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A series of eight experiments was conducted to investigate the requirement for thyroid 

hormones in neuroendocrine processes which lead to the seasonally anoestrous state in 

red deer hinds. 

The first two experiments used thyroidectomized, ovariectomized, oestradiol-treated 

hinds which received various thyroid hormone replacement treatments (n = 5 per 

group) to investigate the timing and dose-responsiveness of thyroid hormones in 

bringing about seasonal oestradiol-induced suppression of plasma LH concentration. 

A significant seasonal decline in mean plasma LH concentration during September 

(coinciding with the onset of anoestrus in entire cycling hinds in New Zealand) was 

observed in all thyroidectomized hinds in both experiments regardless of T 4 or T3 

treatment. When oestradiol implants were removed in November or December, mean 

plasma LH concentrations increased significantly in all but one of hinds in which T 4 

had been administered at very low doses by subcutaneous implants, and mean plasma 

LH concentrations and LH pulse amplitude increased in approximately half of hinds 

administered T3 at varying doses by subcutaneous injections over a one-week period 

in October. These results suggested that thyroid hormones are not required for 

steroid-dependent reproductive suppression, but could possibly playa role in steroid­

independent suppression of LH secretion. Because problems were encountered in 

delivering appropriate doses of thyroid hormones in both experiments, further 

confirmation of these findings was required. Therefore in the next experiment the role 

of thyroid gland secretions was examined in euthyroid (n = 5) and thyroidectomized 

(n = 4) ovariectomized hinds treated with oestradiol implants. These implants were 

removed for about one month on three occasions to examine the effect of 

thyroidectomy on steroid-independent control of seasonal LH secretion. Duri~g the 

non-breeding season basal and GnRH-induced plasma LH concentrations declined in 
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all hinds in the presence of oestradiol, but returned to breeding season levels when 

oestradiol was withdrawn in November. In a concurrent experiment, thyroidectomy of 

ovary-entire hinds (n = 7) during the breeding season prevented the cessation of 

oestrous cyclicity in spring; this was in contrast to oestrous cyclicity in T 4 replaced (n 

= 4) or euthyroid control (n = 5) hinds which ceased to occur in early September. 

Collectively, these results indicate that thyroid hormones are required for the 

termination of the breeding season in cycling red deer hinds and that this action occurs 

via steroid-independent neuroendocrine pathways. 

Two experiments were conducted using neurotransmitter receptor agonists and 

antagonists to identify neural pathways in the brain which mediate LH suppression by 

oestradiol and by steroid-independent mechanisms, and to test if the thyroid gland is 

required for activation of these pathways during the non-breeding season. It was 

concluded from the lack of plasma LH responses to doparninergic and opioidergic 

agonists and antagonists in ovariectomized and ovariectomized, thyroidectomized 

hinds (n = 5) that neural pathways involving doparnine-D2 receptors do not mediate 

oestradiol-induced seasonal suppression of plasma LH concentrations, and neither 

dopaminergic or opioid neural pathways mediate non-steroidal suppression of plasma 

LH concentrations. However preliminary evidence was obtained for a stimulatory 

role of serotonergic neural pathways in controlling LH secretion. 

Another experiment was conducted to identify when the steroid-independent 

mechanisms which suppress LH concentrations during the non-breeding season are 

responsive to thyroid hormones. T4 treatment at the beginning of or during the non­

breeding season was effective in bringing about suppression of plasma LH 

concentration in thyroidectomized, ovariectomized hinds (n = 5 per group), but this 

action of thyroid hormones did not occur during the breeding season. These results 

show that the steroid-independent mechanisms which contribute to seasonal 

suppression of plasma gonadotrophin concentrations require thyroid hormones to be 

present only from around the time of the end of the breeding season for their normal 

expression, and they remain responsive to thyroid hormones after this period. 

Lastly, the feasibility of achieving out-of-season breeding using thyroidectomized 

hinds (n = 9) was evaluated by comparing oestrous behaviour, ovulation and 
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pregnancy rates to those of euthyroid control hinds (n = 7) following synchronization 

of oestrous cycles. There was a non-significant trend for a greater occurrence of 

oestrous behaviour and ovulation in thyroidectomized hinds compared with euthyroid 

controls during the non-breeding season, but the pregnancy rate following out-of­

season mating with a thyroidectomized stag was low, suggesting that a side effect of 

thyroidectomy may be impaired fertility. Six out-of-season pregnancies were obtained 

from eight matings, however because three of these pregnancies occurred in euthyroid 

control hinds no improvement in out-of-season reproductive performance could be 

attributed to thyroidectomy. It is likely that if the actions of the thyroid glands are to 

be exploited as a tool for achieving out-of-season breeding in this species, techniques 

will have to be developed for specifically blocking or overcoming the effects of 

thyroid hormones on the reproductive neuroendocrine centres without causing general 

hypothyroidism and its associated side-effects. 
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Chapter 1 

Introduction 

Seasonal breeding is crucial to the survival and reproductive success of the vast 

majority of vertebrate species inhabiting temperate regions. Seasonal changes in 

environmental factors such as photoperiod interact with an underlying endogenous 

rhythm in many long-lived species to bring about alternate periods of reproductive 

activity and quiescence, the timing of which ensures that the birth of young occurs at a 

season when environmental conditions most favour neonatal survival (Farner, 1985; 

Gwinner, 1986; Nicholls et al., 1988a, Lincoln, 1992). In farm animals, our 

understanding of the neuroendocrine mechanisms that control reproductive 

seasonality comes predominantly from studies in the ewe. A current hypothesis for 

control of reproductive seasonality arising from such studies is that the level of 

responsiveness of the hypothalamus to the negative feedback of oestradiol is the main 

factor determining the frequency of gonadotrophin secretion and hence the ability to 

ovulate (e.g. Karsch et aI., 1984). However these mechanisms may differ in other 

species such as the red deer (Cervus elaphus), which has not been subjected to genetic 

modification by centuries of selective breeding (Fisher and Bryant, 1993). It is 

therefore important that our understanding of reproductive function is not confined to 

a single species. 

Red deer exhibit a rigidly programmed seasonal physiology and a relatively short 

mating season, timed to synchronise the production of offspring with the season of 

food abundance in the wild (Lincoln and Short, 1980; Lincoln, 1992). They comprise 

the prevalent deer species in New Zealand, and along with fallow deer (Dama dama), 

form the basis of a rapidly growing deer farming industry within the world's temperate 

regions (Asher et aI., 1991). Calving of deer in New Zealand occurs between the 

months of November and January following mating in April and May. In agricultural 

systems however, maximal grass production rates occur several weeks before the peak 

in food requirement of the lactating hind. Pasture production in most parts of New 

Zealand peaks in late October to early December (Lynch, 1949; Korte et al., 1987), 

after which time a decline in both quality and growth rate occurs principally due to 



low rainfall in mid summer. The mismatch of plant production and animal feed 

requirements has profound effects on the economics of farmed red deer, such as the 

need for supplementary feeding and early weaning. Considerable research effort has 

therefore been devoted to studying the physiological mechanisms underlying the 

timing of the breeding season in domesticated deer species. 

2 

Seasonal changes in reproductive state have been shown within the last two decades 

to be dependent on the presence of thyroid hormones in a variety of species including 

certain birds, sheep and red deer (Karsch et ai., 1995). In the ewe, the profound 

suppression of the release of gonadotrophin-releasing hormone (GnRH) and 

luteinizing hormone (LH) by oestradiol does not occur in the absence of thyroid 

hormones (Webster et ai., 1991b). In the red deer hind, suppression of LH by 

mechanisms not involving oestradiol appear to contribute to the non-breeding state to 

a much greater degree than is the case for the ewe (Meikle and Fisher, 1996), and thus 

the hind provides a unique model for studying seasonal reproductive transitions and 

the role of the thyroid glands in mediating these processes. In addition, a better 

understanding of this role could lead to the development of techniques which exploit 

the actions of thyroid hormones to enable manipulation of the timing of mating on 

commercial deer farms, thus allowing calving to occur at a more favourable time of 

the year for lactation and rearing. 

This thesis includes a review of the physiological basis for seasonality and the 

oestrous cycle of red deer hinds and the present state of advanced breeding 

technology, as well as detailing a series of experiments which investigate the role of 

thyroid hormones and various neuronal pathways in bringing about the non-breeding 

state. Chapter 4 briefly describes two experiments which investigated the timing and 

dose-responsiveness of thyroid hormones in suppressing neuroendocrine reproduction 

in ovariectomized oestradiol-treated hinds. Because these experiments were impaired 

by problems encountered in delivering appropriate doses of thyroid hormones and by 

use of an inappropriate model animal (as shown by subsequent experiments), they are 

presented in summary form only. Chapters 5 - 7 describe experiments which 

examined the neuromodulation and role of the thyroid glands in steroid-dependent and 

steroid-independent control of LH secretion, the time of year when the steroid-'. 

independent gonadotrophin suppression mechanisms are responsive to thyroid 



hormones, and the role of thyroid hormones in seasonal patterns of oestrous cyclicity. 

These three chapters are largely based on papers which have been submitted for 

publication in international journals. Chapter 8 describes an attempt at out-of-season 

breeding in thyroidectomized red deer hinds. 

3 



Chapter 2 

Literature Review 

2.1 Neuroendocrine control of seasonal breeding in temperate 
animals 

It has long been recognised that many seasonally breeding species exhibit an annual 

cycle of reproduction in is regulated principally by environmental photoperiod 

(Yeates, 1949; Hafez, 1952; Turek and Campbell, 1979). The link between 

photoperiodic signals and reproductive responses involves the pineal gland and its 

secretory product, melatonin, which in turn modifies the pulsatile secretion of the 

pituitary gonadotrophins via their hypothalamic releasing factor, gonadotrophin 

releasing hormone (Karsch et ai., 1984). 

4 

Under natural environments, the annual cycle of reproductive activity in sheep, deer 

and other seasonally breeding animals operates in close synchrony with annual 

fluctuations in daily photoperiod (Robinson et aI., 1985; Robinson and Karsch, 1988; 

Loudon and Brinklow, 1992). The effect of photoperiod is to entrain a built in or 

endogenous rhythm, which occurs in many species even under constant daylengths 

(Farner, 1985; Gwinner, 1986; Karsch et al., 1989b). The mechanisms by which a 

change in photoperiod is transformed into an alteration in gonadotrophin secretion can 

be divided into three major steps. First, the length of the day is perceived and an 

appropriate neural signal is transmitted to the pineal gland. The second step is 

transduction of this neural information into an endocrine signal by the pineal gland. 

Finally, the endocrine signal from the pineal is translated into a change in 

gonadotrophin secretion by the hypothalamo-hypophyseal axis (Goodman, 1988). 

2.1.1 Hormonal control of seasonality in sheep 

Role of melatonin 

Light and dark photoperiodic signals are transmitted from the eyes first to the 

suprachiasmatic nuclei and then to the paraventricular nuclei of the hypothalamus. 

Sympathetic innervation then transmits the signal to the pineal gland, which 
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synthesises and secretes melatonin during darkness (for reviews see Karsch et ai., 

1984; Arendt, 1986, Malpaux et ai., 1996). The duration of secretion of melatonin 

therefore indicates the length of each night and is thus a measure of daily photoperiod. 

The nature of the interaction between melatonin and the hypothalamus, pituitary and 

gonads however, is not yet well understood. While it is thought that endogenous 

melatonin operates centrally in the mediobasal hypothalamus to alter pulsatile 

secretion of gonadotrophin releasing hormone (GnRH) (Malpaux et ai., 1996), it has 

recently been shown that melatonin can act at the level of the anterior pituitary gland 

to alter the secretion of prolactin in hypothalamo-pituitary disconnected rams (Lincoln 

and Clarke, 1994; 1995). It is still unclear whether melatonin has other sites of action 

in ruminant animals at the level of the gonads to either activate or inhibit their 

function (Kennaway and Rowe, 1995). 

Roie of photoperiod and the endogenous rhythm 

One hypothesis which has been suggested for species with a mating season in the 

autumn (such as sheep, goats and deer) is that the change from long to short periods of 

daylight following the summer solstice leads to an increase in the pulsatile secretion 

of GnRH, which in turn activates the reproductive axis (Lincoln and Short, 1980; 

Lincoln, 1992). However Malpaux et ai. (1989) showed that the time of onset of the 

breeding season in the Suffolk ewe did not depend on decreasing daily photoperiod 

after the summer solstice or on the cessation of increasing photoperiod as this solstice 

approaches, but rather was initiated several months before the breeding season by 

lengthening daily photoperiods during late winter and early summer. It has recently 

been demonstrated in pinealectomized ewes that delivery of melatonin signals which 

mimic those normally secreted by the pineal gland during spring and summer is 

sufficient to synchronise the endogenous reproductive rhythm in the absence of any 

other photic cues (Woodfill et ai., 1994). It appears that although shortening 

daylengths prior to the transition into the breeding season do not time the onset of 

reproductive activity in the ewe, they do contribute to maintaining its full duration 

(Wayne et ai., 1990; Malpaux and Karsch, 1990; O'CaUaghan et ai., 1991). 

Although the transition to anoestrus can be driven by exposure to artificially elevated 

photoperiods (Dahl et ai., 1994), studies have shown that increasing daylength~ are 

not required for this reproductive transition to occur at the normal time (e.g. Robinson 
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and Karsch, 1984; Malpaux et aI., 1988). Rather, it appears as if the end of the 

breeding season is associated with an inability to respond to the stimulatory effects of 

short days. This loss of reproductive response to inductive photoperiod (termed 

'photorefractoriness ') is thought to playa critical role in the natural transition to 

seasonal anoestrus in certain breeds of sheep. Reproductive refractoriness can be 

defined as the physiological state which develops following prolonged exposure to a 

fixed photoperiod, and in most species it manifests itself as a spontaneous reversal in 

the prevailing neuroendocrine state (Nicholls et al., 1988a). While the lack of 

decrease in day length around and after the winter solstice may play some role in 

timing the end of the breeding season, the primary reason for the transition into 

anoestrus has been shown to be an obligatory tum-off, i.e. the expression of the 

underlying endogenous rhythm (Malpaux et al., 1988). Refractoriness in the Suffolk 

ewe to short (inductive) photoperiod is not due to an inappropriate secretory pattern of 

melatonin (Malpaux et al.,.1987); however relatively little is known about the specific 

neuroendocrine mechanisms involved in developing and expressing 

photorefractoriness. Responsiveness to short or long photoperiods can be restored in 

ewes that have become photorefractory to either of these regimes by exposure to a 

brief period (30 days) of long or short photoperiods, respectively (Jackson et al., 

1988). 

These conclusions support an hypothesis of an endogenous rhythm of reproduction in 

which the increasing photoperiods of late winter and early summer synchronise the 

process that leads to reproductive onset and the long days around the summer solstice 

are necessary to delay the breeding season until early autumn. 

Role of non-photoperiodic factors 

Nutrition, temperature and rainfall are believed to cause some entrainment of the 

endogenous rhythm, however because the annual change in photoperiod is so regular 

between years it is undoubtedly the predominant factor for temperate species (Lincoln 

and Short, 1980). Variations in the expression of reproductive responses to nutritional 

alterations among sexes, breeds and species probably reflects variations in the role of 

this environmental factor as a modulator of reproductive function (for review see 

Martin and Walkden-Brown, 1995). 
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Reproduction is also influenced by social factors. For example, oestrus and ovulation 

can be induced in anovulatory females by exposure to ewes induced to oestrus (Zarco 

et al., 1995). Introduction of rams is also able to increase LH pulse frequency and 

induce ovulation in ewes during the non-breeding season, a phenomenon known as 

the 'ram effect' (Martin et al., 1986). 

Role of pituitary gonadotropins and ovarian steroids 

Seasonal changes in the secretion of the gonadotrophins luteinizing hormone (LH) and 

follicle stimulating hormone (FSH) from the anterior pituitary gland influence the 

timing of the onset and termination of the breeding season. Both hormones are known 

to be regulated by the hypothalamic decapeptide, GnRH (Martin, 1984). These 

hormones are secreted in discrete pulses, each LH episode being temporally related to 

(and presumably the direct consequence of) an episode of GnRH (Levine et al., 1982; 

Clarke and Cummins, 1982, Karsch et al.; 1987; Barrell et at., 1992; Karsch et al., 

1993). Feedback effects of ovarian steroids (predominantly negative) control the 

pulsatile secretion of GnRH from the hypothalamus and LH from the anterior pituitary 

gland (Hauger et at., 1977, Karsch et al., 1977; Goodman and Karsch, 1980; 

Goodman and Karsch, 1981). 

The key observation that laid the foundation for much of the recent progress in 

elucidating the physiological mechanisms by which changes in day length alter 

ovarian function was the demonstration of dramatic seasonal variations in the negative 

feedback actions of oestradiol on tonic LH secretion (Legan et al., 1977; Karsch et al., 

1980). Compelling evidence was obtained from a study in which ovariectomized 

ewes were treated with oestradiol-containing implants which maintained stable 

physiological oestradiol levels (Legan et al., 1977). Under this treatment, there was a 

striking seasonal change in circulating LH which was uniformly undetectable in 

anoestrus and greatly elevated during the breeding season. In contrast, there was no 

major variation in serum LH concentrations in a group of ovariectomized ewes not 

treated with oestradiol. The seasonal shifts in LH coincided with transitions between 

breeding and anoestrus in intact ewes. Subsequent findings indicated that this 

seasonal change also occurs in the intact ewe (Karsch et al., 1979) and that it is 

controlled by environmental photoperiod (Legan and Karsch, 1979, 1980). 
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Although the original work by Legan, Karsch and coworkers indicated that 

photoperiod exerts effects only on oestradiol negative feedback, more detailed 

analysis revealed seasonal alterations in LH secretion in ovariectomized ewes not 

treated with oestradiol (Goodman et al., 1982; Robinson et aI., 1985). A small but 

significant decrease in LH pulse frequency and an increase in pulse amplitude occurs 

during the non-breeding season in the absence of oestradiol (Goodman et ai., 1982), 

so that mean LH concentrations are not lower at this time compared to the breeding 

season (Legan et aI., 1977) and may even be higher (Pau and Jackson, 1985). These 

seasonal changes in LH pulse frequency in ovariectomized animals, which are directly 

proportional to the length of the prevailing photoperiod (Robinson et al., 1985), are 

often referred to as the 'steroid-independent' actions of photoperiod. 

Within the last decade, the thyroid gland has been increasingly implicated in the 

control of seasonal transitions in mammals. The role of thyroid hormones in seasonal 

reproduction is reviewed in detail in Section 2.2. 

2.1.2 Hormonal control of seasonality in red deer 

As is the case with the majority of species that have evolved in temperate and cold 

climates, red deer rely principally on fluctuations in environmental photoperiod to 

entrain their annual reproductive cycles. This was first noted as a rapid adaptation of 

seasonal reproductive cycles to changes in ambient photoperiod when deer were 

transported between the northern and southern hemispheres (Marshall, 1937; Otway, 

1985). The importance of photoperiod has since been demonstrated in several studies 

in red deer stags by altering the timing of the antler cycle in response to artificially 

manipulated photoperiods (e.g. Jaczewski, 1954; Suttie et al., 1989). In pubertal red 

deer hinds subjected to artificially shortened photoperiods, the onset of the breeding 

season was significantly advanced (Webster and Barrell, 1985). As in sheep, the 

effects of photoperiod are mediated by the pattern of melatonin secretion from the 

pineal gland, and treatment of anoestrous hinds with exogenous melatonin by daily 

injection, orally or by subcutaneous implants can advance reproductive activity 

(Webster and Barrell, 1985; Adam et aI., 1986; Wilson, 1992). 

