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The objective of this Thesis was to develop a clearer understanding of inter-relationships between 

climate variability and food security in New Zealand. It was considered important to both clarify 

crop-climate relationships and possible response options available to regional planners and 

individuals. This is particularly relevant in the context of a probable global climate warming. 

An empirical-statistical analysis of crop-climate interactions was carried out This was followed 

by a more detailed agroclimate analysis of the Canterbury region, and an evaluation of one 

possible response option in the face of present, and possible future, climate variability and change. 

This involved a field based study of shelterbelt effects. The final part of the Thesis gives a 

tentative assessment of the possible impacts on agriculture in New Zealand of regional greenhouse 

warming scenarios. 

Monthly rainfall and mean temperature data were used for the crop-climate analyses. Adjustments 

for site changes were made where necessary and missing values estimated. Trend removal was 

performed on temperate grain and pipfruit yield time series. Quadratic, and in the case of pears 

linear, trend lines were fitted to the yield data. Analyses were performed on the residuals. No 

trend removal was carried out on stonefruit data. 

Principal component analysis, followed by stepwise multiple regression, showed the barley crop to 

be the most spatially responsive to climate of the three temperate grain crops examined. Wheat 

was intermediate in its response and oats the least spatially responsive. Autumn sown wheat 

showed a negative relationship with winter rainfall and spring temperature. The dominant result 

with oats and barley was a negative effect on yield of late spring to early summer temperatures. 

Analyses of national stonefruit data met with mixed success. Peaches and nectarines, although of 

the same species, gave different significant predictors. This was attributed to differences in 

weighting on the climate data, related to geographic distribution. The susceptibility of apricots to 

late frosts appeared to show through with this crop. Cherries showed a strongly negative 

relationship with rainfall at blossom and harvest time. The most significant predictor with plums 

was a positive relationship with May temperature. This was treated with scepticism. These results 

highlight the need for further detailed analysis of these crops at the district level. 
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The limited district analyses of apple yields showed a graded response to rainfall. At the extremes, 

the wetter Auckland district showed predominantly negative responses and the drier Central Otago 

district showed positive responses. A negative relationship between apple yield and July 

temperature was found to be a climatic response from the Hawkes Bay district. This may be 

related to poor fruit set and flower quality, leading to low yields, as suggested by research in 

England. The dominant response apparent with pears, in earlier years, was a negative relationship 

with January temperature. This appears to have become less limiting and may be related to 

increased use of irrigation over this moisture sensitive period. As with stonefruit more detailed 

analyses, particularly at the district level are required. 

A spatial analysis of Canterbury plains climate confirmed that the climate of this region is 

relatively homogenous. However a general north/south division was apparent with the Rakaia 

river as a general 'dividing line. Closer analysis of rainfall data revealed that this north/south 

contrast is predominantly between the Christchurch area, influenced by Banks Peninsula, and 

South Canterbury, influenced by the narrow coastal strip and proximity to the foothills. 

Differences between these two areas are greater than similarities. Principal component analysis of 

Canterbury county wheat yields confirmed results from the weighted national and Canterbury 

district analyses. Waimate, in South Canterbury, proved to be anomalous in its yield response, 

which was consistent with the spatial analyses of rainfall and deficit day data. Drought in 

Canterbury was shown to become a regional phenomenon in the driest of the dry years, and to be 

persistent in these years. Correlation analysis between deficit day data and time series of 

detrended Canterbury district yield data, for temperate grains and pipfruit, showed a significant 

negative relationship between agriCUltural drought and yield. 

Analysis of shelter effects revealed a hierarchical classification of sites based on the site roughness 

parameter, z00 The most exposed, reference, site was well representative of open plains 

conditions. The least exposed, highly sheltered, orchard site showed a high degree of 

"decoupling" from the regional environment. Mean temperatures were significantly higher in the 

three, more sheltered, remote sites as compared to the reference site. Maximum temperatures were 

significantly higher in the most sheltered sites. In all remote sites there were significant reductions 

in wind speed in relation to the reference site. Evapotranspiration, based on Penman estimates, 

was significantly lower in the two orchard sites. Priestley-Taylor estimates proved to be more 

conservative, attributed to the use of a constant not calibrated for different site conditions. It is 

speculated that these significant differences in site microclimate could lead to yield benefits in 

Canterbury, through greater water use efficiency. This could contribute significantly to mitigating 

the effects of non-periodic, but recurrent and persistent droughts in this region. 

The tentative assessment of agricultural impacts of a greenhouse warming drew from past climate 

analogue scenarios. The temperate grains showed slight to moderate yield reductions. 
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It was suggested that Southland may increase in importance as a temperate grain growing district. 

Assessment of fruit crops was more speculative, as shown in the results. The east coast of the 

South Island and Central Otago could increase in importance for the growing of temperate fruit 

crops. From the Canterbury regional greenhouse scenario it would appear that in the future there 

will be greater potential for agricultural drought in this region. The results from the agroclimate 

analysis and field study of shelter effects are particularly relevant in this context. 

This Thesis highlights the considerable uncertainty that exists in the field of crop-climate analyses. 

Data bases need to be consolidated and more critical analyses made of possible response options, 

particularly in the face of a probable global climate warming. 
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CHAPTERl 

General Introduction 

1.1 Overview 

On a geological time scale humans have been present on the earth for only a very small fraction of 

its history. Of the approximate two to six million years of human evolution, agriculture has been 

practised for only a small percentage of time. The beginning of agriculture marked a shift in the 

relationship between humans and their environment, from mobile hunter gatherer societies to 

settled societies growing crops in fixed localities with associated climates. It is uncertain as to 

how the earliest farmers coped with the natural variability of climate. However it is probable that 

they very quickly learned to store food to carry them through periods of adversity. Possible 

impacts of climate change can be deduced from proxy climatic and archaeological evidence. 

More than a hundred years of instrumental record and the more recent technological revolution 

have vastly increased our knowledge of climate, its variability and the potential for climate to 

change. Concurrent with this has been a growing awar~ness of global environmental problems 

and concern about the capacity of the earth to sustain future populations. Over the last decade or 

so, particularly since the early 1970s food crisis, there has been a large number of expert 

gatherings to address issues associated with food and population. Atmospheric scientists, 

recognising the importance of climate to both present and future food production, have played 

their part. 

As the result of an International Workshop held in Berlin in 1980, Bach et al (1981), recognised 

the importance of climate information in "designing sustainable food systems to meet world food 

needs within local environmental, economic, population and other social constraints". 

Two aspects of food-climate interactions were examined, from the perspective of: (a) climate as a 

resource and (b) climate as a hazard. Schneider and Londer (1984) gave a comprehensive review 

of the issues and concluded that "it is not so much the weather that will permit us to get through 

the next ten years without major famines, for example .... rather, it is societies and the way they set 

up their food security systems to deal with fluctuating climate and the resulting impacts that 

constitute the most critical factor". 

It was out of a general interest in sustainable food systems and the important role of climate in 

relation to food security that this thesis evolved. 
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1.2 Objectives 

As with many projects this thesis went through an evolutionary process. The original motivation 

was to assess the potential of tree crops to modify the physical and biological environment in the 

Canterbury Plains region of New Zealand. In the very early stages a primary objective was to 

assess the impact of natural climate variability on crop yields in New Zealand and to evaluate the 

potential of well planned modification of the local and regional environment to mitigate the effects 

of this variability. This objective was further refmed into two main aims :-

1. To gather as much information as possible about food and climate in Canterbury and 

carry out appropriate analyses to evaluate the agroclimate resource. 

2. To conduct a field study of shelterbelt effects, comparing exposed and sheltered 

sites. From this information the aim was to evaluate differences in site roughness 

and microclimate and to assess the possible effects of shelterbelts on crop yield. 

It became apparent that the agroclimate data base for Canterbury was relatively sparse and that 

there were limitations to what could be achieved with the field study of shelter effects. The 

original primary objective remained intact, but it was decided to expand the resource base. The 

thesis was fmally organised into two major components :-

1. An evaluation of crop-climate interactions in New Zealand for a selection of grain 

and fruit crops. National and district yield data were collected from published 

sources, and climate data obtained from microfiche records. An empirical-multiple 

regression approach to analysis was carried out. The aim of this evaluation was to 

give an overview of relationships between climate variability and crop yield in New 

Zealand as a context setting for a Canterbury, regional analysis. 

2. An evaluation of the agroclimate resource in Canterbury and an assessment of the 

potential of shelterbelts to modify the physical and biological environment. This 

fulfilled the aims identified earlier. 

A logical progression from the analysis of crop-climate interactions was to give some tentative 

assessment of possible effects of a CO2 warming on crop yields in New Zealand. This was very 

much a secondary objective. 



3 

1.3 Organisation of the thesis 

The thesis is organised into four parts. 

Part 1 consists of this general introduction and Chapter 2 which gives a global perspective on 

climate variability and food security and a brief review of approaches to evaluating crop-climate 

interactions. This provides an overall context setting for the thesis. 

Part 2 is an evaluation of food-climate interactions in New Zealand. Chapter 3 backgrounds the 

New Zealand food-climate system. A brief description of New Zealand climate is given and the 

food system and interactions with climate are briefly reviewed. Chapter 4 describes the climate 

and yield data used in the analyses, and adjustments made prior to analyses. This is followed by a 

presentation of methods used in the empirical analyses of ,crop-climate interactions. Chapter 5 

details the analyses of the temperate grains: wheat, oats and barley. Brief reviews of each crop in 

relation to climate are given, followed by a presentation and discussion of the results and a 

summary. Chapter 6 details the analyses of stonefruit (apricots, cherries, nectarines, peaches, 

plums) and pipfruit (apples, pears). A similar format to Chapter 5 is used. 

Part 3 is an evaluation of the agroclimate resowce in Canterbury and an assessment of the value of 

shelterbelts. Chapter 7 is a review and analysis of the Canterbury food-climate system. Brief 

reviews of climate and food production in Canterbury are given. This is followed by a review and 

analysis of the spatial variability of Canterbury climate. A more detailed analysis of interactions 

between wheat yields and climate in Canterbury is presented. This is followed by an analysis of 

drought and its impact on selected crops. The value of shelter is the subject of Chapter 8. A 

review of the physical and biological effects of shelter is given. This is followed by a description 

of the experimental programme for analysis of shelter effects. Chapter 9 is a presentation of the 

results from the field work, covering general site descriptions and evaluations of site roughness 

and microclimate. 

Part 4 involves some further discussion, a tentative assessment of the possible impact of CO2 

warmed scenarios on crop yields, and conclusions and recommendations. Chapter 10 draws the 

potential for a greener Canterbury from the empirical crop-climate analyses and the analysis of 

shelter effects. Chapter 11 gives a review of tentative CO2 warmed scenarios for New Zealand. 

This is followed by a tentative assessment of agricultural impacts, based on the empirical­

statistical analyses. Chapter 12 is an evaluation of the thesis in the context of the original 

objectives. Conclusions are drawn and recommendations for future research are presented. 
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CHAPTER 2 

A Global Perspective 

2.1 Introduction 

In the general introduction the importance of climatic information for global food security was 

identified. This chapter offers a brief review of some of the information that is available, discusses 

one general area of application of this information, and possible response options. 

A brief discussion of climate and climate variability is given, with some definition of terms. This 

provides an important background for the remainder of the overview. As earlier identified, climate 

is integrally related to the activities of humans. This was clearly demonstrated by Schneider and 

Londer (1984). While the impact of climate variability on past societies can only be generally 

surmised, there is documented evidence that suggests interactions between climate and past 

civilizations. This is reviewed, giving a few examples. It leads into the present with an 

introduction to the concept of food security in the context of climate variability. The Sahelian 

drought of the early 1970s is used as an example. 

Crop-climate models offer one means of applying climatic information to issues of food security, 

and a review of approaches is given. The results of such models can be useful in determining 

possible responses to mitigating the effects of climate variability. Some possibl~ responses to 

improving food security in the face of climate variability are discussed in the final section. 

2.2 Climate and climate variability 

The simplest description of climate is that it is the statistics of weather (Ruttenberg, 1981). By 

convention climate is described by the statistics of a climatic element, such as temperature and 

rainfall, over a given reference period which is usually at least 30 years in length. The statistical 

averages of the selected elements are often referred to as the climatic "normals" for the given 

reference period. Schneider and Londer (1984) commented on the often erroneous use of the word 

"normal" in the place of "average" stating that "it is abnormal to have the statistically average 

weather at anyone time". 

The atmosphere is the medium which is most strongly associated with climate, both on an 

instrumental and an experiential level. However the atmosphere is only a part of a complex, 

dynamic and interactive system which constitutes the climate. The energy source which drives 

this system is the sun. While the atmosphere is the central component of the climate system, the 

hydrosphere and cryosphere also play important roles. The hydrosphere, pru;ticularly the oceans, 

acts as a heat reservoir and through the ocean currents can distribute this heat from warmer 
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tropical latitudes to the cooler mid latitudes and polar regions. The cryosphere induces colder 

local climates through the high albedo and low thermal conductivity of ice (Gates, 1979). Other 

components of the climate system are the lithosphere, which plays a relatively passive role on 

human time scales, and the biosphere. Plants actively interact with climate through seasonal 

cycles and can also considerably modify local (micro) and regional (meso) climates. The 

biogeochemical cycles are a significant part of the climate system, as has been popularised with 

the well documented greenhouse effect. This also raises the issue of the impact of human 

activities on climate, which is now suspected to be occurring on a global scale with the warming 

effect of the greenhouse gases. More detailed descriptions of the climate system are given in 

Gates (1979) and Schneider and Londer (1984). 

The statistical description of climate for any specified time period, for example on a monthly basis 

or over a 30 year reference period, is described by Gates (1979) as a climatic state. Associated 

with this are the boundary conditions as described by data from the oceans, cryosphere and land 

surfaces. Climate variability can be described by the internal variability that exists for a given 

climatic state, as defined by Hare (1979). There are different types of variability about the 

avemges of the climatic elements. These are given by Hare (1979) as :-

1. periodic effects, such as diurnal and seasonal variability 

2. quasi-periodic effects, such as the quasi-biennial cycle and monsoonal rainfall 

3. non-periodic effects 

Non periodic effects are often described as the underlying noise in a time series of climate data, 

however they can be important, particularly when significant anomalies occur. Examples may 

include heat waves, periods of drought, snow storms and floods. The increasingly documented EI 

Niiio events are another non-periodic effect which can lead to significant climatic anomalies over a 

wide geogmphic range. Generally it is the short term variability in climate that has the greatest 

impact on humans and their activities. Periodic effects such as seasonal variability can become 

integral to cultural systems, as evidenced by autumn harvest festivals, spring blossom time 

celebrations, which can coincide with traditional harvest and sowing times. Often it is quasi and 

non-periodic variability in climate that causes the most disruption to human affairs, such as failure 

of monsoon mins and persistent droughts. 

Differences can occur between different reference periods, or climatic states. This can be 

attributed to the noise in the data, but may also relate to real variation, or change in climate. The 

most apparent contemporary example is the greenhouse effect. From the 1940s until the late 

1970s there was a cooling trend in the northern hemisphere. There was considerable debate, 

particularly in the 1970s and early 1980s, as to whether a change in climate was occurring and if 



6 

so whether it related to a cooling or warming of global temperature. Temperature trends in the 

1980s suggest that a global warming is actually taking place and Schneider (1989) believes that 

sufficient is known to warrant implementation of policies to adapt to this apparent warming. 

2.3 Climate and civilizations 

A detailed chronology of past climate is given in Lamb (1974), who also gave some 

documentation of apparent relationships between climate and early civilizations. Bryson and 

Murray (1977) documented the decline of several civilizations and provided evidence that suggests 

some climatic connection. A brief review of the subject is also given in Pearson (1978) with an 

excellent overview in Schneider and Londer (1984). 

Both the -proxy climatic record and infonnation drawn from early written records show parallels 

between changing climate and patterns of human migration, rise and fall of civilizations and 

changes in cultural activities. Undoubtedly climate has influenced human activities from the very 

beginnings of human evolution. Early hunter-gatherer societies were probably very much 

influenced by changes in climate. Given their mobility and relatively small numbers they 

probably had a far greater adaptability than later, less mobile societies. The survival of the 

Australian Aborigine in climatically harsh environments over a period of some 40000 years attests 

to the durability and adaptability of this hunter-gatherer society. 

The development of agriculture gave many benefits to humans, coinciding with the beginnings of 

Civilization. At the same time it marked a shift in the relationship between humans and their 

environment. Archaeological evidence shows that some early civilizations developed ingeneous 

means for sustaining their agriculture. However, for some, concurrent proxy climatic evidence 

suggests that agricultural activities were very much limited by climate. One such example is the 

civilization that thrived in the Indus Valley region some 5000 years ago. This region is now 

predominantly desert. One possible explanation for the decline of this civilization is that there was 

a persistent failure of the monsoon rains (Bryson and Murray, 1977). The proxy climatic 

evidence, as presented in Schneider and Londer (1984) suggests that this and other civilizations 

flourished during a period of generally warmer climate in the Holocene epoch referred to as the 

Altithennal or Hypsithermal. 

A more recent warm period occurred approximately 1000 years ago. Schneider and Londer 

(1984) list a number of events that appear to be related to this warming. One of the most infamous 

is the settlement of Greenland by Eric the Red. This was also the time when a number of 

vineyards flourished in England. In the southern hemisphere this climatic optimum coincided with 

the arrival of the Maori in the land they called Aotearoa. as is discussed further in Chapter 3. 
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Following this warm period a general climatic cooling occurred leading to the Little Ice Age. 
/ 

Proxy climatic data from both Europe and New Zealand gives evidence of this cooling. 

The availability of water is a critical factor for the survival of agriculture, as was the suggested 

case with the Indus valley civilization. In the 16th century a highly organised society existed in 

the Valley of Mexico, with an elaborate system of waterways. This was observed by the Spanish 

on their arrival in this valley in 1519 (Diaz, 1963). According to Redclift (1987) this system was 

dramatically modified over the subsequent 400 years as a result of colonization. He described the 

situation in 1984. The Valley of Mexico faced major environmental problems including: lack of 

soil nutrients, erosion, salinity, alkalinity, flooding, overgrazing and excessive deforestation. 

The message from the above example is that the activities of humans are equally important in 

considering connections between climate and civilizations. This was made clear by Pearson 

(1978) who stated that "climatic effects have to be seen as having essentially synergistic actions 

alongside man's decisions". 

2.4 Climate variability and food security 

While there is considerable evidence from the past of the inter-relationship of humans and climate 

change, the extent to which climate variability affected past agricultural activities can only be 

surmised at. It is apparent however, that as societies became increasingly organised, they also 

became more detached from the natural environment. In a sense this made them more vulnerable 

to climate perturbations, whether short or long term. No longer migratory, they often depended 

on food reserves to carry them through the bad years. Some devised ingeneous irrigation systems 

which allowed them to survive. This vulnerability to climate has continued to the present day. 

The advantage of 20th century humans is that they have a vast array of information at their 

disposal, both of the apparent effects of past variations in climate and of present food systems and 

related climate. To our disadvantage is that there now exist climate related environmental 

problems which are global in scale. 

The post second world war years, up until the late 1960s were generally a period of favourable 

climate. This was the time of the Green Revolution which saw the development of high yielding 

crop varieties and a global surplus of food. Salinger (1979) described the years 1950 to 1969 as 

the Green Years for New Zealand agriculture. In the eady post war years the Food and 

Agriculture Organisation of the United Nations was established. An early long term proposal of 

the first FAO Director-General "to stabilize world food prices through buffer stocks, to establish a 

world food reserve and to finance the disposal of surpluses to needy countries was rejected out of 

hand by member governments unwilling to make the political and economic commitments 

required", (Saouma, 1981). 
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The period of post war optimism was broken dramatically in the early 1970s. The most 

documented climatic event was the Sahelian drought. It was as a result of the food crisis that 

developed through this drought that an International Undertaking on World Food Security was 

approved in principal by the FAO (Saouma, 1981). One of the main calls was for governments to 

maintain food reserves for international emergencies. 

Numerous analyses of the Sahelian drought and the human impact have been carried out. 

Different interpretations of events were summarised by Schneider and Londer (1984). Several 

scientists, such as Landsberg (1975) and Ruttenberg (1981), have shown that drought is a recurrent 

phenomena in this region and is a part of the natural variability of the climate. A more 

controversial stance was taken by Bryson (1974) who argued that the effect in the Sahel resulted 

from a southward shift of the subtropical high pressure belt. 

One of the most detailed studies of the Sahel drought and its impact was that carried out by a team 

of scientists headed by Garcia (1981). They developed a theoretical framework for a systems 

analysis of drought and conducted a number of case studies. Systems were seen to have four main 

components, including:-

(a) a physical component 

(b) a physico-biol08ical component 

(c) a man-genemted biological component 

(d) a socio-economic component 

One of their main conclusions was that droughts are not directly causal in relation to famine and 

related human and environmental disasters. It was concluded that events were a result of a pre­

existing disequilibrium in society and that "the evolution after the drought has "stricken" is much 

more determined by the structure of the whole socio-ecosystem than by the drought itself' (Garcia, 

1981). Also included in this report was a paper on food aid, which concluded that current aid 

progmmmes are generally ineffective. Inappropriate technology and mis-application of foreign aid 

were identified by Glantz (1977) as being contributory factors to the Sahel disaster. While 

Garcia's (1981) conclusion was that structural changes in the socio-economic system were 

required Schneider and Londer (1984) quoted a more conservative analysis which advocated a free 

market approach to resolving food shortage problems. Importantly, Schneider and Londer (1984) 

concluded that while the actual events were undisputed, differences in ideology lead to differing 

emphases in analysis and interpretation. 
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The Sahel drought and the subsequent events is an extreme, but not isolated, ~e. McQuigg 

(1981)" observed that "all of the agricultural regions of the world are subject to signifi~t temporal 

and spatial climate variability. The impact of this variability on yield and production of food grain 

is important in each case". Concern over the prospect of climate change has accelerated interest in 

relationships between food crops and climate. Some developed countries in cool temperate 

regions have well established crop-climate research programmes such as that initiated by the 

Canada Committee on Agrometeorology (1977). For present and future planning it is important 

to understand more clearly the relationships between crops and the climates in which they are 

grown. The information gained can provide a valuable input into assessment of both short and 

long term response options. 

2.5 Crop-climate modelling 

The analyses of the Sahel drought showed that there is a complexity of inter-relationships between 

climate and food production. One approach to understanding the interactions between climate 

and crops more clearly is through the use of crop-climate models. The information that these may 

give is not a panacea for the problems of global food security, as Cusack (1981) commented, bu~ do 

offer a lot of potential when used in an appropriate context. This view is also held by Steyaert et al 

(1981) who believed that a greater understanding of agroclimatology could be usefully applied to 

both improve food security and to provide input into short and long term agricultural planning. 

While a crop-climate model can have deterministic and stochastic elements, three broad groupings 

of model are now generally accepted. These groupings were originally proposed by Baier (1979). 

Deterministic models are generally based on the physiological approach and are termed crop 

growth simulation models. Stochastic models are more statistical in nature and hence refer more 

to empirical-statistical models. A third type of model, one which is intermediate to the other two, 

is termed crop-weather analysis models. 

Crop growth simulation models are mathematically based and require a detailed knowledge of 

crop physiology. The focus of such models is on specific plant processes such as photosynthesis, 

transpiration and respiration (Warwick etal, 1988). These processes are matched with real-time 

meteorological data, such as temperature, radiation and soil moisture. Monteith (1981) identified 

de Wit et al (1971) as pioneers in the field of crop growth simulation. The major advantage of this 

approach, stemming from the clear matching of meteorological data to plant processes, is the 

transportability of the models. A major disadvantage, identified by Monteith (1981), is the 

insatiable appetite for data of such models. In attempting to be comprehensive, they can 

potentially lead to greater confusion because of their complexity, Warwick et aI, (1986). Other 

major disadvantages identified by McQuigg (1982) are the incomplete knowledge of causal 



and thus the resource input, is an important distinction. In this sense, empirical-statistical models 

are the most user-friendly. The trade-off which results from the level of input is the degree of 

detail obtained. Empirical-statistical models are capable of providing a general overview of 

relationships in the area of analysis and may identify significant features of crop-climate 

relationships in that area. 

Simulation models can lead to a much deeper understanding of plant processes and the important 

role of weather and climate, and can have an application beyond the area of study. These are the 

significant features which are summarised by Warwick et al (1986). 

There were several reasons for choosing the empirical-statistical approach in this thesis. The 

financial and data resource limitation under which the research was being carried out, limited the 

choice. Apart from this a general overview was the desired outcome of the crop-climate analyses. 

To achieve this overview the most appropriate scale at which to operate is at the national or 

regional level. This is best obtained from the empirical-statistical approach. It also allowed for an 

exploration of spatial differences for particular crops, as well as analyses of a wide range of grain 

and fruit crops. 
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2.6 Response options 

There are two general spheres through which responses can be made to information gathered from 

crop-climate models and other sources. These are the socio-economic sphere, which is comprised 

of political and economic policy makers and instigators; and the bio-technical sphere, which 

requires policy direction which is generally actioned through the work of scientists and research 

and development programmes. These two spheres are consistent with the systems components 

identified by Garcia (1981), and reviewed in section 2.4. 

The use of food reserves and schemes to minimize climatic risk such as crop insurance, were 

identified by Schneider and Londer (1984) as social policy actions. Under the bio-technical sphere 

Schneider and Londer (1984) identified diversification, such as multiple cropping; and weather 

proofing, such as through the use of irrigation and shelterbelts. Although these authors separated 

out biological and technical measures they are grouped together here as they are seen to be 

interactive. For example the use of irrigation and shelterbelts can modify the local and regional 

climate and provide the potential for diversification. 

The remainder of this discussion is restricted to a brief elaboration of some bio-technical 

approaches and the possible benefits. An excellent review of microclimatology is given in 

Rosenberg et al (1983), who also discussed the application of microclimatology to problems of 

productivity in agriculture. 

Microclimate modifications can be achieved through careful selection of site slope and aspect, 

mulching and artificial heating of soil, use of shelterbelts, frost protection and improved water use 

efficiency through use of antitranspirants, reflectants, changes in plant architecture and CO2 

enrichment (Rosenberg et al, 1983). Use of shelterbelts provides an attractive option because of 

their relatively low cost, low energy input, renewability, universal applicability and beneficial 

secondary effects. 

Shelter effects are reviewed in more detail in Chapter 8. Rosenberg et al (1983) found the literature 

to be fairly consistent on the following shelter effects: 

1. Shelter alters inicroclimate 

2. Shelter reduces potential evapotranspiration 

3. Shelter reduces actual evapotranspiration 

4. Shelter improves internal water relations 

5. Shelter provides improved opportunity for photosynthesis 

6. Shelter generally increases yield 

Use of shelterbelts gained favour in the Great Plains region of the U.S.A. following the Dust Bowl 

era in the 1930s. They were planted primarily as a means of controlling wind erosion of soil 
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(Rosenberg et al, 1983). The contribution of trees to food security was recognised by the FAO in 

the International Year of the Forest, 1985 (FAO Forestry Department, 1985). Recognised benefits 

from afforestation included soil and water conservation and attendant benefits; additional sources 

of food; fodder for livestock; additional sources of rural employment and income; fuel wood. 

This paper (FAO, 1985) also discussed the value of agroforestry, which was considered to 

contribute much needed diversification of farming systems leading to greater income stability and 

food security. 

At the same time as shelterbelts were developed in the Great Plains widespread use of aquifer fed 

irrigation was adopted in this region. The main source of irrigation water is the Ogallala aquifer 

which Jackson (1980) and Schneider and Londer (1984) noted is being depleted at a far greater 

rate than it is being recharged. The latter authors commented that the very resource that may be 

required given a possible future warmer, drier climate may no longer be able to sustain crops in the 

long term. A radical solution was offered by Jackson (1980) who advocated a bio-technical fix 

based on a herbaceous perennial agriculture in the Great Plains region. This would involve 

developing previously unused genetic resources. 

As a component of crop diversification Schneider and Londer (1984) identified the contribution of 

plant breeding. The Green Revolution highlighted the potential of plant breeding efforts, but with 

the associated dependence on high energy inputs met with limited success with subsistence 

farmers. In discussing this Roche (1985) pointed to the often quoted fact that plants used in 

modem agriculture represent less than 1 per cent of the earth's flora. He advocated it second front 

to research and development aimed at sustainable farming systems, and using neglected, 

traditionally valued plants. As an example Roche (1985) pointed to the shea butter tree, a plant 

that remains unknown and unselected by scientists and is now endangered. This was a crop of 

economic importance and part of a prosperous agriculture and ecologically rich and diverse 

landscape in Senegal and Mali in the 18th century. These are now two of Africa's most 

ecologically impoverished and poor countries. 

In summary, there are a range of responses that can be taken, given information on the agroclimate 

resource of a region. Crop-climate models offer one source of such information. The possible 

response options range from socio-economic structural changes to bio-technical measures. Some 

involve application and modification of conventional practices, which will be more attractive for 

short term planning. In some developed areas such as the Great Plains and environmentally 

sensitive areas such as the Sahel, more radical measures may become necessary to achieve long 

term sustainability. This may involve implementation of practices and tapping of resources not 

currently in wide use, such as those advocated by Jackson (1980) and Roche (1985). 



CHAPTER 3 

The New Zealand food-climate system 

3.1 Introduction 
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Over prehistory a unique fauna and flora evolved in New Zealand. Climate played a significant 

role in this evolutionary process. Present native fauna and flora can give clues as to past climatic 

associations. The fossil record is also an invaluable tool for deducing past climate. 

The arrival of the Maori people led to loss of coastal forests in some areas and extinction of some 

bird species. The Maori were essentially hunter-gatherers, harvesting from both sea and forest. 

They did practice some horticulture, but because of their very limited range of edible plants of 

tropical origin these activities were very much influenced by the climate of New Zealand. 

By far the most dramatic changes to life in New Zealand came with the arrival of the European. 

They introduced a wide range of temperate crops which proved to be well suited to the climate. 

Land rapidly became a limited resource. Large scale clearing of forests occurred, resulting in a 

rapid transition to pastoral agriculture. The environmental consequences of this are still in force 

today. 

Flat to rolling land suitable for cropping and horticulture is a valuable and limited resource in New 

Zealand. Past and recent history has made clear the need for careful watershed management and 

protection of these areas from the effects of wind and wate~ erosion. What is also apparent is the 

need to understand more clearly relationships between yield and climate. 

The following is a brief review of past and present associations between climate and plant life in 

New Zealand. It provides a foundation for analysis of food-climate interactions. First some 

knowledge of New Zealand climate is required. 

3.2 New Zealand climate 

New Zealand climate is well reviewed in a number of publications including those of Garnier 

(1950), Maunder (1971), Tomlinson (1976), and Steiner (1980). A brief summary is presented 

here. 

New Zealand is located in the South West Pacific region and is spread between latitudes 34
0 

and 

47 0 S. The north of the country extends into the subtropical ridge. Most of the country is located in 

the zone of westerly flow, and this is generally the prevailing wind over the country. This westerIy 

flow and the seasonal patt~rns of the subtropical high pressure belt .are the predominant 

atmospheric features that determine prese~t New Zealand climate. Importa~t geographic features 
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that further influence the climate include the oceanic locale of the country, which results in moist 

air streams passing over the country and has a moderating effect on temperature in most districts. 

The other significant geographic feature is the relief. New Zealand is a largely mountainous 

country, with approximately 75% of the land mass above 200 m. The dominant feature is the 

north-east to south-west oriented axial ranges. These are particularly dominant in the South 

Island, where the Southern Alps cover almost the entire length of the island, with 223 named 

peaks higher than 2300 m and the highest, Aorangi (Mt. Cook) peaking at 3764 m, (New Zealand 

Official Yearbook, 1987-1988). 

A general feature of the climate of New Zealand is a succession of anticyclones and depressions. 

The depressions generally lie to the south of the anticyclones. Their eastward movement occurs in 

a roughly weekly cycle, although this pattern appears to prevail only about every one year in two. 

The depressions, which bring unstable weather to the country, generally have cold fronts 

associated with them. There is also an interannual variation in the mean latitude of the 

anticyclones. In winter the mean latitude is 26· S and in summer it is 36· S. 

Contrasts in regional climate are generally greater between east and west than north and south. 

This is particularly pronounced with rainfall. The west coast of the South Island experiences the 

highest annual rainfall, on average, in New Zealand, due to its exposure to the westerly airflow 

and the orographic effect of the Southern Alps. Regions east of the axial ranges, including 

Hawkes Bay and Wairarapa in the North Island; Marlborough, Canterbury, North and Central 

Otago in the South Island, are the driest in New Zealand. In the south the contrast is marked when 

there are high pressures to the north and low pressures to the south of the country. This results in a 

strong westerly air flow onto the South Island. This tends to occur more frequently in spring time 

and brings heavy rainfall to the West Coast and often dry, warm Fohn winds to the Canterbury 

Plains. 

Seasonal variations in rainfall occur in the North Island, with up to twice as much winter rainfall 

as summer rainfall in the north. This patterns lessens southwards. Another feature in the north of 

the North Island is the occasional tropical cyclone which moves down onto the country. These 

tend to occur with more frequency in late summer and early autumn. 

New Zealand climate presently classifies as subtropical in Northland, and some pockets in the Bay 

of Plenty and Poverty Bay, ranging to cool temperate in Southland. Parts of Central Otago 

experience an almost continental type climate, with annual rainfall around 300 mm and the highest 

recorded temperature range in New Zealand. Canterbury, in the east of the South Island is almost 

semi-continental as a result of the lee effect of the Alps. The climate of Canterbury is discussed in 

more detail in section 7.2. 
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3.3 Climate and life in New Zealand: Prehistory 

The New Zealand land mass originated as a part of the great southern continent known as 

Gondwanaland. It has been in isolation for some 100 million years. An excellent review of New 

Zealand's past geography is given in Stevens (1985), with a brief review of New Zealand bio­

geography in the New Zealand Official Yearbook 1987-1988. 

This long period of isolation led to the evolution of a unique flora and fauna, noted for their high 

percentages of endemic species. Geological research has shown that the New Zealand land mass 

has undergone many changes since its isolation from Gondwanaland. This has been influenced by 

the location of the land mass over the convergence of the Indian-Australian and Pacific plates. 

Concurrent with these large scale changes in land form have been periods of glaciation and 

warmer interglacials. Fossil records show periods of tropical climate with evidence of the presence 

of coconut palms in prehistory. There is also evidence that the Kauri tree, now confined to the 

north of the North Island was once distributed as far south as Canterbury. The present flora, 

including the Kauri, give evidence of past tropical connections, with many of these plant groups 

being represented in New Zealand by a single species. 

According to systems of biogeographical classification the New Zealand flom and fauna is related 

to a number of different regional elements. These range from the tropical element, as represented 

by the Kauri, nikau palm and tree ferns to subantarctic and circumpolar elements, as represented 

by the beech forests which predominate in the south and mountainous zones of the South Island. 

The most recent biogeographical element to be introduced to New Zealand is that relating to the 

arrival of the Maori people and more recently the European. It is estimated that prior to the arrival 

of the Maori people, thought to be some 800 years ago, 80% of New Zealand was forested. This 

was reduced to some 53%, mostly as a result of burning of coastal areas by the Maori. The 

introduction of the Polynesian rat posed the first threat to the unique bird life. Introduced plant 

material was mostly that used for food production as discussed in section 3.4. The Europeans 

wrought even greater changes, reducing the forest to 27% of the land area and introducing a wide 

diversity of exotic plants and animals, section 3.5. 

3.4 Maori horticulture 

Proxy climatic evidence, from the glacial record, suggests that New Zealand was in a period of 

warmer climate, referred to as a climatic optimum, from approximately AD 855 to AD 1620. This 

covers the period when it is thought that the first of the Maoris arrived in what they call Aotearoa 

(land of the long white cloud). 
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The Maori people were essentially hunter-gatherers, but they practised some horticulture. The 

original immigrants brought with them plants from the tropics, possibly not all surviving the 

voyage or the more temperate latitudes of New Zealand. Crops that are known to have been 

grown are the kumara, taro, gourd, yam and paper mUlberry. The kumara was the most successful 

of all and was very much a staple of the Maori, and remains important today. If, as suggested, the 

Maori arrived in the period of climatic optimum they would have experienced relatively little 

difficulty in establishing their crops, particularly in the north of the North Island. This warmer 

period, it appears, also allowed for cultivation in what are now climatically marginal areas for 

crops such as the kumara. There is archaeological evidence of early gardens at Palliser Bay at the 

southern extreme of the North Island (Davidson, 1984). It is also thought that horticulture was 

practised in the warmer coastal areas of the east and north of the South Island. Following this 

warmer period was the New Zealand version of the Little Ice Age, which is quite probably what 

led to a period of retrenchment (Davidson, 1984). 

When the European first appeared en masse after the voyages of Captain Cook the Maori were 

concentrated in the northern half of the North Island. Kumara growing, obviously geographically 

more restricted by this time, had apparently been adapted to the cooler conditions that prevailed, 

with the practice of using storage pits to keep the tubers through the winters. The marginal nature 

of their horticulture and the impact of the European is well summed up by McLauclan (1981) 

The weather was the main enemy of the pre-European farmer. an enemy he fought 

with the rigorous canon of tapu. with an elaborate litany of hymn and incantation. 

The small population and subsistence farming meant he was never seriously short 

of suitable land. But when the Pakeha came with iron implements. potato. turniP. 

wheat and pastoral animals, and provided markets, the weather became at once an 

ally and the infertility and steepness of so much of the land became a liability. 

The Maori were quick to adapt both to the Northern hemisphere crops and European methods. By 

1830 they were growing potatoes and grain crops extensively in the northern half of the North 

Island. The wet. humid summers of this region created difficulties. particular in relation to 

disease. and harvesting of the grain crops. However they grew sufficient grain for mills to be built 

and were supplying the early Pakeha settlers with food as well as exporting potatoes and grain to 

Australia. They were also growing fruit trees at this time and quickly acquired propagation and 

grafting skills. Maize was rapidly adopted as a staple food and was grown extensively in the 

Poverty Bay area by the 1830s. 

By the late 1850s the growing European population in the northern areas was creating an 

increasing pressure for land. The result was the infamous land wars that signalled the decline of 

the Maori and the growing dominance of the land hungry Europeans. 



3.5 European cropping and horticulture 

3.5.1 Grain crops 
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The land wars in the north coincided with the period of growing European settlement in the South 

Island. Large tracts of tussock land, in the foothills and high country were taken up for extensive 

sheep farming. The potential of the Canterbury Plains for grain growing was quickly realised. 

This probably filled the void that resulted from the conflict in the north. There are several 

publications that chronicle the history of grain growing in New Zealand. These include a history 

of wheat growing in New Zealand by Hilgendorf (1939), a historical review of the Barley industry 

by Malcolm (1983) and brief reviews for each of the principal grain crops by Claridge (1972). 

The climate of Canterbury, with its lower humidity and, on average, cooler weather, was found to 

be ideally suited to the growing of grain. The relatively dry summers, are in a lot of years 

favourable to the ripening and harvesting of crops, although years of prolonged moisture deficit 

conditions can lead to yield reductions. The one grain crop found not suited to the south was the 

warm temperate maize crop. This was found to be more suited to the warmer conditions of the 

northern half of the North Island. It was mentioned earlier that the Maoris in the East Cape area 

quickly adopted maize as a major crop. This district remains one of the principal growing areas of 

this crop. 

3.5.2 Fruit crops 

It is probable that fruit growing was widely practised by the early settlers, who would have had 

small farm orchards to supply their immediate needs, and certainly was by the Maori. Although 

fruit growing wasn't formalised into an industry until 1916, with the establishment of the NZ. 

Fruit Growers Federation, it was operating on an informal basis prior to this time. 

Partly through a process of trial and error, and partly through the endeavours of a few 

entrepreneurial characters, climatic zones were identified that were suited to the growing of 

particular crops. Often it was the knowledge and persistence of a relatively small group of 

enthusiasts. This is partly true of the citrus industry, and is certainly true of the kiwifruit industry, 

which has displaced apples as the dominant fruit crop in terms of percentage area grown. 

Proximity to the market would also have influenced development of the fruit industry, and this is 

particularly true of Auckland. 

A summary of growing districts, the principal crops in each in terms of percentage of national area 

and general climate classification, after Robertson (1958), is given in Table 3.5.1. Fig. 3.5.1 

shows a map of New Zealand showing the 1974 statistical divisions, representative of the principal 

growing districts given in Table 3.5.1. Annual rainfall and mean temperature data is also given. 

Spatial variations in rainfall and temperature do have an obvious effect on patterns of distribution. 
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Table 3.5.1 

General distribution of crops in relation to climate 
in New Zealand 

Growing Principal General Mean Mean 
disbict crops climate temp. rainfall 

Northland Citrus, sub- Warm, humid 15.1 1682 
tropicals summers, mild 

winters 

Auckland Peaches, plums, Warm,humid 15.3 1185 
grapes, pip fruit summers, mild 

winters 

South Auckland Maize, berry- Warm,humid 13.3 1201 
fruit summers, mild 

winters 

Bay of Plenty Maize, citrus, Very warm 14.0 1349 
kiwifruit, sub- summers, mild 
tropicals winters 

East Cape Maize, citrus, Very warm 13.8 1010 
grapes summers, 

moderate winters 

Hawkes Bay Pipfruit, Very warm 14.1 824 
stonefruit, summers, 
grapes moderate winters 

Wellington Wheat, barley, Warm summers, 12.9 995 
peas mild winters 

Nelson Pipfruit, Very warm 12.5 955 
berryfruit summers, mild 

winters 

Marlborough Peas, cherries, Very warm 12.7 642 
pipfruit, grapes summers, moderate 

winters 

Canterbury & Wheat, oats, Warm summers, 11.6 666 
North Otago barley, peas, cool winters 

berryfruit, pip-
fruit 

Central Otago Stonefruit, Very warm, dry 10.6 343 
pipfruit summers, cold 

winters 

Southland Wheat, oats, Warm summers, 9.7 1037 
blackcurrants cool winters 
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Presence of local microclimates are particularly important for some fruit crops and don't reflect in 

mean statistics from often exposed climate stations. Maize and subtropical fruit production 

predominates in the north of the North Island. Some pip and stonefruit are grown to satisfy the 

Auckland market, but generally the less humid districts of Hawkes Bay, Nelson, Marlborough, 

Canterbury and Central Otago are more suited to these crops. The Wellington district, in 

particular the Rangitikei and Manawatu, is the predominant temperate grain growing area in the 

North Island, and has become more significant on a national scale. However the temperate grains 

predominate in Canterbury and to lesser degrees in Otago and Southland, where the cooler 

temperate conditions are more suited to the these crops. 

3.6 Crop-climate interactions 

Although New Zealand was originally largely forested, its climate proved well suited to pastoral 

farming, cropping and horticulture, as highlighted in section 3.5. Particularly dominant in the 

country's export industry over the last hundred years have been the products based on the growing 

of grass. This was achieved by clearing large tracts of relatively flat to hilly land of their natural 

forest cover. In areas such as the Canterbury Plains the forest was long gone when the Europeans 

arrived, but substantial modification of the environment still occurred. What was not appreciated 

over this pioneering period was the intricate balance between the land and the atmosphere. 

Soil erosion both by wind and water are major environmental problems in New Zealand. Under 

periods of extreme climatic conditions the vulnerability of the deforested and modified land are 

made very apparent. There are numerous historical examples of this. However it serves to relate 

to very recent history, and the present, to heighten the awareness that these aren't just events of the 

distant past. 

In March 1988 a tropical cyclone, named Bola, was diverted to the west of the North Island by an 

eastward moving anticyclone. The warm, moist, easterly airstream associated with this was 

uplifted by the higher terrain of the North Island axial ranges. The result in the East Cape and 

Hawkes Bay region was 24 hour rainfalls of up to 100 mm or more (McGavin, 1988). This 

occurred on three consecutive days. The largely deforested hills of this region, particularly around 

the East Cape, could not absorb rainfall of such intensity. The high levels of surface runoff led to 

widespread flooding in the coastal plains. Around Gisbome and neighbouring areas this had a 

devastating impact on cropping and horticultural land. Losses were estimated in hundreds of 

millions of dollars. 

In the same year the east coast of the South Island was experiencing its driest year on record. This 

record dry period persisted into 1989. A more detailed review of drought in Canterbury is given in 

section 7.7. The impact of this drought was far more insidious than that of Cyclone Bola. After a 

dry ten month spell, beginning in November 1987, Canterbury farmers were hoping for sufficient 

rainfall in spring to bring soil moisture out of deficit. Instead a persistent strong westerly flow 
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onto the South Island led to a well above average frequency of dry, warm Nor'westers in 

Canterbury. With relatively sparse shelter in many areas and many soils cultivated and sown in 

hope of spring rainfall the situation was ripe for wind erosion. This occurred with particular 

severity on several days in October, 1988. Many cropping farmers were left with the prospect of 

recultivating, to a finer tilth to extract every last bit of moisture, and re-sowing in the hope of rain. 

The nor'westers abated into the summer months, but the drought persisted. 

Both Cyclone Bola and the Canterbury drought have had direct measurable effects on yield of 

crops in affected districts. Although events of the intensity and severity of Cyclone Bola are 

relatively rare in New Zealand, agricultural drought is a common occurrence in many parts of New 

Zealand (Finkelstein, 1971), although not often with the severity of the present one. However it 

occurs with sufficient frequency to be an important detenninant of year to year variability in yield 

in a number of districts. The timing of agricultural drought in relation to the developmental stage 

of a crop is of particular importance, as this can result in yield depressions, as will become 

apparent later. 

Periods of above average rainfall can also impact on yield and again timing is important. Warm 

temperatures, if associated with drought conditions can place greater physiological stress on 

developing plants. Warm, humid weather can lead to problems with disease. As was made 

apparent in section 3.5, New Zealand climate is well suited to the production of many temperate 

and some subtropical crops. 

However it is also important to realise, as many farmers and horticulturists do, that yield and 

climate both vary from year to year. Both rainfall and temperature can have measurable effects on 

yield and there is sufficient evidence to suggest that these effects may be related empirically. 

With concern growing over the potential effects of the CO2 related warming on New Zealand, it is 

appropriate and timely to explore both spatial and temporal variations in yield and climate and 

their interactions. Spatial and temporal analysis of New Zealand climate was carried out in a 

significant study by Salinger (1981). Some of the methods used are employed here, as described in 

Chapter 4. An earlier study by Maunder (1965) examined empirical relations between yield and 

climate in New Zealand for a range of crops and primary products, and an assessment was made of 

the economic significance of these relationships. Computer technology, length of the data record 

and availability of data imposed some limitations on this work. More powerful computers and 

developments in computer software have enhanced the potential for exploring empirical 

relationships. Length of record remains a problem with some crops as does availability of data. 

Examination of empirical crop-climate relationships using national and district yield data forms 

the basis of this part of the thesis. The importance of trees for slope stabilisation, watershed 
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management and shelter was touched on briefly. This is elaborated on, particularly in the context 

of shelter, in the next part of the thesis. 



CHAPTER 4 

Data and Methods for crop-climate analyses 

4.1 Introduction 
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The climate of New Zealand is well documented through a network of climate stations. A 

relatively small number have been in operation since the middle of the nineteenth century. The 

network has since expanded to give an extensive coverage of the country. This historical record 

formed the basis of Salinger's (1981) research. He highlighted the importance of rigorous 

checking of station records, to eliminate as much as possible potential sources of error and 

hopefully improve the signal of the data. The data used in this current analysis, of crop-climate 

interactions were similarly carefully checked, following the procedures used by Salinger (1981). 

Yield data were gathered from various published sources at the national, district and in the case of 

wheat, county level. Unlike the climatic record there is not the same possibility of making 

adjustments to the data. Some simple adjustment for trend is possible, but it is generally 

impossible to both identify and quantify all contributing factors to trend in yield. 

Methods of assessing spatial patterns of variation in yield and climate are outlined. These are the 

multivariate analysis techniques of principal component and cluster analysis. Principal component 

analysis was used as a preliminary to multiple regression analysis. Not all of the yield data were 

conducive to a spatial analysis, particularly when it was only available on a national scale. Some 

spatial analyses gave poor results. To cover both of these eventualities alternative approaches to 

multiple regression analysis were used. In all cases maximum use was made of the data to both 

detect and verify important interactions between yield and climate. This involved trying different 

methods and comparing results and, where possible, retaining data for verification. 

4.2 Climate data 

4.2.1 Selection of climate stations 

Seasonal and monthly rainfall and mean temperature data were used in the analysis. The selection 

of climate stations from which data was used was influenced by the spatial and temporal spread of 

available yield data and the quality of the climatic record. Selected stations and related districts or 

counties are presented in Appendix A. For national and district grain data, analysis was for the 

years 1933-1983, for wheat in Canterbury 1945-1981, for pipfruit 1941-1981 and stonefruit 1963-

1981. Fewer stations were operational in the earlier period and in some cases the record was 

unreliable. This restricted the selection of stations, particularly for the principal component 

analysis. A more detailed spatial analysis of Canterbury climate, in Chapter 7, used all available 
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data for three selected periods, so that consistency of patterns over time and space could be 

examined in more detail. 

Very useful selected site summaries are given in Salinger (1981), and these were used as a baseline 

for the selection or rejection of sites. Adjustments to the record were made where possible. It was 

the quality and length of the climate record that influenced the period of analysis of the grain 

crops. Yield data for these crops was available earlier than 1933, but there weren't stations 

operational in all growing districts prior to that time. 

Few of the selected climate stations were directly representative of field conditions, with most 

being located in towns, cities or forests. Providing the climatic record is as free from error as 

possible, this isn't too much of a problem. Generally multiple regression yield analyses deal with 

yield data averaged over fairly large areas. In New Zealand the smallest unit is a county. 

Significant relationships are generally related to regional geography and the interaction with 

synoptic scale weather phenomena. The important consideration therefore is that the climate data 

be representative of a climatic response area, as defined and identified for New Zealand by 

Salinger (1981). This was the criterion for station selection in the analyses that involved district 

yield data. It could not always be satisfied as some districts cover more than one rainfall or 

temperature response area, or may be transition zones. This was more the limiting factor than 

whether or not the climate data was fully representative of field conditions. 

4.2.2 Site change adjustments and missing value estimation 

The methods of Salinger (1981) were employed in making adjustments for site changes, and 

estimating missing values. It wasn't possible to directly employ his results as some analyses were 

to be carried out using seasonal climatic data. Comparisons between sites before and after site 

changes using seasonal values showed different responses in different seasons. Data was adjusted 

accordingly. Methods are briefly summarised, with more detail and examples in Appendix A. 

For the preliminary analysis of Canterbury wheat site comparisons were made over the 1945-1981 

period. To gain familiarity with the methods rigorous checking of the data was done. This 

initially involved making graphical comparisons to detect differences between sites. Neighbour 

stations were selected for comparison using the rainfall and temperature response areas delineated 

by Salinger (1981). On the basis of this graphical comparison, some stations were removed from 

further consideration. This was supported by Salinger's (1981) site descriptions. For analyses that 

involved New Zealand wide data these site descriptions sufficed as a means of selecting sites 

suitable for analysis and detennining which ones required adjustment Climate data for these New 

Zealand analyses were adjusted back to 1928, where the record went back that far. 
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Site cbange adjustments 

For stations retained for the analysis monthly rainfall and temperature data were combined into 

seasonal data sets defined as March-May, autumn; June-August, winter; September-November, 

spring; December-February, summer. The mean difference between the station in question and 

nearest neighbour stations was taken and comparisons made between them before and after site 

changes using a t-test as a test of significance. Where the difference was significant, adjustment 

was made to the data before or after the site change. The data were adjusted to the most 

consistently exposed site in all cases. Rainfall ratios were taken for comparison and adjustment of 

the Canterbury climate data. For the New Zealand analyses rainfall data from the published 

homogenous rainfall series was used (Thompson, 1984). Data from districts not represented in 

this series were used without adjustment. Generally the record was clean for these sites, or the 

data used was for more recent years and was more reliable. 

