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Abstract of a thesis submitted in fulfilment of the requirements for 

the Degree of Doctor of Philosophy 

Nitrogen and the Leaf Growth of Temperate Cereals 

by Mark Lieffering 

Under agricultural conditions where soil moisture is adequate, low nitrogen (N) availability is 

usually the main soil factor limiting the growth and yield of temperate cereals. A major part of the 

positive response of plant growth to additional N is a result of greater leaf area, an important 

determinant of plant photosynthetic capacity. This thesis investigated various aspects of the 

influence of N on the leaf growth of temperate cereals. 

Data were presented in Chapter 2 which investigated the influence of additional N as nitrate (N03-) 

orammonium (NH/) on reserve mobilisation and seedling growth prior to emergence from the 

substrate. The amount of N assimilated was similar with either form of N, but as a result of 

enhanced endosperm mobilization, seedling dry weight (d.wt) was greater with N03-. When 

seedlings were supplied chloride, reserve mobilisation and seedling growth were as great as with 

N03-. It was concluded that the~ncreased rate of mobilisation of seed reserves and subsequently 

greater seedling growth with additional N03- were due to greater seedling water uptake, probably 

acting via increased seed water contend A similar mechanism, but acting directly via the seed, 

was suggested for enhanced reserve mobilisation with increased levels of endogenous seed N. 

Chapter 3 investigated the influence of N form and availability on the growth of individual main 

stem and tiller leaves. With increasing external N concentrations over the range 0 to 2.5 - 5 mol 

m-3 leaf growth characteristics and maximum leaf area attained were similar with N supplied as 

N03-, NH/ or glutamine. Leaf area increased further with increasing external concentrations of 

N03- or glutamine to 20 mol m-3 but with NH/ it usually declined substantially. As leaf growth 

was similar Wit~ _N03- or glutamin~ over a wide range of e~ernal N concentrations, it was 

suggested thatthe site of N aSSi\Tl'i~ation ~ ~robablY n,t a m~r factor in determining the extent 

of individual leaf area development. However, it is possible th~ ~ctors associated with NH/ 

toxicity influence the growth of leaves] \ 
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It was demonstrated in Chapter 4 that greater individual leaf area with additional N03- was 

associated with an increase in both cell number and size. Increased cell division was thought to 

be due to increased availability of both photosynthate and N. It was proposed that greater cell 

size with additional N03- was due to an increase in the availability of osmoticum, primarily 

sucrose. Also, it was suggested that at higher external N03- concentrations, additional types of 

osmotica, such as N03-, counter ions and organic acids, are also available as a result of 

assimilation and storage of N03- in the leaves. 

The influence of N availability and form on shoot to root d.wt ratio (S:R) and leaf d.wt as a 

fraction of total plant d.wt (LWR) were investigated in Chapter 5. It was shown that regardless of 

whether N was supplied as N03-, NH/ or glutamine, increasing external N concentration resulted 

in an increase in plant reduced-N content and S:R or LWR, though at any given total plant d.wt, 

all three parameters were greater for plants supplied NH/ or glutamine. Hence, at any given 

plant N content, S:R or LWR were similar, regardless of N form supplied. These results were 

discussed in terms of a proposed mechanism for the control of S:R by N. It was also shown that 

leaf area produced per unit leaf N was greater for plants supplied N03- compared to NH/ or 

glutamine; this does not appear to have been reported previously. 

In Chapter 6 it was demonstrated that despite relatively high initial levels of soil N, fertilizer N 

applied at sowing had positive effects on the grain yield of all the temperate cereals investigated. 

The reason for the increase was similar for all species: additional N increased the fraction of 

available photosynthetically active radiation (PAR) intercepted by increasing the rate of canopy 

development. As a result, crop dry matter (DM) production increased and as harvest index (HI) 

was not affected, grain yield was greater with additional N. Differences between species in the 

amount of grain produced were not associated with the amounts of PAR intercepted or DM produced, 

but were related to differences in HI. 

Additional key words: nitrate, ammonium, glutamine, seed reserve mobilization, leaf expansion, 

cell number and size, dry matter partitioning, canopy development, grain yield. 
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1.1 Importance of Cereals 

The cereal species are members of a large monocotyledonous family, the Gramineae, which 

account for a large proportion of worldwide human dietary needs. Their food value lies in having 

relatively large edible grains which contain carbohydrates, proteins, minerals and fibre in variable 

amounts, depending on species, cultivar and growing conditions (Kent, 1983). Cereals grow in a 

wide range of climatic conditions, from the humid tropics to the cold sub-arctic regions. In this 

thesis, the term 'cereal(s)', unless otherwise stated, refers to those species that normally grow 

only in the temperate climatic zones. Worldwide, in terms of both area grown and tonnage 

harvested, wheat (Triticum aestivum L.) is the most important cereal species sown, followed by 

barley (Hordeum vulgare L.), rye (Secale cereale L.) and oats (Avena sativa L.) (Table 1.1). In 

New Zealand, barley is the most important cereal grown (Table 1.2). All species are grown for 

both direct human consumption and animal feed. Also, barley is grown extensively to produce 

malt for use in beer brewing while in regions where rye and oats are forage crops, a substantial 

proportion of the grain is used for reseeding purposes. In addition to the main cereal species, 

triticale (X Triticosecale Wittmack), an artificially bred intergeneric hybrid, is being grown on an 

increasing scale. Triticale was originally bred to combine the advantages of superior grain 

quality, yield and disease resistance of wheat with the hardiness of rye. However, a number of 

factors, primarily low baking quality, have meant that triticale has not yet developed into a major 

crop. 

Table 1.1 Area and production of cereals harvested worldwide, 1992 

Area cultivated Production Yield 
(x106 ha) (x106 t) (t ha-1

) 

wheat 220.6 563.6 2.55 

barley 73.4 160.1 2.18 

oats 20.5 33.9 1.65 . 

rye 13.4 29.2 2.18 

triticale n.a. n.a. n.a. 

Source: FAD (1993) 
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Table 1.2 Area and production of cereals harvested in New Zealand, 1992 

Area cultivated Production Yield 
(ha) (t) (t ha-1

) 

wheat 37,797 191,039 5.05 

barley 67,380 318,787 4.73 

oats 14,033 57,625 4.10 

rye and triticale 1367 4871 3.56 

Source: Statistics N.Z. (1994) 

1.2 Characteristics of Cereal Plant Growth 

Cereals are herbaceous annuals whose development show a distinct vegetative phase followed 

by a reproductive phase. Some important stages in the development of a typical cereal plant are 

illustrated in Figure 1.1. Under normal agricultural conditions, where cereal seeds are sown into 

a prepared seed bed of adequate soil moisture content, plant growth commences with water 

uptake by the seed (imbibition) which initiates the process of germination and the growth of the 

embryo. Embryo growth results in the emergence of the primary roots from the caryopsis, 

followed by the coleoptile (Fig. 1.1 a). The coleoptile, the bladeless sheath which surrounds the 

rest of the shoot, elongates and penetrates the soil to the surface. The first leaf then expands 

and grows up through the coleoptile. Cereal leaves consist of a tubular structure called the 

sheath and a planar structure called the lamina with the latter being the main site of 

photosynthesis (Section 1.3). After the first leaf emerges from the coleoptile, cereal plant growth 

is characterised by the development of successive leaves from buds on the compressed main 

stem at the base of the seedling (Fig. 1.1 b). These leaves, referred to as the main stem leaves, 

expand within and then above the sheath of the previous leaf. As the number of main stem 

leaves increases, tillering, the development of shoot buds in the axils of the main stem leaves, 

commences (Fig 1.1 c). Secondary tillers may form in the axils of these primary tillers. Tillers 

develop in a similar manner to the main stem, with successive leaves expanding within the 

sheaths of the previous leaves. Cereals normally produce from seven to 14 main stem leaves 

and depending on the species, cultivar and environmental conditions, from zero to over 20 tillers, 

with each tiller having approximately five leaves. Cereal plants also usually have between five 
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c 

B 
Coleoptile 

Seminol roots_ ... I11 .... 

E 

Some growth stages representative of the development of spring sown barley (Hordeum 
vulgare L.): a} seedling prior to prior to emergence; b} young seedling with four main stem 
leaves; c} plant just after booting with main stem and three tillers; d} plant just after anthesis 
with fertile main stem, one fertile tiller and two ~terile tillers; e} senescent plant with two fully 
developed heads (from Briggs, 1978; drawings not to scale). 
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and ten primary (seminal) roots, depending on species, cultivar and growing conditions. These 

primary roots branch as the plant grows, forming a fibrous mass. In addition, the plant may 

develop secondary (adventitious) roots which tend to be thicker and less branched than the 

primary roots. The roots are important for water and nutrient uptake, and also provide support 

and anchorage for the plant. 

During the vegetative phase of cereal development both the main stem and tiller apices are 

situated near ground level. With the initiation of the reproductive phase, which commences some 

time before tiller production ceases, the apices develop into inflorescences. As the internodes of 

the main and tiller stems elongate, the developing inflorescences are raised within and above the 

surrounding sheaths (Fig. 1.1 d). Once above the surrounding leaves, the developed flower 

opens up, pollination occurs and the grain develops. With the development of the grain, 

carbohydrates, proteins and other plant constituents are withdrawn from the leaves, stems and 

roots, leading to senescence of the parent plant (Fig 1.1 e). 

1.3 Plant Growth and Carbon Assimilation 

The development of annual plants, such as that described for cereals in Section 1.2, generally 

involves an increase in total plant dry weight (d.wt) over time; this is usually referred to as growth. 

As approximately 45% of plant d.wt is carbon (C)(Table 1.3), the amount of C assimilated is an 

important determinant of plant growth. For terrestrial plants the major source of C is atmospheric 

carbon dioxide (C02), which is fixed via photosynthesis into simple carbohydrates. The following 

account of photosynthesis has been summarised from Goodwin and Mercer (1983) and Salisbury 

and Ross (1985). Photosynthesis involves two phases - firstly, the capture and utilization of light 

energy and secondly, the reduction of CO2 into carbohydrates. The first phase consists of a 

series of reactions involving several pigment/protein complexes. Light energy is used to produce 

chemical energy in the form of reductant such as nicotinamide adenine dinucleotide phosphate­

reduced form (NADPH), made by reducing nicotinamide adenine dinucleotide phosphate (NADP+) 

using electrons from water molecules. Light energy is also used to generate adenosine 5'­

triphosphate (ATP) from adenosine 5'-diphosphate (ADP) and H2P04-. The photosynthetic 

reactions are also used to manufacture lipids which are used in cell membranes. 
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Table 1.3 Range of elemental composition of healthy, growing plants, including cereals, 
expressed as % of dry matter (OM) or part per million (ppm) OM. Values obtained 
from Mengel and Kirkby (1987). Note that composition depends on species, cultivar, 
element availability, growth stage, plant part and environmental conditions. 

Element Concentration Element Concentration 
(% OM) (ppm OM) 

C 40 - 50 Fe 50 - 150 

0 40 - 50 B 20 - 100 

H 5-7 Mn 20 - 100 

N 1 - 6 Zn 20 - 100 

K 1.5 - 5 Cu 5 - 20 

Ca 1 - 3 Mo 5 - 20 

P 0.2 - 0.4 Na 0.5 

Mg 0.2 - 0.5 Co 0.5 

S 0.1 - 0.3 Si 0.3 

CI 0.5 

The reducing power of NAOPH and the energy contained in A TP are used in the second phase of 

photosynthesis - the reduction of CO2 into carbohydrates. This cycle, sometimes referred to as 

the Calvin or C3 cycle, uses a number of enzymes, including ribulose 1,5-bisphosphate 

carboxylase (RUBISCO), to incorporate CO2 into triose phosphates; these are eventually used to 

produce sucrose and starch. Fixed C is transported around the plant via the phloem mainly as 

sucrose. Ouring periods of high photosynthetic activity starch is formed as a temporary storage 

form of fixed C and it accumulates within the chloroplasts as starch grains. This starch is 

converted into sucrose during periods of no or low photosynthetic activity and translocated around 

the plant. In addition, sucrose can be transported to specialized storage sites such as tubers or 

developing seeds and stored as starch for later use. 

Fixed C has two main uses - as a component of plant compounds and as an energy source for 

plant processes. Carbon is the major component of compounds used in plant structure and 

biochemical functions. Structural compounds, which frequently make up the major proportion of 

plant d.wt, include polysaccharides like cellulose which are used to construct cell walls, and lipids, 

used in cell membranes. Compounds important in biochemical function include nucleic acids, 

proteins and enzymes (eg. RUBISCO), reductants (eg. NAOPH) and energy carriers (eg. ATP). 
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The other main use of fixed C is as an energy source for cellular/plant processes. This energy is 

generated through respiration. Respiration is an oxidative process in which complex C containing 

. molecules like carbohydrates are broken down by enzymes into CO2 , water and energy. A high 

proportion ofthe liberated energy is conserved via generation of ATP from ADP and H2P04-. The 

energy stored in ATP is used to maintain plant function and structure (maintenance respiration) 

and in the building of new structural material (growth respiration). 

Because such a large proportion of plant d.wt is C, plant growth is related primarily to the 

difference between the amount of C fixed in photosynthesis and that used in maintenance and 

growth respiration. Carbon which is left over is incorporated into structural material or stored and 

is evident as new growth and a gain in d.wt. 

1.4 Nitrogen Assimilation 

Plant dry matter usually contains 1 - 6% N, depending on species, age, plant organ and 

environmental conditions (Table 1.3; Beevers and Hageman, 1983; Haynes et al., 1986; Mengel 

and Kirkby, 1987). Most terrestrial plants acquire the majority of their N from the soil via the 

roots. The dominant forms of mineral N available to and taken up by cereals under agricultural 

conditions are nitrate (N03-) and ammonium (NH/), though the former usually predominates 

under temperate agricultural conditions (Haynes et al_, 1986). Nitrate, once taken up, is reduced 

in either the root or shoot. Reduction is carried out by the enzymes nitrate reductase (N03- ~ 

N02-) and nitrite reductase (N02- ~ NH4+)(Layzell, 1990). Nitrate taken up in excess of the 

plant's N03- reduction capacity can be stored in the vacuoles of either the root or shoot cells 

(Granstedt and Huffaker, 1982). Ammonium, both that resulting from the reduction of N03- and 

that taken up from the soil, is converted into the amino acid glutamate via the coupled reactions 

involving the amino acid glutamine and two enzymes: glutamine synthetase (GS) and 

glutamine(amide):2-oxoglutarate amino transferase (commonly known as GOGAT or glutamate 

synthase)(Goodwin and Mercer, 1983; Layzell, 1990)_ The glutamate produced by the 

GS/GOGAT cycle is transformed by various aminotransferase enzymes into different amino acids 

and used to construct N containing compounds (Layzell, 1990). Ammonium, in contrast to N03-, 

does not normally accumulate in plant tissues and is rapidly assimilated through the GS/GOGAT 

pathway (Layzell, 1990). Accumulation of NH/ in plant tissue can cause damage and a 

decrease in plant growth (Mehrer and Mohr, 1989). 
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Increasing availability of external N, either as N03' or NH/, generally leads to increased N uptake 

and assimilation by the plant. Assimilation of exogenous NH/ nearly always occurs in the root 

while the site of N03' assimilation depends on the species, external N03' concentration and other 

environmental conditions (Andrews, 1986). For cereals, at low external concentrations (around 1 

mol m·3
) nearly all the N03' taken is up is assimilated in the root; with increasing external 

concentrations of N03' in the range likely to occur in agricultural soils (1 - 20 mol m·3
), a greater 

proportion of the assimilation occurs in the shoot (Andrews et al., 1992). Increased N 

assimilation generally leads to higher plant N levels which, as discussed below, can have marked 

effects on plant growth. 

1.5 Nitrogen Effects on Plant Growth 

Though N comprises a relatively small fraction of plant d.wt, its availability to plants has a large 

influence on their growth. This is mainly due to N being a component of most constituents vital 

for plant function such as nucleotides, amino acids, pigments, proteins, cell membranes and cell 

walls. Therefore the rate and/or extent of processes that utilize these compounds, which includes 

most plant activities, will be affected by the plant N status. Notable among these processes is 

photosynthesis, which, as the major input of C into plants, largely determines the extent of their 

growth (Section 1.3). Plant photosynthetic capacity is determined by two factors: the rate of 

photosynthesis per unit leaf area and the amount of photosynthetically active radiation (PAR) 

intercepted. Most compounds important in photosynthesis, such as chlorophyll and RUBISCO, 

contain significant amounts of N (SalisbLlry and Ross, 1985) and increased uptake and 

assimilation of N by the plant enables ~reater production of these compounds. This generally 

increases their concentration in plant tissues and usually results in a greater rate of 

photosynthesis per unit leaf area, with the magnitude of the response to additional N depending 

on the N status of the plant. 

The other determinant of plant photosynthetic capacity is the fraction of incident PAR intercepted 

by the plant's leaves. Total plant leaf area depends on both the size of individual leaves and the 

total number of leaves. Over a period of time, production of new leaf material is a function of the 

amount of C fixed per unit existing leaf area, the fraction of this C that is used for maintenance 

and growth respiration and the extent to which the C left over for growth is partitioned to the 

leaves relative to other plant parts. Hence, if both the rate of respiration and the fraction of dry 

matter partitioned to the leaves remain constant, greater rates of photosynthesis with increasing 
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levels of external and plant N generally increases the amount of leaf produced. This in turn 

increases the fraction of available PAR intercepted, leading to greater photosynthetic capacity 

and increased overall plant growth. 

1.6 Previous Research on Cereals Relevant to the Study 

The influence of N availability on the leaf area of cereals is the general theme of this study. In 

this section, previous relevant work on N effects on cereals is discussed briefly prior to stating the 

objectives of the thesis. Greater discussion of the literature is given in the relevant chapters. 

Nitrogen availability can affect the leaf area and hence growth of cereals at most stages of their 

development. Carbon for the growth of leaf 1 and the rest of the seedling prior to its emergence 

from the substrate and commencement of photosynthetic activity is derived primarily from starch 

contained in the endosperm of the seed. Previous studies have shown that before and after 

emergence, the level of endogenous seed N, as well as the availability of exogenous N, can 

affect the growth of leaf 1 of cereals. For example, wheat seedlings grown from high N seed had 

greater total plant d.wt and area of main stem leaves 1 - 3 than those from low N seed (Lowe 

and Ries, 1972; 1973). For barley harvested 6 d after sowing, seedlings from high N seed had a 

greater rate of reserve mobilization, total plant d.wt, area of leaf 1, leaf protein concentration and 

photosynthetic rate (Metivier and Dale, 1977a;b). In addition, exogenous N supplied as N03- has 

been shown to increase the rate of mobilization of seed reserves in barley and wheat grown in 

darkness or prior to emergence from the substrate, resulting in seedlings with greater shoot and 

total d.wt (Natr, 1988; Andrews, Scott and MCKenzie; 1991). However, the mechanism(s) 

underlying the effects of seed N content and additional N03- on enhanced mobilisation of seed 

reserves and greater seedling growth are not known and need further investigation. 

A review of the available data on the effects of N on the growth of individual leaves of cereals 

indicates that, generally, additional N increases leaf area, though the magnitude of the response 

can depend on species, leaf position and environmental conditions. For example, in a recent 

study, Andrews, MCKenzie and Jones (1991) found that for main stem leaves 1 - 4 of a range of 

cereals, including wheat and barley, additional N as N03- increased mean extension rate 75 -

120%, final length 80 - 100% and area 50 - 150%. Most studies investigating the effects of N on 

leaf growth supplied N as N03-, this being the dominant form of N available to and taken up by 

cereals under temperate agricultural conditions (Section 1.4). However, cereals can also take up 
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and assimilate NH/. Levels of NH/ in the soil can be significant and when rates of nitrification 

are low NH/ may be the main form of N available. Depending on external N concentration, the 

processes of translocation, storage and assimilation of N03- and NH/ can be different. For 

example, NH4+ is almost exclusively assimilated in the root, whereas the site of N03- assimilation 

depends on the external concentration. Also, if the uptake of N03- is greater than the assimilation 

capacit~ N03- can be stored while in healthy plants NH/ rarely accumulates. Though factors 

such as these could possibly affect leaf growth, no reports were found which compared N03- and 

NH/ with respect to the effects on individual leaf growth characteristics. However, in a 

comparison of the effects of N03- and NH4 + supply on plant growth, Lips et al. (1990) suggested 

that the form of N supplied to plants affected the rates of leaf expansion more than the 

photosynthetic rate of their chloroplasts. i 

At the cellular level, greater individual leaf area with additional N is generally associated with 

increases in both cell size and cell number per leaf (eg. Morton and Watson, 1948; Lawlor, 

Kontturi and Young, 1989). However, the magnitude of the response seems to depend on the 

level of N addition, the species being investigated, cell type examined and leaf position. The 

latter is especially important as leaves tend to get larger with increasing main stem leaf position. 

This effect is usually associated with a greater cell number (eg. Milthorpe and Newton, 1963; 

Steer, 1971). Also, there is generally a positive interaction between the increase in area with leaf 

position and the availability of N with the increase in area of successive leaves being larger with 

additional N (Puckeridge, 1956; cited in Bunting and Drennan, 1966). However, as no studies 

were found which investigated cell size and number with increasing leaf position and various 

levels of N, the cellular basis for this interaction has not been established. 

Nitrogen availability can affect the partitioning of dry matter to the leaf, stem and root of cereals 

from the seedling stage through to maturity (Hocking and Meyer, 1991). Usually both shoot to 

root d.wt ratio (S:R) and leaf weight ratio (leaf d.wt as a fraction of total plant d.wt) increase with 

N03- supply, regardless of its effect on growth (Andrews, 1993 and references therein). However, 

the mechanism of the N effect on dry matter partitioning is not known. For a range of species 

supplied N03-, S:R was positively correlated with tissue N content (eg. Hirose, 1986; Ingestad and 

Agren, 1991; Boot, Schildwacht and Lambers, 1992). Also, several reports indicate that for a 

similar total plant d.wt, both S:R and plant reduced N content are greater with NH/ than with 

N03- (Cox and Reisenhauer, 1973; Bowman and Paul, 1988; Troelstra, Wagenaar and Smant; 

1992). Thus it is possible that the relationships between S:R and tissue N content hold 

regardless whether N is supplied as N03- or NH/. 
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Under field conditions where soil moisture is adequate, low N availability is usually the soil factor 

limiting the yield of cereals and it is common practice to use fertilizer N to achieve greater grain 

production and profits. Grains are composed mainly of carbohydrates (Kent, 1983). As the main 

products of photosynthesis are carbohydrates (Section 1.3), the overall effect of additional N on 

yield is to increase the level of crop photosynthesis, mainly through greater interception of 

available PAR by the canopy (Monteith, 1977). Many studies have established the relationships 

between N availability, canopy development, interception of PAR and dry matter accumulation. 

However, these relationships have been established only for a limited number of species, usually 

wheat and barley and hence it is difficult to assess whether the crop response to additional N is 

similar for all cereal species. 

1.7 Objectives of the Study 

This thesis had five main objectives: 

1. To gain a greater understanding of the mechanism(s) of the N03- and seed N effects on the 

mobilisation of seed reserves in cereals. 

2. To determine whether the characteristics of individual leaf growth are similar with different N 

forms. 

3. To assess the changes in the cellular aspects of individual leaf area with additional N03- and 

for successive main stem leaves. 

4. To determine whether the form of applied N affects the relationship between plant reduced N 

content and the partitioning of dry matter between shoot and root. 

5. To establish whether different cereal species, grown under comparable environmental 

conditions, behave similarly with regard to canopy development, dry matter accumulation and 

final grain yield and quality in response to additional N. 
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2.1 Introduction 

Studies have shown that for both monocotyledonous and dicotyledonous species, seed nitrogen 

(N) content and the availability of external N are positively related to early seedling growth (eg. 

Schweizer and Ries, 1969; Dale, 1972; Lowe and Ries, 1973; Rahman and Goodman, 1983; 

Tremblay and Senecal, 1988; Fenner and Lee, 1989; Wood, 1990). For Triticum aestivum L. 

(wheat) seedlings 21 d after sowing (DAS), total plant dry weight (d.wt) and area of main stem 

leaves 1 - 3 were greater for high N seed than for low N seed (Lowe and Ries, 1972, 1973). For 

Hordeum vulgare L. (barley) harvested 6 d after sowing, seedlings from high N seed, in 

comparison with those from low N seed, had greater reserve mobilization, total plant d.wt, area of 

leaf 1, leaf protein concentration and photosynthetic rate (Metivier and Dale, 1977a,b). Additional 

N as nitrate (NOa') had little effect on seedlings from high N seed, but increased the growth rate 

of seedlings from low N seed and, if applied early (2 d after sowing), resulted in similar growth 

rates for the two seed lines (Metivier and Dale, 1977b). It was proposed that additional NOa' 

resulted in increased levels of organic N which compensated in some way (probably via 

photosynthesis) for low levels of endogenous N in low N seed. In a related experiment (Dale, 

Felippe and Marriott, 1974) barley seedlings were supplied N as ammonium (NH/) and though it 

was concluded that NH/ was similar to NOa' in its effects on growth, root damage due to NH4 + 

toxicity makes these results difficult to interpret 

Recently, additional N03' has been shown to increase the rate of mobilization of seed reserves of 

barley and wheat grown in darkness or prior to emergence from the substrate (Natr, 1988; 

Andrews, Scott and MCKenzie, 1991). As photosynthesis was probably negligible under these 

experimental conditions, the positive effects of N03' on seedling growth could not be related to 

enhanced photosynthetic activity. For wheat seedlings, shoot N03' reductase activity (NRA) was 

approximately 80% lower in darkness than in light, indicating that their ability to assimilate N03' 

was low but reduced N was not determined to confirm this (Andrews, Scott and MCKenzie, 1991). 

The primary objective of the present study was to gain greater understanding of the mechanism 

of the N03' effect on mobilisation of seed reserves in temperate cereals prior to emergence. 

Initially, in order to determine the relationships between N supply, uptake and assimilation and 

the rate of reserve mobilisation, the growth and N content of seedlings supplied no N, N03' or 

NH/ were compared. Seedlings supplied either N03' or NH/ took up and assimilated similar 

amounts of N but increased mobilisation of seed reserves occurred with N03' only. As seedling 

water content was greater with N03', further experiments were conducted to examine the effects 
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of other N forms and inorganic ions and seed N content on seedling water uptake and reserve 

mobilisation. Data from these experiments were used to develop an hypothesis setting out a 

possible mechanism by which N03- enhances seed reserve mobilisation. 

2.2 Materials and Methods 

a) Plant material and growth conditions 

Seed of oats (Avena sativa L. cv. Amuri; mean seed weight, 32 mg), triticale (X Triticosecale 

Wittmack cv. Aranui, 54 mg) and wheat (cv. Otane; 51 mg) was obtained from Hodder and Tolley 

Ltd. Christchurch, New Zealand. Barley (cv. Triumph, 44 mg) and rye (Secale cereale L. cv. 

Rapaki, 28 mg) seed was obtained from the New Zealand Institute for Crop and Food Research 

Ltd., Lincoln, New Zealand. For all species in experiments 1 and 2 and barley in experiments 3, 

4 and 5 individual seed weight used was mean seed weight ±1 mg. In experiments 6 and 7, two 

seed lines of barley with the same range of individual seed weights (46 to 48 mg) but different 

mean seed N contents (1.4 and 1.9%) were used. These low and high N seed lines were 

obtained from the field experiment reported in Chapter 6 in which fertilizer N was varied. Seed of 

all species and lines showed >95% germination and was not chemically treated. All experiments 

were carried out in the dark at 1 0±1 °C in controlled environment chambers. 

In all experiments except experiment 6, seeds were placed at 70 mm depth in 80 mm diameter, 

180 mm tall pots (20 per pot) filled with a vermiculite/perlite (1:1, v/v) mixture soaked in basal 

nutrient solution (Appendix 2.1) containing the appropriate treatment. Pots were flushed with the 

appropriate nutrient solution every 2 d. Experiment 6 was carried out in petri dishes. Seeds 

were placed on filter paper and kept moist with the addition of the appropriate solution every 2 - 3 

d. For all treatments potassium (K+) was maintained at 23.6 mol m-3 for experiment 1 and 8.6 

mol m-3 for all other experiments by the addition of potassium sulphate where necessary. 

b) Experiment 1 

All five species were supplied basal nutrient solution only or with 1.0, 5.0 or 20.0 mol m-3 N03' as 

potassium nitrate (KN03) added. At harvest, 21 DAS, plants were separated into shoot, root and 

residual seed. Shoot and root fresh weight (f.wt) were determined and all plant parts were dried 

separately at 70°C for 4 d and weighed. Dried shoot and root material was ground and an 
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aqueous extract of a 10-30 mg sample was analysed for NOa- content as described by 

Mackereth, Heron and Tailing (1978). Briefly, the method involved the reduction of NOa- to nitrite 

(N02") using spongy cadmium (Cd); the N02- was then determined spectrophotometrically. 

Cadmium metal was generated electrochemically by placing zinc (Zn) rods in a 20% w/v solution 

of cadmium sulphate; after standing overnight, the resulting Cd metal was scraped off the Zn rods 

and divided into small particles using a spatula. The spongy Cd was washed using 2% v/v 

hydrochloric acid (Hel - diluted from concentrated acid), then rinsed several times with distilled 

water. To a 5 ml sample of the aqueous plant material extract contained in a cappable 25 ml 

vial, 3 ml of a 2.6% w/v aqueous solution of ammonium chloride and 1 ml of a 2.1 % w/v aqueous 

solution of sodium tetraborate were added, followed by approximately 0.6 g of spongy Cd. The 

vial was capped and shaken for 1 hr on an orbital shaker. The concentration of N02- in the 

sample was determined by taking a 5 ml subsample of the mixture, transferring it to a 12 ml 

polypropylene test tube and adding 1 ml of a 1 % w/v (10% v/v HCI) solution of sulphanilamide. 

