiting the widespread use of this legume. The initial slow 

production rate has been attributed to the development of an extensive root and rhizome 
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system (Forde et al., 1989; Hill and Mulcahy, 1995; Taylor and Smith, 1998). This reduces 

the competitiveness of Caucasian clover seedlings with associated species for light during the 

establishment phase of a pasture. The rate of seedling canopy development may also be a 

major factor determining the successful establishment of this species. The physiological 

parameters that affect the rate of seedling canopy growth and development can be quantified 

and used to assist decisions on time of sowing and compatibility of other species to be 

included in pasture seed mixtures with Caucasian clover. Identifying the physiological basis 

for the lack of competitiveness at establishment should allow strategies to be developed to 

increase establishment success of Caucasian clover and consequently increase its contribution 

to pasture productivity in subsequent years. 

1.2 Research objectives 

The general aim of the research reported in this thesis is to define the range of adaptation of 

Caucasian clover compared with white clover in temperate pastures. To achieve this, the 

similarities and contrasts between the two species, in relation to the main abiotic constraints 

of temperature, water status, soil fertility, and grazing management are quantified. Emphasis 

is also placed on measuring the competitive ability of the clover seedlings to allow balanced 

legume/grass pastures to be established. Underlying these aims is the assumption that the 

main role of Caucasian clover would be the persistent perennial legume component of 

permanent pasture in environments where white clover suffers from abiotic and/or biotic 

stress. Furthermore, where stress on white clover is moderate and periodic, Caucasian clover 

may be complementary to white clover. Based on these assumptions the following objectives 

were developed: 

1. To quantify annual and seasonal production of Caucasian and white clovers under 

high and low soil fertility (P and S) conditions in an intensively grazed perennial 

pasture. Specifically, to measure sheep performance and clover contribution when 

fertility and temperature (seasonal) varied but moisture was non-limiting. The 

assumption that N would be non-limiting, due to N2 fixation, was also tested. 

2. To calculate the temporal patterns of water use and extraction of Caucasian and white 

clovers in irrigated and dryland conditions when fertility was non-limiting. This 

allows the adaptability of both clovers to dryland conditions to be assessed. 
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3. To define the optimum temperature range for photosynthesis of Caucasian and white 

clovers grown in non-limiting moisture and soil fertility (P and S) conditions. This 

will allow seasonal patterns of production in Objectives 1 and 2 to be related to 

physiological responses. 

4. To devise sowing strategies which allow Caucasian and white clovers to become 

established in permanent pastures. This requires an understanding of the physiological 

basis for the competitive ability of each species at establishment. 

1.3 Thesis structure 

This thesis is presented in eight chapters (Figure 1.1). In Chapter 2, literature concerning the 

place of white and Caucasian clovers in New Zealand pastures is reviewed. Chapter 3 reports 

on the first 3 years of measured animal performance in a grazing experiment that assessed 

seasonal Caucasian clover content relative to white clover (Objective 1, Section 1.2). This is 

supported by an investigation of the N yield and dry matter productivity of Caucasian and 

white clovers to identify any seasonal differences in growth patterns in Chapter 4 (Objective 

1, Section 1.2). In Chapter 5, a water use experiment is described in which the seasonal water 

use and extraction of Caucasian and white clovers in irrigated and dryland conditions were 

compared (Objective 2, Section 1.2). Physiological explanations for differences in observed 

patterns of seasonal production between species are also presented in Chapter 5 in response to 

temperature and soil moisture (Objective 3, Section 1.2). Chapter 6 describes an experiment 

in which the establishment of Caucasian and white clovers was compared at different sowing 

dates with different sowing rates of ryegrass (Objective 4, Section 1.2). This led to a series of 

complementary controlled environment experiments to investigate the influence of grass 

competition on seedling development and to provide a physiological explanation for 

differences in establishment success observed between the two clover species (Chapter 7). 

Finally, in Chapter 8 the results are drawn together and compared with those previously 

reported in the literature to provide general guidelines for the successful inclusion of 

Caucasian clover in New Zealand pastures. 
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Figure 1.1 Diagrammatic representation of the relationship of each chapter to the general 
aim and main objectives of the research presented in this thesis. 
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Chapter 2 

Literature review 

2.1 Introduction 

This chapter compares the responses of white and Caucasian clovers in temperate 

environments. It acknowledges the intemationalliterature reviewed by Frame and Newbould 

(1986) on white clover and by Taylor and Smith (1998) on Caucasian clover. However, it 

places more emphasis on New Zealand conditions within the context of the study objectives 

outlined in Chapter 1. 

Initially, the review covers the growth and development characteristics of the two species, and 

the environmental (temperature, moisture, and soil fertility) and management (grazing or 

defoliation) factors which determine the suitability of white and Caucasian clovers for a 

particular environment. Emphasis is given to the agronomic responses and utilisation of each 

species. The establishment ability of each species is also reviewed, and the development of 

management strategies for successful establishment of clover species in permanent pastures is 

outlined. Finally, the review focuses on how an understanding of the plant growth and 

development responses to temperature and water status would improve the definition of 

Caucasian clover's range of adaptabion. 

Wherever possible, literature is based on comparison of the two specIes. However, on 

occasion the lack of information on Caucasian clover is supplemented by data from other 

temperate pasture species. Furthermore, the species T. ambiguum has diploid (2n = 16), 

tetraploid (2n = 32), and hexaploid (2n = 48) forms, with the hexaploid generally most 

productive (Taylor and Smith, 1998). Therefore, this review also concentrates on 

comparisons of hexaploid cultivars of Caucasian clover (e.g. 'Endura', 'Monaro', and 

'Rhizo') with cultivars of white clover commonly used in New Zealand (e.g. 'Grasslands 

Huia', 'Grasslands Demand', and 'Grasslands Kopu'). 
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2.2 Plant growth and development characteristics 

The growth and development characteristics of forage legumes in relation to competition and 

persistence have been reviewed previously (e.g. Forde et al., 1989; Sheath and Hay, 1989). 

Thomas (2003) divided legume growth and development into four phases: early seedling 

development, development of the mature plant form, flowering, and post-flowering. The aim 

of this section is to provide an understanding of the relationship between vegetative growth 

and development (i.e. the first two phases) of white and Caucasian clovers and their 

establishment and productivity in temperate environments. 

2.2.1 Early seedling development 

The pattern of seedling development immediately after germination is very similar in white 

and Caucasian clovers (Figure 2.1). Germination leads to the emergence of a seminal 

(seedling) root and two cotyledons. A terminal shoot bud is located between the cotyledons 

and two axillary cotyledonary buds sit either side of this at the base of the cotyledons. The 

terminal bud rapidly grows to produce leaves attached to a primary stem. Each leaf sub tends 

an axillary bud. A second phase of development is marked by an increase in the rate of leaf 

appearance as leaf primordia on the axillary buds appear (Thomas, 1987b; Thomas, 2003). 

Figure 2.1 

ab 

Ib eb 

. ., 

Diagram showing early development of a white or Caucasian clover seedling. 
tb = terminal bud, ab = axillary bud, c = cotyledon, cb = cotyledonary bud, h = 
hypocotyl, sr = seminal root (Thomas, 2003). 

Once the seminal root is established, its upper region, and the hypocotylar region of its stem, 

contracts, pulling the cotyledonary buds and lowermost axillary buds below the soil surface 

(Thomas, 2003). The degree of contraction has been reported to be -5 mm in white clover 
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(Mitchell and Nelson, 2003), and observed but not quantified in Caucasian clover (Genrich et 

al., 1998). 

2.2.2 Development of the mature plant form 

2.2.2.1 Branches 

Continued development of the seedling in both species leads to the formation of an initial 

crown of branches growing on top of a central taproot. The first of these branches grow from 

the cotyledonary buds and lowermost axillary buds on the primary stem (Figure 2.1). They 

have alternately arranged leaves each of which subtends an axillary bud. Most axillary buds 

develop early into branches, but some remain inactive with the potential to develop into 

branches later. The timing of branch appearance has been related to apical dominance in 

white clover (Thomas, 1987b). The primary stem elongates very little (10-20 mm) and stops 

growing after producing about 10 leaves (Figure 2.2), giving the seedlings an initial rosette 

habit (Thomas, 1987b; Thomas, 2003). 

Figure 2.2 Diagrammatic representation of the development of the mature plant forms in 
white and Caucasian clovers. ps = primary shoot, ab = axillary buds, br = 
branches. A = generalised seedling, B = white clover, C = Caucasian clover 
(adapted from Thomas (2003)). 

Development beyond this initial rosette phase differs greatly between the two species (Figure 

2.2). In white clover, non-flowering branches elongate horizontally above ground to form 

lateral stolons (Figure 2.3). The stolon is the basic structural unit of the mature white clover 
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plant. It consists of a series of nodes separated by internodes which form as a result of growth 

from the terminal bud. Each node bears a photosynthetic leaf with an erect petiole, two root 

primordia, and an axillary bud. The axillary bud is capable of forming either into a lateral 

stolon, or into an inflorescence (Thomas, 1987a). Stolon growth is dependent on carbon from 

the photosynthetic leaves closest to the terminal bud, while older leaves supply carbon 

predominantly to the nodal root systems at their nodes of origin (Thomas, 1987b). 

Figure 2.3 Diagram of a main stolon (ms) of white clover. tb = terminal bud, n = node, in 
= internode, ab = axillary bud, i = inflorescence, p = peduncle, 1 = leaflet 
lamina, pe = petiole, sbr = stolon branch, nrp = nodal root primordial, s = 
stipule, Is = lateral stolon, nr = nodal root. Emerged leaves on the main stolon, 
and the nodes bearing them, are numbered 1 to 9 (adapted from Thomas 
(1987a)). 

In Caucasian clover, non-flowering branches remain relatively short and slightly ascending to 

form aerial shoots (Figure 2.2). These develop from buds that have formed above ground in 

the light. However, buds that an~ pulled below the soil surface by the seedling contraction 

develop into underground rhizomes (Figure 2.4). Rhizomes have morphological features 

similar to stolons, including the presence of nodes, internodes, and nodal root primordia. On 

rhizomes, leaf primordia develop into small (2-5 mm long) colourless scale leaves rather than 

the photosynthetic leaves found on stolons. Each scale leaf on a rhizome subtends an axillary 
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bud capable of forming into a rhizome branch, and each node is capable of forming two nodal 

roots (Jemstedt and Bouton, 1985; Li and Beuselinck, 1996; McKinless and Alderson, 1991; 

Thomas, 2003). Rhizome growth in Caucasian clover has been reported to be at first totally 

dependent on carbon from the photosynthetic shoots, and must compete with the leafy shoots 

and roots for carbon (Thomas, 2003), but this has not been quantified. 

Figure 2.4 Diagram of a rhizome of Caucasian clover. ab = axillary bud, s = scale leaf, tb 
= terminal bud, nr = nodal root, rbr = branches growing as young rhizomes 
(Thomas, 2003). 

2.2.2.2 Nodal roots 

Both species are capable of forming nodal roots on a stolon (Figure 2.3) or rhizome (Figure 

2.4) under moist conditions. However, the ability to form nodal roots may differ between the 

two species (Thomas, 2003). In white clover, the nodal root primordium grows into a nodal 

root when it is in contact with moist soil. Each nodal root most often develops into a fibrous 

root system rather than a taproot. Nodal roots occur abundantly along the length of the stolon 

under moist conditions (Thomas, 1987b). Such abundant growth of nodal roots has a strong 

impact on the allocation of carbon and the subsequent form of the plant. In white clover, 

carbon allocated to root growth is mostly directed to the nodal root systems along the stolon 

rather than to the basal root system (Thomas, 2003). This is likely to be a significant factor 

contributing to the death of the seminal taproot and primary stem axis after about 2 years 

(Brock et al., 2000; Brock and Tilbrook, 2000). 

In Caucasian clover, nodal roots occur frequently along the length of rhizomes under moist 

conditions (Genrich et al., 1998; Thomas, 2003). Most nodal roots develop into fibrous root 

systems, but those which develop close to the seminal taproot may develop into secondary 
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taproots (Thomas, 2003). However, in the absence of associated foliage leaves the nodal root 

system may develop relatively weakly (Thomas, 2003). 

2.2.2.3 Taproots 

A key additional difference between these two growth forms lies in the ability to form 

taproots. In white clover, the seminal taproot and primary stem axis rarely survive longer 

than 18 to 24 months under fertile moist conditions (Brock et al., 2000; Brock and Tilbrook, 

2000; Westbrooks and Tesar, 1955). The taproot of white clover has a high proportion of soft 

parenchymatous tissue, and its early death has been attributed to the invasion of this tissue by 

pathogens (Westbrooks and Tesar, 1955). Taproot death in white clover may also be hastened 

by an inadequate supply of carbon from the leaves (Thomas, 2003). This can occur when the 

carbon supply to taproots is diminished by the presence of competing nodal roots as described 

in the previous section. 

In contrast, a major characteristic of Caucasian clover is its rapid early formation of a deep, 

semi-woody, often-branching taproot system (Bryant, 1974). In the New Zealand (South 

Island) high country, Moorhead et al. (1994) found that, when strip-seeded into depleted 

fescue tussock (Festuca nova zelandiae) grassland, 5-month-old Caucasian clover plants had 

taproots deeper than 0.70 m. Also in New Zealand (South Island) high country, Strachan et 

al. (1994) reported that a 13-year-old ungrazed stand of Caucasian clover had more than 20 t 

DMiha root biomass (rhizomes plus taproots). In a high altitude site in Australia, Spencer et 

al. (1975) found that a 17-month-old stand had considerably more root mass than aerial parts 

(2.74 root/shoot ratio cf. 0.16 for white clover). Likewise, Fu et al. (20Gl) reported that 5-

month-old Caucasian clover had a root/shoot ratio of 2.52 when grown in a sand bed. 

Thus, the root system of Caucasian clover is complicated. It consists of several fractions, 

described by Peterson et al. (1994b) and by Woodman (1999) as the primary crowns, primary 

taproots, rhizomes, secondary crowns, secondary taproots, fibrous roots, rhizome shoots, and 

rhizome initials. This complex root system was associated with a large underground biomass 

which averaged 6600 kg DMiha under different defoliation treatments in Minnesota, USA 

(Peterson et al., 1994b). However, the underground biomass of Caucasian clover can be 

reduced under frequent grazing in mixed pasture (Lucas et al., 1998). 
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2.2.2.4 Clone formation 

Both species are clone formers in that they persist by colonising new areas with vegetatively 

derived offspring (Beuselinck et al., 1994; Forde et al., 1989). In white clover, the plant 

spreads and perenniates via stolon growth. Due to the death of the seminal taproot and 

primary stem axis, these stolons eventually fragment and become independent clone plants 

which lack taproots. The spreading form of white clover is highly successful in grazed 

pasture, but is dependent on the development of shallow nodal root systems that are only 

produced under moist conditions. These smaller plants are more vulnerable to environmental 

stresses (e.g. temperature, water status, soil fertility, grazing, or pest attack) than the taprooted 

seedling form (Woodfield and Caradus, 1996). Clonal populations of white clover have been 

reported to decline 2-3 years after sowing even though initial establishment was satisfactory 

(Brock and Hay, 2001) which indicates the influence of environmental stresses on growth and 

persistence of stolon fragments. 

In contrast, Caucasian clover spreads and perenniates via rhizome growth. Eventually, after 

growing below ground for several centimetres, the tip of each below ground rhizome stops 

elongating and grows upwards into the light where it forms a secondary crown and in many 

cases develops its own taproot (Genrich et al., 1998; Thomas, 2003). These daughter plants 

may eventually become independent of the primary crown system, but it is unclear when this 

occurs. In a montane Australian environment, Dear and Zorin (1985) found 4-year-old 

Caucasian clover produced 74 daughter plants/parent plant and had rhizomes nearly 500 mm 

in length. In Minnesota USA, Cuomo et al. (2003) reported that in grass mixtures 4-year-old 

stands of Caucasian clover had spread 1.0 m, and 5-year-old stands had spread 1.5 m, to 

effectively make the width of the plots 160 and 190% of the initial plot width, respectively. 

In summary, the pattern of seedling development through germination to the formation of a 

rosette seedling is similar for both species. White clover then develops above ground stolons 

whereas Caucasian clover develops aerial shoots and below ground rhizomes. Both species 

form nodal roots on their vegetative stems, but the taproots of Caucasian clover are deeper 

and persist longer than the taproots of white clover. Both species are clone formers in that 

they spread vegetatively through stolons or rhizomes which produce daughter plants. Thus, 

these morphological differences underpin the responses of each species to environmental 

factors in a temperate environment. 
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2.3 Agronomic responses to environmental factors 

The major environmental factors that influence legume productivity in temperate 

environments are temperature, water status, and soil fertility, while grazing or defoliation is 

the major management factor (Marten et ai., 1989; Scott et ai., 1995). The aim of this section 

is to compare the agronomic responses of white and Caucasian clovers to those environmental 

factors in temperate environments. 

2.3.1 Temperature 

Temperature is a major factor affecting legume distribution and persistence (Marten et ai., 

1989). Temperature varies greatly across regions due to the effects of latitude, topography, 

altitude, aspect, and coastal proximity. Even within regions of adaptation, legume persistence 

and productivity are affected by seasonal variations in temperature (McKenzie et ai., 1999; 

Scott et ai., 1995). The influence of temperature on white clover has been expressed in terms 

of seasonal production in grazed perennial rye grass-dominant pasture at different sites across 

New Zealand (Radcliffe, 1974). Radcliffe and Baars (1987) compared seasonal growth 

curves for warmer and cooler sites. They concluded that soil temperature early and late in the 

growing season was an important limiting factor determining both annual yields and the 

seasonal pattern of white clover production. 

Low temperatures have a major influence on the persistence and productivity of white clover 

(Eagles and Othman, 1981; Ettema and Ledgard, 1992; Haycock, 1981). The growth of white 

clover is greatly reduced at temperatures below 18°C, whereas the growth of perennial 

ryegrass is less affected between 12 and 18°C (Mitchell, 1956; Figure 2.5). This intolerance 

to lower temperatures by white clover is of particular importance during spring, when 10 cm 

soil temperatures are often between 10 and 18°C from September to December in New 

Zealand (Ettema and Ledgard, 1992). As a result, perennial rye grass is more productive than 

white clover during this time of year (Brougham, 1959). Furthermore, individual white clover 

plants are at their smallest in early spring and are further reduced by competition from 

perennial ryegrass at the lower temperatures (Brock and Hay, 2001). White clover is most 

productive during summer because of its relatively high optimum temperature of 24°C 

compared with 20 °C for perennial ryegrass (Mitchell, 1956; Figure 2.5), but only under moist 
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conditions. In general, white clover is well suited to the maritime humid temperature climate 

of New Zealand. 
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Figure 2.5 Effect of temperature on the relative growth rate of white clover (.) and 
perennial ryegrass ( .. ) in controlled environments (Mitchel (1956)). 

In contrast, Caucasian clover is a 'winter domant' species, like lucerne (Medicago sativa) and 

chicory (Cichorium intybus), which reflects the cold winter temperatures experienced in the 

continental climates where it evolved (Bryant, 1974). Early research showed the superior 

adaptation of tetraploid Caucasian clover cultivars over other temperate legume species to 

high altitude, montane environments in New Zealand and Australia (Dear and Zorin, 1985), 

and hexaploid cultivars to the long, cold continental winters of the North-Central USA 

(Zemenchik et al., 2001). Winter survival in extreme continental climates may be attributed 

to its underground rhizome and root system (Strachan et al., 1994). However, there is no 

information on the temperature responses of Caucasian clover in more productive lowland 

conditions where the pattern of seasonal production is important for overall feed supply. 

2.3.2 Water status 

Water status affects legume distribution and persistence (Marten et al., 1989). Uneven 

seasonal rainfall, topography, aspect, and water-holding capacity of the soil all contribute to 

soil water deficits which limit plant growth (McKenzie et al., 1999; Scott et al., 1995). As 

with temperature, the influence of water status on white clover has often been expressed in 

terms of seasonal production in grazed pastures at different sites throughout New Zealand 
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(Radcliffe, 1974). Radcliffe and Baars (1987) compared seasonal growth curves for irrigated 

and moisture-limited sites and concluded that soil water status during the growing season had 

a major influence on annual yields and seasonal production patterns. However, the influence 

of water status was often not expressed in isolation, but in combination with temperature. 

Growth of white clover is dependent on the soil water status. Plant populations are 

susceptible to drought in spring when plant size is at its smallest (Brock et aI., 1988), while 

summer and autumn droughts can cause the death of shallow nodal roots and therefore the 

collapse of stolon populations (Archer and Robinson, 1989; Gibson and Trautner, 1957; 

Woodfield and Caradus, 1987). For example, Brock et aI. (1988) reported that summer 

drought (rainfall 30% below average) caused white clover content to decrease from 15 to less 

than 3%, and was associated with a 75 to 90% reduction in stolon DM. Subsequent stolon 

growing point populations required 2 years to recover to pre-drought levels (Brock and 

Caradus, 1995). Frequently, the combination of hard summer grazing and soil water deficits 

exposes the base of the pasture and increases white clover death due to high temperatures 

(-50°C) at the soil surface (Archer and Robinson, 1989; Brock and Kim, 1994). 

Many of the studies at hill and high country sites have shown that Caucasian clover is more 

drought tolerant than white clover. In the South Island of New Zealand, Caucasian clover 

survived better than 18 cultivars and accessions of white clover after 8 years on drought-prone 

sunny slopes (Woodman et aI., 1992). Caucasian clover was also more drought tolerant than 

white clover on hill country in North Canterbury (Daly and Mason, 1987). In the Snowy 

Mountains of New South Wales, Australia, Caucasian clover has also been shown to be more 

persistent than white clover under drought conditions (Dear and Zorin, 1985). 

More recent New Zealand research has shown that in lowland regions, Caucasian clover was 

more productive than white clover under summer drought conditions. Watson et aI. (1998) 

compared the seasonal performance of Caucasian clover-ryegrass (CC-RG) and white 

. clover-ryegrass (WC-RG) pastures in a year of spring-summer drought in coastal Bay of 

Plenty. Clovers were sown alone in spring to overcome possible establishment problems, and 

over drilled with perennial ryegrass in the following winter. Soil moisture dropped as low as 

4% volumetric water content (or 9 ml water/250 ml soil) in the top 0.10 m. Growth rates of 

the 3-year-old pastures peaked around 25 October (65-70 kg DMlha/d) for CC-RG and 

around 14 October (50-60 kg DMlha/d) for WC-RG. As drought intensified the decline in 
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pasture growth rates was similar, but delayed by about 21 d for CC-RG. Both pastures 

produced less than 10 kg DMiha/d in mid-summer, but CC-RG had five-times the legume 

content of WC-RG. The extent of this difference on annual production was not reported. 

The performance of white and Caucasian clovers were compared when established with five 

perennial grass species in Canterbury New Zealand: perennial ryegrass, cocksfoot (Dactylis 

glomerata), tall fescue (Schedonorus phoenix syn. Festuca arundinacea), grazing brome 

(Bromus stamineus), and phalaris (Phalaris aquatica). White clover was more productive 

than Caucasian clover IS-months after sowing, but dry conditions during years 4 and 5 (~60% 

of 680 mm mean annual rainfall) decreased the white clover content in all pastures. Rainfall 

in year 6 was more favourable (111 % of mean) when total annual DM production was 10.0 t 

DMiha for Caucasian clover pastures compared with 8.7 t DMiha for white clover pastures. 

The mean annual white clover content ranged from 9% with perennial rye grass and phalaris to 

only 1% with cocksfoot. In contrast, the annual Caucasian clover content averaged 20% 

across all five pastures, but reached 46% with cocksfoot during summer (Black and Lucas, 

2000). Thus, Caucasian clover was more tolerant of summer moisture stress than white 

clover in mixtures with perennial grass species. 

Greater drought tolerance in Caucasian clover has been attributed to its extensive rhizomes 

and deep taproot. The taproot suggests that Caucasian clover was able to source water from 

greater depths than white clover, which is dependent on nodal roots after 18-24 months. The 

rhizomes and underground growing points in Caucasian clover are also protected against high 

soil surface temperatures and grazing pressure under summer dry conditions. However, there 

is no information on the water extraction patterns of Caucasian clover, or the physiological 

basis for its drought tolerance. 

2.3.3 Soil fertility 

While temperature and water status have a significant influence on legume productivity, they 

are generally uncontrollable. The third factor, soil fertility, can be most easily modified either 

by regional or local variations of different natural fertility, or by the addition of fertiliser 

(McKenzie et al., 1999; Scott et al., 1995). 
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White clover competes poorly with grasses when soil fertility is limiting. This occurs because 

the nodal root system of white clover has much less surface area for nutrient uptake (Ettema 

and Ledgard, 1992; Woodfield and Caradus, 1996). Phosphorus (P) is the major limiting 

nutrient for white clover growth in New Zealand soils, followed by sulphur (S), potassium 

(K), and molybdenum (Mo) (During, 1984). White clover becomes a minor component of 

pastures without regular inputs of these elements. Therefore, most soils in New Zealand 

require annual maintenance inputs of P and S to ensure adequate white clover growth, while 

K may be necessary in more intensive grazing systems such as dairying. In contrast, 

Caucasian clover may be more beneficial in soils where infrequent fertiliser applications are 

made (Daly and Mason, 1987; Jarvis et ai., 1998; Lucas et ai., 1981). Probably because early 

interest in Caucasian clover was in its use as a revegetation species in sub-alpine areas, the 

impression developed that Caucasian clover is a 'low fertility' species (Scott, 1998). 

2.3.3.1 Phosphorus 

Some research has shown that Caucasian clover is more productive than white clover on low 

fertility soils (low pH, P and S availability). One example was on a soil with an Olsen P of 8 

Ilg/ml and a pH of 5.2 in the New Zealand (South Island) high country (Daly and Mason, 

1987). Without maintenance superphosphate (9% P, 12% S) 9-year-old Caucasian clover 

pastures yielded 850 kg DMlha and had a legume content of 26% compared with 395 kg 

DMlha and 11%, respectively, for white clover pastures in a spring harvest. The authors 

suggested that this advantage was due to Caucasian clover's ability to utilise the natural soil 

fertility by means of its rhizome mass and deep taproots. 

However, Virgona and Dear (1996) showed that the response of Caucasian clover to P 

applications was greater than for white clover when fertiliser was applied to a low fertility soil 

(Olsen P 11 Ilg/ml) in the Snowy Mountains of New South Wales, Australia. Treatments 

were high fertility (280 kg/ha Mo superphosphate) and low fertility (no fertiliser) after 11 

years. Caucasian clover pastures yielded 1960 kg DMlha and had a legume content of 75% in 

the high fertility treatment compared with 1040 kg DMlha and 22%, respectively, in the low 

fertility treatment. White clover was less productive under both treatments with only 3% 

legume in the low fertility treatment. However, these results, and those by Daly and Mason 

(1987), were confounded by short-term moisture stress. Thus, further research is required to 

separate the responses to these two factors. 
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In another experiment, Caucasian clover was fertilised with different rates of P at 

establishment on a low fertility soil (Olsen P 5 flg/ml, pH 5.3) in New Zealand (South Island) 

high country (Davis, 1991; Strachan et al., 1994). The experiment was not grazed or fertilised 

after establishment. By year 12, Caucasian clover had become dominant in all plots where 

2:100 kg P/ha had been applied at establishment. Maximum production was achieved with 

200 kg P/ha, indicating a significant response to P. Phosphorus stored in the underground 

biomass amounted to 58 kg P/ha in the 50 kg P/ha treatment. Strachan et al. (1994) 

concluded that the ability to store and remobilise nutrients from the rhizomes and roots was a 

valuable feature of Caucasian clover in high country where maintenance fertiliser applications 

are infrequent. However, it is important to note this experiment was not grazed and the root 

biomass would be much reduced under normal grazing (Lucas et al., 1998). 

Caucasian clover and white clover were also components of a 25-species mixture sown into a 

depleted fescue tussock grassland on a low fertility soil in the New Zealand (South Island) 

high country (Scott, 2001). The mixture was subject to 31 combinations of P and S fertiliser 

rates and grazed over 19 years. Caucasian clover was slow to establish but increased to 

become the most dominant legume species in years 10-19 under moderate to high P inputs 

(50-100 kg P/halyr), but only a minor species at lower P inputs (0-20 kg P/halyr). In 

contrast, white clover responded moderately to P fertiliser in years 2-4, but was a minor 

species in all P treatments in years 8-19. Scott (2001) concluded that Caucasian clover was 

very persistent and primarily suited to high fertility rather than low fertility soil conditions. 

2.3.3.2 Sulphur 

Research in New Zealand (South Island) high country has shown that Caucasian clover is 

similar to white clover in response to S applications (Jarvis et al., 1998). On a sulphur 

deficient soil (sulphate-S 2 flg/g, Olsen P 6 flg/ml, pH 5.3) at Mesopotamia Station, yield of 

4-year-old Caucasian clover increased from 250 kg DM/ha in a zero S treatment to reach a 

maximum of 1320 kg DM/ha with 40 kg S/ha in a spring harvest. Likewise, Scott (2001) 

reported that, in years 10-19, the response of Caucasian clover to moderate S inputs (20-50 

kg/halyr), but the response was greatest when P was also applied. Similarly, in years 2-4, 

white clover responded moderately to S fertiliser when P was applied, but was a minor 

species in all S treatments without P, and in all P and S treatments in years 8-19. 
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2.3.3.3 Nitrogen and nitrogen fixation 

Nitrogen is the major element which drives grass/legume production. Legumes obtain most 

of their N requirements from atmospheric Nz fixation, and some by direct uptake of soil Nand 

fertiliser N inputs. Grasses are fed N by the legumes, soil N and fertiliser N. Thus, pasture 

production is dependent on total N availability. Total N yield from a pasture may indicate the 

Nz fixation activity by the legume component and the total N cycling within the pasture. This 

is often calculated from the sum of DM yield and the % N of legumes and grasses: 

Equation 2.1 Total N in legume (kglha) = DM of legume (kglha) x %N in legume/lOO 

and 

Equation 2.2 Total N in grass (kglha) = DM of grass (kglha) x %N in grass/lOO 

Nz fixation can be measured using 15N, labelled ammonium sulphate (40 atom% 15N) watered 

onto a pasture (Ledgard et aI., 1985). The 15N is a non-radioactive isotope of N and can be 

measured using a mass spectrometer, which can also measure the naturally occurring 14N. A 

first approximation is that the grass takes up the inorganic 15N from the soil, while in the 

legume, the uptake of labelled 15N is diluted by the Nz fixation (the fixed N contains largely 

only 14N from the atmospheric Nz gas). The difference in uptake of 15N and 14N enables the 

proportion of N fixed by the legumes (PN) to be calculated as: 

Equation 2.3 PN (%) = 100 x (G - L)/(G - B) 

where G and L are the 15N concentrations of grass and legume, respectively. B is the 15N 

concentration of legume completely dependent on atmospheric Nz and a value of 0.3663 

atom% 15N was used in all calculations (Ledgard, 1989). The amount of fixed N (kglha) in 

the cut legume herbage can then be calculated as: 

Equation 2.4 Fixed N (kglha) = DM of legume (kglha) x %N in legume/lOO x PN/lOO 

2.3.3.3.1 Inoculation 

Both species differ in their inoculation requirements for Nz fixation. Root-nodule bacteria 

that fonn nodules and fix Nz for white clover are present in most New Zealand pastoral soils 

and therefore inoculation is not necessary for nodulation when resowing paddocks with this 
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speCIes. However, root-nodule bacteria may be absent, or present in small populations, in 

some less developed areas (Pryor et al., 1998). 

In contrast, root-nodule bacteria that form nodules on Caucasian clover are absent from New 

Zealand soils and therefore inoculation with the correct strain of root-nodule bacteria is 

essential for N2 fixation and for establishment. The performance of Caucasian clover 

improved after the selection of the Rhizobium strain ICCI48, which is specific to hexaploid 

cultivars. Inoculation with this strain resulted in improved establishment (Section 2.5.3), 

more effective nodulation and greater N2 fixation, particularly in tussock grasslands (Pryor et 

al., 1998). 

2.3.3.3.2 N2 fixation 

Biological N2 fixation by legumes is both ecologically and economically vital to pastoral 

farming in New Zealand (Walker, 1995). The N yield and N2 fixation ability of white clover 

has been studied extensively in grazed pastures at different sites throughout New Zealand 

(Ball et al., 1979). Hoglund et al. (1979) compared seasonal N yield and N2 fixation rates for 

warmer and cooler, irrigated and moisture-limited, well-fertilised (P, K and S) and nutrient­

limited sites. For example, in Canterbury, irrigated and dryland pastures fixed 190 and 120 

kg N/ha/year, respectively. Hoglund et al. (1979) concluded that clover DM yield was closely 

related to clover N yield but not necessarily related to N2 fixation rate, due to direct uptake of 

soil N. However, a common view in the literature is that New Zealand's white clover-based 

pastures are fixing insufficient N to support the demands of grasses with a high production 

potential for the provision of enough quality feed for maximum animal production (Caradus 

et al., 1996; Chapman et al., 1995; Clark et al., 1995). 

Few experiments have reported the N2 fixation of established Caucasian clover. In Minnesota 

USA, N2 fixation by 2-3-year-old stands of Caucasian clover and birdsfoot trefoil (Lotus 

corniculatus L.) was determined using the 15N method. Stands were cut four times per year. 

Annual total DM, total N, and fixed N yields of Caucasian clover averaged 8.85 t DMlha, 271 

kg N/ha, and 155 kg N2/ha, respectively, compared with 8.00 t DMlha, 233 kg N/ha, and 147 

kg N2/ha, respectively, for birdsfoot trefoil. The proportion of N derived from N2 fixation 

(PN) averaged 57% for Caucasian clover and 62% for birdsfoot trefoil, and was stable across 

harvests for Caucasian clover (Seguin et al., 2000). 
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In Wisconsin USA, fertiliser N replacement values (FNRVs) of Caucasian clover and 

birdsfoot trefoil were compared when grown in mixtures with three cool-season grass species: 

Kentucky bluegrass (Poa pratensis L.), smooth bromegrass (Bromus in ennis Leyss.), or 

cocksfoot. The FNRV is the amount of N fertiliser required for a grass monoculture to yield 

as much DM as the same grass grown in mixture with a legume. The 1-3-year-old mixtures 

were cut three times per year. The FNRV for both legumes correlated positively with total 

season legume yield. Mean annual FNRVs ranged from 74 to 325 kg N/ha for Caucasian 

clover and from 147 to 295 kg N/ha for birdsfoot trefoil (Zemenchik et al., 2001). 

Because of the differences in N dynamics between ungrazed and grazed mixtures, additional 

data are needed to determine the N yield and N2 fixation by Caucasian clover in intensively 

grazed pastures. Such a study was conducted in Canterbury New Zealand, and interim results 

showed that Caucasian clover fixed more N than white clover in irrigated ryegrass pastures 

(Widdup et al., 2001). Additional results from this study are presented in Chapter 4. 

2.3.3.4 Soil pH 

Caucasian clover is more persistent than white clover on acid soils (Bryant, 1974; Daly and 

Mason, 1987; Scott, 2001), but like white clover it also responds to lime (Barnard and 

Folscher, 1988). On a soil with a pH of 4.65, DM yields of both Caucasian and white clovers 

increased with liming which raised the pH to 6.0. Foliar analyses indicated that poor growth 

on acid soils could largely be attributed to inadequate Ca and Mo uptake. In glasshouse pot 

experiments, increased yields of Caucasian clover seedlings in response to liming was 

explained by alleviation of AI, Zn and Mn toxicities and increased availability of P and Mo at 

high soil pH levels. Caucasian clover was also consistently more responsive to increased soil 

pH than birdsfoot trefoil (DeHaan et al., 2002). In New Zealand, Caucasian clover has shown 

greater tolerance than white clover, but similar tolerance to Maku lotus (Lotus pedunculatus), 

to elevated soil Al levels in tussock grassland sites (Caradus et al., 2001). 

2.3.4 Grazing management 

The persistence and long-term productivity of legumes in pastures is influenced by their 

response to grazing or defoliation (Sheath and Hodgson, 1989). Some of the long-lived 

stands of Caucasian clover have persisted under very lax grazing, if grazed at all (e.g. 
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Strachan et al., 1994). Persistence of Caucasian clover under grazing is important if it is to 

complement white clover in temperate pastures. In one study, Caucasian clover and 12 

cultivars and accessions of white clover, transplanted to overcome possible establishment 

problems, were subjected to nine grazing regimes in New Zealand (South Island) high 

country: low, medium and high stocking rates with continuous, alternating, or rotational 

grazing. After 5 years none of the white clover cultivars survived better than Caucasian 

clover. Spread of Caucasian clover transplants after 9 years averaged 582 mm under 

continuous, alternating and rotational grazing, but was greater under medium and high than 

under low stocking rates (Allan and Keoghan, 1994). 

Scott (2001) subjected Caucasian and white clovers, in a 31-species mixture (including eight 

sown legumes and seven sown grasses), to 19 years of different grazing and fertiliser 

managements in New Zealand (South Island) high country: low, medium and high stocking 

rates with continuous or rotational grazing. Caucasian clover was slow to establish but 

increased over time to become a major species in many of the treatment combinations. The 

treatment effects on Caucasian clover were small, with greater abundance under low stocking 

rate treatments in years 2-7, but greater abundance in the moderate and high stocking rate 

than continuously grazed treatments. Grazing management initially had a small effect on 

white clover's abundance, but later, abundance increased under continuous grazing at medium 

and high stocking rates. 

Most of the studies on Caucasian clover defoliation from fertile lowland sites have described 

legume-dominant stands under lax rotational grazing or cutting. In Canterbury NZ, tetraploid 

Caucasian clover yielded about 20% less under monthly cutting than under bi-monthly cuts 

(Stewart and Daly, 1980). In Minnesota USA, under 2, 3, or 4 cuts annually, Caucasian 

clover yielded less than other legumes such as lucerne, red clover (T. pratense L.), and 

birdsfoot trefoil in the first 2 years of production, but subsequently out-yielded red clover and 

birdsfoot trefoil in all cutting treatments (Sheaffer and Marten, 1991). Also in Minnesota, 

Caucasian clover was an aggressive competitor against birdsfoot trefoil under lenient 

rotational grazing by sheep (Sheaffer et al., 1992). 

Research in Minnesota continued with 5-year-old stands of Caucasian clover subjected to 3, 4, 

5, or 6 cuts annually, and under continuous, 14-, or 28-d rotational grazing by sheep (Peterson 

et al., 1994a). In the third year of the study, the 6-cut treatment yielded 30% less DM than the 
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3-cut treatment. In the second and third years, the 14-d rotation treatments produced 28 and 

16% less DM, respectively, than the 28-d rotation treatments, but the lowest yields were 

under continuous grazing. Belowground productivity was also examined (Peterson et al., 

1994b). Cutting treatments had little effect on below-ground morphology, or total non­

structural carbohydrate (TNC) concentrations. The TNC concentrations were lowest in spring 

and greatest in autumn, similar to other tap rooted perennial legumes such as lucerne (Moot et 

al.,2003). Peterson et al. (1994b) concluded that the extensive crown-rhizome-root system of 

established Caucasian clover conferred the ability to maintain adequate TNC concentrations 

for persistence under a range of defoliation regimes. 

Few experiments have challenged Caucasian clover with frequent, intensive grazing in a 

mixture with an aggressive grass species. Such a study, in Canterbury New Zealand (Lucas et 

al., 1998), compared the responses of Caucasian clover to different grazing regimes with 

those of white clover in an endophyte (Neotyphodium lolii)-infected hybrid ryegrass (Lolium 

sp.) pasture. After 2 years, continuous grazing by sheep reduced Caucasian clover cover to 

10% compared with 25.5% in 25-d rotational grazing treatments. Also, continuous grazing 

reduced Caucasian clover rhizome plus root DM to 780 kglha (to 100 mm depth) compared 

with 3220 kglha in 25-d rotational grazing treatments. White clover cover averaged 21 % 

under continuous grazing and 14-26% under rotational grazing. The authors surmised that 

persistence of Caucasian clover might be compromised under this extreme continuous grazing 

management. 

2.4 Utilisation 

2.4.1 Nutritive value 

2.4.1.1 Digestibility 

Most of the studies on Caucasian clover nutritive value have been carried out under lax 

rotational grazing or clipping, under fertile moist conditions in the USA. In Connecticut, in 

vitro dry matter digestibility (DMD) of Caucasian clover averaged 70-82% compared with 

67-75% for white clover (Allinson et al., 1985). In Minnesota, in vitro DMD of Caucasian 

clover (67-75%) was higher than other forage legumes such as lucerne, red clover, and 

birdsfoot trefoil (Sheaffer and Marten, 1991). In other USA experiments, in vitro DMD 
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values for Caucasian clover (75-88%) and its grass mixtures (68-79%) consistently exceeded 

those for other forage legumes (Peterson et al., 1994a; Sheaffer et al., 1992; Sleugh et al., 

2000). 

Few experiments have reported the nutritive value of Caucasian clover growing under 

extensive field conditions. In the Snowy Mountains of New South Wales, Australia, in vitro 

organic matter digestibility of Caucasian clover-grass averaged 72% compared with 67% for 

white clover-grass after 11 years under low-input (P, Sand Mo fertiliser) conditions (Virgona 

and Dear, 1996). This difference was attributed to Caucasian clover's superior persistence 

and therefore greater legume content in this environment (Section 2.3.3.1). In Minnesota 

USA, Caucasian clover had greater in vitro DMD values compared with lucerne and red 

clover under soil moisture deficit (Seguin et al., 2002). 

2.4.1.2 Crude protein 

Crude protein (CP) values reported by Allinson et al. (1985) for Caucasian clover were 18-

22% compared with 23-25% for white clover. Other experiments under fertile moist 

conditions in the USA have shown that CP values for Caucasian clover (17-25%) and its 

grass mixtures (13-25%) consistently exceeded those for other forage legumes such as 

lucerne, red clover and birdsfoot trefoil (Mourino et al., 2003; Peterson et al., 1994a; Sheaffer 

et al., 1992; Sleugh et al., 2000). 

In the Snowy Mountains of New South Wales, Australia, CP values obtained by Virgona and 

Dear (1996) after 11 years under low-input conditions were 11% for Caucasian clover-grass 

compared with 9% for white clover-grass, highlighting the superior persistence of Caucasian 

clover in this environment (Section 2.3.3.1). In Minnesota USA, Seguin et al. (2002) found 

similar CP values for Caucasian clover, lucerne and red clover under water stress. 