Adjustments were made to the relevant months based on the seasonal analysis. Once these 

adjustments were made it was possible to estimate missing values. 

Missing value estimation 

The same criteria as Salinger (1981) were used for missing value estimation. He discarded records 

with more than twelve months of missing data in thirty years or twenty months for longer time 

series. None of the records used in this work were discarded on the basis of these criteria. The 

mean temperature anomaly, or rainfall ratio, for the month in question was calculated from nearest 

neighbour stations. Adjustment was then made to the monthly mean of the station in question, 

either by addition of the average temperature anomaly or multiplication by the average rainfall 

ratio. 

4.3 Yield data 

Sources of yield data were the N.Z. Wheat Review, N.Z. Agricultural Statistics publications, 

M.A.F. Horticultural Statistics bulletins, N.Z. Apple and Pear Marketing Board Annual Reports. 

The earliest formal collection of yield data began in 1869 for the principal grain crops of wheat, 

oats and barley. Potato yields were also collected at this time. Data were collected on the basis of 

administrative districts. In 1915 the N.Z. Statistics Department began detailed recording of fruit 

crop statistics, collecting tree number and yield data. This was continued up until 1930. Over this 

period data were collected by visiting properties. After the 1930-31 season a postal data collection 

system was introduced, which resulted in a reduction in the quantity and detail of statistics 

collected including a reduction of collection of data for fruit crops. Data for the main grain crops 

has continued to be collected through to the present on a district basis. However there are gaps in 

the record, when for various reasons data wasn't published on a district basis in Statistics 

Department publications. Yield per area data for the grain crops were not published at the county 
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level on a consistent basis until 1971. Latterly these publications have only incorporated data 

from the principal growing areas. The N.Z Wheat Review proved the most reliable source of 

county wheat yields back to 1945, particularly for the main growing districts in the South Island. 

Further wheat yield data has been sourced in one of the several appendices of Tauheed's (1948) 

thesis, but was not used in the analyses presented here. 

Apple and pear yield and tree number data were sourced from N.Z. Apple and Pear Board Annual 

reports, from 1941-1965. This was originally collected by the then named Department of 

Agriculture. More recently M.A.F. collected horticultural statistics for the period 1963-1981. This 

was aggregated to give national yields, areas and tree number for each crop. The district data were 

not published. Some is on ftle in raw form with John Wilton, M.A.F. 

lit general the yield data has been collected in a relatively uncoordinated manner. One of the 

purposes of this work has been to identify as many sources of yield data as possible. It is 

important that this is done so that maximum value can be obtained from the data, particularly in 

the important field of crop- climate relationships. 

It is uncertain what further detail is on file with the Statistics Department. It would certainly be 

invaluable if the county record could be extended as far back as possible for as many crops as 

possible. This is most possible with the grain crops. These problems are not new, being a source 

of comment in several theses, most recently that of Maunder (1965). Perhaps with the greater 

imperatives associated with concern over the CO2 warming effective moves will be taken to 

rectify the situation. 

Despite problems in obtaining data, in the end sufficient were obtained to give some excellent 

results. A spatial analysis of wheat, oats and barley was made possible with the district data. A 

more detailed analysis of Canterbury wheat yield was possible with county data, which is 

presented in Chapter 7. Weighted analyses of national yields was carried out for both grain and 

fruit crops. 

The nature of the yield data used in the analyses is shown in Table 4.3.1. Earlier yields were given 

in Bushels per acre. Kilogram equivalents for each crop are given as well as conversion factors for 

bushels to kilograms. 
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Table 403.1 

Yield data used in empirical-statistical crop-climate models 

Crop Administrative Period Unit Weight of 
level bushel (kg) 

Wheat National 1933-1983 T/ha 27 
District 1933-1983 T/ha 
County 1945-1983 T/ha 

Oats & barley National 1933-1983 T/ha 18&23 
district 

Stonefruit National 1963-1981 T/ha 19 

Pipfruit National 1941-1965 Bu/tree Apples, 18 
1963-1981 T/tree Pears, 17 

&T/ha 
District 1941-1965 Bu/tree 

Trend removal 

In all cases a time series of yield per ha (or yield per tree in the case of apples and pears) was 

plotted. With all grain crops there was an obvious trend. Up until the 1940s there weren't too 

many major technological changes with these crops, in terms of relative impact on yield. 

Mechanisation of farm opemtions was probably the main technological advance in these earlier 

years. Since then major advances in plant breeding, further advances in mechanisation, use of . 

pesticides and improved farm management have all contributed to significant advances in yield per 

hectare. The level to which each of these has contributed to higher yields is very difficult to 

quantify. Examples of trend removal for each of the crops examined are given in the relevant 

sections in Chapters 5, 6 and 7. 

The 1963-1981 time series of yield for fruit crops didn't always show clear trends, and in fact 

apples and pears were the only fruit crops where trend removal was carried out. For the rest, mw 

yield data were used in the analysis. 

A range of methods can be used to remove trend, from moving averages to simple linear 

regression lines. In most cases quadratic lines consistently gave the best fits to the data, and so 

these were generally used. The one exception was the pear data where a linear regression was an 

adequate fit. Such methods are by necessity simplifications of reality as it would be impossible to 

quantify and identify all contributory factors to trend. Often it can be relatively crude, but 

generally it separates out significant positive and negative anomalies, which are the principal 
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source of interest. Detail can be lost with less significant anomalies, particularly over longer time 

series. Residuals about fitted lines were retained for further analyses. 

4.4 Principal Components Analysis (P.C.A.) 

An excellent introduction to principal components analysis is given in Manly (1986) and a more 

detailed review in Daultry (1976). 

The basic aim of P.C.A. is to recombine a set of correlated variables into a set of uncorrelated 

indices. The original variables are transformed in such a way as to describe the same amount of 

variability with the same number of variables. The transformation process involves identification 

of different axes of variability, that are orthogonally separated and therefore uncorrelated. The 

first axis is selected to account for as much of the total variance as possible. The second, while 

uncorrelated with the first, is chosen to account for as high a proportion of the remaining variance 

as possible. This procedure of axis selection continues until there are the same number of axes, or 

uncorrelated indices, as original variables and the total variance is the same. 

Where there is a high degree of correlation between the original variables it is not uncommon that 

most of the variance is accounted for by the first few indices, or Z variables as Manly (1986) calls 

them. The obvious advantage is that these few indices can be used to describe most of the 

underlying patterns of variation, which may not be immediately obvious from the original data set. 

Higher order indices can be discarded as they progressively account for less and less of the total 

variance. This is a very useful property for further analysis, particularly where an original set of 

ten to twenty variables can be recombined into a much more manageable set of three to five 

indices, that may collectively account for 90% or more of the variance in the original data set. 

It is a common practice to code the variables in the original set to zero means and unit variance, 

i.e. standardising, prior to P .C.A. The purpose of this is to avoid anyone variable having a biasing 

effect on the resultant principal components. When this is done the correlation matrix is 

effectively used in the analysis, from which eigenvalues and eigenvectors are calculated. The 

eigenvalues are described as being the variances of the principal components (P.C.s) of the 

covariance matrix (Manly. 1986). which becomes the correlation matrix after standardising. The 

vector of constants associated with each eigenvalue is known as an eigenvector. 

The eigenvalues therefore describe the amount of variance accounted for by each of the indices. or 

principal components. The elements of the eigenvector are the constants ~1' ~2' ••...•.. ~p' and 

are effectively weighting factors that are used to recombine the original data to derive the principal 

components. Thus each principal component can be defined as :-



29 

where ~1 to ~p are the weighting factors and Xl to Xp are the original variables. 

Application 

P.C.A. can be a useful tool for exploring underlying patterns in a data set. For example with 

climate data it may be used to describe spatial variations in response characteristics. If the first 

few eigenValues account for most of the variance then study of the eigenvectors associated with 

these may reveal underlying patterns of variation. This can be taken further by deriving the 

principal components and interrelating these with other variables or indices. This was done by 

Salinger (1981) in his analysis of New Zealand climate, in which he derived temperature and 

rainfall P.C.s and correlated these with a selection of circulation indices. A more local study of 

rainfall _patterns and associated synoptic characteristics was carried out by Trewinnard and 

Tomlinson (1986) for mid-Canterbury. A further use for the P.C.s is in mUltiple regression 

analysis. The obvious advantage is the reduction of variables used as input to the regression. This 

can overcome the problem of too many variables and uncertainty about which ones to exclude. An 

example of its application is in the analysis of wheat yields in relation to climate in Western 

Australia by Wigley and Tu Qipu (1983). They successfully applied P.C.A. multiple regression 

analysis to describe spatial variability in yield in relation to spatial variability in climate in this 

region. 

In the work reported here P.C.A. was used both in a descriptive sense, to explore spatial variations 

in climate (Chapter 7) and define response areas in a region, and as a preliminary to multiple 

regression analysis (Chapters 5 and 7) between yield for a selection of crops and climate. An 

example output of eigenvectors, for barley and associated climate data, is given in Appendix B. 

For all analyses P.C.A. was carried out using the PRINCOM procedure on the SAS package, on 

the V AX. computer network at Lincoln. 

4.5 Cluster analysis 

Although generally only used in this thesis as an exploratory tool, and as a check on p.e.A. 

results, a brief description of cluster analysis is given here. As with P.C.A, an excellent 

introduction to cluster analysis is given by Manly (1986). Cluster analysis basically involves 

numerical methods for classifying data. Objects are placed in classes so that similar groups are 

placed in the same class. As with P.C.A. it can expose patterns in the data not immediately 

apparent to the eye. The clustering may not always be distinct, and it can be confusing when 

several of the numerous clustering techniques are used and give differing results. So some 

preconceptions of how objects may cluster can help, although as Manly (1986) stated, the 

clustering may not conform to preconceptions. 
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There are many different algorithms used, the main ones falling into two general groups. These are 

1. Hierarchic techniques 

These produce a dendrogram or hierarchical 'tree'. There are both 

agglomerative and divisive methods, although the former are the more 

common. The agglomerative method begins with all objects being alone. 

These are progressively grouped together, by various numerical methods, 

until eventually a single grouping, or cluster is achieved. The divisive 

method starts with all objects being together. These are progressively divided 

until all groups contain a single object. 

2. Partitioning techniques 

These generally involve an iterative process whereby objects are moved into 

and out of groups throughout the analysis. The process continues until the 

groups stabilise, the number of groupings being predetermined. Because the 

optimum number of groups is not known the process is repeated to obtain the 

best number of groupings. 

The process begins with centres being established for groups to cluster 

around. Through the iterative process new centres are calculated and objects 

may be moved to new groupings. 

Manly (1986) made it clear that there is a degree of subjectivity involved in cluster analysis, with 

no universally accepted best method. 

A wide range of options are available on the SAS statistics package. Both agglomerative and 

divisive hierarchical clustering methods were used, as well as a disjoint method using the 

V ARCLUS procedure on SAS. 

Prior to cluster analysis variables were standardised to means of zero and variances of one, as 

recommended by Manly (1986), although this can have the negative effect of minimising group 

differences. Cluster analysis can also be used as a tool for reducing the number of variables prior 

to P .C.A., as done by Wigley and Tu Qipu (1983) in their spatial analysis of wheat. The reverse, 

i.e. P.C.A. prior to clustering is also used in some cases (Manly, 1986), where the ftrst few P.C.s 

account for most of the variance in the data. Neither was considered necessary as a result of 

exploratory analyses. 
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4.6 Multiple regression analysis 

Multiple regression analysis is often used as an exploratory tool, sometimes unkindly referred to as 

a "fishing expedition" (Wesolowsky, 1976), although it is further pointed out that fishing 

expeditions can often be successful. This is particularly true if there is some local knowledge as to 

where the best fishing spots might be. This approach has become increasingly popular over the 

last few decades as a tool for exploring crop-climate interactions. Generally this relies on 

historical yield and climate data as described in sections 4.2 and 4.3. 

The early approaches involved gathering yield data from a particular area, performing a trend 

removal if necessary, and relating yield to climate data from a single representative station. The 

most commonly used climatic variables are temperature and rainfall because of their generally 

superior record. This was the general approach of Maunder (1965) in his analysis of food 

production in relation to climate over 27 counties in New Zealand. As well as rainfall and 

temperature data, he included sunshine hours in his analysis. In other early studies spatially 

averaged yield and climate data over large areas were used in a multiple regression analysis 

(Thompson, 1969a, 1969b, 1970). In such cases it is normal procedure to weight the climate data 

according to the percentage area of the crop in each growing district or county, as demonstrated by 

McQuigg (1982). 

There has been a proliferation in multiple regression analyses of crop-climate interactions over the 

last two decades. This has been made particularly easy by the development of powerful, user 

friendly software packages such as SAS. Some of the work has been relatively shoddy, other 

studies giving valuable insights, particular when used in conjunction with other sources of 

information on possible crop-climate interactions. Some researchers remain sceptical about the 

value of such analyses, such as Monteith (1981). Others, such as Katz (1977) have sought more 

critical use of multiple regression analysis. Some more recent applications have taken heed of 

these words of caution, and have given more credibility to empirical studies of crop-climate 

interactions. 

One relatively novel approach has been the application of P .C.A. as a means of reducing variables 

prior to multiple regression analysis. A critical analysis of wheat yield in Western Australia was 

made using such an approach (Wigley and Tu Qipu, 1983). This enabled them to evaluate spatial 

patterns of yield and climate and their interactions. The results of the P.C.A. facilitated the latter 

by accounting for a large degree of the spatial variation in yield and climate in the first few P .C.s. 

This allowed substantial reduction in the numbers of both predictands and predictors used in the 

analysis. 

It is appropriate to look at some of the limitations of multiple regression analysis in more detail. 
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4.6.1 The coefficient of determination 

The coefficient of determination (R2) is defined as the ratio of the sum of squares due to 

regression to the sum of squares about the mean of Y. It is a 'black box' statistic according to 

Katz (1977), being a measure of the explanatory power of the regression (Wesolowsky, 1976). 

This latter author demonstrated through examples that both the number of variables and 

observations can influence the value of R2 and that a high or low value does not directly imply a 

good or bad result. The problem was discussed in detail by Wigley and Tu Qipu (1983), whose 

conclusion was that there should be some form of independent testing of the result. This is 

discussed further, later in this discussion. 

4.6.2 Nonlinearity 

As pointed out by Katz (1977) relationships between yield and any given climate variable are not 

necessarily linear, as plant physiological research shows. This is not easily resolved, as simply 

squaring to give a quadratic function may not necessarily reflect reality either. Some form of 

transformation of the data may be justified where a spatial analysis of yield is carried out over a 

large region where there is wide spatial variation in climate, particularly with rainfall. This was 

done by Wigley and Tu Qipu (1983). It is also important to remember that climate data is 

generally given as monthly means or totals, and therefore short term extremes, particularly with 

temperature, that may impact on yield are averaged out. This latter situation can be resolved by 

complementary studies such as that carried out by Mearns et al (1984), which explored the 

possible impact of short term temperature extremes on yield of com in the U.S.A. 

4.6.3 Multicollinearity 

Multicollinearity is cited by Wesolowsky (1976) as being one of the chief causes of 

misinterpretation and misuse of regression analysis. Correlation between independent variables 

can lead to three main problems (Wesolowsky, 1976) :-

1. The standard errors of the regression coefficients are increased. 

2. In extreme cases computational difficulties can arise. 

3. A priori selection of variables can lead to omission of variables that may be 

correlated with those retained. This can lead to biasing of estimators for 

those regression parameters retained. 

While a correlation matrix can highlight significant pairwise relationships, there still exists the 

problem of correlation between a variable and a linear combination of other independent variables. 

The advice given by both Katz (1977) and Wesolowsky (1976) is to make as much use as possible 

of a priori analysis. This should be based as much as possible on a theoretical knowledge of 
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probable interactions, including whether the response to any particular variable is likely to be 

positive or negative. Often there needs to be some trade off between a priori selection and 

exploratory analysis as relationships can be revealed that are not supported by the literature, but do 

have some apparent connection with reality. The situation can be compounded by the fact that 

crops can respond differently under different climatic conditions and that principal limiting factors 

can change both spatially and temporally. 

In the present work no climate data were excluded from exploratory multiple regression analysis. 

Correlation analysis showed some significant relationships between predictors, but these did not 

predominate. The literature base generally provided clues for reducing the number of variables for 

further analyses, although often variables were retained that had no support from the literature. It 

cannot be discounted that some potentially significant predictors were excluded, or their effects 

masked. However the methods used are generally supported by the strength of the results. The 

weaknesses are also apparent 

4.6.4 Model verification 

One means of assessing the relative importance of the result is to carry out a test on independent 

data as suggested by Wesolowsky (1976) and done by Wigley and Tu Qipu (1983). In the latter 

case this involved using part of the data for developing a calibration model and then carrying out a 

verification procedure on the remainder of the data. This simply involved using the calibration 

model to estimate yield over the verification period and to correlate these values with actual yield 

for the same period. The length of the time series for which yield data is available is the main 

limiting factor to carrying out such an analysis. 

Verification was not always possible in this study, particularly for the fruit crop data for which 

there was generally only a 19 year record available. Other time series were conducive to 

verification. In all cases every two years out of three were used for calibration and every third 

year retained for verification. 

4.6.5 Summary and SAS procedures 

This brief review has highlighted some of the main problems associated with multiple regression 

analysis. It is apparent that such an approach should be treated with a degree of caution. Used in 

an appropriate context it can give valuable insights into crop-clirnate relationships, and can offer a 

basis for the more detailed studies as advocated by Monteith (1981). It is essentially an empirical 

approach that can highlight dominant relationships, that can be connected to biological reality. 

But as a 'black box' approach it can also lead to spurious results. Discussion of results in this 

thesis is based on the assumption that there is some connection to reality, even where not 

supported by the literature. In some cases no logical explanation is possible and the predictors are 

assigned 'black box' statistic status. There is therefore a degree of speculation in some of the 
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discussion of results. If at least some of these are confmned as important by further study then the 

effort is not wasted. 

For all analyses stepwise multiple regression was used. This is a very useful tool for exploratory 

analysis, particularly where there are a large number of independent variables. There are a range 

of selection methods, based on different selection criteria, for stepwise model development. The 

three methods used were forward selection, backward elimination and maximum R2 improvement. 

Forward selection begins with no variables in the model. A minimum F value is set for entry. At 

each stage the method selects the variable with the largest F value. The process continues until no 

more variables satisfy the entry requirement. Backward elimination begins with all variables in the 

model, and in a stepwise manner eliminates those that are least significant, until all remaining 

variables satisfy the required level of significance. The third method starts with no variables. It 

selects that with the highest R2. The next variable that gives the most improvement in R2 is 

included. Variables can be replaced at each step until the best improvement in R2 for that number 

of variables is obtained. Experience showed that the R 2 method generally gave the same results as 

forward selection, and that the models with the highest R2 generally had predictors with the 

highest F values. An F=4 cut-off was generally used, although in some cases F=2 models are 

included in the results for the purpose of discussion. 

All analyses were carried out using PROC STEPWISE from the SAS package on the Lincoln 

VAX. 

4.7 Application of methods 

4.7.1 Grain crops 

The east coast region of the South Island is New Zealand's principal grain growing region. Any 

analysis of national yields must take this into account. National, and in some cases district, yield 

data for wheat, oats and barley is available back to the 19th century. The unreliability of the 

climatic record from some stations, or the lack of it from some growing districts restricted the 

period of analysis to the 1933-1983 period. Quadratic trend lines were fitted to all yield time series 

and analysis carried out on the residuals. 

P .C.A. multiple regression 

A spatial analysis of district yields and climate was carried out for the three crops mentioned using 

the P.C.A. multiple regression procedure. Both climate and yield data were standardised for this 

analysis. The growing seasons selected for the P.C.A. analysis were autumn (March-May), winter 

(J une-August), spring (September-November) and summer (December-January). If the record for 

a particular district had too many missing values it was excluded from the analysis. In all cases 

these were districts that contributed little to national yield. In all analyses a MAXR stepwise 

multiple regression procedure was used as this generally proved superior to the backward 
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elimination procedure. The purpose was to explore spatial patterns of yield and climate over the 

country and to see whether they could be interrelated in terms of an empirical model of national 

yield. 

For the p.e.A. models adjusted climate data for as many stations as possible were used in the 

analysis. This was important for growing districts that are relatively heterogeneous in their rainfall 

and temperature responses. A total of 15 rainfall and 13 temperature stations were used in this 

analysis. 

Verification was carried out for each of the yield principal components on which multiple 

regression was carried out. In all cases this involved the frrst three p.e.s. Verification of each of 

these was carried out by correlating predicted versus actual yield p.e.s over both the calibration 

and verification periods. Verification on a district basis was done following the rationale of 

Wigley and Tu Qipu (1983). They assumed that the yield estimate for each district was the sum of 

the products of the loadings, from the P.C.A., for each district and the estimated P.C. 's. This is 

given by:-

A A A A 

X ~ ailzl + ai2z2 + ...... aipzp 

where Rjp are the loadings and; are the P.C. estimates. This assumption was tested by estimating 

yield using the actual P.C.s as input, using the frrst three P.C.s. Correlations between estimated 

and actual yield for each district were highly significant in all cases. The procedure was then 

repeated using estimated P.C.s for both the calibration and verification periods, to give the 

verification result. The final step was the development of models from all years, where 

verification was significant. 

Weighted and district multiple regression 

As a check on the value of this approach further analysis was carried out relating national yields to 

climate data weighted according to the proportion of the crop threshed in each district. A single 

representative climate station was selected from rainfall and temperature response areas as 

delineated by Salinger (1981). Not all growing districts fell within the same climatic response area 

and so the station corresponding to that part of the district where most of the crop was grown was 

chosen. 

For both analyses an almost unbroken period spanning 51 years allowed retaining of data for 

verification. Every two years out of three were chosen for calibration with every third year 

retained for verification. There were missing values for some years for the district data, but the 

national record was unbroken. District data were analysed separately for the principal growing 

districts as a further evaluation of spatial relationships with climate. As with the national models, 

data were retained for verification. 
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An initial run on the data was carried out using monthly climate and yield data for all years. From 

the results of this seasonal data sets were derived in an attempt to identify critical periods. 

Calibration and verification was then carried out using the monthly and seasonal climate data. 

Experience showed that the seasonal models verified best so that in some cases verification was 

only carried out with the latter. As with the P.C.A. analysis the final step was the development of 

seasonal models from all years. 

The presentation of results in each case is preceded by a brief review of the general crop-climate 

relationships. Where possible a brief summary of possible physiological responses is included. 

This is followed by a brief review of each crop's relationship with climate under New Zealand 

conditions, including results of previous empirical analyses. The results are discussed within the 

context of this reviewed material. 

4.7.2 Fruit crops 

Stonefruit 

There was generally less flexibility in the analysis of the fruit yields. For stonefruit there were 

only 19 years worth of observations, so it was not possible to retain data for verification. Data 

were readily available only on a national basis. For all of the stonefruit no trend in the yield per 

hectare data was apparent, so mw data were used in the analysis. 

A representa~ve climate station was selected for each of the main growing districts and a set of 

weighted monthly climate data derived for each crop. Weighting factors were based on the five 

yearly surveys carried out by MA.F., with district area data avemged for the years 1968, 1973 and 

1978. 

Review of the litemture suggested periods of climatic sensitivity, but initially data for all months 

were included. For each crop the climate data had to be lagged to give the growing year, based on 

normal harvest completion times. For apricots, plums. nectarines and peaches the growing year 

chosen was March to February. The bulk of these crops are usually harvested by this time. For 

cherries the growing year was the calendar year. While minfall data was transformed in the P.C.A. 

of grain crops this was relaxed in the analysis of fruit crops as it was not considered to give 

significant improvement in the results. 

Preliminary analysis showed high sensitivity to monthly climate data and low sensitivity to 

seasonally avemged data. Both forward selection and maximum R2 improvement methods were 

used in explomtory analysis. In some cases backward elimination was also carried out on reduced 

data sets. 
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As with the grain crops the analysis was supported as much as possible by the literature. The 

generally poorer literature base, and shorter time series gave greater potential for inclusion of 

black box statistics. Some of the discussion of results must therefore be treated as speculation. 

Pipfruit 

Initial analysis of apples and pears was for the same 19 year period, 1963-1981. Application of 

methods was the same as for the stonefruit, although analysis of yield per tree was also carried out 

over this period. The growing year for both crops was chosen as June to May. Trends were fitted 

to yield per hectare data for apples and pears and to yield per tree data for pears. No trend in yield 

per tree for apples was apparent over this period. 

Further data was sourced, on a per tree and district basis for the years 1941-1965. A linear trend 

was fitted to both the apple and pear data. Separate analyses on yield per tree, by district and 

nationally, were carried out for this period. Weighting factors for the national analysis were 

different from the 1963-1981 period. 

As a final step national yield per tree data were combined for the two periods as were the two 

separately weighted climate data sets. For this combined period a linear trend was fitted to the pear 

data and a quadratic to the apple data. This longer time series allowed for model verification. As 

with grains two years out of every three were used for calibration and every third year for 

verification. 

A much stronger literature base was available for pipfruit than for stonefruit, and results tend to be 

less speculative. There are still possible black box statistics. 



CHAPTERS 

Analysis of grain crop-climate interactions 

5.1 Wheat 

5.1.1 Wheat-climate relationships 
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According to Lamb (1967) there are few places in the world that are too hot for the growing of 

wheat. However it dOes not do well under hot, humid conditions as experienced in most parts of 

the tropics. The best conditions for growth and development of wheat grain are said to be "a cool, 

moist growing season followed by a bright, dry and warm ripening period of 6-8 weeks, with a 

mean temperature of 18-19 ·C" (Kirkham and Kanemasu, 1983). While wheat is grown globally 

under a wide range of temperature conditions it appears that availability of moisture sets the limits 

and has the most direct effect on yield. Claridge (1972) delineated two major zones in the world, 

according to moisture availability. These are the low rainfall areas of North America and 

Australia, which are associated with low yields, and higher rainfall areas (500-1000 mm per 

annum) where mixed farming is generally practiced allowing the maintenance of soil fertility. 

Europe and New Zealand fall into this latter category. 

Moisture and water use 

Soil moisture at seeding is considered to be very important to a successful wheat crop (Schlehuber 

and Tucker, 1967). It is also observed that when seasonal precipitation and soil moisture are 

combined they account for a large percentage of the variation in yield. Lamb (1967) noted that 

wheat yields were positively correlated with available moisture in the dry northwest of the U.S.A. 

In the east there tended to be a negative correlation with winter and early spring rainfall. An 

excess of rainfall can waterlog the soil, which can slow warming of the soil in spring and interfere 

with aeration and nitrification (Lamb, 1967). Humid conditions arising from a lot of rain, 

combined with warm temperatures can lead to disease problems. Wet conditions at maturity can 

interfere with harvesting of the crop. 

Wheat has low total water requirements compared with other crops (Schlehuber and Tucker, 

1967). However there are critical moisture sensitive growth stages. Table 5.1.1 shows water use 

by winter wheat at different developmental stages, under optimum moisture conditions 

(Schlehuber and Tucker, 1967). 



Period 

Autumn 
Winter 

Table 5.1.1 

Water use by wheat 

Beginning of spring growth 
to the jointing stage 
Jointing-to-boot stage 
Boot-to-flower stage 
Flower-to-milk stage 
Milk-to-dough stage 
Dough stage to maturity 

Water use 
(mm/day) 

1.8 
0.8 

2.3 
4.1 
6.4 
8.9 
7.6 
3.8 
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The boot to flower stage is generally considered to be the most critical stage for moisture stress as 

it affects the number of grains set (D. Martin, pers. comm.). Wheat is a relatively drought resistant 

plant. This resistance to dry conditions is greatest at the seedling stage and decreases as the plant 

develops (Lamb, 1967). 

Temperature 

Temperature, in most areas where wheat is grown, is not directly limiting to the growth and 

development of wheat, however it does regulate the rate of development. Higher temperatures 

lead to faster development, which results in a shorter duration of growth and generally lower 

yields. Its wide geographic distribution attests to the fact that it is able to withstand temperature 

extremes, although very high and very low temperatures reduce the rate of photosynthesis. A 

general observation was that both spring and summer wheat grow best at relatively low soil 

temperatures (Schlehuber and Tucker, 1967). It appears that it is under conditions of drought that 

temperature can become most limiting. Lamb (1967) stated that "drought is frequently 

accompanied by high temperatures and drought injury may be intensified because of the heat". 

Conditions are not usually hot enough in Canterbury to cause drought injury except under 

conditions of very strong advection (Martin, pers. comm.). The peak water use period, at the 

fruiting stage, would appear to be the time when warmer temperatures would have their greatest 

potential to be limiting. A period of drought, combined with warmer temperatures could be 

physiologically very stressful at this stage of development, as a result of stomatal closure under 

conditions with a high potential for evapotranspiration. 
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5.1.2 Wheat in New Zealand 

Claridge (1972) generally reiterated what has already been discussed in relation to climate. 

Observations under New Zealand conditions show that in general yield is favoured by a reliable 

spring rainfall and ample sunshine and dry conditions at harvest time. Soil moisture is considered 

to be the factor most directly affecting yields from year to year, particularly during October and 

November which relate to the jointing to flowering stage of development. Excessive rain in 

autumn and winter is considered to have a negative effect on yield of autumn sown wheat This is 

possibly related to leaching of nitrates from the soil, and perhaps the factors mentioned by Lamb 

(1967). Above average rain in the spring may cause rank growth and subsequent lodging. 

Several empirical crop-climate studies have been carried out in New Zealand. Those based on 

Canterb.ury data are reviewed in section 7.6. The most recent work is that of Maunder (1965) who 

carried out a multiple regression analysis of yield and selected climate variables. He explored 

relationships for a range of selected counties, which were representative of most growing districts 

in New Zealand. The most important climatic factors that he identified from his multiple 

regression analysis were:-

1. A dry, warm October 

2. A cool November 

3. A dry December 

4. A cloudy January 

5. A wet, sunny February 

These need to be put into the context of the different districts in which wheat is grown in New 

Zealand. The county by county correlations carried out by Maunder (1965) suggest that in the 

higher rainfall areas of New Zealand drier springs are preferred. In the lower rainfall areas wetter 

springs seem to be preferred. In the North Island wheat is generally spring sown. The principal 

growing areas of the North Island are centred in the Rangitikei and Manawatu, to the south-west. 

Mean annual rainfall in Bulls and Palmerston North is 874mm and 995mm respectively, which is 

approaching the upper limit of the optimum range for wheat. Claridge (1972) notes that rain at 

harvest time can be a problem in these areas. In Nelson and Marlborough districts in the South 

Island it is observed that summer drought can be a problem. particularly in Marlborough. The 

relatively warm summer conditions in this district could compound effects of moisture stress in 

drought years. In Canterbury and North Otago the wheat was predominantly autumn sown, until 

the last two to three years which have seen a move to spring sown wheat. Waterlogging of the soil 

can be a problem after wetter than average winters in these districts and spring and summer 

droughts can be limiting to yield. In the remainder of Otago and Southland the crop is spring sown 

and generally high yielding. This was attributed to the higher soil fertility and higher rainfall over 

the growing season (Logan. 1983). A corrected rainfall series for Invercargill gives a mean annual 

rainfall of 1090 mm. This is at the upper limit of the optimum range. Temperatures are on 



41 

average cooler here than in the growing districts of the North Island, and more favourable for 

wheat yield. Harvest is later in Southland than in Canterbury and North Otago which can be 

delayed further by adverse conditions and lead to problems with ripening (Claridge, 1972). 

Although this synopsis of districts explains some of Maunder's (1965) results there are two that 

appear anomalous. A dry, warm October appears contrary to the literature which suggests that 

cool. moist conditions are preferred at this time. A wet, sunny February would generally be 

unfavourable. rather than favourable at or near harvest. The preference appears to be for warm, 

dry conditions for ripening of the crop. 

5.1.3 Wheat-climate analyses: results 

National wheat yields from 1928-1983 and fitted quadratic trend are shown in Fig. 5.1.1. 

p.e.A. multiple regression analysis 

The proportion of variance accounted for by the first three principal components in the P.C.A. of 

yield and seasonal climate are presented in Table 5.1.2a. The results suggest that spatial variations 

of yield and rainfall across the country are much greater than that of temperature. 

The first yield eigenvector gave positive loadings to all districts. Loadings were highest on 

Wellington and Nelson districts and the east coast of the South Island. Taranaki was an anomaly, 

with an almost zero loading. Th~ second yield eigenvector contrasted the North Island and 

Marlborough with Canterbury. Otago and Southland. The former had positive loadings. The 

dominant feature of the third eigenvector was a strong positive loading on Taranaki. 

The flfSt eigenvector for rainfall. for the three seasons examined. tended to positively load the east 

coast of the South Island and the west of the North Island. Napier and Invercargill appeared as 

anomalies. The second eigenvector had positive loadings for the west of the North Island and 

Southland. The other two seasons for the second eigenvector had their highest positive loadings 

on the east of the North Island as did the third. The third eigenvectors for spring and summer 

rainfall had high positive loadings on the east of New Zealand. from Napier south. Lower 

pressures to the north of New Zealand and higher pressures to the south generally lead to positive 

rainfall anomalies in the west and south of New Zealand. Districts to the east of the axial ranges 

are rain shadow areas under such conditions. Spatial patterns of climate in relation to circulation 

phenomena are examined in detail in Salinger (1981). The data used for this analysis were chosen 

to be representative of growing districts and did not cover the country as a whole. Spatial variation 

in rainfall is complex. influenced by the axial ranges and predominant circulation patterns. Further 

discussion is restricted to those rainfall P.Cs that appear as significant yield predictors. 
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Fig. 5.1.1 New Zealand wheat yield and quadratic trend 1928-1985 
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Variable 

Wheat yield 
WRAIN 
SPRAIN 
SURAIN 
WTEMP 
SPTEMP 
SUTEMP 

District 

South Auckland 
~wkesBay 
Taranaki 
Wellington 
Marlborough 
Nelson 
Canterbury 
Otago 
Southland 
YIELD 1 
YIELD2 
YIELD3 

Variable 

Intercept 
SPRAINI 
WTEMP3 
SPTEMPI 
SUTEMPI 

Table 5.1.2 

(a) Principal component analysis: proportion of variance 
accounted for by the rlrst three P.C.'s 

P.C.1 P.C.2 P.C.3 

0.38 0.51 0.64 
0.46 0.57 0.67 
0.37 0.51 0.63 
0.33 0.51 0.62 
0.75 0.87 0.91 
0.75 0.84 0.90 
0.88 0.92 0.95 

(b) Correlation coefficients from wheat model verification 

Calibration Verification 

0.29 0.30 
0.56 0.36 
0.79 -0.48 
0.64 0.34 
0.63 0.25 
0.49 0.42 
0.49 -0.08 
0.36 0.28 
0.58 0.21 
0.67 0.44 
0.74 0.03 
0.54 -0.35 

(c) YIELDl, F=4, multiple regression model 
Model R2=O.47; F=8.74; P>F=O.OOOI 

B value F P>F 

-0.00008047 
-0.21559179 4.87 0.0333 
-0.64331176 4.34 0.0438 
-0.28367221 12.19 0.0012 
-0.20559363 7.85 0.0079 
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The pattern with temperature is similar in all seasons. The first eigenvector in all cases gave 

similar loadings to all districts, suggesting that seasonal responses to temperature are similar over 

the whole country. This is attested to by the high proportion of the variance accounted for by the 

first principal component. The second eigenvectors for winter and spring temperature and the 

third for summer temperature showed a general north to south gradation. The former two had 

positive loadings on the east and south of the South Island. The latter had positive loadings on Te 

Aroha (South Auckland) and Napier (Hawkes Bay) and to a lesser degree other North Island 

stations. The third eigenvector for winter temperature gave positive loadings to South Auckland, 

the north of the South Island and Central Otago. Eastern districts showed negative anomalies. 
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The results of the verification procedure for the P.C.A. multiple regression, using the F=4 model 

developed from the calibration data are presented in Table 5.1.2b. The model based on the first 

yield P.C. was the only one to verify satisfactorily. It was an encouraging result given the spatial 

variability, particularly with yield and rainfall. Verification of individual districts showed 

Taranaki to be a strong anomaly, as shown up in the P.C.A. Canterbury, also, verified poorly. 

This is important as Canterbury is by far the dominant wheat growing district in New Zealand. 

Any model that fails to satisfactorily account for crop-climate relationships in this district is of 

questionable value in examining national yield variations. This result could be reflecting different 

climatic responses to autumn sown wheat, which was grown in Canterbury and North Otago over 

the period of analysis, and spring sown wheat which is grown in all other districts. 

A model for all years was developed for YIELD 1 and the F=4 result is shown in Table 5.1.2c. The 

interesting feature is the predominant influence of temperature on yield. The assumption is made, 

based on the verification results that the model is more a reflection of climatic relations with 

spring sown wheat. All but one of the predictors are fust order P.Cs. The strongest loading of 

WTEMP3 was on Nelson district. There was also a higher loading on Nelson in YIELDl. 

Further, Nelson verified the best of all districts. There is therefore some bias towards this 

particular district, which is a minor wheat growing area. The other three predictors tend to reflect 

patterns in all districts. It is recalled that SPRAINI was biased towards the west of the North 

Island and the east of the South Island. There was no strong bias in SP1EMPI or SU1EMPl. On 

the basis of this it might have been expected that the model would verify relatively well for 

Canterbury . 

A negative relationship with spring rainfall suggests that most districts are likely to have surplus 

rainfall to needs at this time. This is more likely in higher rainfall areas in the west and south. 

Wet springs would delay soil preparation and sowing of spring sown wheat and thus delay the 

crop. Negative relations with spring and summer temperatures suggest that temperature conditions 

are above the optimum over this period in most districts of New Zealand. Cool, moist conditions 

are generally favoured at this time. In most parts of New Zealand there is the potential for spring 

and summer drought, particularly in the latter period. Warmer temperatures could have an indirect 

negative effect on yield under such conditions, as previously discussed. 

Weighted and district analyses 

The proportion of wheat grown in each district is shown in Table 5.1.3a.· A noticeable transition 

occurred around 1945, with a significant increase in the proportion of wheat grown in Southland, 

and to a lesser degree in the Wellington district. There was a corresponding decrease in 

Canterbury. The climate data were weighted for these two periods for an analysis of national 

yield. 



District 

Hawkes Bay 
Wellington 
Nelson 
Marlborough 
Canterbury 
Otago _ 
Southland 

Variable 

Intercept 
WRAIN 
(Jun-Sep) 
SPIEMP 
(Sep-Dec) 

Table 5.1.3 

(a) Proportion of wheat grown by district 
(weighting factors) 

Period 

1928-1945 1946-1985 1928-1985 

0.000 0.010 0.01 
0.020 0.060 0.04 
0.010 0.000 0.00 
0.025 0.020 0.02 
0.810 0.645 0.70 
0.110 0.130 0.13 
0.025 0.135 0.10 

(b) N,Z. wheat yields versus weighted climate data; 
correlation coefficients from seasonal verification 

Calibration 
0.55 

p=0.OOO7 

Verification 
0.64 

p=O.OO6O 

(c) New Zealand versus weighted seasonal climate data; 
multiple-regression model 

R2=0.32; F=10.88; p=O.OOO1 
B value F P>F 

2.745 
-0.002 

-0.197 

12.65 

13.62 

0.0009 

0.0006 
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An initial analysis of yield versus all monthly values of rainfall and temperature revealed quite 

persistent seasonal effects. A calibration model using the monthly data was derived and verified 

poorly. The seasonal climate data, derived from the patterns apparent in the preliminary analysis, 

gave a good result Correlations for the verification and calibration periods are given in Table 5.1.3 

as is the F=4 model using all of the data. The result was highly significant with a high correlation 

coefficient for the verification period. The two predictors, winter rainfall and spring temperature 

are also highly significant. Both show a negative relationship with yield. With a high proportion 

of the crop being threshed in Canterbury it would be expected that this result would be strongly 

biased towards Canterbury conditions. Analysis of the Canterbury data confmns this. 

Climate data were taken from Christchurch and Lincoln climate stations for an analysis of 

Canterbury yield. Rainfall data for Christchurch were taken from the homogeneous rainfall series 

(fhompson, 1984). Lincoln temperature was used as it was adjusted to a more exposed site, being 
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more representative of field conditions. The result, given in Table 5.1.4, is the same as for New 

Zealand yield. 

District 

Canterbury 

Otago 

Southland 

Variable 

Intercept 
WRAIN 
(Jun-Sep) 
SP1EMP 
(Sep-Dec) 

Intercept 
SUfEMP 
(Nov-Ian) 

Intercept 
SPIEMP 

Table 5.1.4 

(a) District wheat yields versus seasonal climate data; 
Correlation coefficients from model verification 

Calibration Verification 

0.67 0.54 
p=O.OOOl p=0.0305 

0.46 0.39 
p=0.OO81 p=O.1355 

0.55 0.08 
p=O.OOl1 p=O.7811 

B Value F P>F 

(b) Canterbury wheat yield-seasonal climate (F=4) model 
R2=O.39; F=14.65; p=O.OOOl 

3.848 
-0.002 22.96 0.0001 

-0.264 14.84 0.0004 

(c) Otago wheat yield-seasonal climate (F=4) model 
R2=O.20 

2.752 
-0.189 11.21 0.0016 

(d) Southland wheat yield-monthly climate (F=4) model 
R2=O.09 

1.455 
-0.114 4.68 0.0357 

The calibration model, using seasonal climate data verified well with a significant correlation 

between actual and predicted values. The predictors were exactly the same as for the New Zealand 

weighted model and were highly significant. Both the N.Z. weighted yield model and the 

Canterbury result therefore reflect relationships with autumn sown wheat. Claridges (1972) 

review of climatic influences on yield in New Zealand highlights the same climatic phenomena as 

deduced from this analysis. Winter rainfall appears to be a major limiting factor to autumn sown 

wheat and is possibly related to leaching of nitrates as earlier mentioned. Wheat tends to be grown 

on the heavier soils in Canterbury and so waterlogging in winter could reduce soil aeration and 

delay warming of the soil in spring and thus check or delay earlier spring growth. Canterbury 
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soils can dry out relatively quickly in spring without regular rainfall and drought conditions can 

develop fairly rapidly. This can be a particular problem in springs with a high frequency of drying 

northwest winds. Once the soil is showing a moisture deficit the rising average temperatures of 

spring and early summer could make the developing plants particularly vulnerable in prolonged 

dry spells. This is reflected in the relationship with spring temperature. A more detailed analysis 

of Canterbury wheat-climate interactions is given in section 7.6. 

Other districts analysed were Otago and Southland. Together with Canterbury they account for 

around 90% of the wheat grown in New Zealand. Seasonal data sets were derived for both on the 

basis of a preliminary analysis of all months. Results are presented in Table 5.1.4. 

Otago district is a transitional climatic wne between Canterbury and Southland. This reflected in 

the rainfall and temperature response areas delineated by Salinger (1981). North Otago tends to be 

more similar to Canterbury, whereas South Otago tends towards Southland. This is also reflected 

in the division between Canterbury and North Otago where wheat is autumn sown and South 

Otago and Southland where the crop is spring sown. Most of the wheat in Otago is grown in 

Waitaki in the north, although in latter years South Otago has also become an important growing 

area in this district. The homogenous rainfall series for Oamaru was used, with temperature data 

from Waimate. This was the closest station with a good temperature record and was considered to 

be more representative than Naseby, the next closest station, which is inland and away from the 

main wheat growing area of North Otago. The lack of representative climate data for South Otago 

was a problem. Ideally separate analyses of North and South Otago should have been made but 

data were not available in sufficient detail over the period of analysis to allow this. 

The result with Otago reflects these problems. A verification carried out using the monthly 

climate data gave a poor result. The seasonal model gave a very good result considering the 

differences within the district, both with climate and sowing time. The only significant predictor 

was summer temperature. North Otago is particularly prone to summer drought so that above 

average temperature conditions over this period could be quite limiting to yield. 

Invercargill and Gore were the representative climate stations for rainfall and temperature in 

Southland. The monthly model verified poorly and the seasonal calibration model failed to 

produce any significant predictors, so no verification was attempted. This suggests that climatic 

conditions are generally not as limiting to yield of wheat in Southland. A model for all years 

using the seasonal data showed spring temperature to be the only significant predictor, showing a 

negative relationship with yield. Temperatures can be limiting in some years, but obviously with 

not as much frequency as drier and warmer districts. 
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5.1.4 Summary 

A dominant feature with all analyses was the negative relationship with spring and summer 

temperatures. This appeared to be a characteristic with both autumn and spring sown wheat. The 

two national yield models are to a degree complimentary. The first appeared to characterise 

dominant crop-climate relationships with all districts except Canterbury and Taranaki. This 

provides a useful gauge of climatic relationships with spring sown wheat. However the result with 

Southland suggests that temperatures tend to be more limiting in the warmer districts. and where 

there is greater potential for drought in spring and summer. The result with Otago also highlighted 

the difficulty in dealing with districts that are spatially variable in climate and·sowing time. 

Applying the P.C.A. approach allowed for better representation of spatial variations in climate but 

lack of reliable records in key areas was a problem. There was a further advantage in applying 

P.C.A. The margin of error in the yield data from lesser growing districts will be relatively greater 

than in larger districts. given the same method of data collection. Exploring spatial patterns with 

P .C.A. may facilitate the separation of the signal from the noise of the data. which appears to have 

at least partially occurred with the P.C.l model. 

The weighted model reflected the bias towards Canterbury as the principal wheat growing district. 

With the result being repeated in the Canterbury model. the latter provides a good indicator of 

national crop-climate relationships. It also reflects relationships with autumn sown wheat in this 

district 

The failure of the monthly calibration models to verify well in all cases and ~e general success of 

the seasonal models is worth noting. This suggests a strong seasonal interaction with yield. 

Persistence of above average winter rainfall in Canterbury or warm dry spring and summer 

conditions in all districts seems to have a more significant impact than for example a wetter than 

average July in a period of average winter rainfall. 

5.2 Oats 

5.2.1 Oat-climate relationships 

Oats are a widely grown crop. often being grown in areas that are marginal in tenns of climate 

according to Claridge (1972). This was attributed to the historical tendency to consume the crop 

on the farm where it was grown. particularly as feed for horses up until the early 20th century. 

Generally they are less climatically adaptable than wheat or barley. with highest yields being 

obtained in regions where the climate is cool and moist 

Moisture 

The moisture demand of oats. to produce a given unit of dry matter. is higher than that of any other 

cereal except rice (Coffman. 1961). Best results. with irrigation. are achieved over the period from 
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the 5-leaf stage to flowering (Coffman, 1961). High soil water contents before emergence can 

reduce yield. The same can occur after the blossom stage. An early study by Van der Paauw 

(1949) highlighted the importance of moisture in the growth and development of oats. Lack of 

moisture at the time of panicle production was found to reduce grain yield. Drought conditions at 

later developmental stages also had detrimental effects on yield through reduced weight of 

individual grains. If a period of moisture deficit was associated with warmer temperatures then it 

appeared that the drought stress was greater. 

Temperature 

Coffman and Frey (1961) state that there are repeated references in the literature to the preference 

for a cool climate for the best production. Cold soils are preferred for spring sown oats and cool to 

cold soils for an autumn sown crop. The periods when cool temperatures are most desirable are 

germination and the period of greatest growth which covers the shooting, booting and heading 

stages (Coffman and Frey, 1961). 

This brief review highlights both the temperature and moisture sensitivity of oats. The most 

sensitive developmental stages, to both rainfall and temperature, appear to be the same. Cool, dry 

conditions are preferred for germination and in the period of greatest growth, from shooting to 

heading, cool and moist conditions are required. This period corresponds to late spring and early 

summer, when the potential for agriCUltural drought is high. 

5.2.2 Oats in New Zealand 

The best milling oats in New Zealand are grown in Southland which provides the ideal conditions 

of fairly fertile soils, ample moisture and a cool climate (Claridge, 1972). Parts of Otago and 

Canterbury also provide similar conditions, generally on the heavier soils and nearer the foothills 

where rainfall is higher. 

Varieties for milling tend to be spring sown in Southland, where there is sufficient moisture for the 

crop. In Canterbury oats for milling tend to be autumn sown so that plants can benefit from the 

early spring growth flush when soil moisture is less likely to be in deficit. 

Maunder's (1965) analysis of oats suggested that the following climatic factors were critical for 

above average yields:-

1. A wet, cloudy November 

2. A dry, cool December 

3. A warm January 
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Wet, cool conditions in late spring and early summer are important, as suggested by both the 

literature and Maunder's (1965) analysis. Closer to harvest warm and quite probably dry 

conditions seem to be preferred. Maunder (1965) noted that these are desirable conditions in 

warm temperate areas such as New Zealand, but also observed that in cooler climates warmer than 

average conditions appear to be beneficial. 

As with wheat the principal growing districts in New Zealand are Canterbury, Otago and 

Southland. The spatial divisions for autumn and spring sown oats appear to similar to those for 

wheat. 

5.2.3 Oats-climate analyses : results 

A graph of national oat yields for 1928-1983 and fitted quadratic trend is given as Fig. 5.2.1. 

p.e.A. multiple regression analysis 

Table 5.2.1a shows the variance accounted for by the first three P.Cs. from the P.C.A. of 

standardised oat yield residuals, temperature and rainfall. As with wheat the result suggests a 

greater spatial variability across the country with yield and rainfall, than with temperature. 

The first yield eigenvector had positive loadings on all districts, with South Auckland and to a 

lesser degree Hawkes Bay appearing slightly anomalous. No clear geographic pattern was 

apparent ~m the other two yield eigenvectors. 

The climate stations used for the analysis were the same as for wheat, although New Plymouth 

was excluded because of a broken yield record for the Taranaki district. Results of P.C.A. of 

climate data were essentially the same and reference can be made to section 5.1.3. 

P.C.A. multiple regression analysis of oats was done initially with a backward stepwise routine. A 

second run with the maximum R2 routine gave the same result as the backward procedure for 

YIELD 1 and YIELD3 and a very similar result for YIELD2. Verification results from the 

backward stepwise regression are presented in Table 5.2.1b. The best of the yield models was 

YIELD3, although the correlation coefficient was not highly significant. Some individual districts 

calibrated relatively well, but overall the result was poor. Significant anomalies were Otago and 

Southland which are two principal oat growing districts. Because of the uncertain value of the 

result, and generally low significance no further analysis was carried out. 



Fig. 5.2.1 New Zealand oat yield and quadratic trend 1928-1985 
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Variable 

Oat yield 
WRAIN 
SPRAIN 
SURAIN 
W1EMP 
SPTEMP 
SUTEMP 

Table 5.2.1 

(a) Principal component analysis; proportion of variance 
accounted for by the rll'st three P.C.'s 

P.C.l P.C.2 P.C.3 

0.41 0.61 0.73 
0.47 0.58 0.69 
0.37 0.50 0.60 
0.34 0.53 0.64 
0.72 0.85 0.90 
0.75 0.84 0.90 
0.88 0.92 0.95 

(b) Correlation coefficients ftom oat yield model verification 

District Calibration Verification 

South Auckland 0.56 -0.16 
Hawkes Bay 0.67 0.25 
Wellington 0.54 0.30 
Marlborough 0.49 0.26 
Nelson 0.52 -0.07 
Canterbury 0.67 0.35 
Otago 0.50 -0.26 
Southland 0.56 -0.49 
YIELD 1 0.60 0.06 
YIELD2 0.83 -0.33 
YIELD3 0.44 0.26 
Overall 0.56 -0.06 

Weighted and district regression 
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The proportion of oats grown in each district was relatively stable over the period of analysis, so 

that weighting factors averaged over the entire period could be used. These are given in Table 

5.2.2a. As mentioned earlier Canterbury, Otago and Southland dominate as the principal oat 

growing districts. Separate analyses were carried out for these districts. Canterbury is relatively 

less dominant for this crop than for wheat and Southland is relatively more so. This reflects the 

greater suitability of the climate of this latter district for the growing of oats, particularly for 

milling. 