Episodic secretion of LH in entire red deer hinds is greater in early winter (1-2' 

pulses/4 h) than in the non-breeding season «1 pulse/4 h), probably due to a seasonal 

:" .. '.'.-.--.'.".,.-. 
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increase in episodic GnRH secretion (Duckworth, 1992; Limsirichaikul, 1992). LH 

pulse frequency has been measured in more detail in Pere David's deer hinds. 

McLeod et al. (1992) reported a varying pulse frequency throughout the non-breeding 

season of Pere David's hinds. Mean LH pulse frequency in early anoestrus (2.3 

pulses/12 h) was significantly lower than in mid and late anoestrus (3.7 and 4.4 

pulses/12h) and during the oestrous cycle (follicular phase: 7.1 pulses/12 h; luteal 

phase: 2.9 pulses/12 h). These authors suggested that there is a period of deeper 

anoestrus early in the non-breeding season in Pere David's deer than there is after the 

middle of the non-breeding season. The ability of Pere David's hinds to ovulate 

following pulsed or continuous administration of GnRH is also reduced during early 

anoestrus (McLeod et al., 1991; Brinklow et al., 1992). 

While administration of exogenous gonadotrophins such as pregnant mare serum 

gonadotrophin (PMSG) or of GnRH is sufficient to overcome the seasonal inhibition 

of ovulation and oestrus in anoestrous sheep (Smith et al., 1988), seasonally 

anoestrous deer hinds do not always ovulate upon similar treatment (Fisher et al., 

1986, 1989; McLeod et al., 1991; Duckworth and Barrell, 1988; 1991). This suggests 

that insufficient GnRH release may not be the only factor limiting ovulatory activity in 

anoestrous deer hinds (Duckworth, 1992). In addition to this, it has been shown that 

Pere David's deer hinds which do ovulate return to anoestrus immediately after the 

withdrawal of exogenous GnRH treatment (McLeod et al., 1991; Brinklow et al., 

1992). 

Photoperiodic entrainment of the endogenous reproductive rhythm may occur 

differently for red deer than for sheep (see Section 2.1.1), since Duckworth (1992) 

showed that the onset of seasonal breeding activity in mature red deer hinds was not 

affected by the lengthening daily photoperiods in spring (which are important for 

entraiment of the endogenous rhythm in ewes) but was delayed if the autumnal 

decrease in photoperiod is delayed. Deer also appear to differ from sheep with regard 

to the relative importance of seasonal changes in pituitary responsiveness to GnRH 

and steroid-independent mechanisms governing LH secretion; both of which have 

recently been shown to decline dramatically around the time of the summer solstice in 

red deer hinds (Meikle and Fisher, 1996). 
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2.1.3 Neuronal control of seasonal LH and prolactin secretion 

As outlined in the preceeding sections, changes in the length of daily photoperiod 

apparently alter the sensitivity of the hypothalamo-hypophyseal system to the negative 

effects of gonadal steroids, but the neural pathways by which photoperiod exerts these 

effects are still poorly understood despite the increasing research into this area over 

the last decade. 

Since most GnRH neurons do not themselves possess oestradiol receptors in the rat 

(Shivers et al., 1983), ewe (Karsch and Lehman, 1988; Lehman and Karsch, 1993), 

guinea-pig (Watson et al., 1992) or rhesus monkey (Sullivan et al., 1990) it is 

generally accepted that the increasing negative effects of oestradiol at the termination 

of the breeding season must be conveyed to the GnRH secretory neurons via other 

neurons which are afferent to them. Several potential neurotransmitters have been 

implicated in mediating this effect of photoperiod, based mostly on studies involving 

either lesions to specific areas of the brain, pharmacological administration of 

neurotransmitters or their antagonists, or immunocytochemical investigations of the 

distribution of neurons and oestrogen receptors in brain regions. There are a lot of 

apparent discrepancies in the results of these studies; these may be accounted for by 

differential stimulation or inhibition of a particular pathway or pathways depending on 

the specificity and potency of the pharmacological agents used and their ability to 

cross the blood-brain barrier, dose, route of administration and physiological status of 

the animal. Some drugs, for example, have agonistic effects at low concentrations but 

antagonistic effects at high concentrations. It should also be remembered that 

pharmacological experiments in whole animals may assess the summation of drug 

actions at multiple sites, so that the observed response probably selects for the 

dominant pathway (Weiner et aI., 1993). In this regard, it is not known whether or to 

what extent the various types of neurons which have been shown to be involved in 

seasonal reproductive changes are connected in parallel or in series. If the former is 

the case, blocking or activating only one neuronal pathway may have a relatively 

small effect on LH secretion. 
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Endogenous opioid pep tides 

Most, but not all, of the experiments using opioid agonists or antagonists have 

concluded that endogenous opioid peptides are relatively unimportant in suppression 

of the GnRH pulse generator during the non-breeding season by oestradiol (e.g. Meyer 

and Goodman, 1985; Brooks et aI., 1986b; Yang et al., 1988; Currie et aI., 1991) or 

testosterone (Lincoln et al., 1987). The regional distribution and concentrations of B­

endorphin, one of the opioid peptides, did not vary in the hypothalami of sexually 

active and inactive rams (Ebling et al., 1987). However Shen et al. (1993) 

demonstrated that steroid hormones modulate opioid receptors in ovariectomized 

oestradiol-implanted ewes during the non-breeding season in a receptor subtype- and 

region-dependent manner, and suggested that these steroid-induced changes in 

receptor characteristics could be at least partly involved in the negative feedback 

regulation of LH by ovarian steroids. Moreover, Currie et al. (1993) have recently 

shown that the opioid antagonist naloxone is able to overcome suppression of LH in 

entire anoestrous ewes when perfused into the median eminence, but not when 

administered intravenously. 

Opioid peptides have been shown to be important modulators of progesterone 

suppression in ewes during either season (Brooks et al., 1986b; Yang et al., 1988; 

Whisnant and Goodman, 1988; Currie et al., 1991) and in luteal phase cows (Stumpf 

et al., 1993). The opioid neurons concerned probably exist primarily in the medial 

basal hypothalamus (Whisnant and Goodman, 1994). Limited data suggests that 

opioid peptides mediate oestradiol effects in the breeding season during the luteal, and 

possibly the follicular phases of the oestrous cycle (Brooks et aI., 1986a; Whisnant 

and Goodman, 1988; Currie and Rawlings, 1989; Cosgrove et aI., 1993), possibly by 

inhibiting GnRH pulse size (Goodman et al., 1995). Such inhibitory actions of opioid 

peptides during the breeding season may be inhibited by dopamine during the non­

breeding season (Tortonese and Lincoln, 1995). Opioid peptides have been 

unambiguously shown to suppress LH in prepubertal ovariectomized oestradiol­

implanted ewe lambs (Schall et al., 1991) and heifers (Wolfe et ai., 1991) and 

prepubertal human females (Genazzani et ai., 1993). Contacts between GnRH 

neurons and nearby opioid neurons have been observed in juvenile female rhesus 

monkeys (Thind and Goldsmith, 1988). This suppression of LH by opioids declines 

as animals mature following puberty (Brooks et al., 1986a; Wolfe et al., 1991), and 
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other neuronal pathways such as catecholaminergic pathways appear to become more 

important in subsequent anoestrous seasons (Schall et al., 1991). However some 

results indicate that opioid pathways still modulate the steroid-independent effects of 

photoperiod in mature animals (Shillo et al., 1985; Yang et al., 1988; Schall et al., 

1991; Evans et al., 1994) while others disagree with this finding (Brooks et al., 

1986b; Meyer and Goodman, 1986; Currie et al., 1991). 

The opiate drug morphine increases prolactin concentrations in sheep (Schillo et al., 

1985, Parrott and Goode, 1992). In the rat, opioids are thought to stimulate prolactin 

secretion by reducing dopamine release into the hypothalamo-pituitary portal 

circulation (Gudalsky and Porter, 1979; Van Loon et al., 1980a; 1980b; Wilkes and 

Yen, 1980). The influence of opioid peptides on prolactin secretion may vary with 

season, since in Holstein calves naloxone suppressed prolactin concentrations during 

spring, but increased prolactin concentrations during early winter (Johnson et al., 

1990). Naloxone was shown to act centrally in this experiment, since another 

antagonist which does not readily cross the blood-brain barrier, methyl levallorphan 

mesilate, was without effect on prolactin concentrations. 

Serotonin 

Until recently, the relatively few studies which had investigated serotonergic pathways 

in seasonal reproduction were in general agreement. Using the 5HT 2 receptor 

antagonist cyproheptadine, it has been demonstrated that serotonin is not involved in 

suppression ofLH in intact anoestrous ewes (Meyer and Goodman, 1985). This 

finding was later verified and extended to show that, out of the 7 different 

neurotransmitter antagonists tested, only cyproheptadine was able to reverse the 

steroid-independent actions of photoperiod in ovariectomized ewes (Meyer and 

Goodman, 1986). Because cyproheptadine is not very specific, binding to histamine 

HI receptors with a higher affinity than to 5HT2 receptors, the same research group 

then repeated these results in ovariectomized ewes using methysergide (which is a 

more specific antagonist than cyproheptadine, but may also be a dopamine agonist) 

and parachlorophenylalanine (which blocks serotonin synthesis) (Whisnant and 

Goodman, 1990). Using the latter drug, it was also demonstrated that the steroid­

dependent actions of photoperiod could operate independently of the steroid 

independent actions. These results are in general agreement with those of Riggs and 
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depressed LH release in castrate male sheep. 
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Research from three other groups has shown contradictory findings. Deaver and 

Dailey (1982) showed that intravenous infusion of serotonin stimulates LH secretion 

in a dose-dependent manner. Kao et ai. (1992), reported little effect of cyproheptadine 

at all under any photoperiod in ovariectomized ewes, and some suppressive effects of 

this drug in ovariectomized oestradiol-implanted ewes. It was concluded that 

serotonin had little importance in control of seasonality. In contrast, Le Corre and 

Chemineau (1993a) reported an increase in LH in ovariectomized oestradiol­

implanted ewes under short day refractoriness conditions in response to 

cyproheptadine. These results were verified using three different antagonists with 

different specificities for 5HT (and other) receptors; the general conclusion being that 

serotonin plays a major inhibitory role in control of LH secretion during short day 

refractoriness in ovariectomized oestradiol-implanted ewes, and that 5HT2 receptors 

are probably involved. 

Serotonin is also involved in regulation of prolactin secretion. Using hypothalamo­

pituitary disconnected ewes which were administered intravenously with serotonin, it 

was shown that serotonin itself is not a direct prolactin-releasing factor in sheep, but 

exerts an effect via the hypothalamus or neural lobe (Thomas et ai., 1988). Studies in 

rats also suggest against a direct effect of serotonin on pituitary prolactin secretion 

(Lopez et ai., 1987). Serotonin is thought to stimulate prolactin secretion by 

inhibiting hypothalamic dopamine release (Pilotte and Porter, 1981) as well as by 

stimulating the release of prolactin-releasing factors into hypophyseal portal blood 

(Kaji et ai., 1986). 

Dopamine 

Most studies of dopaminergic involvement in control of GnRH secretion suggest that 

such neurons mediate gonadal steroid suppression of LH during anoestrus. Dopamine 

infusion decreased mean LH in ovariectomized anoestrus ewes (Deaver and Dailey, 

1982). Tortonese and Lincoln (1994a) showed in a simple experiment using entire 

rams that bromocriptine (agonist) could suppress LH on short days but had no ,effect 

during long days, while sulpiride (antagonist) increased LH on long, but not short 
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days. These results suggest an inhibitory dopaminergic system participates in GnRH 

suppression during anoestrus. Pimozide, another antagonist, increased LH in entire or 

ovariectomized oestradiol-implanted, but not ovariectomized non-implanted ewes 

during anoestrus or in luteal phase ewes (Meyer and Goodman, 1985; 1986). 

Dopaminergic suppression of pulsatile LH secretion appears to be mediated via the D2 

rather than the Dl receptor (Curlewis et al., 1991). 

Local injection of pimozide (Hal vern et al., 1991) or the neurotoxin 6-

hydroxydopamine (which specifically destroys catecholaminergic cells) (Thiery et al., 

1989) and radiofrequency lesions (Halvem et al., 1994) in specific hypothalamic sites 

suggest the inhibitory dopaminergic system acts in the medial basal hypothalamus 

(retrochiasmatic area or median eminence) during anoestrus. The inhibition ofLH 

secretion by oestradiol under long days is accompanied by an increase in the rate­

limiting dopamine biosynth~sis enzyme, tyrosine hydroxylase, in the neurons of the 

retrochiasmatic area (A15 nucleus) (Gayrard et al., 1994; 1995), and transfer to short 

days or treatment with exogenous melatonin is associated with a dramatic decrease in 

dopamine content and tyrosine hydroxylase activity in the median eminence (Viguie et 

al., 1996; 1997). Blockade of tyrosine hydroxylase activity stimulates pulsatile LH 

secretion during long days (Viguie et al., 1995). Dopamine probably acts at the level 

of the GnRH terminals in the median eminence rather than on the cell bodies in the 

preoptic area (Kuljis and Advis, 1989; Clarke and Scott, 1993). Melatonin implants 

in the medial basal hypothalamus appear to counteract the suppressive effects of 

bromocriptine on FSH secretion in rams (Tortonese and Lincoln, 1994b). Recent 

experiments involving administration of pimozide to ovariectomized oestradiol­

treated ewes with anterior hypothalamic knife cuts suggests oestradiol exerts its 

effects via dopaminergic input from the rostral hypothalamus (Whisnant and 

Goodman, 1994). 

It is possible that nor adrenergic neurons operating in the preoptic area (Halvem et al., 

1991) may stimulate the inhibitory effects of dopaminergic structures which are 

intermediate to the noradrenergic and GnRH secretory neurons (Goodman, 1989). 

These findings have been reinforced by recent results showing that the inhibitory 

action of noradrenaline implants placed in the preoptic area on LH pulse frequency 
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was blocked by pimozide implants in the medial basal hypothalamus (Goodman et al., 

1994). 

In contrast, some experiments in ovariectomized oestradiol-implanted ewes have 

demonstrated a role for dopamine under conditions of short day photorefractoriness, 

but not long day photosuppression (Kao et al., 1992; Le Corre and Chemineau, 

1993b). Such findings could be explained by the relatively low doses of pimozide 

used in these experiments compared to many of the previously mentioned studies. 

Riggs and Malven (1974) were not able to consistently alter mean plasma LH 

concentrations following intracerebroventricular administration of dopamine at five 

different dosages to castrate male sheep. Tilbrook and Clarke (1992) found no 

response to pimozide in entire, castrate or castrate testosterone injected rams, but a 

significant increase in LH pulse frequency in entire ewes following pimozide, during 

the non-breeding. season. These results are supported by the findings of Lubbers and 

Jackson (1993), which suggest a profound sexual differentiation of the 

neuroendocrine mechanisms controlling seasonal breeding in sheep. 

Immunocytochemical investigations have revealed synaptic contacts between 

dopaminergic (tyrosine hydroxylase positive) and GnRH containing neurons at 

electron microscopic level in mid-luteal phase ewes (Kuljis and Advis, 1989). Others 

have failed to verify this finding (Karsch et al., 1989). Tyrosine hydroxylase positive 

neurons in the arcuate nucleus and periventricular anterior hypothalamus have, 

however, been shown to possess oestrogen receptors in anoestrus ovariectomized 

oestradiol implanted and non-implanted ewes (Karsch and Lehman, 1988; Lehman et 

al., 1993). 

In vitro, dopamine has been shown to increase GnRH release via B-adrenergic 

receptors on GnRH cells cultured from a transgenic mouse tumour (Weiner and 

Martinez de la Escalera, 1993). 

In sheep and red deer under both long and short days, dopamine or its agonists 

suppress prolactin secretion while antagonists increase it (Deaver and Dailey, 1982; 

Deaver et al., 1987; Milne et al., 1990; Regisford and Katz, 1993), and endog~nous 

opioids appear to augment doparninergic inhibition under short days (Ssewannyana 
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and Lincoln, 1990). In red deer hinds, the termination of the breeding season has been 

delayed by administering a long-acting form of bromocriptine to suppress circulating 

prolactin (Curlewis et ai., 1988). However the decrease in dopaminergic activity in 

the median eminence following transfer of ewes to short days appears to be unrelated 

to prolactin inhibition (Viguie et ai., 1997). Activation of central dopamine Dl and D5 

receptors has been shown to stimuiate prolactin release (Porter et ai., 1994; Curlewis 

et ai., 1995). 

Noradrenaline 

Noradrenaline is able to cause the release of LH in oestrogen suppressed ewes in the 

non-breeding season, but not in the breeding season (Scott et ai., 1992; Clarke and 

Scott, 1993). One explanation of these results is that the negative feedback effect of 

oestradiol in the non-breeding season involves the withdrawal of the noradrenaline 

drive to GnRH neurons, so that replacement with exogenous hormone would 

overcome the negative influence. The a-adrenergic antagonists phenoxybenzamine 

and phentolamine reduced mean LH levels in ovariectomized ewes, but did not 

consistently block oestradiol-induced LH release in these animals (Jackson, 1977). 

Season was not mentioned in this study. However other results strongly suggest that 

noradrenergic pathways are inhibitory, since injection of the a-adrenergic antagonist 

phenoxybenzamine increased LH pulse frequency during anoestrus in intact, but not 

ovariectomized, ovariectomized oestradiol-implanted or luteal phase ewes (Meyer and 

Goodman, 1985; 1986). Intravenous noradrenaline infuSion decreased mean LH 

concentration in ovariectomized anoestrous ewes (Deaver and Dailey, 1982), and 

intracerebroventricular infusion of noradrenaline also lowered mean LH concentration 

in castrate male sheep (Riggs and Malven, 1974). Halvem et ai. (1991) suggested an 

inhibitory noradrenergic neural system operates in the preoptic area in intact anoestrus 

ewes, based on local injection of phenoxybenzamine into specific hypothalamic sites. 

LH pulses were also elevated in ovariectomized oestradiol-treated compared with 

untreated ewes after injection of the catecholaminergic neurotoxin 6-

hydroxydopamine into the retrochiasmatic area during anoestrus, although this 

probably reflects destruction of dopaminergic pathways as well (Thiery et ai., 1989). 

As mentioned previously, there is evidence that noradrenergic neurons may stimulate 

the inhibitory effects of dopaminergic cells which in tum innervate the GnRH. 

secretory neurons (Goodman, 1989; Goodman et ai., 1994). 
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In vitro studies using pituitary tissue from castrated ram lambs have suggested that 

adrenaline, acting via a B2-adrenergic receptor, may modulate the pituitary 

gonadotrope's response to GnRH (Swartz and Moberg, 1986). 

Gamma-aminobutyric acid (GABA) 
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Preoptic GABAergic cells in sheep are oestrogen-sensitive, and may be part of an 

interconnected network of preoptic and hypothalamic neurons which mediate the 

influence of oestradiol upon GnRH secretory activity and reproductive behaviour 

(Herbison et al., 1993). Suppression of pulsatile LH secretion in ovariectomized ewes 

with oestradiol is associated with an increase in GABA concentrations in the 

retrochiasmatic area and mediobasal hypothalamus (Gallegos sanchez et ai., 1996). 