2.4.1.3 Minerals 

Mineral (Ca, Mg, K, P, Fe, Mn, Cu, Zn) concentrations obtained by Allinson et al. (1985) for 

Caucasian clover were similar to those for white clover. In New Zealand, herbage Na 

concentrations for white clover averaged 0.31 and 0.05% in coastal lowland and central high 

country sites, respectively, compared with 0.02% for Caucasian clover in both environments 
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(Jarvis et ai., 1998). Caucasian clover is therefore a low Na (natrophobe) species (Smith et 

ai., 1978), like lucerne, red clover and timothy (Phieum pratense) (Edmeades and O'Connor, 

2003; Grace, 1983), and white clover is a high Na (natrophile) species like perennial ryegrass. 

2.4.1.4 Acceptability 

The acceptability of Caucasian clover has been shown to be similar to white clover in a 

"cafeteria style" (ad libitum feeding) grazing experiment in New South Wales, Australia (Hill 

et ai., 1995). Sheep grazed more readily the leaves of both species that were easy to harvest, 

i.e., the large-leafed tall types. 

2.4.1.5 Average daily liveweight gain and liveweight gain per hectare 

In Minnesota USA, lamb liveweight gains during 4 years of lax rotational grazing averaged 

198, 190 and 205 g/headld and 705, 860 and 878 kg/ha for birdsfoot trefoil, birdsfoot trefoil­

Caucasian clover mixture and Caucasian clover, respectively. The average annual grazing 

period was 98 d (Sheaffer et ai., 1992). In Wisconsin USA, Holstein steers grazing Caucasian 

clover-grass mixtures gained an average of 1.21 kg/headld and 1021 kg/ha compared with 

0.99 kg/headld and 800 kg/ha for those on red clover-grass mixtures during 3 years of 

rotational grazing. The average annual grazing period was 161 d. This advantage of 

Caucasian clover-grass was attributed to the mixture's superior productivity and nutritive 

value. Both were consequences of the ability of Caucasian clover to maintain a greater 

proportion of legume in the pasture (average 68%) compared with red clover (average 21 %), 

which was "frost-seeded" every March over the 3-year period (Mourino et ai., 2003). 

2.4.2 Anti-quality components 

Ruminant bloat is a problem in pastures containing a high proportion of Caucasian clover. 

This is similar in occurrence to other high quality forage legumes, but can be controlled 

remedially with poloxalene (Mourino et ai., 2003; Sheaffer et ai., 1992). Caucasian clover 

herbage contains non-lethal amounts of hydrocyanic acid (Hill et ai., 1995) and no tannins 

(Broderick and Albrecht, 1997), which is similar to white clover. 
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2.5 Establishment 

In summary, the data reviewed in Sections 2.2-2.4 show that Caucasian clover is adapted to a 

wider range of environments than white clover, and can make an equal or greater contribution 

to N inputs and animal performance than white clover. However, a key feature to attaining 

this performance is ensuring an adequate plant population of Caucasian clover is achieved at 

establishment. 

The major deficiency of Caucasian clover is slow establishment. Thus, a considerable amount 

of research has been conducted to determine the plant and environmental factors contributing 

to this problem. Several components of establishment are common to both species, while 

differences usually highlight the deficiencies of Caucasian clover. Consequently, efforts have 

been made to devise the most efficient establishment methods. 

2.5.1 Soil fertility 

Both species responded to increasing rates of P at establishment when overs own into low 

fertility soil (pH of 4.9-5.5, Olsen P of 3-10 flg/ml) corrected for Sand Mo on a tussock 

grassland site at Mesopotamia Station, Canterbury New Zealand (Lucas et ai., 1981). On 

another low fertility site (pH 5.2, Olsen P 6 flglml, sulphate-S 2 flglg) at Mesopotamia 

Station, root weight of 5-month-old Caucasian clover plants increased from 0.528 to 0.857 

glplant (to 0.15 m depth) when the rate of molybdic sulphur superphosphate (8% P, 20% S) 

was increased from 150 to 300 kglha, and when the fertiliser was placed beneath the seed 

using a strip-seeding method rather than with the seed in sod seeding and broadcast methods 

(Moorhead et ai., 1994). It can be concluded that where necessary, remedial fertiliser 

applications are essential to improve the establishment of both legume species. 

2.5.2 Germination 

Germination, as a percentage of Caucasian clover seed oversown, was similar to that of white 

clover over a range of tussock grassland sites (Lowther and Patrick, 1992). In another 

experiment, seeds of Caucasian clover germinated well under warm-dry conditions but not as 

adequately under cool-dry conditions on hill country sites (Awan et ai., 1993). However, 

glasshouse pot experiments have indicated that germination of Caucasian clover may be 
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poorer than white clover under marginal conditions owing to slower germination (Awan et 

ai., 1996) and difficulty of the larger diameter radicle entering the soil (Toddhunter, 1997). 

In growth chambers, seeds of white and Caucasian clovers showed similar reductions in 

germination percentage and increases in time to 50% germination at day/night temperatures of 

12/6 and 8/2 °C, but not at 24/20, 20115, and 15/10 °C (Hill and Luck, 1991). The authors 

concluded that the germination of Caucasian clover is unlikely to be a problem for its wider 

use in pastures. 

2.5.3 Seedling growth and development 

In growth chambers, the rate of cotyledon expansion and area of cotyledons 7 d after seeding 

was greater for Caucasian clover than white clover at day/night temperatures of 15110, 20/15, 

and 24/20 °C. However, 34 d after seeding, the number of Caucasian clover leaves per plant, 

leaf area, and relative growth rates were less than white clover, but shoot and root dry weights 

were similar (Hill and Luck, 1991). In lowland conditions, Watson et ai. (1996) reported that 

the rate of Caucasian clover growing point development (number/m2) was less than half the 

rate of white clover in the establishment year. 

Slow seedling growth and development in Caucasian clover have been attributed to 

substantial allocation of energy resources to roots and rhizomes (Taylor and Smith, 1998). In 

tussock grassland, growth of Caucasian clover in the establishment year was mostly confined 

to primary crown and taproot/fibrous root growth (Woodman, 1999). In lowland conditions, 

the number of seedlings emerged after 7, 14, and 21 d was similar for Caucasian and white 

clovers. However, 65 d after seeding, Caucasian clover partitioned 1: 1 shoot to root dry 

weight compared with 3: 1 for white clover, and Caucasian clover seedlings had similar shoot 

growth but three times the root growth of white clover. Between 65 and 165 d, Caucasian 

clover partitioned more DM to root and rhizome growth, resulting in a 0.3: 1 shoot/root ratio 

compared with 2:1 for white clover (Widdup et ai., 1998). Likewise, in Minnesota USA, 

Caucasian clover had shoot/root ratios of 0.3-0.5 after 1 year (Genrich et ai., 1998). 

The slow initial shoot growth and development in Caucasian clover results in lower dry 

matter yield than white clover in the establishment year. In Canterbury New Zealand, 10 

months after sowing, white clover-rye grass pastures had a legume content of 20% compared 

49 



with only 4% for Caucasian clover-ryegrass pastures. However, over the following 18 

months, the proportion of white clover declined and the proportion of Caucasian clover 

increased, resulting in Caucasian clover-ryegrass pastures that had a legume content of 28% 

compared with 10% for white clover-ryegrass pastures after 28 months (Moss et ai., 1996). 

Recent research has suggested selection for increased shoot/root ratio in Caucasian clover 

seedlings may be a means of increasing DM partitioning to the shoot, thereby increasing the 

rate of establishment (DeHaan et ai., 2001; Widdup et ai., 1998). In both cases, genetic 

potential for increased shoot growth was found. However, the physiological basis for slow 

shoot growth and development in Caucasian clover has not been fully explored. 

2.5.4 Nodulation/inoculation 

Effective nodulation has been identified as a major factor influencing the establishment of 

Caucasian clover in overs own tussock grassland (Lowther and Patrick, 1992). More effective 

nodulation of Caucasian clover resulted from increasing the peat inoculant level from the 

recommended rate (9.6 g peat inoculant/kg seed; 23 000 rhizobia/seed at sowing) to 6.3 times 

the rate (Patrick et ai., 1994). Number of established plants of Caucasian clover was strongly 

correlated with percentage nodulation 7 months after sowing on seven of nine sites (Patrick 

and Lowther, 1995). 

More recently the nodulation and growth of hexaploid Caucasian clover cultivars has been 

improved with the commercial release of the superior Rhizobium strain ICC148 (Pryor et ai., 

1998). However, even with this new strain of rhizobia, high numbers of rhizobia on the seed 

are still required for drilling, and in particular overs owing (Lowther et ai., 1998). 

2.5.5 Grass competition and seeding rate 

In a glasshouse pot experiment, Caucasian clover seedlings were more severely affected by 

competition from tall fescue than either white clover or birdsfoot trefoil. Roots of Caucasian 

clover did not branch and spread among the root mass of tall fescue in the same manner as 

white clover (Hill and Hoveland, 1993). The authors concluded that Caucasian clover could 

be very sensitive to the seeding rate of companion grass species, particularly on shallow soils 

with restricted rooting depth. 
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Further work used larger pots (390 mm wide and 330 mm deep), but excluded white clover 

and included two soil fertility (N) treatments. Rhizome numbers, and root and rhizome 

biomass were reduced by increasing grass seeding rates, and at high soil N where grass 

competition was vigorous compared with low soil N where grass competition was weak (Hill 

and Mulcahy, 1995). The authors concluded that early growth of Caucasian clover, 

particularly root and rhizome development, will be improved where the seeding rate of the 

companion grass is low or grass vigour is low due to inadequate nitrogen. They suggested 

that Caucasian clover should be established as a pure stand with a companion grass being 

introduced later. 

In New Zealand, most pastures are sown with commercially recommended rates of 16-20 

kg/ha of perennial ryegrass (Charlton, 1991; Sangakkara et ai., 1982). These rates are 

primarily used to achieve rapid early production and to suppress weeds, but slower­

establishing sown species are also adversely affected. Cullen (1958) showed that slow­

establishing pasture species (e.g. white clover, timothy, and cocksfoot) benefit from perennial 

ryegrass seeding rates of less than 10 kg/ha. In Canterbury New Zealand, Dumbleton (1997) 

showed there was no significant advantage, in either total yield or weed suppression, from 

sowing more than 12 kg/ha of perennial ryegrass; a pasture containing more than 20% white 

clover/chicory was obtained only by sowing in late summer (4 February) with less than 8 

kg/ha of ryegrass. Reduction in ryegrass seeding rate reduced inter-plant competition for 

limited resources, particularly light (Brougham, 1953). In Ireland, Culleton (1986) found no 

significant differences in total annual yield during the first 3 years from sowing 10 to 35 kg/ha 

of perennial ryegrass. 

2.5.6 Time of sowing 

There is limited recent published information on the influence of sowing time. In theory, the 

optimal time of sowing for Caucasian clover is similar to white clover in that it is primarily 

related to the avoidance of climatic constraints that inhibit its establishment. Frame and 

Newhould (1986) provided an agronomic outline of the time of sowing requirements for 

white clover. Specifically, mid-summer is often associated with soil moisture deficits. Late­

autumn sowing allows insufficient time for adequate plant development before the onset of 

low temperatures in winter. For example, a late-autumn sowing in Canterbury New Zealand, 

when soil temperature was below 13 °C, resulted in perennial rye grass dominance, increased 

51 



weed content, and no white clover or chicory in the pasture mixture (Dumbleton, 1997). 

Mortality of autumn-sown clover can be hastened due to attack by Pythium and other fungi 

which cause "damping off' of seedlings. Spring is therefore the best time for sowing 

perennial legumes in temperate environments. Very early spring sowing could also have low­

temperature limitations on legume establishment (Frame and Newbould, 1986). 

In practice, several factors including farm operations and local weather patterns will influence 

the time of sowing. For example, historically, the majority (83%) of pastures in New Zealand 

are autumn sown (Sangakkara et ai., 1982). In theory, spring sowing offers the best chance 

for Caucasian clover establishment since there is time for manipulation of grazing 

management, weed control, and other measures to encourage its establishment. For example, 

sowing Caucasian clover as a pure species in spring and over-drilling rye grass in the 

following winter (July) was a successful and cost effective method for establishing this 

species in warm temperate coastal Bay of Plenty New Zealand (Taylor and Watson, 1998; 

Watson et ai., 1996). 

2.5.7 Sowing method 

Experiments have been carried out to determine the most effective method for establishing 

Caucasian clover. Strip-seeding, sod-seeding, and broadcast-sowing methods were evaluated 

for introducing Caucasian clover into a depleted fescue tussock grassland site at Mesopotamia 

Station, Canterbury New Zealand. The strip-seeding method cut and inverted a ribbon of turf, 

placing it adjacent to the drilling strip; fertiliser was banded at -50 mm depth; a seed coulter 

sowed the seed (-10 mm depth), and a press wheel firmed the seed bed. The sod-seeding 

method used an inverted T coulter, with fertiliser placed with the seed. The broadcast method 

involved seeds and fertiliser sown together onto a 200-mm wide strip of resident vegetation. 

After 2.5 months, 48 and 38% establishment had occurred in the strip and sod-seeding, 

respectively, but only 9% from the broadcast-seeding. Strip-seeding was the most successful 

method, resulting in earlier rhizome and taproot development, and wider lateral spread of 

rhizomes. Both strip- and sod-seeding resulted in all plants developing rhizomes 9 months 

after sowing, but plants from broadcasting were small with very few rhizomes. Removal of 

competing vegetation was critical in achieving rapid establishment (Moorhead et ai., 1994). 
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Four sowing strategies were evaluated for establishing Caucasian, white and red clovers on an 

irrigated dairy fann in lowland North Otago New Zealand (Hurst et ai., 2000). These were: 1) 

temporal separation of species (clovers sown in spring before perennial ryegrass undersown at 

10 kglha in autumn); 2) substitution of ryegrass with slower-establishing timothy; 3) physical 

separation (alternate 75-mm-spaced drill rows) of slower-establishing species (Caucasian and 

white clovers, and timothy) from perennial ryegrass and red clover; 4) use of lower than 

average ryegrass seeding rates of 3.5 or 8 kglha. After 16 months, high yielding and high 

quality pastures were established using all four sowing methods. Legume content was similar 

in all treatments but the proportion of legume was much lower for Caucasian (1 %) than white 

(37%) and red (17%) clovers. Mean proportion of seeds sown established was lower for 

Caucasian (48%) than white (74%) and red (74%) clovers 43 d after sowing. This on-fann 

study demonstrated successful establishment of red and white clovers in all four treatments, 

but Caucasian clover was suppressed by the inclusion of low rates of ryegrass, red and white 

clovers, and timothy in the mixture. 

2.6 Plant growth and development responses to temperature and 

water status 

For white and Caucasian clovers in non-limiting soil fertility conditions, the main 

environmental factors influencing growth have been shown to be temperature and water status 

(Sections 2.3.1 and 2.3.2). The influence of these factors on white clover has been studied 

intensively. Specifically, temperature and water status affect both the rate of plant growth 

(e.g. shoot growth, photosynthesis) and the rate of developmental stages (e.g. germination, 

emergence, leaf appearance, and branching) and therefore yield of white clover. Also, the 

response of white clover to water status has been researched with regard to its water use and 

water use efficiency (WUE). In contrast, the influence of temperature and water status on 

Caucasian clover has usually been expressed in terms of seasonal production (Section 2.3.2), 

without any explanation of the mechanisms responsible for the responses. Thus, an 

understanding of the plant growth and development responses to temperature and water status 

is necessary to understand observed differences in productivity and establishment between the 

two species. 
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2.6.1 Temperature 

Temperature affects the rate of plant growth and development. The rate of plant processes 

such as photosynthesis (an indicator of potential growth), nutrient uptake, and N2 fixation are 

also dependent on temperature. In controlled environments, Mitchell (1956) and Mitchell and 

Lucanus (1962) reported that shoot growth of white clover increased with temperature up to 

an optimum of -24°C before it declined (Figure 2.5). 

2.6.1.1 Temperature and photosynthesis 

Under non-limiting light conditions, the rate of leaf photosynthesis of temperate pasture 

species increases with temperature up to an optimum (Charles-Edwards et al., 1971; Peri et 

al.,2002b). In controlled environments, the rate of photosynthesis of leaves of white clover 

grown at day/night temperature of 18/14 °C was measured at a range of leaf temperatures (3, 

8, 13, 18, and 23°C) at a light intensity of -250 J/m2/s. There was a large effect of 

temperature: net photosynthesis rate of youngest expanded leaves initially grown at 18/14 °C 

was 7.6 ~mol C02/m2/s when measured at 3°C, and photosynthetic rate increased linearly by 

an average of 0.85 ~mol CO2/m2/s per °C to 24.6 ~mol CO2/m2/s at 23°C. The response of 

leaf photosynthesis to measurement temperature was less under low irradiance (-90 and -50 

J/m2/s) (Woledge and Dennis, 1982). 

However, photosynthesis rates of white clover appeared to be less sensitive to high 

temperatures than low temperatures. Blaikie (1988b) found that, at a high light intensity 

(-2000 ~mol/m2/s photosynthetic photon flux density (PPFD», temperatures between 24 and 

33°C had little effect on the rate of canopy photosynthesis (30.6-37.5 ~mol CO2/m2/s) of 

well-fertilised, well-watered white clover pastures. Maximum rates of canopy photosynthesis 

occurred at 29.1-31.0 °C, -6°C higher than the optimum temperature for shoot growth (24 

0c) in controlled environments reported by Mitchell (1956) and Mitchell and Lucanus (1962). 

Rates of Caucasian clover photosynthesis in response to temperature and water status have not 

been reported. 

2.6.1.2 Temperature and plant development 

Temperate also affects the rate of leaf appearance of plants. In growth chambers, Mitchell 

and Lucanus (1960) found that the number of days between the appearance of successive 
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leaves on a stolon apex of white clover was 14.3 d at day/night temperatures of 7.2/1.7 °C but 

decreased as temperature increased to 6.7 d at 15.6/7.2 0c. Haycock (1981) reported that the 

rate of leaf appearance per stolon apex in white clover grown at a constant 4.8, 6.3, 8.6, or 

11.5 °C was -0.20, 0.35, 0.50 and 0.82 /week, respectively. A line fitted to this linear 

relationship indicated a base temperature for leaf appearance at 2.6 0c. However, leaves 

produced remained small until temperatures exceeded 6.3 °C. 

Temperature also affects branch development of plants. In growth chambers, Mitchell (1956) 

found that as temperature increased from 7.2 to 35.0 °C under a 12-h day length, rate of stolon 

branching in white clover increased to a maximum at 21°C and then declined. These results 

were confirmed by Mitchell and Lucanus (1962) who repeated the experiment under a 16-h 

day length. However, in both cases the response was small (4-7% increase) compared with 

shoot growth (5-15% increase), or leaf appearance rate by Haycock (1981). Thus, leaf 

appearance rate on a stem apex and leaf photosynthesis rate are primary components of 

legume production that are strongly regulated by temperature. 

2.6.1.3 Thermal time 

Because temperature affects the rate of plant development, this relationship is often quantified 

using thermal time, or growing degree days (OCd) (Arnold and Monteith, 1974). Thermal 

time is the cumulative temperature above a species-dependent base temperature below which 

development ceases. It is often calculated on a daily basis using Equation 2.5. 

Equation 2.5 . . ""( T max + T min J Thermal tzme (Tt zn Oed) = L.J 2 - Tb 

where Tmax and Tmin are the daily maximum and minimum temperatures, and Tb is the base 

temperature. 

If development rate is related to temperature then the duration between two developmental 

stages will be a function of the mean temperature and the duration of the period (Charles­

Edwards et al., 1986). Thus, the thermal time requirement and Tb can be determined for any 

developmental stage (e.g. germination, emergence, leaf appearance, or branch development) 

using a linear regression technique (Goudriaan and van Laar, 1994). Specifically, a plot of 
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mean temperature and days taken between two developmental stages gives a relationship that 

decreases exponentially to the optimum temperature (T opt), where development rate is 

greatest. By plotting development rate (lid) against mean temperature below Topt, a linear 

relationship is obtained from which T b and the thermal time requirement can be determined. 

Thermal time has been widely used in annual crop research (e.g. Jamieson et al., 1998), but 

has also been used to quantify development in temperate pasture species (e.g. Angus et al., 

1981; Hsu and Nelson, 1986a). Moot et al. (2000) used thermal time to quantify differences 

in germination and seedling emergence of several temperate pasture species such as white 

clover and perennial ryegrass, but did not include Caucasian clover. White clover, which had 

a Tb of 0 DC, required 45 °Cd to germinate (75% germination) and 150 °Cd to emerge (50% 

emergence) after sowing at a depth of 20 mm. These results are equivalent to 5 and 15 d, 

respectively, if the mean temperature was 10 DC. In comparison, perennial ryegrass, with a Tb 

of 2.0 DC, required 90 °Cd to germinate but 160 °Cd to emerge, or 9 and 16 d, respectively, at 

a mean temperature of 10 dc. Thus, species differ in their response to temperature due to 

differences in both the T b and thermal time requirements for development. 

While a number of studies have measured the developmental responses of white clover to 

temperature, few have quantified them using thermal time. For example, Haycock (1981) 

found that the rate of leaf appearance per stolon apex in white clover was linearly related to 

temperature from 4.8 to 11.5 DC, and calculated a threshold or T b of 2.6 dc. However, the leaf 

appearance interval (lIleaf appearance rate), or phyllochron (phyllo = leaf, chron = time) for 

successive leaves on the stolon apex was not reported. Reanalysis of the data from Haycock 

(1981) showed that the phyllochron differed in days (exponentially from -35 d at 4.8 °C to 

-8.8 d at 11.5 DC) but was constant in thermal time (-79 °Cd). Similarly, Amott and Ryle 

(1982) reported the leaf appearance interval of white clover (in days) at different 

temperatures, which when reanalysed gave a phyllochron of -70 °Cd. Hill and Luck (1991) 

reported a Tb temperature for germination of 5.24 °C for Caucasian clover and 5.79 °C for 

white clover, but thermal time requirements for germination were not reported. 

The thermal time approach has some limitations. For most plant species the rate of plant 

development is not linearly related to temperature. In reality the relationship is more likely to 

be curvilinear with a significant tail at temperatures approaching Tb (Angus et al., 1981; Hsu 

et al., 1984). This has two important implications. Firstly the physiological and calculated 
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base temperatures are unlikely to coincide; at the calculated value of Tb there is still likely to 

be some development occurring (Arnold, 1959). However, this error is likely to be small and 

of little practical significance. The second implication is that because the T b is extrapolated 

the calculated value will depend on the range of temperatures used. Thus, more data from the 

entire sub-optimum (i.e. :S Topt) thermal range will give better estimates of Tb and thermal 

time requirements. 

Cardinal temperatures quantify the range of temperatures that contributes to plant 

development. Both T band T opt have been defined. A third cardinal, the maximum 

temperature (Trnax), defines the upper threshold where no development takes place. In most 

temperate climates plants are exposed to temperatures between T band T opt. Thus, the use of a 

positive linear response at SUb-optimum temperatures is appropriate and gives a reasonable 

estimate of T b. When T opt has been exceeded results should be excluded from the linear 

determination of thermal time and T b, but can be used to give an indication of T opt. 

2.6.2 Water status 

Actively growing pasture plants are usually 80-90% water. The main function of water in a 

plant is structural support of cells (cell turgor) and therefore the plant. Water flows through 

the plants from the soil to the air in the transpiration flow. This transpiration of water by 

plants is their main water use, with the amount of water used for photosynthesis very small by 

comparison. Thus, the main requirement for water is not directly for plant growth. 

Transpiration allows the transport of water and nutrients and the cooling of plant tissues 

(Kramer and Boyer, 1995; McKenzie et al., 1999). 

The rate of transpiration is correlated with the rate of photosynthesis. Plants open their 

stomata to absorb CO2 for photosynthesis, but at the same time they also lose water through 

the stomata. When soil water is limiting plants can respond by closing their stomata to 

decrease water loss from transpiration, but this also decreases photosynthetic rate (McKenzie 

et al., 1999). The water relations of white and Caucasian clovers are complex. The rate of 

transpiration is influenced by plant factors such as stomatal resistance, leaf water potential, 

and root morphology, and also by external factors such as atmospheric vapour pressure. 
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2.6.2.1 Water status and plant growth 

A commonly accepted view with regard to the response of white clover to water stress is that 

the plant does not control leaf transpiration efficiently (Aparicio-Tejo et al., 1980a, b; Burch 

and Johns, 1978; Johns, 1978). For example, in glasshouse conditions, Johns (1978) found 

that leaf conductance (Gz) was greater for white clover (-7.0 mm/s) than tall fescue (-4.0 

mm/s) at a leaf water potential ('Pz) of -0.4 MPa (well-watered control), and declined in 

curvilinear relationships to a minimum of -1.0 mm/s for both species under severe water 

stress conditions ('PI = -5.1 MPa). The minimum GI was mostly achieved by a 'PI of -3.0 

MPa for tall fescue (1.5 mm/s), but leaf resistance (l/G/) was not sufficient to prevent 

transpiration from occurring for white clover at the same 'PI (2.4 mm/s). This lack of leaf 

transpiration control in white clover was attributed to its inability to close stomata as well as 

tall fescue in response to short-term water stress. 

The initial response of white clover to water stress is reduced elongation growth and fresh 

weight of leaves (Aparicio-Tejo et al., 1980a, b; Blaikie et al., 1988a). For example, under 

field conditions, relative (drylandlirrigated) petiole elongation rate (an indicator of leaf 

growth rate) in white clover decreased to 50% when 'Pz (-1.1 MPa) was still similar in both 

dryland and irrigated plots, but decreased to 90% at a 'PI of -2.7 MPa under dryland 

conditions (Guobin and Kemp, 1992). This was caused by a decrease in cell growth or turgor. 

Cell growth is more sensitive to water stress than plant processes such as transpiration, 

photosynthesis, respiration, and N2 fixation (Aparicio-Tejo et al., 1980b; Johns, 1978; 

McKenzie et al., 1999). 

Leaf photosynthetic rate in white clover decreases with increasing water stress. Over a drying 

cycle after irrigation, canopy photosynthetic rate of white clover decreased linearly from 18.2 

/lmol C02/m2/s at a canopy conductance (Gc) of 12.0 mm/s to 9.1 /lmol C02/m2/s at a Gc of 

4.0mm/s (Blaikie et al., 1988b). In the glasshouse study by Johns (1978), under uniform 

temperature (-20°C) and light (-720 /lmollm2/s PPFD) conditions, gross leaf photosynthetic 

rate in white clover was -18.2 /lmol C02/m2/s at a 'PI of -0.4 MPa and declined linearly to 

-9.1 /lmol C02/m2/s at a 'PI of -3.0 MPa. A similar response was found for tall fescue, which 

transpired less water, highlighting the inefficiency of water use by white clover. 
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Another response to short-term water stress in white clover is leaf senescence, which reduces 

leaf area and therefore transpiration loss. From the middle of a dry cycle, 'PI and leaf area 

index (LAI) values of white clover decreased. But until the end of the cycle the rate of 

transpiration loss per unit of leaf area was similar to that of tall fescue, which had more 

control of transpiration and higher 'PI, prolonging its LAI and growth (Burch and Johns, 

1978). Leaf senescence in white clover was caused by its poor reduction in leaf conductance, 

and has been interpreted as a survival strategy for the protection of stolons under water stress 

conditions (Karsten and MacAdam, 2001; Turner, 1990a, b). 

The inability of white clover to control transpiration can explain its low WUE under both 

dryland and irrigated conditions (Johns and Lazenby, 1973a, b). Leaf senescence as a means 

of preventing excessive transpiration was particularly evident and under summer conditions 

up to 70% of the herbage died in dryland pastures, and 20% of the herbage died in irrigated 

pastures (Johns and Lazenby, 1973a). 

2.6.2.2 Water status and plant development 

Relative to leaf and petiole elongation the rate of leaf appearance per stolon apex is less 

affected by short-term water stress. For example, under field conditions, relative 

(drylandlirrigated) leaf appearance rate per stolon apex of white clover decreased to 20% at a 

'PI of -2.7 MPa under dryland conditions, compared with 90% for petiole extension at the 

same 'PI value and dryland conditions (Guobin and Kemp, 1992). 

2.6.2.3 Plant water extraction 

Root length and root density influence the ability of plants to access and extract the available 

soil water (Burch and Johns, 1978). Evans (1978) found that a mature white clover pasture 

had most of its roots in the top 0.20 m of soil, but could extract water to a depth of 0.90 m. In 

contrast, lucerne extracted water from at least 2.10 m. As a result, DM yield was greater for 

lucerne (15 120 kg/ha) than white clover (5420 kg/ha) over a 5-month period. Similar results 

have been reported for lucerne by Brown et al. (2003) in Canterbury New Zealand. Thus, the 

shallow nodal root system of white clover makes it susceptible to water stress, whereas a deep 

taproot system enables lucerne, and presumably Caucasian clover, to remain productive 

because of access to soil water at a greater depth. 
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2.6.2.4 Calculating water use of pasture species 

The water use or evapo-transpiration (ET, evaporation from soil plus transpiration by plants) 

of pasture species can be either measured as actual evapo-transpiration (AET) by measuring 

changes in soil water content over time, or estimated by calculating the potential evapo­

transpiration (PET). PET is regulated solely by atmospheric conditions when the following 

assumptions hold: the pasture is actively growing, short and green of uniform height, 

completely covering the ground over an extended area, adequately supplied with water and 

nutrients, and disease free (Penman, 1961). Under these circumstances PET and AET are 

usually the same. When soil water is limiting PET continues to increase, but AET deviates as 

water becomes more difficult to extract. PET can be calculated from measurements of certain 

meteorological parameters and recognition of simple physical principles (French and Legg, 

1979; Johns and Lazenby, 1973a). 

In NSW Australia, Johns and Lazenby (1973a) found that l-year-old monocultures of white 

clover and three grass species used similar quantities of water (835 mm) in their second year 

under irrigated (non-limiting moisture) conditions. All four species also used similar 

quantities of water (564 mm) under dryland conditions (maximum soil moisture deficit of 

-110 mm to 1.60 m depth) despite large differences in their ability to grow under such 

conditions (Section 2.6.2.5). For white clover, under irrigated conditions the rate of water use 

was 1.51 mm1d in July and increased to a maximum of 5.91 mm/d in December before it 

decreased to 2.01 mm/d in May. Water use by dryland white clover was 1.51 mm1d in July 

and increased to 3.53 mmld in December before decreasing to 0.76 mm1d in May. 

2.6.2.5 Calculating water use efficiency ofpasture species 

Whether water use is calculated or measured, the primary interest is the relationship between 

water use and DM production. This relationship represents the WUE or its reciprocal, the 

transpiration ratio. WUE can be defined using Equation 2.6. 

Equation 2.6 WUE=DM 
ET 

WUE is affected by a number of factors, such as temperature, nutrient availability, and 

moisture availability, as well as the characteristics (i.e. stomatal control and leaf area) of 
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individual pasture species. For example, Johns and Lazenby (1973b) reported that 1-year-old 

monocultures of white clover produced similar DM (12 840 kg/ha) to tall fescue (11 910 

kglha) in their second year under irrigated conditions. However, tall fescue produced more 

DM (10 170 kglha) than white clover (6700 kglha) under dryland conditions. Thus, given the 

quantity of water used (Section 2.6.2.4), both species had similar WUE under irrigated 

conditions, but tall fescue had 25% greater WUE than white clover under dryland conditions. 

White clover WUE decreased by 35% under dryland conditions, indicating its high 

susceptibility to water stress as it is inefficient at limiting transpiration losses via stomatal 

closure. Also, WUE varied seasonally. White clover WUE averaged 1.2, 2.8, and 1.2 kg 

DMfmm of water used for periods November-December, February-March, and April-May, 

respectively, under irrigated conditions in NSW, Australia (Johns and Lazenby, 1973b). 

The calculation of WUE has some limitations. One limitation is that ET includes soil 

evaporation water loss which does not contribute to DM production. The accuracy of 

determining WUE can be improved by using transpiration efficiency, which excludes 

evaporation (Tanner and Sinclair, 1983). Johns (1978) reported soil evaporation and pasture 

transpiration accounted for 3 and 97% of water used, respectively, by temperate pasture 

species. This 3% would equate to evaporation of 25 mmlyr if PET was 835 mmlyr. 

Furthermore, water demand is affected by canopy leaf area and environmental factors such as 

solar radiation, temperature, and atmospheric humidity (the reciprocal which is the vapour 

pressure deficit (VPD)). When VPD increases, transpiration increases but there is no 

associated increase in the rate of photosynthesis. As a result, WUE decreases because more 

water is required to produce the same quantity of DM. However, under conditions of high 

atmospheric humidity (low VPD), WUE increases because the gradient between internal and 

external water vapour concentrations is less (Tanner and Sinclair, 1983). Thus, calculations 

of WUE can indicate the relative efficiency with which different pasture species are 

exploiting their water resources within an environment, but care must be taken when 

interpreting or extrapolating WUE from the literature. 
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2.7 Conclusions 

1. Both Caucasian and white clovers differ in their growth and development 

characteristics. Specifically, white clover spreads via surface stolons which are 

dependent on shallow nodal roots after the seminal taproot has decayed. In contrast, 

Caucasian clover spreads via underground rhizomes, and taproots are deeper and 

persist longer than that of white clover. These morphological differences underpin the 

responses of each species to environmental and management factors. 

2. Caucasian clover is more persistent than white clover under low temperature, water 

stress, and/or low soil fertility (pH, P and S availability) conditions, due to its 

extensive root and rhizome system. However, both species respond to P, S and lime. 

Additional research is required on the seasonal productivity of Caucasian clover on 

low fertility and dryland soils under intensive lowland conditions. 

3. Caucasian clover is very persistent under grazing, has a high N2 fixation ability, and a 

high forage nutritive value which is similar to that of white clover. Thus, any increase 

in total clover production by the inclusion in pastures of Caucasian clover is likely to 

increase animal performance and N yield. 

4. Plant growth and development responses to temperature and water supply provide 

explanations for the seasonal productivity of white clover under irrigated and dryland 

conditions. However, there is no information on the physiological basis for the 

agronomic responses of Caucasian clover under these conditions. 

5. Caucasian clover is slower to establish than white clover. This has been attributed to 

its priority towards root and rhizome development, which makes it sensitive to 

competition from other species during establishment. Further research is required to 

devise the most efficient establishment method for Caucasian clover under lowland 

conditions. 

Based on these conclusions the four primary objectives outlined in Section 1.2 and Figure 1.1 

were developed. 

62 



Chapter 3 

Sheep liveweight gain on Caucasian clover-ryegrass and white 
clover-ryegrass pastures under high and low soil fertility 
conditions 

3.1 Introduction 

In Chapter 2, the literature review identified soil fertility as a key factor in the adaptation of 

legumes. The most important mineral elements required for legumes in temperate pastures 

are P and S (During, 1984). In long-tenn (>5 years) experiments Caucasian clover has been 

shown to persist longer than white clover under low soil fertility conditions. For example, on 

a soil with an Olsen P of 8 /lg/ml and pH of 5.2 in New Zealand (South Island) high country, 

9-year-old Caucasian clover pastures were more productive than white clover pastures (Daly 

and Mason, 1987). A feature of Caucasian clover's persistence in tussock grasslands is its 

ability to survive with only occasional (i.e. every 4 years) applications of P, Sand Mo 

fertiliser (Strachan et ai., 1994; Virgona and Dear, 1996; White, 1995). However, the ability 

to persist and out-perfonn white clover under low soil fertility conditions in more productive 

lowland perennial ryegrass pastures has not been reported. If Caucasian clover has an 

advantage over white clover in these soil conditions then Caucasian clover pastures can be 

expected to have a greater legume content. Assuming Caucasian clover has a similar nutritive 

value to white clover (Allinson et ai., 1985) then any increase in clover content should also 

increase animal perfonnance (Askin et ai., 1987; Hyslop et ai., 2000; Stevens et ai., 1993). 

Thus, the objective of this research was to use sheep perfonnance on Caucasian clover­

ryegrass (CC-RG) and white clover-ryegrass (WC-RG) pastures to assess the relative legume 

perfonnance under high (High-F) and low (Low-F) soil fertility conditions. Results presented 

include sheep liveweight gain (LWG) per hectare, average daily liveweight gain (ADLWG) 

and number of grazing days. Pasture mass, botanical composition and nutritive value 

measurements were used to explain differences between treatment flocks. 
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3.2 Materials and methods 

3.2.1 Site description 

3.2.1.1 Location 

The experiment area was located in block H17 of the Field Service Centre research area at 

Lincoln University, Canterbury, New Zealand (430 39'S, 1720 28'E, 11 m a.s.l.). The 

experimental area is flat with small (-1 m) changes in topography. Tall (8-10 m) poplar 

(Populus deltoides x nigra) shelterbelt trees are present on the west and north boundaries. 

3.2.1.2 Soil 

The soil is a Templeton silt loam (Udic Haplosteps, USDA Soil Taxonomy) with 1-2 m of 

fine textured alluvial sediments overlying gravels (Cox, 1978). The typical profile texture 

consists of 0.3 m of uniform topsoil underlain by layers of varying depth ranging from silt 

loam to sand in texture. Depths to gravels at the site have been shown to range from 0.6 to 

1.5 m (Gyamtsho, 1990). Templeton silt loam soils are medium to free-draining with a 

moderate water-holding capacity of -300 mm in the top 1.0 m (Cox, 1978; Watt and 

Burgham, 1992). 

3.2.1.3 Meteorological conditions 

3.2.1.3.1 Rainfall, evapo-transpiration and irrigation 

This experiment was conducted over 3 years (Years 2, 3, and 4 of the experiment). Year 2 

(1998/99) and Year 4 (2000/01) were the driest with annual rainfall (-480 mm from 1 July to 

30 June) -28% below the long-term mean (LTM) of 670 mm, but PET was similar to the 

LTM of 1060 mm (Table 3.1). In Year 3 (1999/00) annual rainfall was similar to the LTM 

and PET was 11% below the LTM. The amount of irrigation water applied ranged from 400 

mm in 1998/99 to 300 mm in 2000/01. Details of irrigation management are given in Section 

3.2.7. The potential soil water deficit (PSWD) varied from 150 mm in 1999/00 to 288 mm in 

2000/01. 
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Table 3.1 

Year 

1998/99 

1999/00 

2000/01 

LTM 

Rainfall, Penman potential evapo-transpiration (PET), potential soil water 
deficit (PSWD) and the amount and timing of irrigation water applied for three 
years (1 July-30 June) and the long-term mean (LTM) for block H17 at 
Lincoln University, Canterbury, New Zealand. 

Rainfall PET PSWD Irrigation Timing of 

(mm) (mm) (mm) (mm) irrigation 

475 1057 215 400 16 Nov.-IS Mar. 

687 946 150 300 22 Nov.-lO Mar. 

485 1048 288 350 14 Nov.-31 Mar. 

670 1060 478 

Note: Rainfall and PET data were obtained from Broadfields meteorological station located 3 kIn north of the 

site. 

Monthly rainfall was variable over the three seasons, ranging from 135 mm in July 1999 to -6 

mm/month in February-April 2001 (Figure 3.1). Monthly PET followed a similar pattern in 

each season, increasing from a minimum of -30 mm in July to a maximum of between 130 

and 180 mm in December before decreasing to a minimum again in June. The PSWD 

generally began to increase in September of each season (Figure 3.2), but the timing and 

extent of PSWD was dependent on rainfall and irrigation. In 2000/01 the PSWD exceeded 

200 mm in February. 
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Figure 3.1 Monthly rainfall (bars) and Penman potential evapo-transpiration (PET, .) 
from 1 July 1998 to 30 June 2001. Data were obtained from Broadfields 
meteorological station (3 km north of the site), Canterbury, New Zealand. 
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Figure 3.2 Daily potential soil water deficit (PSWD) calculated from 1 July 1998 to 30 
June 2001 for block H17 at Lincoln University. Rainfall and Penman evapo­
transpiration data were obtained from Broadfields meteorological station (3 km 
north of the site), Canterbury, New Zealand. 
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3.2.1.3.2 Temperature and solar radiation 

The mean dail yair temperature followed a similar pattern in each season, ranging from 6-8 

DC in June-August to 15-17 DC in February (Figure 3.3). The mean daily 10 cm soil 

temperature ranged from 5-7 DC in June-August to 18-21 DC in January/February. The mean 

daily total solar radiation followed a similar pattern each season, increasing from a minimum 

of 4-6 MJ/m2/d in June/July to a maximum of -25 MJ/m2/d in December. 
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Mean daily air (.) and 10 cm soil (0) temperatures, and mean daily solar 
radiation (bars) from 1 July 1998 to 30 June 2001. Data were obtained from 
Broadfields meteorological station (3 km north of the site), Canterbury, New 
Zealand. 
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3.2.2 Pasture establishment 

The experiment used a 22 factorial in a Latin square design. Treatments were CC-RG and 

WC-RG pastures, and High-F and Low-F soil fertility conditions. There were eight replicates 

of pasture treatments (32 plots) and two replicates of sheep flocks (eight flocks). Plots were 

29 x 14 m or 0.04 ha. 

The experimental area had previously been used for a 7-year experiment on lucerne/grass 

mixtures (Gyamtsho, 1990; McKenzie et al., 1990) but had been out of pasture for -2 years 

prior to this experiment. Prior to sowing, the experimental area was cultivated using 

conventional methods to produce a firm and fine textured seedbed. The pre-plant soil 

incorporated herbicide 'Triflur 40' (a.i. trifluralin at 1.0 kg a.i.lha) was sprayed the day before 

sowing to control weeds. 

On 11 December 1996, 'Grasslands Demand' white clover (2 kglha) and the hexaploid 

Caucasian clover cultivar 'Endura' (6 kglha) were sown as pure species. Caucasian clover 

seed was inoculated with the Rhizobium strain ICC148. Plots were drilled with an 0yjoord 

cone seeder at 150 mm row spacing and a target depth of 15 mm. On 27 January 1997, the 

post-emergence herbicide 'Basagran' (a.i. bentazone at 1.4 kg a.i.lha) was sprayed to control 

mainly shepherd's purse (Casella bursa-pastoris) and fathen (Chenopodium album). 

Both clovers established well with 2800-3000 kg DMiha accumulated after 4 months when 

plots were first grazed. On 10 March 1997, after a hard grazing, 'Grasslands Ruanui' zero 

endophyte perennial ryegrass (15 kglha) was direct-drilled into the clover monocultures. Both 

clovers made significant contributions to botanical composition by October 1997. 

68 



3.2.3 Soil fertility 

Before the experiment was established, the soil had a pH of 5.9, an Olsen P of 11 !!g/ml and a 

sulphate-S of 6 !!g/g (Table 3.2). In December 1996, all plots received lime at 1 tlha with Mo. 

In December 1996 and August 1997, superphosphate (8% P, 12% S) fertiliser at 600 kg/ha 

was applied to the High-F treatment. Soil fertility was monitored by soil tests taken in May of 

each season from 1998 to 2001. Soil tests involved 15 soil cores (0-75 mm) taken from each 

plot and bulked into two replicates to represent soil from the farmlets grazed by each of the 

eight treatment flocks. Sub-samples were analysed using Ministry of Agriculture and 

Fisheries Quick Test (MAF QT) procedures. Data from each season are given in Appendix 1 

and 4-year means are presented in Table 3.2. 