After mixing by swirling and then standing for 5 min, 1 ml of 0.1 % w/v aqueous solution of N-1-

naphthylethylenediamine dihydrochloride was added and mixed. The test tube was spun at 5000 

rpm for 5 min and left to stand for 10 min. The resultant red azo-dye was determined 

spectrophotometrically at 543 nm. A calibration graph (Appendix 2.2) was prepared using a 

dilution series from a standard NOa- solution and a mean factor relating N02- concentration in the 

cuvette to absorbance was determined. 

c) Experiment 2 

All species were supplied either basal nutrient solution alone, or with 5 mol m-a NOa- as KNOa or 

5 mol m-a NH/ as ammonium sulphate ((NH4)2S04) added. Twenty-one DAS, plants were 

harvested and divided into root, shoot and residual seed for f.wt determination. A sub-sample of 

fresh root and shoot was then analysed for NRA using an in vivo assay (Andrews et al., 1992). 

Briefly, a known weight of approximately 0.5 g f.wt of the appropriate plant part was vacuum 

infiltrated for 10 min with 5 ml of a 100 mol m-a sodium phosphate buffer (pH 7.6) containing 4% 

v/v propan-1-01 and 50 mol m-a KNOa. After removal of a time zero sample (1 ml), the mixture 

was incubated at 30DC for 30 min in the dark and then a final 1 ml sample was taken. Both the 

time zero and final samples were analysed for N02- as described for the NOa- assay. A 

calibration graph (Appendix 2.3) was prepared using a dilution series from a standard N02-

solution and a mean factor relating N02- concentration in the cuvette to absorbance was 

determined. The difference between the zero time and final N02- concentrations was taken as 

NRA, which was expressed as Ilmol N02- g f.wr1 h(1. 

I 
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For plants supplied N03- an in vitro assay was also carried out (Wallace, 1986)_ Shoot and root 

material (0.5 g f.wt) was ground in liquid N and resuspended in 5 ml of an extraction buffer 

containing 200 mol m-3 Tris-HCI (pH 8.5), 50 mol m-3 potassium phosphate (pH 8.5), 5 mol m:3 

EDTA,1 mol m-3 cysteine, 10 mmol m-3 flavin adenine dinucleotide, 2.5% w/v Polycar AT and 1% 

w/v casein. After centrifuging (5000 rpm for 10 min), 0.1 ml of the supernatant was added to an 

assay mixture containing 0.5 ml100 mol m-3 potassium phosphate buffer (pH 7.5), 0.1 ml 50 mol 

m-3 KN03, 0.2 ml distilled water and 0.1 ml 2 mol m-3 nicotinamide adenine dinucleotide 

phosphate in a phosphate buffer. The mixture was incubated at 25°C for 15 min. The reaction 

was stopped by adding 1 ml of a 1 % w/v (10% v/v HCI) solution of sulphanilamide. Nitrite was 

determined as in the N03- assay. 

The remaining plant material was dried, weighed and ground and an aqueous extract of a 10-30 

mg sample analysed for N03- (as described above) and NH/ content. Ammonium was 

determined by adapting the method of Baethgen and Alley (1989). Briefly, to 1 ml of the aqueous 

extract contained in a 50 ml test tube, 5 ml of a buffer solution containing 2.68% w/v sodium di­

hydrogen phosphate, 5% w/v sodium-potassium tartrate and 5.40% w/v sodium hydroxide were 

added and mixed. To this, 4 ml of a mixture containing 15% w/v sodium salicylate and 0.03% 

w/v sodium nitroprusside were added and mixed. Lastly, 2 ml of 0.32% v/v sodium hypochlorite 

solution (prepared by diluting 6 ml of a 5.25% v/v sodium hypochlorite solution to 100 ml) was 

added and mixed. The mixture was allowed to stand for 45 min at 25°C and the absorbance at 

650 nm of the resultant colour determined using a spectrophotometer. A series of standard NH/ 

solutions were assayed with every batch of determinations and a mean factor relating NH/ 

concentration in the cuvette to absorbance was determined. A representative calibration graph, 

prepared using a dilution series from a standard NH/ solution, is presented in Appendix 2.4. 

Also, a 30-60 mg sample of dried material was analysed for total N content using a Europa 

Scientific (U.K.) N analyser. Assimilated N was assumed to be the difference between total N 

and N03- plus NH/-N. 

d) Experiment 3 

Barley was supplied basal nutrient solution alone or with 5 or 20 mol m-3 N03- as KN03 , 5 or 20 

mol m-3 NH/ as (NH4)2S04' 5 or 20 mol m-3 urea, 5 or 20 mol m-3 thiourea, 5 or 20 mol m-3 

chloride (Cn as potassium chloride (KCI), 5 or 20 mol m-3 chlorate (CI03-) as potassium chlorate 

added. In addition, a nutrient solution containing 5 mol m-3 N03- as KN03 and 50 mmol m-3 

tungsten (W) added as Na2W04'2H20 in place of the micronutrient molybdenum (Mo) (Appendix 
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2.1) was used. Tungsten can compete with Mo for incorporation into the nitrate reductase 

enzyme complex and results in enzyme inactivation (Deng, Moureaux and Gaboche, 1989). At 

harvest, 21 DAS, plants were divided into shoot, root and residual seed and f;wt and d.wt of the 

parts determined. Also, a sub-sample of the shoot and root of freshly harvested seedlings 

supplied either basal nutrient solution, 5 mol m·3 N03- or 5 mol m-3 N03- plus W was assayed for 

in vivo NRA as described in experiment 2. 

e) Experiment 4 

Barley was supplied basal nutrient solution alone or with 5 mol m-3 N03- as KN03 or 5 mol m-3 Gr 

as KGI added. Plants were harvested 21 DAS and shoot, root and residual seed f.wt and d.wt 

were determined. Aqueous extracts of 10 - 30 mg d.wt samples were analysed for N03-, Gr, 

phosphate and sulphate content using a Waters (Massachusetts, U.S.A) 712 WISP ion exchange 

column. Standards containing known concentrations of the measured anions were used. 

f) Experiment 5 

Barley was supplied either a basal nutrient solution alone or with 5 mol m-3 N03- as KN03 added. 

Seedlings were harvested 7, 12, 16, 19, 21, and 24 DAS. Shoot, root and residual seed f.wt and 

d.wt were determined at each harvest. In addition, the N03- content of the residual seed was 

also determined for each harvest date. 

g) Experiment 6 

Experiment 6 was carried out in petri dishes (10 seeds per dish). Low and high N content barley 

seed lines were supplied a basal nutrient solution only. Plants were harvested at 2,4, 8, 12 and 

16 DAS and residual seed f.wt and d.wt were determined. 

h) Experiment 7 

Low and high N content barley seed was grown in pots as in experiments 1 - 5 and supplied 

either a basal nutrient solution alone or with 5 mol m-3 N03- as KN03 added. Plants were 

harvested 10 and 14 DAS and residual seed and shoot plus root f.wt and d.wt were determined. 
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i) Experimental design and analyses 

All experiments were of a randomised complete block design. In experiment 1 all treatments 

were replicated five times, experiments 2, 3 and 4 six times while in experiments 5, 6 and 7 all 

treatments had six replicates per harvest. An analysis of variance was carried out on all data 

using "Statistix" (Analytical Software, St.Paul, MN, U.S.A). All effects discussed have a 

probability of P<0.05 and were obtained in repeat experiments. Means stated as significantly 

different are on the basis of an LSD (P<0.05) test. 

2.3 Results 

For all species at harvest (21 DAS) in experiment 1, shoot plus root f.wt increased similarly with 

increased applied N03" concentration from 0 to 5 mol m"3 then either increased further or changed 

little with additional N03" to 20 mol m"3 (Fig. 2.1). Increased shoot plus root d.wt was associated 

with a corresponding decrease in residual seed d.wt. Maximum increases in shoot plus root d.wt 

with additional N03" were around 10% for triticale, 15% for wheat and barley and 20% for rye and 

oats. For all species, shoot and root N03" content increased 50 - 100 fold with increased N03" 

supply to 20 mol m"3 (Fig. 2.1). 

In experiment 2, the effects of additional N03" or NH/ on mobilisation of seed reserves and water 

content, NRA and N content of seedlings were similar for all species (Table 2.1). Addition of 5 

mol m"3 N03" caused an increase in root plus shoot d.wt and a decrease in residual seed d.wt but 

5 mol m"3 NH/ did not affect the rate of mobilisation of seed reserves. Also, additional N03" but 

not NH4 + often caused an increase in root and shoot water content (%water) and always caused 

an increase in residual seed water content. In vivo NRA in shoots increased with additional N03" 

but was not affected by NH/. At 5 mol m"3 N03", in vitro NRA was 2-3 times greater than in vivo 

NRA for oats and rye but for other species activity was similar with the two assays. Total N 

uptake and assimilation were as great with NH/ as with N03". Depending on species, N03"-N 

constituted 8 - 19% of total plant N in N03" fed plants but was always around 1 % or less of total 

plant N in NH/ fed plants. Ammonium-N was around 0.1 % of total plant N in all treatments. 
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Effect of different applied nitrate (NOa-) concentrations on the fresh weight, dry weight 
(d.wt) and NOa' content of the root (~) and shoot (.) and d.wt of the residual seed (,,) 
of 21 d old seedlings of Avena sativa L. (A), Hordeum vulgare L. (8), Secale cereale 
L. (C), Triticosecale Wittmack (0) and Triticum aestivum L. (E) seedlings prior to 
emergence frqm the substrate. Error bars indicate ± standard error of mean where 
larger than symbol. 
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Table 2.1 Effect of additional ammonium (NH/) or nitrate (N03-) on the dry weight and water 
content of shoot (S), residual seed (RS) and root (R); shoot and root in vivo nitrate 
reductase activity (NRA) and total plant nitrogen (N) of 21 d old seedlings of Avena 
sativa L. (oat), Hordeum vulgare L. (barley), Secale cereale L. (rye), Triticosecale 
WiUmack (triticale) and Triticum aestivum L. (wheat) prior to emergence from the 
substrate. Values in parentheses are in vitro NRA; SE = standard error of mean. 

Oat 

basal 

NH/ 

NOa" 

SE 

Barley 

basal 

NH/ 

NOa-

SE 

Rye 

basal 

NH/ 

NOa" 

SE 

Triticale 

basal 

NH/ 

NOa" 

SE 

Wheat 

basal 

NH4+ 

NOa-

SE 

S 

10.2 

10.2 

12.4 

0.34 

8.7 

8.4 

10.3 

0.29 

6.4 

6.3 

7.9 

0.25 

13.5 

13.0 

15.7 

0.31 

9.5 

9.0 

11.8 

Dry weight 
(mg) 

RS 

13.4 

13.2 

11.2 

0.33 

14.1 

14.5 

12.5 

0.41 

21.1 

21.5 

18.8 

0.45 

17.7 

18.1 

15.9 

0.50 

20.2 

20.9 

17.9 

0.24 0.66 

R S 

2.3 90.6 

2.6 90.8 

2.6 91.4 

0.09 0.11 

6.4 90.8 

6.0 91.6 

6.3 92.6 

0.14 0.13 

2.1 91.6 

2.2 91.2 

2.4 91.8 

0.11 0.17 

5.3 88.2 

5.4 88.5 

5.4 89.1 

0.17 0.07 

4.7 88.6 

4.8 89.0 

4.8 89.6 

0.39 0.12 

Water 
(%) 

RS 

76.6 

78.1 

80.8 

0.35 

76.1 

76.0 

78.1 

0.34 

67.2 

65.7 

68.8 

0.25 

76.3 

76.4 

78.0 

0.31 

67.4 

65.8 

69.4 

0.29 

R 

92.7 

92.9 

92.9 

0.13 

93.5 

93.3 

94.1 

0.15 

93.8 

93.7 

94.4 

0.12 

93.4 

93.7 

93.7 

0.10 

92.8 

93.2 

94.1 

0.16 

NRA 
(Ilmol N02" g"1 d.wt h"1) 

S R 

0.27 0.90 

0.35 0.74 

0.59 (1.88) 0.71 (1.96) 

0.10 (0.16) 0.42 (0.08) 

3.51 2.98 

5.14 3.11 

23.4 (19.55) 5.21 (7.60) 

2.01 (0.68) 0.32 (0.78) 

0.34 4.45 

0.52 4.68 

1.06 (4.11) 6.45 (13.22) 

0.21 (0.79) 0.80 (0.96) 

1.25 5.51 

1.32 3.21 

3.71 (3.15) 4.02 (3.97) 

0.68 (0.19) 0.60 (0.60) 

0.31 1.31 

0.51 1.52 

3.08 (3.10) 5.14 (4.85) 

0.75 (0.30) 0.97 (0.16) 

Total 

807 

992 

1002 

32 

611 

920 

977 

15 

821 

940 

976 

18 

834 

1167 

1177 

13 

933 

Nitrogen 
(Ilg seedling"1) 

NOa"-

N 

7.2 

7.6 

165.4 

4.5 

5.1 

4.6 

186.9 

10.2 

9.2 

8.9 

75.4 

2.7 

11.8 

10.0 

191.3 

8.4 

14.7 

1175 14.5 

1181 163.2 

11 6.5 

NH/-
N 

0.5 

1.5 

0.5 

0.1 

0.5 

1.4 

0.7 

0.5 

0.3 

0.9 

0.4 

0.3 

0.4 

1.6 

0.8 

0.4 

0.9 

1.3 

0.7 

0.1 
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Table 2.2a Effects of basal nutrient solution alone or with added 5 or 20 mol m-3 ammonium 
(NH/), nitrate (N03), N03- with tungsten in place of molybdenum (N03- (W); see 
text), urea (CH4N20), thiourea (CH4N2S), chloride (Cn or chlorate (CI03) on shoot 
(S) and root (R) fresh weight (f.wt) and d.wt and residual seed (RS) d.wt of 21 d old 
seedlings of Hordeum vulgare L. prior to emergence from the substrate. Standard 
error of mean (SE) is given. 

Applied F_wt (mg) D.wt (mg) 
treatment 

S A S AS A 

basal 106.2 134.0 10.7 17.6 8.09 

5 NH4+ 108.6 128.5 10.8 17.8 8.01 

20 NH/ 99.2 119_3 10.1 18.1 7.92 

5 NOa- 163.6 126.9 14.8 13.7 7.91 

20 NOa- 168.8 132.6 14.9 13_9 8.00 

5 NOa- (W) 148.4 125.7 14.5 14.2 8.12 

20 NOa- (W) 162.5 130.4 15.2 13.6 8.05 

5 CH4N2O 105.6 119.5 11.2 16.9 7.96 

20 CH4NP 108.6 125.6 11.5 17.2 8.12 

5 CH4N2S 112.9 101.9 11.9 17.8 7.19 

20 CH4N2S 90.1 58.5 9.2 21.9 4.64 

5 cr 133.6 139.2 12.5 14.6 8.21 

20 cr 133.0 142.6 12.1 14.7 8.28 

5 CIOa- 23.7 8.5 2.5 29.9 0.83 

20 CIOa- 18.9 7.5 1.8 30.1 0.75 

SE 4.4 3.2 0.32 0.48 0.20 

Table 2.2b The effect of basal nutrient only or with 5 mol m-3 nitrate (N03-) or 5 mol m-3 N03-

plus tungsten in place of molybdenum (N03- plus W; see text) added on shoot (S) 
and root (R) in vivo N03- reductase activity (NRA) of 21 d old seedlings of Hordeum 
vulgare L. seedlings prior to emergence from the substrate. Standard error (SE) of 
mean is given. 

NAA (~mol N02- 9 d.wr' h-') 

S A 

basal 1.63 2.03 

NOa' plus W 5.63 4.36 

NOa- 15.22 8.52 

SE 0.25 0.32 
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Table 2.3a Effect of additional nitrate (N03") or chloride (Cn on dry weight, and water content 
of shoot (S), residual seed (RS) and root (R) of 21 d old seedlings bf Hordeum 
vulgare L. prior to emergence from the substrate. Standard error of mean (SE) is 
given. 

Treatment S 

basal 11.1 

N0
3

' 13.5 

cr 12.5 

SE 0.41 

I 

Dry weight 
(mg) 

RS I 
12.8 

9.7 

10.5 

0.51 

R S I 
5.8 91.0 

5.2 91.8 

5.7 91.7 

0.35 0.15 

Water 
(%) 

RS 

69.5 

72.4 

72.4 

0.24 

I R 

94.1 

94.4 

94.4 

0.12 

Table 2.3b Nitrate (N03'), chloride (Cn, sulphate (SO/) and phosphate (P04·
3

) content of the 
shoot, residual seed and root of 21 d old Hordeum vulgare L. seedlings prior to 
emergence supplied basal nutrient solution only or with 5 mol m·3 N03' or CI' 
added. Standard error of mean (SE) is given. 

Anion content (/-lmol g d.wt·1
) 

N0
3

' 1 cr 1 so/ 1 po/ 1 Total 

Shoot basal 2.3 115.4 434.8 363.4 916.0 

N0
3

' 958.8 134.2 208.7 379.0 1680.5 

cr 4.5 994.3 162.9 314.8 1476.5 

SE 10.7 25.3 31.5 36.5 25.2 

Residual seed basal 0.5 14.4 26.5 26.5 89.9 

N0
3
' 55.3 14.2 9.9 23.5 134.1 

cr 1.1 63.1 23.5 9.9 122.2 

SE 6.1 3.2 2.3 5.6 5.3 

Root basal 17.6 103.4 180 422.7 1044.7 

N0
3
' 1779.0 38.1 87 159.6 2231.8 

cr 28.5 968.9 104 137.7 1531.6 

SE 22.1 37.5 12.6 18.5 23.5 
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Table 2.4 . Effect of seed nitrogen (N) content and additional nitrate (N03-) on the dry weight 
(d.wt) of shoot plus root (S+R) and d.wt and water content of the residual seed (RS) 
of pre-emergent Hordeum vulgare L. seedlings 10 and 14 DAS after sowing (DAS). 

10 DAS 14 DAS 

Treatment Dry weight (g) Water (%) Dry weight (g) Water (%) 

Seed N NOa- S+R I RS RS S+R I RS RS 

Low - 3.12 37.7 4B.7 14.1 22.6 69.3 

Low + 3.21 37.5 4B.9 16.B 1B.9 72.2 

High - 4.0B 35.3 57.5 17.1 18.7 72.2 

High + 4.13 35.6 57.2 17.7 17.7 73.9 

SE 0.09 0.54 0.75 0.24 0.44 0.51 

Experiment 3 examined the effects of a range of chemicals on the mobilization of seed reserves 

of barley. Addition of 5 or 20 mol m-3 N03-, cr or N03- plus W resulted in greater shoot d.wt, 

decreased residual seed d.wt and little difference in root d.wt compared to seedlings supplied 

only basal nutrient solution (Table 2.2a). In contrast, 5 or 20 mol m-3 NH/, urea, thiourea or 

CI03- had no effect or a negative effect on seedling growth and reserve mobilisation. In vivo NRA 

of the shoot and root of seedlings supplied N03- plus W was lower than that of seedlings supplied 

N03- plus Mo, though not as low as those supplied basal nutrient solution only (Table 2.2b). 

Potassium chloride at concentrations of 5 mol m-3 consistently increased the rate of mobilisation 

of seed reserves of barley (Table 2.3a). Chloride was similar to N03- in that it caused increases 

in total seedling water and residual seed water content. Tissue content of the measured anions 

was always higher in seedlings supplied N03- or cr. Nitrate and cr comprised from 40 - 80% of 

the total anions measured in the plant parts of seedlings supplied N03- and cr respectively (Table 

2.3b). 

From planting to 12 DAS, no differences in growth were detected for barley seedlings supplied 

either basal nutrient solution alone or with N03- added (Fig. 2.2a,b). However, from 12 DAS 

onwards, seedlings supplied additional N03- had a greater shoot d.wt. Root d.wt continued to be 

similar for both treatments. Also, residual seed d.wt was less and percent water was greater with 

N03- compared to those supplied basal nutrient solution only (Fig. 2.2c,d). Levels of N03- in the 

shoot and root only increased significantly with time where N03- was supplied; at final harvest 

levels were similar to that found in experiments 1 and 2 (data not shown). Residual seed N03-
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content was low (>2 ~mol g d.wr1
) at all harvest times with basal nutrient solution alone but with 

additional N03' it increased steadily over time to approximately 85 ~mol g d.wrl (Fig. 2.2e). 

Two DAS in experiment 6, residual seed water content was 25.8±0.2 and 27.5±0.3% for low and 

high N seed respectively (data not shown). This difference in water content between low and 

high N seed increased with harvest date until 12 DAS then decreased. At 12 DAS seed d.wt was 

less for high N seed than for low N seed (34.8±0.3 and 37.1±0.3 mg respectively). Similarly at 16 

DAS, seed d.wt for high and low N content see~ was 22.8±0.7 and 28.8±0.6 mg respectively. 

In experiment 7, seed water content and shoot plus root d.wt were greater for high N seed 10 

DAS but were not affected by additional N03' until 14 DAS (Table 2.4). 

2.4 Discussion 

Previously, additional N03' was shown to increase the rate of mobilisation of seed reserves of 

barley and wheat grown in darkness (Natr, 1988; Andrews, Scott and MCKenzie, 1991). Data 

obtained in the present study show that this is also the case with oat, triticale and rye (Fig. 2.1; 

Table 2.1) and that for barley, the effect is similar for seed of low or high N content (Table 2.4). It 

has also been shown that the rate of mobilisation of seed reserves increases with applied N03' 

concentration from 0.5 to 5.0 mol m·3
, the range likely to occur in agricultural soils (Barber, 1984; 

Haynes et al., 1986). The magnitude of the increase in shoot d.wt with additional N03' (20 -

40%), was similar to that found for the N03' effect on area and d.wt of leaf 1 of temperate 

cereals, post emergence (Dale, 1972; Andrews, MCKenzie and Jones, 1991). Thus, carbon 

derived from seed reserves as opposed to current photosynthesis is likely to be the main cause 

of increased growth of leaf 1 of cereals with additional N03' (ct. Dale, Felippe and Marriott, 1974; 

Metivier and Dale, 1977a,b). 

For all cereals, shoot and root N03' content increased with increased applied N03' concentration 

up to 20 mol m·3 (Fig. 2.1). Values for N03' content of shoot and root in the present study were 

greater than those obtained in mature plants on similar N03' supply in a previous study (Andrews 

et al., 1992). Nitrate reductase activity (in vivo and in vitro assays) was also lower in seedlings 

than in mature plants and this may have been at least part cause of the high N03' accumulation 

(Oakes, 1983). Despite all seedlings having relatively low NRA, total plant reduced N increased 

by at least 20% with additional N03' in experiment 2 (Table 2.1). In this experiment, additional 



-26-

NOa' caused a decrease in residual seed d.wt and an increase in shoot plus root d.wt, but 

additional NH/ did not affect seedling growth (Table 2.1). However, with NH/ N uptake was as 

great as with NOa'. Also, as NH/-N constituted around 0.1% of total N in plants of all treatments, 

then N assimilation was as great with NH/ as with NOa'. The N containing products of NOa' and 

NH/ assimilation are likely to be the same (Layzell, 1990; Andrews, 1993). Thus, although NOa' 

effects on temperate cereal seedlings are dependent on the concentration of NOa' supplied (Fig. 

2.1), they do not appear to be related to the products of NOa' assimilation such as 

proteins/enzymes, as is the case with mature plants (Khamis and Lamaze, 1990; Zhen and Leigh, 

1990). Further evidence for the lack of involvement of the products of NOa' assimilation in the 

process of reserve mobilisation is provided by experiment 3. Seedlings supplied NOa' plus W had 

lower root and shoot in vivo NRA compared to those supplied NOa' with the standard basal 

nutrient solution but reserve mobilisation was similar in the two treatments (Table 2.2b). Also in 

experiment 3, as with NH/, the other N containing compounds urea and thiourea did not affect 

the rate of mobilisation of seed reserves. 

The rate of germination is dependent on the rate of water uptake by the seed and seedling 

(Jones, 1969; Cardwell, 1984). In the present study, the increase in shoot plus root d.wt with 

additional NOa' was matched by a proportionally similar increase in shoot plus root -f.wt (Fig. 2.1). 

Indeed, shoot and root %water were often slightly greater with additional NOa' while residual seed 

water content was consistently greater with NOa' (Tables 2.1 ,2.2a; Fig. 2.2). In contrast, 

additional NH4 + did not affect total plant water or %water of root, shoot or residual seed. A 

sUbstantial increase in seedling water indicates a substantial increase in total seedling 

osmoticum. Increased osmoticum was almost certainly at least partly due to increased availability 

of solutes, primarily sugars, derived from increased rate of mobilisation of seed reserves 

(Andrews, Scott and MCKenzie, 1991). However, in cases where additional NOa' stimulated the 

mobilisation of seed reserves, NOa' accumulated to levels which could contribute substantially to 

the osmotic potential of cells. For example, soluble sugar (primarily glucose) concentrations of up 

to 180 mol m·a have been measured in oat coleoptile cell sap (Kamisaka et al., 1988). This 

would generate around 0.5 MPa of osmotic potential (Wyn Jones and Gorham, 1983). For oat in 

experiment 2, NOa' concentration averaged over the root and shoot was approximately 90 mol m·3 

(Fig. 2.1; Table 2.1). This NOa', together with counter ions would generate around 0.4 MPa of 

osmotic potential. It is proposed that the NOa' effect on mobilisation of seed reserves is due to 

increased water uptake/retention caused by N03' accumulation in tissues. 
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If the NOa- effect on reserve mobilisation is related to water uptake/retention, then accumulation of 

other ions to concentrations similar to that of NOa- should result in a comparable increase in total 

plant water and a similar increase in the rate of mobilisation of seed reserves, as long as the ion 

does not damage the plant. In experiment 3 a range of ions, including N containing compounds, 

as well as CI03- and cr, were supplied to barley seedlings and their effects on reserve 

mobilisation compared to that of NOa-. Chlorate has frequently been used as an analogue of 

N03- in screening for the presence or absence of NRA; in plants with NRA,CI03 - is reduced to the 

toxic compound chlorite (CI02-) and the plant is damaged and/or dies (eg. Hofstra, 1977). 

Chloride is an ion that is readily taken up by plants but which is not assimilated and can result in 

substantial increases in water uptake/retention by plants (Clarkson and Hanson, 1980; Andrews, 

Love and Sprent, 1989). Ammonium, urea and thiourea did not affect reserve mobilisation while 

seedlings supplied CI03- showed extensive damage, possibly due to the production of CI02-. 

Only seedlings supplied cr showed increased reserve mobilisation to a similar extent as N03-

(Table 2.2a). In experiment 4, N03- and cr caused similar increases in total anion content, total 

water per plant, seed water content and rate of mobilisation of seed reserves (Table 2.3a,b). 

These findings, in conjunction with the lack of correlation between mobilisation of seed reserves 

and seedling reduced-N content (Table 2.1) or NRA (Table 2.2b), provide strong evidence that 

the N03- effect on mobilisation of seed reserves in temperate cereals is an osmotic effect. 

For all species, a 20 - 40% increase in total seedling reduced N with additional NH4 + did not 

affect seedling growth (Table 2.1). In contrast, a 20% increase in total barley seed reduced N 

resulted in an increased rate of mobilisation of seed reserves (Table 2.4). Increased seed but not 

seedling reduced N also resulted in an increase in seed water content. Both rate and degree of 

seed imbibition are closely related to the colloidal properties of the seed. Proteins are the main 

form of seed N and represent the major colloidal constituent of seeds (Cardwell, 1984). Rates of 

water uptake have been reported to be greater for high N content barley and wheat seed (Lopez 

and Grabe, 1971). In experiment 6 this was found to be the case for barley within 2 d of sowing. 

It is proposed that increased seed water content is the cause of the seed N effect on mobilisation 

of seed reserves. With regard to the N03- effect, it is possible that increased seed water content 

resulting from increased seedling water content is the cause of increased rate of mobilisation of 

seed reserves. If greater water uptake into the seed is the cause of increased rate of 

mobilisation of seed reserves with high protein seed and additional N03-, then the seed N effect 

should occur before the N03- effect. This was found to be the case in experiment 7 where 

additional N03- did not affect seed water content until 12 - 14 DAS. It is concluded that evidence 

is strong that increased rate of mobilisation of seed reserves with additional N03- is due to 
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increased seedling water uptake probably acting via increased seed water content. Further 

investigations need to be carried out to determine the pathways of water into the endosperm 

reserves after the emergence of the: seminal roots. 

2.5 Conclusions 

In this chapter, the nature of the N03' and seed N effects on the mobilisation of seed reserves in 

temperate cereals prior to emergence were investigated. It is concluded that evidence is strong 

that increased rate of mobilisation of seed reserves with additional N03' is due to increased 

seedling water uptake which results in increased water entering the endosperm reserves and 

hence leading to a greater rate of mobilization. It was proposed that the seed N effect is 

specifically due to increased seed water content. 
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Appendix 2.1: Basal nutrient solution (adapted from Andrews, Love and Sprent (1989). 

Macronutrients 

1. 

2. 

3. 

4. 