GABA is known to inhibit LH release via hypothalamic action in the rat (Jarry et ai., 

1993), and the activity of GABAergic neurons terminating in the rostral hypothalamus 

and median eminence is positively regulated by testosterone in male orchidectomized 

rats (Grattan and Selmanoff, 1994). GABAergic neurons in the preoptic area of the 

rat have been shown to synapse directly on GnRH neurons (Leranth et ai., 1985). 

Mixed findings have been obtained from GABA agonist and antagonist studies in 

sheep (Meyer and Goodman, 1985; 1986; Scott and Clarke, 1993; Clarke and Scott, 

1993). One possible interpretation of the data is that the seasonal 'switch' involves the 

induction of GABAB receptors during anoestrus, and that effects mediated via this 

subtype are the reverse of those obtained through GABAA receptors at this time (Scott 

and Clarke, 1993; Clarke and Scott, 1993). 

Neuropeptide Y 

Neuropeptide Y (NPY) is probably involved in positively mediating the LH surge at 

both GnRH secretory and pituitary levels (Freeman, 1993; Bauer-Danton et ai., 1993; 

Barker-Gibb and Clarke, 1994; Besecke and Levine, 1994). NPY positive cells are 

closely apposed to GnRH somas and dendrites (Karsch et al., 1989). During 

anoestrus, however, oestradiol does not influence expression or release of NPY from 

terminals within the preoptic area or organum vasculosum (regions of GnRH cell 

bodies) or median eminence (region of GnRH cell terminals (Barker-Gibb and Clarke, 

1993). Intracerebral infusion of NPY has been reported to transiently suppreS$ 

episodic LH secretion in ovariectomized ewes (Malven et ai., 1992). 
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Other Neurotransmitters 

Pharmacological evidence suggests that excitatory amino acids such as glutamate, 

aspartate, and N-methyl-D-aspartate (NMDA, a synthetic analogue of aspartate) 

stimulate GnRH and LH release in rats (Farah et aI., 1991; Mahachoklertwattana et 

ai., 1994; Ping et ai., 1994) and male calves (Shahab et ai., 1994). Abundant 

glutamate receptors are present throughout the rat hypothalamus and preoptic area, 

albeit in densities considerably lower than those in other brain regions (Meeker et ai., 

1994). In ovariectomized ewes, administration of NMDA at three different doses did 

not alter LH secretion; however all doses were able to overcome suppression of LH 

release by exogenous oestradiol implants (Estienne et al., 1990). Chronic stimulation 

of a glutaminergic pathway with NMDA can overcome the inhibitory effect of short 

day exposure on LH secretion and testis size in the male Siberian hamster (Ebling et 

ai., 1994). 

In the last few years it has become increasingly apparent that the short-lived gas nitric 

oxide acts as a major endocrine regulator. Nitric oxide may act as a neurotransmitter 

which is involved in initiating the GnRH surge in rats, possibly by stimulating 

excitatory amino acid activation of GnRH release (Bonavera et ai., 1993). Recent in 

vitro studies have suggested both stimulatory (Moretto et ai., 1993) and inhibitory 

(Sortino et aI., 1994) roles for nitric oxide in the control of GnRH secretion. 

Studies using an HI-receptor antagonist have shown that histamine also affects LH 

during anoestrus and during the oestradiol-induced surge in ovariectomized ewes 

(Van Kirk et ai., 1989). However Alexander et ai. (1994) observed inconsistent 

effects of the same antagonist during anoestrus, and concluded that histamine was 

probably not a direct modulator of GnRH release. 

'<-~ ,"->'-' -.~ ... ~ 
~".-.,;: ""--- -.-.---~ 
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2.2 Role of the thyroid glands in seasonality 

There is increasing evidence that the thyroid hormones are also components of the 

system which regulates the seasonal patterns of reproductive activity in mammals and 

birds. This phenomenon was first discovered 50 years ago in birds by Woitkewitsch 

(1940), who reported that thyroidectomized European starlings remained in the 

breeding season indefinitely. 30 years later, Wieselthier and Van Tienhoven showed 

that thyroidectomy of starlings prevented the development of anoestrus. Most reports 

concerning the role of thyroid hormones in seasonal reproduction of mammals have 

used the thyroidectomized ewe as a model (e.g. Nicholls et aI., 1988b; Webster et ai., 

1991a; 1991b), but other species are now being investigated and a considerable body 

of evidence has accumulated to document that the thyroid glands are required for the 

seasonal decline in reproductive function at the termination of the breeding season. 

The role of the thyroid glands in seasonal reproduction in ewes was first reported by 

Nicholls et ai. (1988b), who showed that thyroidectomy late in the non-breeding 

season did not alter the transition into the breeding season but prevented the 

subsequent termination of reproductive activity, so that regular oestrous cycles were 

exhibited for more than one year. 

Different mammalian species studied 

A role for the thyroid glands in seasonal reproduction has been extended from birds 

over the last decade to include golden hamsters (Vriend, 1985), mink (Jacquet et ai., 

1986), sheep (Nicholls et ai., 1988b; Moenter et ai., 1991; Parkinson and Follett, 

1994) and red deer (Shi and Barrell, 1992; 1993). Some species and gender 

differences regarding the role of thyroid hormones are apparent in the results of these 

studies. For example, while removal of the thyroid glands caused ewes to remain in 

the reproductive state indefinitely (Nicholls et ai., 1988b), in the mink thyroidectomy 

merely delayed the onset of sexual quiescence (Jacquet et ai., 1986). Data from two 

studies in golden hamsters (which exhibit reproductive activity under long 

photoperiods) are conflicting. While Vriend (1985) reported that melatonin-induced 

gonadal regression in long day photoinduced hamsters could be prevented by 

treatment with a goitrogenic compund, Champney (1988) was unable to prevent or 



attenuate the occurrence of gonadal regression induced by short photoperiods by 

thyroidectomizing hamsters. 
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The effects of thyroidectomy on seasonal reproduction in ewes appear to be confined 

to the transition to anoestrus in late winter; the timing of the onset of the breeding 

season in autumn is not affected regardless of the time of thyroidectomy relative to the 

breeding season (Nicholls et al., 1988b; Moenter et al., 1991; Thrun et al., 1997). In 

contrast, thyroidectomy of rams at the start of the non-breeding season caused 

premature entry into the next breeding season (Parkinson and Follett, 1994). 

Effects of thyroidectomy on photoperiodically mediated seasonal processes 

Thyroidectomy has been shown not to disrupt sensitivity to photoperiodic stimuli in 

several species, since appropriate prolactin and melatonin responses to fluctuating 

photoperiods are preserved following thyroidectomy (Jacquet et al., 1986; Nicholls et 

al., 1988b; Moenter etal., 1991; Shi and Barrell, 1992; Dahl et al., 1994a). However, 

thyroidectomized ewes failed to exhibit a reproductive neuroendocrine response to an 

abrupt switch from short to long photoperiods (Dahl et al., 1994a). These findings 

indicate that the influence of thyroidectomy on seasonal reproduction is not due to a 

general disturbance of seasonal phenomena or photoperiodic perception, but rather is 

caused by a disruption of the normal response of the hypothalamo-hypophysial axis to 

photoperiodic stimuli. 

Role of thyroid hormones in steroid-dependent seasonal suppression of reproduction 

In ovariectomized ewes treated with constant-release oestradiol implants, 

thyroidectomy late in the non-breeding season did not alter the pronounced increase in 

serum LH concentration at the onset of the breeding season but completely obliterated 

the subsequent fall in both mean serum LH concentration and pulsatile LH secretion at 

the end of the breeding season (Moenter et al., 1991; Webster et al., 1991a). This 

effect was prevented by replacement of thyroxine (T 4) to physiological serum 

concentrations (Webster et al., 1991a). Results of another study by the same workers 

showed that thyroidectomy was also able to prevent the seasonal decline in pulsatile 

GnRH secretion in ovariectomized oestradiol-implanted ewes (Webster et al., 1991b). 
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The role of thyroid honnones in steroid-independent seasonal LH secretion in the ewe 

has received no direct attention; however the results of Moenter et al. (1991) suggest 

that LH pulse frequency and amplitude remain at breeding season values in 

thyroidectomized, ovariectomized ewes during the non-breeding season. 

Permissive mode of action of thyroid hormones 

A seasonal cycle of circulating thyroid honnone concentrations exists for many 

species (Karsch et al., 1995). There is some suggestive evidence that the seasonal rise 

in thyroid honnone concentration around the time of the end of the breeding season 

could actively drive the transition to anoestrus. In ewes made hypothyroid with a 

goitrogenic substance, the breeding season was extended by one or two oestrous 

cycles (Follett and Potts, 1990). In another experiment, ewes made hyperthyroid by 

injection of large doses of T 4 during the breeding season terminated seasonal 

reproductive activity prematurely (O'Callaghan et al., 1993). However more recent 

experiments in red deer stags and ewes'have shown that prematurely increasing 

circulating thyroid honnone concentrations during the breeding season to values 

similar to seasonal peak concentrations, by exogenous T4 treatment, does not result in 

an early transition to the non-breeding season (Shi and Barrell, 1994; Dahl et al., 

1995). Furthennore, in thyroidectomized ewes treated with low doses ofT4 (which 

produced circulating thyroid honnone concentrations equivalent to the seasonal nadir) 

the seasonal decline in serum LH concentration was not delayed relative to euthyroid 

control ewes (Dahl et aI., 1995). These findings strongly suggest that, within the 

normal physiological ranges, thyroid honnones act permissively to bring about the 

non-breeding season rather than in a dose-dependent manner. 

Timing of thyroid hormone action 

The observation that thyroidectomy in the middle of the breeding season, after the 

time when the photoperiodic cues for synchronization of the endogenous rhythm are 

perceived (Woodfill et al., 1994), is effective in preventing the onset of anoestrus 

(Webster et al., 1991) led to the hypothesis that thyroid honnones may act only during 

a short 'window' of time to bring about the seasonal decline in reproductive function 

(Thrun et al., 1993; Karsch et al., 1995). Support for this hypothesis comes from the 

recent finding that thyroid honnones need only be present for a brief period of time 

near the end of the breeding season for the neuroendocrine changes that lead to 
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anoestrus (Thrun et ai., 1996). Subsequent experiments showed that the minimum 

effective period of exposure to thyroid hormones for the transition to anoestrus was 

60-90 days and that exposure to T 4 in autumn, just prior to the start of the normal 

breeding season, failed to provoke development of neuroendocrine anoestrus in 

thyroidectomized ewes (Thrun et ai., 1997). However it remains to be tested whether 

thyroidectomized animals remain responsive to thyroid hormones in early summer, 

when the prevailing photoperiods are inhibitory to reproduction. 
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2.3 Neuroendocrine control of the oestrous cycle 

For a portion of each year seasonally breeding, spontaneously ovulating females 

exhibit periodic cyclicity of two temporally related events, oestrus and ovulation. 

These cycles are referred to as 'oestrous cycles' and are maintained only in the 

presence of stimulatory environmental cues (e.g. photoperiod) and in the absence of 

pregnancy. The term oestrus describes the period of receptivity of the female towards 

the sexual advances of the male, whereas ovulation refers to follicular maturation, 

rupture of the follicle wall and exodus of oocytes from the ovary. These two 

phenomena are controlled by interrelated hormonal events. For successful fertilisation 

and conception, oestrus and ovulation must occur within 2-3 days of each other 

(Asher, 19~6). 

2.3.1 Hormonal control of oestrus and ovulation in the ewe 

The functioning of the ovary is dependent on secretion of gonadotrophins from the 

anterior pituitary gland. The secretion of these gonadotrophins is in tum regulated by 

feedback effects (both positive and negative) at the hypothalamic and pituitary levels 

of steroids from the ovary. This feedback loop is often referred to as the 

hypothalamo-hypophyseal-ovarian axis. FSH and LH are secreted by the anterior 

pituitary gland in response to stimulation by hypothalamic GnRH, although inhibin 

also plays an important role in control of FSH secretion (Clarke et aI., 1986; 

Tortonese and Gomez-Brunet, 1996). The secretion of GnRH by the hypothalamic 

neurons is intermittent and hence gonadotrophin release is pulsatile in nature. The 

ovary is therefore exposed to a fluctuating rather than constant concentrations of LH 

and FSH (Baird, 1984). 

LH and FSH bind to receptors on theca cells and granulosa cells respectively of 

developing pre antral follicles (Richards et aI., 1976). The binding of LH and FSH 

initiates the production of androgens and oestradiol respectively, with the thecal 

androgens being aromatised to oestradiol (Ruckebusch et al., 1991). Antral follicles 

also have granulosa cell LH receptors (Richards et aI., 1976) and produce inhibin 

(Findlay et al., 1986). FSH stimulates growth and development of the preovulatory 



24 

follicles and plays a key role in determining how many follicles are rescued from 

atresia and are allowed to ovulate (Baird et al., 1991). FSH is greatly influenced by 

the negative feedback effects of oestradiol and inhibin (Martin et ai., 1988). As 

preantral follicles develop their steroidogenic capacity increases, thus increasing the 

level of negative feedback to the hypothalamus. However, in the absence of 

progesterone, oestradiol feedback changes from being inhibitory to being stimulatory 

on GnRH and LH secretion (Evans et ai., 1994). This change from inhibition to 

stimulation occurs approximately 2-3 days after the decline in circulating progesterone 

concentration from the previous luteal phase, and results in a sustained increase in 

oestradiol, secreted from the developing follicles in response to increased LH 

secretion. This positive feedback ultimately culminates in the GnRH 'surge' and the 

subsequent LH and FSHsurges (Baird and McNeilly, 1981; Evans et ai., 1994), which 

in tum induces ovulation (Martin, 1984). Oestrous behaviour is also triggered by the 

increase in oestradiol concentration (Karsch etai., 1980). 

Caraty et ai. (1995) have reviewed the pattern of GnRH and LH secretion in the ewe. 

The initial increment in GnRH secretion precedes or coincides with the onset of the 

LH surge. The GnRH surge is non-pUlsatile in nature and of extended duration, 

lasting far longer than the preovulatory LH surge. The resulting LH surge is 

characterised by changes in LH concentration which may be up to one hundred-fold 

higher than basal levels. This surge system is separate from the 'tonic' background 

secretion of LH which occurs throughout the oestrous cycle and is important for 

steroid synthesis and follicular development in the ovary (Baird et al., 1976; Baird and 

McNeilly, 1981). The peak of the surge occurs about 4-8 hours after the onset, while 

the decline back to basal levels occurs over the next 10 hours. For the ovine follicle to 

rupture, blood concentrations of LH need to increase approximately 40-fold for at 

least 4 hours (McNatty, 1983). Following ovulation, the GnRH pulse generator is 

'clamped' by exposure to negative feedback effects of ovarian steroids (principally 

progesterone, although oestradiol also plays a role) and episodic secretion of LH is 

reduced (Karsch et ai., 1977; Hauger et ai., 1977; Goodman and Karsch, 1980). Thus 

oestradiol acts on two functionally independent feedback systems; a negative feedback 

system controlling tonic LH secretion and a positive feedback system governing the 

preovulatory LH surge. Oestradiol has also been shown to act directly at the pituitary 

level, by either decreasing pituitary responsiveness to GnRH over a short term 
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following a bolus injection of oestradiol (Clarke and Cummins, 1984) or by 

increasing pituitary responsiveness to GnRH during the preovulatory surge (Reeves et 

ai., 1971; Kaynard etal., 1988; Clarke; 1995). 

Ovulation occurs approximately 24 hours after the onset of the surge. Oestrus, on the 

other hand, usually begins around the onset of the surge and may last for well over a 

day, although this varies with breed of sheep. At ovulation, the mature follicle 

releases its oocyte from the ovary and the theca and granulosa cells proliferate within 

the ovary, become invaded with blood vessels and undergo structural and biochemical 

changes. This mass of modified follicular cells is the corpus luteum, which is the 

major source of progesterone during the oestrous cycle. During the next phase of the 

oestrous cycle (the luteal phase), the hormonal environment is dominated by 

increasing concentrations of progesterone secreted from the developing corpus 

luteum, which suppresses hypothalamic (and therefore pituitary) function via negative 

feedback (Goodman, 1988). 

Under most natural or farmed situations, mating occurs at the first oestrus. In the 

absence of pregnancy, the corpus luteum is terminated by prostaglandin F2a (PGF2a) 

which is secreted by the uterus (Goding, 1974; Scaramuzzi and Baird, 1976). 

Destruction of the corpus luteum, or luteolysis, is a key event for control of ovulation 

and provides the basis for artificial synchronisation techniques. After luteolysis, the 

negative influence of progesterone is removed, GnRH, LH and FSH are again secreted 

in response to oestradiol, and the follicular phase begins again to be followed by 

another ovulation. 

2.3.2 Hormonal control of oestrus in the red deer hind 

The oestrous cycles of red deer hinds usually first occur around late March each year 

in New Zealand (Asher et al., 1991), and have a duration of approximately 18 days 

each (Guinness et al., 1971; Kelly et al., 1985). It has been observed that in several 

species of deer the first oestrus of the breeding season may be preceeded by one or 

more 'silent' ovulations (during which overt oestrus is not expressed) associated with 

the formation of short-lived corpora lutea (fallow: Asher, 1985; white-tailed: Harder 

and Moorhead, 1980; black-tailed: Thomas and Cowan, 1975), which may serVe to 

synchronise the first overt oestrus within a herd. Silent ovulations may also occur in 
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red deer (Webster and Barrell, 1985; Asher et aI., 1991), although Jopson et al. (1990) 

suggested that the first 6-11 day increase in plasma progesterone observed at the 

beginning of the breeding season originated from the adrenal gland rather than a short­

lived corpus luteum. The first oestrus and mating immediately followed the decline of 

these plasma progesterone concentrations. Guinness et al. (1971) and Adam et al. 

(1985) also found no evidence for silent ovulations in red deer hinds. 

These studies have also shown that most red deer hinds conceive at the first ovulation 

of the breeding season. Hinds which are not mated may continue to cycle for up to 

150 days (6-8 oestrous cycles) (Kelly et al., 1985; Guinness et al., 1971; Duckworth, 

1992). 

Data on episodic secretion of gonadotrophins during the oestrous cycle are few for red 

deer. The mean amplitude of endogenousLH episodes measured by McLeod et al. 

(1992) in entire female Pere David's deer did not differ significantly between stages of 

oestrous cycle, in contrast to the ewe in which there is a dramatic increase in LH 

episode amplitude during the luteal phase compared with the follicular phase 

(Goodman and Karsch, 1980). However in red and fallow deer an increase in pulse 

frequency and amplitude of LH follows the decline in circulating progesterone 

concentration caused by luteolysis (Asher and Fisher, 1991). This is associated with 

increasing blood concentrations of oestradiol and androstenedione (Asher et al., 

1986), and eventually culminates in the preovulatory LH surge (Asher et aI., 1986; 

Asher and Fisher, 1991; Asher et aI., 1992). In red deer hinds, the onset of oestrus 

occurred within 8 hours either side of the LH peak, with the mean interval from 

oestrus onset to ovulation being 28 hours in hinds synchronised by withdrawal of 

exogenous progesterone treatment (Asher et al., 1992a). In fallow deer, ovulation 
--

occurs approximately 24 hours after the onset of oestrus and 16-20 hours after the 

peak of the preovulatory LH surge (Asher et al., 1992b). 