Table 3.2 Soil test (0-75 mm) results for block H17 from 1996-2001 at Lincoln 
University, Canterbury, New Zealand. August 1996 results are from the site 
before establishment. May 1998-2001 results are 4-year means from 
Caucasian clover-ryegrass (CC-RG) and white clover-ryegrass (WC-RG) 
pastures under high (High-F) and low (Low-F) soil fertility conditions. 

pH Olsen P S04-S Ca++ K+ Mg++ Na+ 

(H2O) (!!g/ml) (!!g/g) (meq/100 g) 

August 1996 

5.9 11.0 6.0 0.7 

Max 1998-2001 

High-F CC-RG 6.0 20.8a 11.4b 7.3 0.87ab 1.04 0.23 

WC-RG 6.0 18.5a 13.3a 7.5 0.77b 1.02 0.26 

Low-F CC-RG 6.1 1O.9b 7.0c 7.3 0.90a 1.09 0.25 

WC-RG 6.1 lO.4b 7.1c 7.4 0.88ab 1.08 0.26 

s.e.m. 0.04 0.40 0.07 0.11 0.026 0.024 0.010 

Pc 0.326 0.040 <0.001 0.211 0.098 0.533 0.132 

PF 0.065 <0.001 <0.001 0.656 0.073 0.108 0.435 

PCXF 0.878 0.114 0.001 0.590 0.267 0.793 0.332 

Note: Soil samples were analysed using Ministry of Agriculture and Fisheries Quick Test (MAF QT) procedures. 

Subscript C = clover species and F = soil fertility. Within columns, values with the same or no letter subscripts 

are not significantly different «(1. = 0.05). 
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The aim of the High-F treatment was to maintain the soil at an Olsen P level of ~20 Jlg/ml and 

at a sulphate-S level of ~10 Jlg/g, respectively, according to published relationships between 

relative pasture production and Olsen P or sulphate-S levels for sedimentary soils (Morton 

and Roberts, 1999). This required two applications of sulphur superphosphate (8% P, 19% S) 

fertiliser at 250 kg/ha to the High-F treatment in November 1999 and November 2000. 

Average soil test results in May indicated that target levels of Olsen P and sulphate-S had 

been achieved for the High-F treatment (Table 3.2). No fertiliser was applied to the Low-F 

treatment which had Olsen P levels that ranged between 9 and 13 Jlg/ml and sulphate-S levels 

that ranged between 5 and 9 Jlg/ g from the start of the experiment in 1996 to May 2001 

(Appendix 1). 

3.2.4 Animals 

The experiment used weaned 'Coopworth' ewe lambs selected on animal soundness and 

initial live weight in February each year. The shorn lambs were stratified into 10 uniform 

weight groups with eight lambs in each. From each of these weight groups, lambs were 

assigned randomly to the eight treatment flocks. Thus, each flock consisted of one lamb from 

each weight group to give 10 lambs per treatment flock, ear-tagged according to their 

respective treatment flock and initial weight group. Sheep were shorn as hoggets in summer 

and replaced by new lambs in autumn. Sheep were treated as necessary with an oral 

anthelmintic drench to control internal parasites and pour-on dip for lice control. 

3.2.5 Grazing management 

In Year 1 of this experiment (1997/98) pastures were grazed as necessary with mixed age 

sheep in spring/summer. From then on the pastures were grazed with the eight treatment 

flocks. Each flock was managed on a four plot rotation within 0.16 ha farmlets of the same 

treatment. Rotations were relatively short (14-24 d) in spring and longer (19-31 d) in 

summer/autumn to provide grazing management suitable for both clovers. Details of grazing 

rotations are given in Appendix 2. 

A variable stocking method (Bransby and Maclaurin, 2000) was used to maintain all four 

treatments at a similar pasture allowance within a range of 1.5 to 2.0 kg DMihead/d at entry 

into a new plot in each treatment. Flock size adjustments were made at 19-39 d intervals at 
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each weighing, and all adjustments required removal but not addition of sheep. Flock size (± 

standard error) averaged 7.5 ± 0.49 hoggets in spring/summer and 6.3 ± 0.78 lambs in 

autumn. Each flock had a minimum of four measurement sheep. 

Flock size adjustments maintained a measured mean pre-grazing pasture mass of 2000-2600 

kg DMlha and a measured mean post-grazing pasture mass of 900-1500 kg DMlha in each 

farmlet. If the mean pre-grazing pasture mass was less than 2000 kg DMiha for a farmlet then 

all farmlets were destocked for 7-14 d and sheep LWG measurements were recommenced 

when the mean pasture mass recovered. After the final rotation in May all lambs were massed 

to graze outside the experimental area in winter before returning to their treatment flocks in 

September as hoggets. 

Small flocks (4-6 sheep) of spare sheep were placed in perimeter and internal raceways to 

reduce the effects of camp behaviour and nutrient transfer by treatment flocks in the plots. 

The sequence by which treatment flocks grazed plots was altered each year to reduce the 

previous pattern of camp behaviour which was most obvious in the perimeter plots. 

3.2.6 Grazing periods 

Data from this experiment are summarised into spring and autumn grazing periods (Table 

3.3). The spring grazing period began when a mean pre-grazing pasture mass of 2000-2600 

kg DMlha had accumulated in all treatments. The end of each spring grazing period 

coincided with shearing of the hoggets in December/January. The autumn period began when 

lambs were introduced to the experiment in February each year, and finished when pasture 

growth rates were unable to meet the required pre-grazing pasture mass. 

Sheep grazed pastures after shearing in summer, but sheep LWG were not measured because 

the near mature hoggets had a mean (± standard error) individual live weight of 61.5 ± 0.37 

kg which would have had limited their LWG potential. Thus, animals in summer were used 

primarily to control reproductive stem development of ryegrass and invasive grasses. 

71 



Table 3.3 Grazing period start and finish dates and duration from 11 September 1998 to 1 
May 2001 in block H17 at Lincoln University, Canterbury, New Zealand. 

Year Spring Autumn 

Start Finish Duration Start Finish Duration 

date date (d) date date (d) 

1998/99 11 Sep. 18 Dec. 98 5 Feb. 10 Jun. 111 

1999/00 14 Sep. 5 Jan. 90 11 Feb. 23 May 86 

2000/01 14 Sep. 13 Dec. 89 12 Feb. 1 May 78 

Note: Liveweight gain was not measured from 11 April 2001 to 1 May 2001 as described in Section 3.2.10.2. 

3.2.7 Irrigation 

Plots were spray irrigated with the aim of applying about 100 mm of irrigation water plus 

rainfall per month from November to March. In 1997/98 (Year 1) plots received about 400 

mm of irrigation water. The amount and timing of irrigation water applied for the following 

three seasons are given in Table 3.1 (Section 3.2.1.3.1). 

3.2.8 Insect pests 

Insect pests caused severe damage to all pastures over the three growing seasons from 

September 1998 to June 2001. The lack of endophytic fungi in 'Grassland Ruanui' perennial 

ryegrass meant that it probably suffered damage by Argentine stem weevil (Listronotus 

bonariensis). However, the parasitiod Microtonus hyperodae, introduced to the area in 1991, 

may have reduced the incidence of attack by Argentine stem weevil (McNeill et al., 2002). 

Grass grub (Costelytra zealandica) caused noticeable damage to all pastures in autumn 1999. 

Visual assessment of grass grub damage on 26 March 1999 showed that about 32-44% of the 

experimental area was damaged by grass grub (Amyes, 1999). Grass grub populations were 

about 180/m2 for all pasture treatments. The insecticide 'Diazinon' (a.i. diazinon at 3.0 kg 

a.i.lha) was applied to all plots in April 1999 to control the grass grub. Also, ryegrass was 

severely damaged by pasture mealy bug (Balanococcus poae) in autumn 2001 but this could 

not be treated. 
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3.2.9 Mowing 

Pastures were mown or 'topped' post grazing as necessary in late spring/summer in 1999/00 

and 2000/01 to reduce ryegrass and invasive grasses reproductive stem development. 

Invasive grasses comprised mostly barley grass (Hordeum ssp.) and smooth brome grass 

(Bromus hordeaceus syn B. mollis). 

3.2.10 Measurements 

3.2.10.1 Meteorological conditions 

Meteorological data (Section 3.2.1.3) were obtained from the Broadfields meteorological 

station (Crop & Food Research Ltd.) located 3 km north of the site. The potential soil water 

deficit (PSWD) was calculated throughout each season using the equation presented by 

French and Legg (1979), but with irrigation included: 

Equation 3.1 PSWD = PSWDi-l + PET - (R + I) 

where PSWDi-1 is the PSWD on the previous day. PSWD was set to zero at the start of each 

season (1 July) and was not allowed to exceed zero (i.e. field capacity). PET is Penman 

potential evapo-transpiration, and R and I are rainfall and irrigation, respectively. 

3.2.10.2 Sheep liveweight gain (LWG) per hectare, average daily liveweight gain (ADLWG), 

and number of grazing days 

All sheep were weighed at 19-32 d intervals, usually at the end of each rotation in autumn 

and every second rotation in spring. Fasted live weights were measured immediately prior to 

and at the completion of each spring and autumn grazing period (Section 3.2.6). Unfasted 

live weights were measured between fasted live weight measurements. ADLWG was 

calculated using data from the measurement animals, and LWG per hectare was obtained 

from the liveweight changes of all animals. LWG was not measured from 11 April to 1 May 

2001 when pastures were deliberately grazed to a low post-grazing mass of 800-1200 kg 

DMlha with a pasture allowance of 1.0-1.5 kg DMlheadld. The number of grazing days per 

hectare (i.e. number of sheep/ha x number of days grazed) was recorded for each grazing 

period. 
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3.2.10.3 Pre-grazing pasture mass 

Pre-grazing pasture mass was measured the day animals were introduced to each plot. Post­

grazing pasture mass was measured the day animals were removed, and is described in 

Section 3.2.5. Measurements were made using a capacitance probe (Mosaic Systems Ltd., 

New Zealand). To minimise the coefficient of variation for pasture mass, each plot was 

divided into five equal areas or 'strata' and 10 probe readings were taken in each 'strata' 

(Cayley and Bird, 1996). 

The probe was calibrated on five occasions throughout each year to account for changes in 

botanical composition. Separate calibration equations were established for each treatment and 

pre- and post-grazing pasture mass. For each calibration, paired samples of probe reading and 

measured herbage mass were taken from 0.2 m2 quadrat cuts to 30 ± 2 mm above ground 

across a range of herbage mass. Samples were dried at 70°C for at least 24 h and weighed. 

The paired samples were then used to establish a linear equation by regression between 

capacitance probe readings and herbage mass. 

3.2.10.4 Botanical composition 

Botanical composition was measured on the day animals were introduced to each plot, by 

taking 25 'snip' samples (i.e. 50 g fresh weight samples cut to 30 mm above ground) of 

herbage across each plot using hand shears. Five samples were taken from each of the five 

'strata' in each plot and mixed together before sub-sampling. The fresh sub-samples, 

containing 200-400 pieces, were dissected into white clover, Caucasian clover, perennial 

ryegrass, invasive grasses, broadleaf weeds and dead material before dry weight of each 

component was measured. Some volunteer white clover (presumably 'Grasslands Huia') was 

detected in the Caucasian clover treatments in 1999/00 and 2000/01. The invasive grasses 

were mostly barley grass and smooth brome grass. 

3.2.10.5 Nutritive value 

The dried sub-samples of each clover species and grass were retained for determination of 

nutritive value. Ryegrass and clover samples from each plot were bulked into two replicates 

to represent herbage from the farmlets grazed by each of the eight treatment flocks. Bulked 

samples were ground in a mill to pass through a 1-mm stainless steel sieve (Cyclotec Mill, 
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USA). The crude protein (CP) concentration was obtained as N concentration x 6.25 using 

the Kjeldahl procedure (Kjltec Auto 1030 Analyser, Tectator, Sweden). The metabolisable 

energy (ME) concentration was obtained from the concentration of digestible organic matter 

in the dry matter (DOMD) x 0.16. The DOMD concentration was determined using an in 

vitro cellulase-based method (Adesogan et al., 2000). Analyses were performed by the 

Animal and Food Sciences Division, Lincoln University. 

3.2.10.6 Herbage mineral concentrations 

Samples of clover leaf plus petiole were hand-plucked in December 1998 and 1999, and as 

well as ryegrass leaf plus pseudostem in November 2001, for determination of herbage 

mineral (N, P, S, Mg, Ca, Na, K) concentrations. Samples were collected at -20 d regrowth, 

bulked into two replicates according to the eight treatment flocks, dried and ground. Analyses 

were performed by Celentis Analytical (AgResearch Ltd., New Zealand). In addition, clover 

leaf plus petiole samples collected in December 1998 were analysed for micronutrients and 

these results are given in Appendix 6. 

3.2.11 Statistical analysis 

Data were analysed using analysis of variance (ANOVA) procedures (GenStat, 1997). Years 

were treated as repeated measurements (Gomez and Gomez, 1984). The variability of annual 

and seasonal data was expressed as the standard error of the mean (s.e.m.) for the 3 years of 

measurement. Treatment means were compared using Fisher's protected least significant 

difference (l.s.d.) test whenever the ANOV A indicated that differences among treatments 

presented P<0.05 for all variables, except individual sheep LWG and nutritive value variables 

which used P<O.lO. To satisfy the requirement for constant variance in ANOVA, botanical 

composition percentages were arcsine transformed when values were outside a range of either 

0-30% or 70-100% (Sokal and Rohlf, 1981). Data are presented back-transformed with 95% 

confidence intervals calculated on the transformed data because the non-linear transformation 

meant that back-transforming the s.e.m. was not a valid option. 
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3.3 Results 

3.3.1 Sheep liveweight gain (LWG) per hectare 

Mean 1998-2001 annual sheep LWG per hectare was 10% greater (P<O.OOl) for CC-RG than 

WC-RG pastures under High-F conditions (Table 3.4). Sheep LWG per hectare was 7% 

lower (P<O.OOl) for CC-RG pastures under Low-F conditions, but the advantage (P<O.OOl) 

over WC-RG pastures was similar at 8%. In 1998/99, there were no significant differences in 

LWG per hectare between all four treatments. In 1999/00, sheep LWG per hectare was 16% 

greater (P<O.OOl) for CC-RGthan WC-RG pastures, and 9% greater (P<O.OOl) for High-F 

than Low-F conditions. In 2000/01, the advantage was 8% (P<O.OOl) for CC-RG pastures, 

and 7% (P<O.Ol) for High-F treatments. 

Table 3.4 Sheep liveweight gain per hectare from Caucasian c1over-ryegrass (CC-RG) 
and white c1over-ryegrass (WC-RG) pastures under high (High-F) and low 
(Low-F) soil fertility conditions from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. 

1998/99 1999/00 2000/01 Mean 

kg/ha 

High-F CC-RG 1243 1286a 1005a 1178a 

WC-RG 1198 1101e 909b 1069b 

Low-F CC-RG 1190 1173b 919b 1094b 

WC-RG 1162 1016d 868b 1015e 

s.e.m. 21.5 9.1 19.0 12.7 

Pc 0.107 <0.001 0.001 <0.001 

Pp 0.055 <0.001 0.004 <0.001 

PcxP 0.710 0.145 0.251 0.256 

Note: Details of soil fertility treatments are given in Section 3.2.3. Subscript C = clover species and F = soil 

fertility. Within columns, values with the same or no letter subscripts are not significantly different (a = 0.05). 

Treatment differences in sheep L WG per hectare occurred during both spring and autumn, 

except in spring 1998 when there were no significant differences between all four treatments 

(Figure 3.4). In spring 1999, sheep LWG per hectare was 16% greater (P<O.OOl) for CC-RG 

than WC-RG pastures, and 6% greater (P<O.OOl) for High-F than Low-F pastures. In spring 

2000, the advantage was -6% (P<0.05) for CC-RG pastures, and 5% (P<O.lO) for High-F 
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pastures. In autumn 1999, sheep LWG per hectare was 15% greater (P<O.OOI) from High-F 

than Low-F pastures. In autumn 2000, the advantage was 17% (P<O.OOI) for CC-RG 

pastures, and 14% (P<O.OOI) for High-F pastures. In autumn 2001, sheep LWG per hectare 

was 21 % greater (P<0.05) for CC-RG than WC-RG pastures under High-F conditions, but 

this advantage was lower under Low-F conditions at 9%. Sheep LWG per hectare in autumn 

1999 and autumn 2000 was -50% greater than in autumn 2001 for all treatments, because 

animal performance was not measured from 11 April to 1 May 2001 (Section 3.2.10.2). 
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Sheep liveweight gain per hectare from Caucasian c1over-ryegrass (CC) and 
white c1over-ryegrass (WC) pastures under high (H) and low (L) soil fertility 
conditions per grazing period from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. Bars represent standard error of the 
mean. tLiveweight gain was not measured from 11 April to 1 May 2001. 
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3.3.2 Average daily liveweight gain (ADLWG) 

Mean 1998-2001 sheep ADLWG was 141 g/headld on CC-RG pastures compared with 129 

g/headld (P<0.05) on WC-RG pastures (9% higher), but this was unaffected by soil fertility 

(Table 3.5). In 1998/99, there were no significant treatment differences. In 1999/00, 

ADLWG was 15% higher (P<O.OO1) for CC-RG than WC-RG pastures. In 2000/01, the 

advantage was 8% (P<O.Ol) for CC-RG pastures, and High-F treatments supported a 4% 

(P<0.05) higher ADLWG than Low-F treatments. 

Table 3.5 Average daily liveweight gain of sheep on Caucasian c1over-ryegrass (CC-
RG) and white c1over-ryegrass (WC-RG) pastures under high (High-F) and 
low (Low-F) soil fertility conditions from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. 

1998/99 1999/00 2000/01 Mean 

g/headld 

High-F CC-RG 148 148a 133a 143a 

WC-RG 143 127b 121c BOb 

Low-F CC-RG 143 146a 126b 138a 

WC-RG 139 128b 119c 128b 

s.e.m. 5.4 1.1 1.0 2.3 

Pc 0.453 <0.001 0.002 0.015 

PF 0.476 0.764 0.018 0.257 

PcxF 0.949 0.398 0.090 0.598 

Note: Details of soil fertility treatments are given in Section 3.2.3. Subscript C = clover species and F = soil 

fertility. Within columns, values with the same or no letter subscripts are not significantly different (a = 0.10). 

In spring 1998, there were no significant treatment differences in ADLWG, but in spring 1999 

ADLWG was 16% higher (P<O.Ol) for CC-RG than WC-RG pastures (Figure 3.5). In spring 

2000, the ADLWG advantage was 5% (P<O.Ol) for CC-RG pastures, and High-F conditions 

supported a 3% higher (P<O.lO) ADLWG than Low-F conditions. In autumn 1999, ADLWG 

was 13% higher (P<0.05) under High-F than Low-F conditions, and in autumn 2000 it was 

16% higher (P<0.05) for CC-RG than WC-RG pastures. In autumn 2001, the ADLWG 

advantage for CC-RG pastures was 14% (P<0.05). The ADLWG in autumn 2001 was ~40% 

lower than in autumn 1999 for all treatments. 
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Figure 3.5 

Spr. 1998 Aut. 1999 Spr. 1999 Aut. 2000 Spr. 2000 Aut. 2001 

Grazing period 

Mean individual sheep liveweight gain on Caucasian c1over-ryegrass (CC) and 
white c1over-ryegrass (WC) pastures under high (H) and low (L) soil fertility 
conditions per grazing period from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. Bars represent standard error of the 
mean. tLiveweight gain was not measured from 11 April to 1 May 2001. 
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3.3.3 Number of grazing days 

The mean 1998-2001 number of sheep grazing days was 5% greater (P<O.OOl) on High-F 

than Low-F soils, but was unaffected (P<0.644) by clover species (Table 3.6). In 1998/99, 

the number of grazing days averaged 8303 Iha for all four treatments. In 1999100, the High-F 

treatments had 9% more (P<O.OOl) grazing days than the Low-F treatments, and in 2000101 

the advantage was 4% (P<0.05) for High-F treatments. 

Table 3.6 Mean number of sheep grazing days for Caucasian clover-ryegrass (CC-RG) 
and white clover-ryegrass (WC-RG) pastures under high (High-F) and low 
(Low-F) soil fertility conditions from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. 

1998/99 1999/00 2000101 Mean 

nlha 

High-F CC-RG 8362 8650a 7175 8062a 

WC-RG 8359 8628a 7085 8024a 

Low-F CC-RG 8236 794h 6869 7682b 

WC-RG 8254 7876b 6869 7666b 

s.e.m. 105.9 60.5 108.6 57.4 

Pc 0.942 0.481 " 0.682 0.644 

Pp 0.293 <0.001 0.030 <0.001 

PcxP 0.925 0.724 0.682 0.848 

Note: Details of soil fertility treatments are given in Section 3.2.3. Subscript C = clover species and F = soil 

fertility. Within columns, values with the same or no letter subscripts are not significantly different (a = 0.05). 

The number of sheep grazing days under High-F conditions was 6% more (P<O.OOl) than that 

under Low-F conditions in spring 1999, but there were no significant treatment differences 

observed in spring 1998 and spring 2000 (Figure 3.6). In autumn 1999, there were no 

significant treatment differences, but in autumn 2000 the number of grazing days under High­

F conditions was 13% more (P<O.OOl) than under Low-F conditions. In autumn 2001, there 

was an interaction (P<0.05) between clover and soil fertility treatments; the number of 

grazing days was 3% greater for CC-RG than WC-RG pastures under High-F conditions, but 

was similar for both clovers under Low-F conditions. The number of sheep grazing days in 

autumn 1999 and autumn 2000 was -28% greater than in autumn 2001. 
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Figure 3.6 
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Grazing period 

Number of sheep grazing days for Caucasian c1over-ryegrass (CC) and white 
c1over-ryegrass (WC) pastures under high (H) and low (L) soil fertility 
conditions per grazing period from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. Bars represent standard error of the 
means. 
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3.3.4 Pre-grazing pasture mass 

Mean 1998-2001 pre-grazing pasture mass was 5% greater (P<O.OI) under High-F than Low­

F conditions, but was unaffected (P<0.362) by clover species (Table 3.7). In 1998/99, pre­

grazing pasture mass averaged 2230 kg DMiha for all four treatments, but in 1999/00 it was 

7% greater (P<O.OI) under High-F than Low-F conditions. In 2000/01, the advantage was 4% 

(P<0.05) for High-F conditions. 

Table 3.7 Mean pre-grazing pasture mass of Caucasian clover-ryegrass (CC-RG) and 
white clover-ryegrass (WC-RG) pastures under high (High-F) and low (Low-
F) soil fertility conditions from 1998-2001 in block H17 at Lincoln University, 
Canterbury, New Zealand. 

1998/99 1999/00 2000/01 Mean 

kgDMlha 

High-F CC-RG 2250 2590a 2190a 2340a 

WC-RG 2270 2520a 2100ab 2300ab 

Low-F CC-RG 2190 2390b 2070b 2220b 

WC-RG 2210 2370b 2060b 2210b 

s.e.m. 36 45 31 30 

Pc 0.733 0.287 0.154 0.362 

PF 0.119 0.002 0.028 0.004 

PcxF 0.970 0.653 0.245 0.515 

Note: Details of soil fertility treatments are given in Section 3.2.3. Subscript C = clover species and F = soil 

fertility. Within columns, values with the same or no letter subscripts are not significantly different (a = 0.05). 

Mean pre-grazing pasture mass was 5% greater (P<0.05) under High-F than Low-F 

conditions in spring 1999, but no significant treatment differences were observed in spring 

1998 and spring 2000 (Figure 3.7). In autumn 1999, there were no significant treatment 

differences, but in autumn 2000 pre-grazing pasture mass was 12% greater (P<O.OOI) under 

High-F than Low-F conditions. In autumn 2001, pre-grazing pasture mass was 7% greater 

(P<O.OI) for CC-RG than WC-RG pastures, and 5% greater (P<0.05) under High-F than 

Low-F conditions. 
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grazing period from 1998-2001 in block HI7 at Lincoln University, 
Canterbury, New Zealand. Bars represent standard error of the mean. 
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3.3.5 Botanical composition 

The mean 1998-2001 total clover content (sown clover plus volunteer white clover) on offer 

in CC-RG pastures (20%) was approximately double (P<O.OOI) that for WC-RG pastures 

(11 %), and was unaffected (P<0.47) by soil fertility (Figure 3.8). Volunteer white clover 

(presumably 'Grasslands Huia') detected in CC-RG pastures averaged 4% of the total DM. 

Ryegrass content was lower (P<O.OOI) for CC-RG (59%) than WC-RG (67%) pastures, but 

ingress of invasive grasses (mostly barley grass and smooth brome grass) was similar 

(P<0.61) for all four treatments (8%). Dead material averaged 14% and broadleaf weeds 

(1 %) were mostly chickweed (Stellaria media) and dandelion (Taraxacum officinale). 
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Figure 3.8 Mean botanical composition of Caucasian clover-ryegrass (CC) and white 
clover-ryegrass (WC) pastures under high (H) and low (L) soil fertility 
conditions from 1998-2001 in block H17 at Lincoln University, Canterbury, 
New Zealand. 

Total clover content was consistently greater (P<0.05) for CC-RG than WC-RG pastures 

over the 3 year duration (Figure 3.8). Volunteer white clover in CC-RG pastures was not 

detected in 1998/99, but averaged -5% in 1999/00 and 2000/01. There was a decrease over 

time in total clover content that was associated with the ingress of invasive grasses in all four 

pastures. Specifically, the annual total clover content for CC-RG and WC-RG pastures in 

1998/99 was 25% and 16%, compared with 18% and 11 % in 1999/00, and 13% and 5% in 

2000/01. Seasonal differences are presented in Figure 3.9. 
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Botanical composition of Caucasian c1over-ryegrass (CC) and white c1over­
ryegrass (WC) pastures under high (H) and low (L) soil fertility conditions per 
grazing period in block HI7 at Lincoln University, Canterbury, New Zealand. 

85 



3.3.6 Nutritive value 

The mean 1998-2001 annual CP concentration in clover herbage on offer was 1.5% greater 

(P<0.05) for Caucasian clover (30.2%) than white clover (28.7%), but the ME concentration 

was similar for both clover species at 12.5 MJ/kg DM (Table 3.8). For ryegrass, the mean 

annual CP and ME concentrations were similar for both pasture mixtures at 22.7% and 11.5 

MJ/kg DM, respectively. There were no significant differences between soil fertility 

treatments in mean CP and ME concentrations in clover and ryegrass, and nutritive value 

showed little variation between years and seasons. Additional nutritive value data for each 

grazing period are given in Appendices 3 and 4. 

3.3.7 Mineral concentrations 

Over 3 years, the mean P concentration in clover herbage was 0.33-0.35% while S averaged 

0.22% under both soil fertility conditions (Table 3.9). However, the mean P concentration in 

ryegrass herbage in November 2001 was 0.44% for High-F compared with 0.35% (P<O.OI) 

for Low-F. Similarly, the mean S concentration in ryegrass herbage was 0.49% for High-F 

compared with 0.42% (P<O.01) for Low-F. 

The mean N concentration in Caucasian clover herbage was 4.16% compared with 3.86% 

(P<O.OI) for white clover and 3.80% for ryegrass (Table 3.9). Similarly, the mean Ca 

concentration in Caucasian clover was 0.36% compared with 0.18% (P<0.05) for white clover 

and 0.70% for ryegrass. However, the mean Na concentration in ryegrass was 0.45% 

compared with 0.38% (P<0.05) for white clover and only 0.01 % for Caucasian clover. The N 

concentration in ryegrass was unaffected by clover species. 

The macro nutrient concentrations for the two clover species sampled in December 1998, 

December 1999 and November 2001 are given in Appendix 5. Additional results from 

analyses of micro nutrient concentrations in clover herbage in December 1998 are given in 

Appendix 6. 
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Table 3.8 Mean crude protein (CP) and metabolisable energy (ME) concentrations in 
clover and ryegrass green leaf herbage on offer in Caucasian clover-ryegrass 
(CC) and white clover-rye grass (WC) pastures under high (High-F) and low 
(Low-F) soil fertility conditions from 1998-2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. 

CP(%) ME (MJ/kg DM) 

'98/99 '99/00 '00/01 Mean '98/99 '99/00 '00/01 Mean 

Clover 

High-F CC 30.4a 29.9 30.2 30.2 12.5 12.6 12.5 12.5 

WC 28.6b 29.0 29.1 28.9 12.7 12.5 12.4 12.5 

Low-F CC 29.9a 29.9 30.5 30.1 12.5 12.6 12.4 12.5 

WC 28.2b 29.6 27.8 28.5 12.6 12.5 12.5 12.5 

s.e.m. 0.10 0.37 0.99 0.42 0.10 0.10 0.04 0.05 

Pc <0.001 0.203 0.143 0.041 0.140 0.373 1.000 1.000 

P F 0.053 0.476 0.648 0.594 1.000 1.000 1.000 1.000 

PcxF 1.000 0.476 0.478 0.745 0.182 1.000 0.308 1.000 

R~egrass 

High-F CC 23.9 23.1 22.5 23.2 11.6 11.5 11.9 11.7 

WC 23.0 22.4 22.5 22.7 11.4 11.3 11.7 11.5 

Low-F CC 23.3 22.9 22.1 22.7 11.4 11.4 11.7 11.5 

WC 22.9 22.2 21.4 22.2 11.5 11.4 11.7 11.6 

s.e.m. 0.52 0.34 0.21 0.26 0.08 0.10 0.05 0.05 

Pc 0.296 0.143 0.212 0.125 0.584 0.373 0.080 0.215 
. " '~ " -

PF 0.545 0.645 0.033 0.150 0.584 1.000 0.215 0.638 

PcxF 0.724 0.946 0.212 1.000 0.164 0.373 0.215 0.080 

Note: Details of soil fertility treatments are given in Section 3.2.3. Subscript C = clover species and F = soil 

fertility. Within columns, values with the same or no letter subscripts are not significantly different (a = 0.05). 
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Table 3.9 Mean 1998-2001 macro nutrient concentrations in clover leaves plus petioles 
and ryegrass leaves plus pseudo stems for Caucasian clover-ryegrass (CC-RG) 
and white clover-ryegrass (WC-RG) pastures under high (High-F) and low 
(Low-F) soil fertility conditions in block H17 at Lincoln University, 
Canterbury, New Zealand. 

Macro nutrient concentrations (%) 

N P S Mg Ca Na K 

Clovel 

High-F CC-RG 4.19a 0.35a 0.23 0.29a 1.37a O.Ole 2.77be 

WC-RG 3.9h 0.32b 0.22 0.26e 1.25b 0.33a 2.62e 

Low-F CC-RG 4.13a 0.33b 0.22 0.28b 1.32a O·01e 2.89ab 

WC-RG 3.80b 0.33b 0.22 0.27be 1.16e 0.27b 2.99a 

s.e.m. 0.041 0.002 0.003 0.004 0.015 0.007 0.044 

Pc 0.005 0.008 0.071 0.021 0.002 <0.001 0.659 

PF 0.120 0.030 1.000 0.571 0.016 0.029 0.011 

PcxF 0.608 0.006 0.116 0.071 0.249 0.029 0.069 

RyegrassB 

High-F CC-RG 3.80 0.43a 0.51a 0.21 0.74 0.43 2.64 

WC-RG 3.72 0.45a 0.48a 0.22 0.75 0.43 2.80 

Low-F CC-RG 3.86 0.34b 0.42b 0.19 0.63 0.37 2.93 

WC-RG 3.83 0.3h 0.42b 0.22 0.70 0.60 2.48 

s.e.m. 0.131 0.011 0.006 0.008 0.035 0.067 0.161 

Pc 0.703 0.104 0.219 0.102 0.291 0.191 0.442 

PF 0.585 0.004 0.001 0.391 0.108 0.452 0.943 

PcxF 0.861 0.423 0.103 0.194 0.457 0.191 0.153 

Note: A Clover data are from samples taken in December 1998, December 1999 and November 2001. B Ryegrass 

data are from samples taken in November 2001 only. Details of soil fertility treatments are given in Section 

3.2.3. Subscript C = clover species and F = soil fertility. Within columns and clover and ryegrass, values with 

the same or no letter subscripts are not significantly different (a = 0.05). 

88 



3.4 Discussion 

In the present study, CC-RG pastures were more productive than WC-RG pastures in terms 

of sheep LWG per hectare under both high (Olsen P 20 ug/ml, sulphate-S 12 ug/g) and low 

(Olsen P 11 ug/ml, sulphate-S 7 ug/g) soil fertility conditions. 

3.4.1 Effect of clover species 

The mean annual sheep LWG per hectare from CC-RG pastures (average 1136 kg) was about 

9% greater than that from WC-RG pastures (average 1042 kg) over the 3 years of this study 

(Table 3.4). This greater sheep LWG per hectare from CC-RG pastures was due to 9% 

greater ADLWG (Table 3.5) but a similar number of grazing days (Table 3.6) compared with 

WC-RG pastures. Given that herbage allowance was similar for each treatment (Section 

3.2.5) the difference in ADLWG was attributed to botanical composition and its effect on 

pasture nutritive value. Specifically, the higher ADLWG was probably the result of there 

being twice as much total clover content (Figure 3.8) of similar or better nutritive value 

(Table 3.8) in the CC-RG pastures than in the WC-RG pastures. 

It seems likely that the greater legume content in CC-RG pastures would have allowed sheep 

to consume a greater proportion of high quality clover herbage in their diet. At the grazing 

pressure imposed in this experiment, it is very likely that sheep were unable to select a better 

diet than the average offered and therefore the two would have been the same. However, 

LWG is difficult to attribute to anyone pasture component as the ratio of species on offer 

constantly changes due to selective grazing and plant growth rate (Milne et al., 1982). 

Nevertheless, previous studies have shown that increasing the legume content of pastures 

increases the proportion of legume in the diet (Clark and Harris, 1985; Gibb and Treacher, 

1984; Harris et al., 1998), thereby giving improved animal performance (Askin et al., 1987; 

Hyslop et al., 2000; Stevens et al., 1993). 

The greater legume content in CC-RG pastures shows that Caucasian clover is more 

productive than white clover in perennial ryegrass-based pastures under both high and low 

soil fertility conditions with irrigation. This is probably the result of the rhizomatous growth 

habit of Caucasian clover, which confers a greater competitive ability than the stolons of 

white clover under these grazed conditions. Recent studies have reported greater legume 
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contents for Caucasian clover than other legumes such as white and red clovers in mixtures 

with different grass species under well-fertilised, moist soil conditions (Cuomo et al., 2003; 

Moss et ai., 1996; Mourino et ai., 2003). In each case, the greater productivity of Caucasian 

clover has been attributed to its ability to persist and spread due to its underground rhizomes. 

Annual ADLWG ranged from 121 to 148 g/headld across all four treatments (Table 3.5), 

which is within the expected range for young female sheep grazing on perennial rye grass­

based pasture with a 10 to 30% clover content (Ryan and Widdup, 1997). The use of zero 

endophyte 'Ruanui' ryegrass and the maintenance of a high proportion of green leaf material 

(Figure 3.8) in the pastures ensured herbage of high nutritive value (Table 3.8). Animal 

disorders and production depressions associated with wild-type endophyte from infected 

ryegrass (Fletcher et ai., 1999) were also avoided by the use of zero-endophyte ryegrass. The 

high nutritive value of Caucasian clover herbage supports findings by other researchers that, 

like white clover, Caucasian clover is a high forage quality species (Section 2.4). Herbage 

mineral concentrations were similar in both species, except the Na concentration was lower in 

Caucasian (0.01 %) than white (0.30%) clover (Table 3.9). This difference is consistent with 

previous reports of Caucasian clover being a low Na (natrophobe) species, like lucerne and 

red clover (Edmeades and O'Connor, 2003; Jarvis et al., 1998). 

The CC-RG pastures supported a similar number of grazing days (Table 3.6) to the WC-RG 

pastures due to similar pre-grazing pasture mass (Table 3.7). This is in contrast with Moss et 

ai. (1996) who showed that CC-RG pastures had greater total DM yields (15.0 cf. 12.0 t 

DMiha/yr) and clover contents (28 cf. 10%) than WC-RG pastures in their fourth year under 

irrigated lowland conditions. The lack of differences in total DM yield may have been an 

artefact of measurements made during spring and autumn and not during mid summer (late 

December/January), when clover production is often greatest (Brougham, 1959), the variable 

grazing management imposed, and without optimum irrigation. This necessitated the 

experiment described in Chapter 4 to measure the DM production of the four pasture 

treatments under a standardised cutting regime using exclosure cages. 

3.4.2 Effect of soil fertility 

Over 3 years, the annual sheep LWG per hectare from High-F pastures (average 1124 kg) was 

about 7% greater than that from Low-F pastures (average 1055 kg), regardless of clover 
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species (Table 3.4). This greater sheep LWG per hectare on High-F pastures was due to a 5% 

increase in the number of grazing days compared with Low-F pastures (Table 3.6) but similar 

ADLWG (Table 3.5). The number of grazing days on a pasture, or carrying capacity, is a 

function of its total DM production (Coates and Penning, 2000). In this study, the greater 

annual number of grazing days on High-F compared with Low-F pastures is attributed to their 

5% greater mean annual pre-grazing pasture mass (Table 3.7). These animal and pasture 

production responses to increased soil fertility were marginal, but were within the range 

expected for sedimentary soils on lowland farms in New Zealand (Morton et ai., 1998; 

Morton et ai., 1999; Sinclair et ai., 1997). Thus, Caucasian clover was more productive than 

white clover under both soil fertility conditions, but both species responded to increased soil 

fertility (Olsen P and sulphate-S). 

The lack of significant difference between the High-F and Low-F treatments in ADLWG 

(Table 3.5) is principally attributed to the similar botanical composition (Figure 3.8) and 

herbage nutritive value (Table 3.8) for both soil fertility treatments. Specifically, the similar 

average total clover contents and CP and ME concentrations in clover herbage suggest that 

the Olsen P and sulphate-S levels in the Low-F treatments were adequate for the growth of 

both clover species. The similar clover herbage P (0.34%) and S (0.22%) concentrations from 

the High-F and Low-F pastures (Table 3.9) support this conclusion. Both clover species were 

able to meet their P and S requirements under Low-F conditions. Morton and Roberts (2001) 

also reported similar white clover contents with increased Olsen P in grazed dairy pastures. 

Also, it is possible that the variable grazing management used in this study, and 

measurements only in spring and autumn may have limited the ADLWG response. 

3.4.3 Seasonal production 

The greater annual sheep LWG per hectare from CC-RG pastures was due to greater sheep 

LWG per hectare than from WC-RG pastures during both spring (September­

December/January) and autumn (February-May/June) grazing periods (Figure 3.4). Hoggets 

in spring produced more live weight than lambs in autumn due to increased ADLWG (Figure 

3.5) and number of grazing days (Figure 3.6). However, the greater number of grazing days 

did not reflect mean pre-grazing pasture mass (Figure 3.7), which was similar for both grazing 

periods, because pasture allowance was greater for all treatments during spring (2.0-3.0 kg 

DMlheadld) than autumn (1.5-2.5 kg DMlheadld). Pasture allowance has been shown to 
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influence animal performance (Jagusch et al., 1981; Thompson et al., 1980), and it may have 

also influenced animal responses in this study. 

The CC-RG pastures had greater total clover contents than WC-RG pastures during both 

spring and autumn (Figure 3.9), which suggests that Caucasian clover is more productive than 

white clover during both of these periods. However, a more accurate assessment of the 

seasonal growth patterns of each species is required to determine their relative seasonal 

responses under these conditions. Furthermore, clover content in pastures is usually at its 

greatest during summer under irrigated conditions (Brougham, 1959; Rickard and Radcliffe, 

1976), but the high live weights of hoggets and shearing requirements in December/January 

resulted in LWG not being measured during summer in this study. Difficulties in achieving 

even irrigation also contributed to LWG not being measured during summer. Thus, the 

annual LWG per hectare measured in this study does not represent the minimum LWG 

achievable for each year. There is a need to measure the seasonality of production of the two 

clover species in greater detail. 

3.4.4 Botanical composition 

The between-year variation in botanical composition of the pastures gives an indication of the 

relative persistence of the two clover species (Figure 3.8). Specifically, the total clover 

content of CC-RG and WC-RG pastures declined over the 3 year period, which indicates that 

both species were declining under high soil N availability and grass competition after the 

initial legume dominant phase. However, the clover content of CC-RG pastures declined at a 

slower rate than that of WC-RG pastures, highlighting the ability of Caucasian clover to 

maintain a greater clover content beyond the initial white clover-dominant phase. The rapid 

decline in white clover content is consistent with other studies which have reported decreases 

in white clover plant populations where water status and soil fertility are adequate in the 

presence of aggressive grasses (e.g. Brock and Hay, 2001). In the present study, the greater 

persistence of Caucasian clover may be attributed to its rhizomatous growth form allowing it 

to be more competitive with grasses under rotational grazing. The superior clover content in 

CC-RG pastures maintained after 4 years justifies the use of Caucasian clover in permanent 

lowland irrigated pastures. 
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The total clover content of Caucasian clover pastures in 1999/00 (Year 3) and 2000/01 (Year 

4) contained about 5% volunteer white clover (Figure 3.8). This was probably white clover 

arising from hard seed that survived in the soil for 16 years since the area was last in 

permanent pasture (R.J. Lucas, pers. comm.). This mixture of the two clover species 

represents what is most likely to happen even where Caucasian clover is sown without white 

clover because of the widespread presence of white clover seed in New Zealand pastoral land. 

Elliot et al. (1998) discussed the possibility of poor sociability between Caucasian and white 

clovers on the basis of rhizobia incompatibility. However, in the present study Caucasian 

clover, from an agronomic perspective, has appeared to be complementary towards white 

clover. The compatible association between Caucasian clover and other legume species such 

as white clover is important in its potential role as the base legume component of permanent 

pastures. 