Weighted rainfall and temperature data sets for New Zealand were derived using these average 

factors. Preliminary analysis using monthly data for all years suggested a yield response to 

seasonal conditions, although not as pronounced as with wheat. Most noticeable was a significant 

negative relationship with November and December temperatures. A calibration model was 

developed using derived seasonal climate data. Correlation coefficients for both the calibration 
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and verification data are shown in Table 5.2.2b. The seasonal model verified strongly. A model 

using seasonal climate data for all years is shown in Table 5.2.2c and indicates a highly significant 

negative influence on yield from the mean of November and December temperatures. The result 

was almost exactly the same as that achieved with the monthly data. 

This result reflects the sensitivity of oats to warmer than average temperatures in late spring and 

early summer. Quite probably this is associated with conditions of moisture deficit, as can be 

commonly experienced at this time in many parts of New Zealand, particularly in the drier east 

coast districts. 

District 

Hawkes Bay 
Wellington 
Marlborough 
Canterbury 
Otago 
Southland 

Variable 

Intercept 
SPSU1EMP 
(Nov-Dec) 

Table 5.2.2 

(a) Proportion of oats grown by district: weighting factors 

Period=I928-1984 

0.01 
0.02 
0.01 
0.52 
0.17 
0.27 

(b) N.z. oat yields versus weighted seasonal climate data; 
correlation coefficients from model verification 

Calibration 

0.54 
p=O.OOI 

Verification 

0.63 
p=O.0062 

(c) N.z. oat yield-seasonal climate model 
Mode1R2=O.34 

B value 

1.791 
-0.126 

F P>F 

24.76 0.0001 

The lesser dominance of Canterbury as an oat growing district is reflected in the results for this 

district as shown in Table S.2.3b. Verification was not as good as for the national weighted model, 

but still satisfactory. Models using monthly and seasonal data for all years gave similar results. 

Interesting are the significant negative relationships with winter and early spring rainfall. This is 

contrary to the observation of Claridge (1972) that winter rain is desirable for autumn sown oats, 

which predominate in Canterbury. If it is a true relationship then the explanation may be similar 

to that for autumn sown wheat in Canterbury given in section 5.1.3. It was suggested earlier that 

there is an apparent association between late spring and early summer rainfall and temperatures 
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over the same period. November shows up as a critical moisture sensitive month as is December 

for temperature. This period would generally correspond to the most moisture sensitive 

developmental stages of the plant and the period when the crop is most sensitive to drought, 

particularly if associated with above average temperatures. The result suggests that oats are more 

sensitive to shorter term moisture deficits and periods of above average temperature conditions 

than wheat. 

The Otago seasonal model verified poorly. Results from an analysis of yield versus seasonal 

climate for all years are presented in Table 5.2.3c. 

District 

Canterbury 

Otago 

Southland 

Variable 

Intercept 
WRAIN 
(Jon-Aug) 
SPRAIN 
(Sep-Oct) 
NOVRAIN 
SPTEMP 
(Sep-Oct) 
DEC TEMP 

Intercept 
SPSUTEMP 
(Nov-Dec) 

Intercept 
SUTEMP 
(Dec-Jan) 

Table 5.2.3 

(a) District oat yields versus seasonal climate; 
correlation coefficients from model verification 

Calibration Verification 

0.69 0.45 
p=O.OOOI p=O.0787 

0.55 0.14 
p=O.0013 p=O.61 

0.57 0.28 
p=O.OOO7 p=O.3008 

B value F P>F 

(b) Canterbury oat y'ield versus seasonal climate, F=4, model 
Model R2=0.58; F=I1.57; P>F=O.OOOI 

2.479 
-0.001 6.51 0.0144 

-0.002 11.59 0.0015 

0.004 18.70 0.0001 
-0.114 6.72 0.0130 

-0.070 10.81 0.0021 

(c) Otago oat yield versus seasonal climate, F=4, model 
Model R2=O.16 

1.673 
-0.120 9.06 0.0042 

(d) Southland oat yield versus seasonal climate, F=4, model 
Model R2=O.13 

1.020 
-0.070 7.05 0.0109 
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The only significant predictor was the mean temperature for November and December. Although 

of interest this relationship is not strong enough to be considered as an important relationship over 

the district as a whole. In Otago a greater proportion of oats are grown in the south. The climate 

data used was the same as for wheat, being representative of North Otago. Different climatic 

responses of yield over the district may be the explanation for the poor result, combined with the 

lack of fully representative climate data. 

Southland verified better than Otago, but the result was still not a highly significant one as seen in 

Table 5.2.3d. Spring sowing in Southland is up to a month later than in Canterbury. Some lag in 

development of the Southland crop could be expected. This is reflected in the result which shows 

December and January to be critical temperature sensitive months. This is associated with a 

weaker positive relationship between yield and November to January rainfall. Some years are 

obviously limiting in terms of available moisture over the summer period, but this relationship is 

less pronounced than in the drier districts of Canterbury and North Otago. Interestingly there was 

a negative association with winter and October rainfall In the F=2 model, not presented here. Both 

could be associated with delays in spring sowing time because of either waterlogged soils or wet 

weather delaying cultivation and sowing of the crop. 

5.2.4 Summary 

From the literature it was apparent that oats, although grown widely, generally prefer cooler and 

moister conditions than wheat. This greater climatic sensitivity would make it more difficult to 

quantify relationships over the country as a whole and perhaps explains the lack of success with 

the P.C.A. multiple regression analysis. 

The strong result with the weighted analysis highlights the temperature sensitivity of the crop in 

late spring and early summer, most probably associated with moisture deficit conditions. Analysis 

of the three principal growing districts suggests that this temperature response is graded from 

north to south, at least in the South Island. Canterbury and North Otago are both warmer and drier 

than South Otago and Southland in summer. Although temperature can also be limiting in late 

spring and early summer in Southland, this apparently occurs with less frequency than Canterbury. 

Of interest also is the stronger negative relationship with winter and early spring rainfall in 

Canterbury than Southland. Canterbury is more anomalous in the context of Claridges (1972) 

observation that cooler, moister conditions are preferred over this period. The weaker negative 

association in Southland tends to reinforce this observation, although there may be very wet years 

that lead to delayed sowing and result in lower yields. 
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5.3 Barley 

5.3.1 Barley-climate relationships 

Barley has the widest ecological adaptation of all cereals, with only wheat approaching it in its 

breadth of adaptation (poehlman, 1985). It thrives in cool, relatively dry temperate regions. 

Because the barley plant evolved in marginal winter rainfall areas it completes its life cycle 

rapidly. It is this that gives it such a wide adaptability and enables it to tolerate both hot, dry and 

cool, humid climates. As with wheat and oats, barley is intolerant of hot, humid tropical areas. 

Barley has a lower water requirement and transpiration rate than other cereals (poehlman, 1985) 

and for this reason is often regarded as being a drought resistant crop. Research has shown a 

positive yield response to additional rainfall or to irrigation, suggesting that it is drought escaping 

rather than drought resistant (poehlman, 1985). 

A comprehensive review of environmental influences on the development, growth and yield of 

barley was given by Gallagher et al. (1983). General climatic influences on various growth and 

developmental stages were summarised. The simplified relationships with temperature and 

drought are presented in Table 5.3.1. There is a positive relationship with temperature until the 

end of spike development. At this stage temperature can be limiting, particularly if associated 

with drought conditions. According to Claridge (1972) "warmth and moisture during tillering and 

adequate soil moisture at flowering (usually in December) are the important factors to induce a 

high yield from spring sown barley". Warm temperatures appear to be positively associated with 

early growth, but can reduce production of tillers, ears and grains per ear because of more rapid 

development under such conditions. Drought can apparently be limiting to growth throughout the 

growing season. Higher temperatures can be tolerated nearer to harvest, following spike 

emergence, and can stimulate grain growth (Claridge, 1972). In general higher temperatures have 

two effects in relation to grain growth (Martin, pers. comm.). Higher temperatures increase 

photosynthesis and hence the rate of grain growth, and increase the process of maturation and 

hence reduce the duration of grain growth. Usually the latter outweighs the former. leading to 

reduced yield. 

5.3.2 Barley in New Zealand 

Barley is normally spring sown in New Zealand, with September and October being the main 

months for sowing. Gallagher et al (1983) believed that the timing of spring sowing can have a 

significant effect on final yield. A wet winter in 1974 delayed spring sowing. This was followed 

by a dry November to January period which resulted in below average yields (Logan. 1983). It is 

obviously desirable to have the crop well established before the onset of summer drought 

conditions, weather permitting. 



Table 5.3.1 

Environmental influences on the development, growtb and yield 
of barley. From Gallagber et al (1983) 

(a) Climatic influences on development 

Stage Phase Temperature Drought 

Sowing 
Germination +++ 

Emergence 
Leaf initiation +++ 

Collar initiation 
Ear initiation +++ 

Terminal spikelet 
Ear growth +++ 

Anthesis 
Grain growth +++ + 

End of grain 
growth 

(b) Climatic influences on growth 

Stage Temperature Drought 
(warm) 

PHS 
Respimtion + 
D.M. growth rate 
Leaf appeamnce +++ 
rate 
Leaf expansion 
rate +++ 

area/leaf ++ 
Leaf death rate ++ + 
Root growth rate ++ + 
Tillering rate ++ 

max tiller 
no/plant 

Tiller death rate ++ +++ 
ear no/plant 

Ear growth rate ++ 
grains/ear 

Grain growth rate ++ 
kernel mass 'l 
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The work of Malcolm (1947) showed the months of November and December to be critical 

moisture sensitive months for barley in New Zealand. These results came from a correlation 

analysis of county yields with monthly rainfall and temperature for the years 1924-25 to 1944-45. 

He considered December in particular to be a critical moisture sensitive period with high 

temperatures at this time accentuating the yield depression in years of moisture deficit. This result 

was achieved largely using Canterbury data, and obviously is influenced by the average sowing 

time of the crop. In some areas and years November, rather than December was a more significant 

month in terms of the potential for yield depression. No definite relationships were found for any 

of the North Island districts. 

Maunder's (1965) analysis generally supported the results of Malcolm (1947). Positive climatic 

influences on yield were summarised as follows :-

1. A warm October 

2. A cloudy November 

3. A wet, cool, cloudy December 

4. A cool January 

5. A warm February 

The results of both of these empirical analyses are mostly consistent with the simplified summary 

given by Gallagher et al (1983). The conclusion of Malcolm (1947) was that mean temperatures 

in New Zealand were slightly too high for optimum yields in relation to the prevailing moisture 

conditions. It is presumed that this is a reference to the impact of summer drought at the flowering 

stage. 

5.3.3 Barley-climate analysis: results 

As with wheat and oats, a quadratic trend was fitted to the national and district barley data. 

National yield per hectare and trend for the years 1928-1983 are shown in Fig. 5.3.1 

p.e.A. multiple regression analysis 

The P .C.A. yielded a similar result to wheat and oats in terms of the relative proportions of 

variance accounted for by each of the variables as seen in Table 5.3.2a. Eigenvectors for barley 

and associated climate data are given in Appendix B as an example output. 

The loadings were positive for all districts for the first yield eigenvector. Hawkes Bay, 

Wellington, Marlborough, Nelson and Canterbury had the highest loadings and North Auckland 

and Otago the lowest. This represents a degree of bias towards eastern districts of both islands. 

The second yield eigenvector gave positive loadings to South Auckland, Taranaki, Wellington and 

Southland. 
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Fig. 5.3.1 New Zealand barley yield and quadratic trend 1928-1985 
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Variable 

Yield 
WRAIN 
SPRAIN 
SURAIN 
WTEMP 
SPTEMP 
SU1EMP 

Table 5.3.2 

(a) Principal component analysis; proportion or variance 
accounted by the first three P.C.'s 

P.C.1 P.C.2 P.C.3 

0.38 0.55 0.67 
0.44 0.55 0.65 
0.35 0.49 0.59 
0.33 0.50 0.62 
0.73 0.86 0.89 
0.74 0.83 0.88 
0.88 0.92 0.95 

(b) Correlation coefficients from barley yield model verification 

District Calibration Verification 

North Auckland 0.32 0.21 
South Auckland 0.51 0.33 
Gisbome 0.38 0.42 
Hawkes Bay 0.64 0.36 
Taranaki 0.57 0.36 
Wellington 0.60 0.35 
Marlborough 0.63 0.30 
Nelson 0.71 0.28 
Canterbury 0.73 0.37 
Otago 0.44 0.40 
Southland 0.61 0.25 
YIELD 1 0.76 0.39 
YIELD2 0.72 0.61 
YIELD3 0.36 0.05 
Overall 0.56 0.33 (p=O.OOOl) 

(c) YIELD!, F=4, model 
Model R2.:0.45; F=6.02; p=0.0004 

Variable B value F P>F 

Intercept -O.()()()()3 
SPRAIN 1 -0.280 6.10 0.0182 
SPRAIN2 -0.425 5.81 0.0210 
SURAIN2 -0.538 10.50 0.0025 
SPTEMP1 -0.177 4.07 0.0510 
SU1EMP1 -0.202 5.62 0.0231 

~) YIELD2, F=4, model 
R =0.48; F=8.78; p=O.OOOl 

Variable B value F P>F 

Intercept 0.00006411 
SPRAIN 1 -0.215 8.46 0.0060 
SPTEMP1 0.188 11.69 0.0015 
SU1EMP2 -0.562 5.44 0.0251 
SU1EMP3 -0.735 6.78 0.0131 
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In South Auckland barley has predominantly been grown in the Waikato, with smaller amounts in 

the Bay of Plenty. In Wellington district the Rangitikei and Manawatu are the main barley 

growing areas. The second yield eigenvector therefore predominantly accounts for barley growing 

districts to the west of the axial ranges in the North Island and in the south of the South Island. 

North Auckland stands out as a strong positive anomaly in the third eigenvector. 

The results with the P.C.A. of rainfall and temperature follow similar patterns to those from 

previous analyses. Slight variations occur according to which districts are covered in the analysis. 

Discussion will be restricted to significant predictors from the multiple regression analysis. 

Calibration models for YIELDl and YIELD2 verified very well, particularly for the latter, as 

Table 5.3.2b shows. All districts had satisfactory positive correlations, although none statistically 

significant The overall correlation for the verification period was significant however (p=O.OOOl). 

This is an excellent result considering the wide geographic variation that exists, particular as it 

manifests in terms of yield and rainfall. The important question is, can the spatial variation in yield 

be explained in terms of spatial variation in climate. With wheat there was some success and with 

oats none. With barley it appears that a good degree of explanation is possible. 

Models for YIELDl and YIELD2 ,for all years, are presented in Table 5.3.2c and Table 5.3.2d. 

An immediately apparent inconsistency is the negative response to SPTEMPl with YIELD! and 

the positive response of the same predictor to YIELD2. This provides a key to the interpretation 

of the results. 

As mentioned P.C.A. of yield gave positive loadings to all districts, with some bias towards 

districts east of the axial ranges. YIELD2 was strongly biased to the west of the North Island and 

Southland Intuitively it appears that the different yield responses to temperature may be related to 

geographic differences in rainfall. Rainfall totals, for winter, spring and the year as a whole for all 

stations used in the analysis, are given in Table 5.3.3. Mangonui, in North Auckland, is ignored as 

the yield response in this district was anomalous. Highest rainfall areas are in western districts and 

the south of the South Island. Nelson is transitional between these and the rain shadow areas that 

lie east of the axial ranges. The hypothesis that the different response may be related to spatial 

variations in rainfall and therefore moisture availability is at least partly reinforced by an 

examination of yield relationships with other predictors. 

YIELDl is negatively related to both spring rainfall and temperature. Rainfall, in the sowing 

months of September and October could delay sowing and lead to lower yields. This would be 

more of a problem in higher rainfall areas, particularly where there is also a relatively high winter 

rainfall. Wet winters and springs obviously occur with sufficient frequency in both wetter western 

and southern districts and drier eastern districts to show through in YIELDl. While eastern 
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districts may experience wetter than average years that delay sowing they can also experience 

relatively severe spring and summer moisture deficits. Years when rainfall is limiting to yield 

may be the reason for the negative relationship with temperature in the YIELD1 model. 

Temperature is also limiting in summer, across the country. It is assumed that the negative 

relationship between yield and summer rainfall relates to the months of January and February, 

when the moisture demand is tailing off and dry conditions are preferred for ripening and 

harvesting of the crop. The way in which the seasons were divided for the analysis of grain yields 

(spring, Sep-Nov; summer, Dec-Feb) probably masks out any possible positive response to 

November and December rainfall. These are the moisture sensitive months as identified by 

Malcolm (1947) and relate to the critical moisture sensitive flowering stage of barley. 

YIELD 1 verified less well than YIELD2, partly because it only had a relatively small bias towards 

the drier eastern districts and tended to aggregate relationships over all districts. The spring 

temperature relationship, however, appears to be more related to conditions in the east. 

The relationships in the YIELD2 model are clearer and explain the better verification result This 

can be related to a definite bias towards higher rainfall districts. As with YIELD1, spring rainfall 

is negatively related to yield. Rainfall is more likely to be in excess to requirements in the west 

and south and would probably have a direct impact on sowing time. A positive association with 

spring temperatures suggests that warmer years may be related to lower spring rainfall and thus 

earlier sowing or lead to more rapid warming of the soil and thus allow the crop to take full 

advantage of available soil moisture. It may be a combination of both phenomena, but not 

necessarily in the same growing season. As the growing season progresses and temperatures 

become warmer the potential for drought increases. 

A negative relationship with summer temperature suggests that lack of moisture may be limiting at 

this time, even in the higher rainfall areas. SUIEMP2 is loaded more towards eastern districts and 

SUTEMP3 is loaded towards the North Island, with highest loadings on Hawkes Bay, South 

Auckland and North Auckland. Neither of these patterns directly relates to the YIELD210adings. 

It may reflect an association in years with warmer and possibly drier conditions in the east and 

higher rainfall in the west. This was a dominant pattern in 1988 which generally gave lower 

pressures in the north and higher pressures in the south. This led to wetter, and warmer conditions 

in the north and west of the North Island. A southward shift in the mean latitude of anticyclones 

gave wetter conditions on the west coast of the South Island as well. The net effect on eastern 

districts from Hawkes Bay to North Otago was for warmer and drier conditions. 
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Table 5.3.3 

Seasonal and annual rainfall at selected New Zealand 
climate stations 

Station Winter Spring Annual 
(district) 

Mangonui 471 310 1397 
(Northland) 
Ruakura 361 297 1201 
(South Auckland) 
TeAroha 451 347 1459 
(South Auckland) 
New Plymouth 477 381 1573 
(Taranaki) 
Palmers ton 275 241 995 
North (Wellington) 
Napier 250 158 824 
(Hawkes Bay) 
Masterton 301 228 982 
(Wellington) 
Nelson 265 240 979 
(Nelson) 
Appleby 276 224 955 
(Nelson) 
Blenheim 183 150 642 
(Marlborough) 
Christchurch 191 138 659 
(Canterbury) 
Waimate 139 160 645 
(South Canterbury) 
Oamaru 127 127 549 
(North Otago) 
Alexandra 56 84 343 
(Central Otago) 
Dunedin 234 218 930 
(Otago) 
Invercargill 250 261 1090 
(Southland) 

Weighted and district regression 

There have been some noticeable fluctuations in the proportion of barley threshed by district. The 

proportion threshed in Canterbury has fluctuated from 38% in 1935 to 79% in 1958. Even within 

this district variations have occurred. In earlier years, until the 1940s, barley was almost 

exclusively grown in Ellesmere county. Since then Ashburton has become the dominant growing 

area in Canterbury. Unti11948 only 3%, on average, of the crop was grown in Wellington district, 

but since 1964 has ranged from 12-19%. Otago averaged 25% of the crop from 1928-1937, 

steadily dropped to reach an average of 6% from 1958-1969 then rose to average 10% in the 



64 

1980s. There is no distinctive transition as with wheat, so average weightings were derived for all 

years and are given in Table 5.3.4a. Analysis was carried out on national yield versus weighted 

climate data and for Hawkes Bay, Wellington, Marlborough, Canterbury and Otago districts. 

Methods were the same as for wheat and oats. 

Table 5.3.4 

(a) Proportion of barley grown by district; weighting factors 
period: 1928-1985 

District 

South Auckland 
Hawkes Bay 
Wellington 
Nelson 
Marlborough 
Canterbury 
Otago 
Southland 

Variable 

Intercept 
SPRAIN 
(Aug-Oct) 
SPSURAIN 
(Nov-Dec) 
SURAIN 
(Jan-Feb) 
SPIEMP 
(Sep-Oct) 

Proportion 

0.01 
0.05 
0.09 
0.03 
0.08 
0.60 
0.12 
0.02 

(b) N,Z. barley versus weighted seasonal climate model 
correlation coefficients from model verification 

Calibration 

0.72 
p=O.OOO1 

Verification 

0.45 
p=O.0675 

(c) N.Z. barley' yield; weighted seasonal model 
ModeIR2=O.51; F=I1.94; p=O.OOOI 

B value F P>F 

1.753 
-0.003 27.19 0.0001 

0.003 12.76 0.0008 

-0.002 5.20 0.0272 

-0.128 7.17 0.0102 

The New Zealand yield versus weighted seasonal climate model verified well as seen in Table 

5.3.4b. The significant predictors, using all years in the regression, are very similar to those 

selected in the YIELD1, P.C.A. model as seen in Table 5.3.4c. The notable difference was the 

inclusion of rainfall for the critical moisture sensitive months of November and December. This 

confirms the earlier suspicion that the effect of these months was masked out in the P.C.A. model. 

The model presented here is weighted heavily to the east coast of the South Island. It shows a 

strong negative effect of August to October rainfall on yield This COnflCOlS that the spring rainfall 
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relationship in the YIELDl model reflected both eastern and western district effects. The negative 

association with early spring temperatures affmns that this relationship in the YIELDl model was 

reflecting east coast conditions. It seems that the ideal combination, at least in eastern districts, is 

for cool, dry conditions over the sowing and early developmental period. As before drier 

conditions seem to be preferred nearer to harvest. 

Correlation coefficients from district model verification are presented in Table 5.3.5 and district 

regression models in Table 5.3.6. 

District 

Hawkes Bay 

Wellington 

Marlborough 

Canterbury 

Otago 

Table 5.3.5 
District barley yields versus seasonal climate data 
Correlation coefficients from model verification 

Calibration Verification 

0.55 0.35 
p=O.OOl8 p=O.2041 

0.75 0.06 
p=O.OOOl p=O.8220 

0.59 0.32 
p=O.OOO4 p=O.2278 

0.66 0.62 
p=O.OOOI- ' p=O.Ol04 

0.60 0.48 
p=O.OOO3 p=O.0597 

The Hawkes Bay calibration model verified satisfactorily considering the relatively lower 

proportion of the crop grown in this district and hence the greater potential for error in the data. 

Being in the rain shadow of the axial ranges in the North Island this district is relatively prone to 

summer drought. The negative relationship with November to December temperature may be a 

secondary effect, related to years of fairly persistent moisture deficit There is a weaker negative 

relationship with January rainfall, which came through in the F=2 model, this being consistent 

with the result from the NZ. analysis. 

Wellington district verified poorly. This may be partly due to the relatively wide geographic 

variation within this district, particularly in relation to climatic response areas. It covers both the 

southwest and southeast of the North Island. Obviously there are limitations in choosing a single 

climate station to be representative of the whole district. As before with Wellington, Palmers ton 

North in the west was chosen, this being the region where most of the barley is grown. However 

the significant contribution from the Wairarapa, ideally should not be ignored. For interest a model 

using seasonal climate data is included. Relationships are consistent with previous results and 

reflect yield responses that appear to be relatively universal over all districts. 



Variable 

Intercept 
JANRAIN 
SPSUIEMP 
(Nov-Dec) 

Intercept 
SPRAIN 
(Sep-Nov) 
DECRAIN 
NOV TEMP 

Intercept 
NOVRAIN 
SPSUIEMP 
(Oct-Dec) 

Intercept 
WSPRAIN 
(Aug-Sep) 
SPSURAIN 
(Nov-Dec) 
SURAIN 
(Jan-Feb) 
SEPTEMP 

Intercept 
MAYRAIN 
DECRAIN 
AWTEMP 
(May-Jun) 
JAN TEMP 

Table 5.3.6 Barley: district crop-climate models 

B value F P>F 

(a) Hawkes Bay barley vs seasonal climate (F=4) model 
Model R2=0.19; F=4.79; p=O.OI34 

4.178 
-0.003 3.95 0.0535 
-0.240 7.46 0.0092 

(b) Wellington barley vs seasonal climate (F=4) model 
Model R2=O.31; F=6.28; P>F=O.0013 

2.321 
-0.002 11.04 0.0019 

0.002 6.06 0.0180 
-0.140 6.52 0.0144 

(c)Marlborougb barley vs seasonal climate (F=4) model 
Model R2=O.29; F=9.00; P>F=O.0005 

2.693 
0.004 

-0.199 
6.27 
9.08 

0.0159 
0.0042 

(d) Canterbury barley vs seasonal climate (F=4) model 
Model R2=O.49; F=10.52; p=O.OOOI 

1.352 
-0.003 21.31 0.0001 

0.003 14.13 0.0005 

-0.002 6.04 0.0181 

-0.125 7.28 0.0099 

(e) Otago barle;, vs seasonal climate (F=4) model 
Model R =0.49; F=10.47; p=O.OOOI 

0.676 
0.003 
0.002 
0.160 

-0.137 

5.93 
6.27 
9.50 

16.57 

0.0191 
0.0161 
0.0036 

0.0002 
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Marlborough verified similarly to Hawkes Bay. In this district November is the critical moisture 

sensitive month and temperatures over this period generally appear to be above optimum for the 

prevailing moisture conditions. 

The Canterbury model verified very well. The result closely matches that obtained with the New 

Zealand weighted model. The combination of months is slightly different but both relate to the 

same periods. The relationship with spring rainfall and temperature is strongest in September. 

The result with the monthly data demonstrates this. It confirms the earlier suggestion that 

relatively cool, dry conditions are preferred for spring sowing, particularly in Canterbury. It is 

uncertain whether September rainfall and temperature interact together in their relationship with 

yield. The two are negatively correlated (r=-O.28, p=O.0484), which suggests that the tendency is 

for them not to be associated. If the effect of rainfall is a direct one in terms of delaying sowing 

then whether the rain is from cool, southerly airstreams or warm, moist easterlies which are the 

two dominant sources of rain in Canterbury is not so important. The correlation result suggests 

however that the relationship may be more with southerly conditions. Warmer than average 

weather conditions in Canterbury most frequently occur in spring time with a prevalence of 

unrestricted westerly airflow on to the South Island which can give hot, dry Fohn winds in 

Canterbury. Canterbury climate is reviewed in more detail in section 7.2. 

An examination of correlation coefficients shows that December rainfall has a significantly 

positive relationship with yield and confmns the result that Malcolm (1947) obtained from earlier 

years. It is obviously a persistent and important relationship in Canterbury. December 

temperature is also significantly negatively correlated with yield, and temperature and rainfall 

have a highly significant correlation (r=-O.63, p=O.OOOI). Yield depression can therefore result 

from moisture deficit conditions, potentially compounded by warmer than average temperatures at 

this time. There is a similar association in November, but weaker. As with results from other 

districts drier conditions seem to be preferred after this critical stage. However the monthly 

analysis shows that warmer temperatures are not favourable to yield until February, which is 

usually the month of harvest. 

The Otago result also verified fairly well. This is a good result when it is recalled that this district 

is a climatic transition zone between Canterbury and Southland. Until 1945 Vincent and Lake 

counties in Central Otago were the dominant growing areas in the Otago district. After this period 

Waitaki, in the north, began to dominate more. The former two fall into different rainfall and 

temperature response areas according to Salinger's (1981) classification. Both Central and North 

Otago are regarded as rainfall transition zones. The former is continental in its temperature 

response and the latter can tend towards semi-continental conditions. As with previous analyses 

climate stations representative of North Otago were used. Interestingly there are positive 

associations with both May rainfall and temperature. This may be partly representing conditions 

in Central Otago, if it is assumed that the climatic response in North Otago is at least similar to 



68 

that in Central. In this latter area barley is autumn sown, because of the very dry conditions. A 

positive relationship with May rainfall and temperature is not necessarily contradictory to the 

result with Hawkes Bay. Both Central and North Otago are cooler and drier on average at this 

time than in Hawkes Bay. 

Table 5.3.7 May rainfall and mean temperature 

Station 

Napier 
Oamaru 
Waimate 
Alexandra 

Rain (mm) 
Mean 90 Percentile 
87 176 
44 82 

28 54 

Temperature (. C) 
Mean Average Minimum 
12.0 7.5 

8.8 
6.4 

3.8 
0.9 

Wetter than average conditions in both North and Central Otago are both below the mean for 

Hawkes Bay, as comparison of 90 percentile values from Table 5.3.7 shows. The average daily 

means in Waimate and Alexandra are both similar in magnitude to the average minimum for 

Napier. Warmer, wetter conditions could obviously be an advantage to autumn sown barley in 

Otago, particularly in Central Otago. 

A positive association with December rainfall and a weaker, negative association with November 

to December temperatures are consistent with all previous results with barley, as is the relationship 

with January temperature. 

5.3.4 Summary 

The result with the P.C.A. multiple regression of district barley yields and climate highlights the 

value of this approach. Of the three crops examined barley is the one that gave a yield response 

that matched climatic response area characteristics most closely. This is perhaps a reflection of its 

wider ecological adaptability. The most interesting aspect of the result is the apparent geographic 

differences in response to spring temperature. This tends to be an indirect relationship with 

rainfall response area characteristics. 

The selection of seasons for the P.C.A. was originally made to give consistency in the analysis of 

the three crops. Compiling seasonal data sets can also be a time consuming process, which 

influenced the decision to use a common seasonal climate data set for the P .C.A. of the three grain 

crops. The result with the weighted analysis reveals that there are risks involved in taking this 

approach. 

Although barley is highly adaptable, it is also apparently much more sensitive to shorter term 

variations in climate. This appears to contrast with autumn sown wheat which appeared to be 

more strongly affected by more persistent seasonal variations. The relationship between barley 
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yield and late spring and early summer temperature and rainfall is an important one, and is a 

particularly persistent relationship, from year to year, in Canterbury. 



CHAPTER 6 

Analysis of N .Z. fruit crop-climate interactions 

6.1 Stonefruit: general introduction 
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The gold rush in Central Otago in the mid 19th century led to a recognition of the potential of that 

district for temperate fruit growing, most particularly stonefruit. As with the establishment of all 

such practices some areas proved more suitable than others, with Roxburgh and Alexandra 

establishing as the main centres of fruit production in Central Otago. As can be seen from Table 

6.1.1 in the earlier part of this century Central Otago was the principal growing district for all 

stonefruit in New Zealand, particularly apricots, nectarines and cherries. In latter years North 

Island districts have come to dominate as the main producers of peaches, nectarines and plums, 

particularly Auckland and Hawkes Bay. Over the last two decades plantings of cherries have 

increased in Marlborough to make it the principal growing district for this crop. However Central 

Otago remains the main producing district for apricots, the continental type climate being well 

suited for this crop. Neighbouring Waitaki has in recent years become an important area for 

apricots also. 

A summary of important developmental stages and general relations with climate are given for 

each crop analysed. 

There has been no previous empirical analysis of crop-climate interactions for stonefruit in New 

Zealand and none sourced from overseas, with the exception of almonds (Granger, 1980) which 

are not grown commercially in New Zealand. 

The Orchardist of New Zealand magazine was searched for the years 1963-1982 to give some 

insight into the frequency, and possible impact of drought, hail, frost, above average rain and at 

what stages these events may have critical impacts on stonefruit. Results from this search are 

tabulated and presented in Appendix C for the two principal stonefruit growing districts, Hawkes 

Bay and Central Otago. 

6.2 Peaches and nectarines 

6.2.1 Climate relationships and distribution in N.Z. 

Peaches and nectarines are temperate fruits and will grow in all parts of New Zealand (Jackson, 

1986). However they do best with a hot summer climate and are only moderately winter hardy 

(Westwood, 1978). 
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Table 6.1.1 
Percentage distribution of stonefruit 

District Apricots Cherries Nectarines Peaches Plums 

(a) Percentage of trees by district (1929) 

Auckland 5 24 29 28 
Hawkes Bay 3 7 9 18 15 
Nelson 8 7 9 6 10 
Marlborough 1 1 
Canterbury 6 29 10 6 12 
Otago 77 55 44 38 30 

(b) Percentage area by district (1963) 

Auckland 13 23 25 
Hawkes Bay 6 9 13 41 31 
Nelson 3 2 8 5 
Marlborough 20 2 1 
Canterbury 13 7 8 8 
Otago 80 61 61 19 28 

(c)Percentage area by district (1985) 

Auckland 3 1 20 33 33 
Hawkes Bay 13 6 39 37 30 
Nelson 3 3 3 5 
Marlborough 7 55 4 1 
Canterbury 4 2 8 7 6 
Otago 65 34 20 11 18 

Floral initiation usually begins in mid summer and continues for several weeks. As mentioned 

they tend to prefer moderate winters, and their winter chilling requirement is less than that for 

pipfruit 

Bud burst usually occurs about mid September in New Zealand and is on average three weeks 

before apples (Jackson, 1986). If early flowering occurs there can be the potential for frost 

damage. The trees have no tolerance for water logging at any time of the year. However the 

developing fruit require a regular supply of water, most particularly in the final fruit swell stage. 

Warm, humid conditions can lead to disease problems particularly with bacterial blast, brown rot 

and leaf curl. Near to harvest heavy rainfall can lead to cracking of fruit 

The earliest time of ripening is early summer and the harvest usually continues through until 

March, although the bulk of the crop is usually harvested by the end of February. 

Peaches have traditionally been much more extensively grown in New Zealand than nectarines. In 

1963 nectarines were grown on a total of 100 hectares compared with 1150 ha of peaches. 
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At this time the fonner crop was predominantly grown in Central Otago (61 % of total trees), with 

Hawkes Bay being the main peach growing district (41 % of total trees). While the relative 

distribution of peaches has remained fairly much the same there has been a significant shift in the 

distribution of nectarines. By 1985 Central Otago accounted for only 20% of the nectarine area 

with Hawkes Bay now the principal growing area with 37% of the area in 1985. Time series of 

national yield for peaches and nectarines are given in Figs. 6.2.1 and 6.2.2. It is useful to relate 

infonnation drawn from the 'Orchardist' magazine with these time series. 

In the years that nectarines were a predominantly Central Otago crop it appears that frost posed the 

greatest climatic risk to national yield. There were particularly damaging frosts in the 1968-1969 

season and an even more severe one in the 1970-1971 season. Greater use of overhead sprinklers 

combined with an increase in plantings of nectarines elsewhere have contributed to a lesser impact 

of frost on national yield in more recent years. Another possibility is that there have been fewer 

severe frosts since 1971, which is reinforced by the seasonal summaries. Yields of nectarines 

haven't been as consistently high since the period of 1963-1968, although in more recent years 

similar yields have been obtained. This may have been a period of both favourable climate and 

stable production. Cold, wet conditions at blossom time reduced stonefruit yields in Hawkes Bay 

in 1974-1975, 1976-1977 and 1977-1978. Such conditions appeared to impact on national yield of 

peaches in 1975 and 1978 respectively. 

From the phenology and empirical evidence the sensitive developmental stages and associated 

weather phenomena for peaches and nectarines are summarised below :-

1. They are intolerant of waterlogging at all times. 

2. They are susceptible to frost, which can occur with early flowering or late 

frosts. 

3. Cold, wet weather at blossom and fruit set is undesirable. 

4. They are relatively drought tolerant, but need plenty of water in the final fruit 

swell stage. 

5. Cracking of fruit can be a problem near harvest with too much rainfall. 

6. They prefer hot, dry summers, provided that there is adequate moisture for fruit 

sizing. 
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Fig. 6.2.1 New Zealand peach yield 1963-1981 
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6.2.2 Peaches and nectarines: results 

Yield data for peaches and nectarines are presented graphically in Figs. 6.2.1 and 6.2.2. 

Weighting factors used for the climate data for peaches and nectarines are given in Tables 6.2.1a 

and 6.2.2a respectively. Results from the multiple regression analysis of peaches and nectarines 

are also presented in Tables 6.2.1 and 6.2.2. First glance of the summary of the results shows that 

the significant predictors for the two crops differ. This is most probably a result of varying 

geographical distribution of these crops and hence interactions with different weighted rainfall and 

temperature data. 

Peaches 

Using a forward selection stepwise procedure on all monthly values of rainfall and temperature 

two variables came up as significant predictors of yield. These were Iuly rainfall and April 

temperature, which together gave an R2 of 0.70. The result suggests that above average Iuly 

rainfall is deleterious to yield and that warmer than average April temperatures have a positive 

effect on yield in the following summer. The result with Iuly rainfall is explainable in terms of the 

intolerance of peach trees to water logging. Another possibility is insufficient winter chilling with 

above average rainfall suggesting the possibility of a milder winter although the literature suggests 

that peaches have a low winter chilling requirement. There is also the possib~ty of cooler winters 

resulting from above average rainfall, depending on the prevailing air streams. 

Warmer than average April temperatures may be important for the the promotion of 

photosynthetic activity, and thus assimilation of nutrients, prior to the dormant phase. This would 

prepare the tree well for the coming spring when active growth begins, and a good reserve could 

make the difference between a low and high yield. 

Application of the backward elimination procedure, to a reduced set of predictors gave some 

apparent anomalies. Iuly rainfall and April temperature remain significant predictors. 

Temperatures for all three winter months showed a negative relationship with yield. It is possible 

that as the trees are only moderately winter hardy colder than average winters could be damaging 

to dormant buds. The anomalies are September and October rainfall which show a positive 

relationship with yield, and December temperature which shows a significant negative 

relationship. Expectations would have been for the reverse. September-October covers the 

blossom period so that it would be expected that rainfall at this time would be generally 

undesirable. In early summer warm temperatures would seem necessary for fruit development. 

There is the possibility that this reflects a moisture sensitive stage, which can be made worse by 

warmer than average temperatures. It is a time when there is a high potential for the soil to be in 

moisture deficit, particularly in east coast regions and Central Otago, where production is centred. 



Variable 

Intercept 
JULRAIN 
APR TEMP 

Variable 

Intercept 
JULRAIN 
SEPRAIN 
OCT RAIN 
APR TEMP 
JUNTEMP 
JULTEMP 
AUG TEMP 
DEC TEMP 

Nectarines 

Table 6.2.1 

(a) Peaches; weighting factors for climate data 

District 

Northland 
Auckland 
Waikato 
Bay of Plenty 
Manawatu/faranaki 0.002 
WellingtonIW airarapaO.OO 1 
Poverty Bay 
Hawkes Bay 
Nelson 
Marlborough 
Canterbury 
South Canterbury 0.003 
Oamaru/Dunedin 
Central Otago 

Weighting 

0.005 
0.177 
0.028 
0.016 

0.041 
0.539 
0.052 
0.011 
0.023 

0.002 
0.100 

(b) Multiple regression model for peaches 
(from forward selection and max R2) 
Model R2:0.70; F=18.65; P>F=O.OOOI 

B value 

-3.084 
-0.059 
1.640 

F 

24.12 
13.44 

P>F 

0.0002 
0.0021 

(c) Multiple regression (backward elimination) model 
R2=O.95; F=24.24; P>F=O.OOOI 

B value F P>F 

32.021 
-0.054 35.19 0.0001 
0.053 31.54 0.0002 
0.028 9.88 0.0105 
1.618 37.63 0.0001 

-0.978 10.65 0.0085 
-0.844 7.74 0.0194 
-0.720 5.97 0.0346 
-1.001 13.10 0.0047 

75 

A forward selection regression incorporating all monthly values of rainfall and temperature gave 

only one significant predictor. That was September rainfall, which showed a negative relationship 

with yield. With bud burst normally occurring around mid September it seems probable that 

above average rainfall in this month has a direct effect on blossoming and subsequent fruit set. 
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The later blossoming of nectarines, compared to apricots, and the reduction in relative significance 

of Central Otago as a growing district for these crops would explain the absence of any significant 

relationship with spring tempemtures. 

. Variable 

Intercept 
SEPRAIN 

Variable 

Intercept 
JUNRAIN 
JULRAIN 
SEPRAIN 
OCTRAIN 

Table 6.2.2 

(a) Nectarines; weighting factors for climate data 

District 

Auckland 
Waikato 
Bay of Plenty 
Poverty Bay 
Hawkes Bay 
Nelson 
Marlborough 
Canterbury 
Oamaru/Dunedin 
Central Otago 

Weighting 

0.096 
0.020 
0.020 
0.010 
0.356 
0.043 
0.016 
0.031 
0.001 
0.407 

(b) Forward selection multiple regression model 
Model R2=O.48; 

B value 

12.381 
-0.067 

F 

13.78 

P>F 

0.001 

(c) Backward elimination multiple regression model 
Model R2=O.68; F=7.54; P>F=O.0019 

B value 

12.812 
-0.030 
0.048 

-0.056 
-0.036 

F 

7.51 
6.30 

11.71 
5.25 

P>F 

0.0159 
0.0250 
0.0041 
0.0380 

Application of a backward elimination procedure to a reduced number of predictors gave four 

significant predictors. A negative relationship with October rainfall is consistent with the 

relationship with September rainfall, and the evidence which suggests that wet springs affect 

blossom and fruit set. The other two significant predictors appear anomalous. While a negative 

relationship with June rainfall is consistent with the result for peaches, it is directly contrasted with 

a positive relationship with July minfall. The only possibility, if it is a true effect is the greater 

bias of the weighted climate data towards Central Otago. Central Otago winters are cold and dry 

by Hawkes Bay standards. So a positive anomaly with July rainfall may provide much needed soil 

moisture for the following spring. Too much rain earlier in winter may increase the risk of 
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freezing injury wheras later, when the plants may be more cold hardy, it may boost soil moisture 

for the following spring. One or the other, or both, may be a "black box" statistic. 

6.3 Apricots 

6.3.1 Climate relationships and distribution in N.Z. 

Apricots are temperate fruits with a preference for a mediterranean or continental climate (Jackson, 

1986). Floral initiation occurs in late summer, and where conditions are warm and moist initiation 

is poor. They generally require less winter chilling than the peach but following warm winters in 

California can be subject to bud drop (Westwood, 1978). The buds swell and deharden early, 

making them susceptible to late frosts. Frost free sites are an advantage. In New Zealand the time 

of bud burst is from mid to late August to early September. Dry conditions are preferred at 

blossom-time (Jackson, 1986). It appears that adequate moisture is required for fruit sizing, but 

warm, dry conditions are preferred close to harvest. Rain at this time can lead to fruit cracking, 

and brown rot is a problem with warm, moist conditions. The fruit generally reach maturity from 

mid December to mid January. 

Apricots have a long history as a major crop in Central Otago, probably dating from the mid to late 

19th century. Table 6.3.1a shows the average district weightings over the period of analysis, 

clearly demonstrating the dominance of Central Otago. This has lessened somewhat in recent 

years, with expansion of production into the neighbouring Waitaki Valley. The time series of 

national yield is shown in Fig. 6.3.1. 

The most dramatic feature of this time series is the very low yield in 1971. This is attributable to 

the snow storm on 23 September 1970 and following freezing conditions, as summarised in 

Appendix C. Apart from susceptibility to frost, cold, wet weather at blossom and fruit set and rain 

over the harvest period have led to reduced yields of apricots in Central Otago. 

From all sources of infonnation a summary of sensitive stages and associated weather conditions 

is given below for apricots:-

1. They are susceptible to early spring frosts. 

2. Cool, wet conditions can adversely affect blossom and fruit set 

3. An adequate moisture supply is required for fruit sizing. 

4. Rain close to maturation can cause fruit cracking and lead to brown rot 

problems. 
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Fig. 6.3.1 New Zealand apricot yield 1963-1981 
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6.3.2 Apricots: results 

Results are presented in Table 6.3.1 

11m 

Year 
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The most significant predictor from the forward selection of all monthly values of rainfall and 

temperature was November rainfall, which gave a positive relationship with yield. The next most 

signiffcant predictor was August temperature which was negatively related to yield. This result 

was repeated using a maximum R2 procedure. An F=2 model is also included for discussion. 

This incorporated the above two predictors as well as showing negative relationships with April 

and August rainfall and a positive relationship with May temperature. 

It is possible that rainfall in November is beneficial to early fruit development, although prolonged 

periods of wet, cool weather can delay fruit maturation. This is more likely to be a problem if 

such conditions are persistent over the summer months. With inc~eased use of overhead 

sprinklers for frost protection and irrigation, moisture deficits may cease to be a problem. In fact 

in Central Otago where overhead sprinklers are widely used for frost protection, waterlogging of 

soils ~_as become a limiting factor in more recent years (R. Rowe, pers. comm.). 

Warm temperatures in August may stimulate earlier breaking of dormany, increasing the risk of 

frost damage. Following this rationale cooler temperatures would tend to prolong the dormant 

period, delay flowering and thus reduce the risk: of frost damage. A weaker negative relationship 
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with August rainfall is possibly connected to this temperature interaction. Wetter conditions may 

have a moderating effect on temperature. encouraging early bud break and increasing the risk of 

damage from late frosts. 

There is no apparent explanation of the relationship with April rain and May temperature in the 

literature. At this time soil temperatures are dropping rapidly in Central Otago. as Table 6.3.2 

shows. 

Variable 

Intercept 
NOVRAIN 
AUG TEMP 

Variable 

Intercept 
APR RAIN 
AUGRAIN 
NOVRAIN 
MAY TEMP 
AUG TEMP 

Table 6.3.1 

(a) Apricots: weighting factors for climate data 

District 

Poverty Bay 
Hawkes Bay 
Nelson 
Marlborough 
Canterbury 
Oamaru/Dunedin 
Central Otago 

Weighting 

0.004 
0.069 
0.004 
0.006 
0.038 
0.061 
0.818 

(b) Forward selection and Max R, F=4, model 
R2=O.35; F=4AO; P>F=0.030 

B value 

15.682 
0.089 

-1.250 

F 

5.34 
4.25 

(c) Forward selection, F=2, model 
R2=0.68; F=5.52; P>F=O.0061 

P>F 

0.0346 
0.0558 

B value F P>F 

4.162 
-0.081 
-0.062 
0.122 
2.079 

-1.229 

5A5 
3.89 

12.03 
11.78 
5.86 

0.0363 
0.0702 
0.0042 
0.0045 
0.0309 

Table 6.3.2 Average ground temperature (10cm) at Alexandra 
Month 
Temp. 

Jan Feb Mar Apr May Jon JuI Aug Sep Oct Nov Dec 
16.4 15.4 13.2 9.0 4.8 1.9 1.3 2.6 5.9 9.7 13.0 15.6 

At a time when temperatures are generally falling rainfall would tend to have an overall cooling 

effect. Soil heat capacity and conductivity would be increased with more rainfall, but more latent 



80 

energy exchange would be required for soil wanning to occur. Any acceleration of the drop in soil 

temperature would then have a net effect in reducing active photosynthesis and promoting the 

onset of dormancy. This would reduce the potential store of nutrients for the dormant phase and 

the following spring when active growth begins again. The end result could be reduced yields as 

the tree would have to work harder to satisfy the demands of the developing crop. A positive 

association with May temperatures may be related to the risk of early winter frost damage. It has 

been pointed out (R. Rowe, pers. comm.) that Central Otago fruit growers often employ frost 

protection at this time in the belief that early winter frosts can damage plant tissues which can lead 

to problems with disease in the following spring. 

Although not presented in Table 6.3.1 results from a preliminary investigation using a backward 

elimination procedure gave a positive association between September and October temperatures 

and yield. This is the period when frosts can be particularly damaging so such a relationship is not 

surprising. Wann temperatures at this time would also encourage bee activity for pollination, raise 

soil temperatures more quickly and thus boost photosynthetic activity. A negative association 

with January temperatures, from this same analysis, defies explanation as this is the time when 

wann, dry conditions are generally desirable for fruit maturation. 

6.4 Cherries 

6.4.1 Climate relationships and distribution in N.Z. 

Cherries fruit well in cooler climates than are tolerated by peaches or apricots (Westwood, 1978). 

In general the most desirable climate is one with good winter rains followed by dry, cool summers. 

Cherries are not successful in wann, humid areas. 

Floral initiation usually occurs after cropping, in January. Cherries need more winter chilling than 

peaches or nectarines, so require fairly cold winters. Bud burst is the latest of the stonefruit, in late 

September to mid October. At blossom time rain can be a problem, affecting fruit set and 

increasing the chances of disease. Lack of water is generally not a problem as cropping is usually 

over by the beginning of summer. Rain close to, and at harvest is highly undesirable as spoiling of 

fruit can result 

With their winter chilling requirement and the desirability of relatively low rainfall, particularly in 

spring and summer, cherries are predominantly grown in Central Otago and Marlborough and to a 

lesser degree in Canterbury and Hawkes Bay. The latter district would be approaching the limits 

in terms of suitable climate. Weighting values are given in Table 6.4.1a and show the dominance 

of Marlborough and Central Otago. Searching the Orchardist of New Zealand gave the general 

impression that cold, wet weather at blossom time and rain at harvest are the principal climatic 

factors limiting to yield of cherries in New Zealand. The time series of yield is shown in Fig. 

6.4.1. Reduced yield apparently resulting from wet blossom or harvest conditions have occurred 
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in the 1968-1969, 1971-1972, 1976-1977 and 1979-1980 growing seasons. Important climatic 

factors limitiog to production" are summarised as follows :-

1. Insufficient winter chilling 

2. Rainfall at blossom time Qate September to mid October) 

3. Rainfall near to or at harvest 

Fig. 6.4.1 New Zeeland cherry yield 1963-1981 

11m) W72 1174 

Year 

6.4.2 Cherries: results 

Initial analysis was carried out using all monthly values of rainfall and temperature in a forward 

selection procedure. Only two predictors were significant at the 5% level, as shown by the result 

in Table 6.4.1b. These were October rainfall and December rainfall which both gave a negative 

relationship with yield. October rainfall on its own accounted for 37% of the variance. 

Analysis with other multiple regression procedures, gave the same result. The consistency of the 

result suggests that it has some validity. This is reinforced by making reference to section 6.4.1. 

RainfatI at blossom time and at harvest both came through as potentially strongly limiting to yield 

in New Zealand. This is quite an encouraging result. 



Variable 

Intercept 
OCTRAIN 
DECRAIN 

Variable 

Intercept 
AUGRAIN 
OCT RAIN 
DECRAIN 
APR'IEMP 

Table 6.4.1 

(a) Cherries; weighting factors for climate data 

District 

Waikato 
Poverty Bay 
Hawkes Bay 
Nelson 
Marlborough 
Canterbury 
Oamaru/Dunedin 
Central Otago 

Weighting 

0.003 
0.004 
0.081 
0.011 
0.400 
0.026 
0.063 
0.412 

(b) Forward selection and backward elimination, F=4, model 
R2=O.58; F=11.25; P>F=O.OOO9 

B value F P>F 

7.593 
-0.024 12.64 0.0026 
-0.021 8.19 0.0133 

(c) F=2 model 
R2=0.73; F=9.66; P>F=O.OOO6 

B value F P>F 

12.490 
-0.012 3.28 0.0915 
-0.020 11.05 0.0050 
-0.023 12.68 0.0031 
-0.349 4.07 0.0634 
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A look at predictors that are at least 10% significant gives two additional predictors and an 

R2=O.73. These are August rainfall and April temperatures, both negatively related to yield. This 

result was repeated using several different regression procedures and again suggests some 

biological connection. However this result is treated with more caution because of its lower 

statistical significance and the lack of supporting evidence from the literature. With cropping 

finished, usually by early January, cherry trees have ample time to recover and build reserves 

before the dormant phase, for the next spring. A negative relationship with April temperatures 

suggests that by this time the tree may have built up sufficient reserves and be ready to enter the 

dormant phase. This would be most likely to occur in this month in Central Otago, where 

temperatures at this time are colder than any other cherry growing district. With cherries having a 

higher chilling requirement than peaches, winter chilling may possibly be a problem in warmer 

districts such as Marlborough and Hawkes Bay. The chilling period may be longer in these 

districts to satisfy the chilling requirement. A negative relationship with April temperatures may 

relate to years when this requirement is satisfied to a greater degree and conversely relate to years 
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when wanner then average Aprils effectively shorten the chilling period, particularly if followed 

by mild winters. 