Injections of exogenous GnRH stimulate release of LH (Kelly et at., 1982; Manly et 

aI., 1989), an LH surge and ovulation in red deer hinds (Fisher et al., 1986, 1989; 

Duckworth and Barrell, 1991), apparently in a manner dependent on the dose of 

GnRH and the responsiveness of the pituitary gland (Limsirichaikul, 1992). These 

findings indicate that LH secretion is controlled in a similar manner as in sheep. 
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Limsirichaikul (1992) demonstrated that exogenous oestradiol will elicit a biphasic 

response of LH secretion in ovariectomised red deer hinds, as occurs in sheep. Initial 

suppression (negative feedback) is followed by an increase in LH pulse frequency 

(positive feedback) culminating in a preovulatory surge-like secretion pattern 17 hours 

after oestradiol injection. Progesterone had an inhibitory effect on LH secretion, but a 

'priming' effect on subsequent LH secretion in response to the stimulatory effect of 

oestradiol. 

At the onset of the breeding season, plasma progesterone concentrations rise from <3 

nmol.r l to peak levels of around 14 nmol.r l (Adam et ai., 1985) during the luteal 

phase of the oestrous cycle. Progesterone comes mainly from the corpus luteum; 

however the adrenal gland may also be a significant source (Meikle, 1988; Jopson et 

ai., 1990). Progesterone profiles are similar to those of the ewe, being low at the time 

of oestrus and ovulation and gradually rising thereafter untilluteolysis, when 

concentrations of progesterone rapidly decline (Adam et ai., 1985; Jopson et ai., 1990; 

Duckworth, 1992). However Kelly et ai. (1985) observed extremely varied 

progesterone patterns and an absence of sustained low levels about oestrus. It was 

suggested that this may have been due to the presence of an accessory corpus luteum 

which had persisted from the previous cycle. 

Little information is available on patterns of FSH, oestradiol and prostaglandin 

secretion in red deer hinds. Cervine FSH cannot be assayed currently, and the 

methodology for measurement of plasma oestradiol in deer is not well established. 

However, Kelly et ai., (1985) reported varied and comparatively high (up to 148 

pg.mr l 
) concentrations of circulating oestradiol during the oestrous cycle of red deer 

hinds. In fallow deer, oestradiol may gradually increase up to 25 pg.mr l at the onset 

of oestrus (Asher et ai., 1986). Elevated concentrations of oestradiol prior to 

ovulation appear to be necessary for the expression of oestrous behaviour in red deer 

hinds (Meikle and Fisher, 1990; Duckworth and Barrell, 1991). 

Administration of prostaglandin to cycling red deer hinds is known to bring about 

luteolysis (Fennessy et ai., 1986; 1994), associated with a rapid decline in plasma 

progesterone concentrations followed by oestrous behaviour 2-3 days later (Hajgh et 

ai., 1988; Asher et ai., 1991). Spontaneous luteolysis in the red deer hind is preceded 
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by an increase in endometrial oxytocin sensitivity; however in pregnant hinds 

luteolysis may be averted by secretion of an interferon by the conceptus (Bainbridge et 

ai., 1996). 

2.3.3 Detection of oestrus and mating in red deer 

Detection of spontaneous oestrus in farmed deer has generally proven difficult to 

achieve because of the limited ability to inspect closely females within a pastoral 

environment. Direct observation of oestrous behaviour can be unreliable because 

overt oestrus in female deer tends to be rather passive compared with other livestock 

and is often terminated at copulation within minutes of its onset (Asher, 1986, Asher 

et al., 1991). Veltman (1985) identified four stereotypical phases of the courtship 

sequence and copulation in red deer: (a) an olfactory inspection phase by the stag, 

which was often followed by flehmen if the hind urinated in response; (b) repeated 

bouts of chasing, with the stag running behind with his head low and tongue extended, 

often punctuating these bouts with roaring; (c) 'low mounting' by the stag (non­

ejaculatory posture), often interspersed with mounting and riding of the stag by the 

hind; and (d) copulation, with the hind adopting a hunched posture and the hind feet 

of the stag momentarily leaving the ground. Immediately afterwards, the hind usually 

squatted and urinated. Oestrus can extend for up to 24 hours (Guiness et al., 1971) 

and hinds may mate more than once with the same or different males (Loudon and 

Brinklow, 1992). 

Vasectomized stags have been used to enable courtship and mating behaviour to be 

observed without insemination taking place (Duckworth and Barrell, 1991). The use 

of a ram mating harness fitted to the stag so as to avoid the need for intensive 

observation has proved very effective for fallow deer (Asher, 1985, 1986; Asher et al., 

1986), but its effectiveness for oestrous detection in red deer is variable. While 

Guinness et al. (1971) and Haigh et al. (1988) achieved successful marking of red 

deer hinds with the device, Duckworth and Barrell (1988) observed no relationship 

between marking of hinds and the estimated date of conception. This may be due to 

the fact that red deer stags appear to have a lower mount-to-serve ratio than fallow 

deer (Veltman, 1985; Asher, 1986), affording little opportunity for marking, and 
~- .', " -... -.' -;. -.-
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because red deer stags frequently wallow in mud, which renders the crayon ineffective 

(Asher et al., 1991). 

2.3.4 Synchronisation of oestrus in red deer 

Artificial synchronisation of oestrus in farmed deer is useful for artificial 

insemination, embryo transfer (Fennessy et al., 1989b) and experimental studies of 

their reproductive physiology. As with other domestic ruminants, synchronisation can 

be achieved either by stimulating the activity of the corpus luteum through the 

administration and withdrawal of progestagens, or by administering a luteolysin to 

shorten the luteal phase of the cycle (Asher et ai., 1991). 

CIDR devices and progestagen sponges 

The oestrous cycle can be artificially synchronised in both red deer and wapiti females 

using a 12-15 day progesterone treatment delivered by silastic rubber Controlled 

Internal Drug Releasing devices (CIDRs), which are inserted into the vagina of the 

hind (Fisher and Fennessy, 1985). Peripheral plasma progesterone profiles of red deer 

receiving single CIDR devices are comparable to those observed during the oestrous 

cycle for the first six days of insertion (6-10 nmol.r\ but thereafter levels may 

decline to less than 3 nmol.r1 by day 14 (Jopson et al., 1990). To overcome this 

decline in progesterone concentrations, two CIDRs have been used together 

(Duckworth and Barrell, 1991) or in some cases the CIDR has been replaced on day 9 

(Fennessy et ai., 1990), however these techniques do not appear to improve the 

success rates of artificial insemination programmes (Bowen, 1989; Fennessy et al., 

1990). Upon withdrawal of the CIDR, plasma progesterone concentrations return to 

basal levels within about a day (Jopson et al., 1990; Duckworth and Barrell, 1991). 

Oestrus occurs at about 48-72 hours after CIDR withdrawal, with the LH peak 

occurring at about 48 hours (Fennessy et al., 1989a). 

Progestagen impregnated polyurethane sponges have also been used to synchronise 

oestrus in red deer (Kelly et al., 1982; Adam et al., 1985; Haigh et al., 1988), though 

they have largely been superseded by the more effective CIDRs as excessive sponge 

loss rates have been observed in some cases (Haigh et al., 1988). In both sheep and 

deer, administration of an oestrogen, LH, FSH, GnRH, or of any compounds which 
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behave like these hormones (such as pregnant mare serum gonadotrophin, PMSG, 

which has FSH-like properties) at about the time of progestagen withdrawal will 

enhance the occurrence and synchrony of oestrus in response to CIDR or progestagen 

sponge treatment (Barrell, 1985). 

Prostaglandins 

The ability of prostaglandin administration to synchronise oestrus is dependent on the 

presence of an active corpus luteum at the time of treatment, which means that hinds 

must be injected during the luteal phase of the oestrous cycle. This has been achieved 

in wapiti cows by administering PGF2a at 13-day intervals (Haigh et al., 1984), after 

which they were successfully inseminated. In a similar experiment involving red deer 

hinds, the pregnancy success rate to natural mating was only 7.7 % compared with 

90.9 % of hinds synchronised with intravaginal sponges (Haigh et al., 1988). 

However it is likely that this latter experiment Was conducted too early in the breeding 

season for prostaglandins to be effective for synchronising oestrus in non­

progesterone-primed hinds. Better results have been reported from matings following 

double prostaglandin injections later in the breeding season (see Barrell, 1985). 

Incidence of oestrus in fallow deer hinds was higher following treatment with CIDR 

devices than with injection of a prostaglandin analogue (96.7 % compared with 41.4 

%) (Jabbour et al., 1991). A high dose (750 Jlg per hind) of the prostaglandin 

analogue cloprostenol has been shown to be more efficacious in inducing luteolysis 

than lower doses (100-500 Jlg per hind) (Fisher et al., 1994). 
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2.4 Manipulating the breeding season of red deer. 

2.4.1 Manipulating photoperiod 

Since photoperiod ultimately governs the time of the breeding season by entraining 

the endogenous rhythm (see Section 2.1.1), housing deer indoors under artificial 

lighting regimes can be used to manipulate the onset of the breeding season. 

Although this is not a feasible option for commercially farmed deer in New Zealand, 

the technique has been used successfully to produce early-born calves under 

experimental conditions. Webster and Barrell (1985) subjected prepubertal red deer 

hinds to shortened daily photoperiod (8 hours light per day) for 83 days following the 

summer solstice, causing calving to be advanced by one month. Red deer stags, when 

kept on artificial photoperiod such that two full cycles of day length occurred during 

one calender year, showed two cycles of gonadal activity, antler growth and intake 

(Simpson et al., 1983), though there was a lag of 3-4 months between the occurrence 

of these seasonal events and the time they would have been expected to occur relative 

to the artificial day length cycle. 

2.4.2 Effects of lactation and nutrition 

It is generally accepted that lactation and undernutrition of hinds prior to and during 

the rut delays the onset of oestrus, though little work has been done to investigate the 

effects of these factors in New Zealand (Wilson, 1989). While the plane of nutrition 

(and hence hind body condition) at the time of mating can be manipulated by good 

management, any treatment which is to advance the breeding season by more than a 

month or two must usually overcome the effects of lactational as well as seasonal 

anoestrus, unless calves from the previous season are early-weaned. 

Nutrition 

Few studies have investigated the importance of nutrition on reproductive 

performance of deer (Heydon et al., 1992). A low plane of nutrition can reduce the 

percentage of adult females which show oestrus (Ortavant et al., 1985). In ewe lambs, 

plasma FSH concentrations and LH pulse frequency were reduced by restricted, 

feeding (Foster et al., 1989). 
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Condition score at calving appears to have a large influence on the time until the onset 

of cycling in dairy cows (Jolly et ai., 1995). However Heydon et al. (1992) found no 

affect of level of food intake on the time of onset of oestrous cycles in red deer hinds. 

Lactation 

Guinness et ai. (1971) studied the duration of lactational anoestrus (the interval 

between calving and subsequent oestrus) by spacing out matings so that calving 

occurred within the following mating season. The shortest interval between calving 

and oestrus in a lactating hind was 10 weeks, but if the calf was lost at birth so that the 

hind stopped lactating, this interval was as short as 20 days. The difference may have 

been a more general effect of body condition however, rather than lactation itself, as 

most lactating hinds were in relatively poor condition and supplementary feeding 

appeared to advance the onset of oestrus. Adam et ai. (1985) reported a delayed onset 

of ovulation and a still further delayed date of conception in hinds that were not 

weaned prior to mating, compared with hinds weaned for 5 weeks. Hinds from both 

groups were in good condition and showed insignificant weight loss during the trial. 

Nowak et ai. (1985) induced early ovarian activity in non-lactating, but not in 

lactating, red deer hinds by feeding melatonin. Melatonin treatment depressed plasma 

prolactin levels similarly for both groups compared with lactating and non-lactating 

controls, indicating that lactational infertility was not primarily due to elevated 

prolactin levels. In contrast, Adam et ai. (1986) showed that the breeding season of 

lactating and non-lactating hinds could be advanced equally (by 5 weeks) with 

melatonin. Further, there was no significant difference between the mean dates of 

first ovulation and conception in untreated lactating and non-lactating controls. 

Heydon et ai. (1992) noted that lactation only affected the time of onset of oestrus on 

a restricting low-sward height pasture; under this situation some lactating hinds failed 

to cycle at all (probably due to low body condition). Differences in fertility of 

lactating, non-lactating and previously barren hinds in an earlier study could all be 

explained by live weight at the time of the rut (Hamilton and Blaxter, 1980). Loudon 

et ai. (1983) carried out experiments from which they hypothesised that the major 

determinant of reproductive failure or of the length of lactational infertility under low 



planes of nutrition was the increase in suckling frequency of the calf in response to 

decreased milk yield, and perhaps also the associated increase in prolactin levels. 

2.4.3 Hormonal treatments 
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Considerable research effort in the United Kingdom and New Zealand has been 

devoted to establishing practical and reliable techniques for advancing calving in 

farmed deer. There are several potential techniques being evaluated which involve 

hormonal treatment of hinds and/or stags; the general approach being to utilise 

techniques based on those already employed successfully for other species of livestock 

such as sheep and cattle (Barrell, 1985; Wilson, 1989). 

ProgesteronelPMSG 

The use of intravaginal progesterone treatment (usually by CIDRs), followed by 

parenteral administration of PMSG has proven to be a reasonably reliable technique 

for advancing ovulation in red deer hinds (Adam et ai., 1985; Fisher et ai., 1986; 

Moore and Cowie, 1986; Bringans and Lawrence, 1988), though fertility to induced 

ovulations has been poor in many cases (Fisher et ai., 1986; Moore and Cowie, 1986), 

possibly due in part to the use of sub-fertile stags prior to the rut. Hinds which do not 

conceive to the induced oestrus often conceive to the subsequent natural oestrus 

(Wilson, 1989). 

A slightly increased incidence of multiple ovulations has been observed following 

PMSG administration to red deer hinds, occasionally resulting in conception and birth 

of twins to artificial insemination (Asher, 1991) or natural mating (Moore and Cowie, 

1986; Bringans and Lawrence, 1988). 

ProgesteronelGnRH 

A similar form of treatment to that described above utilises a period of gonadotrophin 

stimulation with GnRH followed by progesterone withdrawal. This technique has 

been used to induce ovulation in both lactating and non-lactating hinds prior to the 

normal breeding season in several experiments (Fisher and Fennessy, 1985; Fisher et 

ai., 1986; Moore and Cowie, 1986; Duckworth and Barrell, 1988, 1991), although the 

fertility to the induced ovulations has been very low. The requirement for continuous 
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infusion of GnRH, which precludes this method for on-farm use, has been overcome 

by using a recently developed GnRH analogue which is more potent and longer lasting 

than synthetic GnRH and can be administered by a series of five intramuscular 

injections (Duckworth and Barrell, 1988, 1991). 

It is not known why GnRH-induced ovulations should have such low fertility, though 

one possibility is that the induced ovulations were silent and therefore not 

accompanied by overt oestrus (Duckworth and Barrell, 1988). However Duckworth 

and Barrell (1991) showed that treatment with oestradiol in conjunction with GnRH to 

induce oestrous behaviour still did not overcome the state of infertility imposed by 

seasonal anoestrus, although the number of matings following this treatment was 

improved. 

In the Pere David's hind, more animals ovulate in response to exogenous GnRH in late 
. . 

anoestrus rather than in early anoestrus'(McLeod et al., 1991, Brinklow et al., 1992), 

suggesting that in this species at least GnRH treatment is more efficacious at this time. 

Melatonin 

Administration of melatonin (either orally, subcutaneously or intramuscularly) in a 

manner designed to mimic photoperiodic changes during the breeding season has been 

used experimentally to modify the timing of the onset of the breeding season in red 

deer hinds (Webster and Barrell, 1985; Adam et al., 1986; Adam, 1992; Wilson, 

1992). The degree of advancement achieved by these workers ranged from about 12 

days (using melatonin implants) to 5 weeks (using melatonin given daily with feed for 

3 months). Fennessy and Fisher (1988) observed that for every 5 days earlier the 

melatonin treatment of the hinds started, onset of calving was advanced by about 1 

day. Although it is technically feasible to manipulate breeding using melatonin so that 

red deer calve at a time of year suitable to management conditions, critical economic 

evaluations will be required before the true commercial value of this type of treatment 

can be assessed (Adam, 1992). 

Currently the most practical and cost-effective method for administration of melatonin 

on commercial deer farms is by subcutaneous implants (Wilson, 1989). ImplaI)ts are 

available commercially as 'Regulin' implants, and the effectiveness of these has been 

"-:",-,: 

,-,. 



intensively investigated during recent years (Fennessy et ai., 1986; Fennessy et ai., 

1986; Wilson, 1992). 
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Regulin implants are also used to advance the rut in stags (Fennessy and Fisher, 1988; 

Wilson, 1992). Several studies have shown that exposure of hinds to stags with 

advanced rutting behaviour following this treatment is enough to advance the onset of 

oestrus by 8-10 days or more (Moore and Cowie, 1986; Wilson, 1992). 
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2.5 Summary 

Red deer exhibit a rigidly programmed seasonal breeding cycle that is entrained by 

photoperiodic cues which are relayed to the hypothalamic GnRH neurosecretory 

system via the pineal hormone melatonin. Suppression of plasma LH concentration 

during the non-breeding season involves inhibitory feedback by oestradiol, as well as 

steroid-independent pathways. These inhibitory pathways presumably involve 

intermediary neuronal systems as in sheep, but the identity of such neurons has not 

been described for deer. In the absence of pregnancy, hinds may have up to 8 oestrous 

cycles during the breeding season, starting in late March under New Zealand 

conditions. These cycles are normally characterised by low plasma progesterone 

concentrations and an LH surge during the follicular phase, and increasing plasma 

progesterone concentrations during the luteal phase followed by a return to basal 

levels by the next oestrus and ovulation. Oestrus can be synchronised in deer by 

treatment and withdrawal of progestagens, or by administration of a luteolysin. 

Hormonal treatments to advance the breeding season include progesteroneIPMSG, 

progesterone/GnRH and melatonin treatment. While all of these techniques will 

induce ovulation prior to the normal breeding season, only the latter has proved 

successful in advancing the date of calving with any degree of reliability. 

Recent research on birds and mammals has shown that thyroid hormones are 

necessary for seasonal reproductive transitions, particularly the transition from the 

breeding to the non-breeding state. This switch will not occur if thyroid hormones are 

absent around the time of the end of the breeding season. Thyroid hormones are 

necessary for seasonal decline in gonadal function and antler casting in red deer stags, 

but the role of thyroid hormones has not yet been investigated in the seasonal breeding 

cycles of red deer hinds. 

This thesis describes a series of experiments designed to elucidate the role of thyroid 

hormones and neuronal pathways in bringing about the non-breeding state in red deer 

hinds. 
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Chapter 3 

General materials and methods 

3.1 Animals and management 

Location of field trials 

All the field work for the experiments described in this thesis was conducted at the 

Deer Unit of the Lincoln University Research Farm (latitude 430 39'S, longitude 1720 

28'E, altitude 10 m above sea level). The annual photoperiodic cycle for this locality 

ranges from 10 hours of light at the winter solstice to 16.5 hours of light at the 

summer solstice. Red deer (Cervus elaphus) hinds were maintained outdoors on 

pasture consisting mainly ofa ryegrass (Lotium perenne) and white clover (Trifolium 

repens) sward in 0.5 - 2.2 ha paddocks. Ryegrass silage supplementation normally 

provided 80-90% of the total energy intake during winter. Any hinds exhibiting 

excessive live weight loss or general debilitation during winter were preferentially 

grazed on lush pasture. Unlimited access to water was provided at all times. 