3.4.5 Irrigation 

This experiment has demonstrated the advantage of Caucasian clover over white clover under 

both high (Olsen P 20 uglml, sulphate-S 12 uglg) and low (Olsen P 11 uglml, sulphate-S 7 

uglg) soil fertility conditions with irrigation. However, soil moisture was not always non­

limiting. Specifically, rainfall and irrigation in 1998/99 and 2000/01 did not meet PET 

demand during summer and autumn (Figure 3.1), because of an inability to apply sufficient 

irrigation water during these times. As a result, the PSWD (Figure 3.2) probably would have 

limited pasture production. The consequence of this limitation was evident during autumn 

2000/01 with a decrease in sheep LWG per hectare (Figure 3.4) and ADLWG (Figure 3.5) 

due to a reduced number of grazing days (Figure 3.6) and pre-grazing pasture mass (Figure 

3.7). This occurred when PSWD had reached -300 mm (Figure 3.2) but was also partly due 

to heavy mealy bug damage to all pastures during this time of the year (Section 3.2.8). This 

meant that soil moisture and biotic factors would have had a confounding affect on the 

relative performance of the two clover species. Specifically, if Caucasian clover has an 

advantage over white clover under water stress conditions (Section 2.3.2) then this could have 

added to its productive advantage. This necessitated the water use experiment in Chapter 5 to 

isolate temperature and moisture influences on seasonal production of the two clover species. 
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3.4.6 Establishment of Caucasian clover 

In most comparative studies Caucasian clover has received concessions for its slow 

establishment in the first year (e.g. Watson et ai., 1996). Where this has not been considered, 

the performance of Caucasian clover has often been compromised, usually by excessive grass 

competition at establishment (Hurst et ai., 2000). Excessive grass competition in the first 

year can delay the time Caucasian clover takes to make a useful contribution to pasture 

production and quality by 2--4 years (Moss et ai., 1996). 

In the present experiment, the aim was to provide for successful establishment of Caucasian 

and white clovers by sowing them as pure species into a seedbed that had been sprayed to 

control weeds (Section 3.2.2). The clovers were sown in spring which allowed several 

months of active growth to achieve well-established plants. Following this initial clover 

establishment period, perennial ryegrass was direct drilled at a moderate sowing rate of 15 

kg/ha, which kept the competitive impact low. The influence of slower establishment in 

Caucasian clover (Section 2.5) was thereby eliminated and both clovers were able to make 

significant contributions to pasture production as soon as Year 1 (Black, 1998). The CC-RG 

pastures then matched the sheep L WG per hectare from WC-RG pastures in Year 2 and gave 

superior LWG per hectare in Years 3 and 4 (Table 3.4). However, lost animal production 

during the first 1-2 years of establishment is unacceptable on most lowland farms in New 

Zealand (Taylor and Watson, 1998). Thus, further research is required into the establishment 

of Caucasian clover, and grass sowing rates and sowing dates for pasture mixtures (Chapters 6 

and 7). 
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3.5 Conclusions 

This study showed that Caucasian clover was more productive than white clover in irrigated 

ryegrass pastures under both low (Olsen P 11 /lglml, sulphate-S 7 /lglg) and high (Olsen P 20 

/lglml, sulphate-S 12 /lglg) soil fertility conditions. Specific conclusions were: 

1. The CC-RG pastures produced -9% more annual sheep LWG per hectare than WC­

RG pastures due to 9% higher ADLWG but similar grazing days, regardless of soil 

fertility. The greater ADLWG on CC-RG was attributed to greater legume content of 

similar nutritive value, but similar pre-grazing herbage mass. 

2. Both High-F treatments produced -7% more annual sheep LWG per hectare than 

Low-F treatments due to 5% more grazing days but similar ADLWG. The similar 

ADLWG was associated with similar legume content and herbage nutritive value. 

3. The CC-RG pastures showed greater productivity than the WC-RG pastures during 

both spring and autumn, but direct comparisons of seasonal legume performance were 

limited by variable grazing management and water status. Further research is required 

to assess the relative seasonal productivity of each species under fully-irri~ated and 

dryland conditions. 

4. Caucasian clover showed greater persistence than white clover under rotational 

grazing in irrigated rye grass pastures, but the contribution of both legume species to 

pre-grazing herbage mass decreased over time. 

5. Successful establishment of Caucasian clover was critical to achieving increased 

legume contents. Temporal separation of species achieved this in this experiment but 

other methods of establishment require examination if Caucasian clover is to be 

accepted for on-farm use. 
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Chapter 4 

Seasonal dry matter production and nitrogen accumulation rates 
of Caucasian clover-ryegrass and white clover-ryegrass pastures 
under high and low fertility soil conditions 

4.1 Introduction 

In Chapter 3, results showed that CC-RG pastures produced more sheep LWG per hectare 

than WC-RG pastures under both high (Olsen P 20 Ilg/ml, sulphate-S 12 Ilg/g) and low 

(Olsen P 11 Ilg/ml, sulphate-S 7 Ilg/g) soil fertility conditions. This advantage was attributed 

to the ability of Caucasian clover to maintain a greater clover content in the pasture than white 

clover. However, direct comparisons of seasonal clover productivity were limited by variable 

grazing management over seasons. 

In New Zealand, the seasonal pattern of pasture production is dependent on total N yield (DM 

production x % N in the herbage) and is strongly influenced by temperature under adequate 

moisture conditions (Section 2.3). Radcliffe and Baars (1987) reported that in spring 

(August-October) pasture production increased by 8 kg DMlhaJ°C increase in 10 cm soil 

temperature from 5.5 to 10 DC, but in autumn (March-May) the response was reduced to 5 kg 

DMlhaJ°C from 7 to 16°C. Crush (1979) reported that in spring and autumn clover N 

accumulation and N2 fixation rates in pastures were correlated with clover DM production 

rates and temperature. However, N2 fixation and grass production in pastures are also 

strongly influenced by soil N supply (Hoglund et ai., 1979; Peri et ai., 2002a). These 

relationships were based on WC-RG pastures under standard measurement conditions (Ball et 

ai., 1979; Radcliffe, 1974). They provide a basis for comparisons with other pasture species 

such as Caucasian clover and different management and soil fertility regimes. 

Thus, the initial objective of the research described in this chapter was to use DM production 

and N accumulation rates for CC-RG and WC-RG pastures to assess the relative seasonal 

clover performance under High-F and Low-F conditions when temperature (seasonal) varied. 

Exclusion cages were used to standardise regrowth durations and therefore eliminate any 

effects of variable grazing management over seasons. 
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4.2 Materials and methods 

4.2.1 Site description 

The experiment area was located in block H17 of the Field Service Centre research area at 

Lincoln University. Sections 3.2.1-3.2.9 describe the site, meteorological conditions, 

treatments and management. 

4.2.2 Measurements 

4.2.2.1 Meteorological conditions 

Temperature eC), rainfall (mm), Penman PET (mm) and solar radiation (MJ/m2/d) were 

recorded at Broadfields meteorological station (Crop & Food Research Ltd.) located 3 km 

north of the site (Figures 3.1-3.3). 

4.2.2.2 Dry matter production 

DM production was measured using 32 exclusion cages (1.0 x 1.4 m) with one cage in each 

plot. To minimise the coefficient of variation for DM production, each plot was divided into 

10 equal 'strata'. The cages were shifted to new pre-trimmed sites in the next stratum after 

each harvest. The caged areas were trimmed to a uniform height of 30 ± 5 mm at the 

beginning of 24-37 d regrowth periods (Table 4.1). Regrowth periods were extended to 85-

87 d in winter. Total yields at each measurement are given in Appendix 7. 

DM production was measured at 6-15 d intervals in the caged areas using a capacitance 

probe. Measurements began immediately post trimming and finished the day the next 

regrowth period began. For the final measurement, the probe was calibrated using a paired 

sample of probe reading and herbage mass from a 0.2 m2 quadrat cut to 30 ± 5 mm above 

ground. Sub-samples were taken to determine botanical composition before dry weight was 

measured. 

Data from each harvest was accredited to a standard date (Radcliffe, 1974) at approximately 

monthly intervals from September to May, with one standard winter date in July (Table 4.1). 

This enabled years to be treated as repeated measurements. The standard date refers to the 
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mean mid-point date of each regrowth period from 17 September 1998 to 5 June 2001. If the 

mid-point dates of two regrowth periods occurred in the same month (e.g. Periods 7 and 8 in 

1999/00) then data for that month were taken as the mean of both periods. 

Table 4.1 Regrowth period start and finish dates and duration from 17 September 1998 to 
6 June 2001 in block H17 at Lincoln University, Canterbury, New Zealand. 

Season Regrowth Start Finish Duration * Standard 

reriod date date (d) date 
1998/99 1 17 Sep. 14 Oct. 27 27 Sep. 

2 16 Oct. 11 Nov. 26 26 Oct. 
3 11 Nov. 9 Dec. 28 23 Nov. 
4 9 Dec. 12 Jan. 34 20 Dec. 
5 13 Jan. 10 Feb. 28 18 Jan. 
6 10 Feb. 10 Mar. 28 18 Feb. 
7 11 Mar. 7 Apr. 27 23 Mar. 
8 7 Apr. 10 May 33 21 Apr. 
9 4 May 8 Jun. 35 21 May 

1999/00 1 11 Jun. 6 Sep. 87 26 JuI. 
2 10 Sep. 6 Oct. 26 27 Sep. 
3 8 Oct. 1 Nov. 24 26 Oct. 
4 3 Nov. 29 Nov. 26 23 Nov. 
5 26 Nov. 20 Dec. 24 20 Dec. 
6 23 Dec. 17 Jan. 25 18 Jan. 
7 19 Jan. 14 Feb. 26 18 Feb. 
8 15 Feb. 14 Mar. 28 18 Feb. 
9 16 Mar. 10 Apr. 25 23 Mar. 
10 13 Apr. 8 May 25 21 Apr. 
11 9 May 8 Jun. 30 21 May 

2000101 1 15 Jun. 8 Sep. 85 26 JuI. 
2 13 Sep. 11 Oct. 28 27 Sep. 
3 13 Oct. 13 Nov. 31 26 Oct. 
4 13 Nov. 11 Dec. 28 23 Nov. 
5 11 Dec. 9 Jan. 29 20 Dec. 
6 9 Jan. 5 Feb. 27 18 Jan. 
7 5 Feb. 5 Mar. 28 18 Feb. 
8 5 Mar. 2 Apr. 28 23 Mar. 
9 2 Apr. 30 Apr. 28 21 Apr. 
10 30 AQr. 6 Jun. 37 21 May 

Note: *Standard date refers to the mean mid-point date of each regrowth period from 17 September 1998 to 5 
June 2001. If the mid-point date of two regrowth periods occurred on the same month then data for that month 
were taken as the mean of the two periods (e.g. Periods 7 and 8 in 1999/00). 
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4.2.2.3 Botanical composition 

The fresh sub-samples, containing 200-400 pieces, were separated into white clover, 

Caucasian clover, perennial ryegrass, invasive grasses, broadleaf weeds and dead material 

before dry weight of each component was measured. Some volunteer white clover was 

detected in the CC-RG treatments in 1999/00 and 2000/01. The invasive grasses were mostly 

barley grass and smooth brome grass. 

4.2.2.4 % N and N yield 

The dried sub-samples of clover and grass were retained for determination of % N using the 

Kjeldahl procedure. Dead, reproductive material and broadleaf weeds were excluded from 

analyses on the basis that their contribution to N accumulation was likely to be small. Grass 

and clover samples from each plot were bulked into two replicates of the four treatments 

representing the eight 'farmlets' of four plots/flock of sheep (i.e. plots 1-16 and 17-32; 

Chapter 3) and ground in a mill to pass through a I-mm stainless steel sieve. Analyses were 

performed by the Animal and Food Sciences Division, Lincoln University. Total, clover and 

grass N yields were calculated using Equations 2.1 and 2.2. 

4.2.2.5 Clover N2 fixation 

A N2-fixation study was carried out in 1998/99 and 1999/00 (Widdup et al., 2001). It used an 

additional 10 exclusion cages (1.0 x 1.4 m) in five replicates of the two clover treatments 

under High-F conditions. The caged areas were selected to ensure that adequate populations 

of the treatment clover species were present. In the CC-RG pastures, areas were selected 

with minimal amounts of volunteer white clover. 

N2 fixation was assessed using the 15N enrichment method (Ledgard et al., 1985). Beginning 

in October 1998, the caged areas received labelled ammonium sulphate (40 atom% 15N) at 

0.05 g N/m2 at approximately 8-weekly intervals to label the soil. The caged areas were not 

moved in 1998/99, but new areas were selected every 8 weeks in 1999/00. At approximately 

4-weekly intervals, pasture samples were collected from a 0.2 m2 quadrat in the centre of each 

caged area for determination of botanical composition before dry weight was measured. 

Separate additional sub-samples of clover and grass herbage were dried, finely ground and 
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analysed for total Nand 15N concentrations using a mass spectrometer (Anca 20-20 stable 

isotope analyser). 

The proportion of clover N fixed from atmospheric N2 (PN) was calculated using Equation 

2.3, and the amount of N fixed (kglha) in the cut clover herbage was calculated using 

Equation 2.4. 

4.2.3 Statistical analysis 

Significant (P<0.05) treatment effects were determined by ANOV A procedures (GenStat, 

1997). Years were treated as repeated measurements (Gomez and Gomez, 1984). The 

variability of annual and seasonal data was expressed as the standard error of the mean 

(s.e.m.) for the 3 years of measurement, or 2 years (1999/00 and 2000/01) for the standard 

July date which was not measured in 1998/99 (Table 4.1). Treatment means were compared 

using Fisher's protected least significant difference (l.s.d.) test whenever the ANOVA 

indicated that differences among treatments presented P<0.05. Botanical composition 

percentages were arc-sine transformed as necessary using the method described in Section 

3.2.11. 
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4.3 Results 

4.3.1 Seasonal dry matter production rates 

4.3.1.1 Total pasture 

Total pasture production rate averaged 19 kg DMiha/d for both High-F treatments from July 

to September (Figure 4.1a). Total pasture production rates increased rapidly for CC-RG 

pastures until late October and then increased at a slower rate to a maximum of 94 kg 

DMiha/d in November. This rate declined to -75 kg DMiha/d in December/January and 54 

kg DMiha/d in March, followed by a faster decline to 15 kg DMiha/d in May. These 

production rates were 10-15 kg DMlha/d higher (P<0.05) than for WC-RG pastures from late 

October to mid February, but similar at the beginning and end of the season. Under Low-F 

conditions, total pasture production rates were similar between clovers from July to May, and 

both clovers reached -81 kg DMiha/d in late OctoberlNovember (Figure 4.1b). Total pasture 

production rates then declined to -65 kg DMiha/d in mid December/January followed by a 

faster decline to average 47 kg DMiha/d in March and 16 kg DMiha/d in May. 

4.3.1.2 Clover 

Clover production rate averaged 1 kg DMiha/d for both clovers from July to September, under 

High-F conditions (Figure 4.1a). Clover production rate then increased for CC-RG pastures 

to a maximum of 29 kg DMiha/d in November before it decreased to 20-26 kg DMiha/d in 

December-February and 11 kg DMiha/d in March. These clover production rates were 5-16 

kg DMiha/d higher (P<0.05) than for WC-RG pastures from September to March. Under 

Low-F conditions (Figure 4.1b), clover production rates for CC-RG pastures reached a 

January peak of 24 kg DMiha/d before they decreased to 11 kg DMiha/d in March, compared 

with 11 and 6 kg DMiha/d (P<0.05) for WC-RG pastures. 

4.3.1.3 Grass 

Grass production rate peaked at -63 kg DMiha/d in October but then dropped to 31-60 kg 

DMiha/d from December to March for all treatments (Figure 4.1). Grass production rate was 

similar between clover treatments from December to February under High-F conditions, but 
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7-9 kg DMlha/d lower (P<O.05) for CC-RG than WC-RG pastures under Low-F conditions. 

Grass production rate was -14 kg DMlha/d for both clover treatments in May. 

4.3.2 Botanical composition 

Total clover content (sown clover plus volunteer white clover) for CC-RG pastures was 

greater (P<O.OOl) than for WC-RG pastures from September to April, reaching 35% in 

December compared with 19% for white clover (Figure 4.2). Volunteer white clover in CC­

RG pastures contributed 10% of total DM in January, but averaged 7% or less in other 

months. Perennial ryegrass was the dominant species, but invasive grasses contributed as 

much as 24% of total DM in November before declining to 5-9% in January for all 

treatments. Dead material was 9-13% in December-January and 12-15% in April. Broadleaf 

weeds never exceeded 6%. 
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Figure 4.1 Mean 1998-2001 monthly dry matter production rates of total pasture (closed 
symbols), clover (open symbols) and grass (shaded symbols) components for 
Caucasian clover-ryegrass (~) and white clover-ryegrass (.) pastures under 
high (a) and low (b) soil fertility conditions in block H17 at Lincoln University, 
Canterbury, New Zealand. Bars represent standard error of the mean. 
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Mean 1998-2001 monthly botanical composition of Caucasian c1over-ryegrass 
(CC) and white c1over-ryegrass (WC) pastures under high (H) and low (L) soil 
fertility conditions in block H17 at Lincoln University, Canterbury, New 
Zealand. 
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4.3.3 Relationships between dry matter production rate and temperature 

4.3.3.1 Total pasture production rate 

Early spring (July-September) pasture production rate was linearly related (R2 2 0.97; s.e. :s 
4.4) to mean 10 cm soil temperature between 6.2 and 10.2 °C for all treatments (Figure 

4.3a,b). There was a subsequent decline in pasture production rate as mean soil temperature 

increased to a maximum of 18.9 °C. However, autumn pasture production rate was linearly 

related (R2 2 0.95; s.e. :s 4.2) to mean soil temperature between 8.2 and 18.9 °C for all 

treatments except High-F WC-RG, which declined above lS.9 0c. Early spring pasture 

production rate increased by -12.4 kg DMiha/°C for all treatments, which was three times that 

achieved in autumn (-4.0 kg DMiha/°C). 

4.3.3.2 Clover production rate 

For spring clover production, there was a linear relationship (R2 2 0.90; s.e. :s 1.8) between 

mean soil temperature and clover production rate from 6 to IS °C for all treatments (Figure 

4.3c,d). Both clovers started production at the same time (above -S.3 °C), but for every 

degree increase in soil temperature, Caucasian clover produced another 3.2 kg DMiha 

compared with 1.3 kg DMiha (P<O.OS) for white clover under High-F conditions. The 

response was lower for Caucasian clover under Low-F conditions at 2.S kg DMiha/°C 

compared with 1.S kg DMiha/°C (P<0.07) for white clover. 

For autumn clover production, exponential functions (R2 2 0.99) were fitted to clover 

production rates, which declined as mean soil temperature dropped from 18.9 to 8.2 °C 

(Figure 4.3c,d). It was notable that the production rate of Caucasian clover was affected more 

than white clover during this period. For example, Caucasian clover produced -19 kg 

DMiha/d at 18.9 °C compared with 9 kg DMiha/d for white clover, but both clovers produced 

less than 1 kg DMiha/d at 8.2 °C. 

4.3.3.3 Grass production rate 

Grass production rate was linearly related (R2 2 0.9S; s.e. :s 4.4) to mean soil temperature 

between 6.2 and 10.2 °C in spring, but declined as mean soil temperature increased to 18.9 °C 

in summer (Figure 4.3e,f). Autumn grass production rate was linearly related (R2 2 0.97; s.e. 
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::s 1.0) to mean soil temperature between 8.2 and 15.9 °C, but then declined at 18.9 °C for all 

treatments. Grass production increased by -10 kg DMihafOC in spring, but decreased by -3 

kg DMiha/°C in autumn, above aT b of -4.2 °C for all treatments. 

Figure 4.3 
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4.3.4 Seasonal herbage N % and N accumulation rates 

4.3.4.1 Seasonal herbage N% 

There was no significant effect of soil fertility on the N% in clover and grass herbage and 

therefore seasonal data are presented for the two clover species treatments only (Figure 4.4). 

The N% in clover herbage showed little seasonal variation, ranging between approximately 

4.00 and 4.50%, but tended to be lower in spring and summer than in autumn and winter. The 

N% in Caucasian clover herbage was ~0.16-0.30% higher than in white clover herbage from 

October to December and from March to April, but similar in other months. There was no 

significant effect of the two clover species on the N% in grass herbage, which ranged between 

3.00 and 3.80% in November and May, respectively. 
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Figure 4.4 Mean N % in clover (~,.) and grass (~,o) herbage for Caucasian clover­
ryegrass (~,~) and white clover-ryegrass (.,0) pastures in block HI7 at 
Lincoln University, Canterbury, New Zealand. Bars represent standard error of 
the mean. 
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4.3.4.2 Seasonal N accumulation rates 

4.3.4.2.1 Total N accumulation rate 

Total N accumulation rates in harvested herbage averaged 0.4 kg N/haJd for both High-F 

treatments from July to September (Figure 4.Sa). Total N accumulation rates increased 

rapidly for CC-RG pastures until late October and then increased at a slower rate to a 

maximum of 3.4 kg N/haJd in November. This rate declined to -2.6 kg N/haJd in 

December/Januaryand 1.9 kg N/haJd in March, followed by a faster decline to O.S kg N/haJd 

in May. These N accumulation rates were 0.S-0.7 kg DMlhaJd higher (P<O.OS) than for WC­

RG pastures from late October to mid February, but similar at the beginning and end of the 

season. Under Low-F conditions, total N accumulation rates were generally similar between 

clovers from July to May, and both clovers reached 2.4-2.7 kg N/haJd in late 

OctoberlNovember (Figure 4.Sb). Total N accumulation rate was correlated (R2 = 0.90, 

P<O.OOl) with total DM production (Figure 4.1). 

4.3.4.2.2 Clover N accumulation rate 

Clover N accumulation rate was correlated (R2 = 0.99, P<O.OOl) with clover DM production 

rate (Figures 4.1 and 4.S). Under High-F conditions, the N accumulation rate of Caucasian 

clover peaked at 1.3 kg N/haJd in November before declining to between 1.1 and 0.9 kg 

N/haJd from December to February. These N accumulation rates were 0.S-O.7 kg N/haJd 

higher (P<O.OOl) than for white clover from November to February. Similar patterns 

occurred under Low-F conditions where the N accumulation rate of Caucasian clover was 0.9 

kg N/haJd in November and 0.7 kg N/haJd in February compared with 0.6 and 0.4 kg N/haJd 

(P<O.OOl) respectively for white clover. 

4.3.4.2.3 Grass N accumulation rate 

A correlation (R2 > 0.91, P<O.OOl) occurred between grass N accumulation and DM 

production rates (Figures 4.1 and 4.S). For all treatments, grass N accumulation rate peaked 

at -2.3 kg N/haJd in November but then dropped to between 1.0 and 1.7 kg N/haJd from 

December to March. Grass N accumulation rate was similar between clover treatments under 

High-F conditions, but 0.2-0.4 kg N/haJd lower (P<O.OS) for Caucasian than white clover 

treatments under Low-F conditions. 
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Figure 4.5 N accumulation rate of total pasture (closed symbols), grass (shaded symbols) 
and legume (open symbols) components for Caucasian clover-ryegrass ( .. ) 
and white c1over-ryegrass (e) pastures under (a) high and (b) low soil fertility 
conditions in block H17 at Lincoln University, Canterbury, New Zealand. Bars 
represent standard error of the mean. 
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4.3.5 Seasonal N2 fixation 

4.3.5.1 Proportion of clover N from N2jixation (PN) 

The proportion of clover N derived from N2 fixation (PN) varied seasonally, and was generally 

similar for both clover species (Figure 4.6). The PN values tended to be highest in late 

spring/summer at about 75% and lowest in late autumn at 45% for both species. There was 

no significant correlation between PN and legume DM production rate. 
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Figure 4.6 Proportion of total clover N derived from N2 fixation (PN) for Caucasian 
clover-ryegrass (~) and white clover-ryegrass (.) pastures under high soil 
fertility conditions from 1998-2000 in block H17 at Lincoln University, 
Canterbury, New Zealand. Bars represent standard error of the mean. 
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4.3.5.2 N2jixation rates 

There was large seasonal variation in the rate of N2 fixation by both clover species (Figure 

4.7). In 1998/99, the N2-fixation rate of Caucasian clover was 0.46-1.21 kg N/ha/d between 

November and March compared with 0.17-0.24 kg N/ha/d for white clover. In 1999/00, the 

N2-fixation rate of Caucasian clover was greater in the summer period but similar to white 

clover in the cooler autumn period. It is likely that the low NovemberlDecember values in 

1999/00 were due to low soil moisture levels, as irrigation was not initiated on the pastures 

until mid December. 
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Figure 4.7 Seasonal N2-fixation rate for Caucasian clover-ryegrass (A) and white clover­
ryegrass (.) pastures under high soil fertility conditions from 1998-2000 in 
block H17 at Lincoln University, Canterbury, New Zealand. Bars represent 
standard error of the mean. 
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4.3.6 Annual dry matter yield and composition 

4.3.6.1 Total DM yield 

Averaged over 3 years, the annual total DM yield was 1.3 tlha greater (P<O.OS) for CC-RG 

than WC-RG pastures under High-F conditions, but similar under Low-F conditions (Table 

4.2). Annual total DM yields differed between years, but the treatment effects were consistent 

in 1998/99 and 2000/01. In 1999100, total DM yield was similar for both pasture mixtures 

under High-F conditions, but was 1.1 tlha greater (P<O.OS) for CC-RG than WC-RG pastures 

under Low-F conditions. 

4.3.6.2 Clover DM yield 

The CC-RG pastures averaged nearly double (P<O.OOI) the annual clover DM yield of WC­

RG pastures under Low-F conditions, but the advantage was O.S tlha greater under High-F 

conditions (Table 4.2). This interaction (P<O.OS) was not evident for mean annual clover 

content; CC-RG pastures averaged 2S% clover compared with 14% for WC-RG pastures 

(P<O.OOI) regardless of soil fertility. Annual clover DM yields decreased over the 3 years for 

both clover species, but the CC-RG pastures consistently produced double (P<O.OOI) the 

clover DM of WC-RG pastures under both High-F and Low-F conditions in each year, and 

particularly under High-F conditions in 1998/99. The greater clover yields corresponded to 

the annual clover content of CC-RG pastures averaging 32% in 1998/99,22% in 1999/00 and 

22% in 2000/01, compared with 20%, 13% and 9% respectively for WC-RG pastures. 

4.3.6.3 Grass DM yield 

The mean annual grass DM yield was -1 tlha lower (P<O.OOI) for CC-RG than WC-RG 

pastures, and -1 tlha greater (P<O.OOI) under High-F than Low-F conditions (Table 4.2). 

Annual grass DM yields differed between years, but treatment effects were consistent in 

1999/00 and 2000/01. In 1998/99, grass DM yield was unaffected by clover species or soil 

fertility treatments. 
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Table 4.2 Dry matter (DM) yield of total pasture, clover and grass for Caucasian clover-
ryegrass (CC-RG) and white clover-rye grass (WC-RG) pastures under high 
(High-F) and low (Low-F) soil fertility conditions from 1998 to 2001 in block 
H17 at Lincoln University, Canterbury, New Zealand. 

1998/99 1999/00 2000/01 Mean 

tlha 

Total DM yield 

High-F CC-RG 17.8a 18.6a 16.2a 17.5a 

WC-RG 15.7b 18.0ab 15.0b 16.2b 

Low-F CC-RG 15.3b 17.3b 14.9b 15.8be 

WC-RG 15.7b 16.2e 14.3b 15.4e 

s.e.m. 0.47 0.33 0.25 0.25 

Clover DM yield 

High-F CC-RG 5.8a 3.9a 3.5a 4.4a 

WC-RG 3.0e 2.h 1.3b 2.1e 

Low-F CC-RG 4.6b 4.0a 3.2a 3.9b 

WC-RG 3.1e 2.3b 1.3b 2.2e 

s.e.m. 0.26 0.19 0.18 0.15 

Grass DM yield 

High-F CC-RG 11.2 13.2b 11.4b 11.9b 

WC-RG 11.5 14.2a 12.5a 12.8a 

Low-F CC-RG 10.0 11.5e lO.4e 1O.7e 

WC-RG 11.4 12.5b 11.8ab 11.9b 

s.e.m. 0.42 0.31 0.25 0.24 

Clover content 

% 

High-F CC-RG 33a 21a 22a 25a 

WC-RG 19b lIe 9b 13b 

Low-F CC-RG 30a 23a 21a 25a 

WC-RG 20b 14b 9b 14b 

s.e.m. 1.3 1.0 1.0 0.8 

Note: Details of soil fertility treatments are given in Section 3.2.3. Within columns and variables, values with 

the same or no letter subscripts are not significantly different (a=O.05) according to Fisher's protected l.s.d. test. 
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4.3.7 Annual herbage N% and N yield 

4.3.7.1 Herbage N% 

Mean N% in clover herbage was significantly higher (P<O.01) for Caucasian clover than for 

white clover during 1998/99 and 1999/00, although the mean difference was only ~0.15% 

(Table 4.3). Mean N% in grass herbage was similar for both CC-RG and WC-RG pastures, 

and both High-F and Low-F treatments over the 3 years. 

Table 4.3 Mean clover and grass herbage N% for Caucasian clover-ryegrass (CC-RG) 
and white clover-ryegrass (WC-RG) pastures under high (High-F) and low 
(Low-F) soil fertility conditions from 1998/99 to 2000/01 in block H17 at 
Lincoln University, Canterbury, New Zealand. 

1998/99 1999/00 2000/01 Mean 

----------%----------
Clover herbage N 

High-F CC-RG 4.78a 4.19a 4.23 4.38a 

WC-RG 4.60b 4.09b 4.07 4.25b 

Low-F CC-RG 4.48c 4.24a 4.13 4.30b 

WC-RG 4.33d 4.lOb 4.07 4.15c 

s.e.m. 0.018 0.017 0.051 0.016 

Grass herbage N 

High-F CC-RG 3.11 3.19 3.67 3.30 

WC-RG 3.21 3.10 3.68 3.32 

Low-F CC-RG 3.13 3.10 3.50 3.22 

WC-RG 3.04 3.13 3.71 3.30 

s.e.m. 0.055 0.014 0.036 0.030 

Note: Details of soil fertility treatments are given in Section 3.2.3. Within columns and variables, values with 

the same or no letter subscripts are not significantly different (11=0.05) according to Fisher's protected l.s.d. test. 
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4.3.7.2 Total N yield 

Averaged over 3 years, the annual total N yield (clover plus grass) was 78 kglha greater 

(P<0.05) for CC-RG than WC-RG pastures under High-F conditions, but similar under Low­

F conditions (Table 4.4). Annual total N yields differed between years, but the treatment 

effects were consistent. 

4.3.7.3 Clover N yield 

The CC-RG pastures produced nearly double (P<0.001) the average annual clover N yield of 

WC-RG pastures under Low-F conditions, but the advantage was -30 kglha greater under 

High-F conditions (Table 4.4). Annual clover N yields decreased over the 3 years for both 

clover species, but in all years, CC-RG pastures yielded approximately double (P<0.001) the 

clover N yield of WC-RG pastures. This yield advantage was similar under both High-F and 

Low-F conditions in 1999/00 and 2000/01, but particularly under High-F conditions in 

1998/99. 

4.3.7.4 Grass N yield 

The mean annual grass N yield was -40 kglha lower (P<0.001) for CC-RG than WC-RG 

pastures, and -40 kglha greater (P<0.001) under High-F than Low-F conditions (Table 4.4). 

Annual grass N yields differed between years, but treatment effects were generally consistent. 
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Table 4.4 Nitrogen (N) yield of clover, grass and total pasture (clover plus grass) for 
Caucasian clover-ryegrass (CC-RG) and white clover-ryegrass (WC-RG) 
under high (High-F) and low (Low-F) soil fertility conditions from 1998/99 to 
2000/01 in block H17 at Lincoln University, Canterbury, New Zealand. 

1998/99 1999/00 2000/01 Mean 

kglha 

Total N yield 

High-F CC-RG 621a 556a 570a 582a 

WC-RG 503b 493b 517b 504b 

Low-F CC-RG 514b 491b 498b 501bc 

WC-RG 476b 464b 494b 478c 

s.e.m. 16.4 11.7 7.9 8.5 

Clover N yield 

High-F CC-RG 275a 158a 149a 194a 

WC-RG 136c 82b 53b 91c 

Low-F CC-RG 203b 164a 130a 166b 

WC-RG 135c 92b 52b 93c 

s.e.m. 11.7 7.8 7.4 6.2 

Grass N yield 

High-F CC-RG 346ab 398a 421b 388b 

WC-RG 367a 410a 464a 414a 

Low-F CC-RG 310b 327b 368c 335c 

WC-RG 342ab 372b 442ab 385ab 

s.e.m. 12.3 8.8 9.0 7.1 

Note: Details of soil fertility treatments are given in Section 3.2.3. Within columns and variables. values with 

the same letter subscripts are not significantly different (a=O.05) according to Fisher's protected l.s.d. test. 
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4.3.8 Annual N2 fixation 

Annual clover DM yield in the N2-fixation experiment (Widdup et al., 2001) reflected 

differences reported in Tables 4.2 and 4.4, although in 1998/99 CC-RG produced four times 

(P<O.Ol) as much clover DM as WC-RG (Table 4.5). The proportion of total clover N 

derived from N2 fixation (PN) was similar for Caucasian and white clovers. For both clovers, 

N2 fixation contributed an average of 57% (52-61 %) of their total herbage N over the 2-year 

period but, compared with white clover, Caucasian clover fixed twice as much N because of 

its greater productivity. The amount of fixed N in clover herbage varied greatly between 

years, although in both years, Caucasian clover accumulated more fixed N than white clover. 

Table 4.5 Annual clover dry matter (DM) production, nitrogen (N) concentration and N2 
fixation for Caucasian clover-ryegrass (CC-RG) and white clover-ryegrass 
(WC-RG) pastures under high soil fertility conditions during 1998/99 and 
1999/00 in block H17 at Lincoln University, Canterbury, New Zealand. 

Clover Total N pN
a FixedN 

DM (%) (%) in herbage 

(kg/ha) (kg/ha) 

Mean 

CC-RG 4550 4.60 56.6 118 

WC-RG 1890 4.57 56.4 50 

s.e.m. 392 0.025 0.98 9.8 

P 0.009 0.443 0.892 0.008 

1998/99 

CC-RG 5330 4.61 55.8 138 

WC-RG 1420 4.52 52.0 34 

s.e.m. 648 0.031 1.40 15.9 

p 0.013 0.092 0.128 0.010 

1999/00 

CC-RG 3770 4.59 57.4 98 

WC-RG 2370 4.62 60.8 66 

s.e.m. 204 0.039 0.94 5.0 

P 0.008 0.552 0.062 0.010 

Note: a Proportion of total clover N from N2 fixation. 
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4.4 Discussion 

In this experiment, results showed that Caucasian clover was more productive than white 

clover during spring and summer under low soil fertility conditions (Olsen P 11 Ilg/ml, 

sulphate-S 7 Ilg/g), but the advantage was greatest under high soil fertility conditions (Olsen P 

20 Ilg/ml, sulphate-S 12 Ilg/g). 

4.4.1 Pasture production under high soil fertility conditions 

4.4.1.1 Annual production 

The annual total clover yield of CC-RG pastures under High-F conditions was double (220%) 

that of WC-RG pastures, resulting in an 8% increase in annual total pasture production (Table 

4.2). This production advantage was consistent with Moss et al. (1996) who reported greater 

total pasture yields and clover contents for CC-RG (15.0 t DMlha, 28% clover) than WC-RG 

(12.2 t DMlha, 10% clover) in their third year with border-dyke irrigation and adequate soil 

fertility in Canterbury. 

The annual total pasture yields for CC-RG (17.5 t DMlha) and WC-RGG (16.2 t DMlha) 

pastures were greater than the annual total yield (10.2 t DMlha) expected for WC-RG 

pastures in Canterbury (at Winchmore, -60 km SW of Lincoln) with irrigation and adequate 

soil fertility (Rickard and Radcliffe, 1976). The likely reason for this difference is the longer 

regrowth periods (14 d cf. -28 d) used in the present experiment compared with those used by 

Rickard and Radcliffe (1976). Baars (1982) showed the influence of cutting interval on both 

annual production and the seasonal pattern of production, with 28-d cuts giving 22% more 

annual DM than 14-d cuts due to the longer regrowth period. 

4.4.1.2 Seasonal production 

The greater annual clover yield of CC-RG under High-F conditions was due to 5-15 kg 

DMiha/d higher clover production rates than WC-RG from September to March (Figure 

4.1a). The difference was even greater from October to February with the total pasture 

production rate differing by 10-15 kg DMiha/d. These results highlighted the production 

potential of Caucasian clover in perennial ryegrass pastures during spring and summer with 
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adequate soil fertility and irrigation. The seasonal patterns of DM production offer insights 

into the timing and extent of environmental factors operating on the two clover species. 

4.4.1.2.1 Spring (July-November) 

Clover production rates in the mixed grass/clover pastures averaged only 1 kg DMiha/d from 

June to September (Figure 4.1a) when temperatures and solar radiation were lowest (Figure 

3.3). The relationships between DM production rates and mean daily 10 cm soil temperature 

showed that clover production rate increased linearly with increasing temperature from July to 

November (Figure 4.3). This result indicates that temperature was the main factor regUlating 

solar radiation-driven clover production in spring, and that soil moisture (Figure 3.2) was 

non-limiting at this time. 

The magnitude of the clover production response to temperature is of particular interest in late 

spring when high quality pasture for peak lactation from ewes and cows is required to offset 

the decline in grass nutritive value. In the present experiment, the greater clover contents in 

spring for CC-RG (Figure 4.2) were due to a greater response of Caucasian clover (3.2 kg 

DMiha/°C) than white clover (1.3 kg DMiha/°C) to increasing soil temperatures from 6 to 15 

°C (Figure 4.3c). This means that for every degree increase in spring soil temperature from 6 

to 15°C Caucasian clover is expected to produce double the amount of white clover in 

perennial rye grass pastures under High-F conditions. The explanation for this difference is 

related to the physiology of Caucasian clover and white clover that will be described in 

Chapter 5. 

The total pasture production response to temperature from 5.5 to 10 °C in early spring (July­

September) was similar (-12 kg DMiha/°C) for CC-RG and WC-RG pastures (Figure 4.3a), 

highlighting the rapid growth of rye grass at this time. However, grass production rates 

slowed at temperatures above 10 °C (Figure 4.3c). This enabled Caucasian clover to compete 

successfully with ryegrass and increase total pasture production. It is likely that this decline 

in grass production coincided with late flowering, when reproductive tillers mature and few 

vegetative tillers remain, giving slower leaf expansion (Anslow, 1966) and regrowth. 

Radcliffe and Baars (1987) reported that this reduction occurs even if soil moisture and N are 

non-limiting. 
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For both pasture mixtures, the total pasture production response to temperature in spring (12 

kg DMfha/°C) was greater than the response of 8 kg DMfha/°C from 5.5 to 10 °C predicted for 

WC-RG by Radcliffe and Baars (1987). It is likely that this difference was due to the longer 

cutting interval used in this experiment (28-30 d) compared with that used (-14 d) in the 

series of standardised experiments (Radcliffe, 1974) summarised by Radcliffe and Baars 

(1987). This difference highlights a limitation of using published seasonal pasture production 

data for future comparisons of different species or management regimes. 

4.4.1.2.2 Summer (December-February) 

For both pasture mixtures, clover production rates decreased in summer (Figure 4.3), when 

soil temperatures were increasing from 15 to 18°C (Figure 3.3). This suggests that despite 

best efforts with irrigation, DM production was probably limited by soil moisture at this time 

(Figure 3.2). However, in summer Caucasian clover had the greatest advantage over white 

clover, with 10-16 kg DMfha/d higher clover and total pasture production rates (Figure 4.1), 

and twice as much total clover content (Figure 4.2). These differences highlight the superior 

productivity of Caucasian clover during summer and suggest that it will be most suited to 

environments where increased summer clover production is important and summer droughts 

are rare. 

The likelihood that soil moisture was limiting for clover growth in summer means that the 

influence of temperature on seasonal DM production could not be isolated. It is possible that 

Caucasian clover was more productive because of its greater response to temperature (Section 

4.4.1.2.1). However, it is also possible that Caucasian clover had an ability to remain 

productive under moisture-limiting conditions. This leads to the hypothesis that Caucasian 

clover uses water more efficiently than white clover, or is able to access soil moisture from 

deeper in the profile due to its perennial taproot (Forde et ai., 1989). Other legume species 

with deep taproot systems such as lucerne can extract water from a greater depth than shallow 

rooting species such as ryegrass and white clover (Evans, 1978). These ideas also led to the 

experiment described in Chapter 5 which was designed to isolate the influences of 

temperature and water status on seasonal production by the two clover species. 

Thus, Caucasian clover has potential to increase total pasture production rates during spring 

and summer. Total pasture production rates for CC-RG ranged from 55-90 kg DMfha/d from 
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September to March (Figure 4.1), which was higher than the range of values reported for 

irrigated WC-RG pastures (33-56 kg DMiha/d) at Winchmore, Canterbury (Rickard and 

Radcliffe, 1976). This indicates that Caucasian clover would be suitable for increasing 

summer pasture production and quality in lowland pastoral systems with adequate P and S 

fertiliser. 

4.4.1.2.3 Autumn (March-May) 

Total pasture, clover and grass production rates all responded to changes in mean soil 

temperature, but production rates were higher in spring than at similar temperatures in autumn 

(Figure 4.3). Radcliffe and Baars (1987) also reported a difference in spring and autumn 

production rate responses to temperature for WC-RG pasture. Peacock (1975) attributed this 

difference to changes in reproductive development and assimilate partitioning in perennial 

rye grass during spring and autumn. In the present experiment, inadequate soil moisture 

(Figure 3.2) and insect pest damage (Section 3.2.8) during autumn would have exaggerated 

this difference. However, for both pasture mixtures the total production rate response (4-5 kg 

DMiha/°C) to temperature from 16 to 8 °C (Figure 4.3) was similar to that reported for white 

clover-ryegrass in autumn by Radcliffe and Baars (1987). 

The decline in clover DM production rate with decreasing temperatures was greater for 

Caucasian (from 11 to 1 kg DMiha/d) than white (from 7 to 1 kg DMiha/d) clover (Figure 

4.3c). Caucasian clover may therefore be more sensitive to decreasing temperatures in 

autumn than white clover. This is an issue related to the growth and development of the two 

clover species that will also be dealt with in Chapter 5. The difference suggests that the 

greater autumn clover content described for CC-RO over WC-RG pastures in Chapter 3 was 

due to higher clover production rates in late summer (when 10 cm soil temperatures were 

above 15°C) rather than in autumn. This implies that the superiority of Caucasian clover over 

white clover may not be as great during autumn as it is during spring and summer. 
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4.4.2 Pasture production under low soil fertility conditions 

In this experiment, the Low-F treatment had a mean Olsen P of 11 Ilg/ml and a mean 

sulphate-S level of 7 Ilg/ g. 

4.4.2.1 Annual yield 

The annual clover yield of CC-RG under Low-F conditions (3.9 t DMlha) was 74% greater 

than that of WC-RG pastures (2.3 t DMlha). This production advantage was -0.5 t DMiha 

less than that under High-F conditions, and contributed to a total pasture yield which was 

similar to that of WC-RG under Low-F conditions (average 15.6 t DMlha). The annual white 

clover yield was similar under both High-F and Low-F conditions, and both white clover 

treatments had similar P and S concentrations in their herbage (Section 3.3.7). This indicates 

that soil fertility was non-limiting for white clover production under Low-F conditions. Thus, 

the seasonal pattern of white clover production under Low-F conditions needs no further 

analysis. But it is useful to understand when soil fertility (i.e. P and S) became limiting for 

Caucasian clover production. 