5. 

calcium - 3 mol m-3 
- CaS04 '2H20 

magnesium - 3 mol m-3 
- MgS04 -H20 

phosphorus - 3 mol m-3 
- KH2P04 } H 57 b ff 

0.6 mol m-3 _ K
2
HP0

4 
p. u er 

potassium - maintained at the appropriate concentration using K2S04 when necessary 

sulphur - ",,6 mol m-3 
- added as SO/ in macro/micronutrient salts 

Micronutrients: 

6. boron - 5 mmol m-3 
- H3B03 

7. chlorine - 10 mmol m-3 
- NaCI 

8. cobalt - 0.02 mmol m-3 
- CoS04 

9. copper - 0.1 mmol m-3 
- CuS04 '5H20 

10. iron - 5 mmol m-3 
- CSHS0 7Fe'5H20 

11. manganese - 1 mmol m-3 
- MnS04 '4H20 

12. molybdenum - 0.5 mmol m-3 
- Na2Mo04 '4H20 

13. zinc - 0.1 mmol m-3 
- ZnS04 '7H20 
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Appendix 2.2: Calibration graph relating initial concentration of N03" reduced to N02" using 

spongy Cd to the absorbance of the resultant red-azo dye at 543 nm obtained 

via the method described of Mackereth, Heron and Tailing (1978). 
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Calibration graph relating the concentration of N02• to the absorbance of the 

resultant red-azo dye at 543 nm obtained via the method described by 

Mackereth, Heron and Tailing (1978). 
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Calibration graph relating the concentration of NH4 oj. to absorbance at 650· nm 

obtained via the method described by Baethgen and Alley (1989). 
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3.1 Introduction 

The extent of plant growth depends primarily on the amount of carbon acquired through 

photosynthesis (Section 1.3). Nitrogen (N) availability can influence plant photosynthetic capacity 

in two main ways. Firstly, N supply can affect the photosynthetic rate per unit leaf area, primarily 

as a result of changes in the concentrations of photosynthetic pigments or enzymes (eg. Lawlor 

et al., 1987). Secondly, N availability can affect plant leaf area and therefore the proportion of 

incident photosynthetically active radiation intercepted (Novoa and Loomis, 1981). The 

determinants of plant leaf area which for some species have been shown to be influenced by N 

availability include the rate of leaf appearance, rate and duration of leaf expansion, individual leaf 

area, leaf longevity and total number of leaves per plant (Hay and Walker, 1989). 

The size of individual leaves has an important bearing on whole plant leaf area. The available 

data on the effects of N availability on the growth of individual leaves of cereals indicate that 

there are substantial differences between species. Also, for some species, the~e is considerable 

inconsistency between the results of different workers. Some studies have found little or no 

effect of additional N on individual leaf growth. For example, in the study of Radin (1983), the 

extension rate of main stem leaf 3 of Hordeum vulgare L. (barley) and Triticum aestivum L. 

(wheat) increased only 15 and 19% respectively with 5 mol m"3 nitrate (N03") compared to 0.5 mol 

m"3 N03". Also, for wheat, extension rate and final area of main stem leaves 1 - 4 were similar for 

low and high N treatments (Lawlor et al., 1988), while for barley, increasing external N03" 

concentration from 2.8 to 23 mol m"3 did not affect the growth of main stem leaves 1 - 3 (Maan, 

Wright and Alcock, 1989). The proposed reason for the lack of response to N in the latter two 

studies was that seed reserves were adequate for growth of these leaves. In contrast to these 

results, most workers have found that increased N availability has a large, positive effect on 

individual leaf growth. For example, under field conditions, addition of N (form unspecified) nearly 

doubled the extension rate and increased by nearly 50% the area of main stem leaf 4 of wheat 

(Bunting and Drennan, 1966; Kemp and Blacklow, 1982). Similar responses to additional N were 

obtained for Avena sativa L. (oats) under both controlled environment and field conditions 

(Andrews, Love and Sprent, 1989; Dickson et al., 1990). For main stem leaves 4 - 6 of barley, 

additional N03" increased extension rate 70 - 100% and final area 100 - 200% (Maan, Wright and 

Alcock, 1989)" Recently, Andrews, MCKenzie and Jones (1991) found that for main stem leaves 2 

- 4 of a range of temperate cereals, additional N03" over the range 0.1 - 5 mol m"3 increased 

mean extension rate 75 - 120%, final length 80 - 100% and area 50 - 150%. Duration of 

expansion decreased 25 - 30%. For all species except Secale cereale L. (rye) the major part of 
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the responses occurred with additional N03- over the range 0.1 - 5 mol m-3 and little or no change 

occurred with further increase in N03- supply. For rye, leaf size continued to increase with 

increased N03- concentration to 20 mol m-3 (Andrews, MCKenzie and Jones, 1991). 

Most of the studies reviewed above supplied N as N03-, this being the dominant form of N 

available to and taken up by cereals under temperate agricultural conditions (Section 1.4). 

However, cereals can also take up and assimilate ammonium (NH/). Levels of NH/ in the soil 

can be significant and when rates of nitrification are low, such as in cold, damp conditions, NH/ 

may be the main form of N available to plants (Haynes et al., 1986). No reports were found 

which compared different forms of N with respect to effects on individual leaf growth 

characteristics. However, many studies have compared plant growth and determined shoot dry 

weight (d.wt) with N supplied as N03- or NH/. As shoot d.wt in many species, including cereals, 

is usually related to total leaf area (Chapter 5), these studies can give some indication of the 

effects of N form on overall leaf growth. For seedlings harvested prior to emergence, N03- but 

not NH/ increased the shoot d.wt of a range of cereal species (Chapter 2). Increased shoot 

growth with N03- was a result of both greater mobilisation of seed reserves and increased 

allocation of dry matter to the shoot. Greater reserve mobilization was hypothesised to be due to 

increased water uptake by the seedling. In contrast, in a series of experiments using barley 

exposed to light, it was concluded that addition of N as N03- or NH/ increased shoot d.wt and 

area of leaf 1 to a similar extent (Dale, 1972; Dale, Felippe and Marriott, 1974; Metivier and Dale, 

1977a,b)." It was proposed that additional N (N03- or NH/) probably increased the level of 

photosynthesis, leading to greater growth.' However, the results with NH/ are difficult to interpret 

as there was evidence of NH/ tOXicity in the seedlings (Dale, Felippe and Marriott, 1974). In 

more mature plants the effects of N form on shoot d.wt appear to depend partly on the species 

being investigated and the experimental conditions, particularly the pH of the rooting medium. A 

review of the available literature indicates that N03- has usually been found to be superior for 

shoot growth though occasionally NH4 + has been found to be better, while in some cases no 

differences are evident (Cox and Reisenauer, 1973; Gashaw and Mugwira, 1981; Troelstra and 

Blacquiere, 1986; Vessey et al., 1990; Cramer and Lewis, 1993). These data indicate that 

different forms of N may not necessarily have a similar effect on plant leaf growth. In a 

comparison of the effects of N03- and NH/ supply on plant growth, Lips et al. (1990) suggested 

that the form of N supplied to plants affected the rates of leaf expansion more than the 

photosynthetic of their chloroplasts. 
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In the present study, the effects of availability and form of N on the extension growth and final 

length and area of main stem leaves 2 - 4 of five cereals were measured under controlled 

environment conditions. Nitrogen was supplied as three forms, NO;, NH; and glutamine. There 

are important differences in the assimilation patterns of NO; and NH; which may affect leaf 

growth. For cereals, exogenous NH; is assimilated almost exclusively in the root while the site 

of NO; assimilation depends on the external NO; concentration (Section 1.4; Andrews et al., 

1992). At low external concentrations nearly all the NO; taken up is assimilated in the root; with 

increasing external concentration of N03• a greater proportion of the assimilation occurs in the 

shoot. Also, N03• taken up in excess of that able to be assimilated can be stored in cell vacuoles 

(Granstedt and Huffaker, 1982). In contrast, NH; does not usually accumulate in plant tissues 

(Mehrer and Mohr, 1989). Exogenous N03• and NH; are both assimilated into amino acids such 

as glutamine. Amino acids such as glutamine are found in the interstitial soil solution (Bremner, 

1965) and are taken up and utilized by plants (Jones and Darrah, 1993). In the present 

experiment, glutamine was supplied via the nutrient solution to simulate the exclusive root 

assimilation of N03· and NH;, thus providing a valuable tool to assess the influence of site of N 

assimilation on plant growth. 

Though main stem leaves are the major site of photosynthesis in the early stages of cereal 

development, during latter growth tiller leaves can provide a substantial proportion of total plant 

leaf area, at least in species and cultivars capable of tiller production. Despite the importance of 

tillers for plant leaf area, no reports were found in the literature on the effects of N availability on 

the growth characteristics of individual tiller leaves. Hence, in this study, the growth 

characteristics of leaf 2 of tiller 1 were also determined. The primary objective of the study was 

to determine, for a range of temperate cereals, if individual leaf growth characteristics are 

dependent on the form of N supplied. 

3.2 Materials and Methods 

a) Plant material and growth conditions 

Seed of wheat (cv. Otane; rnean seed weight, 50 mg), oats (cv. Amuri, 34 mg) and 

X Triticosecale Wittmack (triticale) (cv. Aranui, 55 mg) was obtained from Hodder and Tolley Ltd. 

Christchurch, New Zealand. Rye (cv. Rapaki, 30 mg) and barley (cv. Triumph, 45 mg) seed was 
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obtained from the New Zealand Institute for Crop and Food Research Ltd., Lincoln, New Zealand 

and the Canterbury Malting Company, Christchurch, New Zealand respectively. 

Seeds were germinated on paper towels moistened with distilled water. After 4 d, seedlings with 

a coleoptile length of approximately 20 mm were transplanted to 80 mm diameter, 180 mm tall 

pots (one per pot) containing a vermiculite/perlite (1:1 v/v) mixture soaked in basal nutrient 

solution (Appendix 2.1) containing the appropriate N treatment. There were six rates of N (0, 0.5, 

1.0, 2.5, 5.0, 20.0 mol m-3
) supplied as one of three forms: N03- as potassium nitrate, NH4 + as 

ammonium sulphate, or glutamine. For all treatments, potassium was maintained at 23.6 mol m-3 

using potassium sulphate. Pots were flushed every 2 - 3 days with the appropriate nutrient 

solution. Plants were grown in a glasshouse with natural spring/summer light. The photoperiod 

was approximately 15 h and the temperature ranged from 14 - 30°C. 

b} Measurement of leaf length and area 

In this chapter the term "leaf" refers to the blade portion (lamina) of the cereal leaf proper 

(Section 1.2). As transplanted seedlings were used, length and final area of leaf 1 were not 

measured. The lengths of main stem leaves 2 - 4 and leaf 2 of tiller 1 were measured daily until 

full extension was reached. Leaf length was taken as the leaf tip to point of leaf emergence from 

the coleoptile for leaf 2 and leaf tip to where the leaf subtended the leaf sheath for leaves 3 and 

4 and leaf 2 of tiller 1. Leaves were considered fully extended when three successive 

measurements were identical. Plants were harvested 31 d after planting. Final width was 

determined at the widest part of the leaf and area was measured using a CI-201 leaf area meter 

(CID Inc. Moscow, ID, U.S.A). 

c} Growth analysis and experimental design 

Leaf extension over time was analysed using variates derived from a generalised logistic curve. 

This curve, a type of Richards function, was chosen because the parameters are accepted to 

have biological meaning (Venus and Causton, 1979; Causton and Venus, 1981; Hunt, 1982). 

The generalised logistic curve has the equation: y=C/(1 + T exp (-b(x-m))} 1fT where 'C' is the final 

leaf length and 'T', 'b' and Om' are constants. All curves were fitted using the Maximum Likelihood 

Programme (Ross et a/., 1979). The leaf extension variates absolute maximum extension rate 

(bC/(T+1}T+1fT), weighted mean extension rate (bC/2(T+2)) and the time required for the majority 

of extension to occur (2(T +2)/b}, were derived from the curve parameters as described by 
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Dennett, Auld and Elston (1978). The experiment was of a completely raneJomised design with 

five replicates for all treatments. The extension variates were analysed by analysis of variance 

using "Statistix" (Analytical Software, St.Paul, MN, U.S.A). All effects discussed have an F ratio 

with a probability P<0.05. 

f) Repeat experiment 

The main effects of N concentration and form on leaf growth characteristics were similar for all 

species and because of this the repeat experiment was carried out on barley only. Experimental 

conditions were similar to those in the main experiment except the three forms of N (N03-, NH/ 

and glutamine) were applied at seven rates (0, 0.5, 1, 2, 4, 6, 10 mol m-3
). Potassium was 

maintained at 13.6 mol m-3
• Leaf growth measurements, analyses and harvesting methods used 

were the same as the main experiment. 

3.3 Results 

For all species, regardless of N form ~upplied, the absolute maximum and weighted mean 

extension rates of all leaves increased with increasing N concentration over the range 0 to 1 - 2.5 

mol m-3 (Figs. 3.1 - 3.5). Depending on leaf position and species, extension rates increased 50 -

300%. For any species, the maximum extension rate achieved for a given leaf was similar with 

the different N forms. Also for all species, the magnitude of the increase in extension rate with 

additional N over the range 0 - 2.5 mol m-3 N increased with successive leaves. For all species, 

the extension rate of all leaves either changed little or increased further with additional N03- or 

glutamine over the range 2.5 - 20 mol m-3 N. The extension rates of main stem leaf 2 and leaf 2 

of tiller 1 of all species changed little with addition of NH/ over the range 2.5 - 20 mol m-3
• 

However, for most species, extension rates of leaves 3 and 4 decreased with increased applied 

NH/ concentrations from 2.5 - 20 mol m-3 while leaf 2 of tiller 1 of plants supplied 5 and 20 mol 

m·3 NH4 + did not survive to harvest. Regardless of N form applied, for all species duration of 

extension of all leaves decreased from 12 - 14 d to approximately 7 - 8 d with additional N over 

the range 0 - 2.5 mol m-3 but changed little with additional N from 2.5 to 20 mol m-3 (Figs. 3.1 -

3.5). 

For all species, regardless of N form supplied, final length, width and area of all leaves increased 

with increased N concentration over the range 0 to 1 - 2.5 mol m-3 (Figs. 3.6 - 3.10). Depending 
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on leaf number and species, length and width increased 50-100% and area 100-400%. The 

maximum length, width and area achieved for a ,given leaf of any species were similar regardless 

of N form supplied. In general, for any species, the magnitude of the increases in length, width 

and area with additional N increased with successive leaves. Also, for any species and N 

treatment, the final area of successive main stem leaves increased. Regardless of N form, for 

leaf 2 of most species, final length, width and area changed little with additional N over the range 

2.5 - 20 mol m-3
• For all species, the length, width and area of leaves 3 and 4 and leaf 2 of tiller 

1 changed little or increased further with additional N03- or glutamine over the range 2.5 - 20 mol 

m-3 N (Fig. 3.6 - 3.10). Generally, width increased to a greater extent than length. However, for 

most species, there was a substantial decrease in the final length of leaves 3 and 4 of plants 

supplied NH/ over the range 2.5 - 20 mol m-3
, though width was not affected. The decrease in 

final length resulted in a marked decrease in the area of these leaves. 

There were differences in the leaf growth of the species. At external N concentrations over the 

range 0 - 2.5 mol m-3
, tor a given leaf, extension rate and final length tended to be higher for rye 

and oats while width was greatest for oats and barley. Especially for main stem leaves 3 and 4, 

oats had the greatest final leaf area. Rye responded differently to high external concentrations of 

N. The extension rate and final area of leaves 3 and 4 and leaf 2 of tiller 1 of rye increased with 

external N03- or glutamine concentrations over the range 2.5 - 20 mol m-3 while for the other 

species growth increased little or not at all. Also for rye, leaf growth decreased only slightly with 

additional NH/ over the range 2.5 - 20 mol m-3 whereas for the other species the decrease in 

growth was substantial. 

In the repeat experiment using barley only, the growth responses of all leaves to additional N03-

or glutamine were similar to those in the main experiment (ct. Figs. 3.11; 3.12 and 3.1; 3.6). With 

additional N03- or glutamine over the range 0 - 2 - 5 mol m-3 N, extension rate and final leaf 

length, width and area of all leaves increased while duration of extension decreased. There was 

little further change in the growth of these leaves with additional N03- or glutamine over the range 

5 - 10 mol m-3 N. With additional NH4+ over the range 0 - 2 mol m-3
, extension rate and final 

length, width and area of all leaves where similar to when N03- or glutamine were supplied. 

However, in contrast to the main experiment, with additional NH4 + over the range 2 - 10 mol m-3
, 

the extension rate and final length, width and area of all leaves were considerably less than with 

N03- or glutamine. In general, for a given leaf, maximum extension rate and final length, width 

and area were less with NH4 + compared to N03- or glutamine. 
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3.4 Discussion 

A review of the available data on the effects of N03- on the growth of individual leaves indicates 

that for the cereal species there are major inconsistencies between researchers. Data of some 

workers have shown little or no increase in main stem leaf area with additional N03- (eg. Radin, 

1983; Lawlor et al., 1988) while that of others have demonstrated substantial increases in growth 

(eg. Andrews, MCKenzie and Jones, 1991). In the present study, the effects of additional N03- on 

leaf growth characteristics were similar to those found by Andrews, MCKenzie and Jones (1991). 

For all species additional N03- over the range 0 - 2.5 mol m-3 substantially increased the 

extension rate of main stem leaves 2 - 4 while duration of extension was reduced (Figs. 3.1 -

3.5). The magnitude of the increase in extension rate was larger than the decrease in duration 

and hence final leaf length increased. Final width was also greater and as a consequence leaf 

area increased with additional N03- over the range 0 - 2.5 mol m-3 (Figs. 3.6 - 3.10). 

Not only did additional N03- increase the area of individual leaves, but the magnitude of the 

response to additional N03- increased with successive leaves. Also, for a given concentration of 

external N03-, the maximum area attained usually increased with successive leaves. The 

development of individual leaf area is a function of the rate and extent of cell division and/or 

expansion. However, the available literature provides little information on the cellular basis for 

the increase in leaf area with additional N03- and the increase in leaf size with leaf position. 

These aspects of leaf growth are investigated in Chapter 4. Differences in cell number and size 

( may also have been at least partially responsible for the differences between species in leaf 

growth with additional N03- over the range 0 - 2.5 mol m-3
. Further work needs to be carried out 

to determine the differences in the cellular aspects of leaf growth of different cereal species. 

For all species except rye, additional N03- over the range 2.5 - 20 mol m-3 caused little further 

increase in extension rate (Fig. 3.1 - 3.5). As duration of extension did not decrease further, final 

leaf length also changed little (Fig. 3.6 - 3.10). In contrast, width continued to increase with 

additional N03- from 2.5 - 20 mol m-3
, leading to greater final area of main stem leaves 2 - 4. 

Compared to length, leaf width increased over a greater range of external N03- concentrations, 

possibly due to differences in cell division/expansion in the longitudinal and transverse directions. 

These data highlight the importance of width as a factor in determining leaf area, especially at 

higher external N03- concentrations. 
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In contrast to the other species, the extension rate and final length of mc:tin stem leaves 2 - 4 of 

rye increased substantially with additional N03- over the range 2.5 - 20 mol m-3 ,(Figs. 3.3, 3.8). 
1.:/

1 

Width was also greater, resulting in a large increase in leaf area. These data demonstrate'the 

ability of individual leaves of rye to respond over a larger range of external N03- concentrations 

compared to other temperate cereals, as was also found by Andrews, MCKenzie and Jones 

(1991). However, from the available data it is difficult to establish why rye responds differently. It 

is possible that the ability of rye to produce more tillers, leaf area and dry matter compared with 

other temperate cereal species (Andrews et al.,1992, unpublished data), serves to dilute 

excessive amounts of N03- which may otherwise somehow curtail individual leaf growth. 

In species or cultivars capable of tiller production, tiller leaves frequently make up a substantial 

proportion of the leaf area of cereals. However, few studies have investigated the growth of 

individual tiller leaves with additional N. In the present study, for all species, the effects of 

additional N03- on the growth of leaf 2 of tiller 1 was similar to that of main stem leaves. Leaf 2 

of tiller 1 was generally smaller than the largest main stem leaf measured, though later tiller 

leaves can be as large or larger than main stem leaves (pers. obs). 

Nitrate is usually the dominant form of N available to cereals under temperate agricultural 

conditions and concentrations in the interstitial soil solution of cultivated, unfertilized soils are 

typically around 2 mol m-3 (Haynes et al., 1986; Mengel and Kirkby, 1987; Chapter 6). With 

application of fertilizer N, the concentration of N03- can be as high as 20 mol m-3 (Mengel and 

Kirkby, 1987). In the present study, extension rates and final lengths increased with additional 

N03- over the range 0 - 2.5 mol m-3
, though the major part of the responses occurred with applied 

N03- from 0 - 1, mol m-3
. Hence, under agricultural conditions, little response in leaf extension 

rate or final length could be expected with the addition of fertilizer N. However, in the present 

study, leaf width and area increased with N03- to 20 mol m-3
, and it is likely that under field 

conditions individual leaf area would increase as a result of N applied at sowing (Andrews, 

MCKenzie and Jones, 1991). 

The overall objective of the present study was to determine if individual leaf growth characteristics 

are dependent on whether N is supplied as N03- or NH/. Plants were also supplied glutamine to 

simulate exclusive root assimilation of N03-. For all species, at all external N concentrations 

used, plants supplied either N03- or glutamine showed similar responses in terms of maximum 

and mean extension rates, duration of growth and final leaf length, width and area attained. 
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Therefore, under the conditions of the present experiment, the site of N assimilation does not 

appear to influence the development of individual leaf area. 

At external N concentrations over the range 0.5 to 2.5 mol m-3
, plants supplied NH/ showed 

similar individual leaf growth characteristics to those of plants supplied N03-. Also, for a given 

leaf the maximum final leaf area attained with N03- or NH/ were similar. [However, with 

increasing applied NH/ over the range 2.5' - 20 mol m-3
, leaf extension rates and final length and 

area decreased substantially for most species. Plants grown at high external NH/ concentrations 

displayed symptoms consistent with those reported in the literature as being the result of NH/ 

toxicity (Mehrer and Mohr, 1989). Leaves tended to dry out or were chlorotic, overall plant health 

was poor and tillers were very small or did not form. The exact cause of the depression in 

growth with NH/ toxicity is not known, though one of the reasons frequently cited is the decrease 

in the pH of the rooting medium (Mehrer and Mohr, 1989f.] In the present experiments frequent 

replacement of the nutrient solution should have prevented this. Hence, though high levels of 

external NH4 + decreased individual leaf growth, it is not clear whether this was a direct result of 

factors associated with NH4 + toxicity syndrome. Also, the decrease in leaf growth and the 

severity of the symptoms of NH4+ toxicity were different in the main and repeat experiments. In 

the former, with 5 or 20 mol m-3 NH/, leaves exhibited various degrees of acute damage and 

overall plant health was poor. In contrast, in the repeat experiment, even with 10 mol m-3 NH/, 

plants remained healthy, though leaves tended to be smaller than where N03- or glutamine were 

supplied. This suggests that other environmental factors may influence the effects of high levels 

of external NH/ on leaf growth and/or the development and expression of the NH/ toxicity 

syndrome. For example, it has been reported that plants supplied NH/ transpire nearly twice as 

much water as those supplied N03- (Lips et al., 1990). Further, more definitive work, needs to be 

carried out on the biochemical aspects of NH/ toxicity. As rye did not appear to be affected by 

high external NH/ concentrations to the same extent as the other species, this may prove a 

valuable tool in these investigations. 

3.5 Conclusions 

The data presented in this chapter have demonstrated that therarea- of individual leaves of 

cereals increases with increasing external concentrations of N as N03-, NH/ or glutamine over 

the range 0 - 2.5 mol m-3
. Over this range of external N concentrations growth characteristics 

were similar for all forms of N, as was the leaf area attained. Leaf area increased further with 
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increasing external concentrations of N03- or glutamine to 20 mol m-3 but with NH/ it usually 

declined substantially_ It is possible that factors associated with NH/ toxicity influence the growth 

of leaves_ Similar maximum leaf growth was achieved with N03-, NH/ or glutamine as N 

sources, indicating that the extent of leaf growth does not depend on the site of N assimilation_. 

However, as shown in Chapter 5, plants supplied NH/ or glutamine usually have a higher leaf N 

content than those supplied N03-, especially at higher external N concentrations, and hence it is 

likely that the amount of leaf area produced per unit leaf N may depend on site of N assimilation] 
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Introduction 

Total leaf area, an important determinant of plant photosynthetic capacity, is a function of the 

number of leaves per plant and average individual leaf area. Numerous studies have shown that 

additional N usually has a large, positive effect on the area of single cereal leaves (Section 3.1). 

For example, the final area of main stem leaves 2 - 4 of five cereal species increased between 

20 - 150% with increasing applied nitrate (N03"), ammonium (NH/) or glutamine over the range 0 

to 1 - 2.5 mol m"3 N (Chapter 3). Greater final area was due primarily to increased length, though 

width also increased. Leaf area increased further with additional N03" or glutamine over the 

range 2.5 to 20 mol m"3 N, mainly as a result of greater width. 

As has been shown in a limited number of studies, greater individual leaf area with additional N 

can be associated with increases in average cell size and/or number or changes in aspects of 

leaf architecture. Cell number and size are determined by the rate and duration of cell division 

and expansion respectively while leaf architecture is characterised by both the internal structure 

of the leaf, particularly the extent of air-spaces, and the relative number of the different cell types.) 

For Beta vulgaris, greater leaf area with additional N03" was a result of increases in both cell 

number per leaf and apparent cell size (Morton and Watson, 1948). Greater area of Gossypium 

hirsutum (cotton) and Salix viminalis leaves with additional N03" were associated with increases in 

the average area of individual epidermal cells (Radin and Parker, 1979; McDonald, 1989). In 

contrast, additional N as NH4N03 had little effect on the mesophyll cell size of two Panicum 

species and Festuca a run dina cae (tall fescue), though for all three species leaves were thicker, 

average inter-veinal distances were greater and the extent of internal airspaces increased (Bolton 

and Brown, 1980). The effects of additional N on individual leaf area were not reported in this 

paper. Also for tall fescue, leaf elongation rate (LER) increased 90% with additional N, but the 

length of epidermal cells was not affected, suggesting that much of the increase in LER was a 

result of greater cell number (Volenec and Nelson, 1983). In another study using tall fescue, 

additional N increased mesophyll cell number more than epidermal cell number, and it was 

suggested that the process of division in these cell types may be differentially sensitive to N 

availability (MacAdam, Volenec and Nelson, 1989). For cereals, the area of leaf 1 of Hordeum 

vulgare (barley) was greater with additional N03" but cell number was not affected and it was 

inferred that cell size increased (Dale, 1972). In contrast, a more than doubling in the flag leaf 

area of Triticum aestivum (wheat) with additional N03" was associated with a 85% increase in cell 

number and calculated average cell volume increased 30% (Lawlor, Kontturi and Young, 1989). 
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A number of methods can be used to assess leaf cell size and number. The simplest technique 

involves determining epidermal cell characteristics from surface casts obtained by using a 

suitable impression SUbstance. While this method was used in the present study, it suffers from 

some possible drawbacks. Though final leaf area and internal cell size and number must be 

constrained by the size of the epidermis, extrapolating data obtained from epidermal cell 

characteristics to other leaf cells must be done with some caution. Epidermal cells only make up 

around 10% of total leaf cells and their rate and duration of division and/or expansion can differ 

considerably from other cells (Avery, 1933; Jellings and Leech, 1982; MacAdam, Volenec and 

Nelson, 1989). Hence, it is possible that epidermal cell characteristics may not accurately reflect 

the size and number of cells in other leaf tissues. Also, palisade and mesophyll cells, the most 

numerous types of leaf cells, are the major sites of photosynthesis (Pyke, Jelling and Leech, 

1990) and it is therefore important to assess the changes in their number and size relative to 

changes in leaf area. Usually, total cell number has been determined by digesting leaf material 

with chromic acid and assessing the number of cells in a subsample (eg. Sunderland, 1960). In 

the present study, an alternative method has been used in which the DNA content of a leaf was 

determined using a fluorescent dye (Baer et a/., 1985). For a given species, the amount of 

nuclear DNA is usually constant and hence the quantity of DNA extracted from a leaf gives an 

indication of cell number. 

The overall aim of the study described in this chapter was to gain a better understanding of the 

cellular basis of leaf growth in temperate cereals. It is difficult to establish from the literature in 

what way changes in cell number are related to changes in cell size. Also, the magnitude of the 

responses to additional N appear to possibly depend on species, ontogeny, cell types examined 

and environment. Therefore, the primary objective of the study was to estimate, for the first six 

main stem leaves of barley, the relative contributions of changes in cell size and number in 

determining the increase of individual leaf area with additional N03--

4.2 Materials and Methods 

Barley (cv_ Triumph) seed, obtained from the Canterbury Malting Company, Christchurch, New 

Zealand, was used in the present experiment. Seeds (mean weight - 45 mg) were germinated on 

paper towels moistened with the appropriate treatment (see below). After 4 d, seedlings with a 

coleoptile length of approximately 10 mm were transferred to 80 mm diameter, 180 mm tall pots 

(one per pot) filled with a vermiculite/perlite (1:1 v/v) mixture soaked in basal nutrient solution 
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(Appendix 2.1) containing the appropriate N03- concentration. Three rates of N03- (0.5, 2, 5 mol 

m-3
) were supplied as potassium nitrate. In all treatments potassium (K+) was maintained at 13.6 

mol m-3 using potassium sulphate. Pots were flushed every 2 d with the appropriate nutrient 

solution. Plants were grown under glasshouse conditions with a photoperiod of approximately 12 

h, maximum light levels of around 1500 ~mol photons m-2 
S-1 and day/night temperatures of 

approximately 20/10°C. 

For each treatment, leaves 1 - 6 were harvested when fully _expanded. Separate plants were . -- - - - ---' .. _. -- - --_. --- - -- _.-- -

- used for the haN8st of each leaf position. In this chapter the term "leaf" refers only to the lamina 

portion of the cereal leaf (Section 1.2). i The leaves were detached at the ligule and fresh 

weight (f.wt) determined. Length, width and area were measured using a CI-201 leaf area meter 

(CID Inc. Moscow, ID, U.S.A). Apparent leaf thickness was calculated as the ratio of leaf f.wt to 

area (Dijkstra, 1990). Casts of the abaxial leaf surface were obtained by applying clear cosmetic 

nail varnish ("Cutex", Rexona Nl Ltd, Petone, N.l.) to the leaf surface at three positions (Va,"V2 and 

% of the way along the leaf). The impression cast was allowed to dry and then removed by 

affixing it to clear cellotape (Tiki-Tape, Christchurch, N.l.) and gently peeling both off the leaf. 