All hinds in the experiments described in Chapter 4 and approximately 20% of hinds 

in later experiments were sourced from stock maintained at the Lincoln University 

Deer Unit, which were derived from feral red deer hinds captured in the Rakaia River 

area during 1979 and 1980. Other hinds were purchased from outside the Deer Unit 

for the purposes of the experiments. 

All experimental procedures were carried out in enclosed pens within a deer shed 

located on the Deer Unit. Animals were mustered usually by 2 people on foot and 

occasionally using a motorcycle. 

Animal models 

Ovariectomized red deer hinds bearing slow-release subcutaneous oestradiol 17~­

impregnated implants were used to study the role of the thyroid glands in oestra.diol­

induced (steroid-dependent) seasonal suppression of LH secretion. To study the role 



of the thyroid glands in steroid-independent seasonal suppression of LH secretion, 

ovariectomized hinds without oestradiol replacement were used. Ovary-entire, non­

pregnant (except where pregnancy occurred as result of the experiment) hinds were 

used to study the role of the thyroid glands in the seasonal cessation of oestrous 

cyclicity. 
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In all experiments, blockade of thyroid function was achieved by thyroidectomy, with 

euthyroid hinds or thyroidectomized hinds with exogenous thyroid hormone 

replacement usually serving as positive controls for seasonal reproductive 

suppression. 

Animal welfare 

All procedures used·in these studies were approved by the Ethics of Experimentation 

on Animals Committee of LIncoln University. 

3.2 Field data collection 

Live weight measurements 

Deer were weighed to the nearest 0.5 kg without fasting while restrained in a manual 

side loading deer crush (M. Keans, Rangiora, NZ) mounted on electronic scales (Tru­

Test Model 700, Tru-Test, Auckland, NZ). Accuracy of the scales was checked 

regularly with a standard weight. 

Blood sampling 

Infrequent blood sampling was by jugular venepuncture. Conscious deer were 

manually restrained by one person holding the head of the animal while another 

collected blood (5-10 ml) via a 20 G hypodermic needle into an evacuated glass tube 

containing 110 LU. sodium heparin (Heparin (Mucous) Injection BP, Leo 

Pharmaceutical Products, Ballerup, Denmark). Blood samples were centrifuged (1500 

x g at 4°C for 20 minutes) and the plasma decanted into 10 x 75 mm polystyrene tubes 

(Galanti Group Ltd, Auckland, NZ) which were stored at -20°C within 10 hours after 

sampling until assayed. 

... ",,/ 
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For measurement of pulsatile LH secretion patterns, blood samples were collected via 

indwelling jugular cannulae. One or 2 days prior to intensive sampling blood 

sampling, animals were lightly sedated using 0.3-0.5 ml Lv. of 5 % w/v xylazine 

hydrochloride (Thiazine 50, RWR Veterinary Products Pty Ltd, NSW, Australia). A 

14 G x 5 cm Lv. catheter (Surflo Lv. Catheter, Terumo, Japan) was inserted into an 

external jugular vein. A solution containing 150 I.U. sodium heparin (Heparin 

(Mucous) Injection BP, Leo Pharmaceutical Products, Ballerup, Denmark) per ml of 

0.9 % w/v sterile saline solution was flushed through the catheter to prevent blood 

clotting. A plastic stopper was fitted to the external end of the catheter, which was 

removed for collecting blood. Flexible fabric tape, wound around the external end of 

the catheter, was used to enable it to be sutured to the skin. All hinds were injected 

s.c. with 500,000 I.U. procaine penicillin, 500,000 I.U. benzathine penicillin and 1250 

mg dihydrostreptomycin base (5 ml Penstrep LA, AlS Rosco, Denmark) immediately 

after cannulation. 

During intensive sampling periods, hinds were divided into groups of 6-9 animals and 

penned in 2 m x 3 m handling areas. Blood samples were collected into 10 ml 

syringes while hinds were manually restrained, and transferred into heparinized glass 

tubes which were then treated as described above. Catheters were not flushed with 

sodium heparin solution between samples. 

Pituitary responsiveness to GnRH 

Changes in plasma LH concentration following injections of GnRH were used as an 

index of the responsiveness of the anterior pituitary gland to GnRH. GnRH was 

dissolved in sterile 0.9% saline solution and stored at -20°C until required. Initially 

(Chapter 4), hinds received 10 J.Lg GnRH (LH-RHIFSH-RH amide form, NIAMDD, 

Bethesda, Maryland, USA) intravenously; this was modified in following experiments 

to 5 J.Lg GnRH (LH-RH acetate salt, Sigma Chemical Co., St Louis, MO, USA) 

intravenously. The response was calculated as the plasma LH concentration 

measured at 10 minutes after injection of GnRH minus the plasma LH concentration 

immediately prior to injection (Suttie et ai., 1989; Meikle and Fisher, 1996). In 

Chapter 7, the plasma LH response was measured at 13 minutes after injection for 

practical reasons relating to the number of hinds in the experiment to be blood 

sampled. 
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Pelage scoring 

The proportion of summer coat:winter coat was visually scored on a scale of 1-5 by a 

single person for all experiments. Pelage scoring was as follows: 1, complete winter 

coat; 2, predominantly winter coat with some summer fibres showing; 3, 

approximately half winter and half summer coats; 4, predominantly summer coat with 

some winter fibres showing; 5, complete summer coat (Curlewis et aI., 1988). 

Assessment of ovarian status by laparoscopy 

Approximately 24 h prior to laparoscopy, hinds were removed from pasture and kept 

in yards without access to food or water. Laparoscopy was performed under sedation 

induced with 0.8-1.0 ml i.v. of 5 % w/v xylazine hydrochloride (Thiazine 50, RWR 

Veterinary Products Pty Ltd, NSW, Australia). Sedated hinds were blindfolded and 

restrained in a dorsally recumbent position on deer laparoscopy cradles, raised 40° to 

the horizontal with the head lowered and limbs secured by straps. A 25 x 25 cm area 

immediately anterior to the udder was shorn and the skin swabbed with 70% ethanol. 

Local anaesthesia was achieved by a s.c. injection of 1 ml2% lignocaine 

hydrochloride (Local, Techvet Laboratories Ltd., Auckland, New Zealand) at each 

incision site 10 cm on either side of the mid-ventral line, 12 cm anterior to the udder. 

General anaesthesia was induced with 4 ml i.v. of 5% sodium thiopentone (Pentothal, 

Techvet Laboratories Ltd, Auckland) if required (approximately 10% of all cases). A 

small (5 mm) scalpel incision was made through the skin, subcutaneous tissue and 

peritoneum on the right side, and these layers were punctured with a 6 mm diameter 

trocar and on the left side. The trocar was removed and the abdomen inflated with 

food grade carbon dioxide gas through the cannula. The 5 mm diameter laparoscope 

(Karl Stolz GmbH & Co., Tuttlingen, Germany) was introduced through the cannula 

and a manipulating probe was inserted through the right side scalpel incision. The 

ovaries were located, inverted to enable viewing of all surfaces and the presence of 

corpora lutea recorded. After removal of instruments, incisions were dusted with 

oxytetracycline (Terramycin Powder, Pfizer Laboratories, Auckland, NZ), and each 

hind received a s.c. injection of 800,000 I.V. procaine penicillin, 800,000 IV. 

benzathine penicillin and 2000 mg dihydrostreptomycin base (8 ml Penstrep LA, AlS 

Rosco, Denmark). Normally animals were allowed to recover without reversal of 

sedation before making their way back to pasture, but if a hind was slow in recovering 



2 ml i. v. of 10% yohimbine hydrochloride (Reversal, Phoenix Pharmaceutical 

Distributors Ltd, Auckland, NZ) was administered intravenously to speed recovery. 

Pregnancy diagnosis 
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Hinds were pregnancy diagnosed between 44 days and 6 months after mating while 

restrained in the deer crush using a trans-rectal real-time ultrasonagraphic transducer 

(Aloka Echo Camera, model SSD-21ODxn, Medtel Telectronics LTD, Auckland, NZ) 

fitted with an 15 mm diameter probe (model USY-658-5) with an operating frequency 

of 5 MHz. The presence of placentomes or a foetus was taken to be indicative of 

pregnancy. 

Heart rate 

Heart rate was measured by. auscultation using·a stethoscope (Phoenix, Kobayashi 

Shoji, Tokyo, Japan) while deer stood quietly under manual restrained by one person 

holding the head of the animal. Data from any hinds which became obviously 

agitated during this process were discarded. 

Oestrus and mating behaviour observation 

For observation of mating-related behaviour, a number was painted on both flanks of 

each hind with white spray paint to enable easy identification. All hinds and the stag 

were observed in a 0.5 ha paddock from a shed in an adjacent paddock using 

binoculars, from 15-100 hours following progesterone withdrawal, or from 10-80 

hours following progesterone withdrawal if PMSG was used in conjunction with 

progesterone treatment. A night, temporary electric fencing was used to restrict 

animals to half of the paddock, which was illuminated with 2 x 500 W floodlights 

mounted on poles 4 m above ground level. This lighting had no obvious effects on 

behaviour of the animals. Stags and hinds were observed for typical oestrus and 

mating behaviour described by Veltman (1985) (see section 2.3.x). 

Hinds were deemed to have exhibited overt oestrus if mounted by the stag. Where 

this occurred, the onset and offset of oestrus for a hind was taken to be the first and 

last mounting interaction respectively for that hind (whether by mounting othet hinds 

or the stag or by standing to be mounted by other hinds or the stag). The hind was 



considered to be mated if the stag thrust forward with feet off the ground and nose 

pointed upward while mounting the hind. 

3.3 Surgery 
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Approximately 24 h prior to surgery, hinds were removed from pasture and kept in 

yards without access to food or water. Sedation and recumbency were induced 30 

minutes prior to surgery by 2 ml Lm. of 5% xylazine hydrochloride (Thiazine 50, 

RWR Veterinary Products Ltd, NSW, Australia). Ovariectomy and thyroidectomy 

were performed aseptically under general anaesthesia induced 10 minutes prior to 

surgery by 5 ml Lv. of 5% sodium thiopentone (Pentothal, Techvet Laboratories Ltd, 

Auckland, NZ). If required, a further 2-5 ml of 5% sodium thiopentone was 

administered i. v. during surgery. Wherever possible, ovariectomy and thyroidectomy 

were performed on a hind OIf a single occasion to minimize use of anaesthetics. Hinds 

received a s.c. injection of 1000,000 IV. procaine penicillin, 1000,000 IV. 

benzathine penicillin and 2500 mg dihydrostreptomycin base (10 ml Penstrep LA, AlS 

Rosco, Denmark) at the time of surgery. Normally animals were allowed to recover 

without reversal of anaesthesia and sedation before making their way back to pasture, 

but in very cold weather or if a hind was slow in recovering, 2 ml i.v. of 10% 

yohimbine hydrochloride (Reversal, Phoenix Pharmaceutical Distributors Ltd, 

Auckland, NZ) was administered to speed recovery. 

Ovariectomy 

Hinds were blindfolded following sedation and induction of general anaesthesia and 

transferred in a dorsally recumbent position to deer laparoscopy cradles, which were 

raised 40° to the horizontal with the head lowered and the limbs secured by straps. A 

25 x 25 cm patch immediately anterior to the udder was shorn, the skin was swabbed 

with 30% chlorohexidine digluconate solution (Savlon, leI New Zealand Ltd., 

Wellington, NZ) and iodine was applied to the site of incision. A 6 cm midline 

incision was made through the skin, subcutaneous tissue and peritoneum, extending 

cranially 7 cm from the udder. The uterus and ovaries were located and exteriorised, 

all blood vessels supplying or draining the ovary ligated and the ovary removed. 

Peritoneal muscle layers and skin were sutured with 3 interruptions using synthetic 
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absorbable suture (Coated Vicryl, Ethicon Ltd., Edinburgh, Scotland), and the incision 

site dusted with oxytetracycline (Terramycin Powder, Pfizer Laboratories, Auckland, 

New Zealand). 

Thyroidectomy 

Hinds were blindfolded following sedation and transferred to operating cradles in a 

dorsally recumbent position with limbs secured by straps following induction of 

general anaesthesia. The hair over the larynx and trachea was shorn and the skin 

swabbed with 30% chlorohexidine digluconate solution (Savlon, ICI New Zealand 

Ltd., Wellington, New Zealand), and iodine tincture was applied to the site of 

incision. A 7 cm midline incision was made on the ventral surface of the neck, 

extending caudally from the larynx. The trachea was exposed by dissection of the 

subcutaneous tissue. The thyroid glands were located on either side of the trachea, 

and blunt dissected from the surrounding tissue. If the isthmus was identifiable, this 

was also removed. All blood vessels supplying or draining the thyroid glands were 

ligated. The skin (and muscle tissue if required) was then continuously sutured with 

synthetic absorbable suture (Coated Vicryl, Ethicon Ltd., Edinburgh, Scotland), and 

the incision site dusted with oxytetracycline (Terramycin Powder, Pfizer Laboratories, 

Auckland, New Zealand). 

Because thyroidectomy inhibited hair growth, a few long-term (> 2 years) 

thyroidectomized hinds developed very sparse pelage cover which was often 

associated with excessive live weight loss. During winter, these hinds were 

preferentially fed on lush pasture and wore woollen covers, tied beneath the abdomen 

and with holes for the front legs (Plate 3.1). 

Placement and removal of subcutaneous implants 

For placement of subcutaneous implants, hinds were lightly sedated using 0.3-0.5 ml 

Lv. of 5 % w/v xylazine hydrochloride (Thiazine 50, RWR Veterinary Products Pty 

Ltd, NSW, Australia). The site of implantation (25 x 25 mm) was plucked free of hair 

and the skin swabbed with 30% chlorohexidine digluconate solution (Savlon, ICI New 

Zealand Ltd., Wellington, New Zealand). 
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Plate 3.1 Thyroidectomized hind fitted with a woollen cover. 

Plate 3.2 Subcutaneous implantation with T4 tablets in the base of the ear. 
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Slow release (200 days) silicone rubber oestradiol-impregnated implants (Compudose 

200, Elanco Animal Health, Auckland, New Zealand), cut transversely so that each 

hind received one third of an implant containing 8 mg oestradiol 17~, were implanted 

s.c. in the ear using a 6 mm diameter trocar (Compudose implanter, Blanco Animal 

Health, Auckland, New Zealand), and renewed within 150 days. Following induction 

of local anaesthesia at the incision site by a s.c. injection of 1 ml 2% lignocaine 

hydrochloride (Local, Techvet Laboratories Ltd., Auckland, New Zealand), implants 

were removed while hinds were restrained in the deer crush by making a small scalpel 

incision (5 mm) in the skin at one end of the implant and applying pressure to the 

other end to force the implant out. 

Sodium L-thyroxine (T4) tablets (Glaxo Laboratories Ltd, Middlesex, England) were 

implanted subcutaneously using a 4 mm diameter trocar and renewed within 100 days. 

Initially (Chapter 4) each hind received 2 x 20 mg tablets at the base of the ear (Plate 

3.2); this was modified in later experiments to 4 x 25 mg tablets in the side of the 

neck, 10 cm lateral and 5 cm cranial to the larynx. For T4 tablet removal, a 10-25 mm 

scalpel incision was made alongside the implants following sedation and site 

preparation as for implant placement. Fibrous tissue encapsulating the tablets was 

dissected free from the surrounding tissue and removed as one piece containing the 

intact tablets. Where it was not possible to remove all tablets cleanly, care was taken 

to remove all residual tablet material and the wound was flushed with sterile 0.9% 

saline. The incision site was closed with 1 or 2 Michelle clips (15 mm, Aesculap, 

Germany) and dusted with oxytetracycline (Terramycin Powder, Pfizer Laboratories, 

Auckland, New Zealand). 

3.4 Hormone assays 

3.4.1 Luteinizing hormone (LH) RIA 

Plasma LH concentrations were measured in duplicate 100 J.lI aliquots by heterologous 

double antibody radioimmunoassay, similar to that described previously (Scaramuzzi 

et ai., 1970) and validated for cervine LH (Kelly et ai., 1982). 
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Antibodies and antigens 

Highly purified antigen for iodination and primary antiserum were gifted by NIDDK. 

Values are expressed in terms the ovine standard, NIAMDD-LH-S20 (biological 

activity 1.8-2.8 times that of NIH-LH-S 1). Iodinated ovine LH (NIDDK-oLH-I-2, 

AFP-7071B) was used as tracer, and primary antiserum was NIDDK-anti-oLH-1 

(AFP-192279). Goat anti-rabbit gamma globulin (Calbiochem, La Jolla, CA, USA) 

was used as the secondary antibody to precipitate the anti-ovine LH antigen complex. 

Standards, which ranged in concentration from 0.25-32 ng.ml- 1, were prepared in 

plasma collected from a hind which had been treated two weeks previously with 150 

mg i.m. medroxyprogesterone acetate (Promone E, Upjohn Inter-American 

Corporation, Auckland, NZ) to suppress circulating LH concentrations to undetectable 

levels (as measured in another laboratory). 

Buffer solutions 

0.5 M phosphate buffer solution (PB) was prepared by combining 0.5 M 

NaH2P04.H20 and 0.5 M Na2HP04 at a ratio of approximately 1:7 vlv, to achieve a 

pH of 7.4. This was diluted to 0.1 M or 0.05 M as required for the iodination. 

Iodinated oLH was eluted with 0.05 M PB containing 1.5 % bovine serum albumin 

(BSA, Fraction V, powder, Sigma Chemical Co, St. Louis, MO, USA) and 0.02% 

NaN3 (transfer buffer). 0.01 M phosphate buffered saline solution (PBS, assay buffer) 

consisted of 0.01 M Na2HP04, and 0.001 M NaH2P04, 0.15 M NaCI, 0.01 % 

thiomersal. The pH was adjusted to 7.4. Spinning down buffer (pH 7.4) consisted of 

0.01 MPB ,0.1 % NaEDTA, 0.3 % flake egg albumin (BDH Chemicals Ltd, Poole, 

England) and 0.1 % NaN3. 

Radioiodination 

Iodination of ovine LH was conducted using a modification of the chloramine T 

method of Greenwood et al. (1963). In a 1.5 ml polypropylene microcentrifuge vial 

(LabServe Products Ltd, Auckland, NZ) 6 JlI 1251 (1 mCi in 0.1 M PB, pH 7.4, 

Amersham International, UK) was added to approximately 5 Jlg oLH freshly dissolved 

in 25 JlI of 0.1 M PB. Ten JlI of chloramine T (BDH Chemicals Ltd, Poole, UK) 

solution containing chloramine T at a ratio of 1:5 oLH and dissolved approximately 

30 seconds previously in 0.1 M PB, was added and mixed gently to oxidize the 

reaction. After 35 seconds the reaction was stopped by the addition of 50 JlI of a 2.4 

mg/ml solution of sodium metabisulphite (BDH Chemicals Ltd, Poole, UK), dissolved 

in 0.1 M PB approximately 30 seconds previously. Immediately after gentle mixing, 

100 JlI of transfer buffer was added and the mixture pippetted onto a 1 x 25 cm G-75 
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Sephadex (Sigma Chemical Co, St Louis, MO, USA) gel filtration column (prepared 

in water, and prewashed with transfer buffer). 