There is no immediately apparent explanation for a negative relationship with August rainfall. 

One possibility is a moderating effect on temperature, before the chilling requirement has been 

fully met There is no significant correlation between rainfall and temperature for this month, with 

the weighted data set, which tends to negate this as a possibility. If anything a positive 

relationship might have been expected, with above average rainfall at this time providing a boost 

to soil moisture prior to the spring growth flush. 

6.5 Plums 

6.5.1 Climate relationships and distribution in N.Z. 

There are two main species of plum that are grown commercially. These are European and 

Japanese plums. In New Zealand Japanese plums are predominantly grown, and are grown in all 

districts. European plums are generally not grown in the warmer districts of New Zealand, the 

main area of production for these being Central Otago. Unfortunately the yield data available is 

for all plums combined, so it is not possible to look at these two species separately. However with 

Japanese plums being by far the dominant crop the results can be taken as more of a reflection of 

relationships with this species. The North Island is the main centre of production, accounting for 

70% of the crop on average, over the period of record. Hawkes Bay is the principal growing 

district, followed by Auckland and Central Otago. This is shown by the weighting factors in Table 

6.5.1a. 

In general warm, dry climates are the most suitable for plum production (Westwood, 1978). 

Flower initiation usually occurs in late summer. The two species have different winter chilling 

requirements. Japanese plums have a lower requirement for winter chilling than European plums. 

This accounts for the differing geographical distribution in New Zealand, and in particular the 

concentration of European plums in Central Otago. Most Japanese plum varieties flower in early 

September in New Zealand, which can make them subject to spring frosts. Other varieties, plus 

the majority of the European varieties flower in mid to late September (Jackson, 1986). Maturity 

is usually reached in the months of December to January. In humid conditions brown rot can be a 

problem, particularly at blossom and maturity. This is most likely to occur in Auckland and other 

warmer, wetter parts of New Zealand. 

The Orchardist of New Zealand didn't yield a lot of direct references to plums. However there 

were enough such references, combined with general information on stonefruit to deduce some 

possible climatic causes of lower than average yields. The severe frost in Central Otago in the 

1970-1971 season is a possible cause of low yield in that year, although without district yield data 

this cannot be verified. Two other low yielding years can be attributed to cold, wet spring 
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conditions having significant impacts on fruit set. These are the seasons 1974-1975 and 1977-

1978 and correspond to yield depressions in the time series of plum yield shown in Fig. 6.5.1. 

Fig. 6.5.1 New Zealand plum yield 1963-1981 
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6.5.2 Plums: results 

The only significant predictor using the forward selection procedure was May temperature which 

was positively related to yield. Application of the backward elimination procedure to a reduced 

number of variables gave all as "being significant, until it was reduced to about five variables, by 

selection of the most significant, from which May temperature emerged as the only significant 

predictor. 

Application of stricter selection criteria to a model beginning with ten predictors gave significant 

five and six predictor models. Very similar results were achieved using a maximum R2 procedure. 

Results of these analyses are presented in Table 6.5.1. 

The result with May temperature is more significant than any other, but has no apparent 

explanation. The data is biased towards Japanese plums which have a lower chilling requirement. 

Without knowing the average time of autumn leaf fall in each of the three main districts it is 

difficult to know whether this result might relate to winter storage, photosynthetic activity , or 

susceptibility to early frost. The autumn transition is earlier and more pronounced in Central 

Otago. However the climate data is weighted more towards the warm temperate areas of Hawkes 



Variable 

Intercept 
MAY'IEMP 

Variable 

Intercept 
JANRAIN 
APR RAIN 
NOVRAIN 
APR'IEMP 
MAY'IEMP 
NOV'IEMP 

Table 6.5.1 

(a) Plums; weighting factors for climate data 

District 

Northland 
Auckland 
Waikato 
Bay of Plenty 
Manawatu!Taranaki 
Wairarapa 
Poverty Bay 
Hawkes Bay 
Nelson 
Marlborough 
Canterbury 
South Canterbury 
Oamaru/Dunedin 
Central Otago 

(b) All methods, F::4, model 
R2=O.22 

B value F 

-0.208 
1.001 4.69 

c) Max R2, 6 variable, F=4, model 
R2=0.79; F=7.73; P>F=O.0014 

B value F 

-17.370 
-0.049 17.56 
-0.084 28.44 
-0.059 15.07 
2.349 20.99 
2.169 32.45 

-1.152 8.65 

Weighting 

P>F 

0.002 
0.210 
0.016 
0.008 
0.003 
0.001 
0.012 
0.447 
0.031 
0.014 
0.039 
0.001 
0.002 
0.216 

0.0448 

P>F 

0.0013 
0.0002 
0.0022 
0.0006 
0.0001 
0.0123 
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Bay and Auckland. so that late autumn photosynthetic activity is not improbable. although likely 

to be minimal. Both of these explanations are highly speculative. 

The favourability of a warm autumn is reinforced by a positive relationship with April 

temperature. In this month there is a greater chance of enhanced photosynthetic activity. which 

would be favourable to yield in the following growing season. A negative relationship with April 

rainfall suggests that above average rainfall at this time may have a negative feedback effect. 

possibly lowering soil temperatures. reducing soil aeration and thus slowing down metabolic 

activity. A negative relationship with August temperature is possibly connected to the early 

flowering habit of Japanese plums. Cooler August temperatures could delay flowering and reduce 
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susceptibilty to late frost. A negative relationship with November rainfall and temperature in the 

six variable model is plausible if warm, humid conditions occur relativley frequently at this time, 

which is close to maturity. As mentioned in the brief review such conditions can lead to problems 

with brown rot. According to Westwood (1978) brown rot is mostly a mature fruit problem with 

Japanese plums. Conditions conducive to this disease are most likely to prevail in the Auckland 

district, of the three principal growing districts. A negative relationship with January rainfall may 

have a similar explanation, as well as perhaps generally interfering with harvesting of the crop. 

6.6 Stonefruit: summary 

The lack of analysis at the district level proved to be a major limitation in the interpretation of the 

results with stonefruit. The shortness of the time series also precluded any statistical verification as 

carried out with the grain crops. Despite these obvious limitations and some apparently 

anomalous results, overall it was a relatively encouraging exercise. The information drawn from 

the "Orchardist" magazine reinforced that drawn from the reviews of Westwood (1978) and 

Jackson (1986). 

While it was not always easy to deduce biological connections in the analyses, knowledge of crop 

distribution facilitated the process. Differences in distribution gives a probable explanation for the 

different relationships for peaches and nectarines, although some, such as the anomalous results 

identified for peaches, are beyond reasonable explanation. However the statistical significance of 

the F=4 predictors for both crops gives some encouragement, despite the obvious criticism that 

they are only black J>ox statistics. Analysis of district data would provide some form of 

verification for these results. 

The concentration of apricots in Central Otago provided some hope for a good result with this 

crop. but in the context of other results was not as good as expected. The negative relationship 

with August temperature did suggest a connection with susceptibility to late winter or early spring 

frosts. From the literature this is a dominant limiting factor to apricot yield. 

The most easily explainable result was that with cherries. The two most significant predictors of 

yield were October and December rainfall. Negative relationships with both highlighted the 

susceptibility of this crop to rainfall damage at blossom and harvest time. Such conditions can be 

a problem in both Marlborough and Central Otago, the two principal cherry growing districts. 

Plums gave the least satisfactory result, with the relationship with May temperature. However 

further analysis revealed some relationships with possible biological connections. Autumn 

temperatures are apparently favourable to yield. Cool, dry conditions appear to be preferred close 

to the beginning of the harvest period, near Christmas. Rainfall later in the harvest period, in 

January, also appears to be detrimental. 
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In summary the results with stonefruit offer some encouragement. More detailed analysis is 

required. This should preferably be done with both district data and longer time series. The 

former is more attainable than the latter. 

6.7 Pipfruit: general introduction 

Pipfruit, in particular apples, were the principal fruit crop grown in New Zealand until the 

development of the kiwifruit industry in the 1970s. They still remain, along with kiwifruit a major 

export earner. 

Apples and pears, along with other temperate fruits were introduced with the European settlers in 

the early 19th century. The N.Z. fruit growing industry was not formally established until the 

early 20th century. However it is probable that apples and pears were widely distributed around 

the country by the early settlers. Canterbury was one of the first districts to organise its apple 

growing activities, being the first to export fruit, to Chile in 1888 and the U.K. in the 1890s. The 

potential of Hawkes Bay as an apple growing region was recognised in the 1890s. In Central 

Otago apple orchards were probably established in the wake of the gold rush in the mid to late 

19th century. The other principal apple growing regions of Auckland and Nelson became more 

established in the early 20th century. In Auckand an influx of Yugoslavs boosted fruit growing. 

In Nelson development began in earnest in 1911 under a "grow apples for export" slogan. As can 

be seen in Table 6.7.1 Nelson quickly established as the principal apple growing region, largely as 

a result of this entrepreneurial endeavour. It remained the principal growing district until the mid 

1970s when Hawkes Bay progressively began to dominate as an apple growing districL These two 

districts collectively account for 70% of the total area of apples and 65% of pears at presenL 

6.8 Apples 

6.S.1 Apple-climate relationships 

The domestic apple is one of the hardiest, and consequently one of the most widely grown of the 

temperate zone fruits (Westwood, 1978). He states that the great genetic diversity of the apple 

makes it difficult to make general statements about specific climatic requirements. However it is 

possible to make some general comments about general climatic requirements at different 

developmental stages of the fruit. 

Floral initiation occurs in the early summer for the next years crop. A warm autumn generally 

favours the production of fruit buds (Landsberg, 1977) until the onset of dormancy. 
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Table 6.7.1 

Distribution of pipfruit in New Zealand 

District Percentage Percentage area 
trees 
1929 1963 1985 

(a) Apples 

Auckland 18 15 12 
Hawkes Bay 11 18 39 
Nelson 38 42 29 
Marlborpugh 3 5 3 
Canterbury 11 8 5 
Otago 14 9 6 

(b) Pears 

Auckland 17 7 14 
Hawkes Bay 27 36 43 
Nelson 28 34 22 
Marlborough 1 1 
Canterbury 10 7 4 
Otago 14 12 9 

Generally apples need a cool winter, to satisfy the winter chilling requirements of the dormant 

buds. Extended flowering normally results where winters are mild (Jackson, 1986). Temperature 

is considered to be the most important weather factor in winter and spring (Landsberg, 1979)~ It 

governs the breaking of dormancy and subsequently influences the rate of bud growth to full 

bloom. For successful pollination warmer temperatures and absence of wind and rain are 

considered crucial by Landsberg (1977). Hot dry conditions at fruit set can increase fruit drop, but 

low temperatures can delay fruit development (Landsberg, 1979). Lack of water through the fruit 

development period can reduce the crop, particularly in its effect on fruit size. 

Two related studies carried out in England revealed some interesting crop-climate interactions. 

Beattie and Folley (1978) examined long term variations in the English apple crop. Their 

regression analysis showed a significant negative relationship between mean maximum 

temperatures in the pre-blossom period, and yield. They postulated that hormonal confusion may 

result from warmer winters with the trees needing a decisive dormancy break between winter and 

spring. The other possibility they proposed was that warmer winters may lead to a greater risk of 

frost damage, but they could fmd no association between the two. For some cultivars they also 

found a positive relationship between early summer temperature and yield. Jackson and Hamer 

(1980) and Jackson et al (1983) carried the analysis further using dates of full bloom. They 

considered that high pre blossom temperatures adversely affected yield through adverse effects on 
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flower quality and fruit setting potential. High yields were associated with high temperatures 

immediately after full bloom, which are considered favourable for rapid completion of pollen tube 

growth. 

6.8.2 Apples in New Zealand 

In New Zealand bud burst normally occurs in mid to late September with the main flowering 

period around mid October. The crop reaches maturity from January through to April-May, 

depending on the cultivar (Jackson, 1986). 

John Wilton (pers. comm.), MAP deciduous fruit expert, has reviewed what he considers to be the 

principal climatic factors limiting to production of apples. These are summarised below. 

Frosts below -3.5· C in late September can be damaging, this is 2-4 weeks prior to blossom. At 

blossom, around mid October, frosts below -2· C can be damaging and from the end of October 

onwards, frosts below -1 ·C can be damaging. Hail storms can be damaging to the crop at any 

time from blossom to harvest All of the principal growing districts have suffered hail damage at 

some time or another, with some particularly extensive and severe ones in Hawkes Bay and 

Nelson. The latter district was classified as a climatic disaster area as a result of hail damage in 

1977 (Appendix C). 

Prolonged periods of wet weather can favour the development of Black Spot and Glomerella. 

Fruit russet problems appear to be in part related to heavy rain in the post blossom period. It was 

concluded that rainfall in the October-December and February-April periods in excess of 250 mm 

could be damaging to yield. Over the first period this is critical for fruit fmish and disease, in the 

latter for harvest and internal quality. In the former it is considered desirable for this rain to fall on 

less than 12 days per month. In the latter period it is desirable for the rain to fallon less than 10 

days per month. In April to May less than 200 mm on less than 25 days is critical for tree health. 

Temperatures in New Zealand fall within the desired range for apples. Temperatures over the 6 

weeks after bloom (cell division period) are possibly critical to ultimate fruit size. Fruit size is 

generally lower in Central Otago which may be temperature related. Daily maximums greater 

than 32· C near to harvest can cause sunburn problems. Cool night temperatures prior to harvest 

are important for colour, particularly with the red varieties. 

In New Zealand Maunder (1965) used seasonal rainfall, temperature and sunshine data to examine 

apple yield/tree relationships with climate. Apple yield data used were mean yields over all 

varieties. 
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From his multiple regression he considered the following climatic factors to have significant 

positive influences on yield per tree :-

1. A dry autumn. 

2. A dry, warm, cloudy winter 

3. A dry, cloudy spring 

4. A wet, warm summer 

Some of these appear to be inconsistent with the litemture, although district responses can vary. 

However warm winters appear to be undesirable as shown by the research in England. Wet, warm 

summers may potentially promote disease and as Wilton (pers. comm.) noted minfall in excess of 

250 mm over the summer period could be damaging to yield. Maunder (1965) acknowledged the 

relatively incomplete nature of his analysis and also the limitations of the data base. Perhaps part 

of his lack of succes could be attributed to the use of seasonal climate data in the analysis. The 

quality and availability of the data hasn't improved significantly since Maunders (1965) study. It 

was also recognised that extreme short term events such as frost, hail and storms can have 

significant effects on yield although no assessment was made of this. 

A review of the "Orchardist" magazine for the two principal growing districts, Hawkes Bay and 

Nelson, (Appendix C), highlights the potential impact of short term extremes. Hail appears to be 

more of a problem in Nelson, most dmmatica11y in the 1976-1977 season. Drought also appears to 

be a recurrent phenomenon in Nelson. Cold, wet springs can adversely affect yield in both 

districts. Both are subject to non-periodic stonos which have resulted in yield losses. 

" "" 

Figure 6.8.1 shows the time series of yield per tree from 1941-1981. A strong year to year 

fluctuation is evident, demonstrating the biennial bearing behaviour of apples. The 1963-1973 

period is particularly consistent with this. It is much less apparent since then as seen in Figs. 6.8.2 

and 6.8.3. This is perhaps in part related.to increased use of varieties that are less strongly 

biennial bearing and improved management such as more effective thinning in heavy cropping 

years. The important question is, is this year to year fluctuation soley a reflection of biennial 

bearing characteristics, or at least in part related to climate. Beattie and Folley (1978) added a 

biennial bearing factor to their model as a first-order then a second-order lag. Neither proved 

significant and were dropped from their final model. No such factor was incorporated in the 

analysis presented here. Empirical evidence dmwn from the Orchardist magazine shows some 

strong climatic relationships over the 1963-1981 period. Wet springs appear to be related to low 

yielding years in at least two years (1963. 1977). with drought conditions over summer also a 

problem at times in Nelson. The greater use of irrigation has probably reduced the impact of 

drought in more recent years, although drought affected some Nelson orchards as recently as the 

1980-1981 season. In other low yielding years extreme events such as hail, gales, frosts and 

persistent wet periods all appear to have contributed to low yields. 



Fig. 6.8.1 New Zealand apple yield (kg/tree) 1941-1981 
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Fig. 6.8.2 New Zealand apple yield (kg/tree) 1963-1981 
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Fig. 6.8.3 New Zealand apple yield (T /ha) -1963-1981 

8 a I) 

Year 
12 

92 



93 

6.8.3 Apples: results 

Initially an analysis of yield per hectare was carried out for the 1963-1981 period, using weighted 

temperature and rainfall data. Weighting factors are presented in Table 6.8.1. Similar weightings 

were given to Nelson and Hawkes Bay districts. It should be noted that over this period there has 

been a relative decline in area in production in Nelson and a relative increase in Hawkes Bay. 

There was an obvious trend in yield per hectare which was accounted for by the fitting of a 

quadratic trend line, as shown in Fig. 6.8.3. Analysis was carried out on the residuals. It is of 

value to compare yield per tree for the same period, Fig. 6.8.2, which shows no trend. Yield per 

tree has remained relatively unchanged whereas yield per hectare has shown a steady increase. 

This is attributed to the move to more intensive plantings that has taken place over this time, 

which have obviously optimised use of the photosynthetic resource without being detrimental to 

yield per tree. There is also a possible effect of an increased proportion of young trees over recent 

years, which has resulted from a period of relatively constant orchard expansion and the move to 

higher density plantings (Wilton, pers. comm.). This second data set provided a unique 

opportunity to test the accuracy of the trend removal procedure. The fitting of trend lines is a bit 

of a grey area in crop-climate multiple regression analyses. Normally there have been a range of 

factors contributing to trend which are not easy to quantify or assess in terms of their relative 

contribution to trend. 

Table 6.S.1 

Apples; weighting factors for climate data 

District Weighting 
1941-1965 1963-1981 

Northland 0.00 0.004 
Auckland 0.13 0.108 
Waikato 0.02 0.038 
Bay of Plenty 0.00 0.015 
Manawatulfaranaki 0.01 0.011 
Wellington/Wairarapa 0.01 0.008 
Poverty Bay 0.01 0.013 
Hawkes Bay 0.16 0.267 
Nelson 0.41 0.353 
Marlborough 0.04 0.034 
Canterbury 0.08 0.053 
South Canterbury 0.01 0.008 
Oamaru/Dunedin 0.01 0.004 
Central Otago 0.10 0.084 

The results for the analysis of these data are presented in Table 6.8.2. A four predictor model is 

given. Both selected the same four predictors and had similar R2 values. All predictors except for 

February rain in the apple/tree model were at least 5% significant and all conformed to the F=4 

criteria. July temperature came through as the strongest predictor with both, showing a negative 
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relationship with yield. This suggests that this may be an important month in the winter chilling 

of apples, which could lead to poor bud break. Another possibilty is that warmer temperatures at 

this time may lead to the adverse effects on flower quality as suggested by the English research. If 

this is so then this is possibly a Southern Hemisphere verification of their result. 

Table 6.8.2 

Apples (1963-1981) regression model (F=4) max R procedure 

Variable B value F P>F 

(ai Apples/tree (no trend) 
R =0.64; F=6.32; p=O.004 

Intercept 119.315 
FEBRAIN -0.092 4.47 0.0530 
MARRAIN 0.074 8.37 0.0118 
JUNRAIN 0.100 6.80 0.0207 
JUL1EMP -7.165 18.76 0.0007 

(b) Apples/ba (trend removal) 
R2=O.65; F=6.48; p=O.0036 

Intercept 16.458 
FEBRAIN -0.037 6.73 0.0212 
MARRAIN 0.019 5.40 0.0357 
JUNRAIN 0.032 6.54 0.0228 
JUL1EMP -2.364 19.27 0.0006 

The other three predictors have less obvious explanations. A positive relationship with June 

rainfall may be indicative of a need for sufficient winter rainfall to maintain soil moisture levels 

for the following spring and the active growing period. Wilton (pers. comm.) suggested thatJone 

rainfall may generally have a cooling effect,leading to more winter chilling than might otherwise 

be experienced in a drier J one. 

The negative relationship with February rain and positive relationship with March rain is 

interesting in light of Wilton's (pers. comm.) observations. As mentioned earlier, he considered a 

February to April rainfall in excess of 250 mm to be damaging to internal quality, and interfering 

with the harvest. This could in part explain the negative relationship with February rainfall. 

Another possible explanation is that rainfall at this time could tend to promote vegetative growth 

at the expense of fruit development (Wilton, pers. comm.). 

If the summer has been relatively dry then March rainfall could be of some benefit to mid and late 

season varieties. This pattern has been documented for at least one year, 1981, in Nelson. 

Examination of the rainfall data for Appleby (Nelson) and Napier (Hawkes Bay), and the national 

weighted set, showed on average five years out of nineteen with below average summer rainfall 
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(Dec-Feb) followed by a wetter than avemge March. For the weighted rainfall data four out of 

five of these years had positive yield anomalies. Nelson and Hawkes Bay each showed three years 

in which a positive national yield anomaly was associated with a drier than avemge summer period 

and a wetter than average March. There is at least a tendency towards higher yields following 

such a rainfall sequence, which makes such a hypothesis at least plausible. 

Analysis of yield per tree data for the 1941-1965 period allowed for evaluation of regional 

interactions with climate. Contmry to the 1963-1981 period there was an upward trend in yield 

per tree over this earlier period. This can be related to a time of improving management, improved 

varieties, changes in rootstocks and perhaps more effective control of pests and diseases. A linear 

trend proved satisfactory for both the national yield data and the five main districts that were 

examined; Auckland, Hawkes Bay, Nelson, Canterbury and Central Otago. Analysis was carried 

out on the residuals. Table 6.8.3 provides a summary of the five predictor models for New 

Zealand and these five districts. Although not all fit the F=4 statistical selection criterion they are 

included for the sake of comparison. 

Contrary to the result for the 1963-1981 period, a negative relationship with March rainfall 

showed up in the national yield relationship. One or the other may be an anomaly, or related to the 

different average proportional distribution of apples over the two periods and thus different 

weighting factors. Climate data for the earlier period was weighted more to Nelson. Another 
,-" 

possiblity is that in different years the rainfall response has varied. A wet March following a wet 

summer may have detrimental effects on yield, whereas after a dry summer the effect may be the 

opposite. The former scenario may have been a more dominant pattern over this earlier period. 

This hypothesis is supported by a negative relationship between March rainfall and yield in 

Auckland and a positive relationship in Central Otago. The former district has the highest rainfall 

of the five main districts, as seen from Table 6.8.4, and is more likely to have rainfall in excess to 

requirements. The latter is more likely to be in deficit so that rainfall in March, particularly after a 

dry summer could be very beneficial. 

Close examination of the results shows that in all districts rain in the October to November period 

is detrimental to yield. This time corresponds to blossom and early fruit development. After this 

time it appears that lack of summer and autumn minfall is limiting in South Island districts, most 

obviously in Central Otago. In Auckland and Hawkes Bay December rainfall is negatively related 

to yield. 

Hawkes Bay, although drier on avemge than Nelson, generally had more orchards under irrigation 

over this earlier period. In Nelson district the Moutere hills in particular have a history of being 

prone to summer drought. With ample rainfall and more irrigation in Hawkes Bay it appears 

plausible that rainfall would tend to have been more in excess to requirements in Auckland and 

Hawkes Bay than in the less well irrigated Nelson district. 
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Table 6.8.3 

N.Z. and district apple yield models (1941-1965); maxR procedure 

Variable B value F P>F 

(a) New Zealand 
R2=O.607; F=5.87; P>F=0.OOI9 

Intercept -5.272 
MARRAIN -0.005 8.89 0.0077 
OECRAIN -0.007 15.93 0.0008 
NOV TEMP 0.328 5.42 0.0311 
FEB TEMP -0.173 11.69 0.0029 
MAR TEMP 0.275 17.85 0.0005 

(b) Auckland 
R2=O.662; F=7.44; P>F=0.0005 

Intercept 1.109 . 
MAR RAIN -0.002 4.53 0.0466 
MAYRAIN 0.003 5.11 0.0357 
SEPRAIN -0.002 3.84 0.0649 
OCTRAIN -0.006 21.15 0.0002 
OECRAIN -0.004 8.10 0.0103 

(c) Hawkes Bay 
R2=0.780; F=13.48; P>F=O.OOOI 

Intercept 3.615 
NOVRAIN -0.013 10.83 0.0038 
OECRAIN -0.015 - 22.40 0.0001 
APRRAIN -0.009 30.96 0.0001 
JUNTEMP 0.337 4.26 0.0529 
JULTEMP -0.542 12.17 0.0025 

(d) Nelson 
R2=O.631; F=6.51; P>F=O.OOl1 

Intercept -2.241 
SEPRAIN 0.004 5.85 0.0258 
ocrRAIN -0.004 6.06 0.0236 
OECRAIN 0.006 16.23 0.0007 
JANRAIN 0.003 11.28 0.0033 
AUGTEMP 0.212 5.65 0.0281 

(e) Canterbury 
R2=O.563; F=4.90; P>F=O.0048 

Intercept 1.939 
NOV RAIN -0.007 5.09 0.0360 
JANRAIN 0.005 10.35 0.0045 
OCT TEMP 0.086 3.09 0.0948 
NOV TEMP -0.120 3.98 0.0605 
APR TEMP -0.103 3.38 0.0817 

(f) Central Otago 
R2=0.640; F=6.76; P>F=O.OO9 

Intercept -2.631 
JANRAIN 0.004 2.82 0.1097 
MARRAIN 0.009 15.36 0.0009 
APRRAIN 0.009 9.96 0.0052 
JULRAIN 0.014 11.49 0.0031 
NOV TEMP 0.120 9.44 0.0063 



Table 6.8.4 Summer (Dec-Feb), Autumn (Mar-May) and annual 
rainfall 

Dec-Feb Mar-May Annual 

Auckland 238 304 1204 
Hawkes Bay 189 229 839 
Nelson 216 257 979 
Canterbury 152 178 659 
Central Otago 108 95 343 
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An interesting contrast is that between Auckland and Central Otago, the extremes of wet and dry 

climates of the major apple districts. In the former district excess rainfall appears to be limiting to 

yield, whereas in the latter lack of rainfall appears to be a major limiting factor. 

It should also be noted that in the most significant one predictor model, for New Zealand yield, the 

predictor was October rainfall, which was again negatively related to yield. Both Auckand and 

Nelson gave October rainfall as the strongest single predictor, and Hawkes Bay had a negative 

relationship with November rainfall as the most significant single predictor. This strongly 

suggests that October to November is a critical rainfall sensitive period, corresponding to 

flowering and early pollen tube growth. 

A positive relationship with November temperatures is consistent with Wilton's (pers. comm.) 

hypothesis that the post bloom period is a critical temperature sensitive time. He believed that 

temperatures over the cell division period can have a significant effect on ultimate fruit size and 

crop, as also stated by Jackson and Hamer (1980). Central Otago is the only district to show a 

significant positive relationship with November temperature. This suggests that temperatures at 

this time may be potentially most limiting to yield in this district. Again this is borne out by 

Wilton's (pers. comm.) observations that trees in this district generally give a lower fruit size for a 

given crop load, which he believed may be temperature related. This could be compounded by 

moisture deficit, later in the season, as shown by the negative relationship with March rainfall. 

Canterbury district showed quite a different response, with a positive relationship with October 

temperature and a negative one with November temperature. There may possibly be some 

interaction between the two months. Development may be slightly more advanced in Canterbury, 

than Central Otago, perhaps with earlier blossom and the early growth requirements being met 

earlier. Temperatures may be more limiting after this time, particularly if associated with a period 

of moisture deficit A negative relationship with November rainfall suggests this not to be so. 

The strong negative relationship of February temperature with national yield, and strong positive 

relationship with March temperature is not reflected in any of the district analyses. Temperatures 

in February have greater potential to be limiting than in March, being on average a warmer month. 
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March is cooler and more into the main harvest period, so that warmer temperatures may be 

desirable for maturity and harvest of the crop. 

There are two other temperature relationships, for Hawkes Bay and Nelson that didn't come 

through at a national scale. The most significant one is July temperature in Hawkes Bay. This 

relationship came through in the 1963-1981 models. The climate data for this period had a greater 

weighting on Hawkes Bay thaD the earlier period. The suggestion is that this is a district response. 

If the response is related to phenomena suggested from the work of Beattie and Foley (1978) and 

Jackson and Hamer (1980) then it would appear that there is greater potential for this to occur in 

Hawkes Bay than any other district. The positive relationship with June temperature is difficult to 

explain, particular in light of the response to July temperature. It may be an anomalous result, 

which is given some weight by its lower level of significance. 

The positive relationship, in Nelson, with August temperature is also difficult to explain, 

particularly in light of the English work. Again it may be a black box statistic. 

As a final step in the analysis of apple yields, the two separately sourced data sets were combined 

into one, to give national yield/tr~ for the 1941-1981 period. This allowed for model verification. 

Trend over the two periods has previously been discussed. A quadratic trend line was fitted to the 

data as shown in Fig. 6.8.1. Every two years out of three were retained for verification, as with the 

grain crops. This in part compensated for the changing distribution of the crop over this period, 

with the climate data being weighted for the two separate periods. 

Results of the verification of the calibration model are presented in Table 6.8.5, as is the F=4 

model using all of the data. The model verified well considering changes in the distribution of the 

crop and different regional yield responses to climate. It is important to note the relative strength 

of the relationship with July temperatures, which was the single most significant predictor. This 

was shown earlier to be a significant predictor of Hawkes Bay yield, but perhaps is also of some 

importance in other districts. Even if it is a response just in this district it is a very important one 

with this now being the principal apple exporting district in New Zealand. The negative 

relationship with December rainfall was earlier reflected with Auckland and Hawkes Bay yields 

and reinforces the suggestion that rainfall at this time may be excess to needs. Warm March 

temperatures appear to be desirable and may relate to maturing and ripening of the crop. 



Variable 

Intercept 
DEC RAIN 
MAR TEMP 
IULTEMP 

Table 6.8.5 

(a) Verification ofN.Z. apple yield/tree (1941.1981) model 
Correlation coefficients 

Calibration 
0.542 

p=O.OO29 

Verification 
0.278 

p=O.3579 

b) F=4 model, max R procedure 
R2=O.312; F=5.59; P>F=0.0029 

B value 

-3.387 
-0.064 
2.203 

-3.809 

F 

4.04 
6.91 

10.70 

P>F 

0.0517 
0.0124 
0.0023 

6.8.4 Summary 
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There are no consistently strong relationships over all years and districts, altho~gh Iuly 

temperatures, October rainfall, December rainfall and Autumn temperatures appear to be important 

detenninants of yield. It is apparent that there are some quite strong regional interactions between 

climate and yield. Some caution must be taken in interpreting national yield models because ~f 

these apparent differences. 

In s~mmary rainfall appears to be generally surplus to requirements in Auckland and can be 

detrimental to yield, particularly in spring, early summer and autumn. Rainfall appears to be 

surplus to needs in late spring early summer and mid autumn in Hawkes Bay, possibly due to 

wider use of irrigation. 

Iuly temperatures are also critical in this growing district. This predictor appeared strongly in the 

1963-1981 analysis of national yield and in the analysis of national yield from 1941·1981. It 

appears to reflect the increased dominance of Hawkes Bay as an apple growing districL However 

the relative strength of the relationship has increased, which doesn't appear to be solely related to 

this shift in dominance and may suggest an increased frequency of warmer winters above the 

optimum. 

In Nelson lack of rainfall appears to be limiting to yield over the summer period and is perhaps 

related to the lesser use of irrigation over the years examined. Ianuary appears to be a critical 

moisture sensitive period in Canterbury, although it appears that a drier November period is 

desirable. In direct contrast to Auckland, lack of rainfall is quite limiting in Central Otago. Wet 

winters, mild summers and autumns appear to be favourable. Post blossom temperatures are also 

important in this district. 
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6.9 Pears 

6.9.1 Pear-climate relationships 

Pears are generally less hardy than apples (Westwood, 1978). However they still require a cool 

winter, with extended flowering being a problem in areas where little winter chilling occurs 

(Jackson, 1986). Bud burst normally occurs from early to mid September and flowering in about 

late September to early October. Frost can be a problem around this time. The crop reaches 

maturity from January to May, depending on the cultivar. The trees have a moderate drought 

tolerance suggesting that irrigation could be necessary in low rainfall areas. In general 

relationships with climate are similar to those for apples and the synopsis given for apples in New 

Zealand could be taken as a broad guideline for pears. 

6.9.2 Pears: results 

Pear data was available over the same time periods as the apple data and methods of analysis were 

the same. 

For the 1963-1981 period a linear trend was fitted to both yield per tree and yield per hectare, Figs. 

6.9.2 and 6.9.3. It is apparent that pear production has not become as consolidated as apple 

production has. The period from 1941-1981, Fig. 6.9.1, shows a fairly consistent upward trend 

suggesting that optimum pear yields have yet to be attained. 

Weighting factors for the climate data are given in Table 6.9.1. Regression analysis of pears was 

carried out on residuals for yield per ha and yield per tree data. ResultS for the 1963-1981 period 

are presented in Table 6.9.2, for a five predictor model. Three predictors are common to both 

models, being the most significant ones in both cases. Spring rainfall, particularly in September, 

has a very strong negative relationship with yield. This reinforces results with stonefruit crops 

and apples, that rainfall at blossom time is detrimental to yield. A negative relationship with 

February rainfall is consistent with the result for apples over the same time period, and with 

Wilton's (pers. comm.) observations. Warm temperatures in September, the pre blossom time, 

seem to be important. For the yield per ha data there is also a weak relationship with August 

temperature. This suggests the possibility of a n~ for a sharp winter to spring transition and 

would add support to the general theory for apples put forward by Beattie and Foley (1978) and 

Jackson and Hamer (1980). Without this sharp transition extended flowering may become a 

problem, which Jackson (1986) noted can result in areas with insufficient winter chilling. 

Positive relations with May rainfall and temperature also appear. These are for the current season. 

They would appear anomalous as this is the end of the harvest period and it would be difficult to 

imagine serious yield losses arising from conditions in this month. 
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Fig 6.9.2 New Zealand pear yield (kg/tree) 1963-1981 
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Table 6.9.1 

Pears; weighting factors for climate data 

District Weighting 
1941-1965 1963-1981 

Northland 0.01 0.003 
Auckland 0.08 0.062 
Waikato 0.02 0.038 
Bay of Plenty 0.01 0.011 
Manawatu/l'aranaki 0.01 0.005 
Wellington/WairarapaO.01 0.003 
Poverty Bay 0.01 0.014 
Hawkes Bay 0.33 0.458 
Nelson 0.32 0.227 
Marlborough 0.01 0.008 
Canterbury 0.06 0.043 
South Canterbury 0.01 0.005 
Oamaru/Dunedin 0.00 0.002 
Central Otago 0.13 0.120 

Table 6.9.2 

Pears; regression yield models (1963-1981) 
maxRmethod 

Variable B value F P>F 

(a) pears/tree 
R2=0.87; F=16.89; p=O.OOOI 

Intercept -89.979 
FEBRAIN -0.162 11.44 0.0049 
SEPRAIN -0.187 14.37 0.0022 
OCTRAIN -0.097 6.26 0.0265 
MAY1EMP 4.144 7.13 0.0193 
SEP1EMP 6.600 21.76 0.0004 

(b) pearslha 
R2=0.84; F=13.30; p=O.OOOI 

Intercept -1.067 
FEBRAIN -0.082 23.34 0.0003 
MAY RAIN 0.045 5.24 0.0395 
SEPRAIN -0.093 14.54 0.0022 
AUG1EMP -1.209 3.13 0.1005 
SEPRAIN 1.782 7.99 0.0143 
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For the 1941-1965 period a linear trend was fitted to both the district and national yield data. 

Results of analysis for 5 predictor models is given in Table 6.9.3, and allows for evaluation of 

possible regional relationships and their relative impacts on national yield over this period. 

Rainfall at blossom time is apparently detrimental to yield, as could be expected. This relationship 

is apparent both with national yield and with the Nelson data. With a greater proportion of the 

crop grown in this district over this period than in 1963-1981 this is probably a reflection of the 

bias of the weighted climate data towards Nelson. As with apples lack of summer rainfall can be 

limiting to yield in Nelson and again reflects in the national model. Highly significant is the 

positive relationship with January rainfall at the national scale. Four out of five of the main 

growing districts, all except for Central Otago, showed a positive relationship with January 

rainfall. This obviously explains its strong presence in the national yield model. January is 

obviously a critical moisture sensitive stage and may relate to when the fruit is approaching 

maturity and requires moisture for sizing, particularly if the conditions in the preceding months 

have been relatively dry. There are apparent regional differences in response to rainfall in late 

summer and autumn. Some of these relationships may be anomalous, but may also be true 

reflections of regional rainfall relationships. Perhaps because of no apparent consistency between 

regions none of these months reflects in the national yield model. 

December temperatures are positively related to yield, both nationally and in Hawkes Bay and 

Nelson, the two principal pear growing districts. Warm temperatures at this time, although not 

within the six week critical post bloom period identified by Wilton (pers. comm.), may still be 

important for early cell division and fruit development. Adequate moisture at this time also 

appears to be important. Closer to harvest warm March conditions appear important This could 

be an association with final stages of maturity and perhaps with warm, dry conditions for harvest 

A negative relationship with March rainfall in Auckland attests to the undesirability of rainfall at 

this time in this district and may be related to delayed harvest or reduced yield through disease 

arising from humid conditions. 

It is questionable whether rainfall in May could have any significant impact on yield in the current 

season, as most of the harvest would have been completed by this time. In Hawkes Bay a negative 

association with April rainfall is not so easy to explain and may be anomalous. However in the 

dry Central Otago district rainfall in the months of March and April is positively related with 

yield. It is recalled that even above average rainfall in Central Otago is below the average of 

wetter districts such as Auckland, so this is not necessarily an inconsistency. With fruit size 

generally smaller than in other districts rainfall at this time in Central Otago would be beneficial to 

yield by delaying harvest and allowing fruit to increase in size a bit more. The interpretation is 

made more difficult with a negative association with February rainfall in Central Otago. Either 

this is a very moisture sensitive period under Central Otago conditions, or some or all of these 

results are anomalous. 
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Table 6.9.3 

Pears; N.Z. & district yield/tree models (1941.1965) 
max R procedure 

Variable B value F P>F 

(a) New Zealand 
R2=0.828; F=18.34; P>F=O.OOOI 

Intercept ·9.645 
OCT RAIN -0.006 11.17 0.0034 
DEC RAIN 0.005 7.78 0.0117 
JANRAIN 0.015 47.56 0.0001 
DEC TEMP 0.191 8.89 0.0077 
MAR TEMP 0.346 13.36 0.0017 

(b) Auckland 
R2=O.607; F=5.86; P>F=0.0019 

Intercept -26.928 
JULRAIN -0.009 4.38 0.0499 
JANRAIN 0.022 12.82 0.0020 
MARRAIN' -0.006 2.11 0.1629 
FEB TEMP 0.612 4.48 0.0478 
MAR TEMP 0.807 4.79 0.0412 

(c) Hawkes Bay 
R2=0.737; F=10.67; P>F=O.OOOI 

Intercept -16.009 
JANRAIN 0.013 14.92 0.0010 
APRRAIN -0.006 4.27 0.0528 
MAY RAIN 0.008 12.89 0.0020 
DEC TEMP 0.527 14.25 0.0013 
MAR TEMP 0.335 3.84 0.0650 

(d) Nelson 
R2=O.626; F=6.36; P>F=0.0012 

Intercept 4.549 
OCTRAIN -0.006 6.91 0.0166 
DECRAIN 0.009 7.90 0.0111 
JANRAIN 0.008 9.39 0.0064 
MAYRAIN -0.005 7.'2A 0.0145 
DEC TEMP 0.287 5.17 0.0347 

(e) Canterbury 
R2=O.448; F=3.08; P>F=0.0333 

Intercept 3.674 
AUGRAIN -0.003 2.06 0.1671 
NOV RAIN -0.005 2.91 0.1042 
JAN RAIN 0.009 5.08 0.0363 
MAY RAIN 0.003 3.38 0.0816 
FEB TEMP -0.236 4.50 0.0472 

(f) Central Otago 
R2=O.592; F=5.52; P>F=O.oo26 

Intercept 0.358 
JULRAIN 0.023 13.89 0.0014 
FEB RAIN -0.007 9.83 0.0054 
MAR RAIN 0.008 6.16 0.0226 
APRRAIN 0.013 8.17 0.0101 
AUG TEMP -0.213 6.37 0.0207 
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As with apples the two separately sourced data sets were combined into one to give a 41 year 

record of yield per tree, from 1941-1981. Both periods had shown a fairy consistent linear trend, 

and this was again the case with the combined data. A linear trend was fitted, shown in Fig. 6.9.1, 

and analysis performed on the residuals. Correlation coefficients from actual yield versus yield 

estimated from the calibration model, for the calibration and verification periods are shown in 

Table 6.9.4. The result is similar in magnitude to that achieved with apples. Although not 

statistically significant it is encouraging all the same given the apparent different regional 

responses of yield to climate. 

Variable 

Intercept 
OCT TEMP 
DECTEMP 

Intercept 
JANRAIN 
MAR TEMP 
JULTEMP 
AUG TEMP 
OCT TEMP 

Table 6.9.4 

(a) Verification ofN.Z. pear/tree model (1941-1981) 
correlation coefficients 

Calibration 

0.756 
p=O.OOOI 

Verification 

0.274 
p=O.3659 

(b) F=4 model, 2 predictors, max R procedure 
R2=O.293; F=7.86; P>F=0;OOI4 

B value 

-129.284 
5.004 
3.801 

F 

8.20 
5.00 

P>F 

0.0068 
0.0314 

(c) F=4 model,S predictors, max R procedure 
R2=O.458; F=5.92; P>F=0.OOO5 

-96.857 
0.102 4.37 0.0439 
4.672 8.22 0.0070 

-3.963 4.06 0.0516 
-4.081 4.25 0.0467 
6.062 12.47 0.0012 

October and December temperature were the significant predictors in a two predictor model, 

which satisfied the F=4, 5% significant criteria. Both were positively related to yield. 

Temperatures in the blossom and post blossom period are apparently quite important, and this adds 

weight to the theory put forward by Wilton (pers. comm.) for apples. It is further reinforced by a 

positive association with November temperature in a five predictor, F=2 model. The importance 

of a well defined winter to spring transition is highlighted by negative associations with July and 

August temperatures. Warm conditions at this time may result in hormonal confusion, as with 

apples (Beattie and Foley, 1978; Jackson and Hamer, 1980) and lead to delayed flowering 

(Jackson,1986). The presence of January rainfall in the F=2 model is probably a reflection of the 

strength of this relationship in the earlier, 1941-1965, period. 
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6.9.3 Pears: summary 

As with apples there was no apparent consistency with the results achieved over the two separate 

periods. This is probably a reflection of changes in orchard management, wider use of irrigation 

and also importantly shifts in relative importance of the two principal growing districts. The 

analysis of national yield was biased more towards Nelson district in the earlier period and 

towards Hawkes Bay in the latter. 

The strong regional differences in yield response to rainfall that were apparent with apples, were 

not so with pears. The reverse is true to a degree with the consistency of the response to January 

rainfall in the earlier years. The interesting contrast is the negative association with February 

rainfall in the latter period. If both are true relationships then this is apparently another important 

moisture sensitive period. One explanation may be that lack of January rainfall has become less 

limiting because of wider use of irrigation. It could then follow that above avemge rainfall in 

February could have a negative effect, if there is already an abundance of available moisture. 

Central Otago remains an anomaly, but perhaps the nature of the response to rainfall in this dry 

district may add weight to the hypothesis that late summer to early autumn is a very moisture 

sensitive period for pears, and generally important for fruit sizing. 

The importance of tempemture in the winter to spring transition is highlighted more in the latter 

period. There are two possible explanations of this. One is that temperatures have universally 

become warmer. Tempemture means for Appleby and Napier climate stations for the 1941-1965 

and 1963-19.81 periods show an increase of about 0.2 ·C. More significant is the difference 

between the two stations which would show up in the different weightings for the two periods, the 

latter being more weighted towards warmer Hawkes Bay. The inference is that late winter 

tempemtures are more likely to be warmer than desimble in this district than in Nelson. However 

if this were the case it could be reasonably be expected that tempemture in these months would 

appear as a significant predictor of yield in the Hawkes Bay yield model derived from the earlier 

data. Perhaps there is a combined effect of proportionately more pears being grown in this district 

and temperatures being universally warmer, so that there are more years that are warmer than 

optimum. This is given weight by the result with apples which suggests that the July temperature 

response has become stronger over the latter period. This obviously requires further investigation 

as it could have important implications for the pipfruit industry. Yield data by district for the latter 

period combined with dates of full bloom in each district would help satisfactorily resolve this 

more. 

As a general summary it appears that summer rainfall conditions were dominant limiting factors to 

national yield over the 1941-1965 period, fairly strongly reflecting relationships in both Hawkes 

Bay and Nelson. Over the latter period conditions in late winter and spring appeared to dominate 

as the main climatic factors limiting to pear yield. 
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CHAPTER 7 

The Canterbury food-climate system: review and analyses 

7.1 Introduction 

Canterbury is the largest plains region in New Zealand. It's climate is unique, influenced by the 

Southern Alps and in coastal areas, by the oceanic locale. Early white settlers found both the 

climate and soils well suited to temperate grain crops. Rapid expansion of cropping in the 19th 

century led to soil erosion problems. This highlighted the need for careful land management 

practices to optimise the benefits from the climatic resource. The recent Canterbury drought has 

shown that the lessons from the past have not been fully learnt. This Chapter addresses some of 

these issues, providing some assessment of the Canterbury agroclimate resource base. This is a 

necessary preliminary to an evaluation of the potential local and regional benefits of shelter. 

Topographically the plains of Canterbury appear to offer a homogenous environment. A spatial 

analysis of climate in Canterbury is presented and demonstrates that there are potentially 

significant sub regional response areas. This is an important consideration for planning future land 

use. County yield data for wheat allows for a study of the spatial response of yield in relation to 

spatial variations in climate. 

With the importance of Canterbury as a cropping region, and a growing interest in horticulture it is 

important to evaluate potentially limiting climatic factors. Empirical analyses of temperate grains, 

in Chapter 5, suggested that agricultural drought can be a significant limiting factor in Canterbury. 

Closer analysis of drought, and its impact on yield was carried out and results are presented and 

discussed. 

7.2 Physical features and climate 

Canterbury is situated east of the Southern Alps, in the South Island. Close to the mountains are 

several inland basins, the largest and highest being the McKenzie to the south in the area now 

known as Aorangi. The main range gives way to the foothills which tend towards the east coast in 

both the north and south. Inland to the north is the Amuri plain. To the east as far as the coast are 

the Canterbury Plains. The latter cover an area of some 5000 km2. Rising to the northeast of the 

plain is the Banks Peninsula. These features, with the exception of the McKenzie basin, can be 

seen in Fig. 7.2.1, adapted from McKendrey et al (1987). 

New Zealand climate was briefly described in section 3.2. Both the axial ranges and the oceanic 

locale have a dominant influence on the climate of Canterbury. The seasonal variations in the 

mean latitude of the anticyclonic belts influences the general seasonal weather patterns as 

experienced in Canterbury and described by McGann (1983). 
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Winds from the east to northeast are a dominant characteristic in Christchurch. This is often the 

result of undisturbed westerly airflow being channeled around the northern end of the South 

Island. It can be augmented, particularly in summer months by local sea breeze effects. In winter 

months there is generally a higher frequency of winds from the south and southwest, often 

bringing cold Antarctic air to the region. These winds arise from the passage of anticyclones at 

lower latitudes, with the often associated cold fronts moving onto the South Island. A common 

and dramatic feature in spring, but also occurring in other seasons, is the Fohn or northwest wind 

known as the Canterbury nor'wester. This arises from undisturbed westerly flow. If this flow is 

fairly moderate and stable, it is mostly diverted around the northern end of the South Island as 

described earlier. In intermediate conditions there may be some passage of the air mass over the 

Southern Alps as well as around the north of the South Island. This c.an result in upper winds 

being from the west or northwest with surface winds from the northeast. When the flow is strong 

and unstable most of the .air mass passes over the Alps and the Fohn wind is experienced over the 

whole of Canterbury. In cases where wind passes over the Alps an orographic trough forms on the 

lee side. This can result from adiabatic warming of the descending air on the lee side. An 

alternative explanation is that the vertical stretching of the air column on the lee side creates a low 

pressure zone which leads to horizontal convergence of air .and thus generation of cyclonic 

circulation. A nor'wester can often precede a rapidly moving cold front resulting in a sharp 

transition from warm dry northwest conditions to cold showery southerlies. Rapid changes in 

temperature and relative humidity result. This can introduce a considerable degree of risk to such 

agriCUltural activities as spring lambing where losses are often high with rapid weather changes. 

A much less dramatic feature of the climate on the plains are katabatic or drainage winds. These 

generally occur on clear nights, most commonly in winter time. Their flow is westerly or 

northwesterly, depending on the orientation of valleys and location of measurement sites. 

7.3 The food resource 

A summary of arable and horticultural crops, from 1930 and 1985 Agricultural Statistics 

publications is given in Table 7.3.1. A brief discussion follows. 

7.3.1 Arable crops 

The dominant crops in Canterbury have been, and remain, the temperate grains. Wheat is a 

relatively less important crop than it was in 1930, both in area grown and as a percentage of the 

national area. The area in oats has halved and barley has increased ten fold. Peas have also 

become a relatively more important crop. Maize remains a minor crop in Canterbury, with the 

growing season generally too short for consistently good yields. 

The changes in area of the temperate grains tend to reflect shifts in commodity price rather than 

any significant climate changes. 
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Table 7.3.1 

Summary of principal crops grown in Canterbury; 1930 & 1985 

(a) Arable crops 

Crop 1930 statistics 1985 statistics 
Area(ha) % ofNZ. Area(ha) %ofNZ. 

total total 

Wheat 80704 84 49158 68 
Oats 12055 44 5638 42 
Barley 9114 50 91281 60 
Peas 2138 54 18852 85 
Maize 5 0.15 19 0.1 

(b) Horticultural crops 

Crop 1930 statistics 1985 statistic~ ( 
Tree number %ofNZ. Area(ha) %ofNZ. 

total total 

Apples 143610 11 393 5 
Pears 13398 12 30 5 
Apricots 4412 7 35 5 
Nectarines 2146 13 92 8 
Peaches 7951 7 89 7 
Plums 7111 14 23 6 
Cherries 5172 29 3 1.5 
Strawberries 72 19 
Blackcurrants 346 46 
Kiwifruit 4 0.02 

However as shown in Chapter 5, and will be demonstrated further with wheat, climate does have a 

significant influence on year to year variability in Canterbury grain production. 

In more recent years there has been increasing research into other crops. A lot of attention has 

been paid to pulses, and lentils have become an increasingly popular crop that is apparently well 

suited to the climate. However the traditional crops still predominate. 