The casts and adhering tape were then mounted on a glass microscope slide. 

Using a light microscope at 100X magnification and a calibrated 1 cm graticule, the average 

length and width of 100 randomly selected cells were determined for each of the three 

impressions from each leaf. Average cell area for that cast was calculated from the average cell 

length and width. Veinal cells were not assessed. For each leaf, average cell length, width and 

area were calculated as the mean of the values from the three impressions. At 10 random 

locations on each cast, the number of cells (excluding veins) per calibrated 1 cm2 grid was 

assessed. Multiplying this number by average cell area for that cast enabled the proportion of 

leaf surface occupied by non-veinal cells to be calculated. Taking this factor (hereafter termed 

NVC) into account, non-veinal epidermal cells per leaf was calculated as (leaf area * 

NVC)/average cell area. 

For the harvests of leaves 1, 3 and 6 extra plants were grown for DNA determination. The 

method of Baer et al. (1985), which uses the DNA-complexing fluorescent dye 4',6'-diamidino-2-

phenyl indole (DAPI), was adapted and optimized for barley leaves. Fresh weight and area of the 

leaves were determined. A known amount of leaf material (0.1 - 0.3 g) was homogenized in 5 ml 

buffer (2000 mol m-3 NaCI, 10 mol m-3 EDTA, 10 mol m-3 Tris-HCI [pH 7.0]) using a mortar and 

pestle. Chloroform (1.5 volumes) was added to the homogenate and mixed vigorously. After 
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centrifugation at 1,000 g for 10 minutes, the aqueous supernatant was used for fluorometric 

measurements. Fluorescence was measured with excitation and emission wavelengths set at 

350 and 450 nm respectively using a Shimadzu (Kyoto, Japan) RF540 spectrofluorophotometer. 

Because of the quenching of fluorescence of the DAPI-DNA complex by substances in the leaf 

homogenates, using a standard curve based on the fluorescence of purified DNA to determine 

the sample DNA content is not satisfactory. To overcome this problem Procedure 'A' of Saer et 

al. (1985) was followed. This involved successive addition and mixing of four 10 III aliquots of 

homogenate and four 10111 aliquots of DNA standard solution (calf thymus DNA: 25 Ilg mr1 buffer 

- - 100 mol m·3 NaCI, 10 mol m-3 EDTA, 10 mol m-3 Tris-HCI [pH 7.0]) into a single cuvette (1 cm 

pathlength; U.V. quartz) containing 3 ml of DAPI solution (final concentration 100 ng ml-1 buffer -

100 mol m-3 NaCI, 10 mol m-3 EDTA, 10 mol m-3 Tris-HCI [pH 7.0]). Fluorescence was measured 

at the beginning of the assay and after addition of each aliquot. When fluorescence units were 

plotted against the cumulative volume of aliquots, two joined, straight lines were obtained (one for 

the homogenate and one for the DNA standard) and their slopes calculated. The concentration 

of DNA in the homogenate was calculated by multiplying the concentration of the DNA in the 

standard solution by the ratio of slopes of the increase in fluorescence for the homogenate to the 

increase in fluorescence for the standard solution. For clarification, a calculated example is 

presented in Appendix 4.1. Values.of DNA content of these leaves were used to calculate the 

DNA content of the equivalent leaf from which epidermal cell characteristics were assessed. 

The accurate determination of DNA using DAPI requires the use of a standard - the present 

experiment used calf thymus DNA. However, because of possible differences in the base 

composition of the standard and samples, the use of animal DNA as a standard for plant DNA 

determination has been questioned (Price et al., 1980). Hence, DNA values from the assay used 

in this study have not been converted into absolute cell numbers and only DNA content per leaf 

is presented, rather than inferred cell number. Similarly, derived values like cell volume are 

presented on a DNA basis. However, it is recognized that leaf DNA content is related to cell 

number and relative differences in DNA content are taken as evidence for differences in cell 

number. 

The experiment was a completely randomized block design with six replicates. Data for each leaf 

were analysed separately. Analyses were carried out using the "Statistix" (Analytical Software, 

St.Paul, MN, U.S.A) package. Means stated as being different are based on an LSDo.o5 and were 

obtained in a repeat experiment. 
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4.3 Results 

[For plants receiving 0.5 mol m"3 N03", the area of successive leaves increased up to leaf 4 but 

then changed little for leaf 5 and decreased for leaf 6 (Table 4.1 ).In contrast, for plants receiving 

5 mol m"3 the area of leaves 1 - 6 increased steadily. Within any leaf position, growth was 

affected by the level of applied NO;] For most parameters the major part of the response 

occurred with increasing external N03" from 0.5 to 2 mol m"3 with smaller changes with additional 

N03" to 5 mol m"3.[Leaf area increased with additional N03" from 34% for leaf 1 to nearly 190% 

for leaf 6. Except for leaf 1, greater area was due to increases in bQtb length and width. Only 

width increased for leaf 1. The length of leaves 2, 3 and 4 increased approximately 20% while 

that of leaves 5 and 6 increased substantially more (approximately 50 and 100% respectively). 

Leaf width increased between 14 and 40%, generally more so with increasing leaf position. For 

leaves 1 - 5 apparent leaf thickness was not affected by additional N03" but for leaf 6 it increased 

30%] 

Leaf epidermal cell characteristics changed with increasing leaf position. For all three levels of 

N03", with increasing leaf position, cell length, width and area generally deClftased while, total cell 

numb~~ increas,ed. However, the decreases in cell length, width and area were substantially 

larger for plants supplied 0.5 mol m"3 N03" compared to those supplied 2 and 5 mol m"3. [,Within 

any le~f position, epidermal cell characteristics were markedly affected by applied N03" and like 

leaf area, the magnitude of the responses tended to increase with successive leave~(Table 4.2). 

For most measurements and leaves the majo! pcHtof the increase occurred with additional N03" 

from 0.5 to ~,mol m"3.[With additional N03~c"ell area increased nearly 40% for leaf 1, 60 - 70% 

for leaves 2, 3, 4al1d 5 and over 130% for leaf 6. Greater cell area was a result of in_creased cell 

length_an<twidt~. The increase in cell length ranged from 8% for leaf 1 to 54% for leaf 6 while 

the increase in width varied between 25 and 50%, though not consistently with leaf position] For 

all leaves NVC increased from around 25% for plants supplied 0.5 mol m"3 up to 50% for those 

supplied 5 mol m"3. Taking NVC into account, for all leaves cell number increased with additional 

N03". The magnitude of the increase varied from 15% for leaf 1 to nearly 130% for leaf 6. 

The relationships between applied N03" concentration, leaf position and epidermal cell 

characteristics are shown in Figs. 4.1 a,b. ' For a giverileaf, greater average epidermal cell area 

with additional N03" was associated with an increase in leaf area (Fig. 4.1 a). For all leaves, the 

relationship was always nearly linear though the slope of the response tended to increase for 

successive leaves2 For example, for leaf 2, an increase of 1 x 10"5 cm2 in average epidermal cell 
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Table 4.1 The effects of additional nitrate (N03') on the area, length, width and apparent 
thickness of main stem leaves 1 to 6 of Hordeum vulgare L. The standard error of 
the mean (SE) is given. 

Applied NOa' Leaf area Leaf length Leaf width Thickness 
(mol m·a) (cm2

) (cm) (cm) (x10·2 cm) 

Leaf 1 0.5 2.70 8.58 0.47 2.03 

2 3.61 9.58 0.57 2.05 

5 3.63 8.88 0.60 2.08 

SE 0.19 0.25 0.017 0.09 

Leaf 2 0.5 3.51 14.31 0.45 2.46 

2 5.85 17.65 0.55 2.48 

5 6.44 17.55 0.59 2.45 

SE 0.42 0.67 0.016 0.19 

Leaf 3 0.5 6.73 17.76 0.54 2.32 

2 9.91 21.03 0.66 2.33 

5 11.09 20.23 0.68 2.45 

SE 0.56 0.76 0.017 0.11 

Leaf 4 0.5 7.96 18.78 0.63 2.18 

2 12.35 23.75 0.71 2.22 

5 12.58 22.98 0.72 2.29 

SE 1.5 0.88 0.021 0.12 

Leaf 5 0.5 7.98 17.55 0.72 2.30 

2 14.30 24.23 0.83 2.50 

5 17.06 26.78 0.91 2.48 

SE 0.91 0.53 0.022 0.10 

Leaf 6 0.5 6.50 14.32 0.71 1.94 

2 13.40 24.61 0.86 2.28 

5 18.71 29.13 1.01 2.58 

SE 0.48 0.85 0.036 0.09 
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Table 4.2 The effects of additional nitrate (NOa') on abaxial epidermal cell length, width and 
area; percentage of the surface occupied by non-veinal cells (NVC), total number of 
cells per leaf, cells per leaf length and width of main stem leaves 1 - 6 of Hordeum 
vulgare L. The standard error of the mean (SE) is given. 

Applied N03' Cell area Cell length Cell width NVC Total cell 
(mol m·3) (x10·5 em2

) (x10·2 em) (x10·3 em) (%) number 
(X104

) 

Leaf 1 0.5 2.81 1.55 1.81 28.8 2.77 

2 3.52 1.65 2.11 38.7 3.97 

5 3.86 1.67 2.26 39.0 3.67 

SE 0.15 0.04 0.05 1.5 0.20 

Leaf 2 0.5 2.76 1.51 1.78 33.9 4.32 

2 4.50 1.75 2.56 47.9 6.23 

5 4.88 1.76 2.75 47.9 6.33 

SE 0.21 0.08 0.06 2.1 0.41 

Leaf 3 0.5 2.87 1.49 1.85 32.8 7.71 

2 4.12 1.64 2.51 37.1 8.93 

5 4.65 1.70 2.72 43.7 10.43 

SE 0.14 0.06 0.06 1.8 0.53 

Leaf 4 0.5 2.37 1.20 1.93 27.3 9.17 

2 3.44 1.58 2.18 31.0 11.13 

5 4.03 1.62 2.46 39.2 12.24 

SE 0.22 0.07 0.06 1.6 1.63 

Leaf 5 0.5 2.19 1.13 1.82 29.4 10.72 

2 2.92 1.31 2.23 30.2 14.79 

5 3.60 1.47 2.48 32.7 15.53 

SE 0.11 0.06 0.04 1.5 0.97 

Leaf 6 0.5 1.53 1.00 1.54 19.9 8.46 

2 2.36 1.20 1.88 27.5 15.59 

5 3.62 1.54 2.30 37.1 19.22 

SE 0.37 0.11 0.09 2.3 0.43 
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Relationships between f.wt per unit DNA (A) and leaf DNA content (8) and the area of 

main stem leaves 1,3 and 6 (_, 11 and'" respectively) of Hordeum vulgare L. 
supplied 0.5, 2 or 5 mol m'3 nitrate (N03'). Lines are drawn for clarity and were fitted 
by eye. 
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Table 4.3 The effects of additional nitrate (N03·) on the total DNA content, fresh weight (f.wt) to 
DNA ratio and leaf area to DNA ratio of leaves 1, 3, and 6 of Hordeum vulgare L. 
The standard error of the mean (SE) is given. 

Applied N03- DNA content F.wt per DNA Area per DNA 
(mol m-3

) (mg leafl) (g mg-l ) (cm2 mg-l) 

Leaf 1 0.5 0.307 0.178 8.79 

2 0.327 0.226 11.03 

5 0.324 0.233 11.20 

SE 0.02 0.011 0.46 

Leaf 3 0.5 0.453 0.344 14.85 

2 0.595 0.388 16.65 

5 0.672 0.404 16.48 

SE 0.03 0.021 0.32 

Leaf 6 0.5 0.558 0.225 11.64 

2 1.202 0.254 11.14 

5 1.630 0.296 11.47 

SE 0.12 0.03 0.12 

area with additional N03- was associated with a leaf area increase of 1.3 cm2
• In contrast, for leaf 

5 a similar increase in cell area resulted in an leaf area increase of 7.7 cm2
• (This indicated that 

for successive leaves other factors, most likely cell number, must have become increasingly 

important in determining leaf area. Indeed, across all leaves and N03- treatments, there was a 

positive, linear relationship between epidermal cell number and leaf area (Fig. 4.1 b)~J 

For leaves 1, 3 and 6 DNA content was determined. Additional N03- increased the DNA content 

of leaf 1 by only 6%, leaf 3 over 30% and leaf 6 nearly 200% (Table 4.3). For all three leaves, 

f.wt per unit DNA, an indication of cell volume, increased from 20 to 30% with additional N03-. 

Apparent cell volume increased from leaf 1 to 3 but then decreased for leaf 6 at a given applied 

N03- concentration. Leaf area per unit DNA increased over 30% with increased N03- supply for 

leaf 1, only 10% for leaf 3 but was not affected by N03- in leaf 6. i For all three leaves, an 

increase in f.wt per unit DNA was associated with an increase in leaf area, though like epidermal 

cell area, the slope of the relationship increased with leaf position, indicating that other factors 

had a greater influence on leaf area (Fig. 4.2a). When all leaves and N03- treatments are plotted 

together, there was a positive correlation between leaf DNA content and leaf area (Fig. 4.2b)J 
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4.4 Discussion 

Data presented in this chapter have shown that for all leaves, greater leaf area with additional 

N03- (Table 4.1) was associated with increased cell size, expressed as either epidermal cell area 

(Table 4.2) or f.wt per unit DNA (average cell volume) (Table 4.3). Cell area and volume are 

largely determined by the degree of cell expansion, a process which depends on the movement 

of water into the cell (Tomos, 1985). Water influx is a result of the lowering of cell water 

potential, brought about by the accumulation of solutes, the most common of which is usually 

sucrose (Morgan, 1984). With low external N03- concentrations, leaf N levels are usually less 

than optimal for maximum photosynthetic rates, and the supply of sucrose for cell expansion may 

be limited (Section 1.4). Sucrose availability for leaf cell expansion may be further limited 

because at low external N03- concentrations temperate cereals assimilate N03- in the root 

(Andrews et al., 1992) and the energy, reductants and C skeletons used in assimilation must be 

derived from the respiration of sucrose translocated from the leaves (Layzell, 1990). As the 

concentration of external N03- increases, plant N content and photosynthetic rate usually also 

increase (Section 1.4) and the supply of sucrose able to be used as osmoticum for cell expansion 

is probably greater. Further gains in sucrose availability are possible because a greater 

proportion of the N03- is assimilated in the leaves at high external N03- concentrations (Andrews 

et al., 1992) and the assimilation reactions can be supported directly by the photosynthetic 

processes (Layzell, 1990). 

Assimilation of N03- in the leaves has other advantages in terms of osmotica generation. Nitrate 

assimilation results in the generation of excess hydroxide ions, which in the leaves are usually 

neutralized by the production of organic acids (Raven, 1985). These acids accumulate in the 

vacuoles and can contribute to the osmotic potential of cells. In addition, N03- taken up in excess 

of that able to be assimilated is usually also stored in the vacuoles (Granstedt and Huffaker, 

1982) and together with counter ions, particularly K+, can also contribute significantly to the 

osmotic potenti~1 of cells (Blom-Zandstra and Lampe, 1985; Steingrover, Woldendorp and 

Sijtsma, 1986). It is suggested that for barley in the present study greater cell size with 

increasing concentrations of external N03- may have been the result of increased availability of 

osmotica - principally sucrose but also other ions such as organic acids, N03- and K+. This is 

similar to a suggestion by Sprent and Thomas (1984), who proposed that for some legume 

seedlings it was theoretically possible for osmotically driven leaf expansion to be partly dependent 

on N03- transported to the leaves. However, further work is needed to determine the relative 

contribution of the various forms of osmotica to increases in cell size with additional N. 
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Though greater leaf area with additional N03- was associated with increases in cell size, the slope 

of the relationships between leaf area and epidermal cell area and f.wt per unit DNA increased for 

successive leaves (Figs. 4.1 a, 4.2a). This indicated that with increasing leaf position cell size 

became less important in determining final leaf area and other factors, most likely cell number, 

became more influential. For all leaves, cell number increased with additional N03- (Tables 4.2, 

4.3) and across all leaves and N03- treatments both epidermal cell number (Fig. 4.1 b) and whole 

leaf DNA content (Fig. 4.2b) were closely related to final leaf area. Cell number is determined by 

the rate and extent of cell division. Additional N has been shown to increase cell number in a 

range of species (eg. Morton and Watson, 1948; Volenec and Nelson, 1983; Lawlor, Kontturi and 

Young, 1989). However, the mechanism by which additional N enhances cell division is not 

known. As the manufacture of new cells involves the building of cell walls and membranes, 

which contain significant amounts of C, increased photosynthesis as a result of higher plant N 

content could be expected to support a greater rate of cell division. For Cucumis sativus 

(cucumber), plants grown under low light conditions had lower rates of C fixation per unit leaf 

area and smaller leaves, the latter being a result of lower number of cells per leaf (Milthorpe and 

Newton, 1963). Nitrogen is also an important constituent of many of the compounds vital for cell 

formation and function, and therefore enhanced N supply would also be expected to support a 

greater rate of cell division. 

\ 

Nitrate supply also affected leaf parameters other than cell number and size. For all leaves, 

increasing external N03- concentration increased NVC, an indicator of the fraction of the leaf 

surface. occupied by non-veinal cells. Increased NVC appeared to be related to inter-veinal 

distance. Observations indicated that the number of veins per leaf stayed constant with varying 

N03- supply, and therefore .increased inter-veinal distance was probably a result of increased 

average cell width. As discussed above, cell width, an important component of cell size, would 

increase with an increased supply of osmotica. Additional N has been reported to increase inter­

veinal distance in two Panicum species and tall fescue (Bolton and Brown, 1980). Most of the 

chloroplasts in leaves are likely to be found in cells below non-veinal cells and hence greater 

inter-veinal distance would result in an increase in the fraction of the leaf surface that would be 

able to utilize incident photosynthetically active radiation (PAR). This could possibly lead to 

greater rates of C fixation per unit leaf area. 

For some leaves, thickness, as reflected by the ratio of f.wt to leaf area (Dijkstra, 1990), 

increased with additional N03- supply (Table 4.1). This is supported by the changes in leaf area 
, 

per unit DNA (Table 4.3). For leaf 1, area per unit DNA increased markedly while leaf DNA 
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content increased little. In contrast, for leaf 6, the substantial increase in DNA content did not 

result in a change in the amount of leaf area produced per unit DNA. This could be expected if 

leaf thickness increased, with more layers of cells leading to more DNA per unit leaf area. 

Thicker leaves with more layers of cells and hence chloroplasts per unit leaf area would also 

increase the proportion of incident PAR being utilized, leading to greater leaf photosynthetic 

capacity. Similar reasoning was proposed by Bolton and Brown (1980), who argued that thicker 

leaves with additional N increased apparent photosynthesis per unit leaf area in Panicum and tall 

fescue was possibly because of greater PAR absorption and increases in the amounts of 

- photosynthetic enzymes per unit leaf area. \ 

In this chapter data have been presented which was based on the determination of leaf DNA 

content. However, the quantification of DNA to assess changes in leaf cellular characteristics has 

possible limitations, the most important of which is the contribution of extranuclear DNA 

(predominantly chloroplastic) to total DNA. As additional N usually increases leaf chlorophyll 

content (Section 1.4), it is likely that chloroplastic DNA per cell also increases, though few studies 

have investigated the magnitude of the response. For Spina cia oleraceae seedlings, additional N 

(form and rate unspecified) increased the contribution of chloroplastic DNA to total DNA from 10 

to 16% (Scott and Possingham, 1983). In the present study, the increase in the DNA content of 

leaf 6 with additional N03- was substantially greater than this (200%) and it is likely that most of 

the increase in leaf DNA content was due to an increase in nuclear DNA and therefore reflected 

an increase in cell number per leaf. 

Data presented in this chapter have demonstrated that the increase in leaf area with additional 

N03- was associated with increases in both cell size and number. However, there was a large 

interaction between leaf position and N03- supply with regard to both leaf area and cell 

size/number. Hence, the relative contribution of changes in cell size and number to the increased 

leaf area with additional N03- depended on the position of the leaf being investigated. For a 

given level of external N03-, the area of successive leaves increased. However, average cell size 

generally decreased and the increase in area was due to greater cell number per leat] These 

changes in cell size and number with increasingly larger successive leaves have been reported 

for the monocotyledon Lolium temulentum (Borrill, 1961) and the dicotyledons cucumber 

(Milthorpe and Newton, 1963), Capsicum frutescens (Steer, 1971) and cotton (Radin and Parker, 

1979). The factors affecting this pattern of decreasing cell size and increasing cell number in of 

successive leaves do not appear to have been investigated. It is possible that the availability of 

C for new cell wall production and osmotica for cell expansion changes with leaf number per 
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plant and hence influences the cellular characteristics of newly formed leaves. This suggestion is 

supported by the interaction between the supply of N03- and leaf position, with the increase in the 

area of successive leaves being greater with additional N03-. Successive leaves of plants 

supplied N03- had greater increases in cell number and smaller decreases in average cell size. 

The greater increase in the area of successive leaves with additional N has been described 

before for wheat (Puckeridge, 1956; cited in Bunting and Drennan, 1966), though the cellular 

aspects of this interaction do not appear to have been reported. As discussed above, it is 

possible that greater availability of photosynthate with additional N03- may increase the rate and 

- extent of cell division and expansion and hence result in an increase in the area of successive 

leaves. 

4.5 Conclusions 

Data from the experiment conducted for this chapter have shown that greater individual leaf area 

with additional N03- was associated with an increase in both cell size and number, though the 

latter increased in importance with leaf position. It was proposed that greater cell size with 

additional N03- was due to an increase in the availability of osmoticum, primarily sucrose, but 

also other solutes such as free N03-. Increased cell number was thought to be related to greater 

levels of photosynthate and N increasing the rate or duration of cell division. 
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Appendix 4.1: Leaf DNA content - sample calculation. 

A known fresh weight of leaf tissue was ground in 5 ml homogenizing buffer (Section 4.2). A 2 

ml subsample was diluted with 2 ml homogenizing buffer to give a sample with half the 

concentration of DNA of the original homogenate. The DNA content of both full and half 

concentration homogenates was then determined using Procedure Aof Baer et al. (1985) as 

described in Section 4.2. A graph of fluorescence units versus cumulative volume of aliquots 

added for the two samples is presented below: 
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Calculations of the DNA content of the two homogenates are as follows: 

Full concentration Half concentration 

slope with homogenate only 

slope with homogenate and standard 

ratio of slopes 

DNA concentration of standard (l1g mr' buffer) 

DNA concentration of homogenate (l1g mr' buffer) 

ratio of DNA content of the full to half concentration homogenates 

actual ratio of DNA content in full and half concentration homogenates 

0.384 

0.142 

2.70 

162.0 

0.178 

0.129 

1.37 

60 

82.8 

1.96 

2.00 
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5.1 Introduction 

For many plant species grown under a wide range of environmental conditions, shoot to root dry 

weight (d.wt) ratio (S:R) has been found to increase with increased external nitrate (N03") 

concentration over part of the range 0.1 to 20 mol m"3 (Andrews, 1993). For temperate cereals, 

N03" availability has been found to affect the S:R from the seedling stage through to maturity. 

For example, addition of 5 mol m"3 potassium nitrate (KN03) plus 5 mol m"3 calcium nitrate 

instead of distilled water increased the S:R of dark grown Hordeum vulgare L. (barley) from 1.6 to 

- 2.7 within 19 days of planting (N,Hr, 1988). For more mature plants, the S:R of five species of 

temperate cereals increased from around 1 to nearly 2 with increased N03" over the range 0.1 to 

5 mol m"3 (Andrews et al., 1992). Commonly associated with the increase in S:R with additional 

N03" are two other plant growth responses. Firstly, plant or shoot N content also increases with 

additional N03" (Section 1.4; Andrews, 1993). Data indicate that for, many species grown under 

N03" nutrition, S:R increases linearly with increasing shoot or total plant N content (Hirose, 1986; 

Ingestad and Agren, 1991; Boot, Schildwacht and Lambers 1992). Secondly, plant d.wt usually 

also increases with additional N03" as a result of increased plant photosynthetic capacity (Novoa 

and Loomis, 1981; Section 1 :4). Conversely, with low external N03" concentrations plant growth 

is usually curtailed and S:R is less than at high external N03" concentrations. It has been argued 

that variation in the partitioning of dry matter between the shoot and root at different external N 

concentrations is an adaptive response which maintains balanced activity between the root (site 

of N uptake) and the shoot (site of photosynthesis) such that growth rate is optimized or 

maximized (Troughton, 1956;1960; Brower, 1962; Davidson, 1969; Agren and Ingestad, 1987; 

Hilbert, 1990; Gleeson, 1993). However, in some situations, additional N has been shown to 

increase S:R with no increase in plant d.wt. For example, Andrews (1993) reported that with 

additional N03" over the range that total plant d.wt does not change, the S:R of mature Triticum 

aestivum (wheat) continued to increase. Also, at external concentration of N03" that are toxic to 

plants, S:R frequently continues to increase (Andrews, 1993)" 

There are also several reports that for herbaceous species, S:R increases with increased 

growth/development independent of N supply (Foth, 1962; Rufty, Raper and Huber, 1984; Caloin, 

1987; Andrews, Scott and MCKenzie, 1991; Larsson et al., 1991). Therefore, it is possible that 

part of the observed N effect on S:R may be related to plant development (ontogeny). This is 

also likely to be the case where S:R changes with seedling development, at least where growth is 

reliant on seed reserves as opposed to current photosynthate and N assimilation. 
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Associated with S:R is the fraction of plant d.wt that is leaf, commonly referred to as the leaf 

weight ratio (LWR). Though LWR is related to S:R, it is probably a more useful parameter than 

S:Rwhen describing changes in plant leaf area. However, few data are available for the effect of 

N03· supply on LWR. On the basis of the data available, LWR appears to increase with 

increased N03" supply in the range which total plant d.wt increases, then either changes little or 

increases further with increased N03" thereafter (Hocking and Meyer, 1991; Andrews et a/., 1992). 

For the five main temperate cereals in the vegetative phase, LWR increased from around 0.3 to 

0.4 with increased N03" supply from 0.5 to 5 mol m"3, the range usually found in agricultural soils 

(Andrews et a/., 1992). In a separate study, LWR of reproductive wheat plants increased from 

around 0.2 to 0.3 with increased N03" concentration from 0.5 to 12 mol m"3 (Hocking and Meyer, 

1991). 

In comparison with N03", fewer studies have been carried out on the effects of ammonium (NH/) 

availability on S:R. There are several reports that as for N03", S:R increases with increased NH/ 

supply but that at a similar total plant d.wt, S:R is greater with NH/ as an N source (Cox and 

Reisenhauer, 1973; Timpo and Neyra, 1983; Bowman and Paul, 1988; Troelstra, Wagenaar and 

Smant 1992; Andrews, 1993). Also, there are reports that for plants of similar d.wt, tissue N 

content can be greater with NH/ than with N03" as an N source (Cox and Reisenhauer, 1973; 

Bowman and Paul, 1988; Raven, Wollenweber and Handley 1992; Troelstra, Wagenaar and 

Smant 1992). Thus it is possible that the relationship between S:R and tissue N content is the 

same regardless of whether N is supplied as N03" or NH/. 

A number of explanations for the N effect on S:R have been proposed (reviewed by Andrews, 

1993). Andrews concluded that none of these proposals fully explained all the data available. 

The overall aim of the experiments conducted in this chapter were to further investigate the 

relationships between N supply, plant reduced-N content and growth and S:R. Firstly, data are 

presented from experiments carried out on barley in Chapter 2 which are used to assess the 

relative importance of growth and tissue N content in determining S:R at the seedling stage. 

Secondly, the effects of form and availability of N on S:R and LWR of vegetative barley are 

examined. Nitrogen was supplied as N03", NH4 + or glutamine. Amino acids such as glutamine 

are found in the interstitial soil solution (Bremner, 1965) and can be taken up and utilized by 

plants (Jones and Darrah, 1993). When N is supplied solely as glutamine, this mimics exclusive 

root assimilation of N (Section 1.4). The primary objective of the study was to determine if the 

relationship between S:R and tissue N content holds regardless of N form supplied. 
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5.2 Materials and Methods 

Data from three experiments are reported in this chapter. For all experiments seed of barley (cv. 

Triumph, mean seed weight - 45 mg) was obtained from the Canterbury Malting Company, 

Christchurch, New Zealand. Seed was not chemically treated and showed 95% germination. 

The first two experiments in this chapter are fully described in Chapter 2 as Experiments 2 and 4. 

Briefly, for both these experiments, seeds were placed at 70 mm depth in 80 mm diameter, 180 

- mm tall pots (20 per pot) filled with a vermiculite/perlite (1:1 v/v) mixture soaked in basal nutrient 

solution (Appendix 2.1) containing the appropriate N treatment. In Experiment 1 seedlings were 

supplied either basal nutrient solution alone, or with 5 mol m-3 N03- as KN03 or 5 mol m-3 NH/ as 

ammonium sulphate ((NH4)2S04) added. In Experiment 2 seedlings were supplied basal nutrient 

solution alone or with 5 mol m-3 N03- as KN03 or 5 mol m-3 chloride (Cn as potassium chloride 

added. For all treatments potassium (K+) was maintained at 8.6 mol m-3 by the addition of 

potassium sulphate (K2S04) where necessary. Pots were flushed with the appropriate nutrient 

solution every 2 d. Both experiments were carried out in the dark at 1 0±1 °c in controlled 

environment chambers. Seedlings were harvested 21 days after sowing (DAS), separated into 

shoot, root and residual seed and dried at 70°C for 72 h for d.wt determination. In Experiment 1 

the N03- and NH/ contents of the seedlings were determined as described by Mackereth, Heron 

and Tailing (1978) and Baethgen and Alley (1989) respectively. Also, seedlings were analysed 

for total N content using a Europa Scientific (U.K.) N analyser. Assimilated N was assumed to be 

the difference between total Nand N03- plus NH/-N. 