Labelled oLH and free iodine were eluted with transfer solution. Fractions (0.5 ml) 

were collected into 10 x 75 mm polystyrene tubes (Galanti Group Ltd, Auckland, NZ) 

and a 10 J.lI aliquot from each fraction was monitored for radioactivity. Peak 

radioactivity corresponding to iodinated LH usually eluted in fractions 8-13, and these 

fractions were stored at -20°C for use in the assay within 3 weeks of iodination. 

Radioimmunoassay 

Each assay included a set of 4 tubes from which the primary antibody was omitted, to 

enable correction for non-antibody-bound counts in the final precipitate, and 4 tubes 

which contained only 100 J.lI of tracer to measure total radioactivity added to each 

tube. Aliquots of standard, cervine control or sample (100 J.lI) were added 10 x 75 

mrn polystyrene tubes followedby 100 J.ll of aSsay buffer, 100 J.lI of primary antibody 
. . 

(diluted 1:350000 with assay buffer) and 100 J.lI of tracer (approximately 10 000 

c.p.m.) in assay buffer containing 0.275 % normal rabbit serum (Rapid Rabbits, 

Leeston, NZ)). After vortex mixing, tubes were incubated at room temperature for at 

least 20 hours before addition of 100 J.lI of secondary antibody diluted to 1.25% in 

assay buffer. 

Tubes were again vortex mixed and incubated for at least 6 h at room temperature 

before addition of 1.5 ml spinning down buffer. After centrifuging at 1800 x g for 20 

minutes at 4°C, the supernatant was decanted and the tubes inverted on absorbent 

paper to allow the remaining supernatant to drain from the pellet. Radioactivity 

(c.p.m.) in the precipitate was counted in a gamma counter (CliniGamma LKB 

Wallac, Turku, Finland). An attached computer was used to calculate unknowns from 

the standard curve using spline curve fitting method described by Rawlins and 

Yrjonen (1978). 

Validation of the assay 

Specificity of the primary antiserum, expressed in terms of cross-reactivity with 

pituitary hormones other than LH, has been determined by NIDDK to be 5.4 % for 

ovine FSH, 0.6 % for ovine growth hormone, 0.1 % for bovine thyroid stimulating 

hormone, and < 0.01 % for ovine prolactin, arginine vasopressin and 

adrenocorticotrophic hormone. 



The sensitivity (95% confidence limit at 0 ng.mr l 
) averaged 0.4 ng.mr l over 61 

assays. Intra-assay CV averaged 16.1 %, 12.3% and 7.1 % respectively for plasma 

pools displacing radiolabelled oLH to approximately 82%,65% and 38% of the total 

bound, and inter-assay CV were 23%, 16.7% and 12.5% for the same plasma pools. 

Serially diluted deer plasma produced a binding curve which was parallel to that of 

the ovine standard (Figure 3.1). 

3.4.2 Thyroid stimulating hormone (TSH) RIA 
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Plasma TSH concentrations were measured in duplicate 200 J.lI aliquots by 

heterologous double antibody radioimmunoassay, similar to that described previously 

(Fraser et al., 1985). 

Antibodies and antigens 

Highly purified antigen for iodination and primary antiserum were provided by 

NIDDK. Values are expressed in terms the bovine standard, bTSH-I-2 (AFP-9074C; 

biopotency 311.U. mg- I
). Iodinated bTSH-I-2 was also used as tracer, and primary 

antiserum was NIDDK-anti-oTSH-Il (AFP-C33815). Goat anti-rabbit gamma 

globulin (Calbiochem, La Jolla, CA, USA) was used as the secondary antibody to 

precipitate the anti-ovine TSH-antigen complex. Standards, which ranged in 

concentration from 38-10,000 pg.ml-1, were prepared in assay buffer. Horse plasma 

(200 J.lI) was added to all standard tubes to correct for the effects of cervine sample or 

control plasma. 

Buffer solutions 

All buffer solutions used in this assay were identical to those used in the LH RIA, 

except that 5% polyethylene glycol 6000 in 0.1 M PBS was used to aid precipitation 

instead of spinning down buffer. 

Radioiodination 

Iodination of bovine TSH was by the lactoperoxidase method of Thorell and 

Johansson (1971). In a 1.5 ml polypropylene microcentrifuge vial (LabServe Products 

Ltd, Auckland, NZ) 6 J.l1 125I (1 mCi in 0.1 M PB, pH 7.4, Amersham International, 

UK) was added to approximately 6 J.lg bTSH freshly dissolved in 40 J.lI of 0.1 M PB. 

Twenty J.lI of lactoperoxidase (Sigma Chemical Co., St Louis, MO, USA) solution 

containing lactoperoxidase at a ratio of 1:5 bTSH in 0.1 M PB was added. Twenty J.lI 

H202 was added immediately after lactoperoxidase and again after 5 minutes of 
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gentle mixing. The reaction was stopped by the addition of 20 J11 of 0.0001 % 

thiomersal (BDH Chemicals Ltd, Poole, UK) in 0.1 M PB. Immediately after gentle 

mixing, 100 J11 of transfer buffer was added and the mixture was pippetted onto a 1.5 

x 8 cm G-25 Sephadex gel filtration column for elution with transfer buffer (PD-lO 

Column, Pharmacia Biotech AB, Uppsala, Sweden). 

Labelled bTSH and free iodine were collected in 0.5 ml fractions into 5 ml 

polystyrene lOx75 mm tubes (Galanti Group Ltd, Auckland, NZ) and a 10 J11 aliquot 

from each fraction was monitored for radioactivity. Peak: radioactivity corresponding 

to iodinated TSH was eluted in fractions 8-10, and these fractions were then pooled 

and further purified on a 1 x 25 cm G-75 Sephadex (Sigma Chemical Co, St Louis, 

MO, USA) gel filtration column (prepared in water, and prewashed with transfer 

buffer). Eluted fractions (0.5 ml) were collected into polystyrene tubes (as above) and 

a 10 J11 aliquot from each fraction was monitored for radioactivity. Peak: TSH elution 

was in fractions 15-19, and these fractions were stored at -20°C for use in the assay 

within 3 weeks of iodination. 

Radioimmunoassay 

Each assay included a set of 4 tubes from which the primary antibody was omitted, to 

enable correction for non-antibody-bound counts in the final precipitate, and 4 tubes 

which contained only 100 J11 of tracer to measure total radioactivity added to each 

tube. Aliquots of standard (100 Ill), cervine control or sample (200 J11) were added to 

10 x 75 mm polystyrene tubes followed by 100 J11 of assay buffer (or 200 III of horse 

plasma for standard tubes), 200 III of primary antibody (diluted 1 :200 000 with assay 

buffer) and 100 III of tracer (approximately 10 000 c.p.m., in assay buffer). After 

vortex mixing, tubes were incubated at room temperature for at least 24 hours before 

addition of 200 III of secondary antibody diluted to 1.25% in assay buffer containing 

0.275 % normal rabbit serum (Rapid Rabbits, Leeston, NZ). 

Tubes were again vortex mixed and incubated for 1 h at room temperature before 

addition of 1.0 ml polyethylene glycol and incubation at 4°C for 30 minutes. After 

centrifuging at 1800 x g for 25 minutes at 4°C, the supernatant was decanted and the 

tubes inverted on absorbent paper to allow the remaining supernatant to drain from the 

pellet. Radioactivity (c.p.m.) in the precipitate was counted in a gamma counter 

(CliniGamma LKB Wallac, Turku, Finland). An attached computer was used to 

calculate unknowns from the standard curve using spline curve fitting method. 

described by Rawlins and Yrjonen (1978). 



Validation of the assay 

Specificity of the primary antiserum, expressed in terms of cross-reactivity with 

pituitary hormones other than TSH, has been determined by NIDDK to be 0.1 % for 

ovine luteinizing hormone and ovine growth hormone, and < 0.01 % for ovine FSH, 

ovine prolactin, arginine vasopressin and adrenocorticotrophic hormone. 

The sensitivity (95% confidence limit at 0 ng.mr! ) was 45 pg.m1-1. Intra-assay CV 

was 16.8% and 4.0% respectively for plasma pools displacing radiolabelled bTSH to 

92% and 11 % of the total bound. All samples were analysed in a single assay. 

Serially diluted deer plasma produced a binding curve which was parallel to that of 

the bovine standard (Figure 3.1). 

3.4.3 Thyroxine (T4) and Triiodothyronine (T3) RIAs 
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Plasma total T4 and total T3 concentrations were measured in duplicate 25 and 100 J.lI 
,-

aliquots respectively using commercial'solid-phase radioimmunoassay kits (Coat-A-

Count Total T4 and Total T3, Diagnostic Products Corporation, Los Angeles, CA, 

USA). Standards, which were prepared in human serum and ranged in concentration 

from 12.9-309.0 nmol.1-1 and 0.3-9.2 nmol.l-1 for the total T4 and total T3 assays 

respectively, were supplied with the assay kits as were all other reagents. 

Radioimmunoassay 

Each assay included a set of two 10 x 75 mm polystyrene tubes (Galanti Group Ltd, 

Auckland, NZ) tubes which contained no antibody, to enable correction for non­

antibody-bound counts in the final precipitate, and 2 tubes which contained only 100 

J.lI of tracer to measure total radioactivity added to each tube. Aliquots of standard, 

cervine control or sample were added to 12 x 75 mm antibody-coated polypropylene 

tubes followed by 1 ml of 125I-T4 (approximately 46,000 c.p.m.) or 125I-T3 tracer 

(approximately 30,000 c.p.m.) containing blocking agents to circulating thyroid 

hormone-binding proteins. After vortex mixing, tubes were incubated at 37°C in a 

water bath for 1 hour (T4) or 2 hours (T3), before the supernatant was decanted and 

the tubes inverted on absorbent paper to allow the remaining supernatant to drain from 

sides of the tubes. Radioactivity (c.p.m.) in the tubes was counted in a gamma counter 

(CliniGamma LKB Wallac, Turku, Finland). An attached computer was used to 

calculate unknowns from the standard curve using spline curve fitting method 

described by Rawlins and Yrjonen (1978). 
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Validation of the assay 

Specificity of the T4 primary antiserum, expressed in terms of cross-reactivity with 

hormones other than L-T4, was reported by the manufacturers to be 64% for D-T4, 2% 

for L-T 3 and undetectable for D-T 3, diiodo L-tyrosine and monoiodotyrosine. 

Specificity of the T 3 primary antiserum, expressed in terms of cross-reactivity with 

hormones other than L-T 3, was reported by the manufacturers to be 100% for D-T 3, 

1.1 % for D-T 4, 0.5% for L-T 4, 0.01% for reverse T 3 and undetectable for diiodo L­

tyrosine and monoiodotyrosine. 

The sensitivity (95% confidence limit at 0 nmol.rl) was 3.0 nmol.l- 1 for total T4 in 1 

assay, and 0.04 nmol.l-1 for total T3 in 5 assays. Intra-assay CV was 7.9% for a 

plasma pool displacing radiolabelled T 4 to 46% of the total bound. Average intra­

and inter-assay CV were 10.1 % and 10.7% respectively for plasma pools which 

displaced radiolabelled T3 to 24% and 62% of the total bound. Serially diluted deer 

plasma produced a binding curVe which was parallel to that of the standard curve in 

both assays (Figure 3.1). 

3.4.4 Progesterone ELISA 

Plasma progesterone concentrations were determined in triplicate 50 J.11 aliquots of 

plasma extract by ELISA, similar to that which has been described by Elder et al. 

(1987). The assay was performed in 96-well microtitre plates (Falcon 3912 Microtest 

III, Becton Dickinson Co, Oxnard, CA, USA) and utilised an automatic ELISA 

processor (Behring ELISA Processor II, Behring, Marburg, Germany) for absorbance 

reading. Addition of reagents to wells was performed with a 12-channel pipette 

(Titertek, Eflab, Finland) or an 8-channel repeating pipette (Eppindorf Multipette 

4780 with Plus/8 adaptor, Eppindorf, Hamburg, Germany) and plate washing was by 

spraying wash buffer from a watering can over all plates after first emptying the 

contents into a sink. Plates were washed in this way three times after each incubation 

period and then inverted to dry on absorbent paper. All 96 wells were used, since any 

'edge effect' was found to be negligible. 

Antibodies and antigens 

The primary antibody was progesterone monoclonal mouse antiserum (3D 1 0 DEC in­

house preparation), and the secondary antibody was horseradish peroxide-conjugated 

sheep anti-mouse Ig antiserum (Amersham, Auckland, NZ). Progesterone conjugate 
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solution was prepared by adding 5 ~l of progesterone-3-0-carboxymethyloxime 

thyroglobulin conjugate (prepared using the method described by Elder et al. (1987), 

and stored at -20°C) to 10 ml of 6 M guanidine hydrochloride (Sigma Chemical Co, 

St Louis, MO, USA). Primary antibody and progesterone conjugate were prepared by 

and purchased from Dr J.G. Lewis, Steroid Unit, Christchurch Public Hospital. A 

stock solution (3180 nmol.l-1) of progesterone (Sigma Chemical Co, St Louis, MO, 

USA) was prepared in ethanol biannually and stored at -20°C. This stock solution 

was diluted in assay buffer to make up a series of standards, ranging in concentration 

from 0.5 to 16 nmol.l-1 (for results calculation, these standard concentrations were 

multiplied by 4 to account for the 4-fold dilution of samples after reconstitution). 

Buffer solutions 

PBS (assay buffer) consisted of 0.03 M Na2HP04 and 0.15 M NaCI, with 0.1 % w/v 

gelatine, 0.1 % v/v Tween 20 (BDH Chemicals Ltd, Poole, UK) and 0.01 % w/v 

thiomersal (pH 7.4). Wash buffer solution contained 0.03 M NaH2P04 and 0.1 % v/v 

Tween 20 (pH 7.4). Substrate buffer solution consisted of 0.05 M Na2HP04 and 

0.025 M citric acid (pH 5.0). 

Extraction 

Redistilled hexane (4 ml) was added to 1 00 ~l of sample or control plasma and vortex 

mixed for 2 minutes. The plasma was frozen in an ethanol-dry ice bath before 

decanting off the solvent organic phase containing extracted hormone into 15 x 100 

mm glass tubes containing 50 ~l of 10% v/v glycerol solution with 0.1 % w/v sodium 

azide. After evaporating the solvent under air in a 37°C water bath, extracted 

progesterone was reconstituted in 400 ~l of assay buffer containing 0.0003% w/v 

bromocresol green dye by vortex mixing for 10 minutes. Evaporated sample extracts 

were stored at 4°C for up to 5 days; reconstitution was performed on the day of assay. 

EliSA 

The ELISA microtitre plates were precoated with 100 ~l per well of progesterone 

conjugate solution at 4°C overnight. The conjugate solution was discarded and the 

plates washed as described above. Any further active binding sites were then blocked 

by the addition of 150 ~lIwell assay buffer for at least 1 hour at room temperature. 

Plates were emptied before dispensing (in triplicate) 50 ~l of progesterone standards, 

or reconstituted sample or control extracts into the appropriate well. This was 
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followed by 50 J.LI of progesterone monoclonal antiserum at a working dilution of 

1: 100 in assay buffer per well. After incubation at room temperature for 1 hour the 

plates were washed and 100 J.LI peroxide-labelled secondary antibody at a working 

dilution of 1:1000 in assay buffer was added to each well. The plates were incubated 

for 30 minutes at room temperature, washed, and 100 III of freshly prepared substrate 

solution (containing 40 mg o-phenylenediamine dihydrochloride (Sigma Chemical 

Co, St Louis, MO, USA) and 60 III of 30% v/v hydrogen peroxide in 100 ml of 

substrate buffer) added per well to start the colour-forming reaction, which was 

allowed to proceed in the dark for 10-20 minutes before termination with 100 III per 

well of 1.25 M H2S04, Absorbance was read at 492 nm with a reference wavelength 

of 650 nm, and the progesterone concentration of each sample calculated using a 

computer spreadsheet (Quattro Pro Version 6.02, Novell Inc, USA) from the equation 

of the standard curve, which was generated using a computer graph plotting software 

package (SigmaPlot, Version 5.01 (1994), Jandel Corporation, San Rafael, CA, USA). 

Validation of the assay 

The sensitivity (95% confidence limit at 0 nmol.r1 
) averaged 0.86 nmol.r1 (15 

separate assays involving 177 ELISA microtitre plates). Intra-assay CV averaged 

11.9% and 6.6% respectively for plasma pools displacing progesterone-3-0-

carboxymethyloxime thyroglobulin conjugate to approximately 91 % and 59% of the 

total bound, and inter-assay CV were 12.8% and 20.7% for the same plasma pools. 

Cervine plasma serially diluted in assay buffer produced a binding curve which was 

parallel to that of the progesterone standard (Figure 3.2). 

3.4.5 Prolactin ELISA 

Plasma prolactin concentrations were determined in triplicate 50 J.LI aliquots of plasma 

by ELISA (Lewis et aI. (1992), using the same techniques and equipment as described 

for the progesterone ELISA (section 3.3.4). 

Antibodies and antigens 

Rabbit anti-ovine prolactin primary antiserum was provided by Dr D.F.M. van de 

Wiele, Research Institute For Animal Husbandry, Schoonoord, Netherlands. 

Peroxidase-labelled goat anti-rabbit gamma globulin (Tago Immunodiagnostics Inc., 

Burlingame, CA, USA) was the secondary antibody. Ovine prolactin (NIDDK-oPRL-

19, AFP-922 lA, biopotency 31 I.U. per mg), in terms of which values are expressed, 

was provided by NIDDK. 



54 

Prolactin conjugate was prepared by the method described by Lewis et al. (1992) as 

follows. Ten mg of NIADDK-oPRL-19 was dissolved in 1 ml distilled water and 

mixed with a solution containing 10 mg bovine thyroglobulin (Sigma Chemical Co, St 

Louis, MO, USA) in 1 ml distilled water. Conjugation was achieved by adding N­

ethyl-N'-(3-dimethylaminopropyl)-carbodiimide hydrochloride (Sigma Chemical Co, 

St Louis, MO, USA) (5 mg in 0.5 rnl distilled water) to the stirred prolactin and 

thyroglobulin solution. After 16 hours at room temperature, the mixture was dialysed 

for 24 hours against distilled water at 4°C and the dialysate freeze dried for storage. 

When required, this was reconstituted (10 mg in 1 ml distilled water) and a working 

prolactin conjugate solution prepared by adding 7 ~l to 10 ml of 6 M guanidine 

hydrochloride (Sigma Chemical Co, St Louis, MO, USA). NIADDK-oPRL-19 was 

also used to prepare a series of standards in horse plasma, ranging in concentration 

from 8 to 1024 ng.ml-1. 

Buffer solutions 

All buffers were identical to those used in the progesterone assay (Section 3.4.4). 

EUSA 

The ELISA microtitre plates were precoated with 100 ~l per well of prolactin 

conjugate solution at 4°C overnight. The conjugate solution was discarded and the 

plates washed as described in Section 3.3.4. Any further active binding sites were 

then blocked by the addition of 150 ~1Jwell assay buffer for at least 1 hour at room 

temperature. 