4.4.2.2 Seasonal yield 

It is possible to establish when soil fertility became limiting for Caucasian clover production 

by comparing seasonal production rates under High-F and Low-F conditions. The clover 

production rates showed an obvious difference only in November when the production rate of 

Low-F Caucasian clover was -7 kg DMiha/d (-20%) less than the corresponding treatment 

under High-F conditions (Figure 4.1). At this time temperature (Figure 3.3) and soil moisture 

(Figure 3.2) were probably ideal for clover production. But the influence of temperature and 

soil moisture probably overrode the limiting effect of soil fertility on Caucasian clover 

production during the rest of the season. 

Thus, temperature and soil moisture appear to be the main factors affecting the seasonal 

production of Caucasian and white clovers in intensive lowland conditions. The experiment 

described in Chapter 5 was therefore designed to focus on the effects of temperature and 

moisture on the seasonal production of the two species under non-limiting soil fertility (pH, P, 

K, and S) conditions. 
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4.4.3 Nitrogen yield and N2 fixation 

4.4.3.1 Annual N yield and N2jixation 

Caucasian clover and white clover had similar proportions of total N (Table 4.3) and fixed N2 

in their herbage (Table 4.5), which indicates that both clovers have a similar ability to fix N2 

in the presence of perennial ryegrass, under irrigated and high soil fertility conditions. The N 

yields of total pasture, clover, and grass (Table 4.4) were directly related to the amounts of 

DM produced (Table 4.2). Similarly, the amount of N2 fixed per hectare was directly related 

to the amount of clover DM produced by the two clover species (Table 4.5). Caucasian 

clover produced four times more DM than white clover in 1998/99 (5330 cf. 1420 kg DMlha) 

and this was associated with four times the amount of N fixed (138 cf. 34 kg N/ha). In 

1999/00, Caucasian clover produced 50% more DM than white clover, and the annual amount 

of N fixed in the CC-RG pastures was therefore 50% greater than that in the WC-RG 

pastures. The N2 fixation study was only conducted on the high fertility soil treatments, but 

given the small difference in clover DM production and N yield between the two treatments it 

is unlikely that soil fertility had much influence on the N2-fixing ability of each clover 

species. 

In the N2 fixation study, the CC-RG pastures had exceptionally high clover contents in 

1998/99, which can be partly explained by the management of the N2 fixation plots. Four 

weekly cutting with no excreta return for 8 months accentuated the clover component and 

depressed the grass component. In 1999/00, 15N was applied to a new caged area every 8 

weeks, a management allowing greater exposure of plots to normal grazing and excreta return. 

As a result, the clover contents in 1999/00 were lower than in 1998/99 (Widdup et al., 2001). 

4.4.3.2 Seasonal N yield and N2jixation 

The N accumulation rates were closely correlated with DM production rates, which in tum 

were correlated with temperature during spring and autumn, and were possibly influenced by 

moisture stress during summer. Therefore, any environmental factor regUlating clover DM 

production would affect N yield in a similar way. This was demonstrated by the seasonal 

patterns of N accumulation which were similar to those for seasonal DM production (Figures 

4.1 and 4.5). 
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The mean N% in clover herbage was similar for both species and was relatively constant 

throughout the year at about 4.0 to 4.5%, indicating that N was non-limiting for clover growth 

(Figure 4.4). In contrast, the mean N% in grass herbage decreased from -3.6% in May to 

-3.0% in November, which suggests that grass production may have been limited by N stress 

during this time of year (Figure 4.3). Although the mean N% in clover herbage was relatively 

constant over time, both clover species showed variation in PN across seasons of the year 

(Figure 4.6). The PN was highest during late spring/summer (-65-95%) and lowest during 

autumn (-45%) for both clover species. Ledgard et al. (2001) attributed lower PN levels 

during autumn and early spring to low temperatures reducing clover production, coupled with 

increased soil mineral N during these periods. Hoglund et al. (1979) reported that the level of 

soil mineral N has a major modifying effect on clover N2 fixation - as soil mineral N 

availability increases, N2 fixation decreases. High PN occurred during late spring/summer 

when clover production rates increased with increasing temperatures and soil mineral N levels 

are normally lower owing to rapid growth and high N uptake by grass (Widdup et al., 2001). 

Consequently, the seasonal pattern of N2 fixation rates for each species varied greatly over 

seasons, but was generally greater for Caucasian clover than white clover during spring and 

summer (Figure 4.7), due to Caucasian clovers greater production rate during those seasons. 
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4.5 Conclusions 

In the absence of variable grazing management over seasons, this experiment has shown that 

Caucasian clover was more productive than white clover on low fertility soils (Olsen P 11 

~glml, sulphate-S 7 ~glg), but particularly on high fertility soils (Olsen P 20 ~glml, sulphate­

S 12 ~glg) during spring and summer. Specific conclusions were: 

1. The CC-RG pastures on High-F soil had 0.5-0.7 kg DMiha/d (20-30%) greater total 

N accumulation rates than WC-RG pastures due to 0.5-0.7 kg N/ha/d (120-190%) 

greater clover N accumulation rates from October to February. 

2. There was less advantage for CC-RG pastures on Low-F soils with total N 

accumulation rates that were similar to those for WC-RG pastures, but clover N 

accumulation for CC-RG pastures was still 50-120% higher than WC-RG pastures 

from October to February. 

3. Clover N accumulation rate was closely correlated with clover DM production rate, 

which was correlated with temperature during spring and autumn. For every degree 

increase in spring 10 cm soil temperature, Caucasian clover produced another 3.2 kg 

DMiha compared with 1.3 kg DMiha. In autumn, Caucasian clover produced ~ 19 kg 

DMiha/d at 18.9 °C compared with 9 kg DMiha/d for white clover, but both clovers 

produced less than 1 kg DMiha/d at 8.2 dc. Despite irrigation, summer clover DM 

production was probably influenced by soil moisture which was less than optimal. 

4. Both clovers had similar proportions of fixed N in their herbage and therefore similar 

N-fixing ability in irrigated ryegrass pastures on high fertility soil. The amount of N 

fixed per hectare by Caucasian and white clovers was directly related to clover DM 

production. 

In summary, the results presented in this chapter have shown that Caucasian clover would be 

expected to be more productive than white clover in spring and summer, and the advantage 

would be greatest with adequate levels of available P and S. However, there is a lack of 

information on the mechanisms that contributed to the seasonal production advantage. In the 

following chapter the reasons for these differences in production between the two clovers are 

in vestigated. 
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Chapter 5 

Water use efficiency, growth and development of Caucasian and 
white clovers under irrigated and dryland conditions 

5.1 Introduction 

In Chapter 4, results showed that Caucasian clover was more productive than white clover in 

irrigated ryegrass pastures particularly during summer. This advantage was partly attributed 

to a greater response to wann temperatures, but may also have been due to its greater 

productivity under water stress conditions. Other studies have reported Caucasian clover to 

be more productive than white clover in mixtures with different perennial grass species under 

summer dry conditions (Black and Lucas, 2000; Watson et al., 1998). These agronomic 

results suggest that Caucasian clover is potentially more drought tolerant than white clover, 

but there is limited information about the mechanisms responsible for such results. 

Understanding plant growth and development responses to temperature and water status is 

necessary to understand differences in seasonal production between species. Specifically, leaf 

photosynthesis rate (as an indicator of potential growth) and leaf appearance rate per shoot 

apex (vegetative development) are important components of seasonal clover production that 

are strongly regulated by temperature (Haycock, 1981; Woledge and Dennis, 1982) and water 

status (Guobin and Kemp, 1992; Johns, 1978). Furthermore, there are no comparisons of the 

water use efficiency (WUE) and water extraction patterns of Caucasian and white clovers 

(Section 2.6.2). White clover is an inefficient user of water compared with grasses (Johns and 

Lazenby, 1973b), and has a shallow nodal root system compared with the deep taproot system 

of Caucasian clover (Section 2.2). 

Thus, the initial objective of the research described in this chapter was to compare the DM 

production, WUE, and water extraction patterns of Caucasian and white clovers when 

temperature and moisture differed, but fertility was non-limiting. The second objective was to 

relate any differences in seasonal DM production to the growth (leaf photosynthesis rate) and 

development (leaf appearance rate) characteristics of each species. To do this, monocultures 

of the two clover species were established under fully irrigated and dryland (rain-fed) 

conditions. 
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5.2 Materials and methods 

5.2.1 Site description 

5.2.1.1 Location 

The experimental area was located on flat land in Iversen Field block 10 of the Field Service 

Centre research area at Lincoln University, Canterbury, New Zealand. 

5.2.1.2 Soil 

The soil is a Wakanui silt loam (Udic Ustochrept, USDA Soil Taxonomy). General 

descriptions (Cox, 1978) state that Wakanui silt loam soils have 0.18-0.35 m of unifonn silt 

loam topsoil overlaying variable textural layers that range from fine silt to loamy sand or sand 

in texture. Wakanui soils are imperfectly drained and display strong mottling below 0.7 m 

which indicates periods of water logging (Watt and Burgham, 1992). The available water 

holding capacity ranges from 120 to 180 mmlm depth (Watt and Burgham, 1992; Webb et al., 

2000). For the same soil in Iversen Field block 8 (~30 m from the site), the total water 

holding capacity was measured as 270-350 mmlm depth, of which -50% is expected to be 

available (Brown, 1999; Inch, 1998). Depths to the underlying gravels were reported to be 

more than 2.3 m. 

5.2.1.3 Meteorological conditions 

5.2.1.3.1 Rainfall, evapo-transpiration and irrigation 

The experiment was conducted over 2 years (Years 1 and 2). The first year (2000/01) was the 

driest with annual rainfall (485 mm from 1 July-30 June) 28% below the long-tenn mean 

(LTM) of 670 mm, but Penman PET was similar to the LTM of 1060 mm (Table 5.1). 

However, in the second year (2001/02) annual rainfall (699 mm) was 4% above the LTM and 

PET was 10% below the LTM. The amount of irrigation water applied was 507 mm in 

2000/01 and 251 mm in 2001/02. Details of irrigation management are given in Section 

5.2.3. 
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Table 5.1 

Year 

2000/01 

2001/02 

LTM 

Rainfall, Penman potential evapo-transpiration (PET) and the amount and 
timing of irrigation water applied for two years (1 July-30 June) and the long­
term mean (LTM) for Iversen 10 at Lincoln University, Canterbury, New 
Zealand. 

Rainfall 

(mm) 

485 

699 

670 

PET 

(mm) 

1048 

953 

1060 

Irrigation Timing of 

(mm) irrigation 

507 21 Nov.-20 Apr. 

299* 19 Nov.-24 Mar. 

Note: Rainfall and PET data were obtained from Broadfields meteorological station located 3 km north of the 

site. *Inc1udes 48 mm of irrigation water applied from 22 August and 20 September because rainfall had not 

recharged soil water completely in winter. At this time, 166 mm was also applied to the dryland treatment. 

Monthly rainfall was variable over the two seasons, ranging from ~6 mmlmonth in February­

April 2001 to 125 mm in January 2002 (Figure 5.1). Monthly PET followed a similar pattern 

in each season, increasing from a minimum of ~30 mm in July to a maximum of between 120 

and 170 mm in December before decreasing to a minimum again in June. Mean daily vapour 

pressure followed a similar pattern, ranging from ~8 Pa in J une/Jul y to ~ 14 Pa in 

January/February. 
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Monthly rainfall (bars) and Penman potential evapo-transpiration (PET, .) 
from 1 July 2000 to 30 June 2002. Data were obtained from Broadfields 
meteorological station (3 km north of the site), Canterbury, New Zealand. 
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5.2.1.3.2 Temperature and solar radiation 

The mean daily air temperature followed a similar pattern in each season, ranging from 4-8 

°C in June-August to 15-17 °C in February (Figure 5.2). The mean daily total solar radiation 

followed a similar pattern each season, increasing from a minimum of 4-5 MJ/m2/d in 

June/July to a maximum of 20-25 MJ/m2/d in December. 
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Mean daily air temperature (.) and mean daily solar radiation (bars) from 1 
July 2000 to 30 June 2002. Temperature was recorded at the site. Solar 
radiation data were obtained from Broadfields meteorological station (3 km 
north of the site), Canterbury, New Zealand. 
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5.2.2 Pasture establishment 

The experiment used a split-plot design with three replicates of fully irrigated or dryland 

treatments as main plots. Sub-plots (4.2 x 6.0 m) were Caucasian and white clovers. 

The experimental area had previously contained a kabuli chickpea (Cicer arietinum L.) 

irrigation experiment (Anwar, 2001), but had been in perennial ryegrass pasture for 8 months 

prior to this experiment. Prior to sowing, the experimental area was cultivated using 

conventional methods to produce a firm and fine textured seedbed. Sulphur superphosphate 

(8% P, 19% S) at 250 kg/ha was applied during cultivation, based on soil test results in July 

1999 (Table 5.2). Further tests in May 2001 indicated that soil fertility was adequate for 

maximum clover growth. 

Table 5.2 Soil test (0-150 mm) results in July 1999 and May 2001 for Iversen 10 at 
Lincoln University, Canterbury, New Zealand. 

pH Olsen P S04-S Ca++ K+ Mg++ Na+ 

(H2O) (Ilg/ml) (Ilg/g) (meq/100 g) 

July 1999 6.2 27 5 7.2 1.0 1.0 0.14 

May 2001, 6.2 25 8 8.2 1.1 1.1 0.24 

Note: Soil samples were analysed using Ministry of Agriculture and Fisheries Quick Test (MAF QT) procedures. 

On 9 November 1999, 'Grasslands Demand' white clover (2 kg/ha) and hexaploid 'Endura' 

Caucasian clover (8 kg/ha) were sown as monocultures. Clover seed was lime-coated and 

inoculated with the R. trifolii strain CC275e for white clover and ICC148 for Caucasian 

clover. Sub-plots were drilled with an 0yjoord cone seeder at 150 mm row spacing and a 

target depth of 15 mm. 

By 25 January 2000, both clovers had established only 40 plants 1m2, or equivalent to about 

23% of sown seed established. 1000 coated seed weights were 4.40 g for Caucasian clover 

and 1.20 g for white clover. Thus, on 17 February 2000 more Caucasian (16 kg/ha) and white 

(4 kg/ha) clover seed was broadcast during grazing in an attempt to increase the clover 

populations and accelerate the establishment of complete canopies. 
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5.2.3 Irrigation 

In the first year (1999/00) all plots were irrigated to prevent a soil water deficit of 25 mm to 

0.5 m soil depth to ensure clovers established. Irrigation treatments were imposed from 

2000/01 onward. Irrigation water was applied post-grazing at a rate of 8-10 mm/h using a T­

tape irrigation system. Water was applied with the aim of preventing the development of a 

soil water deficit of > 100 mm to 1.5 m depth using a soil water budget: 

Equation 5.1 A = IPET - (R + I) 

where the amount of water required (A) is equal to the difference between PET (mm/d) and 

rainfall (R) plus irrigation (I) in the previous period. 

The amount of water applied (Table 5.1) was measured using a flow rate meter. From 22 

August to 20 September 2001 dryland treatments received 166 mm and irrigated treatments 

received 48 mm of irrigation water because rainfall had not recharged soil water completely 

in winter. This returned the Caucasian clover treatments to 15-20 mm below field capacity 

(FC) and the white clover treatments to 35---45 mm below FC. Details of the amount and 

timing of irrigation are given in Appendix 8. 

5.2.4 Grazing management 

In 1999/00 the experimental area was grazed with young sheep at 4-6 week intervals when 

1500-2500 kg DMiha had accumulated. From then on the experimental area was grazed for 

4-14 d duration, at 28-37 d intervals. Regrowth periods were extended to 45-70 d in the cool 

May-September period. Details of the timing and duration of regrowth periods are given in 

Appendix 9. 

5.2.5 Weeds and insect pests 

Weed control included the herbicide '2,4-DB' (a.i. 2,4-DB at 2.4 kg a.i./ha) on 23 December 

1999 and regular hand weeding of mainly wireweed (Polygonum aviculare). In September 

each season, the herbicide 'Gallant' (a.i. haloxyfop at 250 g a.i.lha) was sprayed to control 

mainly annual poa (Poa spp.) and barley grass. On 24 November 1999, the insecticide 
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'Chlor-P 480EC' (a.i. chlorpyrifos at 240 g a.i.lha) was sprayed to control greasy cutworm 

(Agrotis ipsilon) that caused ~20% loss of emerged clover plants in all sub-plots. 

5.2.6 Measurements 

5.2.6.1 Meteorological conditions 

Air temperature caC) was recorded from a single sensor placed in a Stevenson screen adjacent 

on site. Temperatures were recorded every 5 minutes and integrated and logged every hour 

with a data logger (DT100 data-taker) to determine daily mean temperatures. Rainfall (mm), 

PET (mm) and solar radiation (MJ/m2/d) were recorded at Broadfields meteorological station 

(Crop & Food Research Ltd.) located 3 km north of the site in Iversen 10. 

5.2.6.2 Dry matter production 

DM production was measured at 7-15 d intervals in 2000/01 and 2001/02 using a capacitance 

probe. Measurements began immediately post grazing and finished on the day of the next 

grazing. For the final measurement, the probe was calibrated using a paired sample method 

(Section 4.2.2.2). This involved 0.2 m2 quadrat cuts to 30 ± 5 mm above ground from each 

sub-plot. Sub-samples were taken to determine botanical composition before dry weight was 

measured. 

5.2.6.3 Botanical composition and bare ground percentage 

The fresh sub-samples, containing 200-400 pieces, were separated into white clover, 

Caucasian clover, weeds and dead material before dry weight of each component was 

measured. The percentage of bare ground was determined pre-grazing using point analysis at 

100 points in each sub-plot. 

5.2.6.4 Volumetric soil water content 

In August 2000, one aluminium neutron probe access tube was installed in the centre of each 

plot to 2.3 m depth. Also at this time, two stainless steel time domain refiectometer rods (0.2 

m length) were installed within 0.2 m of each neutron probe access tube. 
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Volumetric soil water content (e, mm3/mm3
) was measured at 7-14 d intervals in 2000/01 and 

2001/02. Measurements were made in the top 0.2 m of soil using time domain reflectometry 

(Trace System, Soil Moisture Equipment, PO Box 30025, Santa Barbara, California, 93105, 

USA). Measurements from 0.25 m were made at 0.10 m intervals to a depth of 1.25 m, and at 

0.20 m intervals to 2.25 m, using a neutron probe (Troxler Electronic Industries Inc., Research 

Triangle Park, North Carolina, 27709, USA). 

5.2.6.5 Soil water calculations 

5.2.6.5.1 Total soil water content 

The e of each layer was multiplied by the layer depth (10 or 20 mm) to calculate the soil 

water content (SWC, mm) in each layer, which was then summed for all layers down to 1.7 m 

depth to determine the total soil water content (TSWC, mm) of the profile. 

5.2.6.5.2 Soil water deficit 

Soil water deficit (SWD) represents the difference between TSWC at FC and TSWC 

calculated from soil moisture measurements at 7-14 d intervals. Daily changes in SWD were 

calculated using a soil water balance: 

Equation 5.2 SWD = SWDi + daily WU - (R + I) 

where SWDi is the SWD on the previous day and daily WU is the actual evapo-transpiration 

(AET) or water ... use (mmld, Equation 5.4). R and I are daily rainfall and irrigation, 

respectively. The maximum soil water deficit (MSWD) for each growth season was 

calculated from these data. 

5.2.6.5.3 Field capacity 

Field capacity was estimated as TSWC measured on 1 September 2000 (580 mm to 1.7 m 

depth). This equates to -340 mmlm depth which is consistent with the maximum FC of 350 

mm/m depth reported by Inch (1998) and Brown (1999) for the same soil in an adjacent field. 
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5.2.6.5.4 Water use 

Water use (WU) was calculated for each period between soil water measurements using a soil 

water balance: 

Equation 5.3 WU = R + 1- (TSWCp - TSWCs) 

where TSWCs and TSWCp are the actual total soil water contents at the start and finish of 

each measurement period, respectively. R and I are the sum of rainfall and irrigation for each 

measurement period, respectively. This equation assumes soil water movement (e.g. 

drainage) and runoff are zero. 

Daily WU within each measurement period was then calculated as: 

Equation 5.4 Daily WU = (WUIPET)*Daily PET 

where WU is the calculated water use (Equation 5.3) and PET is Penman potential evapo­

transpiration for the corresponding measurement period. Daily PET is PET on the day of 

calculation. 

5.2.6.5.5 Water use efficiency 

Water use efficiency (WUE) was calculated in 2001/02, when both species had developed 

complete canopies, by dividing DM yields from each regrowth period by WU for the 

corresponding period (Equation 2.6). 

5.2.6.5.6 Soil water extraction 

Soil water extraction was calculated as the difference between the upper and lower limits of 

extraction for each soil layer and the total soil profile. 

5.2.6.6 Leafphotosynthesis 

Leaf photosynthesis rate was measured on a random sample of three youngest fully expanded 

intact leaves. All measurements were taken at midday ± 1 h on cloudless sunny days. Net 
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photosynthesis rate was measured using aLi-Cor LI-6400 portable photosynthesis system 

(Lincoln, Nebraska, USA) at a maximum light intensity of 1700 ± 100 !lmol COz/mz/s PPDF. 

There were 84 measurements taken in 2000/01 and 2001/02. Of these measurements, 40 were 

used to determine responses to air temperature (soil moisture non-limiting) and 44 were used 

for responses to soil moisture (temperature non-limiting). Non-limiting soil moisture 

photosynthesis values were those measured from irrigated treatments. Non-limiting 

temperature photosynthesis values were initially measured at the reported optimum 

temperature of 24°C for white clover growth (Mitchell, 1956), but the temperature range was 

then extended to include values that achieved measured photosynthesis rates 290% of the 

highest value recorded. 

5.2.6.7 Leaf appearance 

Leaf appearance was measured at 5-7 d intervals during each regrowth period in 2000/01. 

Emerged leaves were counted on five shoot apices in each sub-plot. New shoots were tagged 

post -grazing. 

5.2.6.8 Thermal time calculation 

Thermal time (Tt) , expressed in degree-days (OCd) was calculated daily using the method 

described by Arnold and Monteith (1974) using Equation 2.5. Leaf appearance was regressed 

as a function of thermal time to calculate the phyllochron (OCd/leaf). 

The suitability of the thermal time concept is dependent on the use of an appropriate T b 

(Bonhomme, 2000; Brown, 2003). An incorrect Tb causes systematic variation or increased 

dispersion in development rates when they are related to thermal time over a range of 

temperatures. This concept was used to determine a suitable T b for Caucasian and white 

clovers. Initially, a Tb of 0 °C was used for both species (Moot et al., 2000). The Tb was then 

increased by increments of 0.5 °C to minimise the coefficient of variation for the relationship 

between leaf appearance rate and thermal time over the growing season. 
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5.2.7 Statistical analysis 

Data were analysed using ANOVA procedures (GenS tat, 1997). Treatment means were 

compared using Fisher's protected l.s.d. test whenever the ANOVA indicated that differences 

among treatments presented P<O.05. Botanical composition percentages were arc-sine 

transformed as necessary using the method described in Section 3.2.11. The response of leaf 

photosynthesis rate to temperature and water status was described using a two-piece 'broken 

stick' model (Draper and Smith, 1998). 
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5.3 Results 

5.3.1 Soil water deficit (SWD) 

Under irrigated conditions, SWD was maintained at less than 130 mm for both species in 

2000/01 and 2001/02 (Figure 5.3). Under dryland conditions, the SWD for white clover 

increased to a maximum of 330 mm on 25 April 2001, which was 60 mm greater (P<0.05) 

than for Caucasian clover. Irrigation water applied to both dryland treatments from 22 August 

to 20 September 2001 to reduce the SWD for the following year (2001102). This returned the 

SWD for white clover to 48 mm and Caucasian clover to 24 mm in mid September. The 

2001102 season had more rainfall than the previous season (Figure 5.1), and the SWD for 

white clover increased to a maximum of 200 mm on 22 March 2002, which was 30 mm 

greater than for Caucasian clover. 
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Figure 5.3 Soil water deficit to 1.7 m depth for Caucasian (.) and white (.) clovers 
under irrigated (closed symbols) and dryland (open symbols) conditions from 1 
July 2000 to 30 June 2002 in Iversen 10 at Lincoln University, Canterbury, 
New Zealand. Arrows indicate the time of maximum soil water deficit. 
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5.3.2 Annual dry matter production, botanical composition, bare ground 

percentage and water use 

5.3.2.1 Clover dry matter production 

The effect of irrigation on DM production of the two clover species differed between seasons 

(Table 5.3). In 2000101, there was an interaction (P<O.OI) between species and irrigation. 

Under irrigated conditions, white clover produced 11 980 kg DMlha, which was 5920 kg 

DMlha more than Caucasian clover. Under dryland conditions, white clover yield was 7020 

kg DMlha, but the yield advantage over Caucasian clover was less at 3390 kg DMlha. 

In the following year (2001102), irrigated Caucasian clover out-yielded white clover with 11 

860 kg DMlha, which was 2530 kg DMlha greater (P<0.05) than that of irrigated white clover 

(Table 5.3). Caucasian clover production was 2510 kg DMlha less (P<O.01) under dryland 

conditions at 9350 kg DMlha, but the yield advantage (P<0.05) over white clover was similar 

at 2380 kg DMlha. 

5.3.2.2 Botanical composition and bare ground percentage 

In 2000101, clover content averaged 92% in white clover treatments compared with 61-69% 

in Caucasian clover treatments (Table 5.3). The remainder was broadleaf weeds (Section 

5.2.5). Irrigated white clover had complete ground cover compared with 5% bare-ground for 

irrigated Caucasian clover, and both dryland treatments averaged 15% bare-ground. In 

2001102, there was no bare ground in any treatment and average clover content was greater 

than 82%. 

5.3.2.3 Water use 

In 2000101, annual water use was -320 mm greater (P<O.OI) under irrigated than dryland 

conditions for both species, and white clover water use averaged 60 mm more (P<O.OOI) than 

for Caucasian clover (Table 5.3). In 2001102, the two irrigated treatments used -910 mm of 

water compared with -740 mm (P<O.OOI) for both dryland treatments. 
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Table 5.3 Dry matter (DM) production and mean botanical composition, bare ground 
percentage, and water use for Caucasian (CC) and white (WC) clovers under 
irrigated and dryland conditions in 2000101 and 2001/02 in Iversen 10 at 
Lincoln University, Canterbury, New Zealand. 

Clover Total Clover Bare Water 

DM DM content ground use 

(kg/ha) (kg/ha) (%) (%) (mm) 

2000/01 

Irrigated CC 6060b 8650b 61e 5b 977a 

WC 11 980a 12690a 93a Ie 1012a 

Dryland CC 3630e 5080e 69b 16a 643b 

WC 7020b 7540b 90a 13a 706b 

s.e.m. 369 450 0.9 1.0 12.5 

PI 0.017 0.019 0.102 0.006 0.003 

Pc <0.001 <0.001 <0.001 0.047 <0.001 

PIxC 0.003 0.014 0.004 0.444 0.055 

2001/02 

Irrigated CC 11 860a 12680a 89 0 918a 

WC 9330b 10 050b 91 0 908a 

Dryland CC 9350b 10 380b 83 0 758b 

WC 6970e 8350e 84 0 72h 

s.e.m. 445 254 3.1 7.4 

PI 0.007 0.021 0.078 <0.001 

Pc 0.015 <0.001 0.753 0.060 

PIxC 0.905 0.219 0.937 0.219 

Note: Details of irrigation treatments are given in Section 5.2.3. Subscript I = irrigation, C = clover species. 

Within columns, values with the same or no letter subscript are not significantly different ((1.=0.05). 
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5.3.3 Seasonal dry matter production in 2001/02 

Species comparisons of seasonal DM production were concentrated on the 2001/02 season 

when both clover treatments had developed complete canopies. Data from the 2000/01 

season are given in Appendices 10 and 11. 

5.3.3.1 Clover dry matter accumulation 

Under irrigated conditions, both clovers began production at the same time in the first spring 

regrowth period in 2001/02, and by 20 September both clovers had produced about O.S t 

DMiha (Figure S.4a). Caucasian clover yields then increased to 2.3-3.1 t DM/ha for each 

harvest from 4 October to 10 March (Periods 2-S), before declining to 0.6 t DMiha on 23 

April (Period 6) and 0.1 t DMiha on 2S June (Period 7). Caucasian clover yields were 0.6-0.9 

t DMiha greater (P<O.OS) than white clover from October to March, but 0.4 t DMiha less 

(P<O.OS) in April. 

Under dryland conditions, Caucasian clover yields were 0.2-1.1 t DMiha lower (P<O.OS) than 

those under irrigated conditions from 4 October to 23 April (Periods 2-6), but were similar at 

the beginning and end of the season (Figure S.4b). Caucasian clover yields were 0.4-0.9 t 

DMiha greater (P<O.Ol) than white clover from October to March (Periods 2-S), but both 

clovers yielded less than 0.4 t DMiha in April. 
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Figure 5.4 Clover dry matter (DM) yield accumulation (above 30 mm) for Caucasian (.) 
and white (.) clovers under irrigated and dryland conditions from 1 July 2001 
to 30 June 2002 in Iversen 10 at Lincoln University, Canterbury, New Zealand. 
Bars represent the standard error of the mean for final yields. Each regrowth 
period is numbered 1-7. 
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5.3.3.2 Clover dry matter production rates 

Under irrigated conditions, production rates increased rapidly for Caucasian clover between 

July and mid-October and then increased at a slower rate to a mid-January peak of 98 kg 

DMiha/d (Figure 5.5). This rate then declined to 16 kg DMiha/d in March/April and 1 kg 

DMiha/d in May/June. These rates were -23 kg DMiha/d higher (P<O.Ol) than those for 

white clover from mid-October to late February, but were -10 kg DMiha/d less (P<O.Ol) in 

March/April. 

For both clovers, production rates were lower (P<0.05) under dryland than irrigated 

conditions from mid-January to March/April, but Caucasian clover growth was still -23 kg 

DMiha/d higher (P<O.Ol) than that for white clover in Periods 4-5 (Figure 5.5). Both clovers 

averaged 7 kg DMiha/d in March/April without irrigation. 
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Dry matter production rate for Caucasian ( ... ,~) and white (e,o) clovers under 
irrigated (A.,e) and dryland (~,o) conditions from 1 July 2001 to 30 June 2002 
in Iversen 10 at Lincoln University, Canterbury, New Zealand. Bars represent 
the standard error of the mean. Each regrowth period is numbered 1-7. 

142 



5.3.3.3 Relationship between clover dry matter production rate and temperature 

The relationship between clover production rate and mean daily air temperature in the same 

regrowth period was examined under irrigated conditions (Figure 5.6). Production rates were 

linearly related (R2 ~ 0.97; s.e. :::; 6.3) to mean daily air temperature from 8 to 16°C between 

July and January (Periods 1-4). This enabled the increase in spring/early summer growth to 

be estimated as 11 kg DM/hald for every degree increase in air temperature for Caucasian 

clover compared with 8 kg DM/ha/d for white clover. 

However, between February and June (Periods 5-7) exponential functions (R2 ~ 0.98; s.e. :::; 

6.1) were fitted to growth rates, which declined as air temperature dropped from 16 to 9 °C 

(Figure 5.6). It was notable that the production rate of Caucasian clover was affected more 

than that for white clover during this period. For example, Caucasian clover produced 16 kg 

DM/ha/d at 13 °C (Period 6) compared with 26 kg DM/ha/d for white clover. The DM 

production rate of white clover in autumn (Period 6) was about half that achieved for a similar 

temperature in spring (Period 2), but this difference was even greater for Caucasian clover. 
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Relationship between dry matter production rate and mean daily air 
temperature for Caucasian ( .. ,M and white (e, 0) clovers under irrigated 
conditions from July-January (",e) and February-June (.:1,0) in 2001102. 
Arrows indicate the direction of temperature change. The bar represents the 
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5.3.4 Seasonal water use in 2001/02 

Species comparisons of seasonal water use were concentrated on the 2001/02 season when 

both clover treatments had developed complete canopies. Data from the 2000/01 season are 

given in Appendix 12. 

5.3.4.1 Water use 

Seasonal water use was generally similar for both species regardless of irrigation treatment 

(Figure 5.7). For irrigated treatments, water use was -1.4 mm1d in Period 1, and then 

increased to a maximum of 4.3 mm1d in January (Period 4) before declining to -1.2 mm1d in 

May (Period 7). For dryland treatments, water use was -0.7-1.3 mm1d less (P<0.05) than the 

irrigated treatments in November and January (Periods 3 and 4) and -0.8 mm1d less in 

March/April (Period 6). 
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Seasonal water use for Caucasian ( ... ,~) and white (e,o) clovers under 
irrigated ("',e) and dryland (~,o) conditions from 1 July 2001 to 30 June 2002 
in Iversen 10 at Lincoln University, Canterbury, New Zealand. Bars indicate 
standard error of the mean. Each regrowth period is numbered 1-7. 
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5.3.4.2 Water use efficiency 

Under irrigated conditions, WUE averaged 4.4 kg DMlmm for both species in Period 1 

(Figure 5.8). WUE then increased for irrigated Caucasian clover to 16-19 kg DMlmm 

between Periods 2 to 5 before decreasing to 5 kg DMlmm in Period 6 and 1 kg DMlmm in 

Period 7. Caucasian clover WUE was ~4.0 kg DMlmm greater (P<0.05) than white clover 

WUE from Periods 3 to 5, but 3.0 kg DMlmm less (P<0.05) in Period 6. 

There were no significant differences between irrigated and dryland Caucasian clover 

treatments in WUE from Periods 1 to 7 (Figure 5.8). Under dryland conditions, Caucasian 

clover WUE was 5.0-7.0 kg DMlmm greater (P<0.05) than white clover WUE from Periods 

3 to 5, but was 2-3 kg DMlmm less (P<0.05) in Periods 1 and 7. 
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5.3.5 Water extraction patterns in 2001/02 

Species comparisons of water extraction patterns were concentrated on the 2001/02 season 

when both clover treatments had developed complete canopies. Data for the 2000/01 season 

are given in Appendix 13. 

The water extraction patterns for the 3-year-old dryland clover pastures in 2001/02 are shown 

in Figure 5.9. The maximum extraction depth was estimated at -1.15 m for both species, and 

both species extracted -150 mm of total water above this depth. The water extraction patterns 

were similar between the two species for most of the rooting range (above 1.15 m) except that 

Caucasian clover extracted less water than white clover from 0.5 to 0.8 m depth. 

Figure 5.9 
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Water extraction patterns for 3-year-old Caucasian (~) and white (e) clovers 
under dryland conditions measured from 1 Oct. 2001 to 22 Mar. 2002 in 
Iversen 10 at Lincoln University, Canterbury, New Zealand. Bar represents the 
standard error of the mean. Arrow indicates the maximum water extraction 
depth. 
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5.3.6 Leaf photosynthesis rate 

5.3.6.1 Relationship between leaf photosynthesis rate and temperature 

Based on the fitted 'broken stick' model (R2 = 0.94; s.e. = 1.8) the minimum leaf 

photosynthesis rate for Caucasian clover was 13 !lmol C02/m2/s at the lowest measured air 

temperature of 7 °C (Figure 5.10). This rate then increased by an average of 1.5 !lmol 

CO2/m2/s per °C to a maximum of 37 !lmol C02/m2/s at 23.7 °C before it declined by 2.3 

!lmol CO2/m2/s per °C to be 27 !lmol CO2/m2/s at the highest measured air temperature of 28 

0c. These rates were -6 !lmol C02/m2/s higher (P<0.05) than for white clover at all 

temperatures. 

.-
C\JJ!!.. 

40 ~----------------------------------------------~ 

E 
~ 
o 
() 

o 
E 
::::t --Q) 

30 

ca 
lo... 20 
(J) 

(J) 
Q) 

..c 
+-' c 
>-
(J) 10 o 
+-' o 
..c 
c. 
~ 

I 

• 
~ 0 +--------r-------.--------.--------.-------.------~ 

o 5 10 15 20 25 30 

Temperature (OC) 

Figure 5.10 Response of net leaf photosynthesis rate for Caucasian (~,~) and white (.,0) 
clovers to air temperature in non-limiting moisture (irrigated) conditions. Data 
are separated for periods 1 Jul.-31 Dec. (~,.) and 1 Jan.-30 Jun. (~,o). Bar 
represents the standard error for the 'broken stick' model. 
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5.3.6.2 Relationship between leaf photosynthesis rate and soil water content 

The relationship between leaf photosynthesis rate and soil water content was calculated when 

air temperature was in the optimum range of -20-25 °C (Figure 5.10. Leaf photosynthesis 

rates were -6 /lmol CO2/m2/s higher (P<0.05) for Caucasian than white clover as the ratio of 

TSWC:FC (to 1.7 m depth) decreased from 1.00-:-0.45 (Figure 5.11). For Caucasian clover, 

leaf photosynthesis rate was -33 /lmol C02/m2/s from 1.00-0.86 of FC, using the 'broken 

stick' model (R2 = 0.84, s.e. = 2.7). This rate then declined by 3.9 /lmol CO~m2/s per 0.10 

unit change in TSWC:FC to a minimum of 17 /lmol C02/m2/s at 0.45 of FC. White clover 

followed the same pattern, and leaf photosynthesis rates declined by 4.3 /lmol C02/m2/s per 

0.10 unit change in TSWC:FC to be 8 /lmol CO2/m2/s at 0.39 of Fe. 
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Figure 5.11 Response of net leaf photosynthesis rate for Caucasian (~,~) and white (_,0) 
clovers to soil moisture - expressed as a ratio of total soil water contentfield 
capacity (580 mm to 1.7 m depth) under non-limiting temperature (20-25 °C) 
conditions. Data are separated for periods 1 Jul.-31 Dec. (~,-) and 1 Jan.-30 
Jun. (~,o). Bars represent the standard error for the 'broken stick' model. 
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5.3.7 Leaf appearance rate 

For white clover, leaf appearance rate was constant in Tt (Tb = 1°C) in 2000101 (Figure 5.12). 

This enabled the phyllochron (± s.e.) to be calculated as 126 ± 19.9 °Cd. For Caucasian 

clover, the phyllochron was 157 ± 25.9 °Cd from August to May (Periods 2-8), but increased 

to 314 ± 33.5 °Cd in July (Period 1) and 359 ± 42.7 °Cd in June (Period 9). These variable 

results indicate that T b = 1 °c was incorrect for Caucasian clover. Thus, several T b values 

were tested to minimise the coefficient of variation for the mean phyllochron, and a Tb of 5°C 

was found to be most suitable. Using this higher Tb gave a similar phyllochron (126 ± 30.1 

°Cd) to white clover. The phyllochron was -14 °Cd longer for both species under dryland 

conditions (Appendix 14). 
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Figure 5.12 Leaf appearance rate for apical leaves of Caucasian (A.) and white (.) clovers 
as a function of accumulated thermal time under irrigated conditions from 1 
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5.4 Discussion 

The establishment of monocultures of white and Caucasian clovers is uncommon in pastoral 

farming for a variety of practical reasons. However, this experiment has shown significant 

differences in WUE and in growth and development between the two species that can provide 

some explanation for their relative performance observed in mixed pastures. 

5.4.1 Clover production in 2000/01 

In this experiment only white clover had established fully by the second (2000/01) season. As 

a consequence, white clover produced -6 t DMiha more than Caucasian clover under irrigated 

conditions in that season (Table 5.3). This highlights the fact that Caucasian clover is slow to 

establish and supports the need for alternative strategies for establishment in pastures 

(Chapter 6). 

Further analysis of the 2000/01 results was confounded by incomplete canopy closure and 

weed ingress (Table 5.3) in the irrigated Caucasian clover treatment and both dryland 

treatments, making species comparisons invalid. However, it was possible to use data from 

this season for measurements of photosynthesis and development which were based on 

individual leaves or plants and not the whole canopy. 

5.4.2 Irrigated clover production in 2001/02 

5.4.2.1 Annual yield 

In their third year (2001102), both clovers had established complete canopies, and the annual 

yield of Caucasian clover (11.9 t DMlha) was 27% greater than that of white clover (9.4 t 

DMlha) under irrigated conditions (Table 5.3). Caucasian clover yield was similar to an 

annual yield (-11.6 t DMlha) reported for monocultures of 'Treeline' tetraploid Caucasian 

clover under similar irrigated and management conditions in Canterbury (Stewart and Daly, 

1980). The yield of white clover monocultures was comparable to those previously reported 

(~10-13 t DMlha) for white clover monocultures under irrigated conditions (Johns and 

Lazenby, 1973a; Vartha and Clifford, 1978). 
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5.4.2.2 Seasonal production 

The greater annual production of Caucasian clover under irrigated conditions was due to 

greater yields than white clover from October to March (Figures 5.4a and 5.5). Temperature 

is the main environmental factor regulating solar radiation-driven plant growth under non­

limiting moisture conditions (Section 2.6.1). The seasonal patterns of clover production offer 

insights into the timing and extent of temperature limitations operating on the two species. 

5.4.2.2.1 Spring/early summer (July-January) 

Clover yields were less than 0.6 t DMiha from July to September (Figure 5.4a) when mean 

daily air temperatures were lowest (Figure 5.2). The relationships between clover production 

rate and mean daily air temperature showed that production rate increased linearly with 

increasing temperature from July to January (Figure 5.6). The greater yields of Caucasian 

clover in late spring/early summer (Figure 5.4) were due to a greater response (11 kg 

DMiha/°C) than white clover (8 kg DMihafOC) to increasing mean daily air temperatures from 

8 to 16°C. This difference is consistent with previous observations of a greater response to 

increasing temperatures by Caucasian clover than white clover in rotationally grazed 

perennial ryegrass-based pastures during spring (Section 4.3.3). 

The leaf photosynthesis results (Figure 5.10) provide an explanation for the difference in 

spring/summer production between the two species. It seems likely that the higher production 

rates for Caucasian clover in spring and summer were due to its higher leaf photosynthesis 

rate than white clover across the range of air temperatures experienced during this time. For 

both species, leaf photosynthesis rate increased with increasing temperature up to an 

optimum, which is consistent with the responses found for white clover (Woledge and 

Dennis, 1982) and cocksfoot (Peri et al., 2002b) (Section 2.6.1.1). 