For Experiment 3, seeds were germinated on paper towels moistened with distilled water. After 4 

d seedlings with a coleoptile length of approximately 10 mm were transferred to 80 mm diameter, 

180 mm tall pots (one per pot) filled with a vermiculite/perlite (1: 1 v/v) mixture soaked in basal 

nutrient solution (Appendix 2.1) containing the appropriate N treatment. There were nine rates of 

N (0, 0.5, 1, 2, 3, 4, 5, 6 or 10 mol m-3
) supplied as one of three forms: N03- as KN03, NH/ as 

(NH4)2S04' or glutamine. For all treatments, K+ was maintained at 13.6 mol m-3 using K2S04 

where necessary. Pots were flushed every 2 - 3 d with the appropriate nutrient solution. Plants 

were grown under controlled environment conditions with a photoperiod of 14 h, at a light level of 

approximately 400 Ilmol photons m-2 
S-1 and with day/night temperatures of 20/15±2°C. 

Plants were harvested 35 DAS, separated into leaf (lamina), stem (leaf sheaths) and root. Leaf 

area was determined using a Model 3100 leaf area meter (Lambda Instrument Corp., NE, 
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U.S.A.). Plant material was dried at 70°C for 72 h for d.wt determination. The dried material was 

finely ground and analysed for reduced-N using a "Kjeltec Autosampler System 1035 analyser" 

(Tecator; H6ganas, Sweden). 

All experiments were of a randomised complete block design with five replicates. An analysis of 

variance was carried out on all data using the computer package "Statistix" (Analytical Software, 

St.Paul, MN, U.S.A). All effects discussed have a probability of P<0.05 and were obtained in 

repeat experiments. Means stated as significantly different are on the basis of an LSD (P<0.05) 

test. Where regression lines were fitted ("Sigmaplot Scientific Graphing System v. 5.01; Jandel 

Corp., CA, U.S.A), 95% confidence intervals are also plotted. Lines were considered dissimilar 

where confidence intervals did not overlap. 

5.3 Results 

In Experiment 1, addition of 5 mol m"3 N03" but not NH/ caused an increase in root plus shoot 

d.wt and a decrease in residual seed d.wt (Table 5.1). There were no signs of NH/ toxicity in 

seedlings supplied NH/. Nitrogen uptake was slightly greater with N03"-N than with NH4+ as an 

N source. Ammonium-N and N03"-N constituted only a small proportion «1%) of total N in 

seedlings supplied NH/ whereas N03"-N constituted almost 20% of N where N03" was supplied. 

Nitrogen assimilation (calculated as total N minus NH/ and N03"-N) was greater when N was 

supplied as NH/ compared to N03". In Experiment 2, both cr and N03" caused decreases in 

residual seed d.wt and increases in shoot plus root d.wt and S:R, though the magnitude of the 

response was greater with N03". 

In Experiment 3, with increasing external N over the range 0 - 4 mol m"3, total plant d.wt 

increased similarly for all three N forms, from less than 0.1 g to approximately 3 g (Fig. 5.1 a). 

Dry weight increased further with additional N to 10 mol m"3 as N03" or glutamine but with NH/ it 

changed little and finally decreased. Over the range 0 - 4 mol m"3 external N, total plant leaf area 

increased from less than 10 cm2 to approximately 200 cm2 and was similar for all three forms of 

N (Fig. 5.1b). Leaf area increased further with additional N03" or glutamine to 10 mol m"3 but 

changed little with additional NH/. At higher external N concentrations leaf area was greater with 

N03"· 
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With increasing external N concentrations over the range 0 - 10 mol m·3
, S:R increased steadily 

from under 1 to over 2 with N03' and to nearly 3 with NH/ or glutamine supplied (Fig. 5.2a). 

Similarly, LWR increased steadily from about 0.28 to 0.35 for plants supplied N03' and to 

approximately 0.4 with NH/ or glutamine (Fig. 5.2b). For any given external N concentration 

both S:R and LWR were smaller for plants supplied N03', especially at higher external N 

concentrations. 

Whole plant reduced-N content increased from less than 1 % to over 2% with additional N over 

- the range 0.5 - 4 mol m·3
, regardless of N form applied (Fig. 5.2c).With further additions of N as 

N03' to 10 mol m·3 it increased to nearly 3% while with NH/ and glutamine it increased to 

approximately 3.5 and 4% respectively. 

For all three forms of N supplied, S:R and LWR showed linear relationships between and both 

plant d.wt and plant %N (Fig. 5.3). The regression equations of the fitted lines for the three N 

forms in Figs. 5.3a-d are as follows (GLN = glutamine): 

Fig.5.3a N0
3

' - S:R = (d.wt * 0.245) + 0.829 r = 0.948 
NH/ - S:R = (d.wt * 0.570) + 0.720 r = 0.974 
GLN - S:R = (d.wt * 0.475) + 0.835 r2=0.914 

Fig.5.3b N0
3

' - LWR = (d.wt * 0.021) + 0.262 r = 0.963 
NH/ - LWR = (d.wt * 0.051) + 0.246 r2 = 0.906 
GLN - LWR = (d.wt * 0.035) + 0.260 r = 0.883 

Fig.5.3c N0
3

' - S:R = (%N * 0.595) + 0.446 r = 0.989 
NH + - S:R = (%N * 0.574) + 0.722 r = 0.915 4 

GLN - S:R = (%N * 0.773) + 0.420 r = 0.964 

Fig.5.3d N0
3

' - LWR = (%N * 0.049) + 0.233 r = 0.959 
NH/ - LWR = (%N * 0.060) + 0.228 r = 0.988 
GLN - LWR = (%N * 0.060) + 0.226 r = 0.996 

Especially at greater plant d.wts, both S:R and LWR were lower for plants supplied N03' 

compared to NH/ or glutamine (Fig. 5.3a,b). However, if S:R or LWR are plotted against plant 

%N, the differences between N forms become less pronounced (Fig 5.2c,d) and. 

Plotting total plant and leaf reduced-N against total plant d.wt and leaf area respectively shows 

distinct differences between the three forms of N supplied (Fig. 5.4). Regression equations for 

the relationships in Fig. 5.4a,b are presented below (PN = total plant reduced-N; GLN = 

glutamine; LA = leaf area; LN = leaf N): 
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Fig. 5.4a N03- - d. wt = (-3 x 10-4 * PN2
) + (0.068 * PN) + 0.180 

NH/ - d.wt = (-3 x 10-4 * PN2
) + (0.064 * PN) + 0.194 

GLN - d.wt = (-3 x 10-4 * PN2
) + (0.066 * PN) + 0.217 

r = 0.99 
r = 0.99 
r = 0.99 

Fig. 5.4b N03- - d.wt = (-0.061 * LN2
) + (9.345 * LN) - 3.860 

NH/ - d.wt = (-0.066 * LN2
) + (8.206 * LN) + 0.890 

GLN - d.wt = (-0.053 * LN2
) + (7.982 * LN) + 1.587 

r = 0.99 
r = 0.99 
r = 0.99 

With increasing amounts of plant reduced-N up to about 60 mg, total plant d.wt increased 

similarly for all forms of N. However, at higher levels of plant reduced-N, d.wt produced per unit 

- plant reduced-N was greatest where N03- was supplied, intermediate with glutamine and lowest 

with NH/. Leaf area produced per unit leaf N was similar for all forms of N supplied up to about 

30 mg leaf N. However, with higher leaf N levels, leaf area produced was greatest with N03-, 

intermediate with glutamine and lowest with NH/.\ For example, with 60 mg of leaf N, plants 

supplied N03- produced 30% more leaf area than those supplied NH/ (337 vs 256 cm2 

respectively) . 

Table 5.1 

Table 5.2 

Effect of additional ammonium (NH/) or nitrate (N03") on shoot (S), root (R) and 
residual seed (RS) dry weight (d.wt), shoot root d.wt (S:R) and total seedling 
N03-, NH/ and reduced nitrogen (N) content of Hordeum vulgare L. prior to 
emergence from the substrate. The standard error of the mean (SE) is given. 

Treatment S 

basal 8.7 

NH/ 8.4 

N0
3

' 10.3 

SE 0.29 

Dry weight 
(mg) 

I RS I 
14.1 

14.5 

12.5 

0.41 

R S:R 

6.4 1.35 

6.0 1.31 

6.3 1.63 

0.14 0.06 

Nitrogen 
(~g seedling·1

) 

Total I N03'-N I NH/-N 

611 5.1 0.5 

920 4.6 1.4 

977 186.9 0.7 

15 10.2 0.5 

Effect of additional chloride (Cr) or nitrate (N03-) on shoot (S), root (R) and 
residual seed (RS) dry weight (d.wt), shootroot d.wt (S:R) of Hordeum vulgare 
L. prior to emergence from the substrate. The standard error of the mean (SE) 
is given. 

Dry weight(mg) S:R 

S I RS I R S 

basal 11.1 12.8 5.8 1.91 

N0
3

' 13.5 9.7 5.2 2.59 

cr 12.5 10.5 5.7 2.19 

SE 0.41 0.51 0.35 0.05 
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d.wt (LWR) (8) and plant %N (C) of Hordeum vulgare L. cv. Triumph. Error bars 
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The relationships between total plant reduced-N and plant dry weight (A) and total 
leaf N and plant leaf area (8) of Hordeum vulgare L. cv. Triumph supplied different 

concentrations of nitrate (_), ammonium (~) or glutamine ( ... ). Regression 
equations reported in Section 5.3; 95% confidence intervals shown. 
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5.4 Discussion 

For many plant species grown under a wide range of environmental conditions, S:R has been 

found to increase with increasing external N03- over part of the range 0.1 to 20 mol m-3
. Also 

associated with increasing N03- supply is greater plant d.wt. It has been" argued that the change 

in S:R with additional N03- is an adaptive mechanism which maintains balanced activity between 

the root (site of N uptake) and shoot (site of photosynthesis) such that plant growth is increased 

or maximised (Troughton, 1956;1960; Brower, 1962; Davidson, 1969; Hilbert, 1990; Gleeson, 

- 1993). Together with the increase in S:R with increasing external N03- is greater plant or shoot N 

content and there is frequently a near linear relationship between plant reduced-N content and 

S:R (Andrews, 1993). This association between S:R and plant reduced-N content has been used 

as the basis for various proposals which attempt to explain the controlling mechanism for the N 

effects on S:R (reviewed by Andrews, 1993). However, Andrews argued that none of the 

hypotheses fully explain all the data available and he put forward an alternative hypothesis. 

Andrews (1993) proposed that the N effect on S:R can be explained by the effect of increased N 

assimilation and protein synthesis on photosynthesis, and hence growth, and by competition 

between the N assimilation/protein synthesis processes and growth for energy/carbon (C) derived 

from photosynthesis. Andrews argued that increased N assimilation/protein synthesis results in 

an increased proportion of energy from photosynthesis being utilised in processing N at the 

expense of growth, and that this is reflected in a higher tissue reduced-N content. Over part of 

the external N concentration range 0.1 to 20 mol m-3
, the effect of increased N 

assimilation/protein synthesis on photosynthesis is so great that there is a net increase in 

photosynthate available for growth. This was found to be so in Experiment 3 where total plant 

d.wt incre1:l.sed with applied N03-, NH/ or glutamine concentration over the range 0 - 6 mol m-3 

(Fig. 5.1 a). Shoot to root d.wt ratio also increased over this range of external N concentrations 

(Fig. 5.2a) and Andrews (1993) proposed that this was a due to the proximity of the shoot to the 

C source and increased N availability for growth. 

In Experiment 3, at external N concentrations over the range 6 - 10 mol m-3
, d.wt changed little 

(Fig. 5.1 a) but S:R continued to increase (Fig. 5.2a). Andrews (1993) suggested that when N 

assimilation/protein synthesis increases to a point where photosynthate available for dry matter 

production decreases, S:R will still increase as the shoot will realise a greater proportion of its 

growth potential due to its proximity to the source of C and the availability of reduced N for 

growth. 
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In the present study, as has been found in previous studies, there was a linear relationship 

between plant d.wt and S:R or LWR within each N form. However, at a similar total plant d.wt, 

S:R or LWR tended to be greater with NH4+ or glutamine compared to N03·, especially at high 

external N concentrations (Fig. 5.3a,b). Also at high external N concentrations, for plants of 

similar d.wt, tissue reduced-N content was greater with NH/ or glutamine. Hence, if S:R and 

LWR are plotted against plant reduced-N content, then there are no significant differences 

between the three forms of N (Figs. 5.3c,d). Therefore, it is proposed that the relationships 

between S:R and tissue reduced-N content are similar regardless of N form supplied or site of N 

- assimilation. It is possible that if the relationship between S:R and plant reduced-N is expressed 

on a plant protein rather than reduced-N basis that the regression lines for the different N forms 

match even better than those in Fig. 5.3c,d. 

The proposal of Andrews (1993) can also be used to explain the greater S:R of plants supplied 

NH/ or glutamine compared to N03·• Especially at higher external N concentrations, plants 

supplied NH/ and glutamine had greater plant reduced-N content. If the demands for energy/C 

for N assimilation and protein synthesis are greater for these plants, an increased proportion of 

energy from photosynthesis will be utilised in processing N, compared to when N03- is supplied. 

Hence, based on the proximity premise, with the shoot being closer to the source of C, S:R be 

greater with NH4+ and glutamine. 

For several herbaceous species, S:R has been reported to increase with increased growth or 

development, independent of N supply (Foth, 1962; Rufty, Raper and Huber, 1984; Caloin, 1987; 

Andrews, Scott and MCKenzie, 1991; Larsson et al., 1991). It is therefore possible that part of the 

effect of N on S:R may be an ontogenetic one, though the extent and relative importance of this 

has yet to be determined. However, as plant development is usually associated with increasing 

d.wt, it may be difficult to separate the effects of growth associated with the effects of additional 

N and those associated with development. Increases in S:R independent of N supplied were also 

found in this chapter for barley seedlings prior to emergence. In Experiment 1, uptake of N was 

similar with either N03- or NH/ while N assimilation was greater with NH/. However, only 

seedlings supplied N03- had greater S:R and d.wt, the latter associated with an increase in 

reserve mobilization. The association between S:R and growth or d.wt, rather than N 

assimilation, is supported by data from Experiment 2 where, compared to seedlings supplied only 

basal nutrient solution, those supplied either N03- or cr showed enhanced reserve mobilisation, 

greater growth and increased S:R. [Ii is proposed that at least for seedlings prior to emergence, 

increased S:R with additional N as N03- is not related to N supply or assimilation but rather to 
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greater growth. In Chapter 2 it was suggested that the N03· effect on the growth of seedlings 

prior to ~mergence is probably an osmotic effect, rather than an increase in the products of N 

assimilation, with greater water uptake increasing the rate of seed reserve mobilization. 

There are reports in the literature that dry matter production per unit N is greater with N03-

compared to NH/ as an N source (Cox and Reisenhauer, 1973; Bowman and Paul, 1988; 

Troelstra, Wagenaar and Smant 1992). This was found to be the case in Experiment 3, where 

for a given amount of plant reduced-N, total plant d.wt was greater with N03- compared to NH/ or 

- glutamine (Fig 5.4a). Especially at higher levels of external N (6 to 10 mol m-3
), d.wt did not 

increase appreciably (Fig. 5.1 a), though plant reduced-N content continued to increase (Fig. 5.2c) 

and hence the amount of d.wt produced per unit plant reduced-N decreased (Fig. 5.4a). 

Theoretically, N use 'efficiency' should be greater with NH/ compared to when N03- is supplied 

because of the reduction of N03- to NH/ requires energy to generate reductants and produce and 

maintain the nitrate and nitrite reductase and enzyme systems. However, this is often not the 

case (Raven, 1985). Andrews (1993) argued that because at a given plant d.wt both S:R and 

plant reduced-N content were greater with NH/ and glutamine compared to N03-, the energy 

demands associated with extra protein synthesis from amino acids is greater than that associated 

with the production of amino acids from inorganic N. As plants supplied NH4 + or glutamine had 

higher reduced-N contents, a greater fraction of the total energy derived from photosynthesis is 

used for assimilating N and hence N use efficiency would be greater with N03-. A similar 

reasoning could be used to explain the greater leaf area per unit leaf N when N was supplied as 

N03- compared to NH/ or glutamine (Fig. 5.4b). This effect does not appear to have been 

reported before, though not totally unexpected. As there was a close relationship between S:R 

and LWR, a decrease in N use 'efficiency' with NH4+ or glutamine in terms of dry matter 

production should be reflected in a corresponding decrease in the amounts of leaf area produced 

per unit leaf N. 

5.5 Conclusions 

Data presented in this chapter have shown that over the range of external N concentrations from 

o to 10 mol m-3
, there was a near-linear relationship between plant d.wt and S:R, regardless of 

whether N was supplied as N03-, NH/ or glutamine, though for a given d.wt, S:R tended to be 

lower with N03-. Hence, for a given amount of plant reduced-N content, S:R was similar for all N 

forms and it was concluded that the linear relationship between S:R and plant reduced-N content 
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holds regardless of the N form supplied. The data presented appear to support the hypothesis of 

Andrews (1993) which explains the effects of N on the S:R as competition for photosynthetically 

derived energy or C between N assimilation/protein synthesis and growth. It was also shown that 

leaf area produced per unit leaf N was greater where N was supplied as N03" rather than NH/ or 

glutamine and this was related to the decrease in the 'efficiency' of dry matter production with 

these forms of N. 
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6.1 Introduction. 

The monetary return from a cereal crop depends primarily on the quantity of grain produced 

(yield), though often the quality of the grain also has a large influence on final crop value. Cereal 

grains are composed mainly of carbohydrates (Kent, 1983), which are produced through the 

photosynthetic activity of the crop. The process of photosynthesis depends on the interception of 

photosynthetically active radiation (PAR) and involves the conversion of this energy into 

carbohydrates via a series of reactions (Section 1.4). During most stages of cereal crop 

- development PAR is intercepted primarily by the leaves, which collectively make up the canopy. 

The extent of a crop canopy is usually expressed as the leaf area index (LAI - leaf area per unit 

ground area; Hay and Walker, 1989). 

Grain yield is related to the net amount of photosynthate or dry matter (DM) produced during crop 

development, and the proportion of this DM that is partitioned to the grains relative to non­

harvested parts of the crop (Evans, Wardlaw and Fischer, 1975). Using a variety of crop species, 

previous studies have established the general relationships between canopy development, light 

interception, crop DM production and harvestable yield (Biscoe and Gallagher, 1977; Monteith, 

1977). These relationships can be expressed as follows: 

yield = Q * / * * H 

(Equation 6.1) 

(Hay and Walker, 1989) 

Parameter Q is the quantity of incident PAR per unit land area during the time of crop 

development, / is the fraction of Q that is intercepted by the crop and E is the coefficient by which 

intercepted PAR is converted to DM. The product of Q, /, and E is the quantity of DM produced 

by the crop and is a reflection of the magnitude of net crop photosynthesis. In field studies 

usually only above ground crop DM production is measured, as complete root recovery is often 

difficult. Parameter H (sometimes referred to as the harvest index - HI) is the proportion of this 

above ground DM that is partitioned to the grain. 

In most cropping situations, where soil moisture is adequate, low nitrogen (N) availability is the 

soil factor limiting the yield of cereals and it is common practice to use fertilizer N to increase 
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grain production (Wibberley, 1989). Increased grain yield as a result of the addition of fertilizer N 

must be due to changes in one or more of the parameters in Equation 6.1. Parameter Q 

depends primarily on environmental factors such as latitude, daylength, time of year and weather 

conditions and is not affected by the application of N. The coefficient of conversion (£) is largely 

determined by the difference between crop photosynthesis and respiration and is also not 

generally affected by additional N (van Keulen and Stol, 1991). However, this may not always be 

the case (Chapter 5). The influence of N availability on HI is poorly understood. For single 

plants HI depends the partitioning of assimilate between the plant and the developing grains and 

- is influenced by the relative strengths of the sinks 'competing' for available carbohydrates (Hay 

and Walker, 1989). For cereal crops the effects of N supply on the partitioning of OM to the 

grains do not appear to be consistent with reports of HI increasing, decreasing or not changing 

with additional N (Evans, Wardlaw and Fischer, 1975; Hay and Walker, 1989). 

Available data indicate that for most crop species, under normal growing conditions, greater OM 

production with additional N is due primarily to increases in I as a result of greater canopy 

development (see Hay and Walker, 1989). Numerous studies have shown an increase in LAI 

with additional N at various stages of crop development. For example, additional N (50 - 100 kg 

ha·1 at sowing) more than doubled the LAI of spring sown Triticum aestivum L. (wheat) prior to 

anthesis (Power and Alessi, 1978; Morgan, 1988). If LAI is not already optimum for PAR 

interception, an increase in the extent of the canopy increases the fraction of available PAR 

intercepted, usually resulting in a greater production of OM. Also, as well as increasing the 

extent of the canopy, additional N can increase the time that leave's remain photosynthetically 

active, further increasing I. The importance of I and canopy development in determining crop OM 

is illustrated by the fact that notwithstanding severe stresses, for a given species, over many 

seasons and sites, there is a linear relationship between the amount of PAR intercepted and DM 

production (Biscoe and Gallagher, 1977; Monteith, 1977). 

Though yield is usually the main determinant of the monetary return from a crop, grain quality can 

also be important. For both wheat and Hordeum vulgare L. (barley), a common parameter of 

grain quality is the %N of the grain. High %N is desirable for wheat because it increases the 

flour baking quality while for barley, low grain %N leads to better malting and brewing 

characteristics (Kent, 1983). Numerous experiments have shown that grain %N is influenced by 

N availability. However, the magnitude and direction of the response depends on factors like 

species, cultivar, soil N status, amount of N applied, and time of application (Martin et al., 1989). 

In general, increased rates of fertilizer N, especially if applied at or near anthesis, will increase 
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the grain %N. However, if soil N levels are low and N is applied early, increased tillering will· 

result in more grains per plant and the N may be diluted. 

The value of the parameters that determine grain yield (Equation 6.1) depend on factors like 

species, cultivar and environment. Species may have different leaf growth rates (Chapter 3) or 

morphologies which may affect canopy development. Nitrogen availability is an environmental 

factor that is relatively easy to manipulate and through its effects on canopy development, can 

have a large influence on crop DM and grain production. No reports were found in which the five 

- main temperate cereals were grown in the same experiment and crop growth varied through the 

application of fertilizer N. The primary aim of the experiment described in this chapter was to 

determine and compare the influence of N availability on the canopy development and grain yield 

of the main temperate cereals. In addition, as no reports were found where grain %N of the 

temperate cereals was determined from crops growing in the same experiment, the influence of N 

supply and time of application was also determined. 

6.2 Materials and Methods. 

The experiment was carried out during the spring/summer of 1991-1992 at the Henley Block of 

the Lincoln University Research Farm, Canterbury New Zealand. For the previous 3 years the 

experimental site was in ryegrass grown for seed. Over the duration of the experiment both the 

daily mean temperature and total rainfall were less than the long term mean but incident solar 

radiation receipts were slightly above average (Appendix 6.1). Irrigation (80 mm) was only 

applied to aid incorporation of fertilizer applied at anthesis. The soil type used was a Templeton 

silt loam, a typical Canterbury cropping soil. Soil samples to 30 cm depth were collected 

immediately after cultivation but before application of fertilizer N. Samples were divided in two 

subsamples of known weights; one was dried to determine soil moisture content and total N while 

the other was used to determine interstitial soil solution nitrate (N03") and ammonium (NH/) 

contents. Total N was determined on finely ground dried soil samples using a modified Kjeldahl 

digestion and a "Kjeltec Autosampler System 1035 analyser" (Tecator; H6ganas, Sweden). 

Nitrate and NH4 + were determined using 2 M potassium chloride as an extractant and the 

methods described in Chapter 2 were followed. Final N03" and NH/ concentrations were 

expressed by using the calculated soil moisture content of the other subsample. 
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The experiment was sown on September 24th 1991 into a conventionally cultivated weed free 

seed bed using an O~ord precision cone seeder. Row spacing was 15 cm. The experiment was 

a split-split plot design with species as the main plots, applied N rate as the subplots and time of 

N application as the sub-sub plots. Sub-plots were 8 m long by 2.1 m wide and there were 4 

replicates. Five species were used: wheat (cv. Otane; mean seed weight, 54 mg), oats (Avena 

sativa L. cv. Amuri, 29 mg) and triticale (X Triticosecale Wittmack cv. Aranui, 46 mg) seed was 

obtained from Hodder and Tolley Ltd. Christchurch, New Zealand; while rye (Secale cereale L. cv. 

Rapaki, 27 mg) and barley (cv. Triumph, 42 mg) seed was obtained from the New Zealand 

- Institute for Crop and Food Research Ltd., Lincoln, New Zealand and the Canterbury Malting 

Company, Christchurch, New Zealand respectively. Seeds were not chemically treated. Sowing 

rates were adjusted for seed size and germination percentage to achieve plant populations of 

approximately 350 plants m-2
• Nitrogen was supplied as urea at three rates: 0, 100 and 200 kg 

ha-1
, and applied at either sowing or near anthesis, approximately 85 days after sowing (OAS). 

Weed control was achieved through two applications of "Salvo" (4 litres ha-1)(Shell Chemicals; 

active ingredients, all as dimethyl salts: MCPA - 107 g 1"1, mecoprop - 210 g 1"1, dichlorprop - 233 

g 1-1, dicamba - 17 g 1"1) at 40 and 60 OAS while fungal pathogens were controlled by spraying 

"Tilt" (0.5 litres ha-1)(CIBA-GEIGY; active ingredient: propiconazole - 250 g 1"1) at 70 OAS. 

The extent of the canopy was measured only on plots where N was applied at sowing. Crop 

canopy LAI measurements were made 42,50,57,67,76 and 90 OAS using aLI-COR 2000 

canopy analyser (LI-COR, Lincoln, NE, U.S.A). The last measurement was made so to be as 

near as possible to anthesis for all species. The means of four LAI measurements per plot were 

used and analysed using the Maximum Likelihood Program as in Section 3.2. The curve 

parameters obtained were used to derive equations describing the response of LAI to additional 

N with time. The curve parameters were also used to obtain values of maximum and weighted 

mean average canopy growth rate (MCGR and WMACGR respectively - both in LAI d-1
) and 

duration of canopy growth (OUR - days)(Section 3.2). The LI-COR 2000 analyser also measured 

the "diffuse non-interception" (ON I) of the canopy. The value of (1 - ONI) or diffuse interception is 

an indicator of the amount of light absorbed by the crop and depends on both the extent and 

architecture of the canopy. The mean value of diffuse interception for each species and level of 

N addition at each measuring date was integrated with the daily PAR receipts between 

measurement dates (Appendix 6.1) using the locally developed program "PAR" (Lincoln 

University) to obtain the total amount of PAR intercepted up to anthesis. 
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For plots supplied N at sowing, final harvesting was carried out from 130 - 145 DAS, depending 

on the grain maturity of the different species. In each plot all above ground plant material was 

cut from a randomly placed 1 m2 quadrat using hand shears. The material was air dried and 

mass of total DM determined. The stalks and grain were separated and total quadrat grain 

weight determined. A sample of the grain was retained and reduced N determined using a 

modified Kjeldahl digestion and a "Kjeltec Autosampler System 1035 analyser" (Tecator; 

H6ganas, Sweden). Grain samples were also taken from plots where N was applied near 

anthesis and these were also analysed for grain %N. In addition, for wheat and barley only, a 

- representative sample of approximately 10% by weight of the DM cut from the 1 m2 quadrat was 

taken for yield components analyses. Total number of tillers and ears were counted and 25 

randomly selected ears were retained to determine mean number of grains per ear and mean 

grain weight. 

All data were analysed using the "Statistix" (Analytical Software, St.Paul, MN, U.S.A) statistical 

package. All means discussed are different at P<0.05 and were obtained in a repeat experiment 

sown approximately 2 weeks after the one reported here. In Section 6.3 the analysis standard 

error of the mean (SE) is presented, while for grain %N values, where species and time of N 

application comparisons can be made, the least significant differences (LSD) for the split-split plot 

design have been calculated. 
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6.3 Results. 

For all species, the rate of canopy development increased with the addition of 100 kg N ha-1 at 

sowing (Table 6_1). Both the derived parameters MCGR and WMACGR increased between 20 

and nearly 90%, depending on species. In general, additional N to 200 kg ha-1 did not result in 

further increases in rate of canopy development. Maximum canopy growth rate and WMAGR 

were greatest for barley, rye and oats, intermediate for triticale and smallest for wheat. 

Differences in duration of canopy growth with added N were not detected. For most species the 

- development of LAI over time showed a sigmoidal response and predicted LAI values matched 

those actually obtained (Fig. 6.1). For all species additional N increased LAI at anthesis (Table 

6.1). The magnitude of the response varied from between 22 to 40% and there were significant 

differences between species in the final LAI attained with oats> barley = rye > triticale> wheat. 

The relationships between LAI and diffuse interception (DI) are plotted in Fig. 6.2. Regression 

equations for the species are: 

wheat: 
barley: 
rye: 
triticale: 
oats: 

DI = 0.3038 + (0.3044 * LAI) - (0.03633 * LAI2
), r = 97.7%; 

DI = 0.4657 + (0.1876 * LAI) - (0.01684 * LAf), r = 97.5%; 
DI = 0.4880 + (0.1784 * LAI) - (0.01602 * LAf), r = 98.6%; 
DI = 0.3738 + (0.2441 * LAI) - (0.02508 * LAf), r = 98.3%; 
DI = 0.5635 + (0.1418 * LAI) - (0.01153 * LAf), r = 98.1 %. 