Plates were emptied before dispensing (in triplicate) 50 ~l of prolactin standard, 

sample or control plasma into the appropriate well. This was followed by 50 ~l of 

rabbit anti-prolactin antiserum at a working dilution of 1 :50,000 in assay buffer per 

well. After incubation at room temperature for 2 hours the plates were washed and 

1 00 ~l peroxide-labelled secondary antibody at a working dilution of 1 :2000 in assay 

buffer was added to each well. The plates were incubated for 2 hours at room 

temperature, washed, and 100 ~l of freshly prepared substrate solution (containing 40 

mg o-phenylenediamine dihydrochloride (Sigma Chemical Co, St Louis, MO, USA) 

and 60 J.Ll of 30% v/v hydrogen peroxide in 100 ml of substrate buffer) added per well 

to start the colour-forming reaction, which was allowed to proceed in the dark for 10-

20 minutes before termination with 1 00 ~l per well of 1.25 M H2S04, Absorbance 
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was read at 492 nm with a reference wavelength of 650 nm, and the progesterone 

concentration of each sample calculated using a computer spreadsheet (Quattro Pro 

Version 6.02, Novell Inc, USA) from the equation of the standard curve, which was 

generated using a computer graph plotting software package (SigmaPlot Version 5.01, 

Jandel Co, San Rafael, CA, USA). 

Validation of the assay 

Specificity of the primary antiserum, expressed in terms of cross-reactivity with 

pituitary hormones other than prolactin, was reported by Lewis et ai., (1992) to be 

0.7% for ovine growth hormone and negligible for ovine TSH, ovine LH and ovine 

FSH. 

The sensitivity (95% confidence limit at 0 nmol.r l 
) averaged 7.2 nmol.r l (3 separate 

assays involving 21 ELISA microtitre plates), and intra-assay CV averaged 14.1 % 

plasma pools displacing thyroglobulin conjugated prolactin to approximately 27%, 

46% and 65% of the total bound. Inter-assay CV were 9.9% for a plasma pool 

displacing thyroglobulin conjugated prolactin to approximately 27% of the total 

bound. Serially diluted deer plasma produced a binding curve which was parallel to 

that of the prolactin standard (Figure 3.2). 

3.5 Data analysis and presentation 

The terms breeding season and non-breeding season in this thesis indicate the periods 

of oestrous cyclicity and anoestrus respectively in adult red deer hinds in New 

Zealand, based on those reported by Meikle and Fisher (1996). 

For determination of oestrous cyclicity, significant episodes of progesterone (taken as 

indicative of a luteal phase) were defined as 2 consecutive sample concentrations 

exceeding 2 nmol.l- 1, since this concentration divides typical follicular and luteal 

phase concentrations in red deer (Jopson et ai., 1990; Meikle and Fisher, 1996). 

Plasma concentrations of progesterone measured while CIDRs were in place were not 

included when determining oestrous cyclicity. 
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Figure 3.1 RIA binding inhibition curves for cervine plasma samples and (a) ovine LH 
standards (NIAMDD-olR-S20), (b) bovine TSHstandards (NIADDK-bTSH-I-l), (b) T3 
standards or (d) T4 standards. Dilution rate of samples in standard diluent is given by each point. 
e, standard; 0, cervine sample; B, amount of tracer bound in the presence of unlabelled honnone; 
Bo, amount of tracer bound in the absence of unlabelled honnone. 
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In data obtained during intensive sampling periods, LH pulse parameters were defined 

similarly to the method described by Goodman and Karsch (1980). LH pulse 

amplitude was calculated as the peak plasma LH concentration minus that of the 

preceding nadir. A pulse ofLH was defined as any increase in plasma concentration 

where (1) the concentration was elevated relative to pre- and post-nadirs for at least 2 

consecutive samples, (2) the pulse peaked within 2 sampling intervals, (3) the 

increment between peak and nadir concentrations exceeded by at least 2 standard 

deviations the pre- and post-nadir values and (4) the peak amplitude exceeded the 

sensitivity of the assay. Frequency of pulses is expressed as the number of pulses per 

4 hours; where intensive sampling periods were longer than 4 hours mean pulse 

frequency was weighted to correct for the difference. To minimize the effect of 

between-assay variation, all samples obtained during intensive sampling periods from 

a given animal were measured in a single assay. 

Hormone concentrations below the average assay sensitivity were assigned a value 

equal to the sensitivity for statistical analysis and data presentation. To avoid 

correlations between means and variance, hormonal data were log-transformed (base 

10) when necessary, as described in each chapter. Unless described otherwise, means 

are presented ± SEM. 

In all cases except in Chapter 7, profiles of plasma LH concentration over time or 

seasons from infrequent samples were analysed by multivariate ANOV A for repeated 

measurements (with time as the repeated measures factor) using the Systat Version 5.0 

statistical software package (Systat Inc, Illinios, USA). Repeated measures analysis, 

which identified effects of treatment, time and treatment x time interaction, eliminated 

correlations due to multiple measurements taken over time on the same subject. 

Where significant treatment x time interactions occurred, data from each sampling 

date were subjected to Student's t-test to identify the times at which the effect 

occurred. All other statistical analysis including ANOV A and General Linear Model, 

linear regression, chi-square and paired Student's t-test were analysed using the 

Minitab Version 10.1 statistical software package (Mini tab Inc, State College, PA, 

USA), and described separately for each chapter. Initial data handling and grouping 

was performed using either of Quattro Pro Version 6.02 (Novell Inc, USA) 

or Microsoft Excel Version 5.0 (Microsoft Corporation, USA) 

spreadsheet packages. All graphics were prepared using Microsoft Excel. 
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Chapter 4 

Effects of timing and dose of thyroid hormone replacement 
in ovariectomized oestradiol-implanted red deer hinds 

4.1 Introduction 

Seasonal shifts in reproductive activity are manifest at the neuroendocrine level as 

changes in the pulsatile secretion of LH. In the red deer hind (Duckworth and Barrell, 

1992) and ewe (Goodman et al., 1982), an increase in pulsatile LH secretion is 

associated with the transition into the breeding season in autumn, and a decrease in 

pulsatile secretion is characteristic of the transition to anoestrus in late winter. This 

change in pulsatile secretion reflects a seasonal alteration in responsiveness to the 

negative feedback action of oestradiol (Karsch et aI., 1980; Goodman and Karsch, 

1981). 

Recent observations have led to the concept that the thyroid glands are required for at 

least one stage of the circannual rhythm of reproduction, the transition from the 

breeding to the non-breeding state, in many species of birds (Goldsmith and Nicholls, 

1984; Follett and Nicholls, 1985) and mammals (Vriend, 1985; Jacquet et aI., 1986; 

Nicholls et al., 1988b; Moenter et ai., 1991; Shi and Barrell, 1992; Parkinson and 

Follett, 1994). In the ovariectomized, oestradiol-treated ewe, pulse frequencies ofLH 

(Moenter et al., 1991) and GnRH (Webster et al., 1991 b) were maintained at high 

levels throughout the non-breeding season if the animals had been thyroidectomized 

during the preceding breeding season. In the red deer stag, thyroidectomy prevented 

antler casting in spring and the associated decline in testis diameter, testosterone 

concentration and responsiveness of the pituitary gland and testes to exogenous GnRH 

(Shi and Barrell, 1992). Treatment with exogenous T4 overcame the effects of 

thyroidectomy in ewes (Webster et aI., 1991a) and stags (Shi and Barrell, 1994). 

There have been no published reports of the effects of thyroidectomy on reproduction 

in female deer. In the two experiments described in this chapter, ovariectomized 
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oestradiol-implanted hinds were used to determine if thyroid hormones playa similar 

role in the red deer hind as has been reported for the ewe, and to characterise the 

timing of exogenous thyroid hormone treatment required for the seasonal increase in 

oestradiol negative feedback to occur. The second experiment also tested the 

hypothesis that a threshold dose-response relationship exists between exogenous T3 

and tennination of reproductive activity in red deer hinds. 

4.2 Materials and Methods 

Animals and Management 

The 2 experiments were conducted in 1993 and 1994, using thyroidectomized, 

ovariectomized, oestradiol-implanted red deer hinds (mean live weight at the 

beginning of each experiment 96.5 ± 1.7 and 109.1 ± 1.6 kg respectively). Surgery 

was perfonned at the start of Experiment 1. For Experiment 2, a further 8 hinds were 

thyroidectomized and ovariectomized at the start of the experiment in addition to 12 

animals used from the previous experiment. Hinds were maintained outdoors on 

pasture for the duration of both experiments. Blood samples were collected twice 

weekly in Experiment 1 and weekly in Experiment 2 for measurement of plasma LH 

concentration. Once every month, the pelage of hinds was visually scored for the 

relative proportions of summer and winter coats as described in Chapter 3. 

Experiment 1 

Fifteen hinds received 2 x 20 mg T 4 tablets subcutaneously in the base of the ear 

either from April to late December (controls), from April to 27 July (breeding season), 

or from 15 October to late December (non-breeding season) (n = 5). T4 tablets were 

replaced in control hinds and hinds receiving T 4 tablets during the breeding season in 

mid-June and again in control hinds in early September. The dose of T 4 tablets used 

was based on the results of Shi and Barrell (1992), in which a single 20 mg T4 tablet 

restored plasma T4 concentration in thyroidectomized stags (mean live weight 120 kg) 

to approximately half that seen in euthyroid control stags for 2-3 months. In 

November, oestradiol implants were removed for 2 weeks to facilitate measurement of 

LH in the absence of steroidal inhibition. Plasma T3 concentration was measured at 

approximately 3 week intervals. 
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Experiment 2 

Twenty hinds each received a series of three injections of T3 (sodium salt, Sigma 

Chemical Co., St Louis, MO, USA) over a 6 day period at one of the following doses: 

0,0.025, 1.0 or 40 mg per hind s.c. (n = 5 per dose) in late October. The timing of 

this treatment was based on the observation that a single 1.5 mg T3 injection at this 

time brings about antler casting in thyroidectomized stags (G.M. Anderson, 

unpublished). In addition, hinds were treated with the same doses of T3 in mid-July, 

to test if high doses of T3 are able to cause premature termination of reproductive 

activity. T3 was injected in 2 ml of a 1: 1 emulsion of water and heat-treated soybean 

oil (a stock solution of T3 was prepared in water within 4 days of use, with a few 

drops of 5 M NaOH added to improve solubility). The doses of T3 were designed to 

achieve zero, very low, approximately physiological (2-5 nmol.l-1) and very high 

plasma T3 concentrations, based around that used by Shi (1992), who reported that 1 

mg T3 s.c. restored physiological T3 concentrations for 2-3 days in thyroidectomized 

stags, with peak concentrations occurring within 3 hours of injection. 

Hinds were blood sampled intensively for 4 hours in July and December, and again in 

December after the oestradiol implants had been withdrawn for 2 weeks, to 

characterise the pulsatile secretion of LH. The pituitary LH response to 10 Jlg i. v. 

GnRH at 10 minutes post injection was measured weekly for 6 weeks after each series 

of T3 injections. Plasma T3 and TSH concentrations were measured prior to and 3 

hours after each series of T3 injections, and plasma T3 concentration was measured 

again 4 days later. Heart rate was measured 3 hours after each series of T3 injections. 

Data analysis 

Treatment effects on seasonal profiles of plasma LH concentration over time 

(including GnRH-induced LH concentration) were analysed by multivariate ANOVA 

for repeated measurements. Effects of graded doses of T3 injections on plasma TSH 

concentration and heart rate in Experiment 2 were analysed by linear regression 

analysis to identify dose-related responses. All other treatment differences were 

analysed by one-way ANOV A or paired Student's t-test as appropriate. Plasma LH 

and TSH concentrations were transformed to their logarithms (base 10) for statistical 

analysis to normalise the variances. 



4.3 Results 

Experiment 1 

In the absence of T 4 implants, plasma T 3 concentration was generally below the 

detection limit of the assay. Plasma T 3 concentration during T 4 implantation in all 

hinds was only slightly elevated (0.2 ± 0.06 nmol.r i ,P < 0.01) and was at times 

below the detection limit of the assay. 
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There was no effect of treatment on seasonal profiles of plasma LH concentration (P > 

0.05). Mean plasma LH concentration measured within the normal breeding season 

was 2.2 ± 0.3 ng.ml- l
, and declined during September to 1.0 ± 0.2 ng.ml- l in all hinds 

(P < 0.001). When oestradiol implants were removed in November plasma LH 

concentration was increased, reaching 5.0 ± 1.0 ng.ml- l after 2 weeks (P < 0.001), in 

all hinds except one controlhind (Hind 1-7). In this hind, which had the second 

highest mean plasma T 3 concentration of all hinds in the experiment (0.52 ± 0.1 

ng.mr i 
), plasma LH concentration remained undetectable througho~t the period of 

oestradiol implant removal. A further increase in plasma LH concentration was 

observed 3 days after oestradiol implant replacement (21.9 ± 3.8 ng.mr l in 14 hinds, 

P < 0.001, and 5.4 ng.ml- l in Hind 1-7), following which mean plasma LH 

concentrations returned to low (generally < 1.5 ng.mr l
) values. 

Pelage score averaged 3.1 ± 0.4 at the beginning of the experiment (April) and 

declined over the following two months, reaching 1 in all hinds by early July. No 

further changes were recorded throughout late winter and spring, but growth of the 

summer coat (as evidenced by pelage scores greater than 1) was significantly delayed 

(relative to control hinds) in hinds receiving T4 during the breeding season (4 

November ± 12.5 days and 10 December ± 5.1 days respectively, P < 0.05). Onset of 

summer coat growth was intermediate for hinds receiving T 4 during the breeding 

season (27 November ± 6.0 days). By the end of the experiment (late December), 

pelage score averaged 4.1 ± 0.3 in all hinds. 
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Experiment 2 

One hind in the group receiving 1.0 mg T3 died during September (cause of death was 

not identified). Data from this hind were removed from the experiment. 

Plasma T 3 concentrations at the times of T 3 injections are provided in Table 4.1. 

Mean plasma T3 concentrations three hours after the third T3 injection in July and 

October were 5-10 time higher than anticipated, and there was evidence ofT3 

contamination in blood samples and/or animals from the 0 mg T 3 group at this time. 

There was no effect of dose of T 3 on seasonal profiles of mean plasma LH 

concentrations (P > 0.05) (Figure 4.1). In all hinds, mean plasma LH concentration 

measured within the normal breeding season was 2.0 ± 0.3 ng.mr l and declined 

during late September to 1.2 ± 0.1 ng.mr l during the non-breeding season (P < 

0.001). 

Table 4.1 Mean ± SEM plasma T3 concentrations (nmol.rl) of hinds in 
Experiment 2 in response to graded doses of T3 injections in July and October. 

Jul~ October 

T3 dose PreT3 3 hours 4 days Pre T3 3 hours 4 days 

(mg) Qost T3 Qost T3 Qost T3 Qost T3 

o (n=5) 0.1 ±O.O 2.3 ±0.6 0.1 ±O.O O.O±O.O 1.7 ± 0.9 0.4 ± 0.2 

0.025 (n=5) O.O±O.O 2.4 ±0.2 0.1 ± 0.0 O.O±O.O 3.8 ± 1.2 0.4 ± 0.1 

1.0 (n=4) 0.2±0.1 26.8 ±9.0 0.7 ±0.6 O.O±O.O 27.9 ±6.7 0.5 ±0.1 

40 (n=5) O.O±O.O 255.3 ± 22.1 18.7 ± 1.1 0.1 ±O.O 188.5 ± 32.2 18.2 ± 1.4 

Between 11 July and 16 August, there was a marked decline in plasma LH response to 

an injection of GnRH in all hinds (July: 40.0 ± 3.5 ng.ml- 1, August: 7.3 ± 1.4 ng.mI-

1; P < 0.001). Plasma LH response to GnRH remained low (5.7 ± 0.9 ng.ml- 1) 

throughout November and early December (Figure 4.2). There was no effect of dose 

of T3 on plasma LH response to GnRH (P> 0.05). Mean plasma LH concentration, 

pulse frequency and pulse amplitude during intensive sampling periods were also not 

affected by dose of T3 (P > 0.05). Mean plasma LH concentration and pulse 
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frequency were lower in December in the presence of oestradiol (1.3 ± 0.1 ng.ml- 1 

and 1.6 ± 0.3 pulses/4 h) than in July (3.3 ± 0.3 ng.ml-1 and 3.6 ± 0.3 pulses/4 h) (P < 

0.05), but pulse amplitude was not significantly different in December (1.2 ± 0.3 

ng.ml- 1) and July (2.2 ± 0.5 ng.ml- 1) (P > 0.05). Mean LH pulse frequency and 

amplitude during December in the absence of oestradiol implants were similar to 

those obtained during the breeding season (3.3 ± 0.8 pulses/4 hand 3.2 ± 0.3 ng.ml-

1), however in 3, 3, 1 and 2 hinds of groups receiving 0, 0.025, 1.0 and 40 mg T3 

injections respectively, high amplitude pulses (> 5 ng.ml-1) were observed which 

were usually associated with high mean plasma LH concentrations (> 5 ng.ml-1) and 

pulse frequencies (~ 3 pulses/4 h). All other hinds exhibited generally low amplitude 

pulses (> 2 ng.ml-1) which were usually associated with low mean concentrations « 
1.5 ng.ml-1) and pulse frequencies (~ 2 pulses/4 h). 

. -

Mean plasma TSH concentration prior'to T3 injections in July and October was 1489 

± 45 pg.ml-1. There was an inverse relationship between dose of T3 injected and 
\ 

plasma TSH concentration in both seasons (P < 0.001). Three hours after the third 

injection, plasma TSH concentrations in groups receiving 0, 0.025, 1.0 and 40 mg T3 

injections averaged 161O±365, 1217± 186, 114±32and44± lOpg.ml-1 

respectively. In both seasons, mean heart rate following the third T 3 injection tended 

to increase with increasing dose ofT3 (48.5 ± 4.1,59.4 ± 2.3,68.4 ± 3.9 and 70.0 ± 

4.5 beats per minute in groups receiving 0,0.025, 1.0 and 40 mg T3 injections), but 

this correlation did not reach significance (P < 0.05). 

Growth of the summer coat (as evidenced by pelage scores greater than 1) was 

significantly advanced (relative to hinds receiving 0 mg T3) in hinds receiving the 

highest dose of T3 (29 November ± 9.4 days and 7 November ± 3.0 days respectively, 

P < 0.05). Onset of summer coat growth was intermediate for hinds receiving 0.025 

or 1.0 mg T3 (22 November ± 7.2 days and 10 November ± 0.0 days, P > 0.05). By 

the end of the experiment (20 January), pelage score averaged 3.8 ± 0.7,4.2 ± 0.6,5.0 

± 0.0 and 4.4 ± 0.3 in groups receiving 0, 0.025, 1.0 and 40 mg T3 injections. 
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Figure 4.1 Mean plasma LH concentrations in thyroidectomized hinds in Experiment 2 
recieving 0 mg (0),0.025 mg (t.), 1.0 mg (<» and 40 mg (D) injections ofT3 (n = 5) in July 
and October. Average SEM is shown at t,he top ofthe graph. 
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Figure 4.2 Mean plasma LH response to 10 Ilg GnRH i.v., measured at 10 minutes 
after injection, in thyroidectomized hinds in Experiment 2 recieving 0 mg (0), 0.025 mg 
(t.), 1.0 mg (0) and 40 mg (D) injections ofT3 (n = 5) in July and October. Average 
SEM during the breeding and non-breeding season is shown at the top of the graph. 
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4.4 Discussion 

These results strongly suggest that the ovariectomized oestradiol treated red deer hind 

does not require the presence of thyroid hormones at the end of the breeding season 

for the seasonal suppression neuroendocrine reproductive activity to occur, since 

hinds in Experiment 1 which had undetectable plasma T 3 concentrations from late 

July onwards showed an identical decline in plasma concentrations of LH to those 

with detectable plasma T3 concentrations throughout the experiment. Similarly in 

Experiment 2, basal and GnRH-induced plasma LH profiles were identical in all hinds 

regardless of T 3 treatment. These data are in contrast to those of Webster et al. 