Furthermore, in this experiment the optimum temperature range for photosynthesis of 

Caucasian and white clovers was the same. Specifically, the optimum temperature range to 

give >90% of the maximum leaf photosynthesis rate was approximately 21-25 DC. This range 

is consistent with the optimum temperature for white clover growth of 24°C reported by 

Mitchell (1956) and Mitchell and Lucanus (1962). Thus, for any given canopy leaf area 

index, the canopy photosynthesis rate of Caucasian clover can be expected to exceed that of 

white clover and give more assimilate per unit of leaf area. Confirmation of this may explain 
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the production advantage of Caucasian clover observed in perennial ryegrass-based pastures 

with irrigation (Section 4.3.1). 

5.4.2.2.2 Late summer/autumn (January-June) 

Clover production rates decreased exponentially with decreasing temperatures in late 

summer/autumn (Figure 5.6). However, both species had higher production rates in spring 

than at similar temperatures in autumn (e.g. Period 2 cf. Period 6). This result is consistent 

with different spring and autumn production rate responses to temperature observed for 

perennial ryegrass-based pastures in the previous experiment (Section 4.3.3). In the present 

experiment, soil water was non-limiting for clover production under irrigated conditions 

(Figure 5.3), which enabled temperature responses to be determined. 

The leaf photosynthesis (Figure 5.10) and leaf appearance rate (Figure 5.12) results offer 

some insights into the reduced autumn production rates of Caucasian and white clovers. 

Firstly, the leaf photosynthesis rate responses to temperature for both species appeared to be 

the same irrespective of the time of year when measurements were taken (Figure 5.10). This 

indicates that the difference in spring and autumn production rate response to temperature was 

not caused by a change in the response of leaf photosynthesis rate, and suggests that other 

mechanisms were responsible. 

One mechanism may be a change in the partitioning of DM. Specifically, the lower 

production rates in the autumn for both species (Figure 5.6) probably resulted from a greater 

partitioning of carbohydrates and protein to the roots and stolons/rhizomes to replenish 

reserves for over wintering and spring production. The storage of assimilates has been 

reported previously for white clover (Bouchart et al., 1998) and Caucasian clover (Peterson et 

al., 1994b). Furthermore, the greater reduction in production rate of Caucasian clover in the 

autumn (Period 6) indicated that it may have allocated a greater proportion of assimilate to 

rhizome and/or root storage than white clover. 

It is also possible that a greater remobilisation of stored assimilates in spring contributed to 

the production advantage of Caucasian clover during this period. Peterson et al. (1994b) 

observed that total non-structural carbohydrate concentrations in crowns, rhizomes and roots 

of Caucasian clover increased in autumn and decreased in spring, indicating assimilate 
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partitioning similar to that occurring in lucerne, which has a larger taproot than Caucasian 

clover (Brown, 2003; Moot et al., 2003). 

The slower leaf appearance rate of Caucasian clover in autumn (Figure 5.12) may have 

contributed to its lower production rate than white clover at this time. The phyllochron was 

the same for both species (126 °Cd). However, the higher Tb requirement for Caucasian 

clover (5°C) than white clover (1 °C) used to calculate the phyllochron means that Caucasian 

clover took longer to accumulate the thermal time necessary to produce a new leaf. For 

example, assuming a mean air temperature of 10 °C, white clover is predicted to have 

produced a new leaf after 14 d compared with 25 d for Caucasian clover. This is because 

Caucasian clover would only accumulate 5 °Cd (heat units) each day due to its Tb of 5 °C 

compared with the T b of 1 °C and an accumulation of 9 °Cd for white clover. The impact of a 

higher T b will be greatest at the beginning and end of the growing season, when temperatures 

are most limiting. Thus, Caucasian clover can be expected to take longer to recover than 

white clover post grazing in autumn when air temperatures are declining. 

Further research is necessary to determine if a change in the partitioning of carbohydrates and 

protein was the dominant factor responsible for the lower production of Caucasian clover in 

autumn, or if the higher base temperature was also a significant contributor. Understanding 

plant growth, development and assimilate partitioning has been important in making 

recommendations for optimum grazing management of lucerne (Moot et al., 2003). In the 

present experiment, the growth and development results have provided a basis for 

understanding the seasonal production of Caucasian clover, and will also guide 

recommendations for its optimum grazing management in lowland pastoral systems. For 

example, the physiology of Caucasian clover suggests that a longer frequency between 

defoliations in autumn than in spring and summer may be required to assist Caucasian clover 

below ground root and rhizome production. This management would be expected to enhance 

above ground spring herbage production and result in prolonged persistence of Caucasian 

clover. 

5.4.2.2.3 ~inter 

The higher Tb requirement for Caucasian clover also provides a physiological explanation for 

its perceived winter dormancy. Indeed, a "winter dormant" species can be simply quantified 
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as one that has a higher T b for development. This is consistent for other pasture species such 

as chicory, which is dormant in Canterbury for 3 months in winter and requires a Tb of 4.5 °C 

(Moot et al., 2000). Species such as white clover with a base temperature of 1°C, display 

greater cool season activity and normally have a longer growing season than those with a 

higher base temperature. 

5.4.3 Dryland clover production in 2001/02 

5.4.3.1 Annual production 

Under dryland conditions, the annual yield of 3-year-old Caucasian clover (9.4 t DM/ha) was 

34% greater than that of white clover (7.0 t DM/ha) in 2001/02 (Table 5.3). Caucasian clover 

yield was similar to the annual yield (-9.3 t DM/ha) reported for monocultures of tetraploid 

'Treeline' Caucasian clover under dryland and similar management conditions in Canterbury 

(Stewart and Daly, 1980). The yield of white clover was similar to previously reported yields 

(6-7 t DM/ha) for dryland white clover monocultures (Johns and Lazenby, 1973b; Vartha and 

Clifford, 1978). 

5.4.3.2 Seasonal production 

The greater annual production for Caucasian clover was due to greater yields during periods 

of both non-limiting and limiting water conditions from October to March (Figures 5.4b and 

5.5). The comparison of clover yields under irrigated and dryland conditions showed that soil 

water was limiting for clover production from January to June (Periods 4-7). At this time, the 

SWD was greater than 130 mm and the maximum SWD of 215 mm occurred in March 

(Figure 5.3). 

5.4.3.2.1 Spring (July-December) 

Dryland yields were similar to irrigated yields in the first three regrowth periods in spring, 

indicating that soil moisture was non-limiting for clover production (Figures 5.4b and 5.5). 

Caucasian clover yields were greater than those of white clover in the second and third 

regrowth periods. Thus, -1.3 t DM/ha of Caucasian clover's annual production advantage 

under dryland conditions was due to greater spring production when soil water was adequate 
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but low temperatures limited white clover production and leaf photosynthesis rates more than 

Caucasian clover (Section 5.4.2.2). 

5.4.3.2.2 Summer (January-March) 

Dryland yields were lower than irrigated yields from January onwards (Figure 5.4), indicating 

that soil water limited the production of both species during this time. However, Caucasian 

clover had greater yields (Figures 5.4b and 5.5) than white clover from January to March, 

which contributed to the other 1 t DMiha of Caucasian clover's annual production advantage 

under dryland conditions. The difference was greatest in early March (Period 5) with 

Caucasian clover producing 0.8 t DMiha more than white clover (Figure 5.4). This occurred 

when the SWD to 1.7 m depth was 186 mm (TSWC:FC ratio of 0.68), and when temperatures 

(Figure 5.2) were still adequate for the growth of both species (21-25 °C, Figure 5.10). 

The leaf photosynthesis results (Figure 5.11) provide an explanation for the greater production 

of Caucasian clover than white clover under dryland conditions. For both species, the 

optimum soil moisture range to give >90% of the maximum leaf photosynthesis rate was the 

same at 1.00-0.86 of Fe. The onset of moisture stress resulted in a similar decrease in leaf 

photosynthesis rate, but the leaf photosynthesis rate for Caucasian clover was higher than for 

white clover irrespective of soil moisture. These responses to increased water stress are 

consistent with responses found for white clover (Johns, 1978) and cocksfoot (Peri et al., 

2002b) (Section 2.6.2.1). Thus, for any given canopy leaf area index, the canopy 

photosynthesis rate of Caucasian clover can be expected to exceed that of white clover and 

give more assimilate per unit of leaf area. Confirmation of this may explain the production 

advantage of Caucasian clover over white clover observed in perennial rye grass-based 

pastures under summer dry conditions (Black and Lucas, 2000; Watson et al., 1998). 

5.4.4 Water use efficiency in 2001/02 

In their third year (2001102), Caucasian clover produced -2.5 tlha more DM than white clover 

under both irrigated and dryland conditions, but the quantity of water used was similar for 

both species (Table 5.3). Therefore, Caucasian clover produced more DM for the same 

amount of water used than white clover, indicating greater WUE. This result was particularly 

apparent during spring and summer (Periods 3 to 5) when Caucasian clover production rates 
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were ~23 kg DMlha/d greater than those of white clover (Figure 5.5), but the rate of water use 

was the same (Figure 5.7). The lower WUE of white clover during this period (Figure 5.8) is 

consistent with the commonly accepted view that this species is inefficient in controlling 

water loss (Aparicio-Tejo et ai., 1980a; Burch and Johns, 1978; Johns, 1978; Johns and 

Lazenby, 1973b). In contrast, the greater WUE of Caucasian clover under dryland conditions 

provides an explanation for its greater productivity than white clover in this environment 

(Black and Lucas, 2000; Watson et ai., 1998). 

It seems likely that the greater leaf photosynthesis rates of Caucasian clover over white clover 

at any given soil water content (Figure 5.11) contributed to the greater WUE by Caucasian 

clover. A more accurate explanation of this result would require more detailed analysis of 

factors such as the rate of transpiration of leaves and canopy development. However, there 

are a number of possible explanations for this difference. Firstly, the leaf stomatal resistance 

may be greater for Caucasian than white clover in response to water stress, giving Caucasian 

clover more control of transpiration water loss. This has been found for other drought tolerant 

pasture species such as tall fescue and phalaris (Johns, 1978). Secondly, the most immediate 

response to water stress is decreased leaf size, which would affect canopy leaf area, light 

interception and therefore yield (Burch and Johns, 1978; Karsten and MacAdam, 2001). Any 

differences in these responses between Caucasian and white clovers would be related to their 

relative ability to control transpiration loss, or access to greater soil water supply via deeper 

root systems. 

5.4.5 Water extraction patterns 

It remains to be seen if the taproot of Caucasian clover is able to extract water from greater 

depths than white clover and therefore provide an additional advantage from access to more 

water during summer. Indeed, the current lack of any differences in water extraction depth 

(Figure 5.9) suggests that white clover still had an active taproot in its third year. However, it 

has long been recognised that white clover looses its seedling taproot within 1-2 years, after 

which clonal white clover plants are dependent on their shallow nodal root systems (Brock et 

ai., 2000; Westbrooks and Tesar, 1955). 

Evans (1978) found that a mature white clover mono culture had most of its roots in the top 

0.20 m of soil, but could extract water to a depth of 0.90 m, which is ~0.20 m less than the 
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extraction depth found in the present study. In contrast, lucerne extracted water from at least 

2.10 m due to its deep taproot. It is also possible that some white clover plants may have 

established from reseeding in 2000/01, which means that their taproots might still have been 

present during 2001102. Any potential advantage from greater rooting depth for Caucasian 

clover would not be expected until after the tap root of white clover has senesced. 
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5.5 Conclusions 

This experiment has quantified reasons for differences in seasonal DM production observed 

between Caucasian and white clovers. The results confirm that Caucasian clover can increase 

clover production in environments where high quality pastures are required in spring and 

summer. Caucasian clover may not be suited to environments and farming systems where 

cool season production is required, but it is suited to cool temperate environments with warm 

moist summers where persistence is important. Specific conclusions were: 

1. In its third year (2001102), when complete canopy closure was achieved, Caucasian 

clover produced -2.5 t DMiha more annual yield than white clover under irrigated 

conditions due to 20-25 kg DMlhaJd higher production rates in spring and summer, 

when mean daily air temperature was increasing from 8 to 16°C. 

2. The production advantage for Caucasian clover in spring and summer moist 

conditions occurred when its leaf photosynthesis rate was -6 /lmol CO2/m2/s higher 

than white clover. Both clovers had a similar range of optimum temperature (21-25 

°C) for photosynthesis. 

3. The yield advantage of Caucasian clover was maintained under dryland conditions due 

to 20-25 kg DMlhaJd higher production rates in summer, when soil water deficit was 

below 130 mm. 

4. The production advantage for Caucasian clover in summer dryland conditions 

occurred when its leaf photosynthesis rate was -6 /lmol CO2/m2/s higher than white 

clover irrespective of soil moisture. Both clovers had a similar range of optimum soil 

moisture (1.00-0.86 of field capacity) for photosynthesis. 

5. Caucasian clover extracted water from similar depths (up to 1.15 m) as white clover, 

but Caucasian clover had a 5.0-7.0 kg DMlmm higher water use efficiency that 

contributed to its greater production under summer dryland conditions. 

6. Caucasian clover had a phyllochron of 126 ± 30.1 °Cd, which was the same as white 

clover, but the Tb requirement was higher for Caucasian (5°C) than for white clover (1 

°C). 
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Chapter 6 

Sowing strategies for successful establishment of Caucasian clover 
and white clover 

6.1 Introduction 

In this thesis, results have shown that Caucasian clover is more productive than white clover 

in irrigated ryegrass pastures under both high (Olsen P 20 flg/ml, sulphate-S 12 flglg) and low 

(Olsen P 11 flglml, sulphate-S 7 flglg) soil fertility conditions (Chapters 3 and 4). Also, 

Caucasian clover has shown potential as a dryland legume with greater spring and summer 

production than white clover (Chapter 5). Despite these positive results, slow establishment /' 

of Caucasian clover is a major reason why farmers in New Zealand are reluctant to adopt this 

species for their permanent pastures. 

The sowing strategies required for successful establishment of Caucasian clover in tussock 

grasslands have been emphasised in Section 2.5 (Lowther et al., 1998; Moorhead et al., 

1994). However, modified strategies are required for successful establishment of Caucasian 

clover in more intensive lowland pastures (Hurst et al., 2000; Widdup et al., 1998). Under 

these conditions, sowing time and rye grass seeding rate are important factors influencing the 

success of slow establishing pasture species (Dumbleton, 1997; Moot et al., 2000). The 

majority (83%) of New Zealand pastures are autumn sown (Sangakkara et al., 1982) with 

commercial recommendations of 16-20 kglha of perennial ryegrass (Charlton, 1991). This 

contradicts the scientific literature that shows most slow establishing perennial pasture species 

benefit from spring sowing and ryegrass seeding rates of less than 10 kg/ha (Cullen, 1958; 

Dumbleton, 1997). The reduction in ryegrass seeding rate reduces inter-plant competition for 

limited resources, particularly light (Brougham, 1953), with minimum impact on total yield 

(Culleton, 1986; Dumbleton, 1997). 

Thus, the objective of the research described in this chapter was to evaluate the impact of 

sowing time and perennial rye grass seeding rate on the establishment of Caucasian and white 

clovers in permanent pastures. In this study, an acceptable pasture was defined as one that 

had a high (>15%) clover content and suppressed weeds «5%) with minimum impact on total 

yield in the first spring after sowing. 
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6.2 Materials and methods 

6.2.1 Site description 

The experimental area was located in Iversen Field block 10, adjacent to the field experiment 

described in Chapter 5. Section 5.2.1 described the experimental site and meteorological 

conditions. 

6.2.2 Seeding and design 

The experiment used a split-plot factorial randomised complete block design. Main plots 

were four sowing dates of 24 September 1999 (SD1), 9 November 1999 (SD2), 4 February 

2000 (SD3) and 31 March 2000 (SD4). Sub-plots of 'Grasslands Demand' white clover (2 

kglha) and 'Endura' Caucasian clover (8 kglha) were sown with 0, 3, 6 or 12 kglha of 'Nui' 

perennial ryegrass infected with the AR1 strain of Neotyphodium lolii. There were two 

replicates giving a total of 64sub-plots. Sub-plots were 2.1 x 6.0 m drilled with an 0yjoord 

cone seeder at 150 mm row spacing and a target depth of 15 mm. Clover seed was lime­

coated and inoculated with the Rhizobium trifolii strain CC275e for white clover and ICC148 

for Caucasian clover. 

Before SD1, the experimental area was cultivated using conventional methods to produce a 

firm and fine textured seedbed. Sulphur superphosphate (8% P, 19% S) at 250 kglha was 

applied during cultivation, based on soil test results from Iversen 10 in July 1999 (Table 5.1). 

Before the second and subsequent sowings, the non-residual herbicide 'Buster' (a.i. 

glufosinate-ammonium; 600 g a.i.lha) was sprayed to kill any emerged weeds. 

6.2.3 Management 

Pastures were first defoliated when individual Caucasian clover plants had four-five trifoliate 

leaves. A rotary lawn mower was used for the first defoliation of SD 1 pastures, but grazing 

by young sheep was used for the other three sowing dates. First defoliations were SD1: 64 

days after sowing (DAS) on 27 November, SD2: 12 January (64 DAS), SD3: 2 April (57 

DAS) and SD4: 30 June (91 DAS). Pastures were subsequently grazed at 5-8 week intervals 

when 1500-2500 kg DMlha had accumulated in the pastures that included perennial ryegrass. 
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The herbicide '2,4-DB' (a.i. 2,4-DB) at 2400 g a.i.lha was sprayed on 10 November 1999 and 

23 December 1999 to control mainly wild turnip (Brassica rapa spp.) and wireweed which 

were prevalent in SD1 pastures. The insecticide 'Chlor-P 480EC' (a.i. chlorpyrifos) at 240 g 

a.i.lha was sprayed on 24 November 1999 to control greasy cutworm that caused -20% loss 

of emerged clover plants in SD2. 

Plots received 120 mm of irrigation water from December 1999 to March 2000, based on a 

soil water budget (Equation 5.1) to prevent a deficit of 25 mm to 0.50 m soil depth. 

6.2.4 Measurements 

6.2.4.1 Soil and air temperatures 

Directly after sowing, soil temperature sensors (Thermistors KTY-llO) were placed in four 

sub-plots at a depth of 15 mm. One sensor was placed in each of the four sowing date 

treatments. Air temperature was recorded from a single sensor placed in a Stevenson screen 

on site. Temperatures were recorded every 5 minutes and integrated and logged every hour 

with a data logger (DT100 data-taker) to determine daily mean temperatures (Figure 6.1). 

6.2.4.2 Dry matter production and botanical composition 

DM production was determined from pre-grazing herbage cuts to 30 ± 5 mm above ground 

from one randomly placed 0.2 m2 quadrat in each sub-plot. Sub-samples were taken to 

determine botanical composition before dry weight was measured. The fresh sub-samples, 

containing 200--400 pieces, were separated into white clover, Caucasian clover, perennial 

ryegrass, and weeds, and dried separately to determine the contribution of each species to 

total yield. Some volunteer white clover (presumably 'Huia') was detected in the Caucasian 

clover treatments, and this was included in the weed component. 

6.2.4.3 Nitrogen % of ryegrass herbage 

Dried sub-samples of ryegrass from harvests on 12 January 2000, 30 June 2000 and 6 

November 2000 were retained for determination of N % using the Kjeldahl procedure. 

Ryegrass samples from the two replicates of selected treatments (24 September and 31 March 
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sowing dates with 3 and 12 kglha of perennial ryegrass) were bulked and ground in a mill to 

pass through a I-mm stainless steel sieve. Analyses were performed by the Animal and Food 

Sciences Division, Lincoln University, Canterbury, New Zealand. 

6.2.4.4 Seedling growth and development 

After each sowing, the middle metre of two adjacent non-border rows was marked in each 

sub-plot. The number of emerged seedlings was recorded daily until seedlings ceased to 

emerge. Emergence was considered to have occu~ed when both cotyledons of the clover 

species had expanded and when the coleoptile of perennial rye grass was visible (Moot et al., 

2000). The number of days to reach 50% of the final emergence was determined by 

interpolation. 

Plant population was determined at the time of first defoliation from plant counts within two 

randomly placed 0.2 m2 quadrats in each sub-plot. Also at this time, 10 plants per sub-plot 

were dug to a 0.25 m depth from two adjacent non-border rows of each sub-plot. The plants 

were washed and separated into shoots and roots. Shoots included leaves, petioles (clovers) 

and branch (stolons or crown shoots) or tiller structures. The number of leaves and branch or 

tiller structures were recorded before the dry weight (DW) of shoots and roots was measured. 

6.2.5 Statistical analysis 

Significant (P<0.05) treatment effects were determined by ANOVA procedures (GenS tat, 

1997). Data from each harvest were analysed according to the full split-plot factorial design. 

The exception was the first harvest of SDI which was analysed as a two-way factorial of 

clover species x ryegrass seeding rate. Also, separate two-way analyses were performed on 

final botanical composition and DM production data from each sowing date. Botanical 

composition percentages were arc-sine transformed as necessary using the method described 

in Section 3.2.11. Standard errors of the means (s.e.m.) are reported for each measured 

variable. Treatment means were separated by Fisher's Protected l.s.d. test (a=0.05) whenever 

the ANOV A indicated that differences among treatments were significant. 

The time to 50% emergence for each sowing date was analysed separately, with maximum 

standard errors (s.e.) reported. The thermal time (Tt, in °Cd) to 50% emergence was 
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determined using daily maximum and minimum IS-mm soil temperature data (Figure 6.1) in 

Equation 2.5. The Tb was assumed to be 0 °C for all three species (Moot et ai., 2000). 
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6.3 Results 

6.3.1 Soil and air temperatures 

The mean IS-mm soil temperature increased from -13 to 17°C between the 24 September 

and 4 February sowing dates, but then decreased rapidly to -11 °C for the 31 March sowing 

date and 5 °C in late June before increasing again in spring (Figure 6.1). There were 

differences in the mean air and soil temperatures, particularly in late spring and early summer 

when the soil temperatures were 2-3 °C warmer than screen temperatures. 
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Mean 7-day screen (-) and IS-mm soil (---- ) temperatures for block 10 
Iversen Field at Lincoln University, Canterbury, New Zealand. Arrows 
indicate sowing dates. 
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6.3.2 Botanical composition 

6.3.2.1 Spring sowing dates 

On 6 November 2000, the botanical composition of the 14-month-old pastures sown on SDI 

showed similar clover and weed contents to the 12-month-old pastures sown on SD2 (Figure 

6.2). Clover and weed contents were highest in monocultures of each clover species, but 

decreased exponentially as ryegrass seeding rate increased. For SD1, the addition of ryegrass 

reduced white clover content from 91 % in monocultures to about 28% with 3 to 12 kg/ha of 

ryegrass, but weed content was always :'51 % when ryegrass was included. In comparison, 

SDI Caucasian clover pastures had 47% sown clover and 53% weeds in the monoculture and 

ryegrass reduced the sown clover content to about 7% at all seeding rates. For SD2, white 

clover content was reduced from 24% at 3 kg/ha to 15% at 12 kg/ha compared with 8% to 1 % 

for Caucasian clover, but the weed content was always :'52% with ryegrass. The predominant 

weeds during spring were hawksbeard (Crepis capillaris), wireweed and annual poa. 

6.3.2.2 Autumn sowing dates 

On 6 November 2000, the 9-month-old pastures sown on SD3 had more (P<O.OOl) clover and 

fewer weeds than the 7-month-old pastures sown on SD4 regardless of ryegrass seeding rate 

(Figure 6.3). Clover and weed contents were highest in monocultures of each clover species, 

but decreased exponentially as ryegrass seeding rate increased. For SD3, the addition of 

ryegrass reduced the white clover content from 26% at 3 kg/ha to 13% at 12 kg/ha, but there 

were no weeds when ryegrass was included. In contrast, SD3 Caucasian clover pastures had 

66% weeds (hawksbeard, wireweed, annual poa, volunteer white clover) and only 34% sown 

clover in the mono culture and :'51 % sown clover when ryegrass was included. For SD4, 

neither clover was more than 8% of the composition when ryegrass was included and the 

weed content was 2-15%. The predominant weeds were the winter annuals chickweed and 

annual poa. 
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Figure 6.3 
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6.3.3 Total dry matter production 

Total DM production up to 6 November 2000 was affected (P<0.05) by the interactions of 

sowing date x ryegrass seeding rate, sowing date x species and rye grass seeding rate x 

species. However, the small 'F' ratios «9.55) for these interactions compared with species 

(29.86), ryegrass seeding rate (249.24) and sowing date (273.14) main effects meant that they 

were comparatively unimportant. Therefore, this section focuses on the clover species and 

ryegrass seeding rate main effects analysed within each sowing date. 

6.3.3.1 Spring sowing dates 

For SD1, total DM production up to 6 November 2000 was greater (P<O.Ol) from white 

clover than Caucasian clover pastures, and increased (P<O.OOl) from 9990 kglha in clover 

monocultures to 16350 kglha with 6 and 12 kglha of rye grass (Table 6.1). Similarly, for SD2 

total DM was greater (P<0.05) for white clover than Caucasian clover, and clovers averaged 

6870 kg DMlha as monocultures and 14510 kg DMlha with 6 and 12 kglha of ryegrass. 

6.3.3.2 Autumn sowing dates 

For SD3, total DM production up to 6 November 2000 was greater (P<0.05) for white clover 

than Caucasian clover pastures, and increased (P<O.OOl) from 5390 kglha in clover 

monocultures to a maximum of 9150 kglha with 6 kglha of ryegrass (Table 6.1). For SD4, 

total DM production was 2620 kglha without rye grass but increased with increasing ryegrass 

seeding rates up to 6760 kglha at 12 kglha, regardless of clover species. 
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Table 6.1 

Clover (C) 

CC 

WC 

s.e.m. 

Pc 

Total dry matter production up to 6 November 2000 from Caucasian (CC) and 
white (WC) clover pastures sown on four dates with different ryegrass seeding 
rates. 

Sowing date 

24 Sep. '99 9 Nov. '99 4 Feb. '00 31 Mar. '00 

kgDMlha 

13 620b 11690b 7310b 5400 

15 150a 12710a 8110a 5550 

241 300 231 76 

0.003 0.046 0.043 0.202 

Seeding rate (R) 

o kglha 9990c 6870c 5390c 2620c 

3 14840b 12900b 7820b 6240b 

6 16410a 14220ab 9150a 6300b 

12 16290a 14810a 8480ab 6760a 

s.e.m. 340 424 327 107 

PR <0.001 <0.001 <0.001 <0.001 

Note: Within columns and main effects, values with the same or no letter subscript are not significantly different 

(a.=O.05). 
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6.3.4 Seedling growth and development 

6.3.4.1 Emergence 

The number of days to 50% seedling emergence was similar for all three species, but ranged 

from ~8 d from SD3 to ~ 13 d for SD4 (Table 6.2). Based on 15-mm soil temperatures, the Tt 

requirement to 50% emergence was unaffected by sowing date and similar at -146 °Cd (Tb = 

o °C) for all three species. 

Table 6.2 Number of days and thermal time to reach 50% of final emergence for 
Caucasian clover (CC), white clover (WC) and perennial ryegrass (PR) sown 
on four dates. Data presented are averaged over all rye grass seeding rates. 

-----------Sowing date -----------

24 Sep. '99 

Days to 50% emergence 

CC 

WC 

PR 

Maximum s.e. 

11.4 

11.8 

11.6 

1.83 

Thermal time (Oed) to 50% emergence 

CC 158 

WC 162 

PR 161 

Maximum s.e. 22.1 

9 Nov. '99 

9.1 

9.0 

9.8 

1.40 

146 

144 

157 

21.5 

Note: n = 8 for clovers and n = 12 for perennial ryegrass. 

6.3.4.2 Plant population 

4 Feb. '00 

7.9 

8.0 

8.0 

0.93 

146 

148 

148 

17.8 

31 Mar. '00 

13.0 

11.4 

12.2 

1.52 

158 

138 

148 

18.2 

Examination of individual seedlings at the first defoliation of each sowing date showed white 

clover averaged 60 plants/m2 compared with 51 plants/m2 (P<O.Ol) for Caucasian clover 

(Table 6.3). Clover plant population averaged 75 plants/m2 for SD1 and SD3 compared with 

37 plants/m2 (P<O.Ol) for SD2 and SD4, and decreased from 62 to 46 plants/m2 as ryegrass 

seeding rate increased from 0 to 12 kglha. Ryegrass plant population averaged 132 plants/m2 

for SD2-4 compared with 106 plants/m2 (P<0.05) for SD1, and increased (p<0.001) from 79 

to 275 plants/m2 with increasing seeding rates. 

170 



6.3.4.3 Shoot and root dry weight 

Shoot DW of clovers sown on SDI-3 averaged 48 mg/plant compared with 14 mg/plant 

(P<O.OS) when sown on SD4 (Table 6.3). Root DW of clovers sown on SDI-3 averaged 22 

mg/plant compared with 10 mg/plant (P<O.OS) when sown on SD4. For ryegrass, shoot DW 

averaged 9S0 mg/plant from SD2 and 727 mg/plant from SDI and SD3, but this was halved 

for SD4 (P<O.OOI). Root DW of ryegrass averaged 177 mg/plant from SDI-3, but this was 

halved for SD4 (P<O.OS). Average shoot DW of clover plants decreased (P<O.OS) from 43 to 

36 mg/plant as ryegrass seeding rate increased from 3 to 12 kg/ha. Average root DW of 

clovers decreased (P<O.OS) from 22 to 17 mg/plant as ryegrass seeding rate increased from 3 

to 12 kg/ha. 

6.3.4.4 Number of leaves and branches/plant 

The number of leaves per clover plant was influenced (P<O.OOl) by the interaction of clover 

species x sowing date (Table 6.3). Specifically, the number of leaves on white clover 

decreased from 9.4 to 4.8 between SD2 and SD4, but only from 4.8 to 3.4 for Caucasian 

clover (Table 6.4). Individual Caucasian clover plants had no crown shoots (branches) at first 

defoliation compared with an average of one stolon initial on individual white clover plants. 

The number of stolons/plant for white clover decreased with increasing rye grass seeding rate 

and delayed sowing date but the differences were not significant. 

For ryegrass, the average number of leaves/plant was about 16.0 when sown on SDI-3, but 

only 9.8 (P<O.OI) when sown on SD4 (Table 6.3). Similarly, the average number of ryegrass 

tillers/plant was 12.4 for SD2, but decreased to S.O for SD4 (P<O.OI). The average number of 

ryegrass leaves/plant decreased from 16.9 to 14.8 (P<O.OI) and tillers/plant decreased from 

10.2 to 8.6 (P<O.Ol) as rye grass seeding rate increased from 3 to 12 kg/ha. 
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Table 6.3 Seedling characteristics of Caucasian (CC) and white (WC) clovers and perennial ryegrass at the first defoliation date! after 
sowing on four sowing dates with four perennial ryegrass seeding rates. 

Plant population Shoot dry weight Root dry weight Number of leaves/ Number of branches/ 
(number/m2

) (mg) (mg) plant plant 

Clover Ryegrass Clover Ryegrass Clover Ryegrass Clover Ryegrass Clover Ryegrass 
Clover (C) 

CC 5h 123 39 671 24a 156 4.3b 16.0 Ob 9.6 
WC 60a 129 40 693 14b 148 7.4a 15.6 0.9a 9.3 
s.e.m. 2.0 2.0 2.4 10.6 1.1 5.9 0.17 0.28 0.09 0.24 
Pc 0.006 0.061 0.986 0.149 <0.001 0.331 <0.001 0.372 <0.001 0.521 

Seeding rate (R) 
o kg/ha 62a Od 38 17b 6.0 0.5 
3 60a 79c 43 739a 22a 168a 6.1 16.9a 0.7 1O.2a 
6 54a 149b 41 689b 19ab 151ab 5.9 15.9ab 0.5 9.5ab 
12 46b 275a 36 618c 17b 137b 5.4 14.8b 0.4 8.6b 
s.e.m. 2.8 2.9 3.4 13.0 1.5 7.3 0.69 0.35 0.12 0.29 
PR 0.001 <0.001 0.421 <0.001 0.041 0.022 0.146 0.002 0.374 0.005 

Sowing date (D) 
24 Sep. 73a 106b 44a 758b 21a 155a 6.0a 15.9c 0.8 9.4b 
9 Nov. 34b 139a 52a 950a 24a 214a 7.1a 20.4a 0.5 12.4a 
4 Feb. 77a 138a 48a 696b 20a 163a 6.1a 17.4bc 0.5 11.0ab 
31 Mar. 39b 120ab 14b 324c lOb 75b 4.1b 9.8d 0.2 5.0c 
s.e.m. 3.2 4.4 3.7 13.7 1.2 14.8 0.36 0.14 0.16 0.40 
PD 0.005 0.034 0.015 <0.001 0.013 0.026 0.034 <0.001 0.259 0.003 

Interactions none DxR none DxR none none DxC none none none 
(P<0.05) DxCxR 
Note: I Details of first defoliation dates are given in Section 6.2.3. 
Within columns and main effects, values with the same or no letter subscript are not significantly different ((1=0.05). 
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Table 6.4 

24 September 

9 November 

4 February 

31 March 

Number of leaves/plant of Caucasian and white clovers at the first defoliation 
date l after sowing on four dates. 

Caucasian clover White clover 

---------leaves/plant ---------

4.3ab 

4.8a 

4.7a 

3.4b 

7.7b 

9.4a 

7.6b 

4.8c 

Note: 1 Details of first defoliation dates are given in Section 6.2.3. Within columns, values with the same or no 

letter subscript are not significantly different (n = 0.05). 

6.3.5 Spring regrowth 

Data for the botanical composition and total DM yield of each treatment at each harvest are 

reported in Appendices 15-18. This section compares the DM production rates of Caucasian 

and white clovers from the 3 kg/ha ryegrass seeding rate which produced the highest clover 

content to examine the effect of sowing date. 

For SDI, clover growth rate at first defoliation was <2 kg/hald for both species (Figure 6.4). 

White clover growth then increased to 23 kg/hald in February and then decreased to 3 kg/hald 

in June before increasing again to 20 kg/hald on 6 November 2000. Caucasian clover growth 

was about 7-12 kg/hald lower between January and May, and about 16 kg/hald lower on 6 

November 2000. For SD2, both species produced <5 kg DMihaid from first defoliation in 

January to August 2000, but white clover growth rate then increased to 15 kg/hald compared 

with 4 kg/hald for Caucasian clover on 6 November 2000. Similarly, for SD3 both species 

produced <4 kg/ha/d from first defoliation on 2 April to August 2000, but white clover growth 

rate then increased to 20 kg/ha/d compared with only 1 kg/hald for Caucasian clover on 6 

November 2000. For SD4, clover growth rate was <5 kg DMfhaid for both species. 

6.3.6 Nitrogen % in ryegrass herbage 

Mean N concentration in ryegrass herbage averaged 2.3% from the 24 September sowing 

compared with 3.3% for the 31 March sowing. N concentration in ryegrass herbage averaged 

2.6% with both 3 and 12 kg/ha of ryegrass regardless of clover species. 
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Dry matter production rate of Caucasian (.) and white (.) clovers sown on 24 
September 1999 (a), 9 November 1999 (b) and 4 February 2000 (c) with 3 
kglha of perennial ryegrass. Bars represent maximum standard errors for final 
harvest. Arrows indicate first defoliation. 
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6.4 Discussion 

6.4.1 White clover establishment 

6.4.1.1 Spring sowing dates 

Botanical composition (Figure 6.2) and total DM production (Table 6.1) measured on 6 

November 2000 show that white clover establishment in spring was successful from the 24 

September and 9 November sowing dates with 3 to 12 kglha of perennial ryegrass. 

Specifically, acceptable white clover content (>15%) and weed suppression (:S2%) was 

achieved from both spring sowing dates. Heavy weed ingress in the September sown pastures 

was controlled by the use of herbicides (Section 6.2.3), but weed suppression by perennial 

ryegrass without herbicides was effective in the November sown pastures. 

Acceptable white clover and weed contents were achieved with 3-12 kglha of perennial 

ryegrass with minimum impact on total yield. All ryegrass combinations produced about 15-

16 t DMiha from the 24 September sowing date and about 13-15 t DMiha from the 9 

November sowing date when pastures were harvested in the following spring (Table 6.1). 

The greatest yields were obtained from treatments sown with 6 and 12 kglha of ryegrass, but 

the small (1-2 t DMlha) difference between these treatments and the 3 kglha ryegrass 

treatment meant that the yields from all ryegrass treatments were acceptable for successful 

establishment of white clover. This result is consistent with Dumbleton (1997) who reported 

only small differences in total yield with 4-16 kglha of perennial ryegrass. 

6.4.1.2 Autumn sowing dates 

The impact of perennial ryegrass competition on the establishment of white clover was 

highlighted by the two autumn sowing dates. Only white clover sown on 4 February achieved 

adequate levels (213%) when mixed with perennial ryegrass, and all combinations suppressed 

weeds (0%) with minimum impact on total yields (8-9 t DMlha) by the following spring 

(Figure 6.3; Table 6.1). The dominance of perennial ryegrass was accentuated in the late 

autumn (31 March) sowing, with no ryegrass treatment producing more than 8% white clover 

in the subsequent spring composition, even when the ryegrass seeding rate was only 3 kglha. 

This result is consistent with Moot et ai. (2000) who recommended white clover based 

pastures are sown when autumn soil temperatures at 20 mm soil depth are at least 14°C. The 
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suppression of white clover by winter annual weeds in the clover monoculture sown on 31 

March, when soil and air temperatures were declining rapidly below 10 °C (Figure 6.1), 

supports this conclusion. Thus, the establishment of white clover in autumn with perennial 

ryegrass was only successful from the 4 February sowing date with the inclusion of 3 to 12 

kg/ha of perennial rye grass. 

6.4.2 Caucasian clover establishment 

6.4.2.1 Spring sowing dates 

The sowing strategies that resulted in successful establishment of white clover with perennial 

rye grass did not achieve the same results for Caucasian clover. The inclusion of perennial 

ryegrass suppressed weeds (Figure 6.2) and maximised total yields (Table 6.1) effectively, but 

this was at the expense of Caucasian clover establishment. Indeed, even when sown on 24 

September with the very low ryegrass seeding rate of 3 kg/ha, only 9% of the botanical 

composition was Caucasian clover in the following spring. In comparison, the same 

agronomic treatment achieved more than double the amount of white clover (28%). The 

warmer soil temperatures for the 9 November sowing date (Figure 6.1) should have benefited 

Caucasian clover establishment (Moot et al., 2000). However, insect damage in the first 

month after sowing reduced plant populations (Table 6.3) which would have compromised 

these results. Only the clover monocultures achieved acceptable levels of Caucasian clover 

(47-61 %) from both spring sowing dates. However, the establishment of the clover 

mono culture was unacceptable overall, with more weeds and less total yield (Table 6.1) than 

the ryegrass mixtures. Thus, spring sowing aided Caucasian clover establishment, but it was 

sensitive to even low (3-12 kg/ha) rye grass seeding rates. 

6.4.2.2 Autumn sowing dates 

In contrast to white clover establishment, none of the treatments sown in autumn resulted in 

acceptable establishment of Caucasian clover. Indeed, even when sown on 4 February, when 

air and soil temperatures were above 16°C (Figure 6.1), and with no ryegrass only 36% of the 

botanical composition of the monoculture in the following spring was Caucasian clover. The 

remainder was summer and winter annual weeds (Figure 6.3). The lack of competitive ability 

of Caucasian clover was apparent with the inclusion of ryegrass reducing the clover content to 

176 



less than 3% of the total yield. Thus, the sowing strategies that achieved successful 

establishment of white clover did not assist Caucasian clover establishment. 

6.4.3 Seedling growth and development 

The seedling growth and development characteristics of white and Caucasian clovers offer 

some insight into the difference in establishment success between the two species. 

6.4.3.1 Emergence 

The thermal time to emergence was similar for white and Caucasian clovers, indicating that 

emergence was not the reason for poor establishment of Caucasian clover. Widdup et ai. 

(1998) also reported similar emergence for white and Caucasian clovers. However, 

emergence is only one aspect of seedling competitiveness. After emergence, the ability 6f a 

species to compete for limited resources, particularly light, is dependent on its seedling 

growth and development characteristics. 

6.4.3.2 Seedling growth 

Caucasian clover seedlings showed active growth in the early stages, producing similar shoot 

dry weights than white clover at first defoliation (Table 6.3). However, the DM production 

after first defoliation was lower for Caucasian clover than white clover (Figure 6.4). This was 

despite adequate populations at first defoliation, which suggests slower seedling regrowth 

than white clover. 

The root dry weights of white and Caucasian clovers were different. Specifically, Caucasian 

clover allocated 0.60: 1 proportion of carbon to root and shoot growth compared with 0.37: 1 

for white clover. Thus, two species-specific patterns of carbon allocation were operating as 

early as first defoliation. This result is consistent with other Caucasian clover establishment 

studies. Specifically, researchers have attributed low production of Caucasian clover in the 

establishment year to its priority toward root and rhizome production. Hill and Mulcahy 

(1995) reported that the root/shoot ratio of Caucasian clover averaged around 3.0 at the end of 

their 1 year glasshouse experiment, and has been shown to be a characteristic of old stands 

(Daly and Mason, 1987; Stewart and Daly, 1980). In the present study, root and rhizome 
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production beyond the first defoliation was not measured, but it is likely that a greater priority 

toward root than shoot production contributed to the slower DM production rate (Table 6.4) 

of Caucasian clover compared with white clover in the establishment year. However, 

root/shoot ratio may not have been the only factor contributing to the slow establishment of 

Caucasian clover. 

6.4.3.3 Seedling development 

There were also differences in seedling development between the two clover species. By first 

defoliation, white clover plants averaged 7.4 leaves compared with about 4 leaves for 

Caucasian clover (Table 6.3). This difference in leaf development was attributed to white 

clover plants that had initiated axillary buds that were beginning to grow out into stolons. In 

contrast, Caucasian clover showed no sign of crown shoot development and therefore 

produced fewer leaves than white clover. Thus, Caucasian clover appeared to have a slower 

rate of leaf and shoot development than white clover. This feature would place Caucasian 

clover at a disadvantage against perennial rye grass after defoliation, due to fewer growing 

points from which leaves could be produced for light interception. White clover 

demonstrated early shoot development and therefore more growing points for leaf 

development, giving greater shoot regrowth after defoliation. 

6.4.4 Spring regrowth 

The consequence of the early differences in shoot development between Caucasian and white 

clovers was highlighted during the first spring after sowing. By November 2000, white clover 

averaged -20 kg DMlhaJd when sown on the first three sowing dates with 3 kglha of 

perennial ryegrass, compared with 5 kg DMlhaJd or less for Caucasian clover. This result was 

probably due to stolon proliferation in white clover once the seedlings had established 

(Toddhunter, 1997). In contrast, it is likely that Caucasian clover had a slower rate of 

growing point development than white clover during the first spring which resulted in lower 

clover production rates. Previous research has reported a slower rate of growing point 

development and production than white clover during the establishment year (Watson et al., 

1996), but greater production from Caucasian clover during the second year in perennial 

ryegrass-based pastures (Watson et al., 1997). 
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6.4.5 Implications for white clover establishment 

The inference from the present study is that white clover with perennial rye grass should be 

sown in spring, when soil temperatures are above 12°C, or in early autumn, when soil 

temperatures are above 16°C with low to medium (3-12 kglha) ryegrass seeding rates. This 

is achievable with irrigation and adequate rainfall, but may be difficult to achieve in dryland 

situations on the east coast of New Zealand. For example, in Canterbury a successful late 

summer sowing of white clover may only be achievable in only 1 out 4 years which is the 

general ratio of moistdryland growing seasons in this environment. 