Regression lines of all five species shown together in Fig. 6.2f (data points obtained from repeat 

experiment are also included). For all species except wheat, with increasing LAI diffuse 

interception increased to over 95% and then changed little with further increases in LAI. Wheat 

did not intercept >95% of the available PAR. The regression curves of diffuse interception versus 

LAI for all species are plotted together in Fig. 6.2f and show a similar overall pattern. However, 

at low leaf area indices (eg. LAI=1) wheat and triticale intercepted less than 60% of the available 

PAR compared to around 65% for the other species (Table 6.2a). The LAI at which 95% of the 

available PAR was intercepted (frequently termed critical LAI - LAlcrit) was similar for all species 

except wheat (Table 6.2a). For plots of wheat, rye and triticale with no N added LAlcrit was not 

achieved while for barley and oats the addition of N substantially decreased the time taken to 

reach LAlcrit (Table 6.2b). Increases in the extent of the canopy and time in which LAlcrit was 

reached with additional N resulted in a greater amount of PAR being intercepted up to anthesis 

for all species (Table 6.2b). The increase with additional N was around 5% for all species. 
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Table 6.1 The effects of 0, 100 or 200 kg ha-1 N applied at sowing on the derived parameters 
of canopy development: maximum canopy growth rate (MCGR), weighted mean 
average canopy growth rate (WMACGR) and duration of growth (DUR) and actual 
canopy leaf area index at anthesis (FINLAI) of spring sown Triticum aestivum L. 
(wheat), Hordeum vulgareL. (barley), Secale cereale L. (rye), X Triticosecale 
WiUmack (triticale) and Avena sativa L. (oats). Standard error of the mean (SE) is 
given. 

Species Applied N MCGR WMACGR OUR FINLAI 
(kg ha-l ) (LAI dol) (LAI dOl) (d) 

Wheat 0 0_055 0_037 65 3.2 

100 0.059 0.040 66 3.8 

200 0_066 0.046 67 4_0 

Barley 0 0_116 0.077 52 4.4 

100 0.180 0.121 53 5.5 

200 0.182 0_128 53 6_0 

Rye 0 0.114 0_071 53 4.1 

100 0_177 0.107 55 4.7 

200 0.187 0_113 56 5.4 

Triticale 0 0_098 0.067 49 3.0 

100 0_124 0_078 55 4.1 

200 0.143 0_091 56 4_2 

Oats 0 0_134 0_094 57 5.3 

100 0_166 0.112 55 6_2 

200 0_174 0.118 59 6_7 

SE 0.006 0_005 3_5 0_2 
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Fig. 6.1 The effects of 0 (_), 1 00 (~) or 200 (,t.) kg N ha"1 applied at sowing on the predicted (lines) and 
actual (symbols) canopy leaf area index (LAI) over the development of spring sown Triticum 
aestivum L. (A), Hordeum vulgare L. (8), Secale cereale L. (C), X Triticosecale Wittmack (D) 
and Avena sativa L. (E). 
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Table 6.2a Fraction of full sunlight intercepted (diffuse interception) at leaf area index (LAI)~1 
and the value of the critical LAI (interception of 95% PAR) of spring sown Triticum 
aestivum L. (wheat), Hordeum vulgare L. (barley), Secale cereale L. (rye), X 
Triticosecale Wittmack (triticale) and Avena sativa L. (oats). 

Species Diffuse interception 1 

wheat 0.571 

barley 0.636 

rye 0.650 

triticale 0.593 

oats 0.686 

Notes: 
1 _ values obtained from regression equations in Fig. 6.2 
2 _ N.R. - not reached 

Critical LAI2 

N.R. 

4.06 

4.09 

4.09 

4.07 

Table 6.2b Effects of 0, 100 or 200 kg ha-1 N applied at sowing on the time taken to reach 
critical leaf area index (LAI) (95% interception of full sunlight) and on the amount of 
photosynthetically active radiation (PAR) intercepted from sowing up to anthesis by 
spring sown Triticum aestivum L. cv. Otane (wheat), Hordeum vulgare L. cv. 
Triumph (barley), Secale cereale L. cv. Rapaki (rye), X Triticosecale Wittmack cv. 
Aranui (triticale) and Avena sativa L. cv. Amuri (oats). 

Species Applied N Days after sowing PAR intercepted 
(kg ha-1) to attain critical LAI1 (MJ m-2

) 

Wheat 0 N.R. 447.5 

100 81 476.8 

200 76 478.5 

Barley 0 76 488.2 

100 59 511.0 

200 59 511.7 

Rye 0 N.R. 498.5 

100 64 520.1 

200 59 525.2 

Triticale 0 N.R. 471.2 

100 85 484.1 

200 82 496.0 

Oats 0 63 502.1 

100 52 537.9 

200 52 542.4 

Note: 
1 _ wheat did not intercept 95% of PAR - time values are based on interception of 90% PAR. 
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Fig. 6.2 The relationships between leaf area index and the fraction of full sunlight intercepted (diffuse 
interception) of spring sown Triticum aestivum L. (A), Hordeum vulgare L. (8), Secale cereale L. 
(C), X Triticosecale Wittmack (D) and Avena sativa L. (E). All species are plotted together in 
(F). Data points are derived from measurements taken at regular intervals from 42 to 90 days 
after sowing on plots supplied 0, 100 or 200 kg N ha". Regression equations are reported in 
Section 6.3. Confidence intervals (95%) shown. 
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Table 6.3 Effects of 0, 100 or 200 kg ha-1 N applied at sowing on total dry matter production, 
grain yield and harvest index of spring sown Triticum aestivum L. (wheat), Hordeum 
vulgare L. (barley), Secale cereale L. (rye), X Triticosecale Wittmack (triticale) and 
Avena sativa L. (oats). Table of least significant differences (LSDo.os) reported at the 
bottom of the main table. 

Species Applied N Total dry matter Grain yield Harvest Index 
(kg ha-1

) (g m-2) (g m-2
) (%) 

Wheat 0 1283 580 45.2 

100 1466 655 44.7 

200 1475 664 45.0 

Barley 0 1525 670 43.9 

100 1695 767 45.3 

200 1759 786 44.7 

Rye 0 1606 404 25.2 

100 1720 464 27.3 

200 1769 483 27.3 

Triticale 0 1526 640 41.9 

100 1753 720 41.0 

200 1773 730 41.1 

Oats 0 1524 533 35.0 

100 1665 604 36.2 

200 1690 614 36.3 

LSD 

Means to compare Total Dry matter Yield Harvest Index 

a) species at same or different N rate 122.6 54.8 2.62 

b) N rate for same species 104.5 52.7 2.51 



Table 6.4 Effect of 0, 100 or 200 kg ha-1 N applied at sowing on the coefficient of conversion of 
spring sown Triticum aestivum L. (wheat), Hordeum vulgare L. (barley), Secale 
cereale L. (rye), X Triticosecale Wittmack (triticale) and Avena sativa L. (oats)_ 

Species Applied N Coefficient of conversion 
(kg ha-1

) (g OM MJ-1 PAR intercepted)l 

Wheat 0 2.86 

100 3.07 

200 3.08 

Barley 0 3.12 

100 3.31 

200 3.43 

Rye 0 3.22 

100 3.31 

200 3.36 

Triticale 0 3.23 

100 3.62 

200 3.57 

Oats 0 3.03 

100 3.09 

200 3.11 

1 calculated as final OM produced divided by PAR intercepted up to anthesis. 
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Fig. 6.3 The relationship between final crop dry matter (DM) and grain yield (GY) of spring sown 
Triticum aestivum L. (0), Hordeum vulgare L. (_), Secale cereale L. (il), X Triticosecale 
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Table 6.5 Effects of 0, 100 or 200 kg ha·1 N applied at sowing on tiller number, head number, 

grains per head and individual grain weight of spring sown Triticum aestivum L. 

(wheat) and Hordeum vulgare L. (barley). 

Parameter Applied N Wheat Barley 
(kg ha-1

) 

Tiller number 0 464 867 
(m-2) 

100 523 1128 

200 532 1099 

s.e.m 12.8 19.4 

Head number 0 427 821 
(m-2) 

100 493 1028 

200 483 1049 

s.e.m 12.1 13.8 

Grains per 0 35.1 25.0 
head 

100 37.5 27.5 

200 38.6 27.2 

s.e.m 0.74 0.41 

Individual 0 53.4 51.0 
grain weight 

100 51.9 46.1 (mg) 

200 51.7 44.7 

s.e.m 1.09 1.40 
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Table 6.6 Effect of additional N applied at either sowing or anthesis on the grain nitrogen 
content (%N) of spring sown Triticum aestivum L. (wheat), Hordeum vulgare L. 
(barley), Secale cereale L. (rye), X Triticosecale Wittmack (triticale) and Avena sativa 
L. (oats). Table of least significant differences (LSDo.05) reported at the bottom of the 
main table. 

Grain %N 

Time of N application 

Sowing 1 Anthesis 

Wheat 0 2.060 

100 2.334 2.374 

200 2.385 2.410 

Barley 0 1.529 

100 1.931 2.006 

200 2.213 2.337 

Rye 0 2.015 

100 2.220 2.570 

200 2.322 2.526 

Triticale 0 1.999 

100 2.213 2.346 

200 2.287 2.332 

Oats 0 2.072 

100 2.959 3.101 

200 2.831 3.226 

Means to compare LSD 

a) species at same or different N rate and time of application 0.1966 

b) N rate for same species and same or different time of application 0.1956 

a) time of application for same species and N rate 0.1851 
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For all species, 100 kg N ha-1 supplied at sowing increased both final OM and grain yield (Table 

6_3)_ Addition of 200 kg N .ha-1 did not result in further increases. Additional N increased OM 

from 10% for wheat to nE~arly 30% for rye. Grain yield increased from 10% (wheat) to 30% 

(barley) with additional N applied at sowing. For all species, N did not affect HI. However, rye 

and oats ~ad lower harvest indices compared to the other species. The differences in HI 

between the species are illustrated in Fig. 6.3. Three distinct groupings are evident - one 

containing wheat, triticale and barley and the others containing oats and rye separately. These 

groupings correspond to harvest indices of approximately 45, 35 and 25% respectively. The 

- regression equations for the three groupings are as follows (GY - grain yield (g m-2); OM - dry 

matter (g m-2)): 

wheat, barley and triticale: GY = 81.56 + (0.382 * OM), r = 94.5%; 
rye: GY = -345.30 + (0.470 * OM), r2 = 98.3%; 
oats: GY = -216.84 + (0.492 * OM), r = 98.9%. 

For all species, the coefficient of conversion increased with additional N, with the magnitude of 

the increases ranging from 3% (oats) to 12% (triticale) (Table 6.4). For most species, the main 

part of the increase occurred with additional N to 100 kg ha-1 and little further increase with 200 

kg ha-1 N. Taking the average of the values for the three N treatments for each species indicates 

that wheat and oats had lower coefficients (",,3 g OM MJ-1 PAR) than barley and rye (",,3.3 g OM 

MJ-1 PAR), with triticale having the highest (3.5 g OM MJ-1 PAR). 

For both wheat and barley, N applied at sowing increased tiller number 14 and 26% respectively 

and head number 13 and 27% respectively (Table 6.5). Nitrogen did not affect the percentage of 

tillers producing heads. For wheat, additional N increased the number of grains per head by 10% 

but individual grain weight decreased 3%. For barley, additional N increased grains per head 9% 

but decreased grain weight 12%. 

For all species, N applied at either sowing or anthesis increased grain %N (Table 6.6)_ For rye 

and oats, N applied at anthesis resulted in a greater grain %N than N applied at sowing. In 

contrast, for wheat, barley and triticale the increase in grain %N was similar whether N was 

applied at sowing or anthesis. Increases in grain %N with additional N ranged from 10% 

(triticale) to over 50% (barley and oats). 



-104-

6.4 Discussion 

Additional N applied at sowing increased the grain yield of all species examined (Table 6.3). As 

expressed in Equation 6.1, yield is determined by final crop DM (the product of Q, I and £) and 

HI. Harvest index was not affected by N supply (Table 6.3), and thus for all species greater yield 

with additional N must have been due to increases in either lor E. The fraction of available PAR 

intercepted (~ depends primarily on the extent of the canopy over the course of crop 

development. Addition of N increased canopy growth rates (Table 6.1), resulting in greater leaf 

- area indices at all measuring dates up to anthesis (Fig. 6.1). Notwithstanding possible changes 

in plant population, the positive effects of N availability on LAI must have been a result of 

differences in the leaf area of individual plants. Plant characteristics that affect LAI and which 

have been shown to be influenced by N availability, include average individual leaf area and the 

number of leaves per plant. In Chapter 3 it was shown that under controlled environment 

conditions, the major part of the individual leaf area response to additional NOa· was over the 

range 0 - 2.5 mol m"a and there was only small increases with higher concentrations of NOa". The 

concentrations of NOa" in the interstitial soil solution of unfertilized but cultivated soils are usually 

in the range 1 - 5 mol m"a (Russell, 1973; Haynes et a/., 1986; this chapter), hence it is unlikely 

that addition of fertilizer N would markedly increase individual leaf areas. In contrast, whole plant 

leaf area, which is largely determined by the number of leaves per plant and is therefore a 

function of tiller number (Section 1.2), usually increases over a wide range of external N 

concentrations (Chapter 5). Previous studies have established that under field conditions 

additional N usually increases tiller (and hence leaf) number (eg. Aspinall, 1961; Pearman, 

Thomas and Thorne, 1975). Therefore it is likely that the major part of the response of LAI to 

additional N in the present experiment was also due to increased tiller number. Observations 

indicated that over the course of crop development, plants supplied additional N had a greater 

number of tillers. This was confirmed for wheat and barley, where additional N increased tiller 

number at final harvest (Table 6.5). 

There were major differences between species in the rate and extent of canopy formation. The 

greater rates of canopy development and LAI at anthesis of barley, rye and oats compared to 

wheat and triticale (Tables 6.1) were likely a result of differences in the leaf area of individual 

plants. Observations indicated that wheat and triticale had a smaller number of tillers per plant 

than the other species. Also, at early stages of crop development these two species intercepted 

a smaller fraction of the available PAR at a given LAI (Table 6.2a). This was possibly a result of 

differences in canopy architecture and/or the surface characteristics, thickness, orientation, angle 



-105-

and size of. individual leaves. Interception of a lower fraction of available PAR may have led to 

decreased crop photosynthesis, contributing to the lower rates of canopy expansion of wheat and 

triticale (Table 6.1). 

A major aspect of canopy growth is whether canopy closure (LAlcrlt) is attained and if so, the time 

taken to reach this stage of development. For wheat, triticale and rye, LAlcrit was not reached 

when no N was applied and for all species additional N decreased the time taken to reach 

canopy closure (Table 6.2b). Faster canopy closure increases the duration of maximum available 

- PAR interception, resulting in a greater total amount of PAR being intercepted (Table 6.2b). With 

the exception of wheat, LAlcrit was similar for all species (Table 6.2a). Also, over a wide range of 

leaf area indices, the relationship between LAI and diffuse interception were comparable for all 

species (Fig. 6.2f), indicating that despite contrasts in the final LAI achieved, factors which 

influence diffuse interception and development of LAlcrit' were similar for all species. 

From Equation 6.1, the extent to which intercepted PAR is converted to OM depends on the value 

of E, the coefficient of conversion. Differences between the rates of photosynthesis and 

respiration per unit leaf area largely determine the value of E. Under field conditions E is difficult 

to determine directly and it is generally considered to be little affected by additional N (Hay and 

Walker, 1989; van Keulen and Stol, 1991). However, in the present experiment, calculating the 

coefficients from the means of total OM accumulated (Table 6.3) and PAR intercepted up to 

anthesis (Table 6.2b) indicates that for all species E increased with additional N (Table 6.4). 

These values of £ are slightly higher than the commonly accepted value of approximately 2.8 g 

OM MJ·1 PAR (Monteith, 1977; Gallagher and Biscoe, 1978). This was probably due to 

interception of PAR only being assessed up to anthesis while OM was determined at final 

harvest. A SUbstantial amount of PAR is intercepted after anthesis and the photosynthate 

produced is used for OM production (Evans, Wardlaw and Fischer, 1975). Well fertilized 

canopies usually have a longer green area duration than where no N is applied and hence 

produce more OM over the growing season (Hay and Walker, 1989). In the present experiment, 

had post-anthesis PAR interception been measured, it is likely that the increases in total OM with 

additional N would have been matched by increases in PAR interception. Values of E would then 

have been closer to published values and the apparent increase in E with additional N may have 

been non-evident. 

In the present experiment there were substantial differences between species in the value of E 

across all N treatments. Recently, it was reported that under cropping conditions, rye had a 

lower rate of canopy respiration than wheat, which was suggested to be due to rye's lower rate of 
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maintenance respiration (McCullough and Hunt, 1993). This was associated with higher rates of 

OM accumulation for rye. However, the importance of differences in rates of photosynthesis and 

respiration between species in terms of differences in the value of E and hence rates of OM 

accumulation need to be further assessed. It is possible that the differences in E between 

species noted in the present study may have been a consequence PAR interception not being 

measured up to final harvest, as discussed above. 

The amounts of PAR intercepted and OM produced by the different species were not directly 

- related to the quantities of grain produced. For example, wheat, which had both the lowest rate 

of canopy growth and LAI at anthesis and did not reach LAlcri' (even with additional N), had a 

higher grain yield than rye and nearly the same as that of oats. Compared to wheat, both rye 

and oats had faster rates of canopy development and larger leaf area indices at anthesis. This 

lack of correlation between PAR interception, and grain yield was mainly a result of variation in 

the HI of the species (Table 6.3, Fig. 6.3). Rye and oats allocated only 25 and 35% respectively 

of the total OM produced to grain as opposed to approximately 45% for wheat, barley and 

triticale. It is suggested that in the present experiment, the differences between species in HI 

was the major reason for the differences in grain yield. Though HI is an important determinant of 

grain yield in cereals, the factors influencing it are poorly understood. Gifford et al. (1984) 

presented data showing that increased grain yields of winter wheat cultivars introduced over the 

last 80 years have not been due to greater above ground dry matter production but rather a result 

of increases in HI. In terms of both worldwide area sown and harvested yield, wheat and barley 

are the most important temperate cereals grown (Table 1.1) and these species have therefore 

been selected over the years for mostly for high yields. Triticale, an artificially bredintergeneric 

hybrid, has probably also been developed with yield as the main selection criterion. In contrast, 

rye and oats, which are currently not important for grain production, have probably not been 

developed for grain yield to the same extent. In fact, the cultivars of rye and oats used in the 

present experiment are also used as forage crops. Therefore, in the present experiment, the 

higher HI of wheat, barley and triticale may have been due to a more intensive selection and 

breeding history of these species compared to rye and oats. 
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The influence of N availability on grain yield was also investigated by examining the components 

of yield of wheat and barley (Table 6.5). Cereal grain yield can be expressed as follows: 

grain 
yield 
(g m-2

) 

= plants 
per m2 

* fertile tillers 
(heads) per 
plant 

* grains 
per 
head 

(Equation 6.2) 

* mean 
grain 
weight (g) 

For both wheat and barley, the main effect of additional N was to increase the number of heads 

per m2 by increasing the number of tillers per plant (Table 6.5). Greater tiller number usually 

increases the potential number of grain bearing ears per plant (Darwinkel, 1978). However, only 

the first 2 - 3 formed tillers produce viable seed bearing heads, with later formed tillers being 

'parasitic' on the plant and not contributing to grain yield (Thorne and Wood, 1988). In this 

experiment, tiller numbers per plant were generally low, with wheat and barley having a maximum 

of only 1.5 and 3 tillers per plant respectively. This was possibly due to the high plant population 

restricting tiller production. As a consequence, the proportion of tillers producing a viable head 

was relatively high and not affected by N supply. Increased tiller number also increases LAI and 

crop photosynthesis (see above). A greater supply of photosynthate can affect the initiation and 

development of the grains, influencing both the number of grains per ear and mean grain weight. 

For both wheat and barley, addition of N resulted in increases in the number of grains per head, 

though this was offset by a decrease in average grain weight. The factors determining grain 

weight are complex, depending on interactions between the sources and availability of assimilate 

and the number of grains that are to be filled. In previous studies additional N has been reported 

to increase (Whingwiri and Kemp, 1980), decrease (Pearman, Thomas and Thorne, 1977) or not 

affect (Pearman, Thomas and Thorne, 1977) individual grain weight. In the present study the 

substantial increase in grain number per plant, primarily a result of greater tiller number, was 

likely to have been larger than the increase in the supply of material for available for grain filling 

and hence mean grain weight decreased. 

Numerous experiments have demonstrated the positive influence of additional N on the growth 

and yield of cereal crops. However, the magnitude of a crop's response to fertilizer N can 

depend, amongst other factors, on the amount of mineral N made available from indigenous soil 

sources over the course of crop development. In some experiments reported in the literature, the 

levels of soil mineral N have been high, and the addition of fertilizer N resulted in little or no 

increase in final grain yield (eg. Pearman, Thomas and Thorne, 1977). In the present 
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experiment, the effects of additional N on canopy development and yields were not as large as 

anticipated, probably because growth without additional N was already large. For example, the 

grain yields from plots of wheat and barley supplied no additional N were 5.8 and 6.5 t ha-' 

respectively. Yields such as this are above the average for New Zealand farms (Table 1.1) and 

considered acceptable for well managed, fertilized crops (D. Jack, Lincoln University, pers. 

comm.). The total N content of the soil to 30 cm depth was approximately 3 mg g-' dry soil. 

After cultivation, the concentrations of N03- and NH/ in the interstitial soil solution of plots 

receiving no fertilizer N were 2.7 and 0_2 mol m-3 respectively. These amounts of total and 

mineral N are typical of medium to high fertility agricultural soils (Mengel and Kirkby, 1987; 

Selvarajah, Cameron and Swift, 1989) and may have been a reason for the small response of 

crop growth to fertilizer N. 

The final aspect of temperate cereal grain production investigated in this study was the influence 

of N supply and time of application on the N content of the grain. Grain N is derived from two 

sources: that taken up prior to anthesis and stored in the parent crop and then remobilized to the 

developing grain; and that taken up from the soil after anthesis and translocated directly to the 

grain. Additional N applied at sowing increased the grain %N of all species (Table 6.6), despite 

the already high grain %N of crops where no N was added. For example, with no additional N 

the grain N content of barley was 1.5%, which is considered near the maximum acceptable for 

high quality malting grain (Kent, 1983). These high levels of grain %N where no N was applied 

were probably due to the elevated background levels of soil N. However, for wheat used for 

bread flour or barley sold for feed grain, high seed N content is desirable. Applications of N at or 

near anthesis are usually expected to increase grain %N to a greater extent than N applied at 

sowing (Wibberley, 1989). Therefore, fertilizer N is frequently applied near anthesis in order to 

maximise grain %N. However, in the present experiment only for rye and oats did later 

applications of N increase grain %N to a greater extent than when it was applied at sowing. For 

wheat, barley and triticale grain %N changed little with late additions of N. However, it is 

suggested that for wheat, barley and triticale, applications of N at anthesis increased the duration 

of the canopy and the supply of photosynthate increased, leading to increased grain size and 

yield, and hence no increase in grain %N was evident. In contrast, for rye and oats, with lower 

potential grain yields, an increase in the duration of the canopy may not have resulted in 

increased yields and hence grain %N increased. However, further work would need to be carried 

out to verify these ideas. It is also possible that the grain %N of rye and oats are more 

responsive to increases in available N than wheat, barley and triticale or that the latter species 

had reached a plateau in their response to additional N. ,The factors and mechanisms which 
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. determine seed N content are complex and need further investigating, especially the differences 

, between species in the response to additional N noted in the present study. 

6.5 Conclusions. 

The experiment reported in this chapter has demonstrated that despite relatively high initial levels 

of soil N, fertilizer N applied at sowing had positive effects on the grain yield of all the temperate 

cereals investigated. The reason for the increase was similar for all species: additional N 

increased the fraction of available PAR intercepted and hence the total amount of PAR 

intercepted by the canopy. Greater interception of PAR, which was a result of increased rates of 

canopy development and corresponding reductions in the time taken to reach LAlcrit' was 

associated with increased OM production at final harvest. Additional N did not affect HI, hence 

grain yield increased for all species. However, differences between species in the amount of 

grain produced were not directly related to the levels of PAR intercepted and OM produced, but 

rather to differences in HI. It is suggested that although all cereals respond in a similar manner 

to additional N in terms of canopy development and grain yield, the magnitude the parameters in 

Equation 6.1, particularly HI, can be different. Finally, N applied at either sowing or anthesis 

increased the %N of the grain, though only for rye and oats was the increase in grain %N greater 

with late N. 
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Appendix 6.1 Mean daily temperature and monthly incident solar radiation and precipitation 

between September 1991 and February 1992. Long term means (L TM) and 

differences (il) between L TM and 1991-92 also given. 

Mean daily temperature Monthly solar radiation Monthly precipitation 
(0C) (MJ m") (mm) 

Month 1991-92 I LTM I!. 1991-92 I LTM I!. 1991-92 I LTM 

Sept 9.5 9.4 ·0.1 359 408 -49 21 47 

Oct 11.3 11.7 -0.4 532 558 -26 10 49 

Nov. 11.7 13.6 -0.9 600 618 -18 71 53 

Dec. 13.3 15.4 -2.1 664 651 +13 80 57 

Jan. 16.6 16.4 +0.2 807 666 +141 28 60 

Feb. 15.4 16.2 -0.8 574 562 +12 35 54 

Total or mean 12.9 13.8 -0.9 3536 3463 +73 245 320 

Source: Lincoln University meteorology data (held on computer) 

I!. 

-26 

-39 

+18 

+23 

-32 

-19 

-75 
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7.1 Introduction 

Where soil moisture is adequate, low nitrogen (N) availability is usually the main soil factor 

limiting the growth of many plant species. Growth can be defined as an increase in total plant 

dry weight (d.wt) over time. As 40 to 50% of plant d.wt is carbon (C) (Table 1.3), the amount 

of C assimilated is an important determinant of growth. Most terrestrial plants acquire nearly 

all their C by converting atmospheric carbon dioxide into simple carbohydrates via 

photosynthesis. The fraction of the newly produced photosynthate that is able to be used in 

the building of new plant material (growth) depends on the amount of C respired. Respiration 

consists of a series of reactions which synthesize energy-rich compounds such as adenosine 

5'-triphosphate and reductants like nicotinamide adenine dinucleotide phosphate-reduced form 

which are used in the processes that maintain existing plant function (maintenance respiration) 

and those that build new plant material (growth respiration). As long as C inputs are greater 

than respiration, excess C is available for growth and plant d.wt increases (Section 1.4). 

When levels of soil mineral N are low, greater N availability usually increases plant growth by 

increasing plant photosynthetic capacity (Novoa and Loomis, 1981). For most plants the 

leaves are the main site of photosynthesis. Greater photosynthetic capacity is achieved by 

increasing either the rate of photosynthesis per unit leaf area or the amount of 

photosynthetically active radiation (PAR) intercepted by the leaves. Nitrogen is an important 

component of many of the compounds involved in photosynthesis, such as chlorophyll and 

ribulose 1,5-bisphosphate carboxylase (Section 1.5). Generally, when external levels of 

available N are low, the concentrations of these compounds are less than optimal for 

maximum photosynthetic rates. With increased external mineral N concentrations over the 

range commonly found in soils, plant N content usually also increases, and the ability of plants 

to manufacture the compounds involved in photosynthesis is greater, increasing the rate of C 

fixation per unit leaf area. 

The second way additional N can increase photosynthetic capacity is by increasing plant leaf 

area and hence the amounts of PAR intercepted. Increased photosynthetic rate per unit leaf 

area with additional N leads to an increase in the availability of C for the construction of new 

leaf material. Frequently, the increase in leaf area with additional N is the main reason for 

greater levels of C fixation and increased plant growth. At any time, plant leaf area is a 

function of the average area of individual leaves and the total number of leaves per plant 

while the extent of new leaf development depends on the availability of C for new leaf 

production. The overall aim of this thesis was to investigate the influence of N availability on 

aspects of plant leaf area development. Chapter 2 looked at the effects of N on seed reserve 
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mobilisation and seedling growth prior to emergence while Chapters 3 and 4 examined 

aspects of the effects of N supply on the size of individual leaves. Chapter 5 investigated the 

effects ofN form and availability on the partitioning of dry matter between the leaves and 

other plant parts while Chapter 6 looked at the influence of additional N on crop leaf area 

under field conditions. Each chapter's results were discussed in detail. This General 

Discussion will review and integrate the concepts and ideas developed in the individual 

chapters and assess the overall implications for plant and crop growth. 

All experiments in this thesis were conducted using one or more of the temperate cereal 

species. As cereals provide a large proportion of the world's dietary needs (Section 1.1), 

many aspects of their growth have been studied extensively. Cereals grow relatively fast and 

their response to additional N is usually large. Also, the importance of cereals to world 

agriculture has meant that they have been bred extensively, resulting in the availability of 

cultivars with low genetic X environment interactions. These cultivars usually show consistent 

and repeatable responses to changing environmental variables, making them suitable for 

studies such as those described in this thesis. However, the processes, relationships and 

concepts described and discussed in this thesis are relevant to other species, including non­

agricultural ones. 