Generally the climatic resource of Canterbury has been well exploited for cropping, and there is on 

going research to improve cultivars and identify new crops that may have potential. The district 

analysis of wheat, oats and barley yields in relation to climate identified significant limiting 

factors. Above average rainfall in winter appeared to be detrimental to Autumn sown crops, 

particularly wheat. Spring temperatures can be limiting to wheat and late spring to early summer 

conditions can be limiting to oats and barley. These temperature relationships appear to be related 

to moisture deficit conditions, which suggests that agricultural drought can be limiting to these 

crops. This is examined in more detail in section 7.8. 
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7.3.2 Horticultural crops 

Fruit growing in Canterbury has been relatively stable over time, generally catering to local 

demand. Lack of area statistics for 1930 precludes direct comparison with 1985. However 

percentages of national totals provide some useful contrasts. The most dramatic change has been 

with cherries. Canterbury was a significant growing area for this crop in the early part of the 20th 

century, although still secondary to Central Otago. Marlborough has since become the dominant 

growing district for this crop. Spring and early summer rainfall were shown, in section 6.4.2, to be 

the dominant limiting factors to yield with cherries. There is little difference in rainfall over this 

part of the growing season between Canterbury and Marlborough, although there is uncertainty as 

to timing and intensity in relation to rainfall sensitive stages. Yield per tree was virtually the same 

for these two districts, on average, from 1925-1930. It appears likely that there were factors other 

than climate that led to the decline in cherry production in Canterbury. 

Canterbury has also become relatively less important as a pipfruit growing district, although this is 

being reversed with recent large increases in plantings of apples. Grapes are another horticultural 

crop to show potential, with the development over the last decade or so of a fledgling wine 

industry. 

The climate resource has been under exploited for horticultural production, which may partly 

reflect the traditional dominance of cropping. Lack of district data for stonefruit precluded 

identification of limiting factors for these crops. There appears to be potential for cherries, as 

discussed earlier, perhaps thc? main barrier being the capital investment required. Apricots require 

careful management, and although grown in some frost free areas in Christchurch do not appear to 

perform well. Jackson (1986) noted that careful selection of cultivars suited to a district will 

increase cropping potential and reliability. Peaches and nectarines generally do well in 

Canterbury. Lack of rainfall at sensitive fruit development stages could be limiting to stonefruit, 

but this could be overcome with irrigation. There is the risk of frost, but overhead sprinklers 

would overcome this. Generally the risk is lower than in Central Otago. The summers are 

generally warm and dry which are well suited to stonefruit production, providing water is available 

at sensitive stages. 

The main limiting factor for pipfruit in the district analysis of Canterbury yields, shown in sections 

6.8.3 and 6.9.3, was January rainfall, which was positively related to yield. This attests to the need 

for irrigation, particularly over persistently warm, dry summers. The temperature relationships 

were generally less clear and of uncertain significance. The effect of drought on these crops is 

examined further in section 7.8. 

Canterbury is presently the southern limit for kiwifruit, with this crop being grown on a very small 

scale. Wind would be a major limiting factor. Shelter is critical for all horticultural activities in 

Canterbury, primarily for protection from wind damage. 
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7.4 Spatial variability of climate: a review 

Five main climatic zones were identified in Canterbury by Ryan (1987). These are the plains 

region; the eastern foothills; the high country near the main divide; the Banks Peninsula and the 

northern coastal hills; and the inner basins, some sheltered valleys and the foothills to the south of 

the plains. Rainfall is highest near the main divide, with a moderate rainfall on the Peninsula and 

in the eastern foothills and northern coastal area. The Plains and South Canterbury generally have 

lower rainfall. The temperature range on the Plains and to the south is high compared to most 

other areas of New Zealand, leading Salinger (1981) to comment that the climate of this area is 

semi continental in nature. The extremes are characterised by the warm Fohn conditions and the 

potentially very cold southerlies. The climate of Banks Peninsula and the northern coastal area is 

more moderate, being temperate maritime. Frosts are a frequent occurrence in the winter months 

in most parts of Canterbury. Their frequency and severity generally increases with distance from 

the coast and altitude. As might be expected the Peninsula and the northern coastal strip generally 

experience fewer and less severe frosts. Coastal areas experience a high frequency of east to 

northeast winds, particularly in north and mid Canterbury. Northwest winds are more frequent and 

stronger in inland North Canterbury. There is also a high frequency of northwest winds in the 

south, as recorded at Timaru airport (N.Z.Met.Service, 1982). These winds are largely locally 

generated katabatic winds, being channelled through nearby valleys. This area, being closer to the 

foothills, experiences quite a high degree of sheltering from the west. This results in a high 

frequency of recorded calms at Timaru airport. 

Although drying northwest winds are generally of low frequency over the north and central 

Canterbury Plains, their greater frequency in spring and summer has a significant impact on 

agricultural activity and productivity. These drying winds, combined with the low rainfall and 

relatively shallow soils over large areas, gives a high potential for agricultural drought in the 

Plains area and also in inland North Canterbury. Ironically, this can occur at times when record 

rainfalls are being recorded on the West Coast of the South Island. This has been graphically 

illustrated in 1988 with Canterbury experiencing its driest year on record and the West Coast 

experiencing record rainfalls and some of the worst flooding on record. 

Salinger (1981) determined climatic response areas for New Zealand. He applied cluster analysis 

methods to delineate temperature and rainfall response areas. His results for the Canterbury region 

are briefly summarised here. 

Five temperature response areas were defined for the South Island. The whole of Canterbury, with 

the exception of the McKenzie basin, was incorporated into a single response area, also including 

the rest of the east coast to the north and the eastern top of the Island. 

A total of eleven rainfall response areas were delineated for the South Island. Canterbury was 

characterised by three response areas. These were the alpine spillover, North and Mid Canterbury, 
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and South Canterbury. The inner hills can experience high rainfall under westerly conditions, with 

the air drying as it descends to the Plains. Salinger (1981) noted that Canterbury and South 

Canterbury are affected by similar synoptic events. High rainfall can be associated both with 

moist east to northeast air streams and southerly or southwest winds. Nearly half of the annual 

rainfall in Christchurch is associated with southwest winds (McGann, 1983). 

The distribution of rainfall over Canterbury and its relationship with circulation patterns was 

examined by Sturman (1986). Using a stepwise regression he identified the most significant 

circulation index for each of 137 rainfall stations. The influence of westerly air flow was limited 

to the main divide and was consistent with Salinger's (1981) alpine spillover zone. In the 

intermediate basins, the eastern foothills, South Canterbury and in the Christchurch locale 

cyclonicity was the most significant index. Easterly airflow was the dominant source of rainfall 

over the plains and northeast Canterbury. This was quite a different result to the Canterbury/South 

Canterbury divisions made by Salinger (1981). 

A mesoscale study by Trewinnard and Tomlinson (1986) showed the importance of Banks 

Peninsula in influencing rainfall gradients in Central Canterbury. They also showed the existence 

of distinct rainfall gradients over Christchurch Oty. 

7.5 Spatial analysis of Canterbury climate-

7.5.1 Introduction 

The purpose of the study reported here was to examine more closely patterns of variability over 

the plains areas of Canterbury. This was to highlight the influence of local geographic features on 

climate and to build a more comprehensive picture of the climatic resource. 

The data base used was more spatially limited than that of Salinger (1981), being largely confmed 

to the plains. Data from some stations on the periphery of the plains were also included. The 

methods used were cluster analysis and principal component analysis, described in Chapter 4. 

Monthly data covering stations from the Amuri plain and the main Canterbury plain as far south as 

Waimate were entered on the V AX. Variables selected for analysis were mean temperature, 

rainfall, days of screen frost, sunshine hours and pan evaporation. For the flfSt three variables a 

good spread of spatial and temporal data were available. For the latter two the time series were 

generally shorter and the number of climate stations fewer. 

The longest period for which data were analysed was 1955 to 1986. This was chosen because data 

recording was superior and more stations were coming into operation over this period. All data 

were compiled into seasonal data sets. The three main periods chosen for analysis were 1955-

1986, 1965-1986, 1975-1986. Analyses for the latter two periods allowed for inclusion of more 

climate stations, thus allowing for greater spatial representation. Data for each variable and each 

time period were transformed into single columns for each climate station _and then the columns 
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merged into one file for the analysis. All data were standardised. with mean equal to zero and 

variance equal to one. The rainfall data was nonnalised prior to standardisation. 

Cluster analysis was carried out using both a hierarchical and a disjoint procedure from the SAS 

statistical package. In all cases the disjoint procedure failed to assign any of the variables to new 

clusters. reflecting the high degree of correlation within each data set. This was partly a result of 

the standardising but also reflected the similar spatial responses over the region to climate. The 

results discussed here. therefore, are from the hierarchical clustering and principal component 

analysis procedures. Both methods gave consistently similar results. In light of this only 

eigenvectors from the P.C.A. are presented to illustrate apparent divisions. Results are discussed 

for each variable in turn. 

7.S.2 Mean temperatures 

The temperature data were analysed over the three time periods, given earlier. The first principal 

component in all cases accounted for approximately 99.5% of the variance. This is a conflnnation 

of Salinger's (1981) result, which assigned all of the area covered in the current analysis to the 

same temperature response area. In general the region as a whole is affected by the same synoptic 

phenomena. The magnitude of the response will vary according to site location. Local variations 

in altitude, proximity to the coast, sheltering from foothills, or effects from human modified 

environments were reflected to varying degrees in both the clustering and the second and third 

principal components. Eigenvectors, for the 1955-1986 and 1975-1986 periods are presented in 

Table 7.5.1. 

An obvious anomaly, from the P.C.A., is apparent with the Ashley Forest and Highbank climate 

stations over the 1955 to 1986 time period. This is seen in the second eigenvector. In the cluster 

analysis these two stations again appeared to be anomalous, this time in combination with the 

Lincoln climate station. It was noted by Salinger (1981) in his site descriptions that Ashley Forest 

did not reflect the strong regional warming trend apparent from all other Canterbury climate 

stations used in his analysis. Because of this sites good exposure and faultless record he took the 

record as being true. The Ashley site is located on downland rising from the northern end of the 

Canterbury Plains. To the west of the site is the exotic Pinus radiata forest planted over the slopes. 

To the east the ground slopes gently down to the northern end of the Plains. The coast is clearly 

visible. Its elevation (100m), proximity to the coast and aspect (facing to the east north east) make 

this site unique. It is considered that these site features combined with down slope air drainage 

have an ameliorating effect on this site. Interestingly Ashley contrasts most strongly with 

Balmoral Forest, to the north and inland on the Amuri plain. The latter has warmed relative to 

Ashley. 
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Table 7.5.1 

Eigenvectors from p.e.A. of temperature data 

Climate station PRINI PRIN2 PRIN3 

(a) 1955-1986 

Balmoral forest 0.301313 -0.380907 -0.125552 
Ashley forest 0.301305 0.453389 -0.262812 
Darfield 0.301749 -0.089883 0.189367 
Eyrewell forest 0.301766 -0.133969 -0.200024 
Christchurch airport 0.301836 -0.093419 -0.322064 
Christchurch 0.301930 -0.135106 -0.161589 
Lincoln 0.301712 0.071936 -0.344620 
Highbank 0.300587 0.701764 0.303961 
Winchmore 0.301848 -0.211190 0.133072 
Ashburton 0.301168 -0.227642 0.684856 
Waimate 0.301408 0.047655 0.107562 

(b) 1975-1986 

Balmoral forest 0.223558 -0.068894 -0.431342 
Waiau 0.223658 0.094613 -0.355854 
Ashley forest 0.223394 -0.345450 0.204622 
Rangiora 0.223996 0.000083 -0.144504 
Darfield 0.223754 -0.102407 -0.086307 
Eyrewell forest 0.223667 -0.127209 -0.249926 
Christchurch airport 0.223932 -0.036373 -0.142708 
Christchurch 0.223826 -0.020741 -0.077810 
Bromley, Christchurch 0.223662 -0.153375 0.127231 
Lincoln 0.223472 -0.377856 -0.020623 
Highbank 0.223087 -0.398420 0.388995 
Hororata 0.223854 0.028568 -0.225262 
Winchmore 0.223953 -0.036196 0.035220 
Ashburton 0.222419 0.530229 0.272709 
Timaru airport 0.223698 0.178158 0.116899 
Peel forest 0.224006 0.066520 0.000074 
Orari estate 0.223756 0.279613 -0.006992 
Geraldine 0.223678 0.289780 -0.017907 
Waimate 0.223152 0.023344 0.429569 
Ikawai 0.223609 0.177119 0.188097 

This could be, in part, influenced by the maturing forest in the locale of this latter station. Being 

in a flat environment the effects on surface roughness of a growing forest are likely to be 

significant. As will be shown later this roughening of the landscape can have a significant effect 

on both wind speed and mean temperature. 

Again the unique exposure of the Highbank station makes for a strong local microclimate. The 

station is elevated above the Rakaia river and is also exposed to the nearby Rakaia gorge. From 

the latter it would be exposed to funnelling of westerly and katabatic winds. Air drainage 

therefore appears to be significant at this site and again leads to an apparent anomaly. 
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It is not so straight forward to explain the association of Lincoln with these two stations over the 

shorter time series. The Lincoln temperature data was adjusted to a more exposed site, there 

having been two site changes at Lincoln over the 1955 to 1986 time period. This may therefore be 

an association of more exposed sites. 

While the second eigenvector over the 1955-1986 period highlighted the anomalous stations, as 

did the cluster groupings, the third eigenvector suggested a general north south division with the 

division being south of Lincoln. This general pattern is repeated over the 1965-1986 period. Over 

the same two time periods while the clustering highlighted the anomalous stations it also tended to 

reflect inland and coastal differences. 

The 1975-1986 time series gave a more consistent result between the two methods, probably 

facilitated by the greater number of South Canterbury climate stations that were in operation over 

this period. The presence of these stations in the analysis reinforced the north/south contrast, 

which was the dominant secondary feature in both the clustering and P.C.A. The anomalous 

stations, discussed previously were still apparent in both the clustering and as a dominant feature 

in the north/south contrast, apparent from the loadings in the second eigenvector, all associating 

more with stations north of the Rakaia river. An exception was Hororata which is just to the north 

of Highbank but in the lee shelter of the ranges and clear of the gorge. 

While the temperature response over the district as a whole is similar there are some important 

local differences. These largely reflect the effects of both site location and exposure on 

microclimate. Coastal exposure versus inland contrasts are weak, but apparent. The general 

north/south contrast possibly reflects slight differences in synoptic phenomena and also 

geographic differences. In the south the plains narrow to a coastal strip and all sites are either 

close to the hills or nestled in the downs. It is recalled that there is a high frequency of both 

katabatic winds and recorded calms in this area, as recorded at Timaru airport, which would 

particularly affect minimum temperatures. This north/south contrast is more strongly apparent 

with rainfall. 

7.5.3 Rainfall 

Again the rainfall data were analysed over three different time scales, with more stations in the 

analysis over the shorter time period. The periods used were the same as for the temperature data, 

with the stations being mostly the same. In all cases the first P.C. accounted for approximately 

80% of the variance. This was obviously not as strong a result as achieved with the temperature 

data. However it still suggests that the region as a whole is affected by similar patterns of climate, 

with some potentially significant sub regional effects. As with the temperature data eigenvectors 

for the 1955-1986 and 1975-1986 periods are presented, in Table 7.5.2. 
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Table 7.5.2 

Eigenvectors from P.C.A. ofrainfaU data 

Climate station PRINI PRIN2 PRIN3 

(a) 1955-1986 

Balmoral forest 0.264955 -0.210786 -0.560687 
Ashley forest 0.294074 -0.036617 -0.302892 
Darfield 0.303124 -0.048910 -0.216910 
EyreweU forest 0.305901 -0.091566 -0.247067 
Christchurch airport 0.294416 -0.329550 0.238042 
Christchurch 0.279411 -0.401852 0.389653 
Lincoln 0.287836 -0.297837 0.346912 
Highbank 0.292131 0.297367 -0.177742 
Winchmore 0.307543 0.085009 0.037995 
Ashburton 0.304053 0.l21545 0.101225 
Orari estate 0.276862 0.466677 0.111515 
Waimate 0.247457 0.506402 0.318176 

b) 1975-1986 

Balmoral forest 0.190841 -0.195922 -0.294917 
Waiau 0.195672 -0.292864 -0.176772 
Waipara 0.211432 -0.176419 -0.284312 
Ashley 0.228173 -0.090459 -0.212011 
Rangiora 0.229561 -0.108727 -0.076832 
Darfield 0.229362 -0.104845 -0.079735 
EyreweU forest 0.236067 -0.113649 -0.086243 
Christchurch airport 0.215769 -0.220027 0.259868 
Christchurch 0.213030 -0.218568 0.325228 
Bromley, Christchurch 0.198136 -0.243532 0.356071 
Lincoln 0.212858 -0.187119 0.278345 
Highbank 0.228266 0.092451 -0.187118 
Hororata 0.233765 -0.033483 -0.126239 
Winchmore 0.233559 0.000698 -0.013538 
Ashburton 0.229145 0.008971 0.047053 
Timaru airport 0.205463 0.325807 0.l07447 
Peel forest 0.156789 0.378729 -0.279851 
Temuka 0.214743 0.281934 0.054708 
Orari estate 0.220303 0.226520 -0.063098 
Geraldine 0.214186 0.246894 -0.122068 
Waimate 0.191809 0.284646 0.274443 
Ikawai 0.181846 0.279625 0.343986 

Over the 1955 to 1986 time period, for which there were data from 12 stations, the strongest 

division in the clustering was between North and South Canterbury. This was again reflected in 

PRIN2 which accounted for 6.6% of the variance. The result was repeated over the 1965-1986 

period for which there were data from 17 stations, and again over the 1975-1986 period for which 

there were data from 22 stations. As more South Canterbury stations came into operation the 

amount of variance accounted for by PRIN2 steadily increased, so that for the latter period it 

accounted for 9.1 % of the total. This was a reflection of both the greater number of South 
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Canterbury stations and the inclusion of two further North Canterbury stations which tended to 

intensify the contrast. 

The general boundary between the north and south appears to be the Rakaia river, generally 

following the result with the temperature data. This fits well with Salinger's (1981) response 

areas. However closer analysis of the P.C. loadings reveals that the north/south contrast is 

strongest between stations in the locale of Christchurch and those south of Timaru airport. Banks 

Peninsula has a significant influence on rainfall patterns in the locale of Christchurch as shown in 

the work of Trewinnard and Tomlinson (1986). Annual rainfall is on average higher over the 

southeast side of the peninsula than it is over Christchurch to the north (Sturman, 1986). Although 

no similar study has been carried out in South Canterbury, it seems likely that again the nature of 

the landscape in this area has a considerable modifying influence. Both proximity to the coast and 

to the foothills are significant local features. The hills in South Canterbury tend to provide 

sheltering from the west, southwest and south (Sturman, 1986). It is suggested that it is these 

features that led to the differences in response between the Christchurch locale and South 

Canterbury, as apparent in PRIN2. 

Less strongly contrasted in both the principal component and cluster analysis are coastal and 

inland areas. This contrast is reflected in PRIN3, which consistently accounted for about 4.5% of 

the total variance. For all of the time series examined the strongest contrasts were between the 

Christchurch locale and coastal South Canterbury, and inland and northern stations. Central plains 

areas appeared to be transitional. This pattern tends to follow more closely that identified by 

Sturman (1986). 

The analysis presented here lacks the detailed spatial representation of Sturman's (1986) study. 

However it appears that there are two different rainfall response regimes over the plains, with that 

identified by Salinger (1981) dominating on the basis of this analysis. 

It is also of value to note the strongly local nature of the clustering. In all cases, most graphically 

illustrated over the latter period, stations group most strongly with nearest neighbour stations. 

Rainfall patterns are therefore similar over large areas, but local features have a considerable 

modifying influence. 

7.5.4 Days of screen frost 

Spatial differences in screen frosts were also examined over the three time periods. The first 

principal component accounted for a high percentage of the variance over all time scales, being of 

the order of 94%. This is not unexpected, with a similar seasonal pattern of temperature variation 

occurring over the whole of the plains. Differences are mainly in frequency, and intensity of frost 

although the latter is not implicit in this data. However the clustering and second and third P.C.s 
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did highlight some differences, that can be attributed to site location features. Eigenvectors from 

the P.C.A. over the 1975-1986 period are given in Table 7.5.3. 

Table 7.5.3 

Eigenvectors from P.C.A. of screen frost data, 1975-1986 

Climate station PRINI PRIN2 PRIN3 

Balmoral forest 0.223374 -0.231872 -0.203319 
Waiau 0.224601 -0.134772 -0.156394 
Ashley forest 0.215085 0.200883 0.659175 
Rangiora 0.227294 0.025128 -0.128894 
Darfield 0.223839 0.249600 -0.115988 
Eyrewell forest 0.220952 -0.326215 -0.134566 
Christchurch airport 0.226137 0.033079 -0.209763 
ChristchUrch 0.223978 0.217429 -0.163218 
Bromley, Christchurch 0.212919 0.581067 -0.308600 
Lincoln 0.222823 0.142185 -0.274111 
Highbank 0.219564 0.321255 0.284375 
Hororata 0.226818 -0.095190 0.016049 
Winchrnore 0.225405 0.089120 0.251472 
Ashburton 0.225443 -0.037421 -0.009436 
Peel forest 0.226051 -0.233838 0.001740 
Geraldine 0.225754 -0.212373 0.046972 
Orari estate 0.225993 -0.210296 0.089922 
Timaru airport 0.225511 -0.029645 0.177818 
Waimate 0.225115 -0.140071 0.038309 
Ikawai 0.224868 -0.161341 0.150559 

An interesting result was the fairly strong tendency of Ashley and Highbank to group together 

over all time periods. Both sites experience a lower frequency of screen frosts than might be 

expected given their elevation. However the unique features of these sites, particularly the high 

potential for air drainage, makes them less prone to frosts than would otherwise be expected. This 

can be most graphically illustrated by comparing these sites with nearest neighbour sites, Rangiora 

and Hororata respectively. Both of the latter show a substantially higher incidence of frosts 

reflecting lower potential for air drainage. 

This strong contrast between Ashley and Highbank and other sites, most particularly Balmoral 

forest, was the most consistent feature of both the clustering and the principal component analysis. 

The former two tended to group with the Christchurch locale stations, as illustrated by the loadings 

in the second eigenvector in Table 7.5.3. There is a general contrast between these sites and those 

to the north and inland and those to the south. The results generally reflect differences in frost 

frequency. This can arise from differences in latitude, altitude, distance from the coast, effects of 

air drainage and possibly sheltering. Balmoral, to the north, while being at a relatively high 

altitude and the furthest from the coast of all sites is also surrounded by forest. The forest 

environs, on calm nights could lead to an intensification of inversions. This may impact more on 

intensity rather than frequency of frosts. To the south, the sheltering effect of the nearby foothills 
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and resultant high incidence of calms as recorded at Timaru airport gives a greater potential for 

frost. In the locale of Christchurch, the proximity to the coast, lower altitude, and lower frequency 

of calms reduces the risk of frost. Inland from Christchurch increasing altitude and distance from 

the coast give a greater risk of frost, with the exception of the two anomalous sites. 

7.5.5 Sunshine hours 

There are only a limited number of climate stations in the study area that have a record of sunshine 

hours. Data from 8 stations were used in the analysis, covering a relatively short time period. The 

Waimate station ceased recording sunshine hours in 1975, with the Ashley record only beginning 

in 1969, so there was an overlap of only 7 years giving coverage of all relevant stations. Data 

from Hanmer Springs, which is at the northern limit of inland North Canterbury were included to 

give added contrast. The period of 1969 to 1975 was used for the final analysis to give as much 

spatial contrast as possible. This was done following preliminary analyses which suggested 

similar patterns of response over all time periods examined. Eigenvectors for the 1969 to 1975 

period are given in Table 7.5.4. 

Table 7.5.4 

Eigenvectors from P.C.A. of sunshine hours; 1969-1975 

Climate station PRIN1 PRIN2 PRIN3 

Hanmer forest 0.341298 -0.485543 0.507890 
Ashley forest 0.362160 -0.207889 -0.007403 
Christchurch airport 0.362416 -0.188994 -0.138462 
Lincoln 0.362728 -0.210373 0.180474 
Highbank 0.361298 -0.039322 -0.368066 
Ashburton 0.362339 0.090954 -0.440327 
Timaru airport 0.350362 0.430454 -0.214434 
Waimate 0.323818 0.667791 0.561167 

Again the first principal component accounted for a high proportion of the variance, being 91 %, 

suggesting that the region as a whole follows a similar pattern. However in both the clustering and 

in PRIN2, which accounted for 5.2% of the variance, a strong north south division was apparent. 

There were four stations in each cluster. The transition zone appears to be broadly the same as 

with the temperature and rainfall data, being roughly along the Rakaia river. Highbank and 

Ashburton, located near the Rakaia, both appear to be transitional sites in PRIN2. The inclusion of 

Hanmer Springs in the analysis may have weighted the result to come degree, however its 

inclusion is warranted as it allows comparison between the geographical extremes. Its weighting 

effect is not likely to be substantially greater than that provided by Balmoral in the analyses of 

other variables. Certainly with PRIN2 the strongest contrast is between Hanmer and Timaru and 

Waimate to the south. 
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This north/south contrast is more likely a reflection of differences in cloud cover arising from 

influence of geographical location and surrounding topography on synoptic phenomena than more 

localised site features. The effect of Banks Peninsula has already been discussed in relation to 

rainfall. It is likely that it also has an influence on local cloud cover. This is evident locally with 

occasional differences between Lincoln and Christchurch. The Hanmer station is located in a 

valley in the lee of the main divide. It is on the boundary of the alpine spillover, but still tends to 

associate with the northern plains stations suggesting similar patterns. There is certainly more 

exposure of these sites to the northwest and less sheltering from the southwest 

7.5.6 Pan evaporation 

Raised pan evaporation data were available for only 7 stations, basically covering Mid Canterbury. 

The firsJ P.C. accounted for 96.9% of the variance, suggesting a similar pattern for all sites in 

question, which is not unexpected in light of the previous results. Eigenvectors from the P.C.A. of 

raised pan evaporation data are presented in Table 7.5.5. 

Table 7.5.5 

Eigenvectors from P.C.A. of raised pan evaporation, 1965·1986 

Climate station 

Darfield 
Christchurch· airport 
Bromley 
Lincoln 
Highbank 
Winchmore 

PRINI 

0.407991 
0.410202 
0.405825 
0.410180 
0.405129 
0.410130 

PRIN2 

0.108164 
-0.120864 
-0.640300 
-0.097307 
0.744420 
0.008840 

PRIN3 

0.827938 
-0.383648 
-0.109525 
0.168951 

-0.251718 
-0.251854 

In the clustering, Christchurch airport, Winchmore and Lincoln all grouped most strongly together, 

suggesting a similar exposure with these sites in relation to the rest Darfield grouped less strongly 

with these three, being slightly further inland and more sheltered as reported by Salinger (1981). 

Bromley, in Christchurch, also grouped weakly. Although evaporation is of a similar order of 

magnitude at this site, its greater coastal exposure suggests a different pattern from the rest. The 

station with the most different response was Highbank. The annual total evaporation is similar in 

magnitude, so obviously there are differences in seasonal response. Exposure to drainage winds 

from the Rakaia gorge is the most likely explanation. The result is certainly consistent with that 

achieved with the rest of the analyses. The second P .C. strongly contrasted Bromley and 

Highbank, possibly reflecting differences in exposure to coastal winds with the former and 

katabatic winds with the latter. 



7.6 Canterbury wheat-climate interactions 

7.6.1 Introduction 
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Two previous empirical studies of wheat crop-climate interactions have been carried out in 

Canterbury. The earliest reported work was that of Kidson (1929), who sought to interrelate wheat 

yield from Lincoln College, Canterbury with various climate variables using a correlation 

procedure, for the period 1883 to 1928. Climate data used were suspect due to changing site 

conditions relating to shelterbelt growth and erection of buildings over part of this period (Cherry, 

1988). This was commented on by Kidson himself (1929). The tentative conclusions that he drew 

were that cool and dry winter conditions are probably favourable for winter sown wheat. In the 

growing period of spring and early summer warm, moist conditions are favourable. Heavy rains 

near to harvest, in February, can lead to considerable losses. 

A later study by Tauheed (1948) came to similar conclusions. Above average rainfall in spring and 

summer were shown to be beneficial to yield. Mean temperatures appeared to show no consistent 

effect although high temperatures in spring and summer were considered detrimental to yield. 

Spring is a time when warm, dry Fohn type winds can prevail in some years in Canterbury. It is 

probably these type of conditions that Tauheed (1948) was alluding to. 

A more recently unpublished abstract by Gallagher and Macken (1983) identified warm spring and 

summer temperatures and high winter and spring rainfall as weather variables that tended to 

reduce yields in Canterbury grown wheat. 

The results of these studies are generally consistent with the review given by Claridge (1972) and 

the results of the analysis of the Canterbury district data, presented in section 5.1.3. 

7.6.2 Data and methods 

Using the P.C.A. multiple regression approach, as outlined in Chapter 4, a more detailed analysis 

of Canterbury wheat yields was performed. Yield data were available, on a county basis, over the 

period 1945-1982. Data were collated from the thirteen counties indicated on Fig. 7.6.1 and 

earlier records converted from Bu/acre to Tonnes/ha. This record is broken, with data available for 

the years 1945-1952, 1960, 1962-1982. A simple quadratic trend line was fitted to the time series 

of yield for each county and the yield residuals used for the analysis. 

The nature of the yield data affected the choice of climate data. Rainfall data were available from 

eleven climate stations and mean temperature data from nine, over the period for which yield data 

were used, covering the Canterbury region. As with the climate data used in the district analyses, 

it was considered that all possible sources of inconsistency should be removed. The procedure 

was as outlined in Chapter 4. 
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The seasons chosen for the analysis of wheat were winter (June to August), spring (September to 

November) and summer (December to February). This covered the growing season of winter 

sown wheat which is the main wheat crop in Canterbury. 

Rainfall data were normalized by a square root function after analysis of histograms showed some 

improvement by using such a procedure. Both rainfall and temperature data sets were then 

standardized as for the yield data. 

Following the procedure of Wigley and Tu Qipu (1983), principal components analysis was 

carried out on the yield data and the temperature and rainfall data for each of the three seasons. In 

all cases the first three principal components accounted for approximately 80% of the variance or 

more. Details are given in the results section. Multiple regression analysis was then carried out 

for each of the yield principal components, using the total of eighteen climate principal 

components as predictors. A backward stepwise routine was used on SAS. Initially two thirds of 

the data were used as a calibration period, with two years out of every three being used for this 

purpose. The other third of the data was retained for verification. On the success of this result a 

regression using all of the data was carried out. 

7.6.3 Results 

Results of the principal components analysis are presented in Table 7.6.1. A high percentage of 

the variance was explained by P .C.1 for all of the variables indicating that the spatial responses are 

largely similar over ~e region as a whole. The result with the temperature and rainfall data is 

consistent with the results of Salinger's (1981) work and the more detailed analysis presented in 

section 7.5. 

Given the general similarity in response to rainfall and temperature over the region as a whole it is 

not surprising that yield P.C.l accounted for 61 % of the variance. The eigenvector for P.C.2 had a 

high positive loading on North Canterbury counties, particularly Amuri and Hurunui, which 

encompass the inland Amuri Plain. The third eigenvector had a high positive loading on the 

southern extremes of Canterbury, most particularly in the Waimate area. As already discussed the 

southern counties fall in the South Canterbury rainfall response area delineated by Salinger (1981). 

The results of the correlations, resulting from the verification procedure are presented in Table 

7.6.1b and the regression equation for YIELD1 for all years in Table 7.6.1c. 



Variable 

Yield 
Winter Rain 
Spring Rain 
Summer Rain 
Winter Temp. 
Summer Temp. 

County 

Amuri 
Hurunui 
Cheviot 
Rangiom 
Eyre 
Oxford 
Malvern 
Paparua 
Ellesmere 
Ashburton 
Strathallan 
Mackenzie 
Waimate 
YIELD 1 
YIELD2 
YlELD3 
Overall 

Variable 

Intercept 
WRAINI 
WRAIN2 
SPTEMPI 
SPTEMP2 
SPTEMP3 
SUTEMP2 

Table7.6.l 

(a) Variance accounted for by the rll'st three P.C.'s 
for the yield and climate data 

P.C.1 P.C.2 P.C.3 

61.2 71.0 79.8 
81.0 87.9 92.9 
73.8 83.6 88.5 
82.3 88.5 92.3 
84.0 89.7 93.1 
92.1 95.6 97.8 

(b) Correlation coefficients from wheat model verification 

Calibmtion Verification 

0.80 0.48 
0.73 0.31 
0.86 0.71 
0.78 0.60 
0.80 0.42 
0.82 0.44 
0.76 0.90 
0.74 0.79 
0.74 0.81 
0.61 0.90 
0.70 0.39 
0.45 0.79 
0.60 -0.17 
0.85 0.86 
0.52 -0.18 _ 
0.86 -0.56 
0.73 0.41 

(c) YIELDl, F=4, multiple regression model 
R2=O.673; F=8.21; P>F=O.OOOI 

B value F P>F 

0.000 
-0.353 7.84 0.0099 
-0.502 11.60 0.0023 
-0.455 12.54 0.0017 
-0.443 8.62 0.0072 
-0.356 8.16 0.0087 
0.512 12.29 0.0018 
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Some of the counties correlated better over the verification period than the calibration period. 

These were mainly Central Canterbury counties which comprise the largest part of the Canterbury 

wheat growing district. The poorest was Waimate, which is an obvious anomaly. Ovemll the 

yield P.C.l model was the only one that verified well. 
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The results of the multiple regression show a negative influence of winter rainfall and spring 

temperature and a less marked positive influence of summer temperature. The second P.C. for 

summer temperature (SUTEMP2) had positive loadings on Balmoral and Ashburton climate 

stations, the latter representing the main wheat growing county. 

The results are generally consistent both with previous research and with results from the district 

analysis. A cooler, drier winter appears to be favourable for autumn sown wheat. This is certainly 

reflected in the strong negative effect of winter rainfall, with the first two winter rain P.C.s gaining 

entry to the model. The strength of the relationship with spring temperature is also shown with 

inclusion of all three P.C.s in the regression model. 

There is an apparent secondary effect with summer temperature. With a positive loading for 

Ashburton climate station it is possible that warm conditions over the ripening and harvest period 

are an important determinant of yield in this, the principal growing area. 

The climatic factors limiting to wheat yield appear to have changed relatively little over the last 

one hundred years in Canterbury. It is also important to note the consistency with which South 

Canterbury appears anomalous, both with the climate data and the yield data. There is an apparent 

climatic connection with the anomalous yield response as shown by the poor verification of the 

P.C.l modelfor Waimate county. 

7.7 Drought in Canterbury 

7.7.1 Definitions of drought 

Drought has numerous definitions. It can be generally classified as a period of moisture 

deficiency. Maunder (1983) pointed out the required size of the deficiency is determined by the 

season, geographic location and activity affected. Human perceptions playa big part in 

determining what constitutes a drought. A warm, dry summer has a totally different meaning to a 

farmer and a holiday maker for instance. 

The various definitions of drought are put into four main classes, as summarised by Finkelstein 

(1971). These are :-

1. Absolute and partial drought. These are British definitions. An absolute 

drought is a period of 15 days without any appreciable rain. 

2. Broader definitions which may refer to rainfall being below a specified 

percentage of normal over a period of a few months. 

3. Defmitions which refer to a period of moisture deficiency in the soil. 
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4. Definitions which refer to the effects of drought. 

In more recent years the N.Z. Met. Service has adopted a soil moisture balance approach to 

defining agricultural drought. A description of their approach and summary data has been 

published (N.Z. Met. Service, 1986). Rainfall and evapotranspiration data are used with an 

assumed available water capacity for the soil. A fairly straightforward budgeting approach is used 

to determine when the soil is in deficit and when it is at or below wilting point. The number of 

deficit days at or below the wilting point are an often used index of agricultural drought. 

7.7.2 Spatial variation in Canterbury 

Deficit day data, with an assumed available moisture capacity of 75 mm were obtained from the 

N.Z. Met. Service. The data used were for nine Canterbury climate stations ranging from 

Balmoral in the north to Waimate in the south. 

A spatial analysis of this data was carried out using P.C.A. to see how consistent patterns of 

variability were with the observed climatic variables. The years examined were for the period 

1955-1975. Seasonal totals were derived and analysis was carried out for autumn, spring and 

summer. There were no recorded deficit days recorded over the winter. An analysis of these three 

seasons combined was also carried out. Eigenvectors from the analysis of all seasons combined 

are given in Table 7.7.1. 

Table 7.7.1 

Eigenvectors from P.C.A. of deficit days, 1955-1975 

Climate station PRINI PRIN2 PRIN3 PRIN4 

Balmoral 0.317501 -0.035050 0.565585 -0.572031 
Ashley forest 0.342888 -0.179461 0.274881 -0.231762 
Darfield 0.349825 0.180706 -0.236440 -0.121657 
Christchurch airport 0.343993 -0.364400 0.059785 0.289730 
Christchurch 0.334827 -0.404991 0.096720 0.407431 
Lincoln 0.355968 -0.160268 -0.219021 0.206948 
Winchmore 0.354605 0.187121 -0.405306 -0.110118 
Ashburton 0.348410 0.272639 -0.360316 -0.237197 
Waimate 0.234426 0.708571 0.440058 0.493059 

For all analyses the first P.C. accounted for from 72 to 78% of the variance. Weightings were 

similar for all districts, with Waimate appearing as a slight anomaly. 

In all cases P.C.2 accounted for 9 to 11% of the variance. In all seasons and overall there was a 

consistent and strong contrast between Waimate and Christchurch. The Rakaia river appears to be 

a general transition zone, with Ashburton and Winchmore associating with Waimate, and Lincoln 
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associating with Christchurch. An exception was Darfield, inland from Christchurch which 

associated with the south. This result is generally consistent with the dominant sub regional 

response areas apparent from the analyses of other climate variables, in section 7.5. 

A pattern more similar to Sturman's (1986) result with rainfall tended to come through in PRIN3 

in individual seasons, and more clearly in PRIN4 in the overall analysis. 

A clearer pattern would be apparent with a greater spatial representation, but it tends to reinforce 

the view that there are quite strong mesoscale differences in climatic response between the 

Christchurch locale and South Canterbury. These tend to outweigh the similarities in response. It 

should be remembered however that most of the variance with all variables was accounted for in 

the ftrst P.C. and that these mesoscale contrasts are secondary and tertiary response characteristics. 

7.7.3 Analysis of low rainfall years 

Analysis of rainfall data can also give indications of drought. Table 7.7.2 summarises the 10 

percentile annual rainfall for Waimate and Christchurch. Rainfall recording did not begin at 

Waimate until 1898. Taking this into account the two driest years at Waimate correspond to the 

two driest at Christchurch this century. The only other 10 percentile dry year that appears for both 

is 1931. The suggestion is that drought becomes a regional phenomenon in very dry years. In 

other dry years the severity of the drought tends to vary within the region. In most years a 10 

percentile dry year at one station is matched by a below average rainfall year at the other. 

An analysis of Canterbury drought by Maunder (1983) showed that dry periods can become very 

persistent in this region. This was conftrmed by an analysis of the recent Canterbury drought 

which began in November 1987 and persisted through at least to late autumn 1989. The analysis 

was carried out in the spring of 1988. It showed that of the 10 percentile dry years at Christchurch 

only two out of twelve had a wetter than average summer following the dry spell. In the four 

driest years the drought persisted through the summer. At the time of this analysis the year was 

the driest to date on record. Assuming that the drought persisted to the end of December the 

analysis suggested that there was only a 17% chance of a wetter than average summer. If it 

persisted to be the driest year on record then there was a zero chance of a wetter than average 

summer based on historical patterns. Looking at the following autumn there was no consistent 

pattern, with an equal chance of it being drier or wetter than average. 

This analysis was also generally consistent with N.Z. Met Service predictions based on the 

Southern Oscillation Index. The drought persisted through the summer, and to the end of April 

1989 rainfall was still below average. 



Year 

1969 
1915 
1931 
1906 
1907 
1973 
1948 
1910 

Table 7.7.2 

10 percentile rainfall (annual totals) 
for Christchurch and Waimate 

Waimate Christchurch 
10 percentile~490mm 10 percentile~81mm 

Annual rainfall Year Annual rainfall 

371 (379) 1897 304 
400 (404) 1878 363 
429 (452) 1969 379 (371) 
450 (758) 1890 398 
450 (497) 1915 404 (400) 
450 (494) 1964 420 (497) 
451 (492) 1971 441 (613) 
487 (640) 1958 444 (563) 

1931 452 
1982 461 
1880 476 
1933 479 (560) 
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NOTE: bracketed values are totals in the same year for the station with which comparisons are 
being made i.e.: 
Waimate (Christchurch); Christchurch (Waimate) 

Although droughts of this severity are rare eventS in Canterbury, dry years are a recurrent 

phenomenon which can lead to persistent periods of below average rainfall. Apart from these 

persistent droughts there can also occur shorter periods, of a month or more, of below average 

rainfall. In spring and summer months this can lead to a high number of deficit days. If this 

occurs over critical moisture demand periods for a particular crop then there can be potential for 

significant yield reductions. 

7.8 Impact of drought in Canterbury 

7.8.1 Introduction 

Both grain crops and pipfruit show sensitivity to periods of low rainfall in Canterbury. This was 

discussed briefly in section 7.3 and shown in the empirical models developed in Chapters 5 and 6 

and the more detailed analysis of Canterbury wheat yield in section 7.6. 

This section explores the impact of drought in more detail by assessing relationships between 

deficit days, as an index of agricultural drought, and yield. The yield data were the same as used 

in the district regression analyses, with trend removal carried out using a quadratic function. 

Deficit day data were for Christchurch. Crops examined were wheat, oats, barley, apples and 

pears. The period of analysis for the grain crops was 1930 to 1983 and for pipfrnit it was 1941-

1965. Simple correlation analysis was carried out. Results are shown in Table 7.8.1. 



Month Wheat 

Jun -0.049 
Jul 0.000 
Aug 0.000 
Sep 0.267+ 
Oct 0.320* 
Nov -0.116 
Dec -0.040 
Jan -0.057 
Feb -0.041 
Mar 
Apr 
May 

NOTE: 
+ =10% significant 
* = 5% significant 
**= 1 % significant 

Table 7.8.1 

Correlation of yields with monthly deficit days 
and rainfaU and temperature for wheat 

Oats Barley Apples Pears Wheat 
vsrain 

-0.129 -0.066 0.000 0.000 -0.142 
0.000 0.000 0.000 0.000 -0.311* 
0.000 0.000 0.000 0.000 -0.253+ 

-0.032 0.089 -0.100 0.103 -0.326* 
0.183 0.430** 0.030 0.089 -0.022 

-0.303* 0.132 0.209 0.148 0.186 
-0.337* -0.326* 0.340+ 0.080 0.021 
-0.169 -0.106 -0.334 -0.370+ 0.119 
-0.023 0.210 -0.059 -0.063 0.028 

-0.224 -0.296 
-0.100 -0.205 
0.103 0.275 

Apples are not quite 10% significant in January 

7.8.2 Grains 
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Wheat 
vs temp. 

-0.044 
-0.108 
-0.151 
-0.236+ 
0.009 

-0.189 
-0.233 
-0.212 
0.047 

The result with wheat initially appeared anomalous. It was clarified by carrying out a correlation 

analysis of yield with rainfall and temperature. Regression analysis of wheat crop-climate 

interactions in Canterbury gave winter rainfall and spring temperatures as having significant 

negative relationships with yield. This is also apparent from the correlation coefficients. It further 

appears that a wet winter followed by a wet spring could have a negative effect on yield. Dry 

conditions in spring, particularly after a wetter than average winter appear preferable. This is at 

least true in September and October, although the correlation with rainfall is very weak in the 

latter month. At the same time, cooler than average temperature conditions are preferred, 

particularly in September. The strength of the temperature relationship in the regression analyses 

suggested that this is a highly temperature sensitive period. Although the preference is for drier 

conditions, above average temperatures, particularly if associated with warm Nor'west conditions, 

could soon lead to physiological stress and a yield depression. As summer approaches lack of 

rainfall and warmer temperatures can be limiting, but the relationships are weaker. 

The results with oats and barley are consistent with those from the regression analyses. Oats are 

particularly sensitive to soil moisture deficit conditions in November and December. For barley 

the only month when yield is affected by a high number of deficit days is December, which was 

the critical month in the regression analysis and in the study of Malcolm (1947). Of interest with 
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barley is a highly significant positive correlation with October deficit days. It appears that in early 

developmental stages water is generally not limiting and that warm, dry conditions are preferred. 

Water becomes limiting at the crucial flowering stage, but as shown previously dry conditions are 

preferred nearer to harvest, shown by a weaker positive correlation with February deficit days. 

7.8.3 Pipfruit 

The shorter time series of data for apples and pears may in part explain the relatively lower 

significance of the correlations. These crops are highly sheltered, both with planted shelterbelts 

and some self sheltering amongst established trees. This would provide benefits in terms of 

moisture conservation. Their deeper and broader root systems would allow them to draw more 

moisture from the soil. However a high number of deficit days in January can be limiting to both 

crops. With apples the relationship is not quite 10% significant. It is probable that increased use 

of irrigation in latter years, particularly in the Loburn area, where lack of irrigation often led to 

low yields, has reduced the impact of moisture stress in this month. However as the recent 

Canterbury drought has shown, water for irrigation can become a scarce resource in persistent 

drought periods. Some fruit growers in the Lobum area were affected in the recent drought with 

water restrictions imposed on them as their irrigation source, the Ashley river, was reduced to sub 

optimal flows. 

Both apples and pears show a weak positive relationship with November deficit days, and apples 

show a significant positive relationship in December. The preference seems to be for relatively 

dry conditions in early fruit development ~tages. 

Lack of soil moisture appears to be detrimental over the harvest period, in March and April. 

Rainfall at this time would delay harvest and allow the fruit to size up more, being of particular 

benefit to mid season varieties. 

7.9 Summary 

This Chapter has provided a broad review, and in depth analysis of the Canterbury agroclimate 

resource. Historically the climate and soils of this region have been exploited for the growing of 

temperate grains. Horticulture has been a secondary activity, mainly catering to local demand. 

Patterns of land use haven't changed dramatically since the earliest white settlers arrived in the 

mid 19th century. 

The region is subject to climatic extremes, from warm, dry northwest winds to very cold, showery 

southerlies. The transition between the two can be very rapid. Longer periods of extreme 

conditions, such as drought, are also recurrent phenomena. The impact of the recent drought in 

Canterbury showed that lessons from the past have not been fully learnt. 
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A review of spatial variability in Canterbury climate highlighted five main geographic divisions, 

covering areas from the plains to inland basins. The Canterbury Plains appear to be climatically 

homogeneous. They are to quite a degree, as reflected in the results of Salinger's (1981) spatial 

analysis. Both the work of Salinger (1981) and Sturman (1986) highlighted significant, but 

different sub regional responses to rainfall. 

Spatial analyses of a range of climate variables were carried out Results with temperature, rainfall 

and sunshine data showed a general North and Mid Canterbury versus South Canterbury contrast 

Some anomalous stations were apparent, particularly with temperature and frost data, highlighting 

the important effects of site location and microclimate. Closer analysis of the rainfall data showed 

the north, south contrast to be largely a result of local geographic features. The contrasts were 

greatest between climate stations in the locale of Banks Peninsula and those in the locale of the 

southern foothills. Generally the divisions were consistent with those identified by Salinger 

(1981), although a tertiary rainfall response regime, more consistent with Sturman's (1986) result, 

was also apparent. 

Spatial analysis of yield and climate data for wheat in Canterbury reinforced results from previous 

work and those from the district analysis in Chapter 5. The verification procedure showed 

Waimate to be anomalous in its yield response to climate. This reinforced results from the spatial 

analysis of climate data. 

Drought was identified as a recurrent phenomena in Canterbury. Spatial analysis of deficit day 

data showed a pattern consistent with analysis of other climate variables. This result was 

reinforced by a review of 10 percentile rainfall years in Christchurch and Waimate. It appeared 

that drought only becomes a regional phenomenon in the driest of the dry years. However a 10 

percentile dry year at one station is almost always associated with a drier than average year at the 

other. Further analysis showed the recurrent droughts to be persistent. This was used as the basis 

for prediction for the 1988-1989 summer. 

As a final step time series of yield data were correlated with time series of deficit day data for 

Canterbury. This provided a confmnation of what had been deduced from the empirical crop­

climate analyses and further highlighted the significant impact of drought on crop yields in this 

region. 
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CHAPTERS 

The Value of Shelter: review and methods 

8.1 Introduction 

The importance of climate to food production in New Zealand is unquestioned. Relationships 

between temperature and rainfall were examined in Chapters 6 and 7. A more detailed evaluation 

of yield responses to climate in Canterbury was carried out in Chapter 8, particularly with wheat. 

From these analyses it is apparent that periods of water deficit, particularly if associated with 

periods of higher than average temperature, can be limiting to a range of crops. Different crops 

show greater sensitivity to climate at certain developmental stages, which on the basis of these 

findings, normally coincides with periods with the greatest potential for agricultural drought. 

There are few options available to both arable farmers and fruit growers to respond to the inherent 

variability of climate. Sturrock (1984) commented that shelter and irrigation are the main options 

available to farmers for modification of the local environment. The value of shelter to primary 

production in New Zealand was highlighted in an excellent report by the National Shelter Working 

Party, edited by Sturrock (1984). Shelter has long been recognised as essenti~ for high value 

horticulture crops, but there has been greater difficulty in convincing arable farmers of the 

benefits. 

In Chapter 7 it was shown that drought is a recurrent and persistent phenomenon in Canterbury, as 

it is in other east coast regions of New Zealand. Shelter offers considerable potential to modify 

both the local and regional environment and provide greater security in terms of yield benefits and 

other flow on effects. A brief review of the physical and biological benefits of shelter is given. 

This provides the background for a field based study on shelter in Canterbury, which is then 

described. 

8.2 Effects of shelter on microclimate 

The microclimatic and yield effects of shelter have been well reviewed and discussed by van 

Eimem et al (1964), Grace (1977) and more recently Rosenberg et al (1983). A brief review is 

given here. 

The effect of shelter on any climatic variable is subject to the influence of a range of factors. The 

main causes of variation are orientation and height of the shelter, position of measurement in 

relation to the shelter, as well as season, time of day and prevailing weather. It is also important to 

realise that the microclimate of a particular site has a regional, and even global context to it. Much 

of the research with shelter has ignored, or overlooked the importance of this regional and global 

context. 
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8.2.1 Wind 

The most direct effect of shelter is to reduce wind speeds, mostly in the lee but also to a lesser 

degree to windward (McNaughton, 1986). The direct benefits of this can be a reduction in 

physical damage to plants, reduced wind erosion and for fruit crops a more conducive environment 

for pollination by bees. 

Few studies have examined the regional effects of shelter. Jensen (1954) compared windspeed 

across an open, flat terrain and a rougher terrain with many hedgerows. The latter showed a 

greater wind reduction near the ground. It was considered by Kaiser (1959) (from van Eimern et 

aI, 1964) that extensive shelter systems increase the roughness of the ground surface as a whole 

and that the resistance is greater than that of an unprotected surface. Guyot and Seguin (1975, 

1978) examined in detail the interactions between microclimate and the regional effects of a 

sheltered landscape. This was initiated by concern over the impact of tree hedge removal from the 

Bocage landscape in Brittany, France on both local and regional climate. The local windspeed 

reduction was found to be larger than that generally observed from single shelterbelts, which was 

thought to be related to the roughness of the landscape. Examination of the vertical wind profile 

in sheltered areas showed evidence of the effects of regional roughness in the upper profile, and of 

local site characteristics in the lower profile. This "kink" in the profile was also evident in the 

measurements of Cherry and Smyth (1984) at Lincoln, New Zealand. More recently McAneney et 

al (1989, in press) were unable to reconcile their windrun measurements at a fIxed height with the 

work of Guyot and Seguin (1975). The measurements at a fIxed height were taken over a six year 

period when shelter trees were growing. Examination of Fig. 3 in Guyot and Seguin (1975) shows 

a transition height of approximately 7m for a large fIeld. Assuming that the orchard site was in a 

similar environment at the time of orchard establishment it would have already been inside the 

local zone, which would explain the linear relationship shown in McAneney et al's (1989, in 

press) results. Their result is therefore not inconsistent with the work of Guyot and Seguin (1975) 

or Cherry and Smyth (1984). Concurrent vertical proflle measurements may have demonstrated 

similar profile kinks, and probably a steady increase in height at which the sheltered site was 

'decoupled' from the surrounding environment. This is supported by research presented here. 