This study has shown that as soil temperatures declined in the autumn (Table 6.1) the rapid 

seedling growth and development of perennial rye grass favoured its establishment at the 

expense of white clover. Therefore, if sowing is delayed in the autumn by lack of soil 

moisture then white clover establishment will be less successful. In these conditions, early 

spring sowing should be the strategy used to enable seedlings to become established before 

moisture becomes limiting. The seeds will be sown into a moist but cool (>12 DC) seedbed 

but when soil temperatures are increasing. 

The 12 kglha ryegrass seeding rate used in this study gives an indication of how clover 

content would decline even more if commercially recommended ryegrass sowing rates of 20-

25 kglha are used. Cullen (1958) demonstrated emphatically the effects of high ryegrass 

sowing rates on slow establishing pasture species and concluded that low (4-10 kglha) rates 

of ryegrass were needed if seedlings of slower-establishing, small-seeded species such as 

cocksfoot, timothy and white clover were to be encouraged. 

6.4.6 Implications for Caucasian clover establishment 

These agronomic strategies which resulted in successful establishment of white clover did not 

result in successful establishment of Caucasian clover. The low Caucasian clover production 

from all rye grass sowing rate combinations adds to its reputation as a difficult species to 

establish in pastures (Section 2.5). 

The results from this study led to the conclusion that for successful establishment Caucasian 

clover needs to be sown alone in spring. This is an unusual requirement for permanent 
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pasture establishment so a strategy acceptable to farmers could be to sow a cover crop such as 

rape with Caucasian clover. Indeed, successful rapid Caucasian clover establishment in 

perennial ryegrass pastures has usually been achieved from spring sowing with temporal 

separation of the two species. Other strategies required for rapid establishment of Caucasian 

clover will be discussed in more detail in Chapter 8. 

6.5 Conclusions 

This experiment has evaluated agronomic sowing strategies for the establishment of white and 

Caucasian clovers in permanent pastures. Specific conclusions were: 

1. White clover establishment in spring was successful from the 24 September and 9 

November sowing dates, when soil temperature was above 12°C, and when ryegrass 

seeding rate was 3 to 12 kg/ha. 

2. White clover establishment in autumn was only successful from the 4 February 

sowing date, when soil temperature was above 16°C, and when ryegrass seeding rate 

was 3 to 12 kg/ha. 

3. Effective weed suppression and similar total DM yields were achieved with 3 to 12 

kg/ha of perennial ryegrass from all four sowing dates. 

4. Caucasian clover establishment in spring was unsuccessful, from both the 24 

September and 9 November sowing dates, when soil temperature was above 12°C, 

and even when rye grass seeding rate was restricted to 3 kglha. Only Caucasian clover 

sown alone in spring produced high clover contents (>60%). 

5. None of the sowing strategies used in autumn resulted in successful establishment of 

Caucasian clover. 

6. Seedling emergence was similar for white and Caucasian clovers, but post-emergence 

seedling growth and development differed. These results indicated a need for further 

detailed studies to help understand the physiological basis of slow establishment in 

Caucasian clover. 
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Chapter 7 

Seedling development and growth of Caucasian clover, white 
clover and perennial ryegrass 

7.1 Introduction 

In Chapter 6, results showed that the successful establishment of white clover was achieved 

from spring and late summer sowing dates with low (3-12 kglha) seeding rates of perennial 

ryegrass. However, none of the sowing strategies tested resulted in rapid establishment of 

Caucasian clover with perennial ryegrass. Only Caucasian clover sown in spring without 

perennial rye grass had achieved adequate clover contents in the following spring. 

The identification of characteristics responsible for the slow establishment of Caucasian 

clover may provide a basis for understanding seedling competitiveness, and could assist the 

development of alternative sowing strategies. Important seedling characteristics include rapid 

germination, emergence and canopy expansion to compete for limited resources, particularly 

light (Brougham, 1953). The major components of seedling canopy expansion include the 

rate of leaf appearance (phyllochron) on the primary stem and timing of axillary shoot 

development (branch or tiller structures). Assuming development rate is linearly related to 

temperature up to an optimum (Angus et al., 1981) then each development stage can be 

quantified using thermal time (Arnold and Monteith, 1974). Moot et al. (2000) used thermal 

time to quantify differences in germination and emergence of temperate pasture species 

including white clover and perennial ryegrass, but not Caucasian clover. Hill and Luck 

(1991) reported the effect of temperature on germination and seedling growth and 

development of Caucasian and white clovers, but Tt requirements were not reported. 

Thus, the initial objective of the experiments described in this chapter was to quantify the Tt 

requirements for key seedling development stages (germination, emergence, first leaf 

appearance, phyllochron and axillary shoot development) of Caucasian clover, white clover 

and perennial ryegrass. The second objective aimed to relate differences in field , 

establishment success to the development stages and additional growth characteristics (leaf 

area, seedling dry weight, shoot relative growth rate) of each species. This was done through 

a series of controlled environment experiments. 
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7.2 Materials and methods 

7.2.1 Experiment 1: Germination 

For Experiment 1, three replicates of 50 seeds per species ('Endura' Caucasian clover, 

'Grasslands Demand' white clover and 'Nui' perennial ryegrass) were placed on wet blotting 

paper in Petri dishes and germinated in unlit incubators at 15 constant temperatures, ranging 

from 5.0 to 40.0 °C (±I°C) at 2.5 °C intervals. Clover seeds were scarified but no other pre­

conditioning treatments were used. Distilled water was added as required to ensure moisture 

was non-limiting for germination. 

Normal seedlings (International Seed Testing Association, 1985) were counted and removed 

daily at temperatures below 15 °C and twice daily at 15 °C or above, until germination ceased. 

Gompertz functions were fitted to cumulative percentage germination against days: 

Equation 7.1 p = a*exp(-exp[-b*(t - m)]) 

where p is the cumulative percentage of seeds germinated at time t (d), a is the final 

germination percentage, and band m are constants. The number of days to 75% germination 

(t75) was calculated using a formula derived from the Gompertz function: 

Equation 7.2 t75 = m -In[-ln(75)]/b 
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7.2.2 Experiments 2-6: Seedling development and growth 

7.2.2.1 Experimental design 

Experiments 2-6 used a completely randomised design consisting of three species with three 

replicates, but each experiment was conducted in growth cabinets at five different nominal 

temperature settings (9/4, 15/5,20/10, 25/15, or 30/20 °C). 

7.2.2.2 Husbandry 

Plastic 4 litre pots were filled with bark and pumice (4:1 by volume) below a 20-mm layer of 

loam and peat (1:1 by volume). The growing medium was amended with 1 gil Osmocote Plus 

(15% N, 5% P, 11% K), trace elements and 1 gil of dolomite lime (11 % Mg, 24% Ca). In 

each pot, 50 seeds of the same lines as in Experiment 1 were placed on a 10 mm layer of loam 

and peat and then covered with another layer to achieve a sowing depth of 10 mm. 

Immediately after sowing, the pots were watered and placed in a plant growth chamber 

(Conviron PGV36, Winnipeg, Canada) at the designated nominal temperature. An 8 hl8 h 

temperature and photoperiod regime was used, with 4 h transitions between day and night. 

Each chamber was lit with a combination of 45 incandescent (Sylvania, 40 W) and 30 

fluorescent (Sylvania, 6 x 115 Wand 24 x 215 W) lamps. Light reaching the plant canopies 

had a photosynthetic photon flux density (PPFD) of 350 ± 50 /..lmol/m2/s. Relative humidity 

ranged from 50 to 70%. Pots were watered daily and re-randomised weekly to minimise 

possible effects of uneven air or light distribution within the chambers. 

Temperatures were measured using four sensors (Thermistors KTY-110). Directly after 

sowing, two soil temperature sensors were placed in two pots, at a depth of 10 mm. Another 

two sensors (covered with aluminium foil) were placed in the same pots, located 10 mm 

above the soil surface, to be in close proximity to the seedling apical growing points, the 

major site of temperature perception by the plant (Peacock, 1975). Such placement has been 

recommended for accurate prediction ofleaf appearance rates in crops (Jamieson et al., 1995). 

Temperatures were recorded every 5 minutes and integrated and logged every hour with a 

HOBO data logger to determine daily mean temperatures. Because of small variations 

between nominal chamber temperature settings and the actual temperatures the plant 

experienced, the latter were used for all analyses. Specifically, 10 mm soil temperatures were 

183 



used for emergence, but further seedling development was related to the 10 mm above-soil 

surface temperatures. 

Plants were repeatedly thinned to avoid competition. Final populations were 10 plants/pot 

(390 plants/m2
). These plants were marked with coloured wire for detailed monitoring. 

7.2.2.3 Measurements 

7.2.2.3.1 Emergence 

Emerged seedlings were recorded daily until seedlings ceased to emerge. Emergence was 

considered to have occurred when both cotyledons of the clover species had expanded and 

when the coleoptile of ryegrass was visible (Moot et al., 2000). Gompertz functions 

(Equation 7.1) were fitted to cumulative percentage emergence against days after sowing 

(DAS). The number of days to 50% emergence (t50) was calculated using a formula derived 

from the Gompertz function: 

Equation 7.3 t50 = m -In[-ln(50)]/b 

7.2.2.3.2 Leaf appearance 

The number of emerged leaves (unifoliate and trifoliate leaves in clovers) on the marked 

plants was recorded daily until individual Caucasian clover plants had produced five leaves on 

the primary stem (up to 774 °Cd). Leaves were considered to have emerged as soon as the 

petiole of clovers was visible and when ryegrass leaves had formed a collar (Hsu and Nelson, 

1986b). The leaf appearance interval (days/leaf) for those that appeared on the primary stem 

was determined by least squares regression analysis of cumulative leaf number against DAS. 

7.2.2.3.3 Axillary shoot development 

The initiation of axillary leaves and branch (stolons or crown shoots) or tiller structures, 

which emerged in the axils of primary leaves, was also recorded. For white and Caucasian 

clovers, a stolon or crown shoot was considered to have formed when two leaves had emerged 

on that axillary bud. At this point, the axillary bud was beginning to grow out into a stolon or 
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crown shoot. For ryegrass, a tiller was considered to have formed when one leaf on that 

axillary bud had formed a collar. 

7.2.2.3.4 Seedling growth 

When individual Caucasian clover plants had produced one leaf (the unifoliate leaf), the 

shoots of three unmarked plants in each pot were removed at soil level and their dry weight 

CDW) determined. 

For most treatments, white clover and perennial ryegrass plants were large (beyond the 

seedling stage), and beginning to compete within pots approaching 774 °Cd. Thus, all 10 

marked plants in each pot were destructively harvested at this time. The plants were washed 

and separated into shoots and roots. The number of leaves and branch or tiller structures was 

recorded, and leaf area/plant was measured using a LI-COR model LI-3100 leaf area meter 

before the DW of shoots and roots was determined. 

Shoot relative growth rate (RGR; mg/mg/d) was calculated from the logarithm of individual 

seed weight and mean seedling shoot DW for each species when Caucasian clover plants had 

produced one leaf: 

Equation 7.4 RGR = (In W2 -In Wl)/(t2 - tl) 

where WI is the seed fresh weight at 0 DAS (tl) and W2 is the shoot DW at the time of 

harvest (t2). 

Individual seed weight (uncoated) was 0.63 mg for white clover, 2.20 mg for Caucasian 

clover and 2.00 mg for rye grass. 

Also, shoot RGR was calculated by Equation 7.4 with mean shoot DW at t2 and mean shoot 

DW at the time of final harvest (t3). 
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7.2.3 Experiment 7: Axillary shoot development 

Experiment 7 was conducted at 25/15 °C and used a randomised complete block design with 

three replicates of each species. This experiment used the same seed lines and husbandry as 

Experiments 2-6, but white clover and perennial ryegrass plants were harvested 620 °Cd after 

sowing, and Caucasian clover plants were harvested 1400 °Cd after sowing. Thus, more 

rigorous thinning than that used in Experiments 2-6 was used to avoid inter-plant 

competition. Leaf appearance rate and the timing of stolon or crown shoot initiation in 

clovers were recorded using the methods described in Section 7.2.2.3. For perennial ryegrass, 

leaves were considered to have emerged as soon as the leaf tip was visible. 

7.2.4 Data analysis 

Data for each species were plotted as the reciprocal of the duration (in days) to each 

development stage (75% germination, 50% emergence, first leaf appearance, leaf appearance 

interval, initiation of axillary leaves and branch or tiller structures) against the mean 

temperature. The inverse of duration (lid) represents the development rate. Least squares 

regression analysis was used for the positive linear portion of the response whereby: 

Equation 7.5 Development rate = a + bx 

The regression coefficients of the regression line were then related to T band Tt (Angus et aI., 

1981; Moot et aI., 2000) as: 

Equation 7.6 

and 

Equation 7.7 Tt = lib 

The optimum temperature (T opD for development was identified as the temperature above 

which development rate did not increase. For germination, T opt was calculated as a point 

estimate from the interception of the regression line fitted to the increasing portion of the 

186 



response, and a second regression line fitted to the decreasing portion (Roman et al., 1999), 

using the coefficients of the two regression equations: 

Equation 7.8 

where aI and a2 are the intercepts of Regressions 1 and 2, respectively, and bI and b2 are the 

slopes of Regressions 1 and 2, respectively. 

Data for temperatures above Topt were excluded from the analysis of thermal time (Angus et 

al., 1981; Moot et al., 2000). Rates of germination decreased rapidly to zero as temperature 

was increased above Topt to the maximum temperature (Tmax). 

Maximum standard errors (s.e.) or standard errors of the mean (s.e.m.) are reported for each 

measured variable. Also, maximum 95% confidence intervals (c.i.) are reported for Tb, Topt 

and Tmax (Sokal and Rohlf, 1981) as used by Roman et al. (1999). Final emergence 

percentage, seedling development and growth characteristics at harvest were analysed using 

one-way ANOV A within each temperature treatment. Treatment means were compared using 

Fisher's protected l.s.d. test whenever the ANOV A indicated that differences among 

treatments presented P<0.05. 

To enable direct comparison of the Tt requirements for each development stage between 

species, additional regression analyses were performed with T b set at 0 °C (Moot et al., 2000). 

This value of T b was justified because the 95% confidence interval for the calculated T b value 

encompassed 0 °C for all species and development stages, indicating that the two values were 

not significantly different. 
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7.3 Results 

7.3.1 Experiment 1: Germination 

7.3.1.1 Final germination percentage 

Gompertz functions described the cumulative germination data (R2 ~ 0.97) for each species 

up to 32.5 DC (Figure 7.1). However, an R2 value of 0.92 for Caucasian and white clovers at 

35 DC meant that the final germination % and the duration to 75% of final germination had to 

be estimated by interpolation. For each species, final germination was between 86 and 99% 

from 5 to 25 DC, but decreased to about 40% for Caucasian clover and perennial rye grass , and 

only 6% for white clover at 35 DC. Germination was not observed for any of these species at 

37.5 or 40 DC. 

7.3.1.2 Time to 75% germination and germination rate 

The number of days to 75% of the final germination was greatest at 5 DC for each species, but 

decreased exponentially (R2 ~ 0.99) as temperature increased to 27.5 DC (Figure 7.2a). There 

was then an increase in duration until the maximum effective temperature of 37.5 DC was 

reached. White clover required 14 d to reach 75% germination at 5 DC compared with 18 d 

for Caucasian clover and 23 d for perennial ryegrass. At 27.5 DC, Caucasian and white 

clovers reached 75% germination in about 2 d compared with 3 d for perennial ryegrass. 

Based on the fitted 'broken stick' model (R2 ~ 0.92; s.e. ~ 0.07) the estimated value of Tb for 

germination was -3.3 DC for each species (Figure 7.2b). The minimum germination rate for 

each species was 0.06 seeds/d at the lowest temperature of 5 DC. This rate then increased to a 

maximum of -0.69 seeds/d for both clovers compared with 0.38 seeds/d for ryegrass at the 

Topt of -27.1 DC, before it decreased until no germination occurred at the estimated Trnax of 

38.2 DC for all species. 
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The number of days to 75% germination differed as temperature increased (Figure 7.2a), but 

was constant in Tt when temperature was less than Topt (Table 7.1). The Tt requirement for 

75% germination was lowest for white clover at 32 °Cd compared with 36 °Cd for Caucasian 

clover and 65 °Cd for perennial ryegrass. When Tb was set at 0 DC, the two clovers still 

required about half the Tt of perennial ryegrass to reach 75% germination. 

Table 7.1 Base (Tb), optimum (Topt) and maximum (Tmax) temperatures and thermal time 
(Tt) requirements for 75% germination of Caucasian clover (CC), white clover 
(WC) and perennial ryegrass (PR). 

Tb Topt Tmax Tt R2 ITt 

(OC) (OC) (OC) (OCd) (%) (Tb=O °C) 

(OCd) 

ec 3.9 26.7 37.7 36 95 46 

we 3.5 27.1 38.6 32 92 40 

PR 2.6 27.4 38.3 65 96 76 

Max. s.e. 0.25 0.36 0.27 2.6 1.6 

95% c.i. -2.0,6.8 24.8,31.3 35.0,50.3 

I Analysis assumes a base temperature of 0 DC. 

R2 = coefficients of determination. 
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7.3.2 Experiments 2-6: Seedling development and growth 

7.3.2.1 Emergence 

Gompertz functions described the cumulative emergence data (R2 ~ 0.99) for each species and 

temperature treatment (Figure 7.3). For Caucasian clover, final emergence was between 71 

and 78% from 10 to 25°C, but decreased to 62% at 6.5 °C. For ryegrass, final emergence was 

between 79 and 87% from 6.5 to 25°C, but for white clover emergence ranged between 65 

and 77%. 

The number of days to 50% of the final emergence was at least 24 d at 6.5 °C for each 

species, but decreased exponentially (R2 ~ 0.99) to be about 4 d as mean lO-mm soil 

temperature increased to 25 DC (Figure 7.4a). This led to a linear (R2 ~ 0.97) increase in the 

rate of emergence against mean soil temperature (Figure 7.4b) that enabled T band Tt to be 

estimated at about 3.4 DC and 92 °Cd respectively for all three species (Table 7.2). The 

calculated Tb was not significantly different to 0 DC, but the Tt requirement for emergence 

remained similar for all species when T b was set at 0 DC. 

Table 7.2 

CC 

WC 

PR 

Maximum s.e. 

95% c.i. 

Base temperature (T b) and thermal time (Tt) requirements for 50% emergence 
of Caucasian clover (CC), white clover (WC) and perennial ryegrass CPR) 
grown in controlled environments. 

Tb Tt R2 lTt (Tb = 0 °C) 

(OC) (OCd) (%) (OCd) 

3.6 92 99 114 

3.6 87 99 109 

3.0 96 98 115 

0.56 9.1 7.6 

-1.93,8.79 

1 Analysis assumes a base temperature of 0 dc. 
R2 = coefficients of determination. 
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7.3.2.2 First leaf appearance 

The number of days to first leaf appearance (unifoliate leaf in clovers) was -55 d for all 

species at 5.5 DC, but decreased exponentially (R2:::: 0.99) to be about 10 d as air temperature 

increased to a mean of 24°C (Appendix 19a). Linear relationships (R2:::: 0.93) between fIrst 

leaf appearance rate and mean air temperature from 5.5 to 19°C (Appendix 19b) enabled Tb 

to be estimated at 3.4 °C for all species (Table 7.3). The Tt for first leaf appearance averaged 

153 °Cd for Caucasian and white clovers compared with 180 °Cd for perennial ryegrass, and 

species differences did not change when T b = 0 DC. 

Table 7.3 

CC 

WC 

PR 

Maximum s.e. 

95% c.i. 

Base temperature (Tb) and thermal time (Tt) requirements for first (unifoliate) 
leaf appearance of Caucasian clover (CC), white clover (WC) and perennial 
ryegrass (PR) grown in controlled environments. 

Tb Tt R2 ITt (Tb = O°C) 

(OC) COCd) (%) (OCd) 

3.7 151 95 205 

3.6 155 93 208 

3.0 180 98 228 

0.51 6.2 8.4 

-6.91,4.29 

Note: Data from 30/20 DC were excluded from the analysis of thermal time on the basis that these were above the 

species optimum thermal range (Section 7.2.4). 1 Analysis assumes a base temperature of 0 DC, R2 = coefficients 

of determination. 

195 



7.3.2.3 Phyllochron 

The number of leaves on the primary stem increased linearly with DAS for each species and 

temperature regime (Figure 7.5). The primary leaf appearance interval (days/leaf), or 

phyllochron, was greater than 18 d at 5.5 °C for each species, but decreased exponentially (R2 

~ 0.99) to be ~5 d as air temperature increased to a mean of 19°C (Appendix 20a). Leaf 

appearance rate (leaves/d) was a linear function (R22: 0.99) of mean air temperature from 5.5 

to 19°C (Appendix 20b) that enabled Tb to be estimated at _1°C for all species (Table 7.4). 

Above the calculated T b, the phyllochron was 88 °Cd for white clover compared with -98 °Cd 

for Caucasian clover and perennial ryegrass, and differences were similar when T b = O°C. 

Table 7.4 

CC 

WC 

PR 

Maximum s.e. 

95% c.i. 

The phyllochron of successive primary stem leaves above a base temperature 
(T b) for Caucasian clover (CC), white clover (WC) and perennial ryegrass (PR) 
grown in controlled environments. 

Tb Phyllochron R2 ITt (Tb = a °C) 

(OC) (OCd/leaf) (%) (OCd) 

1.4 98 99 109 

0.8 88 99 94 

0.5 97 99 101 

0.45 4.6 1.7 

-7.19,3.32 

Note: Data from 30/20 °C were excluded from the analysis of thermal time on the basis that these were above the 

species optimum thermal range (Section 7.2.4). [Analysis assumes a base temperature of 0 0c. 2Phyllochron 

was calculated from the spade leaf (primary leaf one) to five primary leaves in each species. R2 = coefficients of 

determination. 
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7.3.2.4 Initiation of axillary leaves and branch or tiller structures 

Axillary leaves were initiated in perennial rye grass and white clover when the third and fourth 

leaves appeared on the primary stem, respectively (Figure 7.5). The development of stolons 

in white clover and tillers in perennial rye grass led to an exponential increase in the total 

number of leaves with DAS, whereas the number of leaves on the primary stem continued to 

increase linearly. Linear relationships (R2 ~ 0.95) between axillary leaf (Appendix 21b), 

stolon or tiller (Appendix 22b) initiation rates and mean temperature from 5.5 to 19°C were 

found in white clover and perennial ryegrass, and an average Tb of 2.2 °C was estimated 

(Table 7.5). With T b set at 0 °C, ryegrass tillers initially appeared after 373 °Cd compared 

with 440 °Cd for stolons of white clover. 

Table 7.5 Base temperature (Tb) and thermal time (Tt) requirements for the initiation of 
axillary leaves and stolons or tillers in white clover (WC) and perennial 
ryegrass (PR) grown in controlled environments. 

Tb Tt R2 lTt (Tb = 0 °C) 

(OC) (OCd) (%) (OCd) 

WC (axil. leaves) 1.5 362 97 440 

WC (stolons) 2.5 477 99 532 

PR* 2.7 301 99 373 

Maximum s.e. 0.51 23.8 14.1 

95% c.i. -12.97,2.44 

Note: Data from 30120 °C were excluded from the analysis of thermal time on the basis that these were above the 

species optimum thermal range (Section 7.2.4). iAnalysis assumes a base temperature of 0 dc. R2 = coefficients 

of determination. * Axillary leaf and tiller initiation were deemed to be the same in perennial ryegrass. 

In contrast, no axillary leaves, crown shoots or rhizomes were detected in Caucasian clover 

before five leaves had appeared on the primary stem (up to 774 °Cd). This necessitated 

Experiment 7 to accurately define the initiation of branch development in Caucasian clover 

(Section 7.3.3). 
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7.3.2.5 Seedling shoot dry weight at first leaf appearance, and shoot relative growth rate 

from seed to first leaf appearance 

When Caucasian clover had produced the first primary leaf its shoot DW averaged 8.0 

mg/plant compared with (P<0.05) 10.0 mg/plant for perennial ryegrass and 3.3 mg/plant for 

white clover (Table 7.6). However, shoot RGR from seed to first leaf appearance averaged 

0.025 mg/mg/d for all species. 

Table 7.6 Shoot dry weight and shoot relative growth rate of Caucasian clover (CC), 
white clover (WC) and perennial ryegrass (PR) at different nominal 
temperatures at first leaf appearance in Caucasian clover. 

9/4 °C IS/5°C 

Shoot dry weight (mg/plant) 

CC 11.8b 11.0a 

WC 

PR 

s.e.m. 

P 

6.8b 

18.9a 

1.77 

0.021 

4.h 

14.0a 

1.10 

0.007 

Shoot relative growth rate (mg/mg/d) 

CC 

WC 

PR 

s.e.m. 

P 

0.011 

0.015 

0.015 

0.0011 

0.089 

0.023 

0.027 

0.028 

0.0013 

0.118 

20/10 °C 

7.6a 

2.h 

9.2a 

1.03 

0.017 

0.024 

0.023 

0.030 

0.0024 

0.209 

25/15°C 

0.49 

0.015 

0.031 

0.040 

0.030 

0.0033 

0.158 

30/20 °C 

4.0a 

1.3b 

3.1a 

0.26 

0.005 

0.025 

0.031 

0.018 

0.0036 

0.166 

Mean 

8.0b 

3.3c 

1O.0a 

0.31 

<0.001 

0.023 

0.027 

0.024 

0.0018 

0.347 

Note: Shoot relative growth rate was calculated from seed to first leaf appearance. Within columns and 

variables, values with the same or no letter subscript are not significantly different (a=O.05). 
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7.3.2.6 Number of leaves and branches, and leaf area/plant at final harvest 

By 774 DCd, the number of leaves/plant averaged 14 for white clover and perennial ryegrass 

compared with (P<O.OOl) only 5 for Caucasian clover at final harvest (Table 7.7). Perennial 

ryegrass averaged 7.3 tillers/plant compared with (P<O.OOl) 2.5 stolons/plant for white clover 

and no crown shoots for Caucasian clover. However, mean leaf area/plant was similar for 

Caucasian and white clovers at 24 cm2 compared with (P<O.OO1) 82 cm2 for perennial 

ryegrass. 

Table 7.7 Number of leaves and branches/plant and leaf area/plant of Caucasian clover 
(CC), white clover (WC) and perennial ryegrass (PR) at different nominal 
temperatures up to 774 °Cd after sowing. 

9/4 DC 15/5 DC 20/10 DC 25/15 DC 30120 DC Mean 

Number of leaves/plant 

CC 4.7c 5.1b 5.4b 5.0b 5.1c 5.h 

WC 11.8b 16.6a 17.8a 16.0a 15.3a 15.5a 

PR 17.7a 16.3a 17.0a 13.0a 11.2b 15.0a 

s.e.m. 0.41 0.85 0.30 0.78 0.80 0.60 

P <0.001 0.001 <0.001 0.001 0.002 <0.001 

Number of branches/plant 

CC Oc Dc Dc Dc Dc Dc 

WC 2.h 2.7b 2.9b 2.5b 2.4b 2.5b 

PR 8.6a 8.3a 7.7a 6.2a 5.6a 7.3a 

s.e.m. 0.24 0.41 0.13 0.29 0.16 0.19 

P <0.001 <0.001 <0.001 <0.001 0.001 <0.001 

Leaf area/plant (cm2 
) 

CC 17b 25b 29b 25b 2h 24b 

WC 15b 28b 27b 25b 24b 24b 

PR 84a 107a 82a 72a 64a 82a 

s.e.m. 1.8 4.1 1.3 6.6 4.7 2.6 

P <0.001 <0.001 <0.001 0.011 0.005 <0.001 

Note: Within columns and variables, values with the same letter subscript are not significantly different 

(a=O.05). 
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7.3.2.7 Seedling dry weight at final harvest 

At 9/4 °C and 15/5 DC, perennial ryegrass had the greatest relative advantage (P<0.05) in 

shoot, root and total DW over Caucasian and white clovers (Figure 7.6). However, this 

advantage decreased with increasing temperature to be lowest at 30/20 DC. Shoot, root and 

total DW were similar for Caucasian and white clovers at all temperatures, but were lowest at 

9/4 DC. Averaged across all temperatures, shoot DW was 172 mg/plant for both clovers 

compared with 551 mg/plant for perennial ryegrass, but root DW was 82 mg/plant for 

Caucasian clover compared with 62 mg/plant for white clover and 286 mg/plant for perennial 

ryegrass. 
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7.3.2.8 Shoot relative growth rate from first leaf appearance to final harvest, and root/shoot 

ratio at final harvest 

Average shoot RGR from first leaf appearance to final harvest for white clover and perennial 

ryegrass (-0.063 mg/mg/d) was higher (P<0.05) than Caucasian clover (0.049 mg/mg/d) at 

final harvest (Table 7.8). This result was consistent across all temperatures except at 9/4 °C 

where shoot RGR was similar for white and Caucasian clovers. Root/shoot ratios at final 

harvest were similar for all three species at 9/4 °C and 15/5 °C, but were highest for perennial 

ryegrass and lowest for white clover at the higher temperatures. 

Table 7.8 Shoot relative growth rate from first leaf appearance and root/shoot ratio of 
Caucasian clover (CC), white clover (WC) and perennial ryegrass (PR) at 
different nominal temperatures up to 774 °Cd after sowing when all plants were 
harvested. 

9/4°C 15/5°C 20/10 °C 25/15°C 30120°C Mean 

Shoot relative growth rate (mglmgld/ 

ec 0.015b 0.023b 0.056b 0.070b 0.079c 0.049b 

we 0.016b 0.030a 0.075a 0.091 a 0.105a 0.064a 

PR 0.021 a 0.033a 0.069a 0.089a 0.092b 0.061 a 

s.e.m. 0.0006 0.0008 0.0021 0.0028 0.0021 0.0012 

P 0.003 0.003 0.007 0.012 0.002 0.002 

Root/shoot ratio 

ee 0.46 0.51 0.55b 0.46a 0.30b 0.45ab 

we 0.37 0.46 0.39c 0.32b 0.30b 0.37b 

PR 0.39 0.49 0.73a 0.56a 0.46a 0.53a 

s.e.m. 0.023 0.061 0.033 0.028 0.019 0.022 

P 0.110 0.867 0.005 0.010 0.007 0.018 

Note: Within columns and variables, values with the same or no letter subscript are not significantly different 

(a=O.05). I Shoot relative growth rate was calculated from when Caucasian clover had produced one primary 

leaf until final harvest for all three species. 
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7.3.3 Experiment 7: Axillary shoot development 

Figure 7.7 shows the cumulative leaf appearance and initiation of axillary leaves and branch 

or tiller structures for each species grown at 25/15 °C accumulated Tt above a Tb of 0 0c. In 

this experiment, the accumulated Tt (± s.e.) to the initiation of tillers in perennial ryegrass was 

360 ± 20 °Cd compared with 430 ± 31 °Cd for stolons in white clover. In contrast, axillary 

leaves were found in Caucasian clover only after 990 ± 28 °Cd and crown shoots after 1180 ± 

42°Cd. As a result, the total number of leaves produced per plant 620 °Cd after sowing was 

18 for perennial ryegrass, 15 for white clover but only 4 for Caucasian clover. After 1400 

°Cd, Caucasian clover had produced 16 leaves/plant compared with 76/plant for perennial 

ryegrass and 117/plant for white clover (s.e.m. = 5.1 leaves/plant). The phyllochron (± s.e.) 

for primary stem leaves (1-5) for white clover was 73 ± 2.3 °Cd compared with 91 ± 2.3 °Cd 

for ryegrass and 97 ± 6.1 °Cd for Caucasian clover. 
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Figure 7.7 Number of total (closed symbols) and primary stem (open symbols) leaves of 
Caucasian clover (A, CC), white clover (e, WC) and perennial ryegrass (., 
PR) grown at 25115 °C plotted against accumulated thermal time above a base 
temperature of 0 °C. Arrows indicate the initiation of tiller, stolon or crown 
shoot development. Error bar represents the standard error of the mean for 
total leaf number at 620 °Cd. 
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7.4 Discussion 

7.4.1 Germination 

The germination rates of all three species increased linearly with increasing temperature up to 

an optimum of about 27°C (Figure 7.2b). The nature of the response of germination rate to 

sub-optimum temperatures was consistent with a proposed sigmoid or logistic response of 

development rate to temperature (Section 2.6.1.3). Moot et al. (2000) reported a similar linear 

decline from the optimum to a base temperature below which germination ceased. In the 

present experiment, a two-piece "broken stick" was appropriate for describing the sub- and 

supra-optimum responses of each species. The sub-optimum temperature range encompassed 

soil temperatures commonly experienced at spring and autumn sowing times in New Zealand 

(Charlton et al., 1986). Thus, the discussion in this chapter focuses on utilising the positive 

linear portion of the response to determine Tt requirements for each species. 

The final germination percentage of each species was above 80% for all temperatures in the 

sub-optimum range (Figure 7.1), indicating that no seed dormancy mechanisms were 

operating or additional pre-germination treatments were required. The duration to 75% 

germination was longer in days as temperatures decreased below the optimum (Figure 7.2a), 

but constant in thermal time. Hill and Luck (1991) reported similar responses to temperature 

for germination of Caucasian clover and 'Haifa' white clover, but their Tt requirements were 

not measured. In the present experiment, calculation of the Tt requirement for germination 

summarised the individual temperature responses of each species into repeatable coefficients 

that could be used for all temperatures in the sUb-optimum temperature range. The similar Tt 

requirements for germination of Caucasian (36 °Cd) and white (32 °Cd) clovers confirm that 

the slow establishment of Caucasian clover observed in the field (Chapter 6) was not caused 

by slow germination. 

The values of Tb determined for white clover and perennial ryegrass were within the range of 

values calculated for the same species in previous studies (Moot et al., 2000; Trudgill et al., 

2000). However, the Tb values for Caucasian (3.9 °C) and white (3.4 °C) clovers differed 

from those reported (5.24 °C and 5.79 °C, respectively) by Hill and Luck (1991). This 

variation may have been caused by differences in the definition of "germination" or 

differences in cultivars and seed lines tested. Also, Hill and Luck (1991) used alternating 
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temperatures whereas in the present study constant temperatures were used. This may be 

important if in the alternating temperatures the cooling down phase takes longer than the 

warming up phase, which will increase the mean temperature the seed actually experiences. 

In the present experiment, T b was calculated from nine constant temperatures in the sub­

optimum range, giving an accurate estimate of T b for the prediction of Tt requirements for 

germination. 

The thermal time requirements for germination were lower for Caucasian and white clovers 

than perennial ryegrass, which is consistent with Moot et al. (2000). The rapid germination of 

clovers may be attributed to a faster rate of inbibition (McWilliam et al., 1970). Hampton et 

al. (1987) noted the faster germination of temperate herbage legumes than grasses and 

concluded that" ... the time of sowing of seed mixtures will depend on the grass component". 

However, rapid germination does not guarantee successful establishment of a species. Rapid 

emergence, seedling development and growth are also important components of seedling 

competi ti veness. 

7.4.2 Emergence and first leaf appearance 

The Tt requirements for emergence and first (unifoliate) leaf appearance were similar for all 

three species. This means that for soil temperatures commonly experienced in spring or 

autumn, Caucasian clover is expected to emerge and produce its first leaf at about the same 

time as white clover and perennial ryegrass. 

Emergence was strongly correlated with first leaf appearance, but not with germination. 

Specifically, the two clover species, which germinated rapidly, did not emerge any faster than 

perennial ryegrass (Tables 7.1 and 7.2). This result may have been an artefact of differences 

in the definition of emergence between clovers (cotyledons expanded) and perennial ryegrass 

(coleoptile visible). The shoot relative growth rates from seed to first leaf appearance of the 

three species were similar (Table 7.6). 

7.4.3 Phyllochron 

The rate at which new leaves appeared on the primary stem differed slightly among species 

(Figures 7.5 and 7.7). This was quantified by the phyllochron, which was 88 °Cd for white 
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clover compared with 98 °Cd for Caucasian clover and 97 °Cd for perennial rye grass (Table 

7.4). Five primary leaves appeared during the first month of seedling growth at a mean 

temperature of 19°C in Caucasian clover and perennial ryegrass, and about six primary leaves 

appeared for white clover. The difference in phyllochron between the three species is 

therefore unlikely to be the main cause of slow establishment of Caucasian clover. 

7.4.4 Axillary shoot development 

The time to initiation of axillary shoot development was significantly different among the 

three species. At the time when the fifth leaf on the primary stem of all three species 

appeared there were also axillary leaves and buds beginning to grow into stolons in white 

clover and tillers in perennial ryegrass (Table 7.5). In contrast, Caucasian clover seedlings 

showed no sign of axillary leaf or crown shoot development in all treatments up to 774 °Cd 

after sowing. In Experiment 7, axillary leaf initiation on Caucasian clover occurred after 

about 990 °Cd, but Caucasian clover required 1180 °Cd for the initiation of crown shoot 

development (Figure 7.7). This compared with 430 °Cd for a stolon to appear in white clover 

and 360 °Cd for a tiller in perennial ryegrass. This meant that exponential leaf development 

began after 20 d of seedling growth at a mean temperature of 19°C in perennial ryegrass 

compared with 23 d in white clover and 53 d in Caucasian clover. The consequence of these 

differences was shown by the number of leaves per plant which was three times more in 

ryegrass and white clover than in Caucasian clover up to 774 °Cd, and about five times more 

at 1400 °Cd after sowing. This lack of axillary leaf and crown shoot development indicates 

Caucasian clover would have poor competitive ability in mixed sowings. 

Leaf appearance along the axis of the primary stem was driven by the accumulation of 

thermal time, enabling the phyllochron to be calculated. However, the differences in timing 

of axillary leaf and branch or tiller initiation may have been caused by differences in apical 

dominance between the three species. For example, in white clover axillary leaves were 

initiated after the appearance of the third primary leaf, suggesting that the first axillary bud on 

the primary stem was inactive until three primary leaves had appeared. In contrast, for 

Caucasian clover the first axillary bud was probably not released until seven leaves had 

appeared along the primary stem axis. In all three species, axillary leaf appearance was 

initiated only after a specific number of leaves had appeared on the primary stem, suggesting 

that apical dominance was strong in all species, and enabling this key development stage to be 
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quantified using thermal time above a common T b. Confirmation of the importance of apical 

dominance on the axillary bud development could be shown by removing the apex of the 

primary stem and quantifying when axillary leaf appearance starts. 

7.4.5 Seedling growth after first leaf appearance 

Despite the thermal time differences in axillary shoot development the shoot DW and leaf 

area of Caucasian and white clovers were not different up to 774 °Cd (Figure 7.6 and Figure 

7.7). This result was probably an artefact of the timing of harvest in Experiments 2-6 at a 

maximum of 774 °Cd. During the additional 220 °Cd Caucasian clover would require to 

initiate axillary leaves, white clover would be producing leaves at an exponential rate. The 

slower rate of leaf development of Caucasian clover was in part compensated by its larger 

leaves (LAI values were equal) and higher leaf photosynthesis rate (Chapter 5). 

The differences in development between the three species at 774 °Cd would have significant 

implications if the three species were defoliated or grazed at this time. For example, if all of 

the leaves were removed from ryegrass seedlings at 774 °Cd, the plants would have about 

eight growing points from which new leaves could be produced (Table 7.7). Thus, the total 

leaf appearance rate from ryegrass seedlings after grazing would be higher than that of white 

clover seedlings which had about three growing points per plant, and much higher than 

Caucasian clover seedlings which had no axillary branches and therefore only one growing 

point per plant. This suggests that early defoliation to reduce competition by ryegrass for 

light may not necessarily benefit the establishment of Caucasian clover seedlings, and adds 

greater reason for not sowing Caucasian clover in mixtures with ryegrass. 

The root/shoot ratios gave some evidence of differences in carbon allocation above and below 

ground between white and Caucasian clovers up to 774 °Cd (Table 7.8). In Caucasian clover, 

carbon was allocated nearly equally to root growth and shoot production leading to an average 

root/shoot ratio of 0.45, whereas in white clover the balance was weighted toward shoot 

production, and the resultant root/shoot ratio averaged 0.37. Similar results have been 

frequently reported previously (e.g. Genrich et aI., 1998; Widdup et aI., 1998) and in the field 

experiment in Chapter 6 (Table 6.3). However, in the present study the differences were 

small, suggesting that the pattern of carbon allocation may have contributed to the slow 

establishment of Caucasian clover, but was not the major factor influencing competitiveness. 
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The small differences in root/shoot between Caucasian and white clovers supports the 

contention that the Tt requirement for axillary shoot development was the major factor 

determining the ability of Caucasian clover to compete in mixed sowings. Both the slower 

shoot relative growth rate and the higher root/shoot ratio could be explained by late shoot 

development in Caucasian clover. The appearance and subsequent growth of axillary leaves 

and branches would depend on the translocation to them of carbon fixed during 

photosynthesis in the increasing number of leaves (Thomas, 2003). 

7.4.6 Implications for Caucasian clover establishment 

This study indicates that Caucasian clover seed will establish very slowly when perennial 

ryegrass and/or white clover are used in the pasture mixture. In some cases, Caucasian clover 

may even fail to establish. The lack of axillary leaves until 990 °Cd and crown shoots until 

1180 °Cd after sowing limits the competitiveness of Caucasian clover seedlings in mixed 

pastures. It is not only the time of axillary shoot production that is important, but it is the rate 

of shoot and therefore leaf production after this stage (Figure 7.7) which gives white clover 

and particularly perennial ryegrass a competitive advantage. The early and subsequently 

rapid rate of shoot development and shoot relative growth rate of perennial ryegrass confers a 

substantial competitive advantage over Caucasian clover during the establishment phase when 

competition for resources, particularly light, is intense. Under these circumstances, even 

white clover would appear to be too competitive for Caucasian clover. Agronomically, spring 

sowing of Caucasian clover should be recommended to minimise the interval in days between 

sowing and exponential leaf production. 

The Tt requirement for axillary bud development could be used as a criterion for determining 

the potential rate of establishment of Caucasian clover for different locations throughout New 

Zealand. In other words, environments where spring sowing will give rapid seedling 

development and minimise the time required for axillary shoot development and therefore 

exponential leaf development. 