Most plants are capable of taking up and assimilating nitrate (N03) and ammonium (NH/), 

though under temperate agricultural conditions the former is frequently the dominant form of N 

available (Haynes et al., 1986) Under agricultural cropping conditions, levels of mineral N 

increase when nitrogenous fertilizers are applied or crop residues with a high N content are 

incorporated into the soil and the organic N mineralized. In pastures and natural communities, 

elevated mineral N levels occur where animal urine or faeces are deposited or high N content 

plants decompose. In addition to N03- and NH/, plants can also take up amino acids through 

the roots (Jones and Darrah, 1993). Although amino acids occur in the interstitial soil solution 

of both agricultural and natural communities (Bremner, 1965), the importance of this form of 

soil N to plants is not known. Under controlled environment conditions, if an amino acid such 

as glutamine is supplied in nutrient solution as the only source of N (Section 1.5), this 

effectively mimics the exclusive root assimilation of N, providing a useful tool in studying the 

effects of site of N assimilation on the growth of plants. 
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7.2 Seed Reserve Mobilisation 

For some time after emergence from the soil, leaf 1 is the seedling's main site of 

photosynthesis and therefore its ability to fix C plays an important role in determining the 

extent of the growth of subsequent leaves and other plant parts. Studies have shown that for 

cereals and other species, the area of leaf 1 and the overall growth of seedlings after 

emergence are positively related to both seed N content and the level of available exogenous 

N (Section 2.1). In most cases these N effects have been attributed to increased 

photosynthetic rates per unit leaf area. However, experiments in Chapter 2 demonstrated that 

for a range of temperate cereals harvested prior to emergence, when photosynthesis is 

negligible, additional N supplied as N03· increased shoot growth to a similar extent as in 

above-ground studies. Greater shoot growth was a result of enhanced endosperm reserve 

mobilisation and an increase in the partitioning of reserves to the shoot relative to the roots. 

A series of experiments demonstrated that the N03· effect was not related to the amounts of 

N03· assimilated but rather that it was an osmotic effect, with accumulated N03- increasing 

water uptake by the seedling. A similar mechanism was proposed for the greater reserve 

mobilisation and d.wt of seedlings grown from high N content Hordeum vulgare L. (barley) 

seed compared to low N content seed. As most seed N is contained in proteins and proteins 

are the major colloidal components of seeds, it was proposed that greater water uptake 

occurred with high N seed. It was suggested that for both the N03- and seed N effects on 

reserve mobilisation, increased water uptake could stimulate the activity of a-amylase, the 

main enzyme regulating the breakdown of starch. Further work needs to be carried out to 

determine the relationships between seed N content, N03- uptake, water uptake, a-amylase 

activity and reserve mobilization. 

From an ecological perspective, the ability of the seedlings of some species but not others to 

increase growth through enhanced reserve mobilisation could have consequences for the 

species composition of both agricultural and natural plant communities. External N03-

concentrations which enhance mobilisation occur in both agricultural and non-agricultural soils. 

A greater rate of mobilisation would increase the extent and rate of seedling growth, leading to 

plants that emerged faster, and also had greater leaf area and bigger root systems. 

Compared to seedlings that did not have the capacity for enhanced mobilisation, these 

seedlings would be better able to compete for light, water and nutrients, and therefore grow 

faster once emerged and establish more successfully. A similar situation would arise if 

seedlings from high and low N seed germinated and grew together. Development of high N 

content seed is usually a result of parent plants growing in soil with elevated levels of 

available soil N (Chapter 6). If seedlings from species capable of increasing seed N content 
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establish more successfully than seedlings of species that did not have this capacity, the latter 

species could have difficulty establishing or maintaining a population at high fertility sites. In 

agricultural situations the differences between species in. seedling growth rates prior to and 

after emergence may have implications for the establishment and persistence of weed 

populations in crops. However, the ability of species other than the cereals examined here to 

show enhanced mobilisation of reserves needs further investigation. 

7.3 Leaf Growth 

Once seed N reserves are exhausted, plants must take up and assimilate N from the soil in 

order to grow and develop normally to maturation. Above ground cereal growth consists of 

the production of laminae (hereafter referred to as leaves), sheaths and stems. Depending on 

species, cultivar and environmental conditions, cereals produce approximately seven to 14. 

main stem leaves and from zero to over 20 tillers, with each tiller having approximately five 

leaves. An important component of total plant leaf area is individual leaf area which, as been 

shown in many studies, can be markedly influenced by the level of external N available to the 

plant. In Chapter 3 it was demonstrated that for all cereal species, with increasing external 

concentrations of N03-, NH/ or glutamine over the range 0 to 2.5 - 5 mol m-3
, the area of 

individual main stem leaves increased. Over this range of external N concentrations, leaf N 

content increased similarly for all three N forms (Chapter 5), probably reflecting greater 

concentrations of photosynthetic pigments and enzymes (Lawlor et al., 1988). Therefore, it is 

likely that photosynthetic rate per unit leaf area increased markedly and greater individual leaf 

area was a result of increased availability of both C and N. For barley, at the cellular level 

greater main stem leaf area with additional N03- over the range 0.5 - 2 mol m-3 was 

associated with both more cells and larger cells (Chapter 4). It was proposed that due to 

higher rates of photosynthesis, greater cell expansion was a result of higher levels of sucrose, 

the main form of osmoticum in plant cells. Greater availability of C and N was thought to 

increase the extent of cell division, leading to more cells per leaf, although the mechanism for 

this response is not known. At lower external N concentrations, the amounts, forms and 

concentrations of N compounds transported to the leaves are probably similar regardless of 

whether N03-, NH/ or glutamine are supplied. Hence, the cellular basis of increased leaf 

area at lower external N concentrations proposed for additional N03- in Chapter 4 are probably 

also valid where other forms of N are supplied. 

With increasing concentrations of external N03- or glutamine over the range 5 to 20 mol m-3
, 

the growth of individual leaves usually increased further. At higher external N03-
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concentrations, an increasing proportion of the N03" taken up is transported to the leaves and 

assimilated there (Andrews et al", 1992)" In the leaves, the N03" assimilation reactions can be 

coupled to the photosynthetic pathways and sucrose does not need to be respired to provide 

energy and reductants (Layzell, 1990). Also, if the supply of N03" is greater than the 

assimilation capacity, N03", together with counter ions like potassium (K+), can accumulate in 

the vacuoles and contribute substantially to the osmotic potential of the cells. The assimilation 

of N03" results in the production of excess hydroxide ions which, in order to maintain cellular 

pH, are neutralized via the production of organic acids. These acids also accumulate in the 

vacuoles and contribute to cellular osmotic potential. In Chapter 4 increased leaf area with 

additional N03" from 2 to 5 mol m"3 was associated with greater cell size. It was proposed that 

at higher external N03" concentrations the additional solutes mentioned above could contribute 

significantly to cell expansion. In addition to the increase in cell size, the number of cells per 

leaf increased. It was suggested that additional N increased the rate and extent of cell 

division, though, as mentioned above, the exact mechanism for this response is not known. 

Supplying glutamine in nutrient solution to the roots effectively mimics the exclusive root 

assimilation of N03". However, in contrast to N03", at high external concentrations of 

glutamine, 'alternative' forms of osmotica such as organic acids or K+ would not accumulate to 

high levels in the leaves. However, in Chapter 3 it was shown that at all concentrations 

supplied, individual leaf growth was similar with N supplied as N03" or glutamine. There are a 

number of reasons why this could be possible. Firstly, cell expansion may be similar because 

glutamine itself, if present in amounts greater than that required for plant function, can 

accumulate in the vacuoles and contribute to the osmotic potential of cells (Morgan, 1984). It 

is also possible that because there are no costs associated with assimilation when glutamine 

is the source of N, that there is more sucrose available for cell expansion. In addition, C is a 

significant component of glutamine and further sucrose savings can be made this way. 

The development of similarly sized leaves when N is assimilated in either the root or shoot 

can also be explained if the morphology of cereal leaf growth is considered. The main stem 

leaves of cereals originate from primordia situated on the central axis which are encased by 

the sheaths of the surrounding leaves. Primordia develop into a zone of dividing cells, the 

intercalary meristem, from which a ligule forms, separating the meristem into two parts: the 

upper part developing into the lamina and the lower into the sheath (Williams, 1975). Both the 

lamina and the sheath expand up between the central axis and the surrounding sheaths by a 

combination of cell division and expansion. When the lamina emerges from between the 

central axis and the sheaths of the previously formed leaves, growth of the exposed portion of 

the leaf stops. Elongation of the whole lamina ceases when the ligule, raised up by the 
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growth of the sheath, emerges from the surrounding leaf sheaths. However, cell division and· 

expansion continues in the sheath for a short while after that in the blade meristem ceases, 

raising the whole lamina above the previous leaf (Langer, 1979). The length of a fully 

extended leaf lamina is determined by the distance it has to travel up between the central axis 

and the surrounding sheaths. The proportion of this length that is achieved through cell 

expansion or division probably depends on the extent of cell division and the availability of 

osmoticum for cell expansion. If osmoticum is not readily available and cells are not able to 

expand to full size, then, in order to emerge, the leaf must extend as a result of an increase in 

cell number. Hence, it is possible to have leaves of a similar length and possibly area, made 

up of either many small cells or less but larger cells. It is proposed that though leaf growth is 

similar with N supplied as N03" or glutamine, there might be differences at the cellular level, 

with plants supplied N03" having larger cells and those supplied glutamine having more cells 

for a given leaf area. This suggestion has yet to be tested, though its relevance may be 

questioned when considering data from Chapter 4. As the area of main stem leaves tends to 

increase with leaf position, differences, if any, between N forms in leaf area should become 

more evident for later formed leaves. However, it was shown that relative to cell area, cell 

number became increasingly more important in determining leaf area for successive leaves. 

Therefore, for later formed leaves at least, differences in the availability of osmoticum for cell 

expansion would probably not be important in determining area. 

In contrast to N03" and glutamine, with additional NH/ over the range 5 to 20 mol m"3 the area 

of individual main stem leaves generally decreased and evidence was strong that plants 

displayed signs of NH4+ toxicity. Decreased leaf area must be a result of either less cells, 

smaller cells or a combination of both. In healthy plants, regardless of external N 

concentration, assimilation of exogenous NH/ takes place exclusively in the roots and all 

energy and reductants used must ultimately be provided from the respiration of photosynthate. 

Possibly to avoid toxicity problems, NH4 + is not stored and all of that taken up must be 

assimilated. However, assimilation uses photosynthate which may be needed for other plant 

functions, including cell division and expansion. Other aspects of plant growth may be 

affected by NH/. Plants taking up NH/ tend to have lower concentrations of other cations 

such as K+ (Lips et al., 1990) - this may affect the extent of cell expansion. However, as the 

mechanisms of NH/ toxicity are not known, it is difficult to speculate why high levels of NH4+ 

decrease the area of individual leaves. Also, the extent or severity of the symptoms of NH/ 

toxicity and the consequential decrease in growth appear to depend on factors other than just 

the level of external NH/. Firstly, different species appear to have different levels of tolerance 

to high levels of NH/. In particular, Secale cereale L. (rye) did not exhibit the symptoms of 

NH4+ toxicity to the same degree as other species. Rye has the capacity to produce more 
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tillers than other species (pers. obs.) and this may serve to dilute any excess NH/ taken up .. 

Also, in a repeat experiment, conducted under slightly different environmental conditions, 

barley showed markedly fewer symptoms of NH/ toxicity, and leaf and total plant growth was 

not decreased to the same extent as in the main experiment. It was thought that factors such 

as degree of water loss may contribute to the expression of NH/ toxicity. 

In addition to main stem leaves, cereals can also develop tillers, each having from one to 

approximately five leaves. The total number of tillers and hence leaves per plant depends on 

species, cultivar, plant developmental stage and environmental conditions. Especially for 

species where many tillers are produced, tiller leaves can contribute substantially to the total 

leaf area of plants. Many studies have shown that total tiller area usually increases with the 

addition of N. However, as with main stem leaves, no reports were found which investigated 

the influence of N form on the growth of individual tiller leaves. Chapter 3 demonstrated that 

tiller leaf growth characteristics were generally similar to those of main stem leaves: with 

additional N over the range 0 to 2.5 - 5 mol m-3 growth was similar for all forms of N supplied. 

Also, observations indicated that tiller number increased from no tillers with 0.5 mol m-3 N to 

as many as four tillers with 5 mol m-3 N, with the final number of tillers usually depending on 

species. With additional N03- or glutamine over the range 5 to 20 mol m-3 individual tiller leaf 

areas changed little but the number of tillers increased further, substantially increasing total 

plant leaf area. With high levels of NH4 + tillers did not emerge or were very stunted, though 

the severity of this reduction was not consistent between experiments. 

Though the cellular basis for tiller leaf area development was not investigated in Chapter 4, it 

is likely that as the morphological development of tiller leaves is similar to that of main stem 

leaves, changes in cell size and number with additional N will also be similar. Tillers develop 

from shoot buds in the axils of the main stem leaves and the physical constraint experienced 

in relation to cell expansion would be similar to that of main stem leaves. Williams (1975) 

proposed that whether or not a given tiller bud will emerge from the surrounding sheaths and 

become an independent shoot system depends on whether its 'potential for growth' can match 

the constraints of its physical surroundings_ Williams did not expand on the concept of tiller 

growth potential. However, it is possible that if overcoming physical restraint depends on the 

ability of tiller to produce cells and degree of expansion of these cells, then additional N could, 

through increased rates of photosynthesis, provide additional C for enhanced cell division or 

greater cell expansion. Total tiller leaf area would increase if more tiller buds were able to 

emerge from the surrounding sheaths and the tiller laminae attain a greater size. 
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This thesis has investigated leaf growth in cereals, which are monocotyledonous species. 

However, the process of leaf development and expansion in dicotyledons is different from that 

in cereals (Radin, 1983), leading to the possibility that the relationships between cell division 

and expansion in determining final leaf area may also be dissimilar. For example, leaves of 

dicotyledons, whether arising from the main stem or branches, are not physically constrained 

to the same extent as those of monocotyledons and hence cell expansion may playa bigger 

role in determining final leaf area. Also, the capacity for transverse expansion is greater for 

the leaves of dicotyledons, increasing the potential size of the leaves. These possible 

differences between species need further investigation, both at the whole leaf and cellular 

levels. 

7.4 Partitioning of Dry Matter 

The dominant effect of additional N on plant growth is to increase total leaf area and hence 

plant photosynthetic capacity. The extent of the increase in leaf area depends on the amount 

of C available for growth (photosynthesis minus respiration) and the fraction of this C that is 

partitioned to the leaves relative to other plant parts such as the roots and stems. The ratio of 

shoot (leaves plus stem) d.wt to root d.wt (S:R) is frequently used to describe the partitioning 

of dry matter between plant parts. Associated with S:R is the leaf weight ratio (leaf d.wt as a 

fraction of total plant d.wt; LWR). Depending on plant developmental stage, leaves can make 

up a considerable fraction of shoot d.wt and an investigation of S:R can be useful in 

examining the effects of N supply on changes in plant leaf area. However, though S:R and 

LWR usually change similarly, the latter is probably a more useful parameter to consider than 

S:R as it is more directly related to changes in plant leaf area. Also, especially at later stages 

of cereal development, stem material makes up a considerable fraction of shoot d.wt and 

LWR may more accuratley reflect the photosynthetic capacity of the plant. 

For many species of higher plant growing under a range of environmental conditions, both S:R 

and LWR increase with increasing external N over the range of concentrations commonly 

found under natural and agricultural conditions (Section 5.1). Based on the commonly 

observed linear relationship between plant N content and S:R, a number of hypotheses have 

been put forward which try to account for the increase in S:R with additional N. However, in a 

review, Andrews (1993) argued that none completely explained the available data. In putting 

forward an alternative hypothesis Andrews proposed that the influence of N availability on S:R 

could be explained by the effect of increased N assimilation and protein synthesis on 

photosynthesis, and hence growth, and by competition between the N assimilation/protein 
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synthesis processes and growth for C (energy) derived from photosynthesis. To more fully 

understand the relationships between S:R and N supply, Chapter 5 investigated the effects of 

not only N availability but also N form on dry matter partitioning. It was demonstrated that 

with additional N over the range 0 - 6 mol m-3
, regardless of form applied, plant d.wt 

increased. Maximum d.wt attained was greatest with N03-, intermediate with glutamine and 

lowest with NH/. Both plant N content and S:R increased almost linearly with increasing 

external N, though at a given d.wt, S:R tended to be lower with N03-. However, if S:R was 

plotted against plant N content, differences between N forms were not detected and it was 

concluded that the relationship between plant N content and S:R holds regardless of form of N 

applied. 

Greater N availability usually increases plant d.wt and S:R/LWR concurrently and at a similar 

rate. However, though increases in S:RlLWR, when combined with greater plant d.wt, result 

in an increase in leaf area, increased plant growth is not a direct result of greater S:R/LWR. 

Rather, both increased growth and S:R/LWR can be seen as consequences of increases in 

plant N. With greater N availability, plant, and especially leaf, N content usually increases, 

reflecting an increase in photosynthetic pigments and enzymes. This generally leads to 

greater rates of photosynthesis per unit leaf area, total plant leaf area and hence plant 

photosynthetic capacity. As long as photosynthetic C inputs are greater than respiration, plant 

d.wt usually increases. However, in terms of C/energy, proteins and enzymes are expensive 

to make and maintain (Penning de Vries, 1975). The leaves, with a higher N content and 

being closer to the source of C, will realise a greater proportion of the newly produced C, 

resulting in an increase in both S:R and LWR. This relationship should hold, regardless of the 

form of N supplied, because it depends on plant N content rather than d.wt. If NH/ or 

glutamine are supplied N content will be greater and S:R correspondingly larger, even though 

d.wt may be similar or less compared to with N03-. This was shown to be so in Chapter 5. 

A possible complicating factor in the study of the N effects on dry matter partitioning is the 

change in S:R with plant development independent of N supply. Experiments in Chapter 5 

demonstrated that seedlings supplied N as N03- or NH/ prior to emergence had similar 

reduced N contents but those supplied N03- had a greater S:R. This increase in S:R was 

associated with greater seedling d.wt. The association between plant d.wt and S:R rather 

than N content in seedlings prior to emergence was reinforced in a further experiment where 

seedlings were supplied chloride: as with N03-, increased S:R was associated with increased 

d.wt. Some of the increase in S:R may therefore be related to plant ontogeny rather than 

exclusively to plant N content. However, the proposed explanation of Andrews (1993) for the 

N effects on S:R of photosynthesising plants could also hold for seedlings prior to emergence 
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if the roots obtain a sUbstantial proportion of their seed derived C via the shoot. However, the 

pathways of C translocation from the seed to the shoots and roots still have to be determined. 

For mature plants previous studies have shown increases in S:R independent of N supply 

(Section 5.1). It is therefore possible that where N effects on S:R are associated with 

increased growth, at least part of the N effect may have been ontogenetic. The reason for 

this shift in S:R with development is not know, though it may be related to increased demands 

for C/energy by the reproductive structures of the plant. Further work is required to 

differentiate between ontogenetic and N effects on S:R. 

7.5 Crop Growth and Grain Yield 

The aim of most non-subsistence temperate cereal growing systems is to harvest grain at a 

financial profit. The monetary return from a crop usually depends primarily on the quantity of 

grain produced, though sometimes the quality of the grain is also important. Under 

agricultural conditions where soil moisture is adequate, low N availability is usually the main 

soil factor limiting the yield of temperate cereal crops. The response to additional N is 

generally substantial, and hence the strategic application of fertilizer N is frequently an 

important management tool used to grow profitable crops. 

Cereal grains are composed mainly of carbohydrates, which are derived from the parent crop 

either as stored dry matter or current photosynthate produced after anthesis. The availability 

of stored carbohydrates depends on the quantity of dry matter produced prior to anthesis 

while current photosynthate supply is determined by crop photosynthetic capacity during grain 

filling. Final grain yield depends on the proportion of the carbohydrates produced during the 

season that are partitioned to the grains relative to non-harvested parts of the crop. The 

positive effects of additional N on grain yield must therefore be a result of either greater 

carbohydrate production or an increase in the allocation of carbohydrates to the grain. 

Crops are made up of individual plants and like single plants, the extent of crop growth and 

carbohydrate production should be related to the difference between photosynthesis and 

respiration (Section 1.3). Crop respiration is difficult to measure under field conditions and is 

generally not thought to be affected markedly by N supply (Hay and Walker, 1989), though 

recent work has suggested that there may be differences between cereal species in 

respiration rate per unit d.wt (McCullough and Hunt, 1993). Crop photosynthetic capacity is 

dependent on the leaf area of the crop, the distribution and arrangement of the leaves down 

through the canopy and the average rate of photosynthesis per unit leaf area. The leaves of 
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the crop collectively make up the canopy, the extent of which is frequently quantified as the 

leaf area per unit ground area (leaf area index; LAI). Leaf area index is determined by the 

number of plants per unit area, the number of leaves per plant and the average individual leaf 

area. 

The most important factor determining the extent of crop photosynthesis is the proportion of 

available PAR that is intercepted by the leaves. This was shown to be so for a range of 

temperate cereals in Chapter 6, where greater grain yield with additional N was primarily a 

result of increased crop dry matter (ie. stored carbohydrates) brought about by an increase in 

the amount of PAR intercepted up to anthesis as a result of greater LAI. Though post­

anthesis LAI was not assessed, it was assumed that the positive response of LAI to additional 

N continued up to crop senescence, increasing the amount of current photosynthate 

produced. It is also probable that additional N increased the duration that the canopy was 

photosynthetically active after anthesis, further increasing the amount of PAR intercepted. 

There are some important points to consider when investigating the causes of the positive 

effects of additional N on crop growth. Under agricultural conditions, levels of N03-, the 

dominant form of N taken up and utilized by temperate cereal crops, in the interstitial solution 

of unfertilized soils are in the range 1 - 5 mol m-3
. For some of the components of plant 

photosynthetic capacity, this level of external N03- is already near optimum. For example, 

photosynthetic rate per unit leaf area usually changes little under field conditions (Hay and 

Walker, 1989). Similarly, in Chapter 3 it was shown that the largest part of the individual leaf 

area response to N supply was over the range 0 to 2.5 - 5 mol m-3 additional N. Hence, with 

the addition of N as fertilizer, when levels of N03- in the interstitial soil solution can be as high 

as 20 mol m-3
, increases, if any, in these components of plant photosynthetic capacity would 

be expected to contribute little to the increase in crop photosynthetic capacity. Therefore, 

under field conditions, the main reason for the increase in crop growth with additional N is 

usually a result of increased total leaf area, largely determined by leaf number which in turn is 

largely influenced by plant tiller number. 

Another possible consequence of increased N availability under field conditions with regard to 

greater photosynthetic capacity and growth are increases in S:R and LWR. As discussed 

above, increased S:R and LWR are not direct causes of greater plant growth, but rather 

responses that occur concurrently with increased plant N content when N availability is 

increased. Because root d.wt is usually difficult to accurately assess under field conditions, 

the influence of N availability on S:R under field conditions has not been extensively studied. 

However, as changes in S:R occur over the range of external N concentrations found in 
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agricultural soils, it is likely that the response found under controlled environment conditions 

also occur in crops. It is therefore possible that greater S:R increases the availability of dry 

matter able to be allocated to the grains. However, this suggestion is difficult to investigate 

using existing data as HI is usually based the partitioning of dry matter between the grains 

and other above ground plant material, rather than the whole plant. Also, the response of HI 

to additional N appears to be very variable, sometimes increasing, other times decreasing and 

sometimes not changing and other factors may influence HI more. 

7.6 Conclusions 

The chapters in this thesis have investigated some of the Wide-ranging effects of N on the 

growth of temperate cereals. As set out in the individual chapters, all the objectives of the 

thesis were achieved. In general, the effects of N supply on plant growth were similar for all 

species investigated. Though all the experiments were conducted using one or more of the 

cereal species, it is suggested that the processes and mechanisms discussed generally apply 

to other plant species, though in some cases, such as the cellular basis of increased leaf 

area, further work needs to be carried out to determine possible differences between 

monocotyledons and dicotyledons. Overall, greater plant growth with additional N is a result 

of increased photosynthetic capacity through either increased photosynthetic rate per unit leaf 

area, larger average individual leaf area or more leaves per plant. It was shown that for all 

processes investigated, the amount of N supplied affected the magnitude of the measured 

response, while for some responses the form of N supplied was important. For example, in 

Chapter 2, N03- but not NH/ increased reserve mobilisation, leading to greater seedling 

growth with N03-. For more mature plants, at lower external N concentrations there were 

generally no differences between N forms in responses such as leaf area or dry matter 

production, though with increasing N concentrations differences became apparent. In Chapter 

3 it was shown that as maximum leaf area was similar with N03- and glutamine, individual leaf 

area development did not depend on the site of N assimilation. However, there was evidence 

that high external NH4+ concentrations were detrimental to individual leaf area development, 

possibly due to toxicity effects" Chapter 4 demonstrated that increased leaf area with 

additional N03- was a result of both bigger cells and more cells, though with increasing leaf 

position the latter became more important. It was suggested that at lower levels of external N 

the cellular basis for leaf area is probably similar regardless of N form supplied, though this 

may not necessarily be so at higher external N concentrations. In Chapter 5 it was 

demonstrated that there were differences between N forms in the partitioning of dry matter 

between plant parts, with plants supplied NH/ or glutamine having a greater S:R at a given 
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d.wt compared to those supplied N03-. Based on an hypothesis put forward by Andrews 

(1993) on the control of S:R by N, this was thought to be related to plants supplied N03-

having a lower reduced N content. Hence, there is a linear relationship between plant 

reduced N content and S:R, regardless of N form supplied. Finally, under field conditions, it 

was proposed that the component of plant photosynthetic capacity that was most affected by 

additional N the increase in the number of leaves per plant brought about by an increase in 

tiller number. This increased canopy leaf area over the duration of crop development and 

hence the amount of PAR intercepted. All species investigated showed this general response 

to additional N, though there were-differences in grain yield which were attributed to variations 

in HI. 
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Seed reserve mobilization and the partitioning of dry matter in 
barley seedlings prior to emergence. 

M. Lieffering. M. Andrews and B. A. McKenzie 
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Abstract 
The effects of nitrate (NO)'), ammonium (JI.'H/) and chloride (Cn on rate of endosperm reserve mobilization and 

shoot to root dry ..... eight ratio (S:R) were examined in barley (Hordeum \'ulgare) prior to emergence. Caryopsis dry 
..... eight (d.wt) decreased ..... hile shoot d ..... t, S:R and shoot and root NO,' content increased ..... ith increased NO,' applied 
over the range 0 ' 20 mol m'). At an external concentration of 5 mol m·'. nitrogen uptake and assimilation were as 
great with NH. + as with NO)' but NH.- did not affect the rate of reserve mobilization or S:R. Addition of 5 mol m" 
Cl' increased the rate of reserve mobilization and S:R. Shoot fresh weight and percentage water of shoot and root 
increased with additional NO; or cr but did not change with additional JI.'H/. It is proposed that NO,' or cr causes 
increased water uptake by seedlings which results in increased ..... ater entering the caryopsis hence a greater rate of 
reserve mobilization. Increased S:R with NO,' or Cl' appears to be related to increased rate of mobilization of 
endosperm reserves. 

AddiJional key words: Hordeum vulgare L, nitrate, amnwnium, chloride. shoot:root 

Introduction 
For barley (Hordeum vulgare L.) cultivated in 

darkness, application of either a full nutrient solution or 
5 mol m" potassium nitrate (KNO) plus 5 mol m" 
calcium nitrate instead of distilled water caused a 45 to 
65% increase in shoot dry weight (d.. .... 1) within 7 days of 
planting (N~tr. I 988a,b). Increased shoot growth was 
due to a greater rate of endosperm resen'e mobilization 
and to a greater allocation of reserves to the shoot at the 
expense of the root For barley so ..... n at 70 mm depth, 
addition of 20 mol m') nitrate (NO;) as KNO, to an 
otherwise complete nutrient solution caused increases in 
endosperm 'reserve mobilization and the proportion of 
reserves allocated to the shoot prior to emergence from 
the substrate (Andrews. Lieffering and McKenzie. 1991). 
The NO,' concentrations used in these studies are at the 
upper end of the range found in agricultural soils 
(Barber. 1984; Haynes et al.. 1986; Wild, 1988). In the 
present study. relationships between applied NO,' 
concentration, rate of reserve mobilization and the 
partitioning of dry matter bet ..... een shoot and root were 
examined in barley prior to emergence from the 
substrate. In addition. NO;. ammonium (NH/) and 
chloride (Cn were compared with regard to their effect 
on seedling growth. 
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Materials and Methods 
Seed of barley (Hordeum vulgare L. c\'. Triumph) 

was obtained from the Crop Research Division of the 
Department of Scientific and Industrial Research. 
Lincoln. New Zealand. Indi\idual seed weight was 
44±I. 46±1 and 48±1 mg in Experiments 1. 2, and 3 
respectively. Seed showed 98% germination and was not 
chemically treated. 

All experiments were carried out in the dark at 
I O± 1 °c in a controlled emironment chamber. In all 
experiments. seed was placed at 70 mm depth in 80 mm 
diameter. 180 mm tall pots (20 per pot) filled with a 
vermiculit~perlite (1 : I) mixture soaked in basal nutrient 
solution (Andrews. Love and Sprent. 1989) containing 
the appropriate treatment In all treatments, potassium 
was maintained at 23.6 mol m" using potassium sulphate 
as necessary. Pots were flushed with the appropriate 
nutrient solution every 2 days. Seedlings were harvested 
21 days after sowing and fresh weight (f.wt) of the shoot 
and root determined. The shoot. root and caryopsis were 
then dried at 70°C for 4 days for d ..... 1 determination. 