8.2.2 Temperature 

The temperature range appears to be greater in sheltered environments. This is attributed to 

generally higher maximums and sometimes lower minimums. Both can be attributed to reduced 

turbulent mixing. In the daytime this results in greater retention of sensible heat at or near the 

surface. On clear nights inversions can be intensified leading to lower minimums in sheltered 

areas. Increased soil temperatures have been generally documented in sheltered sites and are 

supported by the findings of McAneney et at (1989, in press). 
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An important observation has been that differences in temperature gradients between sheltered and 

exposed sites are greatest near to the ground, becoming slight at or near standard screen height. 

This led both Rosenberg (1966a) and Guyot and Seguin (1974) to conclude that screen 

measurements are not a true representation of surface modifications of shelter. 

8.2.3 Relative humidity and vapour pressure 

Intensified vertical gradients of humidity and vapour pressure have also been commonly observed 

in sheltered environments (Rosenberg et aI, 1983). This has been attributed to reduced 

transportation of water vapour from the surface. Differences in relative humidity can mainly be 

related to differences in the temperature regime. 

8.2.4 Evaporation 

One of the principal conclusions of van Eimem et al (1964) was that a major benefit of shelter was 

the direct reduction in soil moisture evaporation, as a result of reduced wind speeds. A later 

review by Grace (1977) considered this effect to be inconclusive on the basis of research done 

over the previous decade. More recently Rosenberg et al (1983) have stated that all reviewed 

studies show that with less wind there is reduced evaporation. McAneney et al (1989, in press) 

found no significant differences in pan evaporation between sheltered and exposed sites. This was 

attributed to the oceanic locale and the absence of large mountain ranges in Northland, New 

Zealand, where the measurements were taken. 

In a sheltered tamarillo (Cyphomandm betacea) orchard in Northland Judd and McAneney (1984) 

found an apparent reduction in the influence of advection on evaporation, with a tendency toward 

the equilibrium rate. This is defined in section 8.5.4. A later study in Nelson by Judd et al (1986) 

showed advective enhancement of evaporation to contribute from 21 to 49% of daytime water use 

with well sheltered kiwifruit (Actinidia chinensis) plants. This was attributed to the combined 

effect of regional topography, droughted pasture upwind of the orchards and very windy 

conditions over the period of measurement. They considered their results to represent the likely 

upper limit of the contribution of advection to water use by kiwifruit under New Zealand 

conditions. However they suggested that the Priestley-Taylor formula (<<=1.26) be used in all but 

strongly advective conditions in New Zealand. 

8.2.5 Radiation 

Generally only slight differences in net radiation have been observed and on a daily basis could be 

considered as the same between sheltered and unsheltered sites, assuming that measurement is not 

made directly in the lee of the shelter. A slight increase in infrared loss was observed to be 

compensated by an equal increase in absorption of solar radiation by Guyot and Seguin (1978). 

This latter effect was attributed to reduced regional albedo. 
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8.2.6 CO2 concentrations 

More rarely measured are CO2 concentrations, the most frequently quoted study being that of 

Brown and Rosenberg (1972) whose results showed very slight differences in CO2 concentration 

to occur. This has implications in terms of photosynthetic activity and consequently yield. The 

literature on yield effects almost universally documents yield increases with shelter. Given little 

difference in CO2 concentrations between sheltered and unsheltered sites the suggestion is that the 

available raw materials for growth (i.e. H20 and CO2) are more efficiently exploited in sheltered 

environments, as generally concluded by Rosenberg et al (1983). 

8.3 Biological effects of shelter 

As the empirical analysis of crop-climate interactions showed, crops are variable in their response 

to climatic factors, both spatially and temporally. The temporal response depends on crop 

phenology and the physiological status of the plant at a time of potential environmental stress. All 

crops examined showed critical moisture and temperature sensitive periods. 

Sturrock (1984) noted that it is a common misconception that increases in wind lead to greater 

water use by plants. He identifies the important mechanism as being the effect of wind speed on 

stomatal closure. Increases in wind speed increase the potential for greater water use by the plant. 

The plant response under such conditions is to close or partially close its stomata. Sturrock (1984) 

stated this "restricts photosynthesis, translocation of carbohydrates and growth regulators, uptake 

of minerals from the soil, and nitrogen metabolism, all of which impair plant vigour and growth." 

Rosenberg et al (1983) concluded that water use efficiency of plants is either improved or 

unaffected by shelter, with the improvement greater in dry years and in periods of strong sensible 

heat advection. This was considered to be the principal benefit of shelter in arid and semi arid 

areas. Other benefits in both arid and humid regions include rapid seed germination, vigorous 

vegetative growth and physical protection (Rosenberg et aI, 1983). The literature almost 

universally documents increases in yield in sheltered environments (Appendix D) and this was 

attributed to improVed water use efficiency by Rosenberg et al (1983). 

Changes in the thermal regime resulting from shelter were considered to potentially have a 

significant influence on the range of crops that could be grown (McAoeney et al, in press). Their 

study was carried out in the warm temperate to subtropical Northland region of New Zealand. In 

areas such as Canterbury, where the incidence of frost in winter is high, an increase in 

continentality might be expected with shelter. This would have important beneficial effects for 

temperate crops which require cool winters for winter chilling and warm summers for fruit 

development and maturation. 

Another important consideration is the potentially synergistic effect of shelter in combination with 

well timed irrigation. Both crop water use efficiency can be potentially improved, as well as 



138 

production, to a greater degree than would be predicted by adding the individual effects of these 

factors. This effect is well reviewed by Sturrock (1984). 

The value of shelter is widely recognised for horticultural crops in New Zealand. The principal 

benefits to horticulture from shelter are protection from the wind and the warming effects 

(Sturrock, 1984). Higher temperatures in spring will hasten gennination of spring sown crops and 

also the early growth flush of deciduous fruit trees. Temperature is important for pollinating 

insects. As discussed in Chapter 6 warm temperatures in spring are also important for pollen tube 

growth in pipfruit. Use of irrigation, in conjunction with shelter, is widely recognised with 

horticultural crops. Sturrock (1984) commented that the high capital outlay required for both is 

one of the factors that has inhibited expansion of horticulture in Canterbury. 

Most of the measured yield responses to shelter have been documented with arable crops. Use of 

shelter in cropping areas was largely a response to widespread problems with wind erosion of soil. 

Extensive plantings of shelterbelts occurred in the Great Plains region of the U.S. after the 

combined drought and wind erosion problems of the 1930s. In New Zealand there was a similar 

response to wind erosion problems with the establishment of the National Water and Soil 

Conservation Organisation. In more recent years questions have been raised about the yield 

benefits with arable crops, which has been the stimulus for much research, notably by Rosenberg 

in North America and Sturrock ill' New Zealand. Of relevance to this current research are the field 

trials carried out by Sturrock (1981, 1983) with spring sown oats and barley in Canterbury. The 

oat crop showed an average yield increase of 35% up to six times the height to the lee of the 

shelter, in a below average rainfall year. Barley also showed a yield increase with shelter. 

Responses are often variable, with yield reductions in some cases, as Sturrock (1984) noted. 

Generally the benefits to cropping appear to be greater in drier than average years. 

8.4 A regional perspective 

The use of trees for shelter in New Zealand was fonnalised by the passing of an Act of Parliament 

in 1941 which made provision for the planting of trees for wind and water erosion control. 

Canterbury is a region in New Zealand that is particularly vulnerable to wind erosion. This 

particularly occurs in periods of Persistently low rainfall. Soils are particularly vulnerable in late 

spring and summer when there is a greater frequency of drying nor'west winds and a high 

potential for soil moisture deficit conditions. 

The North and South Canterbury Catchment Boards have been particularly active in promoting the 

planting of trees for shelter. There continues to be considerable resistance from farmers whose 

obvious concerns are with loss of land, interference with current activities and establishment and 

maintenance costs. As will be discussed in Chapter 10 there are more than crop yield benefits 

attributable to shelter. In the past many shelterbelts have been poorly designed and managed and 
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therefore their potential hasn't been fully realised. More recently loss of Government subsidies 

and an economic downturn have discouraged farmers from planting trees. This has occurred in the 

driest period on record in Canterbury. This situation has again highlighted the need for well 

planned shelter in Canterbury. 

In section 8.2 the review of the wind effects of shelter were discussed. Particularly of interest is 

the regional effect. The impression gained was that a regional mosaic of shelter can have a 

potentially significant effect on the region as a whole. Zakharov (1965), quoted in Miller (1981), 

suggested that where shelterbelts occupy 5% of the land area crop damage by wind can be reduced 

to nearly zero. In North Canterbury, out of an area of 370 000 ha of arable land 972 Ian of shelter 

had been planted by 31 March 1984 (Wethey, 1984). Assuming an average shelterbelt width of3-

5m this_amounts to 292-486 ha or approximately 0.1 % of the arable land area, a tenth of the 

desired regional total (Wethey, 1984) and well below the optimum given by Zakharov (1965). 

The work of Guyot and Seguin (1975) in particular provided the stimulus for the current study. 

Although the field measurements were of shorter duration the general principles applied were 

similar. The primary interest was to contrast different sites of differing exposure in an attempt to 

assess the degree of decoupling that might occur from the regional climate. Each site was 

considered within the context of the regional environment as measured at a well exposed reference 

site. The physical measurements at each site are considered within the context of the effects of 

agricultural drought in Canterbury, as examined empirically and in the literature on shelter effects 

on yield. 

8.5 An experimental program 

8.5.1 Introduction 

It was with a regional perspective in mind and a concern as to how individuals could respond to 

uncertainty that a field study of shelter was initiated. This was considered within the context of 

regional and national crop-climate interactions explored in Chapters 5 to 7, with particular 

attention to the persistence of drought in Canterbury. A principal concern was to explore one 

possible way in which individuals can respond to the inherent variability of climate which may 

also currently be associated with a period of climatic change. 

The initial aim was to take simultaneous measurements from a 20m portable mast and a fixed 30m 

mast at the now closed Lincoln College climate station. This would have allowed for 

simultaneous comparisons of wind and temperature profiles. Unfortunately the instrumentation 

and data retrieval system for the 30m mast was not operational for the field work. This problem 

was overcome by selecting the Broadfields, Lincoln climate station as a reference site. Location 

of the mast at this site allowed for characterisation of the wind profile and calibration of the 

portable mast against the climate station. On the basis of these relationships it was then possible 

to make comparisons between the other, remote, sites and the Broadfields. reference, site. Apart 
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from Broadfields, which is an exposed site, sites chosen were the Lincoln College Plant Science 

research plots (moderately exposed), the Lincoln Horticultural Research Area (well sheltered) and 

the new Lincoln Springs orchard (moderately sheltered). All sites chosen were grassed. The mast 

was located at each site for a single period of approximately one month. Details are given in 

Chapter 9. 

Variables compared were mean, maximum and minimum temperatures, wind speed at 6m, 

saturated vapour pressure, vapour pressure and vapour pressure deficit, and evapotranspiration. 

Organisation of the data and the statistical basis for comparison is presented in sections 8.5.5 and 

8.5.6. The characterisation of wind profiles and estimation of evapotranspiration warrant further 

discussion, which is given in sections 8.5.3 and 8.5.4 respectively. 

8.5.2 The mast and data recording 

A 20m portable mast was obtained on loan from the Mechanical Engineering Department, 

Canterbury University. A diagram of the mast and instrumentation and an accompanying 

photograph are given in Fig. 8.5.1. Anemometers were readily available as were temperature 

probes, net radiometer and relative humidity probes. Radiation shields for some of the temperature 

probes had to be built as did aspirated screens for the relative humidity probes. A wind vane was 

also built to allow characterization of the main wind sectors. Laboratory calibration of the 

temperature probes and anemometers was carried out, with a final field calibration of the former. 

The commercial calibrations of the RH probes and the net radiometer were used. The former were 

checked in the field against a whirling psychrometer. A discussion of instrument calibration and 

measurement is presented in Appendix E. A programming fault led to loss of net radiation data 

for the first measurement site. Values were estimated based on a derived relationship between net 

radiation and solar radiation. This is also described in Appendix E. 

For data recording and storage a Campbell Scientific CR7 data logger was used. An execution 

interval of 10 seconds was chosen with hourly averages going to final output. Data were 

automatically downloaded to a C90 audio tape when the output buffer was full. At the end of 

measurement at each site data were downloaded through a Campbell Scientific interface to the 

V AX computer system at Lincoln. Data were then reformatted courtesy of a Fortran program 

from Peter Carran, NZAEI. This then allowed for data manipulation and analysis with the SAS 

and Minitab software packages. 

8.5.3 Wind profile characterisation 

The aim of the wind speed measurements was to determine the proftle characteristics of individual 

sites, for the main wind sectors and for each site as a whole. Comparisons between Broadfields 

daily mean wind speed (6m) and the mast (6m estimated) were also made. 
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It was anticipated that the upper part of the profile would give an indication of regional surface 

roughness and the lower part, local site roughness, based on the results from Guyot and Seguin 

(1975) and Cherry and Smyth (1984). The roughness length is characterized by the equation: 

Uz = [ ~* 1 1n [ =0 1 

where Uz is the mean wind speed at height z, k is von Karmen's constant, U* is the friction 

velocity and zo is the roughness parameter. 

Alternatively, mean wind speed at each height can be plotted against the logarithm of height and 

straight line relationships extrapolated to give the roughness parameter at zero wind speed. The 

presence of two straight line relationships would be representative of the transition from regional 

to local surface effects. 

Although instantaneous measurements were not possible from a reference and remote site 

comparisons are still possible. The important limitation can arises from differences in the 

frequency and strength of wind from different sectors over different measurement periods. Overall 

site comparisons should therefore be made with a greater degree of caution than those for specific 

wind sectors. 

8.5.4 Evapotranspiration 

Evaporation and evapotranspiration are well reviewed by Rosenberg et al (1983). This section 

gives a brief introduction to evapotranspiration estimation under New Zealand conditions. 

Coulter (1975) examined methods for prediction of evapotranspiration from climatological data. 

He found the Penman combination method to agree well with estimates based on evaporation tank 

data. The Priestley-Taylor method was not evaluated in this study. Oothier et al (1982) measured 

evapotranspiration over a number of different crops near Palmerston North, New Zealand. They 

contrasted values derived from the Bowen ratio-energy balance method with daily estimates based 

on the Penman and Priestley-Taylor formulae. Both gave a similar level of accuracy, with errors 

of 15-20% for daily estimates. On the basis of the similar performance of these two methods of 

estimation it was concluded that the latter was more desirable because of its lower data 

requirement A later study by Green et al (1984), in the same area over mixed pasture, confmned 

the usefulness of the Priestley-Taylor method. They used a locally calibrated constant (cr-1.21) 

for their estimation of evapotranspiration. Both studies were careful to point out that the 

reliability of meteorologically based formulae diminishes under conditions of water stress, most 

particularly in the presence of significant advection. 

Comparisons between measured and estimated evapotranspiration have also been made in 

Canterbury by Jamieson (1982a) over a barley crop. The Priestley-Taylor estimates based on 
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standard meteorological data, underestimated actual accumulated evapotranspiration by 9%. The 

Penman estimates overestimated by 17% as shown in a correction to the original paper 

(Jamieson,1982b). It was noted that under conditions of strong advection in Canterbury 

(associated with nor'west days) the aerodynamic term in the Penman method will become large 

due to the high vapour pressure deficit on such days, of the order of 30 mbar. The Priestley-Taylor 

method is not so strongly affected due to the absence of an aerodynamic term. Earlier in his thesis, 

Jamieson (1980) discussed in more detail the effect of high temperature and high vapour pressure 

deficit conditions on the ratio between actual and estimated evapotranspiration. It was observed 

that such conditions were associated with both a reduction in transpiration of the crop and an 

increase in estimated (or potential) evapotranspiration. The result of such conditions therefore is 

generally a sharp reduction in the ratio between actual and estimated evapotranspiration. It would 

seem that this reduction is more pronounced with the Penman than the Priestley-Taylor method, 

due to the effect of the aerodynamic term as discussed earlier. 

Estimates of evapotranspiration from both the Penman and Priestley-Taylor methods were 

calculated for the field sites. In the absence of measurement of actual evapotranspiration it was 

decided to be consistent in the use of the empirical constants for both of the equations. This was 

decided in light of the previous research done in New Zealand. In application of the Penman 

formula the aerodynamic term has essentially been that originally used by Penman (Coulter,1975, 

Clothier et al,1982, Jamieson,1982). This is of the form: 

Ea = f(u).vpd = 0.26(1 + 0.5u)(es - ea) 

where Ea is the aerodynamic term, f(u) is the wind function with wind speed u in ms-1 and (es -

ea) is the vapour pressure deficit. The Penman formula is then: 

ET = s(Rn - G) + ~Ea 
s + ~ 

where s is the slope of the saturation vapour pressure curve as previously defined, Rn is net 

radiation, G is the soil heat flux and ~ is the psychrometric constant (0.66 mbar • C-1, Monteith, 

1973). 

A constant of or-l.26 for daytime net radiation was used in the Priestley-Taylor equation so that: 

ET = 1.26*s(Rn + G) 
s + "( 

Although strongly advective conditions do occur in Canterbury at times, most particularly with 

nor'westers as previously mentioned, they do not predominate. Any such days are readily 

apparent in the data, represented by high wind speeds, high temperatures (25-30· C, or higher on 

occasion) and a high vapour pressure deficit (around 30 mbar). Estimates based on the formulae 
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given were considered reasonable under all but extreme conditions of advection. As a matter of 

interest an empirical check on the consistency between the two methods of estimating 

evapotranspiration was carried out, using mast data from each site. On the assumption that the 

Penman equation will tend more towards actual evapotranspiration because of the aerodynamic 

term, a regression was carried out between Penman estimates and equilibrium values. Equilibrium 

evapotranspiration, ETeq' is defmed in Rosenberg et al (1983) as :-

ET = s (Rn + G) 
eq s + "( 

It had been intended to check estimates from both the Priestley-Taylor and Penman equations 

against Bowen ratio values, but the RH probes were found to be not sufficiently accurate to derive 

such values. 

8.5.5 Organisation of the data 

Hourly means of all measurements were collected and recorded on the CR7, as mentioned earlier. 

Because the Broadfield climate station data is collected only once a day a rational method for 

comparing variables from the remote sites with the climate station data was required. This section 

describes how the data were organised. Individual variables had to be tailored to match the 

climate station as much as possible. 

The station data is read at 9.00 am each day, or 8.00 am N,Z. Standard time when daylight saving 

is in force over the summer months. Wind run at 6 m and maximum temperature are assigned to 

the previous day. Minimum temperature is assigned to the current day and daily mean temperature 

is calculated from the daily minimum and maximum. There is the possibility that the recorded 

maximum and minimum are not the true values for the days to which they are assigned. This arise 

occasionally when there is a deviation from the normal diurnal variation of temperature, such as a 

warm Fohn wind occurring in the morning prior to the reading time. Vapour pressure is calculated 

from the 9.00 am readings of dry and wet bulb temperatures, such that 

where ea is the actual vapour pressure, es(T w) is the saturated vapour pressure at the wet bulb 

temperature and "( * is the psychrometric constant given a value of 0.85 for screen measurements 

above 0 • C. Td and Tw are the dry and wet bulb temperatures respectively. As will be seen with 

the results vapour pressure is a fairly conservative value and not necessarily conducive to site 

comparisons. The relative humidity is the ratio between the vapour pressure and the saturated 

vapour pressure. At the dry bulb temperature. 
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The vapour pressure deficit is calculated as the difference between saturated vapour pressure at the 

daily mean temperature and vapour pressure. For evapotranspiration estimation, net radiation is 

normally estimated from solar radiation. Wind run is estimated from the 6 m value. 

Because of the occasional break from the normal diurnal temperature pattern, anomalies were 

apparent when making preliminary comparisons between the Broadfields climate station data and 

the data from the portable mast, for the period during which the mast was located at Broadfields. 

For a better comparison therefore, it was decided to use 24 hr "days" starting at 9.00 am and 

finishing at 9.00 am the next day. Mast temperatures were taken from each 9.00 am to 9.00 am 

period, as were screen minimum and maximum values. For comparison of mean temperatures, 

mast values were averaged over the 24 hour period and the screen values averaged for the same 

period. _ In hindsight it would have been more consistent to average the mast maxima and minima. 

As will be discussed in the next section some anomalies were apparent because of this approach. 

Even greater consistency could have been achieved, as was realised later, by programming the 

CR7 to record hourly maxima and minima. 

A 6 m value for mean wind speed was estimated for each day from the daily mean wind profiles 

for comparison with the station values as derived from 24 hour wind run. Calms were included in 

averaging the mast data as they were implicit in the wind run data. 

Vapour pressure was derived for the mast from the average of the 9.00 and 10.00 am mean 

temperatures, representing the mean of the 8.00 am to 10.00 am period. Saturated vapour pressure 

was calculated from standard daily mean temperatures. The rationale for this was to maintain 

consistency in evapotranspiration estimation, as the latter had as input daylight net radiation data. 

Derived values are routinely calculated by the DSIR for Broadfield, however they were calculated 

again for the purpose of site comparisons to ensure consistency in computation. 

8.5.6 Statistical basis for comparison 

With inconsistencies in instrumentation, in some cases measurement heights and methods of 

averaging, some statistical basis for comparing sites with the reference site was required. The best 

option available was to calibrate the mast against the reference climate station. From this period 

of calibration regression relationships were developed, with mast values used as predictors of 

screen values. This effectively overcame problems associated with differences in instrumentation 

and data recording. Temperature was measured on the mast at 0.56 and 2.58 metres. Data from 

both heights were used as predictors of screen values. Both gave good correlation and therefore a 

single relationship was derived incorporating both as predictors. Simple regression relationships 

were derived for all other variables. 
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Data collected from the different remote sites were then input into the calibration equation, which 

yielded estimated screen values for those sites. These estimated values then provided the basis for 

making a comparison between each remote site and the reference Broadfields site, using estimated 

screen values for the former and recorded screen values for the latter. For each site, estimated 

remote site values were regressed against actual reference site values. Of interest statistically was 

the deviation of these relationships from the relevant I: I relationships, the latter indicating of no 

difference between sites. There are two possible types of deviation: in slope and in elevation. The 

first is examined by comparing the difference in slope between the regression line and the I: I line. 

The second involves comparing the elevation of the regression line with that of the 1:1 line. 

For the comparison of the estimated slope a with the hypothetical slope of PO=I, the appropriate 

statistic is: 

P-l 
se(slope) 

which has a t distribution with df=n-2 if the true slope is P=1. 

For the comparison of the elevations of the regression line and that of the 1:1 line, the appropriate 

statistic is: 

y-x=y-x 

se(y) ~s21n 
which is the difference in elevation at the mean x value, divided by the standard error of this 

difference. This statistic follows a t distribution with df=n-2 if the true difference in elevation is 

zero. 

It was apparent when exploring the regression relationships between estimated site values and 

Broadfleld screen values that outliers were present that were possibly distorting the relationships. 

In statistical terms outliers can exert high leverage on regression lines, particularly those outlying 

along the fitted line, thus affecting the slope. Such data points may carry a small amount of bias, 

but because of their position small changes are significant. Other outliers may not have a 

significant levering effect, but due to a high degree of bias, they can have a significant influence 

on the elevation of the fitted line. Where outliers were suspected of disproportionately influencing 

either the slope or the elevation the raw data were critically evaluated to assess whether this effect 

was true or biased in some way. Most of the examples arose with mean temperatures, with a flow 

on effect on saturated vapour pressure, vapour pressure deficit and estimated evapotranspiration. 

This was the result of the different methods of averaging the raw data, ie a 2-point versus a 24-

point mean. In the extreme cases highlighted here this bias was carried through into the estimated 

screen values for each site. Individual examples are discussed in the presentation of the results. 

Data were only removed where there was a clear rationale for doing so. Often this led to a change 

in significance of the result. While outliers were removed from the regression analyses, the data 

points were included in the appropriate graphs and are clearly indicated. 
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CHAPTER 9 

Results from field measurement of shelter effects 

9.1 Location of the study area and prevailing weather 

Measurements were made within the general vicinity of Lincoln. The Lincoln campus is situated 

16 km from the city of Christchurch. The dominant feature in this area is the Banks Peninsula, 

which is to the east of Lincoln as seen in Fig. 7.2.1. Fig. 9.1.1 shows the Lincoln area, in which 

the field work was carried out. Three of the measurement sites are located within a 1.5 km radius 

of the campus. These are the Broadfield climate station, the Plant Science Department research 

block and the Horticultural Research Area. These sites are marked on Fig. 9.1.2. The fourth site, 

Lincoln Springs orchard, is located 6 km north of the campus, and is indicated on Fig. 9.1.1. All 

lie within a similar climatic zone, with the Peninsula having a significant local influence, 

particularly on rainfall as discussed in section 7.4. 

Of interest is the microclimate of each site and the degree of variability that is present, largely as a 

result of human modification, in an otherwise fairly homogeneous environment. The sites are 

described and results presented in order of time when measurements were made. An exception is 

Broadfield which is described first as the reference site, but was not monitored first 

chronologically. 

The field work began in mid-October 1987. This was a month of above average rainfall. The 

remainder of the measurement period, through until early May, was characterised by drier than 

average conditions. This marked the beginning of what was to become the worst drought on 

record in Canterbury. Temperature conditions were generally mild, with several cloudy months 

lowering the daily temperature range. A dominance of northerlies led to warmer than average 

conditions. The October to December period was characterised by generally cloudy weather. 

January was sunny, followed by a cloudy February. The remainder of the measurement period 

was characterised by mostly mild, sunny weather, although conditions were cooler than average in 

April and May. More detail is given for each site in the site descriptions. 

9.2 The Broadfield site 

9.2.1 Site description 

The Broadfield site is part of the DSIR Crop Research Division research area and is located 

approximately 1 km north of the Lincoln campus. The climate station itself is fenced off in a 

small paddock. There is a low gully running east west to the immediate north of the site. Beyond 

this are the field research plots. To this east there is a large cultivated field, bounded by a single 

row shelterbelt on its eastern boundary. This is several hundred metres away. 
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To the west is a house, used as a field station and more to the northwest is a moveable rain shelter. 

These are both several hundred metres distant Approximately 100 m to the south is a sealed road 

bounded on the north side by a low gorse hedge. Beyond that are open fields and the Lincoln 

campus. Around to the southeast, on the south side of the road, is a house surrounded by a tall 

hedge. Some of these features are evident in the aerial photograph in Fig. 9.2.1, taken over the 

period of measurement at this site. The climate station is clearly visible as a fenced off square and 

close examination to the left (west) reveals the mast. The gully is also apparent, as are the field 

house and rain shelter. 

Fig. 9.2.1 Aerial photograph of the Broadfield climate station. 
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The period of measurement at Broadfield was from 11/2/1988 to 14/3/1988, being late summer. 

Weather conditions were generally mild and dry over the period of measurement at Broadfields, 

with higher than average wind speeds. Early February was cloudy, as a result of a sequence of 

depressions passing over the country. They brought little rainfall. High pressures over northern 

New Zealand in March resulted from a progression of anticyclones which gave more settled 

weather in this month and above average sunshine. February to March deficit days totalled 45, 

which was well above the average of 31 for this period. 

As already stated this period served as a calibration of the mast against the climate station. The 

results of this period of calibration are presented below. 

9.2.2 Site roughness 

Two wind profiles were evident for the Broadfield site. Lower profile data for the south and 

southeast sectors were discarded because of an apparent interfering effect of the trailer located to 

the southeast. This housed the data logger. The second highest anemometer read higher than 

might be expected for the northeast and northwest sectors. This was attributed to the presence of 

the low gully to the immediate north of the site. There was a compensating effect with slightly 

reduced wind speeds with the third highest anemometer, at 2.58 m 

Taking these sources of error into account, roughness coefficients for upper and lower profiles for 

each wind sector, and for the site as a whole, were calculated. Results are presented graphically in 

Figs. 9.2.2 to 9.2.9. Table 9.2.1 gives the frequency of wind from each sector over the period of 

measurement, and the Zo values for each wind sector. 

Wind sector 

N 
NE 
NW 
S 
SE 
SW 
W 
Overall 

Table 9.2.1 

Site roughness and frequency of wind from each sector 

Site roughness (zo> 
Frequency Upper profile Lower profile 

0.2 0.014 0.()()()()3 
0.24 0.0014 o .()()()()3 
0.16 0.012 0.00006 
0.16 0.008 
0.07 0.011 
0.11 0.005 O.()()()() 1 
0.05 0.004 0.0002 

0.008 0.0001 

There is an obvious lack of data for the eastern sector, reflecting the effect of the Peninsula on 

winds from this sector. Generally easterlies are turned to become northeasterlies around Lincoln. 



Fig. 9.22 Broadfield: wind profile for Northerly sector 

• Upper profile 

o Lower profile 

loge of height 

Fig. 9.23 Broadfield: wind profile for Northeast sector 

• Upper profile 

o Lower profile 

oL-~~~ __ ~ __ L-~~~ __ ~ __ L-~ __ ~ __ ~ __ L-~ __ ~ __ ~ - ~ ~ ~ 
loge of height 

Fig. 9.24 Broadfield: wind profne for Northwest sector 

• Upper profile 

o Lower profile 

2 

oL-~ __ ~~~ __ ~~ __ ~ __ ~~L-~ __ ~ __ ~~~~ __ ~ __ ~ _ _ ~ ~ ~ 0 

--. ., e 

'-7 g 
1:'8 
·u 
o 

Qj ~ 
> 

""0 

.~ 4 

C g 3 

E 
2 

loge of height 

Fig. 9.2.5 Broadfield: wind profile for Southerly sector 

• Upper profile 

o 0 

o 

loge of height 

,I , 

..... 
VI 
N 



......... 
0> 

'--7 
5 
~a 
·u 
o 
Ql 5 
> 

"'C 

.~ 4 

C g J 

E 
2 

......... 
III 

'--7 
5 
~a 
·u 
o 

Ql 5 
> 

"'C 

.~ 4 

C 
o 
Q) 

E 

Fig. 9.2.6 Broadfield: wind profile for Southeast sector 

• Upper profile 

loge of height 

Fig. 9.2.7 Broadfield: wind profile for Southwest sector 

• Upper profile 

o Lower profile 

~=tt.c~--_~~--~--7-~--~--~--~L-~--__ L2--~--L-~---L--~ 

loge of height 

......... 
III 

'--7 
5 
~a ·u 
o 
1! 5 

"'C 

.~ 4 

C o 
Q) 

E 
2 

;"1 ''II 

Fig. 9.2.8 Broadfield: wind profile for Westerly sector 

• Upper profile 

o Lower profile 



154 

The upper and lower profiles reflect regional and local site effects respectively. The roughness 

lengths are much lower than might have been expected, being comparable with very smooth 

surfaces. The wind reduction near the ground was not great, reflected in the relatively low 

transition height of approximately 3m, suggesting little obstruction to wind movement near the 

surface. This may be attributable to the generally dry conditions that were prevailing, in 

combination with this period being the end of the growing season. There were also sheep grazing 

in the environs for a couple of weeks over the measurement period, which further reduced what 

little ground cover there was. The gully to the north may have also distorted the result, but this 

doesn't explain the low value obtained from the southwest. 

9.2.3 Calibration of the mast 

The rationale and method for calibrating the mast against the Broadfield climate station was 

outlined in section 8.5. Details from the period of calibration are presented in this secton. 

Temperature 

A faulty temperature probe on the mast at 1.36 m ruled out comparisons at a uniform height. 

Temperature probes were maintained at 0.56 m and 2.58 m. This was to retain consistency in 

measurement between sites as much as possible and also to obtain measurements over a reasonable 

range of heights. The regression relationships between screen values of mean, maximum and 

minimum temperatures and mast values at 0.56 and 2.58 m are presented in Figs. 9.2.10 to 9.2.15. 

For all of the temperature relationships the correlation coefficients were highly significant 

(p>O.OI). With the exception of minimum temperatures at 0.56 m, all proved not to be 

significantly different from a 1:1 relationship. The latter was significantly different with p>0.05. 

Overall data from the mast temperature probes proved to be good predictors of screen values. 

Given the significance of the linear relationships data from heights 0.56 and 2.58 m were 

combined into a single predictive equation for each of the temperature variables. These combined 

equations are 

Screen Tmean = 1.96 + 1.2O(T0·56m) - 0.288(T2'58m) 

Screen Tmax = 2.89 - 0.536(T0·56m) + 1.48(T2'58m) 

Screen Tmin = 0.609 + 1.1l(T0·56m) - 0.167(T2·58m) 

Wind speed 

Mean wind speeds correlated weil, with a significant correlation of 0.975. The regression line is 

given in Fig. 9.2.16. There was no significant difference in slope from a 1:1 relationship. 
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However the mast values were consistently about 1 ms-1 higher than the Broadfield values, which 

was a significant elevation from the 1:1 line (p>O.OI). As shown in Appendix E, the mast 

anemometers frequently underwent calibration checks. This suggests that the station anemometer 

may have been consistently reading low. For the purposes of this study the good correlation 

between the two provided a solid basis for making site comparisons of 6 m wind speeds. 

Vapour pressure 

Relationships for saturated vapour pressure, vapour pressure and vapour pressure deficit are 

presented in Figs. 9.2.17-9.2.19. The mast and screen values showed significant correlations in all 

cases. However several outliers were apparent in the regression of actual vapour pressure. The 

methods of calculating vapour pressure from mast and screen data were the least similar of all the 

variables. The screen values are routinely calculated from dry and wet bulb temperatures and the 

mast values from relative humidity as recorded by the probes. On three occasions rapidly 

changing temperature and humidity conditions led to big differences in the mast averages as 

compared with the instantaneously recorded screen values. The other outliers corresponded to 

high humidity conditions and again differences arising from the nature of measurement. Overall 

mast derived data for vapour pressure, saturated vapour pressure and vapour pressure deficit 

proved to be satisfactory predictors of screen values. 

Eva potransp iration 

Both Penman and Priestley-Taylor estimates of evapotranspiration correlated well, with the mast 

derived values proving to be good predictors of screen values. Results are presented in Figs. 

9.2.20-9.2.21. An empirical check on the constant for the Priestley-Taylor equation was carried 

out for this site. As stated earlier, the original assumption was that a value of 1.26 was satisfactory 

for all but strongly advective conditions. All site comparisons were made on this basis, but it was 

considered worthwhile, as a matter of observation, to check the consistency of results between the 

two methods of estimation. As stated in section 8.5.4 Penman estimates were assumed to give the 

best approximation of potential evapotranspiration, given the available data. Using data from all 

days over the calibration period an C/ = 1.74 was obtained, with a significant correlation r = 0.811, 

p>O.01. Table 9.2.1 shows that there was a high frequency of drying northwest winds over the 

calibration period. The four highest evapotranspiration values, all corresponding to conditions of 

strong advection, were removed. Subsequently an C/ = 1.34, r =0.863, was obtained, Fig. 9.2.22. 

It would seem, therefore that a value of 1.26 underestimated evapotranspiration at this site over the 

period of measurement, which was characterised by a higher than normal frequency of drying 

northwest winds. This result should be treated cautiously because of the empirical nature of the 

method used. 
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9.3 The Plant Science site 

9.3.1 Site description 

The Plant Science research block is located directly to the south of the Lincoln College campus 

and covers a total area of approximately 10 ha. A complete 360· view of the site environs is given 

in Fig. 9.3.1. As can be seen the Lincoln campus is several hundred metres to the north, the 

nearest building being part of the Field Service Centre complex, located about 100 m away. To 

the northeast are some houses and beyond is the Lincoln Agriculture and Science complex and 

Lincoln village. Banks Peninsula is clearly visible to the east. To the northwest is the well 

sheltered Horticultural Research Area about 500 m away. The immediate south is noticeably more 

exposed as are the southeast and southwest sectors. However clusters of trees are apparent in the 

landscape with a cluster of buildings and trees obvious to the southwest. Several kilometres to the 

south is the Selwyn river and its associated riparian environment. To the southeast is Lake 

Ellesmere. This site appears to be less exposed than Broadfield. 

The recording period at this site was from 14/10/1987 to 11/11/1987. This was shorter than other 

measurement periods. Being the fust measurement site teething problems were experienced with 

the mast and instrumentation giving a shorter time series of data . 

. Both October and November 1987 were mild and cloudy. October rainfall was above average, 

with most of it falling over a three day period immediately before the start of measurement. With 

rising temperatures evapotranspiration exceeded rainfall in both months and deficit days were 

above average. This marked the very early stages of the record drought period. 

9.3.2 Site roughness 

Wind profile data for the Plant Science site are presented graphically in Figs. 9.3.2-9.3.9. Wind 

frequencies and Zo values for each wind sector and overall are tabulated in Table 9.3.1. 

Table 9.3.1 

Site roughness and frequency of wind from each sector 

Site roughness (zO> 
Wind sector Frequency Upper profileLower proftle 

N 0.34 0.11 0.002 
NE 0.28 0.08 0.002 
NW 0.07 0.04 0.006 
S 0.17 0.03 0.005 
SE 0.03 0.02 0.011 
SW 0.07 0.24 0.001 
W 0.04 0.03 0.003 
Overall 0.06 0.003 
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Fig. 9.3. 1 360 0 view of the Plant SCience site environs 
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Over all sectors the top two anemometers appeared to be affected more by regional roughness 

characteristics. They reflect the transition from the regional to the more local environment. The 

lower, or site profile was characterised by the bottom four anemometers. The transition height is 

higher than for the more exposed Broadfield site, being approximately 8 m. This reflects a 

generally more sheltered situation and is in good agreement with Guyot and Seguin's (1975) 

transition height of about 7 m for a large field. 

Data from the southern sectors should be treated with caution because of the siting of the trailer to 

the southeast. At this site the mast was incorrectly positioned with the anemometers pointing to 

the east and thus more open to interference from the trailer. At all other subsequent sites the mast 

was positioned so the anemometers were pointing to the northwest sector, furthest away from the 

trailer. 

The site photos suggest greater exposure to the south and this is generally reflected in the upper 

profile results. The one exception is the southwest, which is an order of magnitude higher than all 

values except for the north and northeast, but is still at least double these values. There was a low 

frequency of winds from the southwest which may partly explain the anomaly. The other 

possibility is the presence of obstacles not visible from the immediacy of the site. The cluster of 

buildings and trees may have had some effect, but they are quite localised. The anomaly is quite 

possibly a combination of a low number of observations and a rougher landscape than 

immediately apparent. The environment to the north is moderately rough, as would be expected 

with the campus to the north and the fairly built up area to the northeast. Apart from the southwest 

the remaining sectors are fairly exposed. However the Hort. Research area to the northwest has 

less effect than might be expected. Winds from this sector are likely to come around the northern 

end of the sheltered area so some funnelling may occur. This may also be a reflection of the low 

observation number and the tendency for stronger winds from this sector which would tend to 

have more of a smoothing effect. 

Lower profile data is, on avemge, two orders of magnitude greater than that for Broadfield. This is 

a reflection of a more sheltered local environment giving a sharper wind speed reduction. The 

high soil moisture content at the start of this spring period, combined with fairly mild conditions 

was very conducive to pasture growth. This was certainly evident in the locale of the mast with 

rapid growth of pasture occurring. This roughening of the ground surface would also have 

contributed to a sharper reduction of wind speed in the lower profile. 

Although a large field situation, this area is considerably more sheltered than Broadfield over all 

sectors. The low number of observations from some sectors makes comparisons less certain. 

Lower profile comparisons are compounded by the differences in pasture height between the sites. 
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9.3.3 Site Microclimate 

Regression between estimated Plant Science data and actual Broadfield data are presented 

graphically in Figs 9.3.10-9.3.18. The t values for the slope and elevation of the fitted lines and 

their significance are given in Table 9.3.2. 

Table 9.3.2 

Plant Science vs Broadfield 

Significance of differences in slope and elevation 

of fitted lines from 1: 1 lines 

Variable t(slope) t(elevation) 

Mean temp. -5.68** 1.89 
Max. temp. -2.27* 9.18** 
Min. temp. -1.49 1.91 
Wind speed -5.96** -8.26** 
S. vap. press. -0.90 7.00** 
Vapour press. 1.19 2.54* 
Vap press def -1.62 5.54** 
PenmanET -1.61 1.23 
Priestley-
TaylorET 0.0 -0.61 

Note: ** = 1 % significant 
* = 5% significant 

Temperature 

Results for temperature comparisons are given in Figs. 9.3.10-9.3.12. Four outliers were excluded 

from the analysis of mean temperature differences. Two of these appeared to be biased by the 

effects of averaging at lower temperatures. The mast probes, particularly the lower one, appeared 

to be insensitive to recorded screen frosts on both of these days. Uncertainty over this was seen as 

sufficient reason for removal of these values as their positioning would have had a high leverage 

effect. On the other two occasions, a sharp transition from northwest to southerly conditions gave 

a high maximum and low minimum. The average of these two was greater than the 24 hr average 

which was weighted down by the mostly cooler conditions that prevailed. 

Although the slope of the fitted line is significantly different from a slope of I, the scatter of the 

data suggests that on most days the sites were similar. This is confirmed by the elevation of the 

fitted line which was not significantly different. If the slope is true, then there exists the potential 

for significant differences in mean temperature, most particularly at the extremes. 
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Fig. 9.3.10 Mean screen temperature: estimated Plant Science vs Broadfield 
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There were no strong outliers with either maximum or minimum temperatures, confmning that the 

mean temperature outliers were largely a result of averaging bias. The slope of the fitted 

regression line for maximum temperatures was significantly different and ,importantly, the mean 

was significantly elevated away from the 1:1 line. Estimated Plant Science values were higher on 

virtually all days, suggesting warmer daytime conditions at this site. The slope suggests that 

daytime temperature differences are greater on cooler days. No significant differences in slope or 

elevation occurred with minimum temperatures suggesting that night-time conditions were similar 

at both sites. 

Wind speed 

It is apparent from Fig 9.3.13 that the Plant Science area is significantly more sheltered than the 

climate station, as already indicated by the site roughness data. Both the slope and the elevation of 

the fitted line are significantly different. The obvious trend is for lower 6 m wind speeds at this 

site, particularly under windier conditions. Although there are two apparent outliers these were 

included because of the high potential for local modification of wind. 

Vapour pressure 

Results are presented graphically in Figs. 9.3.14-9.4.16. Three outliers were apparent with 

saturated vapour pressure, Fig. 9.3.14, all directly resulting from mean temperature outliers. Their 

removal led to a significant change in the nature of the relationship. Although the slope was not 

significantly different with or without the outliers, their removal resulted in a significant elevation 

of the fitted line where previously there had been no significant difference. This result suggest a 

higher saturated vapour pressure at the Plant Science area over the measurement period. This is 

directly attributable to the tendency for warmer daytime conditions at this site. 

With actual vapour pressure there were two outliers that exerted a significant downward leverage 

on the fitted line. One was related to the different methods of estimating vapour pressure, the mast 

relative humidity value being much lower than the screen derived value. The other related to 

anomalous differences in temperature. Their removal signlflcantly altered the slope of the fitted 

line. With the outliers present it was significantly lower, with them removed there was no 

significant difference in slope. Elevation of the fitted line was significantly higher after their 

removal. This result should be treated conservatively. 

As expected vapour pressure deficit followed the pattern set by the variables from which it is 

derived. Four outliers were removed. all resulting from bias introduced with temperature 

anomalies. There was no significant difference in slope, but vapour pressure deficit appeared to be 

higher at this site, suggesting a greater potential for evapotranspiration. 
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Fig. 9.3.14 Saturated vapour pressure: estimated Plant Science vs Broadfield 
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Fig. 9.3.16 Vapour pressure deficit: estimated Plant Science vs Broadfield 
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Fig. 9.3.17 Penman evapotranspiration: estimated Plant Science vs Broadfield 
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Evapotranspiration 

Regression of Penman and Priestley-Taylor evapotranspiration are presented in Figs. 9.3.17-

9.3.18. Four outliers were removed from the Penman evapotranspiration regression, all resulting 

from temperature anomalies previously highlighted. There was no significant change to the result. 

Despite the apparently higher potential for evapotranspiration given the higher vapour pressure 

deficit, there was no significant difference in Penman ET between the sites. This can perhaps be 

attributed to the lower wind speeds at the Plant Science site and thus the greater resistance to the 

movement of water vapour away from the site. The Priestley-Taylor values appear to be more 

conservative but the overall result is the same. 

The consistency of the Priestley-Taylor estimates were empirically checked by a regression 

between Penman ET and equilibrium ET as previously described. The result is presented in Fig. 

9.3.19. The correlation was significant, r = 0.785, p>o.OI, and gave an 0/ = 1.26. This illustrates 

that there was good consistency between the two methods of estimation at this site. This is a 

reflection of both the lower exposure of this site and the lower frequency of drying northwest 

winds over the period of measurement as compared with Broadfield. 

9.4 The Horticultural Research Area site 

9.4.1 Site description 

The Hort. Research Area and approximate site location is indicated on the Lincoln area map, Fig. 

9.1.1. It is located to the west side of the Lincoln campus. To the north and west of the H.R.A. 

are some of the College research farms. To the south is more farmland. It is the most sheltered 

piece of land within the Lincoln area, with the exception perhaps of parts of the built up area. The 

location of the mast within the H.R.A. was limited to grassed blocks, so as not to interfere with 

orchard management and to be consistent with the other sites. It had several advantages, being 

centrally located in the Research Area, one of the largest grassed areas and also close to a power 

supply. The mast was located at a fairly equal distance between the north and south ends of the 

block. The narrowness of the grassed area restricted location in the east to west direction so that 

the mast was sited only about 20 m east of a roughly north to south oriented shelterbelt The top 

of the mast just cleared this shelterbelt, which is around 15 m in height. Most shelterbelts within 

the H.R.A. are of a similar height To the immediate west of the mast were fruit trees. These site 

features are clearly seen in the 360° photo that is Fig. 9.4.1. 

The period of measurement at this site was from 18/12/1987 to 26/1/1988. Mild, cloudy weather 

dominated in December, as with the previous two months. A series of depressions brought some 

light rain and persistent periods of cloud, but rainfall for the month was well below average. This 

weather sequence was interspersed with occasional hot, sunny days. 
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Fig. 9.4. 1 360 0 view of the Horticultural Research Area 
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The dry weather persisted into January, with a period of more settled, sunny weather characterised 

by generally higher abnospheric pressures over New Zealand. Deficit days for these two months 

totalled 44, well above the average of 36. 

9.4.2 Site roughness 

Results are presented graphically in Figs. 9.4.3-9.4.10 with frequency of observation and zo values 

from each sector in Table 9.4.1. 

Table 9.4.1 

Site roughness and frequency of wind from each sector 

Site roughness (zo) 
Wind sector Frequency Upper proftle Lower proftle 

N 0.14 3.33 0.003 
NE 0.48 4.60 0.0000005 
NW 0.10 1.99 0.005 
S 0.11 1.28 0.Q1 
SE 0.01 2.14 
SW 0.10 1.11 0.008 
W 0.07 1.25 0.002 
Overall 3.16 0.0007 

Because of the greater sheltering effect a high frequency of calms was recorded at this site. All 

observations corresponding to a calm at either of the bottom two anemometers were excluded from 

the analysis. 

The top anemometer was the only one to clear the top of the shelterbelts. The upper proftle is 

representative of a sharp transition from the regional to the local environment and suggests a high 

degree of decoupling of the sheltered area from the surrounding environmenL There is uncertainty 

about the actual transition height because only one anemometer cleared the shelterbelt, with the 

next one being well contained within the sheltered environmenL The result also reflects the 

proximity of the mast to the H.R.A. shelterbelts, particularly to the easL As would be expected the 

greatest drop in wind speed is experienced with the northeast sector, representing the lee effect on 

the 8 m anemometer. The values to the north and southeast sectors are also probably partly 

influenced by this shelterbelt, although the latter result should be treated with some caution 

because of the low number of observations from the southeast. The exposure is greater for all 

other sectors, the results indicating the magnitude of the exposure. To the north and south there is 

possibly still some lee effect on wind speeds at 8 m. To the west and northwest 8 m wind speeds 

are probably affected by the roughening effect of the fruit trees. 
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Lower profile values are obviously low because of the sheltering effect, both of the shelterbelts 

and the fruit trees. The effect is particularly strong with the northeast sector reflecting the 

proximity of the mast to the shelterbelt in this direction. The bottom two anemometers were the 

most strongly affected, with a high frequency of calms. As can be seen in the graphs, the lowest 

anemometer gave consistently higher wind speeds than the next highest one. A possible 

explanation is the effect of air passing through gaps in the shelter and fruit trees near the ground. 

Data from this anemometer was excluded from the regression. Lower proftle data for the H.R.A. 

should be treated cautiously because of the difficulty of calibrating the anemometers at low wind 

speeds and the high frequency of such winds «3.0 ms-1) in the lower profile. 

9.4.3 Site microclimate 

Regressions between estimated H.R.A. data and data for the reference site are presented in Figs. 

9.4.10-9.4.18. The t values for the slope and elevation of the fitted lines and their signiftcance are 

given in Table 9.4.2. 

Table 9.4.2 

Hort. Research Area vs Broadfield 

Significance of differences in slope and elevation 

of fitted lines from 1:1 lines 

Variable t(slope) t(elevation) 

Mean temp. -2.20* 7.79** 
Max. temp. -1.78 2.96** 
Min. temp. -3.76** 6.19** 
Wind speed -11.40** -38.38** 
S. vap. press -1.44 4.78** 
Vapour press 3.31** 1.18 
Vap press def -0.78 5.04** 
PenmanET -6.26** 9.93** 
Priestley-
TaylorET 1.38 0.14 

Note: ** = 1 % signiftcant 
* = 5% signiftcant 

Temperature 

Three outliers were excluded from the comparison of mean temperatures. The frrst was removed 

because of its high leverage effect and a slight anomaly as a result of the averaging procedures. 

The other two were both strongly biased by the different averaging methods. 
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Fig. 9.4.10 Mean screen temperature: estimat.ed Hort. Res. Area vs Broadfield 
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Fig. 9.4.11 Maximum screen temp.: estimated Hort. Res. Area vs Broadfield 
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These latter two both occurred on days that began with warm, northwesterly conditions and then 

turned southerly close to midday with a corresponding rapid temperature drop. The generally 

cooler conditions that prevailed were not fully reflected in the 2-point means. A fourth outlier was 

examined for bias, but was found to be a real sheltering effect, occurring on a warm night when 

the shelter apparently became a trap for warm air. Removal of biased outliers led to an increase in 

significance of the elevation of the fitted line above the 1: 1 line. With a significantly lower slope 

the fitted line tended to approach the 1:1 line at higher temperatures. 

Maximum temperatures estimated from data from each of the two mast heights individually gave a 

more significant result than when regressing estimates from the combined equation. There was no 

significant difference in slope, however maximum temperatures in the H.R.A were consistently 

higher than Broadfield with a significant elevation. At higher temperatures the difference was 

less, as reflected in the mean temperature relationship. This is consistent with the result from the 

Plant Science block. 