Table 7.9 lists the theoretic chronological time to axillary bud development for Caucasian 

clover sown on different dates for a range of sites in New Zealand, based on mean air 

temperature and assuming soil moisture is non-limiting. In a mild area like Napier on the east 

coast of the North Island, 67 d are required following a 9 November or 4 February sowing, 
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but this extends to 100 d for 31 March sowing. In contrast, in cooler areas like Riverton, 

located on the south coast of the South Island, following a 9 November sowing, 91 dare 

required before axillary bud development is initiated, while Caucasian clover sown on 31 

March would require 171 d before initiating axillary bud development. In reality, Caucasian 

clover may not reach this stage due to competition from associated species or attack by 

pathogens. 

These theoretical assumptions imply that Caucasian clover establishment would be suited to 

spring sowing alone, particularly in November, to ensure rapid shoot development and 

minimise the time to axillary bud development. They also show that Caucasian clover will be 

very slow to establish in cooler locations in Southland for example, or in Cromwell in the 

South Island high country, even after spring sowing when soil temperatures are above 12°C 

and increasing. 

Table 7.9 

Location 

Lincoln 

Riverton 

Cromwell 

Napier 

Chronological time in days to initiation of crown shoot development in 
Caucasian clover at four sites in New Zealand with four sowing dates (actual 
days calculated from NIW A meteorological data summaries, and Lincoln data 
from Broadfields meteorological station, using a base temperature of a °C). 

----------- Sowing date ------------

24 September 

91 

104 

89 

78 

9 November 

77 

91 

74 

67 

4 February 

81 

104 

82 

67 

31 March 

146 

171 

186 

100 
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7.5 Conclusions 

The series of experiments described in this chapter have provided quantifiable explanations 

for differences in the rate of establishment observed in the field between Caucasian clover, 

white clover and perennial ryegrass. Specific conclusions were: 

1. The Tt requirement for germination was lower for Caucasian (46 °Cd) and white (40 

°Cd) clovers than perennial rye grass (76 °Cd). However, all three species had similar 

Tt requirements for emergence (-112 °Cd) and first leaf appearance (-214 °Cd) from a 

sowing depth of 10 mm. 

2. The phyllochron for leaves produced on the primary stem was slower for Caucasian 

clover (109 °Cd) than white clover (94 °Cd) and perennial ryegrass (101 °Cd). 

3. The Tt requirement for the initiation of axillary shoot development was (1180 °Cd for 

Caucasian clover compared with 440 °Cd for white clover and 373 °Cd for perennial 

rye grass. The subsequent rate of shoot and leaf development was also slower in 

Caucasian clover. This difference provides an explanation for the previously recorded 

observation of unsuccessful establishment of Caucasian clover when sown with 

perennial ryegrass. 

4. Slow establishment of Caucasian clover was attributed to its slower shoot relative 

growth rate than white clover and perennial rye grass from the first to fifth leaves 

produced in Caucasian clover. However, small differences in root/shoot ratio between 

species were considered to be a minor contributor for slow establishment of Caucasian 

clover. 

5. These results suggest that successful establishment of Caucasian clover requires spring 

sowing to minimise the time to axillary shoot development, and without perennial 

ryegrass or white clover. 
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Chapter 8 

General discussion 

8.1 Introduction 

The general aim of this thesis was to define the place of Caucasian clover with respect to 

white clover in temperate pastures (Chapter 1). Constrasts between the two clovers focused 

on the main environmental constraints of temperature, water status, and soil fertility. Reasons 

for the poor competitive ability of Caucasian clover seedlings were also sought in relation to 

commonly sown companion species such as white clover and perennial ryegrass. The 

objective of this final chapter is to draw results together and compare them with those 

previously reported in the literature (Chapter 2). General guidelines for the successful 

inclusion of Caucasian clover in temperate pastures are discussed and topics which require 

further research are indicated. 

8.2 Irrigated or moist conditions 

8.2.1 Soil fertility 

Caucasian clover was more productive than white clover in irrigated rye grass pastures under 

both high (Olsen P 20 Ilg/ml, sulphate-S 12 Ilg/g) and low (Olsen P 11 11 g/ml , sulphate-S 7 

Ilg/g) soil fertility conditions (Chapter 3). Specifically, mean annual sheep LWG per hectare 

from CC-RG pastures was 1178 kg on high fertility soils and 1068 kg on low fertility soils 

over 3 years of rotational grazing. The superior LWG per hectare from CC-RG pastures 

compared with WC-RG pastures (average -9%) under both soil fertility conditions was 

attributed to the ability of Caucasian clover to achieve greater clover content of similar 

herbage nutritive value relative to white clover. Thus, Caucasian clover has the potential to 

be more productive than white clover under soil fertility conditions typically found on 

lowland sheep farms in New Zealand. 

The superior performance of Caucasian clover was confirmed when annual yields were 

measured from the grazed pastures using 28-d regrowth periods under exclosure cages 

(Chapter 4). The mean annual total DM production for CC-RG pastures in high fertility soil 
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of 17.5 tlha was 8% more than that for WC-RG pastures. This was associated with a clover 

DM yield of 4.4 tlha which was 113% greater than that for WC-RG pastures. In low fertility 

soil, annual total DM yields were similar for both pasture mixtures (-15.6 tlha), but clover 

DM yield for CC-RG of 3.9 tlha was still 77% greater than that for WC-RG pastures. These 

results showed that Caucasian clover was superior to white clover under low soil fertility 

conditions, but the advantage was greatest under high soil fertility conditions where 

maintenance P and S fertiliser was regularly applied. 

Caucasian clover was more productive than white clover under the low soil fertility conditions 

imposed in this study. This result indicates that Caucasian clover would be more persistent 

than white clover in environments where less frequent fertiliser P and S inputs are made such 

as in hill and high country farming areas in New Zealand. A number of studies on Caucasian 

clover persistence support this conclusion (Section 2.3.3). However, our attempt to achieve a 

low soil fertility treatment, by withholding fertiliser for more than 10 years, achieved Olsen P 

(11 jJ.g/ml) and sulphate-S (7 jJ.g/g) levels that were more typical of medium fertility soils in 

lowland environments. In contrast, low fertility soils in hill and high country environments 

are often quantified as having an Olsen P of :S8 jJ.g/ml, a sulphate-S of :S4 Ilg/g, and a pH of 

:S5.3. Indeed, low fertility in lowland similar to that of hill country would be rare on high 

value land. This study has not really pushed the boundary of low soil fertility, but has proven 

that Caucasian clover has an ability to maintain a greater clover content than white clover 

under a range of medium to adequate soil fertility conditions. What is needed is more data 

from a wider range of soil fertility levels to challenge the myth that Caucasian clover is only a 

producti ve species in infertile soils. 

8.2.2 Temperature 

Results presented from the grazing experiment (Chapter 4) showed that Caucasian clover was 

more productive than white clover during spring and summer. Further physiological 

measurements provided an understanding of reasons for the superior production of Caucasian 

clover in comparison with white clover (Chapter 5). This was achieved with a detailed study 

of growth and development responses of the two species to temperature (season) under fully­

irrigated conditions. 
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8.2.2.1 Spring and summer production 

Caucasian clover had greater leaf photosynthesis rates than white clover at all temperatures 

tested and the optimum temperature ranges for photosynthesis were similar. This provided a 

possible explanation for the higher production rates of Caucasian clover observed in mixed 

pastures. Another factor contributing to rapid spring production of Caucasian clover may be 

carbon remobilisation from its taproot and rhizomes which could be important for early spring 

production, but further research is needed to confirm this. This would be apparent in 

regrowth pastures but not in seedlings. Thus, Caucasian clover has the potential for use in 

pastures where high spring and summer clover production rates are important. 

8.2.2.2 Autumn production 

Clover production during autumn declined at a faster rate for Caucasian than white clover 

with decreasing temperatures (Chapter 5). This production difference could be in part 

explained by the higher base temperature (5°C) compared with white clover (1 °C), and 

similar phyllochron (126 °Cd). This means that at the same temperature, the two species have 

different rates of leaf production and therefore canopy development. 

Another reason for low autumn production of Caucasian clover may be that it is partitioning 

carbon toward root and rhizome production at this time. Seasonal carbon allocation was not 

measured in this study but it should be an important focus point for future research. Previous 

research (Section 2.3.4) suggests that seasonal carbon allocation in Caucasian clover parallels 

that in other deep tap rooted legume species such as lucerne. The taproot and rhizomes of 

Caucasian clover are the morphological features that confer persistence in Caucasian clover. 

Thus, management strategies that promote root and rhizome production at this time would be 

very important for maintaining persistence and productivity of Caucasian clover in temperate 

pastures. It is likely that Caucasian clover will tolerate frequent grazing during spring and 

early summer, but less frequent rotational grazing would be advantageous during autumn. 

8.3 Dryland conditions (moisture-limiting) 

Under dryland conditions, soil water deficit is the overriding factor influencing pasture 

production. In Chapter 4, results showed that the greatest production advantage for Caucasian 

clover over white clover was during summer. This difference was attributed to higher leaf 
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photosynthesis rates at any given temperature, but may have also been due to differences in 

response to water status, given that pastures were not always fully irrigated during summer. 

An experiment was therefore designed to gain an understanding of the water use efficiency, 

growth and development of Caucasian clover compared with white clover under dryland 

conditions. 

Dry matter production of Caucasian clover was greater than white clover under dryland 

conditions due to faster growth rates during periods of both non-limiting and limiting soil 

water conditions. This difference was attributed to greater water use efficiency and faster leaf 

photosynthesis rates of Caucasian clover compared with white clover at any given level of 

soil water. Thus, greater understanding of the physiological reasons for the superior 

production of Caucasian clover over white clover under dryland conditions was achieved. 

Three years after sowing Caucasian clover extracted water to a similar depth to white clover 

under dryland conditions. This was surprising given that Caucasian clover has a deeper 

taproot system than white clover and should therefore be able to access water from greater 

depths. So it was unclear from this study whether or not access to water deeper in the soil 

profile contributed to Caucasian clover's production advantage under dryland conditions. It 

should be noted that the water extraction study was conducted on.2 to 3-year-old clover 

mono cultures and it is known that white clover has an effective taproot only in its first 2 

years. Furthermore, there may have been some white clover seedling recruitment within the 

white clover plots during the study so the mean age of the white clover population may have 

been less than the Caucasian clover population which would have no new seedlings from hard 

seed in the soil or from reseeding. Over a 6 year period in a summer dry environment at 

Lincoln, unirrigated Caucasian clover persistence and therefore productivity has been greater 

than that of white clover (Black and Lucas, 2000). Clearly the deep taproot and rhizome 

systems of Caucasian clover and shallow nodal root systems of white clover would have 

contributed to this difference. 

Thus, the morphological and physiological differences between Caucasian and white clovers 

highlighted in this research indicate that Caucasian clover is more suited to summer dry 

conditions than white clover. These differences suggest that Caucasian clover has the 

potential to remain productive longer than white clover into the summer when soil water is 

becoming increasingly unavailable. Both species are unproductive under severe water stress, 
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but Caucasian clover would have greater capacity to recover with autumn ram. Thus, 

Caucasian clover will have greater persistence than white clover in summer dry areas, but 

may not be much more productive during droughts. 

Caucasian clover is summer active and is more productive in summer moist climates. But the 

oceanic climate in New Zealand is unpredictable and shallow stony soils and sunny hill slopes 

will always have dry spells in most years with their limited available soil water. Thus, annual 

legumes (e.g. subterranean clover) are required in pastures to exploit soil moisture in the cool 

season and Caucasian clover would exploit years with wet summers. White clover plant 

populations may recover from surviving stolon fragments and seedling recruitment after rain 

in summer/autumn periods, but this would be less reliable than Caucasian clover which 

maintains its growing points below the soil surface. 

8.4 Establishment of Caucasian clover 

It is clear from this research that Caucasian clover can be more productive than white clover 

in lowland conditions, and that it is a valuable species in perennial pastures. However, slow 

establishment has limited the adoption of this species by farmers in contrast to the relative 

ease of white clover establishment. Thus, a further aim of the research was to develop 

reliable sowing strategies for successful Caucasian clover establishment. 

The results from Chapter 6 demonstrated the sowing strategies required for successful 

establishment of white clover. Specifically, spring sowing, or autumn sowing when soil 

temperature is above 14°C, with low (3-12 kg/ha) seeding rates of perennial ryegrass, 

resulted in successful establishment of white clover. However, none of the treatments 

resulted in successful rapid establishment of adequate Caucasian clover populations. Thus, it 

was necessary to understand the seedling growth and development characteristics of 

Caucasian clover which could provide an explanation for its slow establishment. 

8.4.1 Physiological explanation for slow establishment 

The literature has attributed slow establishment of Caucasian clover to its propensity to 

allocate more carbon to root rather than to shoot development (Section 2.5.3), making it a 

poor competitor for limited resources, particularly light, during the establishment phase of a 
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pasture (Section 2.5.5). However, results in Chapter 7 showed that slow establishment in 

Caucasian clover was caused by slow shoot development rather than root production. 

The identification of seedling characteristics responsible for the slow establishment of 

Caucasian clover enabled a greater understanding of its lack of competitive ability during 

establishment. Carbon partitioning toward below ground root and rhizome production may 

have contributed in a limited way to its slow establishment, but slow leaf canopy development 

because of retarded secondary shoot production provided a much more convincing 

explanation. 

8.4.2 Establishment strategies 

Now that the physiological reasons for slow establishment in Caucasian clover have been 

identified, confident recommendations on sowing methods can be made for the establishment 

of this species. The results presented in Chapters 6 and 7 lead to the conclusion that for 

establishment of Caucasian clover to be successful it needs to be sown alone in spring. But 

this is an unusual and generally unacceptable requirement for permanent pasture 

establishment. This section provides some recommendations for establishment of Caucasian 

clover under irrigated/moist and dryland conditions. 

8.4.2.1 Irrigated or moist conditions 

Sowing Caucasian and white clovers in spring and over drilling perennial rye grass in the 

following autumn resulted in successful establishment of both species in the grazing 

experiment (Chapter 3). This method achieved high clover contents by the following spring 

in experimental situations, but may not be adopted by farmers because of unacceptably low 

production in the establishment year. Weed control would also be an issue, but if the use of 

herbicides is already integrated in pasture management on a farm (e.g. annual control of 

nodding thistles) then reduced production may be accepted. One possible means to overcome 

low production in the establishment year in moist conditions may be to use a slow 

establishing grass species such as timothy. Timothy is slow emerging due to its Tt 

requirement of 200 °Cd and has a slow seedling growth rate (Moot et al., 2000). Competition 

by timothy for light would be less than from the faster-establishing perennial ryegrass, giving 

Caucasian clover seedlings greater opportunity to intercept and utilise light for root and 
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rhizome production. Also, like Caucasian clover, timothy herbage has a high nutritive value 

(Charlton and Stewart, 2000). Thus, sowing these two species together in a pasture mixture 

provides a useful means of increasing pasture quality in a farming system. Ryegrass can 

easily be over drilled into the established pasture after 2 to 3 years if the timothy population 

declines. 

8.4.2.2 Dryland conditions 

Under sowing with a cover crop presents a potential method for rapid establishment of 

Caucasian clover under dryland conditions. This approach has been successful for 

establishment of lucerne under dryland conditions (Wynn-Williams, 1976) and has also been 

evaluated for the establishment of Caucasian clover for seed and forage production (Seguin et 

al., 1999; Widdup and Thomas, 2001). Under-sowing Caucasian clover with cover-crops has 

also been evaluated for dryland pastures at Lincoln University, Canterbury (Moot, pers. 

comm.). Specifically, spring sowing under a bras sic a cover crop was the most successful 

method for establishing Caucasian clover under dryland conditions. An important benefit of 

this approach is that first defoliation is later than that required for a perennial rye grass-based 

pasture thus giving Caucasian clover greater opportunity to reach the secondary shoot 

development stage and to develop its taproot and rhizome system before moisture becomes 

limiting during summer. Sowing the cover crop at less than recommended rates provides an 

intermittent canopy (i.e. LAI of only -2 cf. -4 for perennial ryegrass at first grazing) and 

therefore less competition for light. Alternatively, slow establishing drought tolerant grass 

species such as cocksfoot or tall fescue enabled Caucasian clover to establish in dryland 

pastures when sown in early spring (Lucas pers. comm.). 

8.4.3 Breeding potential 

There has been some research towards selection for rapid establishment in Caucasian clover 

(DeHaan et al., 2001; Widdup et al., 1998). Selected for rapid emergence and low root/shoot 

ratios were investigated but the data presented in Chapter 7 showed that seedling emergence 

is adequate for establishment of Caucasian clover, and that the root/shoot ratio was only a 

minor factor contributing to its slow establishment. The data showed that the delayed 

initiation and subsequent slow rate of secondary shoot production were the major factors 

contributing to slow establishment in Caucasian clover. Rapid initiation of secondary shoot 
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development is a simple characteristic that could be used as a selection criterion in a breeding 

programme. Selection would be based on those plants that achieved rapid initiation of 

secondary shoots. Indeed, this feature is probably inadvertently selected for in the Caucasian 

clover x white clover hybrid programme (Widdup et aI., 2003). 
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8.S Conclusions 

The research presented in this thesis has provided a comprehensive assessment of Caucasian 

clover performance in relation to white clover in temperate pastures. Specific conclusions 

were: 

1. Caucasian clover was more productive and persistent than white clover in irrigated 

rye grass pastures on low fertility soils (Olsen P 11 Jlglml, sulphate-S 7 Jlglg) , but 

particularly on high fertility soils (Olsen P 20 Jlglml, sulphate-S 12 Jlglg). 

2. Caucasian clover had superior DM production rates than white clover during spring 

and summer, regardless of soil fertility. This was attributed to greater leaf 

photosynthesis rates in Caucasian clover at any given temperature. Additional 

research is required to assess the importance of carbon allocation to taproots and 

rhizomes and the effect of grazing management on this during autumn and the 

subsequent possible remobilisation in early spring. 

3. Caucasian clover was more productive than white clover under summer dryland 

conditions. This advantage was attributed to Caucasian clover's greater water use 

efficiency and leaf photosynthesis rates at any given soil moisture level. Additional 

research is required to quantify the advantages of water extraction from greater depths 

and protection of underground growing points of rhizomes and crowns of Caucasian 

clover under summer dry conditions. 

4. Caucasian clover is slower to establish than white clover. Slow secondary crown 

shoot development rather than carbon partitioning to roots provided the major reason 

for slow establishment of Caucasian clover. 

5. Establishment methods for Caucasian clover should be based on its thermal time 

requirement for first secondary shoot appearance (1180 °Cd). Spring sowing without 

perennial ryegrass is recommended for rapid Caucasian clover establishment. 

Additional research and extension to farmers is required to assess the commercial 

acceptability of sowing strategies which reduce inter-plant competition such as the use 

of slow establishing grass species (e.g. timothy) under moist conditions, or the use of 

bras sica cover crops or slow establishing grasses (e.g. tall fescue) under dryland 

conditions. Slow seedling development indicates the need for Caucasian clover to be 

spring sown. 
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Appendix to Chapter 3 

Appendix 1 Soil test (0-75 mm) results from May 1998-2001 for Caucasian clover-
ryegrass (CC-RG) and white clover-ryegrass (WC-RG) pastures under high 
(High-F) and low (Low-F) soil fertility conditions in block H17 at Lincoln 
University, Canterbury, New Zealand. 

pH Olsen P S04-S Ca++ K+ Mg++ Na+ 

(H2O) (~glml) (~glg) (meq/100 g) 

May 1998 

High-F CC-RG 6.1b 24.0a 13.0a 9.1 1.02a 1. 15ab 0.22 

WC-RG 6.1b 21.0a 16.0a 9.1 0.8h 1.06b 0.22 

Low-F CC-RG 6.4a 11.0b 8.0b 9.1 1.02a 1. 22ab 0.24 

WC-RG 6.2b 1O.0b 9.0b 9.6 1.09a 1.34a 0.30 

s.e.m. 0.03 0.90 1.20 0.24 0.035 0.041 0.018 

May 1999 

High-F CC-RG 5.9 19.0a 7.0 7.6 0.77 0.94 0.22 

WC-RG 6.1 18.0a 7.0 7.6 0.67 0.91 0.23 

Low-F CC-RG 6.1 12.0b 7.0 7.2 0.77 0.96 0.23 

WC-RG 6.0 14.0b 6.0 8.1 0.81 0.98 0.21 

s.e.m. 0.38 0.70 0.40 0.28 0.049 0.044 0.019 

May 2000 

High-F CC-RG 5.9 18.0a 7.0b 5.7 0.60 0.82 0.18 

WC-RG 5.7 14.0ab 11.0a 6.7 0.60 0.82 0.24 

Low-F CC-RG 5.9 9.0b 6.0b 6.2 0.63 0.82 0.20 

WC-RG 5.9 9.0b 5.0b 5.7 0.56 0.77 0.20 

s.e.m. 0.09 1.60 0.50 0.24 0.049 0.048 0.027 

May 2001 

High-F CC-RG 6.1 23.0a 20.0a 6.7 1.09 1.27ab 0.29 

WC-RG 6.1 22.0a 21.0a 6.7 1.02 1.3Oab 0.35 

Low-F CC-RG 6.2 13.0b 8.0b 6.7 1.19 1.37a 0.33 

WC-RG 6.2 1O.0b 9.0b 6.2 1.05 1.22b 0.31 

s.e.m. 0.04 1.30 1.20 0.24 0.061 0.023 0.006 

Note: Soil samples were analysed using Ministry of Agriculture and Fisheries Quick Test (MAP QT) procedures. 

Within columns and years, values with the same or no letter subscripts are not significantly different (a=0.05). 
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Appendix 2 Rotation start and finish dates, rotation duration, and mean grazing duration per 
plot from 11 September 1998 to 1 May 2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. 

Year Rotation Start Finish Rotation Grazing 
date date duration duration 

(d) (dl210t) 
1998/99 1 11 Sep. 28 Sep. 17 4.3 

2 28 Sep. 14 Oct. 16 4.0 
3 14 Oct. 29 Oct. 15 3.8 
4 29 Oct. 16 Nov. 18 4.5 
5 16 Nov. 11 Dec. 25 6.3 
6 11 Dec. 18 Dec. 7 1.8 
7t 23 Dec. 11 Jan. 19 4.8 
8 5 Feb. 2 Mar. 25 6.3 
9 3 Mar. 31 Mar. 28 7.0 
10 1 Apr. 28 Apr. 27 6.8 
11 lOMa~ 10 Jun. 31 7.8 

1999/00 1 14 Sep. 28 Sep. 14 3.5 
2 28 Sep. 22 Oct. 24 6.0 
3 3 Nov. 18 Nov. 15 3.8 
4 18 Nov. 3 Dec. 15 3.8 
5 14 Dec. 5 Jan. 22 5.5 
6t 5 Jan. 31 Jan. 26 6.5 
7 11 Feb. 13 Mar. 31 7.8 
8 21 Mar. 19 Apr. 29 7.3 
9 27 A2r. 23Ma~ 26 6.5 

2000/01 1 14 Sep. 28 Sep. 14 3.5 
2 29 Sep. 16 Oct. 17 4.3 
3 16 Oct. 5 Nov. 20 5.0 
4 5 Nov. 24 Nov. 19 4.8 
5 24 Nov. 13 Dec. 19 4.8 
6t 13 Dec. 4 Jan. 22 5.5 
7t 4 Jan. 29 Jan. 25 6.3 
8 12 Feb. 13 Mar. 29 7.3 
9 13 Mar. 11 Apr. 29 7.3 

lOt 11 A2r. 1 Ma~ 20 5.0 
Note: t Liveweight gain was not measured in summer and from 11 April 2001 to 1 May 2001 as described in 
Section 3.2.10.2. 
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Appendix 3 Mean crude protein (CP), digestible organic matter in the dry matter (DOMD), 
and metabolisable energy (ME) concentrations in clover green leaf herbage in 
pre-grazing herbage mass in spring, summer, and autumn grazing periods for 
Caucasian clover-ryegrass (CC) and white clover-ryegrass (WC) pastures 
under high (High-F) and low (Low-F) soil fertility conditions in block H17 at 
Lincoln University, Canterbury, New Zealand. 

Year CP DOMD ME 

(%) (%) (MJ/kgDM) 

Spr. Sum. Aut. Spr. Sum. Aut. Spr. Sum. Aut. 

1998/99 

High-F CC 30.1ab 29.1 30.7a 77.2b 76.6 78.4 12.4b 12.3 12.5 

WC 29.6ab 27.7 27.6b 78.6a 76.8 79.6 12.6a 12.3 12.7 

Low-F CC 30.4a 30.0 29.3a 77.6b 76.2 78.4 12.4b 12.2 12.5 

WC 28.h 29.3 27.7b 77.8ab 76.5 79.6 12.4b 12.2 12.7 

s.e.m. 0.27 0.78 0.28 0.23 0.66 - t 0.05 0.10 

1999/00 

High-F CC 29.1 30.4a 30.7 78.3 80.1 78.6 12.5 12.8 12.6 

WC 28.1 28.6b 29.9 78.1 79.4 77.5 12.5 12.7 12.4 

Low-F CC 30.3 31.0a 29.9 78.5 79.3 78.5 12.6 12.7 12.6 

WC 29.7 28.2b 29.5 78.1 81.2 77.8 12.5 13.0 12.4 

s.e.m. 0.78 0.17 0.50 0.53 0.77 1.08 0.06 0.13 0.17 

2000101 

High-F CC 31.5a 30.2a 28.9 78.0 76.7 77.7 12.5 12.3 12.4 

WC 27.8ab 27.6b 30.7 77.8 76.9 77.4 12.4 12.3 12.4 
i 

I 
i 

Low-F CC 30.4a 30.2a 30.7 77.7 76.6 77.7 12.4 12.3 12.4 

WC 25.6b 27.6b 29.9 78.0 77.3 77.4 12.5 12.4 12.4 

s.e.m. 1.19 0.57 0.89 0.43 0.21 0.29 0.06 0.05 0.06 

Note: Details of soil fertility treatments are given in Section 3.2.3. Details of spring, summer and autumn 

grazing periods are given in Section 3.2.6. Within columns, values with the same or no letter subscripts are not 

significantly different (a=0.05). tValues are the same for all replicates so s.e.m. could not be calculated. 
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Appendix 4 Mean crude protein (CP), digestible organic matter in the dry matter (DOMD), 
and metabolisable energy (ME) concentrations in rye grass green leaf herbage 
in pre-grazing herbage mass in spring, summer and autumn grazing periods for 
Caucasian clover-ryegrass (CC) and white clover-ryegrass (WC) pastures 
under high (High-F) and low (Low-F) soil fertility conditions in block H17 at 
Lincoln University, Canterbury, New Zealand. 

Year CP DOMD ME 

(%) (%) (MJ/kgDM) 

Spr. Sum. Aut. Spr. Sum. Aut. Spr. Sum. Aut. 

1998/99 

High-F CC 23.3 23.2 24.5 73.6 72.1 71.5 11.8 11.5 11.4 

WC 22.2 22.3 23.9 72.3 72.1 70.7 11.6 11.5 11.3 

Low-F CC 22.4 24.1 24.1 70.9 72.2 71.5 11.4 11.6 11.4 

WC 21.9 24.0 23.8 72.5 73.1 70.7 11.6 11.7 11.3 

s.e.m. 0.66 0.50 0.39 0.86 0.84 t 0.13 0.14 

1999/00 

High-F CC 22.1 22.6 24.1 73.0 69.2 71.1 11.7 11.1 11.4 

WC 21.6 21.3 23.1 72.4 70.7 68.7 11.6 11.3 11.0 

Low-F CC 22.9 21.1 22.8 72.0 70.8 70.4 11.5 11.3 11.3 

WC 21.7 21.2 22.8 72.8 71.2 69.9 11.6 11.4 11.2 

s.e.m. 0.44 0.59 0.35 0.44 0.41 0.79 0.05 0.08 0.13 

2000/01 

High-F CC 22.1 21.9 23.0 75.4 71.9 72.7 12.1 11.5 11.6 

WC 22.0 20.9 23.0 74.0 70.5 71.8 11.8 11.3 11.5 

Low-F CC 21.2 21.5 22.9 73.3 71.0 72.9 11.7 11.4 11.7 

WC 20.8 21.1 22.0 73.7 72.7 72.3 11.8 11.6 11.6 

s.e.m. 0.38 0.54 0.38 0.57 0.60 0.40 0.09 0.12 0.06 

Note: Details of soil fertility treatments are given in Section 3.2.3. Details of spring, summer and autumn 

grazing periods are given in Section 3.2.6. Within columns, values with the same or no letter subscripts are not 

significantly different (a=O.05). tValues are the same for all replicates so s.e.m. could not be calculated. 
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Appendix 5 Macro nutrient concentrations in clover leaves plus petioles for Caucasian (CC) 
and white (WC) clovers under high (High-F) and low (Low-F) soil fertility 
conditions in December 1998, December 1999 and November 2001 in block 
H17 at Lincoln University, Canterbury, New Zealand. 

Macro nutrient concentrations (%) 

N p S Mg Ca Na K 

December 1998 

High-F CC 3.89 0.35 0.22 0.30a 1.40a 0.02e 2.72b 

WC 3.69 0.32 0.20 0.26b 1.22a 0.35a 2.47e 

Low-F CC 3.75 0.32 0.22 0.28ab 1.27a 0.02e 2.89b 

WC 3.74 0.33 0.22 0.23e 1.04b 0.2h 3.07a 

s.e.m. 0.095 0.009 0.010 0.008 0.059 0.026 0.052 

December 1999 

High-F CC 4.16 0.36 0.23 0.30 1.36 0.01 2.85 

WC 3.79 0.33 0.21 0.28 1.31 0.23 2.82 

Low-F CC 4.14 0.34 0.22 0.29 1.33 0.01 2.94 

WC 3.73 0.35 0.23 0.34 1.28 0.23 3.11 

s.e.m. - t 

November 2001 

High-F CC 4.53a 0.34 0.25 0.28 1.36a O.Oh 2.73 

WC 4.27a 0.31 0.24 0.26 1.22b 0.40a 2.57 

Low-F CC 4.50a 0.32 0.24 0.27 1.36a O.Oh 2.85 

WC 3.94b 0.31 0.22 0.25 1.15b 0.37a 2.80 

s.e.m. 0.072 0.007 0.010 0.011 0.031 0.021 0.185 

Note: Details of soil fertility treatments are given in Section 3.2.3. Within columns, values with the same or no 

letter subscripts are not significantly different (a=O.05). tSamples were only analysed from one replicate s.e.m. 

could not be calculated. 

238 



Appendix 6 Micro nutrient concentrations in clover leaves plus petioles for Caucasian (CC) 
and white (WC) clovers under high (High-F) and low (Low-F) soil fertility 
conditions in December 1998 in block H17 at Lincoln University, Canterbury, 
New Zealand. 

Micro nutrient concentrations (ppm) 

Mn Zn Cu Fe B Mo 

High-F CC 24 25ab 5 82 25 0.25b 

WC 31 2hc 5 107 24 0.33b 

Low-F CC 32 26a 6 96 24 0.29b 

WC 31 22b 6 102 24 OA8a 

s.e.m. 1.8 1.1 004 6.2 1.1 0.04 

Note: Details of soil fertility treatments are given in Section 3.2.3. Within columns, values with the same or no 

letter subscripts are not significantly different (a=0.05). 
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Appendix 7 Dry matter accumulation (above 30 mm) for Caucasian c1over-ryegrass (A,~) 
and white c1over-ryegrass (.,0) pastures under high (A,.) and low (~,o) soil 
fertility conditions from 1 July 1998 to 30 June 2001 in block H17 at Lincoln 
University, Canterbury, New Zealand. Bars represent standard error of the 
mean for final yields. 
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Appendix to Chapter 5 

Appendix 8 Amount and timing of irrigation water applied for two years from 1 July 2000 
to 30 June 2002 in Iversen 10 at Lincoln University, Canterbury, New Zealand. 

Regrewth 

period 

2000/01 4 

2 years old 4 

5 

6 

7 

8 

Total 

2001102 1 

3 years old 3 

4 

6 

Total 

2001102 Dryland* 

Appication 

date 

21-23 Nov. 

13-18 Dec. 

8-16 Jan. 

3-14 Feb. 

9-17 Mar. 

10-20 Apr. 

22 Aug.-20 Sep. 

19-27 Nov. 

20-23 Dec. 

15-24 Mar. 

22 Aug.-20 Sep. 

(mm) 

50 

90 

72 

95 

95 

105 

507 

48 

65 

80 

106 

299 

166 

Note: *Irrigation water was applied to the dryland treatment because rainfall had not recharged soil moisture 

completely in winter. 
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Appendix 9 Regrowth period start and finish dates, and regrowth and grazing durations 
from 1 July 2000 to 2 July 2002 in Iversen 10 at Lincoln University, 
Canterbury, New Zealand. 

Season Regrowth Start Finish Regrowth Grazing 

period date date duration duration 

(d) (d) 

2000/01 1 1 Jul. 24 Aug. 54 10 

2 years old 2 3 Sep. 1 Oct. 28 10 

3 11 Oct. 12 Nov. 32 9 

4 21 Nov. 20 Dec. 29 7 

5 27 Dec. 25 Jan. 29 7 

6 1 Feb. 1 Mar. 28 7 

7 8 Mar. 5 Apr. 28 6 

8 11 Apr. 12 May 31 5 

9 17 May 28 Jun. 42 14 

2001/02 1 12 Jul. 20 Sep. 70 6 

3 years old 2 26 Sep. 2 Nov. 37 10 

3 12 Nov. 16 Dec. 34 7 

4 23 Dec. 24 Jan. 32 11 

5 4 Feb. 10 Mar. 34 4 

6 14 Mar. 23 Apr. 40 7 

7 30 Apr. 25 Jun. 56 7 
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Appendix 10 Clover dry matter (DM) yield accumulation (above 30 rom) for 2-year-old 
Caucasian ( .. ) and white (.) clovers under irrigated and dryland conditions 
from 1 July 2000 to 30 June 2001 in Iversen 10 at Lincoln University, 
Canterbury, New Zealand. Bars represent the standard error of the mean for 
final yields. Each regrowth period is numbered 1-9. 
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Appendix 11 Dry matter production rate for 2-year-old Caucasian ( .. ,~) and white (_,0) 
clovers under irrigated ( .. , -) and dryland (~, 0) conditions from 1 July 2000 to 
30 June 2001 in Iversen 10 at Lincoln University, Canterbury, New Zealand. 
Bars represent the standard error of the mean. Each regrowth period is 
numbered 1-9. 
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Appendix 12 Seasonal water use for 2-year-old Caucasian (A,~) and white (.,0) clovers 
under irrigated (A,.) and dryland (~,o) conditions from 1 July 2000 to 30 
June 2001 in Iversen 10 at Lincoln University, Canterbury, New Zealand. Bars 
indicate standard error of the mean. Each regrowth period is numbered 1-9. 
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Appendix 13 Water extraction patterns for 2-year-old Caucasian C£.) and white (e) clovers 
under dryland conditions from 12 September 2000 to 25 April 2001 in Iversen 
10 at Lincoln University, Canterbury, New Zealand. Bar represents the 
standard error of the mean. Arrow indicates the maximum water extraction 
depth for both species. 
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Appendix 14 Leaf appearance rate for apical leaves of Caucasian C") and white (e) clovers 
as a function of accumulated thermal time under dryland conditions from 1 
July 2000 to 30 June 2001 in Iversen 10 at Lincoln University, Canterbury, 
New Zealand. Bars represent the standard error of the mean for final number 
of leaves. Each regrowth period is numbered 1-9. 
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Appendix 15 Percentage of ryegrass (----), clover (--) and weeds (-._.) on 27 November 
1999 (a), 12 January 2000 (b,d) and 18 February 2000 (c,e) in Caucasian (A) 
and white (e) clover pastures sown on 24 September 1999 (a,b,c) and 9 
November 1999 (d,e) with four perennial ryegrass sowing rates. Bars represent 
the maximum standard error of means. 
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Appendix 16 Percentage of ryegrass (----), clover (--) and weeds (-._-) on 1 April 2000 
(a,d,g), 10 May 2000 (b,e,h) and 30 June 2000 (c,f,i,j) in Caucasian (~) and 
white (e) clover pastures sown on 24 September 1999 (a,b,c), 9 November 
1999 (d,e,f), 4 February 2000 (g,h,i) and 31 March 2000 G) with four perennial 
ryegrass sowing rates. Bars represent the maximum standard error of means. 
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Appendix 17 Percentage of rye grass (- - --), clover (-) and weeds (_. -) on 22 August 2000 
(a,d,g,j), 3 October 2000 (b,e,h,k) and 6 November 2000 (c,f,i,l) in Caucasian 
(~) and white (e) clover pastures sown on 24 September 1999 (a,b,c), 9 
November 1999 (d,e,f), 4 February 2000 (g,h,i) and 31 March 2000 (j,k,l) with 
four perennial ryegrass sowing rates. Bars represent the maximum standard 
error of means. 
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Appendix 18 Total dry matter production (kg DM/ha) at each harvest date up to 6 November 2000 from Caucasian (CC) and white (WC) clover 
pastures sown on four sowing dates with different ryegrass sowing rates. 

Harvest date 
27 Nov. 12 Jan. 18 Feb. 1 AEf. lOMa~ 30 Jun. 22 Aug. 3 Oct. 6 Nov. Total 

Clover (C) 
CC 890b 1740a 2000a 1230a 1070b 1170a 1270b 1460b 1780b 9500b 
WC 940a 1800a 2070a 1240a 1210a 1230a 1370a 1650a 2120a 10380a 
s.e.m. 15 43 82 32 30 27 30 35 44 114 
Pc 0.041 0.303 0.562 0.761 0.003 0.081 0.018 <0.001 <0.001 <0.001 

Sowing rate CR.) 
o kglha 190d 590d 780c 470c 460b 590d 1120c 1450b 1630b 6220c 

3 840c 1340c 2150b BOOb 1340a 1200c 1330b 1590ab 2100a 10450b 
6 1220b 2110b 2460b 1540a 1380a 1440b 1470a 1700a 2140a 11520a 
12 1420a 2450a 2760a 1620a 1380a 1570a 1360ab 1480b 1960a 11580a 
s.e.m. 21 61 116 46 43 38 42 49 62 161 
PR <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 

Sowing date (D) 
24 Sep. 920 2150a 2000a 13lOa 1270a 1330ab 1430a 1770a 2210a 14380a 
9 Nov. 1390b 2080a 1520a 13lOa 1450a 1290a 1500a 1670a 12200b 
4 Feb. 870b 840a 1200b 1260a 1590a 1940a 7710c 

31 Mar. 820c 1300a 1350a 2010a 5480d 

s.e.m. 22 197 80 91 45 51 98 99 246 
PD 0.026 0.832 0.055 0.111 0.007 0.278 0.180 0.105 <0.001 

Interactions none none none DxR DxRO.036 none DxR DxR DxR DxR 
(P<0.05) <0.001 CxRO.022 <0.001 <0.001 <0.001 <0.001 

CxRO.020 DxC 0.040 
CxRO.002 

Note: Within columns and main effects, values with the same letter subscript are not significantly different (a=O.05) according to Fisher's protected least significant 
difference test. 

251 



Appendix to Chapter 7 

60 

(a) 

50 
Q) 
u 
c 
ctl ..... 
ctl 40 
Q) 
a. 
a. 
ctl -ctl 30 Q) -(J) ..... 

;;::: 

0 20 -(J) 

r; 
0 

10 

0 

0.14 

(b) • 0.12 
..-... 
'0 -T"" • '-'" 

Q) 0.10 • -ctl ..... 
Q) 
u 0.08 c 
ctl ..... 
ctl 
Q) 
c.. 0.06 c.. 
ctl 

1ti 
Q) 

0.04 -(J) 

Tb ..... 
u::: 

0.02 

0.00 
0 5 10 15 20 25 

Mean 10 mm above soil surface temperature CC) 

Appendix 19 Number of days to first (unifoliate in clovers) leaf appearance (a) and first leaf 
appearance rate (b) of Caucasian clover (J;.), white clover (.) and perennial 
ryegrass (_) at different temperatures. 
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Appendix 20 Leaf appearance interval (a) and leaf appearance rate (b) on the primary stem 
of Caucasian clover (~), white clover (.) and perennial ryegrass (.) at 
different temperatures. Calculated from the first (unifoliate) leaf to the fifth 
leaf on the primary stem. 
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Appendix 21 Number of days to initiation of axillary leaves (a) and rate of axillary leaf 
initiation (b) of white clover (.) and perennial ryegrass (.) at different 
temperatures. 
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Appendix 22 Number of days to initiation of stolons or tillers (a) and rate of stolon or tiller 
initiation (b) of white clover (.) and perennial ryegrass (.) at different 
temperatures. 
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Plates 

Plate 1 View in October 2000 of part of the Caucasian clover versus white clover 
grazing experiment in block H17 at Lincoln University, Canterbury, New 
Zealand. Note the eight treatment flocks of 'Coopworth' ewe hoggets, and 
larger groups of spare animals in the background that grazed off the 
experimental site. In the foreground, note the cage area of pasture and the 
previous cage area (marked with a white peg) that were part of the study 
described in Chapter 4. 
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Plate 2 

Plate 3 

'Grasslands Demand' white clover/ 'Grasslands Ruanui' perennial ryegrass 
pasture in October 1997 in block H17 at Lincoln University, Canterbury, New 
Zealand. 

'Endura' Caucasian clover/ 'Grasslands Ruanui ' perennial ryegrass pasture in 
October 1997 in block H17 at Lincoln University, Canterbury, New Zealand. 
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Plate 4 

Plate 5 

Exc10sure cage (1.0 m x 1.5 m) on a previously trimmed area where pasture 
production was measured in block HI7 at Lincoln University, Canterbury, New 
Zealand (October 2000). 

Keith Pollock using the capacitance probe to measure pasture production from 
a previously trimmed area under an exc10sure cage in block HI7 at Lincoln 
University, Canterbury, New Zealand (October 2000). 
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Plate 6 

Plate 7 

4-year-old sown mono culture of 'Grasslands Demand' white clover under non­
irrigated conditions in Iversen 10 at Lincoln University, Canterbury, New 
Zealand. Photo taken in November 2003. Note the neutron probe access tube 
in the centre of the 6 m x 4.2 m plot. 

4-year-old sown monoculture of 'Endura' Caucasian clover under non-irrigated 
conditions in Iversen 10 at Lincoln University, Canterbury, New Zealand. 
Photo taken in November 2003 . Note the neutron probe access tube in the 
centre of the 6 m x 4.2 m plot. 
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Plate 8 

Plate 9 

'Grasslands Demand' white clover and 'Endura' Caucasian clover 9 months 
after sowing in November 1999 in Iversen 10 at Lincoln University, 
Canterbury, New Zealand. 

'Endura' Caucasian clover (left) and 'Grasslands Demand' white clover 
seedlings after 880 °Cd when grown in controlled environment conditions. 
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