In Experiment I, plants were supplied 0, 1.0, 5.0 or 
20.0 mol m" NO)' as KNO). Dried shoot and root 
material was ground and an aqueous extract of a 10 - 30 
mg sample was analysed for NO,' content as described 

DM partitioning in barley seedlings 
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by Mackereth, Heron and Talling (1978). There were 
three nitrogen (N) treatments in Experiment 2: 0 N, 5.0 
mol m·3 NO; and 5.0 mol m·3 NH4 + added as ammonium 
sulphate. Nitrale, l\'H/ (Mackereth et 01., 1978) and 
total N (Europa Scientific eN analyser) content of all 
plant pans were determined. In Experiment 3, plants 
were supplied 0 N, 5.0 mol m·3 N03' or 5.0 mol m·3 cr 
as potassium chloride. 

Each experiment was a randomised complete block 
design. Experiment I had five replicates while 
Experiments 2 and 3 had six replicates. An analysis of 
variance was carried out on all data. All effects 
discussed have an F ratio with a probability P<O.05 and 
were obtained in repeat experiments. Means stated as 
significantly different are on a basis of an LSD (P<O.05) 
test 

Results and Discussion 
Pre,iously, application of 20 mol m') N03' was shown 

to increase the rate of mobilization of endosperm 
reserves and the shoot to root d. wt ratio (S:R) of barley 
seedlings prior to emergence from the substrate (Andrews 
et 01., 1991). In Experiment I, the magnitude of the 
N03" effect on mobilization of seed reserves was shown 
10 be dependent on external NO)" concentration as 
caryopsis d.wt decreased with increased applied N03" 
over the entire range used (Fig. la). Also. shoot d.v.1 

16~----------------------------~ 
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increased with decreases in caryopsis d.wt but root d.wt 
changed linle thus S:R increased with increased applied 
NO)" throughout. Shoot and root NO)" conlent increased 
with increased applied NO)' concentration over the entire 
range used (Fig. Ib). At applied NO)" concentrations of 
I - 20 mol m"3, NO)" content was greater in root than in 
shoot Values for NO; content of shoot and root in the 
present study were greater than those obtained for mature 
plants grown on comparable N03" supply in a previous 
study (Andrews et 01., 1992). 

No report was found of the extent of NO)" 
assimilation in temperate cereals prior to emergence from 
the substrate. Barley seedlings grown in the dark ha"e 
been shown to have nitrate reductase acti,ity (Aslarn and 
Huffaker, 1982) and therefore may assimilate NO)" prior 
to emergence. In Experiment 2, the effect of NH4 + on 
seedling growth and the relationships between N uptake, 
N assimilation, mobilization of endosperm reserves and 
S:R were examined. Additional NO)" caused a decrease 
in caryopsis d.v.1 and increases in shoot d.v.1 and S:R as 
in Experiment J, but additional NH/ did not affect d ..... 1 
of shoot. root or caryopsis (Table). However. N uptake 
was as great with NH/ as with NO)". Also, as NH/-N 
and NO)"-N constituted only a small proportion «1%) of 
total N in seedlings supplied NH/, then N assimilation 
was as great with NH.· as with NO)". The N containing 
products of NO)" and r-.'H/ assimilation are likely to be 
the same (Layzell, ) 990). Thus, although NO)" effects 
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Figure 1. Effect of different concentrations of applied NO; on a) shoot ( • ), caryopsis ( • ) and root ( A ) 

d.~1 and h} NO,' content of the shoot and root of barley prior to emergence from the substrate. 
Vertical lines indicate SEM. 
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Table 1. Effect of 5 mol mol appUed NO; or NH: on shoot (S) and root (R) f.,,1 and d.wt, caryopsis (C) 
cLwt, S:R, shoot and total Nt NO,'-N and l\lI:·N content of barley prior to emergence from the 
substrate. 

D.'Nt 
(mg) 

Applied N S C R S:R 

nil 8.67 14.06 6.38 1.36 
NH4+ 8.36 14.51 6.02 1.39 
NO,' 10.31 12.46 6.33 1.63 
SEM 0.37 0.41 0.14 0.06 

on barley seedlings appear to be related to the amount of 
NO; taken up (Fig. la,b), they do not appear to be 
related to products of NO,' assimilation such as 
proteins/enzymes, as is the case with mature plants 
(Khamis and Lamaze, 1990; Zhen and Leigh, 1990). 

In Experiment 2, shoot f.Wl and percentage water of 
shoot and root increased with additional NO,' but did not 
change with NH/ (Table 1). It is possible that the NO; 
effects on resen'e mobilization and S:R ratio are related 
to water uptake. Chloride is an ion which is readily 
taken up by plants but which is not assimilated (Oarbon 
and Hanson, 1980). Addition of 0 0 at concentrations of 
5 or 20 mol m" can result in substantial increases in 
percentage water of shoots (Andrews tt al., 1989). In 
Experiment 3. addition of Cl' caused increases in shoot 
f.v.'t and percentage water in shoot and root (Table 2)0 
Chloride also caused increases in the rate of mobilization 
of endosperm reseI"\'es and S:R. These data. in 
conjunction with those obtained in Experiments 1 and 2, 
indicate that NO,' effects on seedlings prior to emergence 
are osmotic effects. It is proposed that NO; causes 
increased water .uptake by seedlings which results in 
increased wate2' entering the caryopsis and hence a 
greater rate of reserve mobilization. If NO,' accumulates 

F.Wl N 
(mg) (J.tg seedling·l ) 

S R Total N NO,'-N NH/-N 

94.4 97.6 610.5 5.1 05 
99.1 90.3 920.2 4.6 1.4 

138.5 107.8 976.9 185.2 0.7 
4.3 5.2 15.4 10.2 0.5 

in the endosperm reserves then this would have a more 
direct effect on water uptake by the caryopsis. The 
increase in S:R with additional NO,' or C)' appears to be 
related to the increased rate of reserve mobilization. 
Studies are currently under way to determine the 
relationships between rate of reserve mobilization, and 
NO,' and water content of the caryopsis. 
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Abstract 
Under agricultural conditions where soil moisture is adequate. low nitrogen (N) availability is usually the main 

soil factor limiting the growth and yield of temperate cereals. As the response to additional N is generally substantial. 
the strategic application of fertilizer N is an important management tool used to increase yields. Nitrogen availability 
can affect photosynthetic rate per unit leaf area but often the main reason for the large effect of additional N on crop 

. growth is that it increases leaf area per plant and consequently increases leaf area index (leaf area per unit land area): 
this results in increased crop photosynthesis. This paper reviews recent work on the intluence of N on leaf growth 
of temperate cereals from seed germination through to maturity. :\ew data are presented in order to provide greater 
understanding of the mechanism of the nitrate effects on I) mobilization of seed reserves; 2) partitioning of dry matter 
to leaf. stem and root and 3) expansion of leaves. The effects of additional N on leaf and plant growth are discussed 
in relation to crop growth in terms of canopy development and gnin yield. Areas where further research is required 
are highlighted. 

Additiollal key words: seed reserve mobili~atioll. lIitrate. dry ma,o'er partitiollillg. leaf expallsion. cell si:e. canopy 
del·e!opmellt. grain yield. 

Introduction 
Under agricultural conditions where soil moisture is 

adequate. low nitrogen (i':) availability is usually the 
main soil factor limiting the growth and yield of 
temperate cereals. As the response to additional l' is 
generally substantial. the strategic application of fertilizer 
N is frequently an important management tool used to 
increase yields. In New Zealand. barley (Hordeum 
I"lIlgare L.) is the most important cereal in terms of area 
sown (96.000 hal and tonnage han'ested (435.000 T) 
(Department of Statistics. 1991). Second to barley is 
wheat (TriticuIII aestil'ul1I L.) which is grown on 
approximately 40.000 ha with 188.000 T being harvested. 
Recommended N fertilizer rates for cereal crops in 1'ew 
Zealand depend on the species sown. the N status of the 
soil and the end use of the crop. Usually. 50 kg N ha" 
applied at sowing is recommended for malting barleys. 
while up to 100 kg N ha'i. applied at sowing and 
anthesis. is recommended for high protein bread wheats 
(l\!ontgomery. 1986a.b). N fertilizer can be added in a 
range of forms such as urea. calcium ammonium nitrate. 
ammonium sulphate or a mixture like 'calurea' (calcium 
nitrate plus urea). However. under temperate agricultural 
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condit:ons. rates of nitritication are usually rapid and 
nitrate (NO;') is likely to be the dominant form of N 
available to. and taken up by. temperate cereals in most 
soils (Haynes et al .• 1986). Overall N fertilizer usage in 
Kew Zealand is low compared to that in Western Europe. 
but it has increased steadily over the past decade with 
nearly 46.000 T being applied in 1991 (FAO. (992). 

Plant dry matter usually contains I - 6% N. 
depending on species, age. plant organ and 
environmental conditions (Haynes et al.. 1986; Mengel 
and Kirkby. 1987). N is a constituent of many cellular 
components such as nucleic acids. chlorophyll. proteins. 
enzymes. cell membranes and cell walls which are vital 
to the iunction and growth of plants. Therefore the rate 
and/or extent of processes that utilise these compounds 
will be affected by plant N status. Such processes 
include photosynthesis. Additional N can increase the 
rate oi photosynthesis per unit leaf area by. for example. 
increasing the concentrations of photosynthetic pigments 
and enzymes (Lawlor et al .• 1987). However. the major 
int1uen-:e of additional N on crop growth under 
agricultural conditions appears to be due to increased 
total leaf area (Andrews et al.. 1991 b and references 
therein). This paper reviews recent work on the 
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influence of N on leaf growth of temperate cereals. New 
data are presented to provide greater understanding of the 
mechanism of the NO)' effect on 1) mobilization of seed 
reserves; 2) partitioning of dry matter to leaf. stem and 
root and 3) expansion of leaves. The effects of 
additional N on leaf and plant growth are discussed in 
relation to crop growth in terms of canopy development 
and grain yield. Areas where further research is required 
are highlighted. 

Materials and Methods 
The new data on the effects of N availability on dry 

matter partitioning. plant leaf area development. canopy 
development and crop growth presented in this review 
were obtained in experiments carried out recently by the 
authors. 

i) Partitioning of dry matter (experiment 1) 
Seeds of barley (cv. Triumph; mean weight - 45 mg). 

obtained from the Canterbury Malting Company, 
Christchurch, New Zealand. were germinated on paper 
towels moistened with distilled water. After 4 d, 
seedlings with a coleoptile length of approximately 10 
mm were transferred to 80 mm diameter. 180 mm tall 
pots (one per pot) containing a vermiculite/perlite (1:1 
v/v) mixture soaked in basal nutrient solution (Andrews. 
Love and Sprent, 1989) containing the appropriate N 
concentration. There were 9 rates of N (0, 0.5. I. 2, 3. 
4.5,6 or 10 mol m') supplied as either NO)' (KNO) or 
ammonium (NH~ -)«NH~):SO~). In all treatments. 
potassium was maintained at 13.6 mol m') using 
potassium sulphate where appropriate. Pots were flushed 
every 3 d with the appropriate nutrient solution. Plants 
wcre grown under controlled environment conditions 
with a photoperiod of I~ h, a light level of 
approximately 400 I-Imol photons m': ~;,I and day/night 
temperatures of 20/15±2'C. Plants were harvested 30 d 
after sowing (DAS) and separated into leaf, stem and 
root. Total leaf area was measured using a LI·COR 
model 3100 area analyser (LI·COR, Lincoln. 1\'"£, U.S.A) 
and the plant parts dried separately for dry weight (d, wt) 
determination. Reduced·!'\' content of the plant parts was 
determined using Kjeldahl digestion and a "Kjeltec 
Autosampler System 1035 analyser" (Tecator; Hoganas, 
Sweden), 

ii) Leaf area development (experiments 2a and 2b) 
The same lot of barley seed and environmental 

conditions as in experiment I were used in experiments 
2a and 2b, In experiment 2a. 7 rates (0, 0.5, I, 2, 4. 6 
and 10 mol m') of :\0)' or ;\H; were used. The lengths 
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of individual main stem leaves 2 - 4 were measured daily 
until full extension was reached. Leaf leneth was taken 
as the leaf tip to point of leaf emerge~ce from the 
coleoptile for leaf 2 and leaf tip to where the leaf 
subtended the leaf sheath for leaves 3 and 4. Leaves 
were considered fully extended when three successive 
measurements were identical. Plants were harvested 30 
DAS and the final area of individual leaves determined. 
Leaf extension over time was analysed using variates 
derived from a generalised logistic curve. as described by 
Andrews et al. (1991 b). In a similar experiment 
(experiment 2b) epidermal impressions using nail varnish 
were taken from three positions on leaf 3 of plants 
supplied 0.5 and 5 mol m') NO)'. Impressions were 
mounted on a glass slide and average cell size (non­
veinal cells only) determined using a microscope. By 
compensating for the area estimated to be taken up by 
veins. cell number was calculated as leaf area divided by 
a\'erage cell area. 

iii) Canopy de\'elopment (experiment 3) 
In a field experiment. wheat (cv. Otane) and barley 

(cv. Triumph) were sown into a conventionally cultivated 
weed free seed bed. The experiment was sited near 
Lincoln. New Zealand on a Templeton silt loam. Over 
the course of the experiment (September 1991 to 
Februlry 1992) solar radiation receipts and temperatures 
were close to the long term a\'erage but it was slightly 
wetter than normal. N (0. 100 and 200 kg ha'l) was 
applied as urea at sowing. The extent of the canopy was 
measured at approximately I week intervals until anthesis 
using a LI·COR 2100 canopy analyser. Final dry matter 
and grain yield were determined by hand·har\'esting all 
plants from a I ml quadrat. Prior to threshing. a 
subsample (approximately 10ge by weight) was kept to 
e\'alu3te components of yield. N content of the grain 
was determined as in experiment 1. 

Seed Reserve Mobilization 
and Leaf Growth 

The growth of cereal seedlings depends on seed N 
content (specifically endosperm N) and external N 
supply. Increased seed N content often results in greater 
seedling growth. For wheat seedlings 21 D.-\S. total 
plant d.wt and area of main stem leaves I - 3 were 
greater for high N seed than for low N seed (Lowe and 
Ries. 1972, 1973), Also. for barley harvested 6 DAS. 
seedli:1gs from high N seed had greater reserve 
mobilization. total plant d.wt. area of leaf I. leaf protein 
concentration and photosynthetic rate (Metivier and Dale, 
I 977a.b; Rahman and Goodman. 1983). Additional NO)' 

Effect of N on leaf growth in cereals 



-I~~-

starch breakdown and which is sensitive to seed water 
potentials (Jones, 1969; Jones and Armstrong. 1971; 
Wilson, 1971). Increased reserve mobilization and 
greater early growth of seedlings with high N seed may 
also be due to increased water uptake. The rate and 
degree of imbibition, the physical process of water 
absorption by the seed, are closely related to the colloidal 
properties of the seed (Cardwell. 1984). Proteins are the 
dominant form of seed N and represent the major 
colloidal constituent of seeds (Amott and Jones. 1971). 
For wheat and barley seeds, rates of water uptake 
increased as a result of higher seed N (Lopez and Grabe, 
1971). Also, a-amylase activity has been found to be 
higher in wheat seedlings grown from high CJ:-.I seed 
(Ching and Rynd, 1978). Funher work needs to be 
carried out to determine the relationships between seed 
N content. NO)' uptake, water uptake, a-amylase activity 
and reserve mobilization. 

Partitioning of Dry l\Iatter to Leaves 
Nitrogen availability can affect the partitioning of dry 
matter to the leaf, stem and root of temperate cereals 
from the seedling stage through to maturity (Table I; 
Hocking and Meyer, 1991; Andrews et at.. 1992). 
Usually shoot to root d.wt ratio (S:R) increases with 
increased N supply regardless of form supplied or of its 
effects on growth (Andrews, 1992 and references therein) 
although during seedling development this need not be 
the case (Tables 1,2). At this stage, plant (shoot+root) 
d.wt, in comparison with plant N, shows a better 
correlation with S:R. Leaf weight ratio (LWR; leaf d.wt 
as a fraction of total plant d.wt) appears to increase with 
NO)' supply over the range in which total plant d.wt 
increases. then either changes little or increases further 
with in~reasing NO)' supply thereafter (Hocking and 
Meyer. 1991; Andrews et aI., 1992). Little infonnation 
is available with regard to I\' effects on L \\'R through the 
different stages of plant development. For the fj\oe main 
temperate cereals. in the vegetative phase. LWR 
increased from around 0.3 to 0.-1 with increased i\0; 
supply from 005 to 5 mol mol, the range normally found 
in agricultural soils (Andrews erll/.. 1992). In a separate 
study. using reproductive wheat plants. LWR increased 
from around 0.2 to 0.3 with increased NO; concentration 
from 0.5 to 12 mol mol (Hocking and l\1e):er, 1991). The 
mechanism of the N effect on dry matter partitioning is 
not known. For a range of species supplied 1\'° .. 0. S:R 
was positively correlated with tissue N content (eg. 
Hirose. 1986; Ingcstad and Agren. 1991: Boot er Ill., 
1992)0 Several reports indicate that for a similar total 
plant doWI. S:R is greater with I\'H: than with 1\'0)0 as an 
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N supply (Andrews, 1992; 1993). Experiment 1 
compared the effects of NO)' and NH/ on S:R, LWR 
and tissue reduced-N content of barley in the vegetative 
phase. Total plant d.wt increased with applied NOl' or 
NH/ concentration over the range 0 - 6 mol m·l, then 
changed little with increasing N supply thereafter (Fig. 
I a). Leaf area increased with applied N over the range 
o - 10 mol m·l (Fig. Ib). At higher external N 
concentrations both d.wt and total leaf area were !!reater 
for plants supplied NO;. Shoot to root ratio and LWR 
increased with increasing total plant d.w! up to 6 mol m·l 
applied N (Figs. lc,d) but for any gh:en d.wt both 
parameters were greater for plants supplied NH;. as has 
been iound previously (Cox and Reisenhauer. 1973; 
Timpo and Neyra, 1983; Bowman and Paul. 1988; 
Troelma tr al., 1992). However, for a given plant d. wt. 
tissue reduced-N content was greater with l\1l; than with 
NO,' and if S:R and LWR are plotted against plant 
reduced-II: content, then there are no signiticant 
differences between the two forms of N (Figs. 1e,f). 

Andrews (1992) proposed that the II:03' effect on S:R 
can t-e explained by the effect of increased NO,o 
assimilation and protein synthesis on photosynthesis, and 
hence growth, and by competition between the NO; 
assimilation/protein synthesis processes and growth for 
energy derived from photosynthesis. It was argued that 
increa5ed 1\'0)0 assimilation/protein synthesis results in an 
incre:lsed proportion of energy from photosynthesis being 
utilised in processing N at the expense of growth, and 
that this is reflected in a higher tissue reduced-N content. 
OYer part of the external N03' concentration range 0.1 to 
20 mol mol, the effect of increased NO)o 
assimilation/protein synthesis on photosynthesis is so 
great that increased photosynthate is available for growth. 
It wa5 proposed that the increase in shoot d. wt relative to 
root dowt O\Oer this range is due to proximity of the shoot 
to the carbon (C) source and increased N a\'ailability for 
growt~o As 1\°0,' assimilation/protein synthesis increases, 
N use efficiency decreases. When NO)o 
assimiiJtion/protcin synthesis increases to a point where 
photosynthate available for dry matter production 
decrelses. S:R wi1l sti1l increase as the shoot will realise 
a gre3ter proportion of its growth potential due to its 
proxi::lit)' 10 the source of C and the availability of 
reduced N for growth. 

Tr.~re are reports in the literature that dry matter 
produ.:tion per unit N is greater for 1\'0; than for NH/ 
(Cox lnd Reisenhauer, 1973; Bowman and Paul. 1988; 
Troelma er al., 1992). This was found to be the case in 
experiment I (Fig. 2a). It was also found that leaf area 
per unit leaf N was greater for plants supplied N03' (Fig. 
2b)0 This effect does not appear to have been reported 
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Figure 1. The effects of different concentrations of applied nitrate (-) or ammonium (M on total plant dry 
weight (d.wt)(A) and leaf area (B) and the relationships between shoot to root d.wt ratio (S:R) 
and plant d.wt (C), leaf weight ratio (LWR) and plant d.wt (D), S:R and plant %N (E) and LWR 
and plant %:'11 (F) for the two N forms. Error bars indicate LSD"."l' 
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before. Possible reasons for greater efficiency in leaf 
area production with NO)' in comparison with I'iH4• are 
discussed below. 
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weight (d.wt) and total plant N (A) and 
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barley supplied various concentrations of 
nitrate (_) or ammonium (.~). 
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Leaf Area Development 
Nitrogen availability strongly influences the growth 

characteristics of leaves of the five main temperate 
cereals (Andrews et al., 1991 b). Specifically, additional 
N as NO)' over the range 0.1 - 5 mol m') caused a 
decrease in duration of extension growth but increased 
maximum and mean extension rate and final len2th of 
main stem leaves 2 - 4. In general, the greater part of 
these responses occurred with increased applied NO)' 
from 0.1 - 1.0 mol m·). The magnitude of the response 
to NO)' was considerable and increased with increased 
leaf number 1 - 4. For example, increased applied NO)' 
from 0.1 to 1.0 mol m') caused a two to threefold 
increase in maximum and mean extension rates and at 
least a twofold increase in tinal length of leaf 3 of all 
cereals. Kitrate also had effects on area of leaves I - 4 
of all cereals. As with final length, final area increased 
substantially with increased applied NO.1' from 0.1 - I,D 
mol m';. In contrast to leaf length, leaf area for all 
species increased substantially with increased applied 
i'0)' from 1.0 - 5.0 mol m'). These data emphasise that 
even in cases where rate of leaf extension and final leaf 
length are unaffected by NO)' supply, leaf area can be 
affected greatly. 

Increased indi\'idual leaf area with additional N must 
be due to increased cell size, increased cell number 
and/or changes in leaf architecture. The main effect of 
additional N has usually been attributed to increased total 
cell number. although cell size has also been found to 
increase (Humphries and Wheeler, 1963: Dale, 1972; 
Dale and }.Iilthorpe. 1983; Hay and Walker. 1989). We 
have found that 1\"H4• is similar to NO)' with respect to 
its effects on duration of growth, extension rate, and final 
length and area of main stem leaves. 2 - 5 of barley 
(experiment 2a - data for leaf 4 are shown in Fig. 3). 
The major part of the response occurred O\'er the range 
o - 2 mol m'). In experiment 2b, individual area of leaf 
3 was twice as great at 5.0 mol m') NO)' compared to 0.5 
mol m'; (T:lble 3). Increased leaf area with additional 
l\O)' was associated with an increase in both epidermal 

Figure 3. (opposite) The effects of different 
concentrations of applied nitrate (_) or 
ammonium (to) on the duration of growth 
(A), mean extension rate (B) and final 
leaf area (C) of leaf 4 of barley (Hordeum 
I'/I[gare L. c\'. Triumph). Error bars 
indicate LSD".w 
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27 

Table 3. The effects of 0.5 or 5.0 mol m" nitrate 
(NO,J on area, non-"einal epidermal cell 
number and cell area (see text) of leaf 3 of 
barley (Hordel/m vl/lgare L. cv. Triumph). 

Appplied NO)' Leaf area Cell number Cell area 
(mol m'~) (cm~) (x 10' leaf') (dO" cml) 

0.5 
5.0 

s.e.m. 

5.63 
12.70 

0.28 

1.07 
1.42 

0.04 

2.34 
4.00 

0.06 

cell number and size. However, for this leaf at least. 
increased leaf area with additional NO)' was due more to 
increased cell size than to increased cell number. 

Cell expansion requires the influx of water into the 
cell. This occurs in part as a result of the lowering of 
the cell water potential through the accumulation of 
solutes. Final cell size is determined by the availabilit\· 
of solutes and water, the extensibility of the existing ceil 
wall and the availability of C for new cell wall material. 
The most common solute in plant cells appears to be 
sucrose, produced by photosynthesis (Morgan. 1984). 
Nitrogen availability strongly influences photosynthetic 
rate, hence !!reater cell size with additional NO,' could be 
due to inc~eased C assimilation resulting in greater 
sucrose availability for osmotic urn and cell wall 
production. Greater leaf area per unit N with NO)' 
compared to NH; (Fig. 2) could be due to increased 
levels of osmoticum and hence di fferences in cell size. 
In this case differences in site and pathway of N01' and 
1\11; assimilation may be important. In plants. Ni-!:;-N 
is con\'erted into amino acid-!\' primarily in the root; if 
1\11.· is transported to the shoot it can be toxic (Mehrer 
and f-Iohr. 1989). In contrast. at high external NO~' 
concentrations. a substantial. if not major, proportion of 
NO)' assimilation in cereals occurs in the shoot (Andrews 
I!t al.. 1992). Nitrate can accumulate to substantial levels 
in cereal leaves (Andrews et (II.. 1992) and together with 
counter ions such as potassium. can contribute to the 
osmotic potential of the cell (Blom-Zandstra and Lampe . 
1985: Steingrover et al.. 1986), In addition. the 
assimilation of NO)' leads to the generation of hydroxyl 
ions. Hydroxyl ions are neutralized by organic acids 
which are also osmotically active (Raven. 1985). Hence. 
at higher external N concentrations. increased leaf area 
per unit N with NO)' compared to NH; could at least in 
part be due to increased cell size caused by greater levels 
of osmoticum. Further work is required to determine the 
nature and concentration of solutes in the leaves of plants 
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supplied different levels of NO)' and NH/ to assess the 
importance of site of NO)' assimilation in determining 
leaf area. 

At the plant level. additional N can increase total 
plant leaf area in cereals by increasing leaf number. 
Under field conditions. additional N does not normally 
have a strong effect on rate of development of the main 
stem (Langer and Liew. 1973) and increased leaf number 
with additional N is likely to be due to increased tiller 
production and/or more leaves per tiller. The capacity to 
produce tillers varies considerably in temperate cereals. 
For example. uniculm barleys have little capadty for 
tiller production while some cultivars of rye can have 
over 20 tillers. Tillering capacity appears to be an 
important factor determining the ability of cereals to 
respond to N and hence. to some extent determines the 
overall growth potential of the plant (Andrews et al .. 
1992). Most commercial cultivars have some tillering 
capacity and an increase in leaf number via increased 
tiller number is likely to contribute to increased plant 
leaf area with additional N. For example. it has been 
shown that additional N at sowing can result in a 40% 

Table 4. The effects of 0, 100 or 200 kg ha'i ~ 
applied at so\\ing to spring barley 
(Hordelllll I'lligare L. C\·. Triumph) and 
wheat (Tritic/lm aestil'/I/n L. c\'. Otane) 
grown at Lincoln, Canterbury. !\Iean 
canopy growth rate (MGR). maximum 
canopy leaf area index (MAXLAI) attained 
and final quadrat grain yield are 
presented. 

Applied N 
(kg ha'!) Barley Wheat 

l\lGR (LAI d· l ) 

0 0.077 0.037 
100 0.121 0.0-10 
200 0.128 0.0.+6 

s.e.m. 0.007 0.002 

I\IAXLAI 
0 4.4 3.2 

100 5.5 3.8 
200 6.0 .j.0 

s.e.m. 0.25 0.15 

Grain yield (T ha'l) (quadrat) 
0 6.70 5.80 

100 7.67 6.55 
200 7.86 6.6-1 

s.e.m. 0.15 0.10 
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increase in tiller number of Otane wheat by the 5111 leaf 
stage under conditions where the rate of development of 
the main stem is unaffected by additional N (Andrews et 
al.. 1990). 

Canopy Development 
At the crop level. individual plants form a canopy. 

The extent of canopy development is usually quantified 
in terms of the leaf area index (LA!. leaf area per unit 
ground area). LA! determines the fraction of available 
photosynthetically active radiation intercepted by the 
canopy and hence crop dry matter production (Hay and 
Walker. 1989). For cereals. crop dry matter production 
is usually positively correlated with grain yield (Biscoe 
and Gallagher. 1977). 

The effects of additional N on individual leaf and 
total plant leaf area are reflected at the crop level by 
increases in rate of canopy development. maximum LA! 

Table 5. Effects of N application at sowing on seed 
head number, grains per head, individual 
grain weight and grain %N of spring sown 
barley (Horde/III/ mlgare L. c\'. Triumph) 
and wheat (Tritic/l1II aestiv/l1II L. C\·. 

Otane). 

Applied N 
(kg ha'!) Barley Wheat 

Head number (m':) 
0 821 427 

100 1028 493 
200 1049 483 

s.e.m. 13.8 12.1 

Grains per head 
0 25.0 35.1 

100 27.5 37.5 
200 27.2 38.6 

s.e.m. O.4l 0.74 

Individual grain weight (mg) 
0 51.0 53.4 

100 46.l 51.9 
200 44.7 51.7 

s.e.m. 1.4 1.09 

Grain 'leN 
0 1.52 2.06 

100 1.93 2.33 
200 2.2l 2.38 

s.e.m. 0.12 0.09 
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achieved and final grain yield (experiment 3 - Table 4). 
Often, the component of yield most affected by 
additional N is head number, which usually reflects an 
increase in the tiller number (Table 5, Hay and Walker, 
1989; Wibberley, 1989). Nitrogen availability can also 
affect grain quality. In experiment 3, N applied at 
sowing increased the grain N content of both species 
(Table 5). For wheat, high grain N content is desirable 
as it increases baking quality while for barley low grain 
N results in better malting characteristics (Wibberley, 
1989). 

Conclusions 
This paper reviews the effects of N on leaf growth of 

temperate cereals. It is concluded that: 

I) Nitrogen availability affects leaf growth from the 
seedling stage to maturity. 

2) Increased rate of mobilization of seed reserves with 
additional NO)' is related to increased water uptake. 

3) An important factor determining partitioning of dry 
matter to leaf. stem and root is plant N content. 

4) Increased individual leaf area with additional N is due 
to greater cell number and greater cell size. 

5) For most cultivars. increased leaf number due to 
increased tillering is likely to contribute substantially 
to increased leaf area with additional K 
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