Minimum temperatures showed a significant difference in slope, which was reduced but still 

significant when an outlier exerting high leverage was removed. Minimum temperatures were 

significantly higher in the H.R.A., as indicated of a significant elevation of the fitted line away 

from the 1: 1 line. Although minimum temperatures were consistently higher the difference was 

again less under warmer conditions as shown by the scatter of the data. As measurements were 

made in mid summer this result is not surprising. With low soil moisture conditions and a strong 

sheltering effect there would be low potential for evaporative cooling and the sheltered area would 

tend to become a sink for sensible heat at night time. 

Wind speed 

Understandably mean wind speeds at 6 m were significantly lower in the H.R.A., the wind 

undergoing considerable modification with the presence of the shelterbelts. The important result 

is the highly significant elevation of the regression line, being well below the 1: 1 relationship. 

Vapour pressure 

Two of the outliers from the mean temperature analysis, again had a significant effect on the site 

comparisons of saturated vapour pressure. Their removal from the analysis significantly altered 

the result. Although there was no significant difference in slope of the fitted line it was 

significantly elevated above the 1:1 line. A higher saturated vapour pressure in the H.R.A is 

consistent with the higher temperatures at this site. 
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Fig. 9.4.16 Vapour pressure deficit: estimated Hort. Res. Area vs Broadfield 
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Fig. 9.4.17 Penman evapotranspiration: estimated Hort. Res. Area vs Broadfield 
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Fig. 9.4.18 Priestley-Taylor ET: estimated Hort. Res. Area vs Broadfield 
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There was no significant difference in elevation of vapour pressure, although a significant 

difference in slope suggests the potential for higher vapour pressure in the H.R.A under warmer 

conditions. The conservative nature of the measurement should be considered when making site 

comparisons. 

The combined effect of higher saturated vapour pressure and no significant difference in vapour 

pressure is reflected in a significant elevation of vapour pressure deficit about the means. This 

effect tends to be reduced at higher temperatures, reflecting the upward trend in vapour pressure 

under such conditions at the H.R.A. 

Evapotranspiration 

Penman evapotranspiration showed both a significantly lower slope and elevation in relation to 

the 1: 1 line. Removal of the two outliers that resulted from earlier mentioned temperature 

anomalies did not alter the significance of the result. The largest difference between this and the 

reference site was with the mean wind speeds. This significant reduction in turbulent mixing even 

under northwest conditions had a marked effect on this estimate of evapotranspiration. 

The Priestley-Taylor equation showed no significant differences between the sites. It appears that 

an 0/ = 1.26 is inappropriate for this site, given the high degree of decoupling from the regional 

environment. Again an empirical check was carried out using the Penman and equilibrium 

evapotranspiration data. Initially the analysis was carried out with two outliers, both corresponding 

to northwest conditions, included. The result was an 0/ = 0.97, with a significant correlation r = 
0.827 (p>0.01). Removal of the outliers did not substantially alter the result. The result of this 

latter regression is given in Fig. 9.4.19. This time an 0/ = 0.987 was obtained with a slightly 

improved correlation. This suggests that the Priestley-Taylor method gave more conservative 

estimates than the Penman method for this site. The result is consistent with results achieved by 

Judd and McAneney (1984) in Northland, in a sheltered orchard. 

9.5 The Lincoln Springs site 

9.S.1 Site description 

The Lincoln Springs orchard is situated 5 km north of the Lincoln campus. The village of 

Prebbleton is 2-3 km to the north with the dominant geographic feature again being the Banks 

Peninsula. The site was purchased by Lincoln College in 1982 and has been developed since that 

time. The photos giving the 360· perspective, Fig. 9.5.1 give an indication of the state of 

development of the site. Much of the shelter comprises deciduous poplar and willow species with 

the boundary shelter double planted with poplars and evergreen Eucalyptus trees. They are 

obviously less mature than the shelter trees in the H.R.A. It should be noted that the photos were 

taken during the Autumn transition, at the end of the measurement period. 
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The mast was sited at the eastern end of the orchard, being the only available grassed area. As can 

be seen the site is most sheltered to the north and around to the west. The exposure is generally 

greater to the northeast and the southerly quarter. 

The period of measurement at this site was from 23/3/1988 to 4/5/1988. Measurements began in a 

period of mild, sunny and dry conditions. The dry sunny weather persisted until the end of 

measurement, in early May. As with March this period was characterised by high atmospheric 

pressures over New Zealand. Temperatures were cooler on average in April and May. As with the 

other sites deficit days were above average over the period of measurement. 

9.5.2 Site roughness 

Results are presented graphically in Figs. 9.5.2-9.5.9, with wind frequency and Zo values from 

each sector in Table 9.5.1. 

Table 9.5.1 

Site roughness and frequency of wind from each sector 

Site roughness (zO> 
Wind sector Frequency Upper profile Lower profile 

N 0.04 0.94 0.074 
NE 0.56 0.57 0.005 
NW 0.03 1.10 0.100 
S 0.10 0.31 0.026 
SE 0.02 0.09 0.023 
SW 0.18 0.50 0.096 
W 0.06 0.64 0.081 
Overall 0.39 0.045 

Over the period of measurement at the Lincoln Springs site, the wind vane did not always read 

true. This was verified by checking Christchurch airport data against the mast data and identifying 

days of a known weather pattern. The wind vane was still functional, but the movement of the 

potentiometer appears to have been restricted. The most likely explanation is that the mounting 

clamps were tightened too hard thus restricting movement. There were markings on the arm that 

suggested that it had been used as a perch but this hardly explains the failure of the vane to register 

a southerly change. When the mast data matched the general pattern at the airport it was left 

unchanged. Easterly winds were assigned as northeast because of the effect of the Peninsula. It 

was mostly northwest, westerly, southwesterly and southerly conditions that were not accurately 

recorded. Previous comparisons had shown other sites to be fairly consistent with the airport with 

winds from these sectors and so it was considered reasonable to use airport data for this site. 
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Fig. 9.5.2 Lincoln Springs: wind profile for Northerly sector 
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Fig. 9.5.3 Lincoln Springs: wind profile for Northeast sector 
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Fig. 9.5.5 Lincoln Springs: wind profile for Southerly sector 
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Fig. 9.5.7 Lincoln Springs: wind profile for Southwest sector 
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Fig. 9.5.9 Lincoln Springs: wind profile over all wind sectors 
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The results for the different profiles do seem to be sensible but should be treated with a degree of 

caution. 

Because this site is more strongly coupled with the regional environment than the H.R.A. the 

upper profile was covered by three and sometimes four anemometers depending on the exposure 

of a particular sector. There was however still a strong sheltering effect on the result, as indicated 

by the upper profile results. Data from the northwest and southeast sectors should be treated with 

more caution because of the low frequency of observations. They do, however, follow the general 

pattern. The northern sectors and the westerly sectors all show a greater upper profile ZO' with the 

southern sectors showing greater exposure. The northeastern sector is the most exposed of the 

northern sectors, facing to the entranceway, with an open field situation beyond. Certainly the 

exposure is nothing of the magnitude of the Broadfield site. 

The lower profile values are all affected by within site roughness effects. The most exposed sector 

is to the northeast, which is characteristic of a smoother fetch, as indicated by the open grassed 

area. Again the anomaly with the lowest anemometers was experienced, reinforcing the belief that 

the cause was near surface air movement. As before these data were removed from the profile 

characterisation. 

9.5.3 Site microclimate 

Regressions between estimated Lincoln Springs data and reference site data are presented in Figs. 

9.5.10-9.6.18. The t values for the slope and elevation of the fitted regression lines and their 

significance are given in Table 9.5.2. 

Table 9.5.2 

Lincoln Springs vs Broadfield 

Significance of differences in slope and elevation 

of fitted lines from 1:1 lines 

Variable t(slope) t(elevation) 

Mean temp. -4.22** 2.71* 
Max. temp. -5.01** 15.95** 
Min. temp. 0.44 1.56 
Wind speed -9.55** -22.71** 
S. vap. press. -4.02** 3.95** 
Vapour press 0.64 8.08** 
Vap press def -3.09** -0.69 
PenmanET -5.04** -4.00** 
Priestley-
Taylor ET -0.86 -1.75 

Note: ** = 1 % significant 
* = 5% significant 
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Temperature 

On two days rapidly changing northwest to southerly conditions led to temperature anomalies. 

Removal of these values from the analysis led to no significant change in the slope of the 

regression line with the slope being significantly different from a 1:1 relationship. Their presence 

however had a downward effect on the elevation so that with their removal the result was a 

significant elevation of the fitted line above the 1:1 line. With the differences in slope the trend 

was toward less differences between sites with warmer conditions. This is consistent with results 

from both the Plant Science block and the Horticultural Research Area. 

Differences in mean temperatures were obviously strongly influenced by differences in maximum 

temperatures. Two outliers were removed. Both occurred under rapidly changing temperature 

conditions. Broadfield data, Christchurch airport data were all checked for the relevant period. 

The indication was that actual time of recording would have been critical and that differences in 

timing may have led to the apparent anomalies. As it was their removal did not alter the result. 

Maximum temperatures from the mast showed a significantly different slope and elevation. 

Although tending towards the 1: 1line at higher temperatures the Lincoln Springs site had 

consistently higher temperatures. There was no significant difference in minimum temperatures 

suggesting that the differences between this and the reference site are greatest in the daytime. This 

is in contrast to the H.R.A and is perhaps a reflection of the cooler autumn conditions that 

prevailed at this time .. 

Mean wind speed 

Although this site is less sheltered than the H.R.A. The sheltering effect was still significant The 

regression line was well below the 1:1 line with a significant difference in elevation. The 

sheltering effect was apparently greater under windier conditions with a significantly lower slope. 

Vapour pressure 

The two mean temperature anomalies that were earlier highlighted again had a downward levering 

effect on saturated vapour pressure. The pattern was generally the same as with mean 

temperatures with significant differences in slope and elevation. The downward slope showed a 

trend towards the 1:1 line and at higher temperatures Lincoln Springs saturated vapour pressure 

was generally lower than that for the reference site 

Two obvious outliers were apparent with vapour pressure both resulting from temperature 

anomalies. Their removal did not alter the result although their effect had been to pull the 

estimated Lincoln Springs mean down toward the 1:11ine. 



190 

Fig. 9.5.10 Mean screen temperature: estimated Lincoln Springs vs Broadfield 
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Fig. 9.5.12 Minimum screen temp.: estimated Lincoln Springs vs Broadfieid 
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Fig. 9.5.14 Satl.rated vapou" preS8\.l"e: estimated Lincoln Springs vs Broadfield 
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Fig. 9.5.16 Vapour pressure deficit: estimated Lincoln Springs vs Broadfield 
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Fig. 9.5.17 Penman evapotranspiration: estimated Lincoln Springs vs Broadfield 
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With no significant difference in slope and a significantly higher elevation vapour pressure tended 

to be higher in the orchard under most conditions covered by the period of measurement 

Vapour pressure deficit was affected by patterns with both the previous two variables as expected. 

Four outliers were removed, arising from tempemture anomalies. A significant difference in slope 

reflected the trend with saturated vapour pressure, however there was no significant difference in 

elevation of the mean. The trend was toward lower vapour pressure deficit conditions in the 

orchard area at higher tempemtures, but not reflected in the means. 

Evapotranspiration 

Again two outliers were removed from the regression of Penman evapotranspiration, 

corresponding to the mean temperatures anomalies. As with the H.R.A., Penman 

evapotranspiration was significantly lower in the orchard than at the reference site with a 

significant difference in elevation. This tendency appeared to be greater under warmer and 

windier conditions with a significantly lower slope. 

As previously. Priestley-Taylor evapotranspiration proved conservative, with no significant 

difference. Regression of Penman against equilibrium evapotranspimtion gave an ot = 1.14 with a 

correlation of 0.734 (p>O.OI). However removal of an obvious outlier, which corresponded to a 

northwest to southerly change and above avemge wind speeds, gave an ot = 1.27. At this site there 

is an obvious difference between the results with the two methods of estimation. This result may 

be a reflection of the intennediate status of this site, between the Plant Science site and the H.R.A., 

in tenns of the degree of coupling with the surrounding environment. 

9.6 Summary 

The four sites examined can be classified hierarchically in terms of their roughness, as 

chamcterised by ZO0 Broadfields (zO=O.OO8) is an ideal reference site with good exposure to all 

sectors. It is well representative of open plains conditions and is strongly coupled to the regional 

climate. The Plant Science block (zO=O.06), although not fonnally sheltered is located in a 

generally more sheltered environment. The results with Lincoln Springs (zO=O.39) and the 

Horticultural Research Area (zO=3.16) suggest a progressive decoupling from the surrounding 

environment as a site becomes more sheltered. The transition height is not fixed being dependent 

on the roughness elements for each wind sector. The presence of a regional to local transition is 

consistent with the work of Guyot and Seguin (1975) and the measurements of Cherry and Smyth 

(1984). Results reinforce the earlier suggestion that the measurements of McAneney et al (1989, 

in press) at a fixed height were subject to local roughness features from the beginning of 

measurement and that vertical profile measurements would have shown a progressive decoupling 

as the shelter grew. 
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Microclimatic differences are consistent with site roughness features. Absence of simultaneous 

measurement at all four sites precludes hierarchical classification. Temperature responses are 

consistent with the literature. All measurements were made over the spring to autumn period, and 

all sheltered sites showed higher than average temperatures than the exposed site. A direct effect 

of wind speed reduction is a decrease in turbulent mixing and reduced transfer of sensible heat. 

This is most noticeable with daily maximum temperatures. The tendency towards reduced 

differences in maximum and minimum temperatures, at higher values, between the two orchard 

sites and Broadfields is an interesting result. It suggests that the effect of shelter on day time 

temperatures is greatest under non-advective conditions. The elevation of minimum temperatures 

in a highly sheltered situation, in mid summer was attributed to reduced evaporative cooling under 

high soil moisture deficit conditions and reduced transfer of sensible heat under calmer conditions. 

Spring and autumn measurements at the two lesser sheltered sites showed no significant 

differences in minimum temperatures. On the basis of the literature it would be expected that 

intensification of night-time inversions would occur over the winter months. 

Vapour pressure measurements proved to be fairly conservative, which again tends to be 

consistent with the literature. Higher saturated vapour pressures in sheltered areas can be directly 

attributed to warmer temperatures. 

At the Plant Science and H.R.A. sites this led to significantly higher vapour pressure deficit 

conditions which gave a greater potential for evapotranspiration. Significantly lower 

evapotranspiration was recorded in the two orchard sites based on Penman estimations. This was 

directly attributable to the reduction in wind speed. Evapotranspiration tended to be lower, but not 

significantly so, in the Plant Science block. 

The empirical checks on the Priestley-Taylor constant gave some interesting results which 

appeared to be consistent with site exposure. While the 01 values obtained have a good deal of 

intuitive appeal it is reiterated that they were the result of an empirical check on the internal 

consistency between the two methods for estimating evapotranspiration. Locally calibrated values 

of 01 would require measurement of actual evapotranspiration, and comparison with equilibrium 

values, as done by Green et al (1984). 
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CHAPTER 10 

A greener Canterbury? 

10.1 Background 

Drought is an important phenomenon in Canterbury, as it is in other districts in New Zealand. 

Spatial analysis of deficit days showed a similar response to rainfall and other variables. It was 

also shown that drought in Canterbury is a persistent and recurrent phenomenon. Results from 

analysis of national and district crop-climate interactions had shown the significant effects on crop 

yields of low rainfall, often coupled with warmer than average temperatures. This suggested 

relationships between low yields and high moisture deficit conditions at critical developmental 

stages. Correlation analysis of Canterbury grain and pipfruit data with deficit day data confrrmed 

these relationships. 

10.2 A possible framework for integrated analysis 

The experiences from the past, including the most recent Canterbury drought, raise questions 

about response options in the face of probable future droughts. Some of the possibilities were 

briefly discussed in Chapter 2. Three broad possibilities are identified for Canterbury. These are:-

1. Do nothing (i.e. business as usual). 

2. Introduce more drought hardy species and varieties (Le. adapt to the 

probability of dry years) 

3. Further investigate the potential of trees for shelter, and the potential for 

wider irrigation. 

These possibilities require critical evaluation. The ecological theory of habitat diversity and 

stability, developed for natural ecosystems, has been widely applied in the field of agroecology. A 

critical review by van Emden and Williams (1974) concluded that well planned diversity could 

lead to greater stability in agricultural systems, in particular in the field of insect pest management. 

A similar hypothesis is proposed for diversifying production systems on a regional scale as a 

means of providing greater stability and therefore greater security against climatic variability. The 

systems approach of Odum (1971, 1983) could provide a useful framework for testing such a 

hypothesis, incorporating an analysis of the alternative options identified above. This involves 

modelling systems in terms of energy sources, sinks and flows, with energy efficiency being the 

desired goal. Such an analysis i.s beyond the scope of the present work. It is a particularly valid 

approach with increasing interest in and emphasis on energy efficiency and sustainability, 
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particularly in the context of current energy inefficient systems which appear to have contributed 

significantly to possible global climatic change. 

This thesis explored some of the components that could be incorporated into such an analysis. An 

assessment of possible crop yield responses under different scenarios would be a key component 

to such an analysis. In the next section the possible benefits of shelter to crops are discussed, 

drawing from the results of the field study, presented in Chapter 9. 

10.3 The benefits of shelter to crops in Canterbury 

10.3.1 Horticultural crops 

Sheltering and irrigation are common practices with horticulture and the use of both in Canterbury 

has no doubt contributed to reduced impact of drought on horticultural crops. The results from the 

shelter study showed a high degree of decoupling of highly sheltered areas from the surrounding 

environs, with much higher Zo values than exposed sites from upper profUe measurements. Lower 

wind speeds lead to reduced physical damage of plants. The results from the field work, in 

Chapter 9, showed significantly warmer daytime temperatures in all sheltered sites, most 

noticeably under non-advective conditions in the two orchard sites. Warmer temperatures coupled 

with adequate moisture would also generally encourage fruit sizing and maturation. From 

reviewing the literature on stonefruit, in Chapter 6, it was clear that warmer conditions generally 

reduce the length of the season, and shorten the harvest period. Such conditions would encourage 

flowering, pollination and pollen tube growth in deciduous fruits. Potential evapotranspiration is 

lower in sheltered sites, as a direct result of reduced wind speeds. This was shown by comparison 

of Penman estimates between the exposed reference site and the two orchard sites. Priestley­

Taylor estimates were more conservative, as discussed. With reduced turbulent mixing it might be 

expected that there is reduced direct evaporation from the surface. At the same time stomata 

would tend to be open more in sheltered areas. It has been suggested (Rosenberg et al, 1983) that 

the major pathway for water exchange in sheltered sites is through transpiration. Higher winds 

and a higher frequency of stomatal closure in exposed areas would tend to result in increased 

direct evaporation from the surface and reduced transpiration. This line of argument is also 

consistent with the general conclusion of Rosenberg et al (1983) that greater water use efficiency 

results with sheltering of crops, leading to higher yields. 

Even given these benefits with horticultural crops there is still the potential for drought to be 

detrimental to yield. This has a socio-political dimension as exemplified by the water restrictions 

imposed in fruit growers in Loburn in the recent drought. It is apparent that for a viable 

horticultural industry in Canterbury a critical review of potential water demand, and critical 

demand periods is required. From the empirical analysis of pipfruit January was a critical water 

sensitive month. Future provision should be made for possible demand in this period, particularly 

in drought years. 
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10.3.2 Grain crops 

Stringer (1984) commented that there is "unreasoned antagonism to shelter" in some quarters. 

This is particularly true with arable cropping. The sensitivity of arable crops to moisture deficit 

conditions at certain developmental stages was illustrated in the empirical yield models. Shelter 

has an obviously beneficial role to play, both in reducing erosion and improving water use 

efficiency. The results from the Plant Science block, which could be classified as a large field 

situation, suggest that there are potential benefits to cropping from a roughened, more sheltered 

landscape. Differences in evapotranspiration weren't significant. However there were 

significantly lower wind speeds and warmer temperatures. It is recalled that measurements at this 

site were taken in mid to late spring. This is a period of active growth for arable crops. It is 

suggested, as before, that lower wind speeds would reduce direct evaporation and encourage 

greater stomatal opening than in more atypical plains sites such as Broadfield. Coupled with 

warmer temperatures this would lead to greater transpiration and associated benefits in terms of 

plant growth. As the soil continues to dry into the summer months and with no significant rainfall 

soil moisture levels tend towards deficit conditions in both sheltered and unsheltered environments 

(Rosenberg et al, 1983). This can coincide with critical moisture sensitive stages for some crops, 

such as barley. Superior reserves from spring growth would benefit sheltered crops and is the 

usual explanation given for the greater yield response to shelter in dry years. The review of 

Sturrock (1984) suggests a synergistic effect from well timed irrigation, that would give an even 

greater yield response. 

10.4 A wider perspective 

There are other benefits from shelter aside from erosion control and improVed yields. These 

include shelter for stock, which can be crucial at periods such as lambing, particularly when 

southerly storms occur. Well managed shelterbelts and woodlots can also be a source of timber, 

fence posts and firewood. Tane (1983) has advocated the planting of trees in the high country of 

the South Island as a source of timber and bee fodder amongst other uses. He provided an 

extensive list of tree species and cultural uses of each. Uses cover timber production, stockfodder, 

nectar, pollen, fruit and nuts, medicinal and ornamental. The sort of development advocated by 

Tane (1983) for the high country could equally be applied to the Canterbury Plains. Two other 

advocates of trees in Canterbury are Stringer (1984) and Lucas (1984). The former detailed 

planting arrangements for shelterbelts including a detailed list of suitable shelter species. The 

latter dealt with the aesthetics of woodlot and shelter design. It is well apparent from her 

presentation that a well planned and designed mosaic of trees in Canterbury could add 

considerably to the aesthetic appeal of the region, as well as the considerable physical and 

biological benefits. 



200 

10.5 Summary 

There is ample evidence to suggest that shelter can lead to direct yield benefits with both 

horticultural and arable crops. While these benefits may not be so strong in average or above 

average rainfall years, it is generally very apparent in drought years. Such years are a sufficiently 

recurrent and persistent phenomenon in both Canterbury and other regions of New Zealand to 

warrant greater use of shelter. Planned on a regional scale a mosaic of shelter could impact 

significantly not only at the local scale but on the region as a whole. This has been the aim of the 

Catchment Boards in the past but has faced the antagonism identified by Stringer (1984) for the 

various reasons outlined in Chapter 8. 

A lot of basic research has been carried out with shelterbelts, and there is considerable scope for 

more as identified in the National Shelter Working Party report, Sturrock (1984). The impact of 

both Cyclone Bola in the North Island and the drought in Canterbury have again highlighted the 

need for greater watershed protection and wind and water erosion control for the conservation of 

water and protection of scarce arable and horticultural land. Integrated planning is needed on a 

regional scale to satisfy these goals. The prospect of climatic change has added impetus to the 

need for an integrated regional approach. 



CHAPTER 11 

Greenhouse scenarios: agricultural impact 

11.1 Introduction 
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There is strong current interest in the possible effects of increasing levels of C02 and other 

greenhouse gases on global climate. The greenhouse effect has been well documented with some 

excellent reviews such as that by Bolin et al (1986). It is a logical progression from the preceding 

analyses of crop-climate interactions to give some tentative assessment of possible impacts of a 

warmer climate on New Zealand food production. 

Salinger and Hick (1989) noted that, while there is a high level of confidence about projections for 

a global warming, regional scenarios are more speculative. Coupling empirical crop-climate 

models with regional climate scenarios must be treated with a good degree of caution. Such an 

approach is essentially a qualitative assessment, and would require verification from other 

approaches. 

The methodology used here was based on that used by Lough et al (1983), which is discussed in 

more detail in Palutikof et al (1984). They constructed scenarios based on the instrumental record 

and used climate data from analogue years in combination with empirical crop-yield models. The 

analysis involved the selection of warm and cold ense~bles and comparison of differences in yield 

response between the two periods. 

11.2 Scenarios 

Tentative greenhouse scenarios for Australia and New Zealand were developed by Pittock and 

Salinger (1982). They used four different approaches, which gave a good degree of consistency. 

Of the methods used the most direct approach is numerical modelling. However such methods at 

present lack regional detail (Wigley et al, 1980; Lough et al, 1983). The other main approach is 

the use of past warm periods as analogues. Pittock and Salinger (1982) evaluated a scenario based 

on the Hypsithermal, a maximum warming period from the Holocene, some 8000 to 10000 years 

BP. Another analogue approach used by Pittock and Salinger (1982) was to evaluate the 

instrumental record and compare extreme warm and cold year ensembles. The fourth method used 

was to develop an empirical discussion based on knowledge of atmospheric dynamics. 

The scenarios for New Zealand were further evaluated by Salinger (1982). They showed warmer 

temperatures over the whole of the country. Increased precipitation was indicated in the east of the 

North Island and in the northeast of both islands, with reduced precipitation in the south of New 

Zealand. More detailed regional scenarios for New Zealand have been developed by Salinger and 

Hicks (1989) for the New Zealand Climate Change Impacts Working Group. 
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Scenario I, based on the Hypsithennal, gives an average temperature wanning of 1.5" C. Rainfall 

is projected to be higher, by up to a maximum of 15%, in regions west of the axial ranges. 

Regions east of the axial ranges show decreased rainfall, mostly by 5% but up to 10% in South 

Otago and part of Southland. Scenario 2 is based on the upper limit of a greenhouse wanning in 

the New Zealand area, equating to a 3' C temperature rise. This is associated with a more positive 

mode of the Southern Oscillation. Rainfall is increased, up to a maximum of 15%, in all regions 

except for the south of the North Island and the west and south of the South Island, which show 

decreases of 5%. 

For use with empirical crop-climate models analogues based on the instrumental record offer the 

most practicable option. This allows for input of actual climate data and evaluation of yield 

responses. In developing their instrumental analogue in the Southern Hemisphere Pittock and 

Salinger (1982) followed the methods of Wigley et al (1980). Following the rationale that the 

Greenhouse wanning will be strongest in high latitudes Wigley et al (1980) selected wann and 

cold years from 50 years of data for the latitudes 65-80"N. Pittock and Salinger (1982) selected 

from a similar latitude range, south from about 65 " S from a time series of only 23 years. The 

years chosen for the Southern Hemisphere were not fully consistent with those chosen for the 

North. Altogether there were seven 'cool' years which were: 1958, 1959, 1963, 1964. 1965. 1969. 

1976; and nine 'wann' years: 1957, 1961. 1968. 1970. 1971. 1973. 1974. 1975. 1977. Scenarios 

for Australia and New Zealand were developed by evaluating the regional differences between 

these wann and cold years, as mentioned previously. 

Differences in mean temperatures and precipitation were statistically significant over New Zealand 

(Pittock and Salinger. 1982). Lough et al (1983) believed that statistically significant differences 

"justifies the use of wann and cold groups as analogues of separate populations. even though both 

are drawn from a single population". There was some criticism of the use of single years (Pittock 

and Salinger. 1982; Lough et aI, 1983) for constructing the analogues. In particular it was 

commented that ocean and cryosphere boundary conditions lag behind changes in the atmosphere. 

Groups of consecutive years. it was argued. would allow for a higher degree of equilibrium 

between the atmosphere and underlying boundary conditions and therefore be more suitable for 

constructing analogues. Lough et al (1983) therefore developed a second scenario from a gridded 

Northern Hemisphere temperature set. They chose wann and cold 20 year periods from this data 

set. 

The scenario used here, in conjunction with the empirical-statistical crop-climate models discussed in 

Chapters 5 and 6, was the intrumental analogue scenario developed by Pittock and Salinger (1982). 

Because the yield data sets did not cover exactly the same periods as the analogue scenario, not all of 

the 'warm' and 'cold' years could be used. 
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A second analogue scenario, using e"tended warm and cold periods, after the work of Lough 

~,~ et.al.(1983), was ~~msidered and rejected because the period for which yield data was available had 

little contrast between the warm and cold periods. Instead of this the scenarios developed by Salinger 

and Hicks (1989) were used for the purposes of discussion. They provided some basis for evaluating 

the sensibility of the results derived from the empirical analysis. 

ll.3 Agricultural impacts 

The crop-climate models used for tentative assessment of impacts on agriculture of a greenhouse 

warming are those presented and discussed in Chapters 5 and 6. The fruit crop models should be 

treated with more caution because of the lack of model verification with the stonefruit and 

generally- poor verification with pipfruit. For grain crops the weighted national, and district, 

multiple regression models were used. For fruit crops weighted national models were used, in the 

case of pip fruit assessment was made with the models developed for the 1941-1981 and 1963-

1981 periods. Results are presented in Table 11.3.1, and show the yield change (difference 

between warm and cold years) and the percentage variance explained by the models used. 

Although the numerical values are presented they should only be treated as indicators of possible 

direction and magnitude of change. Lough et al (1983) suggested that to do more than present the 

results in qualitative terms would be to impart a false sense of precision. However, to contradict 

this statement, their results were presented quantitatively in the related paper by Palutikof et at 

(1984). It was considered appropriate to include the numerical results here, with the qualification 

that they should be treated in a more qualitative manner. 

11.3.1 Wheat 

Wheat shows a moderate yield reduction on a national scale. This is largely attributable to 

increased winter rainfall in the warm years. Only a slight warming in spring temperatures was 

apparent. The dominant wheat area, Canterbury, shows only a slight yield reduction. For this 

growing district there was little difference in winter rainfall between warm and cold years. Otago 

shows a similarly slight yield reduction which is attributable to a rise in summer temperature. No 

analysis was carried out for Southland because of the low amount of variance accounted for by the 

model. However a negative relationship with spring temperature in this district would lead to 

lower yields under warmer conditions. 

Scenario 1 from the Impacts Working Group shows warmer temperatures and lower rainfall in 

eastern districts and Southland, covering the main wheat growing districts. Temperature 

warmings have been shown to be greatest in winter months (Wigley et al, 1980). This might be an 

advantage to autumn sown wheat in Canterbury and North Otago. Any increase in winter rainfall 

will be detrimental to yield of autumn sown wheat. Previous analyses showed the sensitivity of 

wheat to spring and summer temperatures and agricultural drought. 
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Table 11.3.1 

Yield changes indicated by CO2 warmed scenarios 

Crop Yield change % variance explained 
by model 

Wheat(NZ) -0.20 31 
Wheat (Canterbury) -0.07 39 
Wheat (Otago) -0.07 20 
Oats (N.Z.) -0.02 34 
Oats (Canterbury) -0.11 58 
Oats (Otago) -0.04 16 
Oats (Southland -0.05 13 
Barley (N.Z.) -0.28 51 
Barley (Hawkes Bay) -0.13 19 
Barley (Wellington) -0.21 31 
Barley (Marl.) -0.01 29 
Barley (Canterbury) -0.17 49 
Barley (Otago) -0.05 49 

Apples (1941-81) 0.61 31 
Apples (1963-81) -1.15 65 
Pears (1941-81) 2.53 29 
Pears (1963-81) -0.21 75 
Apricots -0.77 35 
Cherries -0.18 58 
Nectarines -1.03 48 (2 pred. model) 
Nectarines -1.77 68 (4 pred. model) 
Peaches 1.94 70 
Plums 0.74 22 (1 pred. model) 
Plums 0.13 79 (6 pred. model) 

Increases in spring temperatures coupled with less rainfall in the east and south of the South Island 

would therefore be detrimental to yield. Higher temperatures and rainfall in the Manawatu and an 

associated decrease in deficit days could generally be beneficial to spring sown wheat in this 

region, although higher rainfall could delay sowing and lead to lower yields. 

The number of deficit days would increase in Canterbury under Scenario 2 as a result of increased 

temperatures and only slightly increased rainfall. This would generally have a detrimental effect, 

particularly if coinciding with moisture sensitive developmental stages. This scenario suggests a 

large increase in deficit days in South Otago and Southland which may prove detrimental to spring 

sown wheat. The main wheat growing region of the North Island, centred around the Manawatu, 

shows reduced rainfall under this warmer scenario and a substantial increase in deficit days which 

may make this region more marginal for wheat. 

Overall there might be an increasing dominance of South Otago and Southland as wheat growing 

districts, which has been a trend over recent decades. 
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11.3.2 Oats 

On a national scale oats show only a very slight yield reduction, attributable to a slightly warmer 

late spring and early summer period. Canterbury yields show the greatest reduction, but still not 

very great. This yield reduction is generally a result of slightly warmer spring and early summer 

conditions and increased early spring rainfall. Otago and Southland show slight yield reductions 

which are again related to warmer late spring and summer temperatures. 

Warmer temperatures combined with lower rainfall in eastern regions, as suggested by Scenario I, 

would generally be undesirable for oats. There would be an increase in the number of deficit days 

and therefore greater potential for extended dry periods. 

The higher temperatures of Scenario 2 offset the slight increase in rainfall indicated for mid 

Canterbury. The remainder of the oat growing region, south to Southland shows either no change 

or a slight decrease in rainfall. As with Scenario 1 this will generally be detrimental to oat yields, 

particularly if it leads to a greater frequency of deficit days in spring and summer. 

As with wheat the overall effect of a climate warming may be a southward shift in oats, with 

increasing dominance of Southlan~ as an oat producing district 

11.3.3 Barley 

From the warm and cold ensembles barley shows moderate to slight reductions in yield as a result 

of a climate warming. The yield reduction appears greatest with national yields and with 

Wellington and Canterbury. Only a very slight reduction is shown for Marlborough and also a 

slight reduction in Otago. In Hawkes Bay the yield reduction results from an increase in January 

rainfall and an increase in late spring to early summer temperatures. The moderate reduction in 

Wellington yields results from a significant reduction in December rainfall and a strong warming 

effect in November. Marlborough shows reduced rainfall in November and a warming in late 

spring to early summer, however not of sufficient magnitude to make much difference to barley 

yields. The yield reduction in Canterbury results from warmer and wetter early spring conditions. 

The slight reduction in Otago is largely a result of slightly warmer January temperatures. 

Under Scenario 1 it could be expected that the potential for an increased frequency of agricultural 

drought in spring and summer could lead to net yield reductions in eastern districts. Warmer 

temperatures in Southland might lead to an increase in importance of this growing district for 

barley. From the crop-climate analysis it appeared that higher rainfall in spring, coupled with 

warmer temperatures appeared to have a positive impact on barley yield in the western North 

Island. These districts might increase in importance for barley under Scenario 1. 

Possibilities are less clear under Scenario 2. No change in deficit days in Hawkes Bay may see 

little change in relative importance of this district for barley. An increase in deficit days in the 
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western North Island may see a relative decline in importance of this region. In the east and south 

of the South island the pattern appears similar to Scenario 1. 

Overall there is uncertainty about scenarios for the North Island. For the South Island it appears 

that Southland may become a more attractive area for barley. Currently Southland temperatures 

are sub-optimal for this crop in relation to available moisture. Even a 10% reduction in Southland 

rainfall would give it a higher annual total than Canterbury. Combined with warmer temperatures 

conditions could become more optimal for barley in Southland than currently prevail in 

Canterbury. 

11.3.4 Apricots 

Apricots show a moderate yield reduction, using the analogue data. This results from warmer 

August temperatures. With the crop grown predominantly in Central Otago it was suggested that 

this may relate to the susceptibility of apricots to spring frost 

Both scenarios developed for the Impacts Working Group suggest a significant increase in the 

frost free season in Central Otago. Scenario 1 suggests no change in the temperature range, but an 

increase is suggested by Scenario 2. The same, or increased continentality associated with an 
--, 

extension of the frost free season could generally be seen as beneficial to apricots. Warmer and 

drier summers would also be of benefit, and possibly advance the average harvest date and shorten 

the harvest period. Apricot growing is already extending to the Waitald valley. Extended frost 

free periods would be of benefit to this area. Parts of the McKenzie basin and Canterbury Plains 

may also become increasingly attractive for apricots, with warmer summers and longer frost free 

periods. 

11.3.5 Cherries 

A slight yield reduction is indicated for cherries and results from increased October rainfall. This 

crop shows a high sensitivity to rainfall at blossom and harvest time, so the timing and intensity of 

rainfall will be more critical than annual totals. Marlborough and Central Otago are currently the 

main growing districts for cherries, with the former increasingly dominant over the last twenty 

years. 

Scenario 1 and 2 both indicate increases in rainfall in Marlborough. This suggests a greater 

potential for damaging rainfall events. Reduced rainfall and increased continentality in Central 

Otago and inland basins may make these regions increasingly attractive for cherries. Rainfall in 

Canterbury may be relatively unchanged which may see a revival in interest in this area for cherry 

production, particularly if the climate in Marlborough becomes less suitable. 
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11.3.6 Nectarines and Peaches 

Interestingly nectarines and peaches show different yield responses using the analogue data. This 

can be attributed to different distributional patterns and consequent differences in significant 

predictors. Decreased nectarine yields largely result from increased spring rainfall, which would 

be detrimental to blossom and fruit set. Increased peach yields result from warmer April 

temperatures suggesting yield benefits from enhanced autumn photosynthetic activity. 

Warmer temperatures would generally be beneficial to peaches and nectarines in all districts where 

they are currently grown. Rainfall totals and seasonal distribution will largely determine future 

regional distribution of these crops. Higher rainfall in the Auckland area would tend to exacerbate 

disease problems and increase problems of waterlogging. There is uncertainty about rainfall 

scenarios for Hawkes Bay, the principal stonefruit district. A slight decrease under Scenario I 

would be beneficial, given adequate irrigation at critical stages. Increased rainfall in Hawkes Bay 

under Scenario 2 could be detrimental depending on seasonal patterns. Warmer conditions in 

Marlborough with slightly increased rainfall would generally be suitable for peaches and 

nectarines. Conditions in Canterbury will also generally become more suitable for these crops 

under both scenarios. Warmer winters and a longer frost free period in Central Otago would make 

this area increasingly suitable also. 

11.3.7 Plums 

There was some scepticism about the relationship between plum yields and May temperatures, 

with no immediately apparent explanation. This relationship shows a slight to moderate increase 

in yields. Using a six predictor model the combined effect of April and May temperatures gives a 

slight increase in yields in warmer years. Negative relationships with rainfall over the growing 

season offsets this warming effect. 

It is recalled that Japanese plums have a lower winter chilling requirement than European plums. 

Warmer temperatures may generally be beneficial to plums in most districts. In Auckland, a major 

growing district, temperatures may potentially become too warm. Increased rainfall in this area 

would be detrimental, making this a less suitable growing district. The differing rainfall scenarios 

for Hawkes Bay suggest that this region mayor may not remain a dominant growing district. 

Increased rainfall under Scenario 2 will generally be detrimental. As with the other stonefruit the 

climate of the east coast of the South Island and Central Otago may become increasingly optimal 

for plums. 

11.3.8 Apples 

Differing predictors resulted in different yield responses with the two apple models. The 

differences in predictors are at least partly due to changing distributional patterns and hence 

different climate weighting factors for the years 1941-1965 in the longer time series. The result 
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from the 1963-1981 period is used with more confidence because the weighting factors were held 

constant for this model and because of the similar results obtained from the yield per hectare and 

yield per tree data. 

The yield increase shown for the longer time series reflects lower December rainfall and warmer 

March temperatures, which were negatively and positively related to yield. These offset the effect 

of warmer July temperatures. With the 1963-1981 model July temperatures have a more dominant 

effect leading to a negative yield response. 

The district models developed for the 1941-1965 period showed excess rainfall to be a major 

limiting factor to apple production in Auckland. Both Scenario 1 and 2 show increased rainfall in 

this region. Combined with warmer temperatures it could be expected that Auckland will become 

increasingly marginal for apples. Temperature will possibly become the main limiting factor in 

Hawkes Bay, particularly in winter, as previously discussed in relation to July temperatures. 

Reduced yields will generally result from such conditions and there may be a shift in the varietal 

mix. Increased rainfall in Nelson if associated with a summer increase would make summer 

drought less limiting to apple production and decrease dependence on irrigation over this period. 

Warmer temperatures may be beneficial in spring for pollen tube growth and early fruit 

development, and again in autumn for fruit maturation and photosynthetic activity. The greatest 

benefit would be attained in districts where temperatures are currently limiting at these times. The 

district models showed this to be true for Central Otago, which may develop a more suitable 

climate for apples. Irrigation would be crucial in this district. Canterbury may also become 

increasingly suitable for apples, although again irrigation would be a critical factor. Warmer 

temperatures in South Otago and Southland may make this region increasingly suitable for apples 

also, with adequate rainfall to sustain the crop. 

11.3.9 Pears 

Pears show a large yield increase with the 1941-1981 model. This is largely a result of warmer 

October temperatures, which were the dominant predictor. The obvious benefits of warmer 

October temperatures would be to flowering, pollination and pollen tube growth, particularly in 

presently marginal areas. As with apples there were different distributional patterns over this 

longer time series. The 1963-1981 model shows only a slight yield reduction which relates to 

increased September rainfall. which would be detrimental at blossom time. 

The July temperature response wasn't explicit in any of the district models for pears. However it 

did come through as a weaker predictor in the 1941-1981 model. It might be expected that the 

temperature response could be similar to that with apples, possibly making conditions in Hawkes 

Bay less optimal. As with apples increased rainfall in Nelson may reduce dependence on 

irrigation, given a summer increase. Increased frequency of deficit days in eastern districts would 

possibly necessitate greater use of irrigation. A southward shift in the optimum climatic zone for 



pears may occur, as described for apples, with increased plantings in Canterbury and possibly 

Otago and Southland. 

11.4 The uncertainties 

Some important points were raised in Lough et al (1983) and Palutikof et al (1984). Perhaps the 

most important is that the crop-climate models do not account for possible changes in climate 

variability. This is particularly important where there may be an increase in variability leading to 

possibly greater frequency and intensity of extremes. Other factors not taken into account in the 

models include the effects of possible future technological change, direct influence of C02 on crop 

photosynthesis and possible future changes in pest and disease complexes. 

While the effects of C02 enrichment are not certain, higher C02 levels may lead to greater water 

use efficiency (Rosenberg, 1982). Warwick et al (1986) presented a comprehensive review of C02 

enrichment data, mainly from growth chambers. This suggested a yield increase for most crops 

with increased C02, the amount depen~g on the crop and the prevailing growing, conditions. 

Given these probable yield increases, it is conceivable that some of the steady increase in C02 over 

the last century has contributed to the upward trend in the yield of many crops. However, as 

Palutikof et al (1984) pointed out, such effects may have been obscured by the impact of 

technologicaJ improvements. 

The present geographic distribution of both naturally occurring and cultivated plants will also be 

affected, depending on the degree to which conditions change. This was discussed briefly for each 

of the crops used in the empirical analyses for New Zealand. Parallel with this may be changes in 

climatic factors limiting to production of crops. It is important to be aware, as much as possible, of 

the limits to which crops are likely to be able to adapt to changed conditions, as this will assist in 

the exploration of response options. Such considerations would ideally be incorporated into a 

systems analysis, as previously suggested for Canterbury. 

The possibility of future changes to the boundary conditions of the global climate system raises 

questions about the value of constructing scenarios based on past analogues. Little confidence is 

placed in instrumental analogue scenarios by Palutikof et al (1984) beyond the early decades of the 

21 st century after which changes in atmospheric boundary conditions wiiI reduce "the realism with 

which past climatic change can be used as an analogue for the future". This conclusion would also 

apply to Southern Hemisphere scenarios. However this need not preclude updating the scenarios, 

as earlier suggestcd. particularly as a form of verification. This would be panicularly desirable for 

the Southern Hemisphere givcn the relatively limited data base that Pittock and Salinger (1982) 

had to work with. At least in the short term as much use as possible should be made of available 

data. 

11.5 Summary 

f d . b I"' P '!imatc models Climate data from warm and cold ensemble years were e mto anum cr 0 cro -c 

for New Zealand. This provided a tentative assessment of the possible impacts of a warmer world 

on thcse crops. A l~<;k.of exucme warm and cold periods from the 1~ to late 1970s precluded 
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development of a second analogue scenario. A period of warmer climate in the 1980s could 

provide a good opportunity for re-evaluating instrumental analogue scenarios for a warmer 

Southern Hemisphere. The empirical crop-climate models would also need to be updated to 

incorporate more recent data. Without a second instrumental analogue scenario possible 

magnitude and direction of change can't be verified in the same way as done by Lough et al (1983) 

and Palutikof et al (1984). However empirical discussion based on scenarios developed for the 

New Zealand Climate Change Impacts Working Group by Salinger and Hicks (1989) does provide 

some form of verification. 

Generally the direction of change with the three grain crops; wheat, oats and barley, is consistent 

between the analogue result and that deduced from the Working Group scenarios. It appears that 

there will be an increased potential for agricultural drought in the major grain growing districts . 
which would generally be detrimental to yield. This may lead to an increasing dominance of 

Southland as a temperate grain growing district. The response in Canterbury may be toward more 

drought tolerant varieties, a move to more drought tolerant crops, or increased use of shelter and 

irrigation. 

The magnitude of the yield reduction is uncertain, although it could be reasoned that it might be 

greatedn Canterbury and lesser further south. Results from the crop-climate models tends to 

support this. 

Results with the fruit crops were not entirely consistent with what could be reasoned from the 

Working Group scenarios. Lack of analysis at the district level is a strong limitation, as it is 

apparent that there will be quite different responses around the country. The limitations of these 

crop-climate models are made apparent, as for example with apricots. While the model suggests a 

general yield reduction a lengthening of the frost free season in Central Otago as suggested by the 

Working Group scenarios would tend to reduce frost risk. Generally it appears that the east of the 

South Island and Central Otago will become more climatically favourable for both stonefruit and 

pipfruit. This may lead to a shift in the centre of production away from Hawkes Bay. possibly 

towards Canterbury. 

Both the direction and magnitude of yield change with fruit crops is unclear. Lack of analysis at 

the district level makes any discussion of possible district impacts more speculative. 

There are many uncertainties associated with the probability of changes in the global climate. 

These were briefly discussed. While the uncertainties are acknowledged it is also argued that 

maximum use should be made of existing data. It is suggested that in the medium term data bases 

should be strengthened, particularly in relation to the monitoring of crop responses to climate. 
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CHAPTER 12 

Conclusions and recommendations 

12.1· Introduction· 

The primary objective of this thesis was to assess the iinpact of natural climate variability on 

crops in New Zealand and to evaluate the potential of well planned modification of the local and 

regional environment to mitigate the effects of this variability. There were two major 

components to the thesis. The first was an empirical-statistical analysis of crop-climate 

interactions in New Zealand. The second was an evaluation of the agroclimate resource in 

Canterbury and an assessment of the potential of shelter belts to modify the physical and 

. biological. enviro.nment. A secondary .objective was to make a tentative assessment of possible 

impacts of regional greenhouse scenarios on crop yields in New Zealand. 

12.2 The context 

A global perspective on climate variability and food security was considered a necessary 

preliminary. The subject is multi-dimensional in nature. It has a historical dimension, gaining 

increased importance to humans as they shifted from being hunter-gatherers to settled farmers. 

Although often associated with poorer countries, as illustrated by the Sahel drought and famine 

in the early 1970s, climate variability and food security is a subject of importance to all countries 

in the world. It therefore has a spatial dimension. The Sahel case study further illustrated the 

multi-disciplinary nature of the subject area, covering a range of social, biological and physical 

sciences. 

Many countries are aware of the importance of understanding more clearly crop-climate 

interactions as a source of information for improving food security systems. Others are becoming 

increasingly aware in the face of possible climate change. Concurrent with this is a growing 

awareness of the important links between trees and the environment, and their potential to 

contribute to the food security of a country. This provided a very appropriate context for analysis 

of crop-climate interactions in New Zealand, and an assessment of the possible role of 

shelterbelts in improving food security in the Canterbury region. New Zealand has a variable 

climate, both temporally and spatially. Different regions are subject to non-periodic extreme 

climatic events, as demonstrated most recently by Cyclone Bola and the Canterbury drought. 

This thesis has contributed substantially to a clearer understanding of crop-climate interactions in 

New Zealand, as well as identify limitations to the existing data base. Considerably more work 

needs to be done, including more detailed examination of possible response options. 
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12.3 Crop-climate analyses 

The aim of this part of the thesis was to give an overview of crop-climate interactions in New 

Zealand, with the hope of some insight into regional differences in yield response to climate. The 

methods used were not new. However, their application to New Zealand data, particularly the 

fruit crops, was new. The comparative use of the different approaches of P.C.A. mUltiple 

regression, weighted mUltiple regression and straight-forward multiple regression analysis in the 

same body of work gave a greater opportunity for detecting spurious results and identifying 

regional differences. The retention of data for verification, where there were sufficiently long­

time series, answered a major criticism made of many crop-climate analyses. This gave greater 

validity to the results with temperate grain crops. The shorter time series of data for fruit crops 

made the results of these analyses more speculative, particularly given the general lack of 

verification. Despite the speculative nature of the results with fruit crops, there were some 

interesting 'and encouragi~g 'results. It is unfortunate that data ~ollection for many of these fruit 

crops was discontinued in the 1980s as greater value could have been gained from extended tilne 

senes. 

12.3.1 Grain crops 

The most interesting feature to arise from the application of P.CA. combined with multiple 

regression analysis of district yield data was the variable success experienced. In the case of oats 

the spatial variation in response appeared to be too great to give good results. Wheat gave a 

more encouraging result, but the model verified poorly for Canterbury, the principal growing 

district. The wider adaptability of barley reflected in a good result for this crop. Barley proved to 

be more spatially responsive to climate than wheat and oats. These results raise a note of caution 

for future application of the P.CA. approach. The spatial responsiveness of a crop, combined 

with the spatial variability of climate over the area being examined, will determine the degree of 

success obtained. Perhaps the best safeguard is to combine several approaches as done in this 

thesis. These results showed that the application of several different approaches to analysis 

proved complimentary in terms of the insights gained. 

An overall impression gained with the grain crops was the sensitivity to periods of moisture 

deficit. These occur with sufficient frequency in the principal New Zealand growing districts to 

cause a significant limiting factor to yield from year to year. Such conditions can be aggravated 

by warmer temperatures and higher evapotranspiration rates. These general conclusions provided 

an important introduction to the remainder of the thesis. In particular they set the scene for a 

more detailed agroclimate evaluation of Canterbury .. 
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12.3.2 Fruit crops 

Given the small number of documented crop-climate analyses of fruit crops, this section 

constitutes a significant contribution of this thesis. More such studies should be encouraged, 

despite the obviously greater complexity in dealing with perennial crops. As a: generally 

exploratory study the results achieved were encouraging. 

The strength of the result with cherries, which demonstt:ated a clear negative influence of rainfall 

at both blossom and harvest, suggested this to be a feature of the two principal growing districts 

of Marlborough and Central Otago. Apart from this result, all other results with stonefruit 

suggested quite distinct regional response characteristics. The unavailability of district yield data 

was a clear limitation in further exploring relationships. Therefore the conclusions remain 

somewhat speculative. It would be of value to carry out a P.CA. approach to multiple regression 

to test the spatial responsiveness with these crops. 

This opportunity did arise with pipfruit. A preliminary analysis using P.C.A. gave an 

unsatisfactory result, deterring further application. This was because the spatial variability in 

response was too great. Subsequent analyses of district yield data demonstrated a considerable 

variation in yield response to climate, particularly with apples. This generally wide spatial 

variability in response would account for the relatively poor model verification achieved with the 

forty year time series of national pip fruit yields. 

Overall the results with the fruit crops suggest that there is value in applying empirical analyses to 

further understand crop-climate relationships. Such studies should be fur~her encouraged. Given 

the climatic sensitivity of many fruit crops, the district level is considered the most appropriate 

scale for future analyses. The main problem is lack of continuous time series and the lack of 

available district data. This part of the thesis was valuable in itself as well as contributing to the 

remainder of the thesis. 

12.3.3 Crop-Climate Model Conclusions 

The stated aim- of the crop-climate artalysis was to provide an overview of crop-climate 

interactions in New Zealand, setting the context for a more detailed regional study. While the 

results were not all clear, a good impression of grain and fruit growing in New Zealand was given. 

The use of model verification where possible, the wide use of the literature, and the use of 

comparative approaches, is a significant contribution which adds to the credibility of the 

empirical-statistical approach to crop-climate analysis. The context within which it ha~been used 

is unique. The quite differen; spatial re~ponses around the country highlighted the limitations of 
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drawing from a national model to a local context, or from drawing relationships from one region 

and applying them to another. This appreciation of regional differences, and more particularly 

the understanding gained from crop-climate interactions in Canterbury within the New Zealand 

context, provided both the rationale and background for a more detailed agroclimate analysis for 

this growing district. 

12.4 Canterbury agroclimate resource analysis 

The crop-climate analyses showed that more detailed empirical assessments of the relationships 

are generally only possible at the regional scale. Such detail is necessary for impact assessment 

and evaluation of response options. The Canterbury agroclimate analysis provided an integrated 

perspective which has not previously been given for this region, though it drew from and built on 

earlier research. While it is not as comprehensive as it could potentially be, this study provided a 

clear impression of the spatial nature of the climate of Canterbury. It showed how this can 

impact on crop production, most specifically with wheat, and explored in more detail the great 

significance of drought as a limiting factor to yield. 

A major theme was the general homogeneity in climate response over the Canterbury Plains. A 

secondary feature was the general north/south division. Of particular interest was the anomolous 

response of South Canterbury, both climatically and in the wheat yield-climate relationship. This 

is an important consideration for future analyses and for management. It would be of value to 

explore the spatial responsiveness of other crops, given available data. Another feature was the 

presence of local anomolies. These were mainly peripheral to the plains area itself. 

An appreciation of the spatial response to climate over any region is an important step in 

evaluation of possible measures for mitigating the effects of climate variability. In confirming 

both the general homogeneity of the climate response in Canterbury, particularly with 

temperature and the frequent recurrence of agricultural drought, the foundation was established 

for a more localised study of shelter effects. These results suggested that the shelter study could 

be of relevance to the region as a whole, despite its local nature. 

12.5 The contribution of shelter to regional food security 

The principal effect of shelter is known, and shown here, to be the modification of the ,vind 

regime. With increased shelter there is increased decoupling of the site from the regional 

environment and a reduction in wind speed. This is important when considering the potentially 
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damaging impaCts of wind, particularly in drought conditions. Such conditions arise in 

Canterbury under extended periods of strong, hot, drying Nor'westerlies. 

Modification of the wind regime because of increased surface roughness led to measureable 

microclimate differences. In particular, the resultant reduction in turbulent mixing led to a 

reduced transportation of sensible heat, especially under sunny skies, leading to higher daytime 

and mean temperatures. When warm, strongly advective conditions were brought by the 

Canterbury Nor'wester the temperature differences were less between the sheltered and exposed 

sites. Coupled with these wind speed and temperature differences was a calculated reduction in 

potential evapotranspiration in the sheltered sites. This appeared to be greater under more 

strongly advective conditions. 

In evaluating shelter effects, both on microclimate and on crop yield, few studies have considered . 

these effects in a wider context. The evaluation of wind profiles as reported in this thesis 

provided a regional connection. Observations from the Plant Science site demonstrated the 

compounding effects of the immediate vicinitY to the site and roughness features further away. 

Data from all sites show higher daytime temperatures (correlating with faster crop growth rates) 

with similar or lower levels of evapotraspiration (using the Penman Method). This is consistent 

with the literature which strongly suggests that the modified environment in a sheltered area 

generally leads to increased crop yields along with an increase in water-use efficiency. The 

recorded increases are often highest during the drier than average years, helping to mitigate the 

effects of drought. The Canterbury Plains, being a drought-prone area, would therefore derive 

considerable benefit in terms of greater crop yields with similar or even lower water 

requirements, reducing the impact of extreme weather. Sheltering would also allow the planting 

of a greater diversity of crops because of th.e higher mean temperatures in sheltered areas . 

compared with exposed areas. While the results of this thesis are consistent with the published 

literature in suggesting benefits from the strategic planting of trees, a more extensive study would 

be required to properly quantify and assess the full climatic and economic impact of extensive 

tree planting and sheltering of the Canterbury Plains. 

12.6 Greenhouse warming 

This part of the thesis was very much a tentative assessment because not a great deal of 

confidence can be placed in some aspects of the empirical crop-climate models. This is especially 

true for the fruit crops. Therefore the conclusions from considering a warmer climate must be 

viewed with caulion. 
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While allowing for the caution, this study of the impact of warming scenarios yields some valuable 

insights and conclusions which are particularly relevant for New Zealand. This is not to ignore 

the important work of the Impacts Working Group. It was most encouraging to fmd that the 

results drawn from the grain models derived in this study were generally in line with the 

deductions made from the Working Group Scenarios. The fruit crop relationships, as concluded 

previously, require considerably more work. 

Scenarios and results for Canterbury reinforce the significant effect of agricultural drought in this 

region. They make it very clear that a critical evaluation of possible regional responses be carried 

out. This evaluation would derive benefit from both the Canterbury agroclimate study and the 

shelter-effects study contained in this thesis. 

12.7 Overview and Recommendations 

12.7.1 Overview 

The major contribution of this thesis is its attempt to integrate several major fields of enquiry 

over the range of spatial scales from the national to field level. Allowing for the resource 

limitations imposed on this study, the attempt was largely successful. If anything could be 

identified as particularly limiting the attainment of the objectives of the thesis, it would be the 

lack of regional and district yield data for some crops. This imposed limitations on the 

integration of the spatial scales of the crop-climate relationships and the shelter study. 

In carrying out such an integrative study there is often a trade-off between the description of 

detail within a complex system, compared with the description of the system as a whole. In the 

first part of the thesis the larger scale of the crop/climate system is described on the global and 

national scale, creating a valuable context for the more detailed regional and field scale study 

which followed. What this thesis contributes, in relation to this trade-off, is the laying of a great 

deal of ground-work for future, more detailed analyses, which offer a lot of potential for further 

study. 

12.7.2 Recommendations 

With increased awareness of the probable global greenhouse warming there is a greater 

imperative for critical evaluation of New Zealand's agroclimate resource base. The New Zealand 

Meteorological Service has a well established climate station network. and a good historical data 
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base. The value of crop yield data has not been so well recognised. Both the collection and 

recording of yields has been relatively poor. There is no clearly identifiable and accessible source 

of detailed yield data for New Zealand. It is suggested that there is a critical need for such a 

resource base, so that maximum value can be obtained from past, present and future data. 

Grain crops may not require much further critical empirical evaluation in the short term. 

Relationships are generally clear and consistent. However it is improbable that relationships 

based on historical data will stay constant in the face of probable climate change. It is advised 

that the data bases for these crops be maintained, and improved. The uncertainties with the fruit 

crops are much greater. There is a need for more critical evaluation of these crops, particularly 

at the district level. This would require significant improvement on the existing data base. 

The Canterbury agroclimate and shelter study showed the value of analyses at the regional scale. 

More detailed and critical evaluation of possible response options in the face of probable climate 

change is recommended. A systems analysis of the possible future benefits of shelter, and other 

response options, is suggested. 

The thesis has provided a very useful foundation for the above recommendations. Analyses were 

predominantly empirical in nature. Interpretations were on occasion speculative. This highlights 

the considerable uncertainty that exists and reinforces the need for clearly identifiable and 

accessible data bases so that further critical evaluation can be carried out, both of crop-climate 

interactions and possible response options. 

A final recommendation arises out of the difficulties encountered in carrying out this project. 

The project attempted to integrate information and research over a range of disciplines. 

Integration between disciplines makes an important contribution to the advancement of our 

understanding of the wider food/climate system. However the traditional separation of research 

into separate disciplines inhibits interdisciplinary studies. An extra effort is required to do it. 

Greater institutional understanding and support than presently exists is critical to the future 

success of interdisciplinary studies such as this. 
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APPENDIX A 

Climate data: site adjustments and missing value 

estimation 

The climate stations from which climate data was used in the crop-climate analyses are indicated 

in Table A.I. 

District 
(Stats. Dept.) 

North Auckland 
South Auckland 

Hawkes Bay 
Taranaki 
Wellington 

Marlborough 
Nelson 
Canterbury 

Otago 

Southland 

Table A.l 

Climate stations selected for crop-climate analyses 

(a) Grains, period=1933-1983 

Rainfall 
station 

Mangonui(hrs) 
Ruakura 
TeAroha 
Napier(hrs) 
New Plymouth(hrs) 
Palmerston North 
Masterton 
Blenheim 
Appleby 
Christchurch(hrs) 
Waimate 
Oamaru(hrs) 
Alexandra 
Dunedin(hrs) 
Invercargill(hrs) 

Temperature 
station 

Waipoua forest 
Ruakura 
TeAroha 
Napier 
New Plymouth 
Palmers ton North 
Masterton 
Blenheim 
Appleby 
Christchurch 
Waimate 
Waimate 
Alexandra 

Gore 

Note: (hrs)=homogenous rainfall series data 

Also note that Waimate station was used as the source of temperature data in the weighted and 
district analyses. Although in South Canterbury it was the nearest site. with a sufficient time 
series. to North Otago where most of the temperate grains were grown. 
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(b) Fruits, period=1963-1981 

District Rainfall Temperature 
(M.A.F) Station Station 

Northland Waipoua forest Mangonui 
Auckland Albert Park Albert Park 
Waikato Ruakura Ruakura 
Bay of Plenty Tauranga Tauranga 
Manawatuffaranaki Palmers ton North Palmerston North 
Wellington! Masterton Masterton 
Wairarapa 
Poverty Bay Manutuke Gisborne 
Hawkes Bay Napier Napier 
Nelson Appleby Appleby 
Marlborough Blenheim Blenheim 
Canterbury Christchurch Christchurch 
South Canterbury Waimate Waimate 
Oamaru/Dunedin Oamaru Dunedin 
Central Otago Alexandra Alexandra 

(c) Wheat in Canterbury, period=194S-1982 

County Rainfall Temperature 
(Stats. Dept) station station 

Amuri 
Hurunui Balmoral forest Balmoral forest 
Cheviot 
Rangiora Ashley forest Ashley forest 
Eyrewell Eyrewell forest Eyrewell forest 
Oxford 
Malvern Darfield Darfield 
Paparua Christchurch Christchurch 

Christchurch airport 
Ellesmere Lincoln 
Ashburton Ashburton Ashburton 
Strathallan Timaru airport 

Orari estate 
Mackenzie 
Waimate Waimate Waimate 

Note that not all climate stations are located in the counties with which they are associated, 
notably Christchurch and Christchurch airport which are in fact located in the city of Christchurch 
and Waimairi county respectively. Paparua was merely the nearest county for which there was 
yield data. 
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Rainfall data 

Where possible rainfall data were used from the homogenous rainfall series (Thompson, 1984). 

This was supplemented by rainfall data from other, selected, stations. Salinger (1981) commented 

that since 1953 the quality control of the N.Z. Met. Service has been much superior than prior to 

this time. The homogenous rainfall series was therefore particularly valuable for use with the 

longer time series of yield for the grain crops. No detailed site comparisons were made for other 

rainfall stations used in the analysis of district and national yields, although Salinger's (1981) site 

descriptions were useful for selection of South Island stations. Principal components analysis 

gave sensible groupings therefore it was considered that these time series were of reasonable 

quality. 

Detailed _comparisons were possible with the Canterbury rainfall data. For the analysis of 

Canterbury wheat yields rainfall data for the 1945-1982 period were used and therefore site 

comparisons were confined to this time. Seasonal data sets were used. Site comparisons were 

made for all of the stations listed. Although some showed slight trends relative to neighbour 

stations most showed no significant differences before and after site changes. 

There were obvious and significant discontinuities when comparing Ashburton with the 

neighbouring Winchmore station. This latter site has been consistently well exposed, with a clean 

record. For the period 1950 to 1980 these two sites showed very similar rainfall patterns. Salinger 

(1981) noted a poor record at Ashburton from 1947 to 1959. Analysis of rainfall ratios (1947-

1950 vs 1951-1954) showed no significant difference. A strong discontinuity was apparent at 

Ashburton from 1980 on. Differences in rainfall ratios were significant in the winter and summer 

at the 1 % level. 

Adjustments to Ashburton 
rainrall data, 1981-1986 

Winter 
Spring 
Summer 

ratio 
1.24 ** 
1.11 n.s. 
1.33 ** 

Note **=1 % significant 

For estimation of missing rainfall values Salinger (1981) recommended the use of rainfall ratios. 

Several Canterbury stations had some missing values. All had one or more neighbour stations in 

close proximity and showed similar totals in the months when a particular station had a missing 

value. Based on this missing values were estimated by adding the mean departures from the 

neighbour stations to the mean value for the month and station in question. This would not be 

recommended for less closely sited stations, but in this case gave satisfactory estimates. 

The recommended approach of Salinger (1981) was used for estimating missing values for 

Oamaru district, a data set obtained from the homogenous rainfall series. There were 11 months in 
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1983 with missing values. Dunedin and Waimate were selected as the nearest neighbour stations. 

For the months in question the ratio between the monthly values and the long term means for those 

months were calculated for each of the neighbour stations. These ratios were averaged over the 

two stations and the long term means for the appropriate months at Oamaru were adjusted 

accordingly to give the estimates. 

Oamaru district 

Jan Feb Mar Apr May Jun JuI Aug Sep Oct Nov Dec 

1983 56 33 77 77 59 53 52 22 73 47 19 77 

Temperature data 

There were no homogenous temperature data sets available, therefore all temperature data used in 

the crop-climate analyses were carefully checked. As with the rainfall data Salinger's (1981) site 

descriptions were used where possible in deciding whether or not site comparisons were necessary. 

Comparisons were made using seasonal data sets. Details of site change adjustment and missing 

value estimation for climate stations used in the national and district analyses is given. This is 

considered sufficient to exemplify the approach. Information is given sequentially, by station, 

from north to south. 

1. Waipoua forest, A53651 

No adjustment necessary 

Estimated missing values for: winter 1929, 10.6; autumn 1973, 15.6; autumn 1978, 15.7; spring 

1978, 12.3; spring 1979, 15.4. 

2. Albert Park, Auckland, A64871 

There was a change in screen type in 1950, which Salinger (1981) determined had a significant 

effect. Auckland was compared with four other stations before and after the site change (i.e. 

Waipoua forest, Te Aroha, Tauranga, Ruakura). In autumn and spring mean temperatures were 

0.2· C cooler before the change of screen type. For the period 1928-19490.2· C was added to 

autumn and spring temperatures. 

Estimated missing value for: summer 1984,20.4. 
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3. Te Aroha, B7SS71 

The site was changed on 22 November 1955. Salinger (1981) found the site change to be of no 

consequence, after comparison with Auckland and Tauranga. This was accepted, and no 

adjustment was made. 

Estimated missing values for: winter 1932,8.7; summer 1972, 18.9; autumn 1973, 16.0; winter 

1974, 10.9; spring 1975, 14.7; spring 1976, 13.8; summer 1977, 19.7; spring 1979, 14.9; spring 

1985,14.4. 

4. Tauranga,B76611 

There was a site change at the end of June, 1940 to the present site. Site comparisons were made 

with Auckland, Waihi, Te Aroha and Whakarewarewa. The site change resulted in a significant 

increase in autumn and summer mean temperatures, by 0.5· and 0.3 • C respectively. Data for the 

period 1928 to June 1940 was adjusted in these seasons. 

Estimated missing values for: summer 1930, 17.0; winter 1981, 10.4. 

S. Ruakura, C7S731 

Salinger (1981) suggested that the record was unreliable before 1939. Comparison of graphed 

annual temperatures with Auckland suggested a consistent pattern. There were two site changes in 

the 1928-1986 period. Site comparisons were made with Auckland, Waihi, Te Aroha, Tauranga 

before and after the site changes. Firstly the second site (13 May, 1936 to 17 October, 1939) was 

compared with the third. There was no significant difference in any season, so no adjustment was 

required. The frrst site was then compared with the second and third combined. The frrst site was 

significantly different from the other two, with a cooling in autumn and summer temperatures by 

-0.4· C. Adjustment was made to the frrst site, for the period 1928-1936, up until the site change. 

Estimated missing value for: summer 1973,19.0. 

6. New Plymouth, C94003 

There were two site changes between 1982 and 1973. These were on 1 July, 1938 and in July, 

1942. The second of these changes proved to be insignificant. The first site was therefore 

compared with the other two. It was significantly warmer in all seasons. This site was adjusted to 

the other two by -0.4. ,-0.3· ,-0.5· and -0.5· C in autumn, winter, spring and summer. There was 

another site change in 1973. Comparisons were made before and after with Ruakura, Wellington, 
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Wanganui and Palmers ton North. Winter temperatures were 0.2· C cooler, with spring 

temperatures 0.2· C warmer. This site was adjusted to the 1928-1973 period. 

Estimated missing values for: summer 1972, 16.4; spring 1972, 13.5; autumn 1973, 15.1; spring 

1973,13.4. 

7. Palmerston North DSIR, E05363 

No adjUSbnent was required for this data set and there were no missing values. 

8. Gisborne, D87692 

No adjusbnent was required for this data set and there were no missing values. 

9. Napier, D96591 

The only site change between 1928 and 1986 occurred in November 1963. This station was 

compared with Gisborne and Masterton (adjusted) before and after the site change. Autumn and 

winter temperatures were significantly cooler, by -0.3· and -0.2· , after the site change. The 

earlier site was adjusted to the latter by these amounts for the appropriate seasons. 

Estimated missing values for: summer 1976, 18.2; winter 1978,9.5; summer 1979,19.3; summer 

1981,19.7. 

10. Waingawa, Masterton, D05964 

There was a site change in September, 1942. Comparisons were made with Napier, Bagshot and 

Hastings. The ftrst site was significantly cooler, by -0.6· , -0.7· and -0.4. in autumn, spring and 

summer. The record was adjusted to the present day site by these amounts. 

Estimated missing values for: autumn 1977, 12.3; summer 1985, 18.1; autumn 1986, 13.2. 

11. Appleby, G13211 

Salinger (1981) comments that the record for this site is an excellent one, with no site changes 

since the record began in 1931. There were no missing values. 
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12. Blenheim, G13592 

There were two site changes within a relatively short period, on 1 May 1942 and again at the end 

of December 1946. Comparisons were made with Appleby, Hanmer, Balmoral forest (adjusted) 

and Christchurch. The earlier sites were adjusted to the present site. For the period of May 1942 

to Dec 1946,0.4· and 0.8· C were added to the autumn and winter temperatures. For the period 

1932 to the end of April 1942,0.4· ,-0.2· ,-0.7· C were added to winter, spring and summer 

temperatures. 

Estimated missing value for: autumn 1932, 12.8. 

13. Balmoral forest, H22871 

There was a site change on 31 Jan 1950. Comparisons, before and after, were made with Hanmer, 

Christchurch, Lincoln and Waimate. Data from Lincoln and Waimate were used over restricted 

periods, due to site changes at these stations, so only data from periods when no changes occurred 

were used. The analysis showed the only significant difference to occur in winter, with 

temperatures cooler after the site change. The 1950-1986 data were adjusted by 0.4· for winter. 

Estimated missing values for: summer 1976, 15.4; spring 1977,9.9; autumn 1980, 11.1. 

14. Christchurch, H32561 

No adjustment was made to this data set, with site changes being small and insignificant. There 

has however been an urban warming effect, which Salinger (1981) discusses. 

Estimated missing value for: spring 1980, 12.8. 

15. Lincoln, H32641 

There have been three site changes at Lincoln over the 1928-1986 period. The 1944-1963 site was 

taken as the one with the best exposure, so all other periods were adjusted to this. The 1928-1943 

period was significantly warmer in all seasons. It was adjusted by -0.5· , -0.8 • • -0.7· • -0.4· in 

autumn, winter, spring and summer up to 28 April 1944. The site from 7 May 1964 to 15 July 

1975 was significantly warmer in autumn and winter. Adjustment was made by -O.3·C in both of 

these seasons. The final site change was on 15 July 1975. Data from this period were 

significantly cooler in spring. and an adjustment of +0.2 • C was made for this season. 

There were no missing values. 
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16. Asbburton, H31971 

There were two site changes at Ashburton, on 5 Oct 1939 and 19 May 1950. The second site was 

compared with the third, taking the mean differences from Balmoral, Christchurch, Lincoln and 

Waimate. The second site proved to be significantly cooler in autumn, spring and summer and 

was adjusted by 0.2' , 0.4' and 0.4 • C in each of these seasons. The ftrst site was then compared 

with the other two combined. Autumn, spring and summer temperatures were signiftcantly cooler 

and were adjusted by 0.3 • , 0.4' and 0.5 • C. 

Estimated missing values for: winter 1939,4.8; spring 1982, 11.7. 

17. Waimate, H41701 

There was a site change at Waimate in August, 1939. Comparisons, before and after, were made 

with Balmoral, Christchurch, Lincoln and Ashburton. Temperatures were signiftcantly warmer in 

all seasons after the site change. The 1928 to August 1936 data were adjusted upwards by 0.6' , 

0.3' , 0.4' and 0.5' C in autumn, winter, spring and summer. 

Estimated missing value for: winter 1936, 6.6 

18. Alexandra, 159234 

A site change occurred in September 1963. Before and after comparisons were made with Naseby 

and Ophir. There was no significant difference in mean temperatures in any season, so no 

adjustment was made. 

Estimated missing values for: spring 1983, 11.6; autumn 1985. 10.8. 

19.CJore,I68093,168191,168192, 

Data were combined for three stations; East Gore. Gore Borough and Gore DSIR. Salinger (1980) 

noted a warming in East Gore temperatures between 1960 and 1965 when it closed. Gore 

Borough data were available from 1942-1972, but was only used from 1960-1972. when it closed. 

The DSIR station opened in August 1971. The ftrst two sites were compared and no significant 

difference was found between the two. The latter site was adjusted to these two. The DSIR site 

was signiftcantly cooler than the other two in all seasons. Adjustments of 0.5' , 0.3' • 0.8' , 0.8· C 

were made in autumn, winter, spring and summer. 

Estimated missing values for: summer 1971. 15.6; spring 1971.10.7. 
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Example output from principal component analysis 

Analysis of barley yield and related climate data 

Eigenvectors 

District YIELD 1 YIELD2 YIELD3 

North Auckland 0.110502 -0.143088 0.546258 
South Auckland 0.248849 0.303687 -0.334991 
Gisborne 0.295957 -0.344172 0.020365 
Hawkes Bay 0.337746 -0.103112 0.378923 
Taranaki 0.269764 0.473180 0.132410 
Wellington 0.362508 0.300862 -0.042741 
Marlborough 0.339469 -0.327479 0.135702 
Nelson 0.398833 -0.170001 0.054786 
Canterbury 0.399507 -0.028708 -0.246518 
Otago 0.177594 -0.369814 -0.586193 
Southland 0.233589 0.412392 0.014730 

Station WRAIN1 WRAIN2 WRAIN3 

Mangonui 0.127792 0.477724 -0.036109 
Ruakura 0.303357 0.190162 0.254789 
TeAroha 0.230081 0.454432 -0.153109 
Napier 0.162723 0.346529 -0.153749 
New Plymouth 0.245821 -0.060824 0.366997 
Palmerston North 0.258371 -0.079547 0.469030 
Masterton 0.291720 0.132667 0.200391 
Nelson 0.238331 -0.363434 -0.163905 
Blenheim 0.257630 -0.257019 -0.308100 
Christchurch 0.316395 -0.027566 -0.168529 
Waimate 0.339476 -0.002378 -0.242956 
Alexandra 0.200026 -0.411712 0.007644 
Oamaru 0.336705 -0.002172 -0.217420 
Dunedin 0.314885 -0.108181 -0.006654 
InvercargiU 0.094264 -0.035713 0.485047 

239 
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Station SPRAIN 1 SPRAIN2 SPRAIN3 

Mangonui 0.164987 0.486833 0.243907 
Ruakura 0.311136 0.319671 -0.185987 
TeAroha 0.170512 0.490830 0.106270 
Napier -0.003290 0.257374 0.415361 
New Plymouth 0.331223 0.137836 -0.221285 
Palmerston North 0.293356 -0.180220 -0.220671 
Masterton 0.274455 0.075181 0.144268 
Nelson 0.262333 0.103187 -0.399189 
Blenheim 0.339052 0.053601 -0.239805 
Christchurch 0.295926 -0.156231 0.329477 
Waimate 0.312777 -0.260216 0.316182 
Alexandra 0.223283 -0.256779 0.005366 
Oamaru 0.278449 -0.198773 0.395171 
Dunedin 0.27517.9 -0.270441 -0.051007 
Invercargill 0.059221 -0.110875 -0.139461 

Station SURAINI SURAIN2 SURAIN3 

Mangonui 0.237654 -0.287186 0.297742 
Ruakura 0.325015 -0.212022 0.177236 
TeAroha 0.273023 -0.249436 0.153157 
Napier 0.180830 -0.341352 -0.336139 
New Plymouth 0.288450 -0.171068 0.220362 
Palmers ton North 0.267121 -0.183454 0.144182 
Masterton 0.199012 -0.234013 -0.335021 
Nelson 0.293886 -0.035329 0.063489 
Blenheim 0.337613 0.098002 -0.026132 
Christchurch 0.281425 0.190389 -0.388800 
Waimate 0.293328 0.312712 -0.225668 
Alexandra 0.189873 0.273210 0.269639 
Oamaru 0.289524 0.371472 -0.159795 
Dunedin 0.225213 0.394174 0.108813 
Invercargill -0.017094 0.251500 0.494993 

Station WTEMPI WTEMP2 WIEMP3 

Waipoua forest 0.244906 -0.295320 0.162069 
TeAroha 0.274043 -0.302096 0.220792 
Ruakura 0.280376 -0.297378 0.219467 
Napier 0.293126 -0.196024 -0.333804 
New Plymouth 0.309462 -0.128981 -0.055396 
Palmers ton North 0.311207 -0.088600 0.020805 
Masterton 0.282702 -0.114062 -0.575065 
Appleby 0.293047 -0.022678 0.410595 
Blenheim 0.293625 0.121547 0.217962 
Christchurch 0.295104 0.203714 -0.301308 
Waimate 0.266740 0.335644 -0.145614 
Alexandra 0.211147 0.521390 0.315440 
Gore 0.230086 0.464626 -0.060036 
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Station SPTEMPI SPTEMP2 SPTEMP3 

Waipoua forest 0.253734 -0.308809 0.087648 
TeAroha 0.283168 -0.302625 -0.165850 
Ruakura 0.272815 -0.423496 -0.033832 
Napier 0.250000 -0.104053 0.608109 
New Plymouth 0.291924 -0.226014 -0.148089 
Palmers ton North 0.305490 -0.150593 -0.057939 
Masterton 0.293545 0.051846 0.040442 
Appleby 0.285763 0.011869 -0.273555 
Blenheim 0.295655 0.069219 0.218096 
Christchmch 0.282389 0.285500 0.281236 
Waimate 0.247544 0.492033 0.275488 
Alexandra 0.271786 0.300904 -0.421806 
Gore 0.264258 0.356859 -0.334128 

Station SUTEMPI SUTEMP2 SUlEMP3 

Waipoua forest 0.275585 -0.212522 0.211597 
TeAroha 0.272852 -0.334236 0.325875 
Ruakura 0.282948 -0.264349 0.118777 
Napier 0.258511 0.439121 0.563953 
New Plymouth 0.281844 -0.259092 0.039411 
Palmerston North 0.289501 -0.079611 0.059698 
Masterton 0.283592 0.227889 0.150772 
Appleby 0.281286 -0.218370 -0.082682 
Blenheim 0.280950 0.202238 -0.048235 
Christchurch 0.272867 0.424585 -0.142805 
Waimate 0.271034 0.378653 -0.352703 
Alexandra 0.278571 -0.198295 -0.401524 
Gore 0.274725 -0.058786 -0.416959 
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APPENDIXC 

Extracts from the 'Orchardist of New Zealand' 

Growing season 

1963-1964 

1964-1965 

1965-1966 

1966-1967 

1967-1968 

1968-1969 

1969-1970 

1970-1971 

1971-1972 

1972-1973 

1973-1974 

1974-1975 

1975-1976 

1976-1977 

summaries of growing seasons 

Table Cl 

Stonefruit: Central Otago 

Comments 

Season peaked three weeks later than average. 

1964 the driest year on record (211mm). Drought broken in 1965. A 
successful stonefruit season. 

Poor fruit set in stonefruit because of cool south-west winds over the 
blossom period. 

Damaging frost on 4 November. Stonefruit not as badly affected as 
pipfruit due to greater frost protection. Average crops. 

Spring frosts, crops still average. Apricot crop lighter than average. Late 
season with unsettled weather. January rainfall well below average. 

Heavy frosts in first half of October. Overall fruit crops expected to be 
down by 25%. Plums and nectarines badly affected. For the third 
successive year a late start to harvest. 

Fruit setting conditions unfavourable. Two severe localised frosts in 
October. Prospects excellent. Bad weather in December/January depleted 
the cherry and apricot crops. 

120-130 mm of snow on 23 September, then two heavy frosts. All but 
wiped out the apricot crop. Stonefruit production only 18% of previous 
year. 

Localised gales caused some damage to apricot trees on night of 10-11 
Sept. Localised frost damage in late Sept. Apricot ripening delayed by 
cool weather. 

An average season. Good quality crop. 

Heavy fruit set. Little problem with frost. Heavy crops, good quality. 
Cold weather delayed ripening of apricots. 

No damaging frosts. Three localised hail storms in January. Crops down 
on previous seasons. 

Spring frosts at the end of Sept. reduced the Roxburgh crop. Apricot crop 
only two thirds of average, others in good supply. 

Unsettled spring weather delayed the apricot crop. Wet periods reduced 
the cherry crop to 50% of average. Wet weather caused serious cracking 
and brown rot in apricots. 



1977-1978 

1978-1979 

1979-1980 

1980-1981 

1981-1982 
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Very wet, cold spring gave poor fruit set. Trees were late to full bloom, 
harvest was light. Very light to average crop overall. 

Harvest season excellent. Above average crop. 

Season started poorly. December conditions favourable although rain 
caused cracking in cherries. Rain and wind damage to other stonefruit 
later. Conditions improved. 

One of the best seasons for many years. From late spring, weather hot 
and dry, with well timed rain. Season earlier than previous years. Short 
season, good quality fruit. 

Mild winter, relatively frost free spring. Heavy fruit set. Harvest affected 
by adverse weather. 



Growing season 

1965-1966 

1966-1967 

1967-1968 

1968-1969 

1969-1970 

1970-1971 

1971-1972 

1972-1973 

1973-1974 

1974-1975 

1975-1976 

1976-1977 

1977-1978 

1978-1979 

1979-1980 

1980-1981 

1981-1982 

Table C2 
Stonefruit: Hawkes Bay 

Comments 
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Stonefruit crop affected by frost, although losses greater with pipfruit. 

Severe storm on 11 Dec. 

Good growing conditions. Violent storm in April, main harvest over. 

Indications for a good crop. Severe winds, heavy rain, late frost and hail. 

Heavy blossom, good fruit set. Frost affected early plum varieties leading 
to fruit drop. 

Good peach crop expected. 

Heavy blossom on all stonefruit except for some plum varieties. 
Prolonged period of rain in early March caused considerable losses in 
some crops. Golden Queen peaches were the hardest hit. Some losses 
through dropping and scald from hot weather after the rain. 

Gale force winds just after Xmas caused considerable losses, mainly to 
plums and peaches in more exposed areas. 

Production up on last year. Conditions favourable. 

Crop substantially down because of poor fruit set and floods earlier in the 
year. 

Prospects excellent, good blossom. Weather following generally 
unfavourable._Below average sunshine, heavy rain and cold temperatures 
early in 1976. Hail storm and gales in Feb. Fruit size down. 

Cold conditions and persistent rain during blossom. Below average fruit 
set. Also hail and frost damage. Crops down. 

Crops down for second year in a row, with a poor spring. 

Heavy frost, hail, persistent rain and gale force winds, at different times. 
Wettest March for 75 years, 325 mm in 17 days. 

Excellent year. Fine settled weather through the main harvest. 

Dry winter. Relatively dry, warm, windy spring, excellent for fruit set. 
Generally favourable conditions throughout the harvest period. 

Mild winter, good blossom. Ideal pollination conditions. Gale force 
winds, drought, devastating hail storm in January. 



Growing season 

1954-1955 

1955-1956 

1956-1957 

1957-1958 

1958-1959 

1959-1960 

1960-1961 

1961-1962 

1962-1963 

1963-1964 

1964-1965 

1965-1966 

1966-1967 

1967-1968 

1968-1969 

1969-1970 

1970-1971 

1971-1972 

1972-1973 

1973-1974 
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Table C3 

Pipfruit: Hawkes Bay 

Comments 

Severe late frost reduced crop. Larger than expected crop. 

Weather conditions favourable for most of the season. Record crop. 

Climatic conditions in spring caused more russet than normal. 
Conditions at harvest favourable. Good crop. 

Favourable conditions. Dry weather through late summer and autumn 
reduced size. Record crop. 

Unfavourable spring conditions caused russet. Apple crop slightly above 
average. Record pear crop. 

More rain than usual in the latter part of harvest. All time record apple 
crop. Pears above average. 

More rain than usual throughout growing and harvest season. Some 
russet problems as a result Moderate apple crop. Heavy pear crop. 

Very wet winter and early spring. A very dry summer, favourable for a 
record crop. 

No comments 

Prevalence of russet and damaging Nov. frost reduced crop. Dry summer 
and autumn. High frequency of strong westerlies in Jari. Reduced crop. 

A dry summer, followed by good autumn conditions. One of best ever 
crops, down on last year in quantity, but excellent quality. 

Heavy frost damage in November 1965. 

Bad weather before and after Xmas delayed ripening. Fruit didn't size 
with very dry weather. 

Storm damage in April. Losses high, mostly through fruit drop. 

Crop down due to frost damage and an "off' season. Severe hail storm 
hit some growers in mid Jan. Had to contend with severe winds, heavy 
rain, late frosts and hail. 

No comments. 

Excellent season. Good for an "off' year. 

Heavy blossom. 

Dec. gales caused some branch rub damage. S un scald over a hot 
summer. 

Little damage from an early storm. Good growing and harvest season. 
Some damage to Granny Smith with April gales. Crop down. 
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Gale force winds caused some damage on several occasions, as did 
flooding in a few orchards. 

Weather generally unfavourable with below average sunshine, heavy rain 
and cold temperatures early in the year. Hail storm and gales in Feb. 
Fruit size down. 

Cold weather and persistent rain over the blossom period resulted in poor 
fruit set. Also some frost and hail damage. Granny Smith worst affected. 

Reasonably heavy frosts, helped thin out the crop. High yields, fruit size 
above average. 

Heavy frosts, hail, persistent rain and gales. Wettest March in 75 years at 
Hastings, difficult for harvest. Southerly on 31 Mar. caused considerable 
damage to Granny Smith particularly. 

Very heavy blossom, good fruit set. Fine settled weather through to main 
harvest. Storms in Mar., little damage. High yields. 

Dry winter. Relatively dry, warm, windy spring. Excellent for good fruit 
set. Generally favourable conditions throughout the harvest. Good crop. 

Mild winter, with excellent blossom and ideal pollination conditions. 
Gale force winds, drought and a hailstorm (affecting 100 orchards) all 
caused losses. A disappointing crop. 



Growing season 

1954-1955 

1955-1956 

1956-1957 

1957-1958 

1958-1959 

1959-1960 

1960-1961 

1961-1962 

1962-1963 

1963-1964 

1964-1965 

1965-1966 

1966-1967 

1967-1968 

1968-1969 

1969-1970 

1970-1971 

1971-1972 

1972-1973 

1973-1974 

1974-1975 

1975-1976 

Table C4 
Pipfruit: Nelson 

Comments 

Heavy rains, followed by a period of dry weather. Record crop. 
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Good climatic conditions produced a crop of medium to large sized fruit. 
A record crop of apples. Pear crop down on last year. 

Unfavourable conditions in late 1956, delayed fruit maturation. 

Heavy, localised hail damage. Crop down. 

An extremely favourable growing season. Record crop. 

Late frosts in several areas severely reduced some crops. Crop down. 

Dry spring. Heavy rain in Jan. Above average crop. 

Good weather for blossom and fruit set. Good spread of rainfall over the 
pre-harvest period. Large crop. 

Very wet winter and spring conditions. Crop well below average. 

Heavy fruit set. Dry in late spring and in summer, seriously affected 
sizing. Heavy rain at the end of Feb. helped later varieties. 

Good growing conditions in early summer. Lack of January rainfall 
affected sizing. Later rain helped mid to late season varieties. Season a 
little late. Above average crop. 

Near gale force winds and heavy rain throughout Nelson district near the 
end of March. Light damage. 

Very dry weather, affected sizing. Crop down. 

Drought conditions in early March had a direct affect on fruit size. Crop 
lighter than expected due to alternating wet and dry conditions. 

No comments 

Some frost and hail damage. Otherwise a good season. 

Storm on 4 Jan. caused some localised losses. 

November rain boosted prospects for a good season. 

Worst ever drought, combined with extreme temperatures reduced crop 
size and led to sunburn damage. 

Early season drought and some hail damage. Size down. 

Widespread hail storm on 18 Oct., and hail on four other occasions. Most 
growers affected. Cyclone Alison caused some damage on 11 Mar. 

Very good weather to the end of Jan., with ample moisture. Conditions 
deteriorated, with reduced fruit size. High winds and a heavy rain storm 
caused losses to the Granny Smith crop. 
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Wet spring led to poor fruit set. The worst hail storm ever experienced 
hit on 22 Dec. Nelson was declared a climatic disaster area. 

Drought through to April affected fruit size. Harvest was late, conditions 
dry. 

Fairly good spring. Dry from Dec. to the end of Feb. Later rain helped 
mid-season varieties. Some localised hail damage. 

Oct.-Apr., wetter and cooler then average. Smaller sized fruit, especially 
Granny Smith. 

Two localised hail storms in late Nov. and early Dec. Two months of 
drought affected some orchards. Rain early in March helped avert total 
disaster. 

Season started well, with good fruit set. Heavy fruit drop. Two 
devastating hail storms affected about 30 orchards. Long periods of cool, 
wet weather before Xmas. Good weather in the New Year. 
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APPENDIXD 

Effect on yield of shelterbelts 

Table Dl 

Shelter type Crop(s) Yield effect Author(s) 

Mixed species groundnut T40-43% Reddietal, 
pigeonpea T 39-47% 1981 
pearl millet T 23-64% 

Mixed species wheat increased Voraetal, 
mustard yield of 1982 

both 

Eucalmtus wheat no effect Sheikh e t a I , 
camaldufensis cotton max yield at 1982 

6O-70m 
min yield at 
15-30 and 
165-180 m 

Mixed species grain and T by about Anikanov 
other crops 5% etal,1982 

Mixed species wheat irr'd fields Titova et al, 
T 7.9%, non- 1982 
irr'd fields 
T 11.3% 

barley irr'd fields 
T 12.3%, non-
irr'd fields 
T 13.7% 

Ulmus pumila cotton significant Orazov, 1982 
vararborea lucerne increase 

Unspecified field crops increased Jeddeloh,79/80 

Unspecified grain permeable Vasilev,1980 
T 0.7-0.8 
t/ha 

dense 
lO.24-0.26 
t/ha 

Unspecified wheat highest yld Sheikh 
at 10-20 m, etal,1976 
below avo at 
5 mfrom 
shelter 

Unspecified winter wheat cfno Labaznikov, 
hybrid maize shelter T 1977 
sunflower ylds, T protein 

& gluten 
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Unspecified apples permeable Adrianov, 
59.2 kg/tree 1975 
semi-perm. 
35.9 kg/tree 
impermeable 
43.3 kg/tree 

Unspecified cotton 1 0.3-0.6 Molchanova, 
t/ha 1980 

Unspecified winter wheat 1 yield Gorgainov 
etal,1981 

Dalbergia sissoo Pavan wheat Signif. 1 Khattaket 
Eucalyptus citriodora yield under al,1981 
Populus deltoides D. sissoo 
Salmania malabasica cfother spp 

Unspecified wheat avo increase Peevetal, 
maize 14-21 %; 0.6- 1982 

1.1% more 
protein 

Unspecified sunflower return of Labaznikov, 
grains 2.16 roubles 1979 

per 1 rouble 
invested 

Robinia sugar beet 32% higher Dzhodzhov, 
pseudoacacia than unprot- etal,1980 

ected field 
during wind-
storm 

Birch wheat 1 of 100-740 Ivanov, 
kg/hain 1980 
droughtyrs 

Tamarix gallica wheat 1 by 8-15% Rehman, 
T. gallica+ , greatest 1978 
Arundo domex effect with 
T. gallica+ 2&3row 
A.domex+ belts 
Calligonum 
I!Qlygonoides 

Acacia arabica wheat yield! by Sheikh 
Dalbergia sissoo shading from etal,1978 

2-9m 

Tilia cordata grass improved yld Kharitonov, 
with birch, larch, with shelter 1979 
poplars. Birch with 
Caragana arborescens 

Unspecified winter wheat 1 15.6% Keleberda 
spring barley 1 11.6% etal,1978 
maize 120.4% 
sunflower 135.1% 
silage maize 132.4% 
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Unspecified grain avo T 400 kg Pilipenko, 
/ha, dry yrs 1977 
T 20-40%, 
favourable yrs 
T 10-20% 

Young shelter wheat T 6-7% Dimitrov 
maize T 8-9% etal,1977 

Old shelter wheat T 18-21% 
maize T 9-34% 

Mulberry cotton 1972 T 500 Bukovetal, 
Pomegranate kg/ha; 1973 1976 
Quercus castaneifoIia (unfavourable 
Poplar year) T 2900 

kg/ha 

Unspecified grain 1975 (v. dry Anikanov, 
year) T from 1976 
70-680 kg/ha 

A range of tree wheat 1967-1973, Aydemir, 
species Tin 1975 

protected 
zone 

portable slat soybeans T yield Miller 
fencing etal,1973 

Com sugar beets 25% Tin Brownetal, 
favourable 1972 
years 

Tall wheatgrass winter wheat T in dry Aaseetal, 
(Agropyron (Triticum years 1974 
elongatum) aestivum) 

slat fence dry beans T yields Rosenberg, 
wind barrier 1966b 
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APPENDIXE 

Instrument calibration and measurement 

Anemometers 

The anemometers used were all Synchrotac Type 732 generating cup anemometers, with AC 

voltage output generated by a 10 pole alternator. An extensive calibration had been carried out 10 

years ago but these instruments had not been in use for several years. It was therefore considered 

wise to carry out a calibration check in the low speed wind tunnel of the Mechanical Engineering 

Department of the University of Canterbury. This was done over a wind speed range of about 2 to 

20 ms-1. Actual air velocity (v) was derived from the relationship: 

_ (qT )1/2 
v - 4 288 

where q is the dynamic head, measured from a manometer and T is the air temperature in • C. AC 

voltage (V) for each anemometer was measured at the set wind speeds. As the CR7 recorded 

frequency past the poles, AC volts had to be converted to frequency (t). This was done using a 

relationship derived from the manufacturers data: 

f = 2.554*VO•968 

In programming the CR7 allowance had to be made for both the execution interval (10secs) and 

the number of counts per revolution (5), giving a multiplier of 0.02. 

The calibration carried out at the start of the field work, Aug/Sept 1987, gave relationships 

consistent with those derived earlier. However subsequent calibration checks gave a consistently 

different result. As this latter result was repeated several times over the course of the field study it 

was taken as true. There was a consistent difficulty in obtaining accurate values at low wind 

speeds, compounded by the relatively high starting threshold of these anemometers. The 

manufacturers data showed a linear relationship except at wind speeds below 3 ms-1, where there 

was a marked drop off. This required the fitting of a curve for low wind speeds and an overall 

curvilinear relationship. The more recent calibrations did not show this drop off, mostly because 

of the difficulty of measurement below 2 

ms-1. The data from these calibration checks is given graphically in Figs EI-E6 along with the 

fitted regression lines. All gave a linear relationship within the range of wind speeds measured. 

Correlation coefficients (r) and estimated standard deviations (s) about the regression lines are 

included on the relevant graphs. 
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Fig. E1 Calibration of anemometer 78/840 

x V = 1.53 + 2.98*f r=1.00 

2 3 4 5 8 7 

Frequency (f) 

Fig. E2 Calibration of anemometer 75/664 

x V = 1.60 + 2.95*f r=0.999 

2 3 4 5 8 7 

Frequency (f) 
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Fig. E3 Calibration of anemometer 78/839 

x V = 1.44 + 2.90*f r=O.999 

2 3 4 5 6 7 

Frequency (f) 

Fig. E4 Calibration of anemometer 78/820 

x V = 1.54 + 2.96*f r=1.00 

2 3 4 6 7 

Frequency (f) 
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Fig. E5 Calibration of anemometer 78/828 

" v = 1.52 + 2.90*f r=O.999 

2 3 4 5 6 7 

Frequency (f) 

. Fig. E6 Calibration of anemometer 78/815 

" v ~ 1.62 + 3.02*f r=O.999 

2 3 4 6 7 

Frequency (f) 
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Temperature probes 

The temperature probes used were YSI (Yellow Springs Instruments) thermilinearR components # 

44212. These consisted of a thermistor composite, consisting of three YSI thermistors packaged 

together in a single sensor and a resistor composite, consisting of three separate metal film 

resistors. A further 10K resistor had to be incorporated into the connection with the CR7. From 

this overall resistance (RT) was: 

~ = (Vjn*10K) _ 10K 
Vout 

From the manufacturers performance equation for ·C: 

RT = (-129.163)T + 13698.3 

With a Vin of 1500 mV : 

T = 183.48 - 116130 ·C 
Vout 

The temperature probes were calibrated against a -1 to 50 • C mercury thermometer, accurate to 

0.1 • C, over a temperature range of 0 to 40 • C. The relationships were strongly linear as shown 

in Figs. E7-EI2. Initial field testing of the temperature probes showed the resistor casings to be 

subject to weather influences, so modification was required. This involved both replacement of 

the original resistors and .the encasing of the composites in resin. On the basis of the strongly 

linear relationship apparent earlier a two point calibration was then carried out, at 0 and 40 • C. A 

final field calibration was carried out with all six probes mounted on a single crossarm, taking one 

as a standard. Final adjustments were made to the calibration equations on the basis of these 

calibration checks. Problems were experienced in the field with three probes showing faults at 

various times over the period of measurement The cause was not readily apparent with each and 

so some juggling of these instruments was necessary to obtain measurements from the most 
, 

relevant heights. With no basis for comparison of temperature profiles it was most important to 

obtain measurements from nearer the ground to allow for ET estimation and comparison of 

measured temperature and derived variables with the standard meteorological data. A reliable 

probe was also kept at the top of the mast so that inversion and strongly lapse conditions could be 

recorded. 

Wind direction 

Wind direction was needed for the main wind sectors for characterization of site roughness for 

each sector as mentioned earlier. A wind vane of simple design was built using one from the 

NZAEI as a prototype. It basically consisted of a 360· potentiometer in a casing, connected with 

a well balanced stainless steel arm, with a brass point and a perspex tail fin. The only problem was 

the presence of a blank spot in the potentiometer, which covered only a few degrees. 
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Fig. E9 Calibration of temperature probe 3 (tp3) 
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This was set to the south east, the sector from which the wind blows least frequently in 

Canterbury. A compass bearing was taken at each site and the blank spot set to this sector prior to 

the raising of the mast. As a general check on the performance of this wind vane hourly data was 

obtained from the Christchurch Met. Office at Christchurch Airport for each period of 

measurement. This latter site is more directly exposed to easterlies and generally sheltered by the 

Banks Peninsula from the South East. The Lincoln area is sheltered from the East, so except under 

strong easterly conditions surface Easterly winds normally turn to the North east by the time the 

reach Lincoln. Lincoln is also more exposed to the South East. Another important difference was 

the method of data collection. The mast gave hourly averages, whereas the Met Office takes 

readings on the hour. Taking these factors into account the mast wind vane proved to be generally 

consistent with the airport. 

Relative humidity probes 

The relative humidity probes used were especially configured for use with the CR7. They 

contained a Phys-Chemical Research PCRC-II RH sensor and a Fenwal Electronics UUT5IJI 

thermistor. The temperature was given a worst case accuracy of ± 0.4· C over the range -33· C to 

+48· C. The accuracy of the RH sensor was given as being typically better than ± 5% over the 12 

to 100% RH range. These were enclosed in small screens, built from caravan vents and fitted with 

a ~ounting bracket. A field check with a whirling psychrometer showed both to be generally 

consistent with this, although one tended to read consistently a few percent lower than the other. 

These instruments were not considered sufficiently finely calibrated for a Bowen ratio 

determination of evapotranspiration. In general they were both mounted at the same height and an 

average reading taken. From temperature recorded at the same height (2.58m) it was possible to 

determine saturated vapour pressure using Tetens relationship: 

_ 6 8* [17 .269*T ] 
es - O. 107 EX!? T + 237.30 kPa 

where es is the saturated vapour pressure and T is temperature in • C. The conversion to mbar is 

times a factor of 10. By differentiating this equation the slope of the saturated vapour pressure 

curve (s) is derived, such that: 

Vapour pressure can also be determined from the relationship: 

Net radiation 

Net radiation was measured from a height of 2.58m for input into estimation of evapotranspiration. 

The instrument used was a SRI 4 net radiometer. The manufacturers accuracy of calibration was 
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given as ± 2.5%. The conversion factor for mV to Wm-2 was 22.05. Dry nitrogen gas was used 

for keeping the polythene hemispheres inflated. Holes in the hemispheres occurred a couple of 

times as a result of bird damage in one instance and lack of care in handling in the other. On these 

occasions replacement of the hemispheres was necessary. The gas cylinder was replaced as a 

matter of course at the start of measurement at each site. 

It had been intended to measure solar radiation at each site as well but this was not initiated. 

However with this in mind, and in case of a failure of the net radiometer, a relationship was 

derived between the two variables, using data recorded in the vicinity of the Natural Resources 

Engineering Department, Lincoln College. A total of 77 observations were made and from this 

data a regression equation was derived. The data and regression line are presented in Fig E13. 

The result was very close to that obtained by Jamieson (1979) as can be seen below. 

Jamieson(1979) 

Kenny 

Obs Regression Equation 

556 Rn = -23 + 0.598*Rs 

77 Rn = -23.1 + 0.648*Rs 

r 

0.983 

0.99 

stddev 

27.0Wm-2 

25.3Wm-2 

The main difference, related to the number of observations was the absence of hot nor'west 

conditions and the resultant relatively high Rn values with low Rs in the latter experiment. Hence 

the slightly steeper slope and improved correlation. 

Incorrect programming of the CR7 did lead to errors in recording of net radiation at the frrst field 

site. As solar radiation was not measured for this period an alternative method of estimation had 

to be developed. Daily solar radiation data was available from the Christchurch Weather Office at 

the Christchurch airport was regressed against the daytime net radiation data as recorded at the 

next three field sites. Although the field sites had different degrees of shelter individual site 

regressions showed little difference on a daily basis, hence the combining of the data from the 

three sites. The scatter diagram and regression line are presented in Fig. E14. The correlation 

coefficient of 0.978 suggests a good relationship between the two. This is despite differences in 

cloud cover that do occur between the airport and the Lincoln area. 

Over the period of measurement airport solar radiation data was being used for estimation of net 

radiation at the Broadfields. Lincoln climate station. For the analysis it was considered more 

accurate and more consistent to use the field measured net radiation for input into 

evapotranspiration estimation from both the standard climate station data and the mast data. The 

one exception was when airport solar radiation data was used to estimate the missing net radiation 

data as described above. 



Fig. E13 Hourly Rn versus hourly Rs at Lincoln 
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Fig. E14 Daytime Rn (Lincoln) versus daily Rs(ChCh Airport) 
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