(1991a) who showed that the increase in oestradiol negative feedback which is 

primarily responsible for causing seasonal neuroendocrine suppression in ewes is 

dependent on the presence of thyroid hormones. 

Because problems were experienced with thyroid hormone delivery in both 

experiments, the results are somewhat equivocal. Due to poor performance of the T4 

tablets in Experiment 1, the validity of hinds which were implanted throughout the 

experiment as positive controls for seasonal neuroendocrine suppression is doubtful. 

While the earlier onset of summer pelage growth in control hinds compared to all 

other hinds in this experiment provides some evidence of the biological effectiveness 

of the T 4 tablets, the concentration of thyroid hormones required to stimulate this 

process may be less than that required for activation of reproductive neuroendocrine 

suppression. It is possible that the uptake of T4 is influenced by site of implantation, 

since Shi (1992) showed that the same T4 tablets produced effective thyroid hormone 

replacement when implanted subcutaneously in the shoulder of stags. In Experiment 2 

thyroidectomized hinds which received 0 mg T 3 injections were intended to serve as 

negative controls for the effects of thyroid hormones on seasonal neuroendocrine 

reproductive suppression, but the possiblity of T 3 contamination casts some doubt on 

the validity of these animals as controls. However, the absence of suppression of 

plasma TSH concentration and the low mean heart rate in this group after the third T 3 

injection, as well as the delayed of onset of summer pelage growth, provide evidence 

of hypothyroidism. It is therefore likely that the high T 3 concentrations measured in 

plasma from these hinds represent post-collection contamination of samples rather 



than of animals, and they highlight the need for careful handling of thyroid hormone 

preparations in these experiments. 
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Despite limitations discussed above, it is interesting to note that in both experiments 

individual hinds showed marked differences in plasma LH concentrations during 

periods of oestradiol implant removal in November and December. There is recent 

evidence that plasma LH concentrations in ovariectomized euthyroid hinds are 

profoundly suppressed at this time by steroid-independent mechanisms (Meikle and 

Fisher, 1996); yet this was the case for only 1 hind in Experiment 1 and approximately 

half of hinds in Experiment 2, with all other hinds exhibiting high mean plasma LH 

concentrations and pulsatile LH secretion in the absence of oestradiol. In both 

experiments there was limited evidence of a positive relationship between suppression 

of mean plasma LH concentration or pulsatile LH secretion in the absence of 

oestradiol and plasma T 3 concentration, suggesting that the steroid-independent 

suppression of LH secretion may be dependent on the presence of a threshold 

concentration of thyroid hormones. The variable response in plasma LH 

concentration to high doses of T3 in Experiment 2, a treatment which was shown to be 

capable of inducing appropriate biological effects in terms suppression of plasma TSH 

concentration and stimulation of heart rate (Saleh et aI., 1997), may indicate that the 

duration of exposure to T 3 was at the margin of that required for reproductive 

neuroendocrine suppression. 

In conclusion, it was not possible to define the critical period when thyroid hormone 

replacement would enable the seasonal transition to anoestrus to occur; instead the 

results suggest that the steroid dependent suppression of LH secretion during the non­

breeding season may not require the presence of thyroid hormones in red der hinds. In 

the following chapter, the role of the thyroid glands in steroid-dependent and steroid­

independent suppression of LH secretion is examined in thyroidectomized and 

euthyroid animals. The timing of the period of neuroendocrine responsiveness to 

thyroid hormones is re-examined in Chapter 7. 



68 

Chapter 5 

Effects of thyroidectomy and thyroxine replacement on 
seasonal reproduction in the red deer hind 

5.1 Introduction 

Red deer (Cervus elaphus) exhibit a pronounced annual breeding cycle that is 

regulated by photoperiod (Simpson et aI., 1983; Webster and Barrell, 1985). As with 

the majority of temperate ungulate species (Lincoln and Short, 1980), oestrous 

cyclicity in female hinds begins each year during decreasing photoperiods and in the 

absence of pregnancy recurrent cycles of approximately 18 days duration occur 
. -

throughout the winter (Adam etal., 1985; Jopson et al., 1990; Meikle and Fisher, 

1996). However recent evidence has shown that the physiological mechanisms 

underlying this annual rhythm in deer may differ from those acting in sheep, from 

which our understanding of seasonal reproduction in farm animals is largely derived. 

For example, red deer hinds exhibit dramatic seasonal fluctuations of plasma LH 

concentrations (Meikle and Fisher, 1996) and responsiveness of LH secretion to 

exogenous GnRH (Baker et aI., 1995; Meikle and Fisher, 1996) in the absence of 

gonadal steroids. In gonadectomized sheep the seasonal oscillations in these 

parameters are considerably smaller (Karsch et al., 1980; Goodman and Karsch, 1981; 

Pau and Jackson, 1985; Robinson et aI., 1985; McLeod et al., 1996; Brewer et al., 

1995) and sometimes undetectable (Jenkin et al., 1977; Karsch et al., 1987; Karsch et 

aI., 1993). 

Recent observations have led to the concept that the presence of thyroid hormones is 

required for at least one stage of the circannual rhythm of reproduction, the transition 

from the breeding to the non-breeding state, in many species of birds (Goldsmith and 

Nicholls, 1984; Follett and Nicholls, 1985) and mammals (Vriend, 1985; Jacquet et 

aI., 1986; Nicholls et aI., 1988b; Moenter et al., 1991; Shi and Barrell, 1992; 

Parkinson and Follett, 1994). In the ovariectomized, oestradiol-treated ewe, pulse 

frequencies of LH (Moenter et al., 1991) and GnRH (Webster et ai., 1991 b) were 
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maintained at high levels throughout the non-breeding season if the animals had been 

thyroidectomized during the preceding breeding season. In the red deer stag, 

thyroidectomy prevented antler casting in spring and the associated decline in testis 

diameter, testosterone concentration and responsiveness of the pituitary gland and 

testes to exogenous GnRH (Shi and Barrell, 1992). Treatment with exogenous 

thyroxine (T4) overcomes the effects of thyroidectomy in ewes (Webster et al., 1991a) 

and stags (Shi and Barrell, 1994). 

There have been no published reports of the effects of thyroidectomy on reproduction 

in female deer. Because seasonal fluctuations in LH concentrations are much more 

marked in the ovariectomized red deer hind than in the ovariectomized ewe, the 

former species presents a unique experimental model for studying the role of thyroid 

hormones on steroid-independent processes controlling LH concentrations. The 

objectives for the current experiments were to test if thyroid hormones are required in 

female red deer for the cessation of oestrous cyclicity in spring, and to investigate 

whether this requirement applied to steroid-dependent or steroid-independent 

components of seasonal breeding regulation. 

5.2 Materials and Methods 

Animals and management 

Two experiments were conducted using 25 mature red deer hinds (mean live weight at 

the start of the experiments 85.8 ± 1.7 kg). Hinds were maintained outdoors at all 

times of the year. 

Experiment 1 

To test if the thyroid gland is required for the annual cessation of oestrous cyclicity in 

red deer, 16 mature hinds were thyroidectomized (THX, n = 7), thyroidectomized and 

treated subcutaneously in the anterior neck region with 4 x 25 mg sodium L-thyroxine 

tablets (Glaxo Laboratories Ltd, Middlesex, England) in May, August and November 

(THX+T4' n = 4) or untreated (euthyroid control, n = 5) early in the breeding season 

(early May). Blood samples were collected twice weekly until the end ofpecember 

for measurement of plasma progesterone concentration. Plasma total tri-
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iodothyronine (T 3) was measured approximately monthly. Plasma total T 4 was 

measured in THX+T4 hinds immediately before and on four occasions during the 3 

months following implantation of sodium L-thyroxine tablets in August to monitor the 

effectiveness of this treatment. Plasma TSH concentration was measured in June and 

December. In early November the ovarian status of all hinds was determined by 

laparoscopy as described in Section 3.2. 

Experiment 2 

To test if the thyroid gland is required for steroid-dependent and/or steroid­

independent inhibition of reproductive activity in the non-breeding season, nine hinds 

were ovariectomized and thyroidectomized (THX, n = 4) or ovariectomized only 

(control, n = 5) in early May. Allhinds were treated with slow-release silicone rubber 

oestradiol-impregnated implants (Compudose 200, Elanco Animal Health, Auckland, 

New Zealand), cut transversely so that ,each hind received one third of an implant 

containing 8 mg oestradiol 17 p subcutaneously in the right ear from June until April 

the following year, except for three periods of approximately 1 month each, beginning 

on 1 August, 31 October and 9 January when the implants were removed to facilitate 

measurement of LH concentrations in the absence of steroidal inhibition. Blood 

samples were collected on a weekly basis for measurement of plasma LH 

concentration. Once every month, 5 Ilg of GnRH (LH-RH acetate salt, Sigma 

Chemical Co., St Louis, MO, USA) in 1 ml of sterile physiological saline solution was 

administered Lv. immediately following the weekly blood sample and a further 

sample obtained exactly 10 minutes later to assess the pituitary responsiveness to 

GnRH (calculated as the plasma LH concentration at 10 minutes minus the 

concentration prior to injection). In early July (breeding season) and late October 

(non-breeding season), blood samples were collected at 10 minute intervals for 4 h in 

the presence of the oestradiol implants to determine episodic LH secretion. Plasma 

total T 3 concentration was measured approximately monthly. 

Data analysis 

A significant episode of progesterone, taken as indicative of a luteal phase, was 

defined as 2 consecutive sample concentrations exceeding 2 nmol.r l
, since this 

concentration divides typical follicular and luteal phase progesterone concentrations in 
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red deer (Jopson et al., 1990; Meikle and Fisher, 1996). Mean number of cycles per 

group during the breeding season and non-breeding season was calculated assuming 5 

September as the date of transition from the breeding season to the non-breeding 

season in New Zealand, based on that reported by Meikle and Fisher (1996). 

Effects of treatments on plasma T 3 concentrations over time were analysed by linear 

regression analysis to identify increases in concentrations. Treatments effects on 

plasma LH concentrations over time were analysed by multivariate analysis of 

variance (ANOV A) for repeated measurements (basal LH profiles were subdivided 

into periods of time corresponding to removal and replacement of oestradiol implants 

for repeated measures ANOV A). To determine at which point the treatment effects 

occurred, data from each sampling time were analysed by one-way ANOV A. All 

other treatment differences were analysed by one-way ANOV A or paired Students t­

test as appropriate. Hormone concentrations were log transformed (base 10) to 

equalize variances before statistical analysis. Mean results are presented ± SEM. 

5.3 Results 

One THX hind (Hind 26) in Experiment 1 and one THX ovariectomized hind in 

Experiment 2 (Hind 8) died early in the winter. Hind 26 had developed an abscess in 

one hoof which did not respond to antibiotic treatment and resulted in a decline in 

body condition. Cause of death was not identified in Hind 8. Both animals were 

replaced within a few days with a recently THX hind and a long-term « 1 year) THX 

ovariectomized hind. Breeding season data from Hind 26 and its replacement were 

excluded from the analysis. 

Experiment 1 and 2: Plasma T3 and TSH concentrations 

Since there was no effect of ovariectomy on mean plasma T 3 concentration, these data 

are presented collectively for Experiments 1 and 2 (Figure 5.1). Euthyroid control 

hinds exhibited a seasonal increase in plasma T3 concentration (P < 0.001), peaking 

around November (early summer). A similar pattern was observed in THX+T4 hinds 

in Experiment 1, with plasma T 3 concentration gradually increasing with each 

administration of T4 (P < 0.001). Mean plasma total T4 concentration in these hinds 

was 23.3 ± 4.4 nmol.r l immediately prior to implantation ofT4 in August, and 
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Figure 5.1 Mean (± SEM) plasma concentrations of total T 3 in euthyroid 
control (e, n = 10), THX+T4 (.t., n = 4) and THX (0, n = 10) hinds in 
Experiments 1 and 2. Data for Hind 29 are plotted separately (dotted line, see 
text for details). Arrowheads indicate times of T 4 treatment (4 x 25 mg T 4 

tablets subcutaneously) for THX + T 4 hinds. 
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following this implantation plasma T 4 increased to peak at 82.1 ± 17.5 nmol.r l one 

month later. Thereafter concentrations gradually declined, reaching 53.6 ± 14.1 

nmol.r l by mid November. In THX hinds, mean plasma T 3 concentration was 

generally undetectable throughout the year. One THX hind (Hind 29) had T3 

concentrations in excess of 1.0 nmol.rl; data from this hind were excluded from the 

analysis and are plotted separately. Mean plasma TSH concentration was significantly 

elevated in THX hinds (1633.2 ± 350.3 pg.ml- I 
) compared with euthyroid hinds 

(130.3 ± 38.3 pg.mrl) (P < 0.001). In euthyroid and THX hinds in Experiment 1, 

mean plasma TSH concentrations were similar in June and December (P > 0.05), 

while in THX + T 4 hinds the progressive increase in plasma T 3 concentration was 

associated with a decline in mean plasma TSH concentration (June: 1353.0 ± 377.9, 

December: 435.8 ± 318.4; P < 0.05). 

Experiment 1 

Mean numbers of progesterone episodes detected in the breeding and non-breeding 

seasons are shown in Table 5.1. Between the beginning ofthe experiment and 5 

September (4 months), all hinds exhibited episodes of progesterone indicative of 

oestrous cycles. THX+ T 4 hinds exhibited fewer progesterone episodes than control 

hinds (P < 0.05). Between 5 September and 29 December, there was significantly less 

evidence of reproductive activity in control and THX+ T 4 hinds (P < 0.001); although 

all hinds appeared to have a single oestrous cycle during October. When ovaries of 

hinds in these two groups were examined by laparoscopy in early November, no 

corpora lutea or large (> 5 mm diameter) follicles were evident. One animal in the 

THX group which had high T 3 levels (Hind 29) exhibited a progesterone 

concentration profile and ovarian status similar to that of control hinds. In marked 

contrast, THX hinds (excluding Hind 29) had similar numbers of progesterone 

episodes during the non-breeding season and breeding seasons (P > 0.05); 

reproductive activity continued until the end of December when sampling ceased. 

Upon laparoscopic examination of ovaries, all THX hinds (excluding Hind 29) had 

either a single large (> 5 mm diameter) follicle (3/6 hinds) or a single corpus luteum 

(3/6 hinds) present. Examples of plasma progesterone concentration profiles from 

hinds representative of each group are shown in Figure 5.2. 
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(a) Hind 11 (euthyroid control) 

(b) Hind 20 (THX+T4) 

(c) Hind 27 (THX) 

(d) Hind 29 (THX?) 
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Figure 5.2 Representative individual profiles of plasma progesterone concentration for 
(a) euthyroid control, (b) THX+T4 and (c) THX hinds in Experiment 1. Panel (d) 
contains progesterone concentrations from Hind 29 (THX) which had plasma T 3 

concentrations in excess of 1 nmol.rl. Vertical bars denote the time of the end of the 
breeding season for red deer hinds in New Zealand. 
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Table 5.1 Mean numbers of progesterone episodes during the breeding and 
non-breeding seasons (prior to and after 5 September) 

Group Breeding season Non-breeding season 

Control (n = 5) 4.6±0.2a 1.6 ± 0.2c 

(4 - 5) (1 - 2) 

THX+T4 (n = 4) 2.5 ± 0.3b 1.3 ± O.3c 

(2 - 3) (1- 2) 

THX (n= 6) 4.0 ± 0.5ab 4.3 ± 0.8ab 

(3 - 6) (2 - 5) 

Numbers within brackets refer to ranges. Values not assigned common letters are 
significantly different (P < 005). 

Experiment 2 

In control and THX hinds, plasma LH concentrations averaged 2.4 ± 0.4 ng.m1-1 while 

oestradiol implants were present during the breeding season and declined (P < 0.05) to 

0.9 ± 0.1 ng.m1-1 between September and March (non-breeding season); there was no 

effect of thyroidectomy (P > 0.05 at all times). In the absence of oestradiol, plasma • 

concentrations of LH were high (2.6 ± 0.3 ng.m1-1 
) in both control and THX hinds (P 

> 0.05) except during November, when mean concentrations were significantly lower 

in control than THX hinds (1.3 ± 0.8 vs 3.1 ± 0.8 ng.mr l
, P < 0.001) (Figure 5.3). 

There was a seasonal pattern of LH response to GnRH injections in all hinds, with 

peak LH responses in July (17.3 ± 8.0 ng.mr l
) and in April in the following year 

(23.2 ± 5.7 ng.m1- I
) and nadir LH response in December (4.6 ± 1.6 ng.mr l

). LH 

response was similar for the two groups at all times (P > 0.05) except at the time 

oestradiol implants were withdrawn in November, when the response was lower for 

control than THX hinds (4.7 ± 0.4 vs 25.9 ± 3.6 ng.mr l
, P < 0.001) (Figure 5.4). 

Mean number of LH pulses and pulse amplitude in the presence of oestradiol were 

similar in July (2.6 ± 0.7 vs 1.8 ± 0.6 pulses/4 h, P < 0.05 and 3.0 ± 2.2 vs 1.3 ± 0.4 

ng.mr l
, P < 0.05) and October (0.8 ± 0.4 vs no pulses/4 h, P < 0.05 and 0.6 ± 0.03 

ng.mr l 
) for euthyroid and THX hinds respectively. Between July and October there 

was a significant decline in mean LH pulse amplitude and number of LH pulses in all 

hinds (P < 0.05; see Figure 5.5 for representative examples). 
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Figure 5.3 Mean (± SEM) plasma concentrations ofLH in euthyroid control (e, n = 5) and 
THX (0, n = 4) hinds in Experiment2. Periods of oestradiol treatment are indicated by shaded 
blocks. Vertically aligned asterisks indicate significant (*, P < 0.05; **, P < 0.001) differences 
between means. 

-... 
E 
Cl .s 
I 
....J 
(1j 

E 
(J) 
(1j 

a: 

35 

30 

25 

20 

15 

10 

5 

0 

* * * 

May June July Aug Sept Oct Nov Dec Jan Feb Mar Apr 
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5.4 Discussion 

The results of Experiment 1 form the first published report to show that the cessation 

of oestrous cyclicity during the non-breeding season is dependent on the presence of 

thyroid hormones. This is supported by the findings of Nicholls et al. (1988b), which 

showed that thyroidectomy prevented the cessation of oestrous cyclicity in ewes 

induced by long photoperiods or by development of refractoriness to equatorial 

photoperiods, and of other researchers who have used thyroid hormone replacement 

experiments to demonstrate a requirement for thyroid hormones for the seasonal onset 

of steroid-dependent suppression ofLH concentrations in ewes (Webster et ai., 1991a; 

Thrun et ai., 1996) and testicular regression and associated changes in red deer stags 

(Shi and Barrell, 1994). Experiment 2 extended this finding by showing that in the 

red deer hind the effects of thyroid hormones are specifically directed at the steroid­

independent component of the mechanism regulating seasonal breeding. This is 

unlike the case of the ewe in which thyroid hormones appear to be required for 

initiating the negative feedback influence of oestradiol on reproductive 

neuroendocrine activity during anoestrus (Webster et ai., 1991a), i.e. their effect is 

directed at the steroid-dependent component. 

There are relatively few published reports of the effects of thyroidectomy on oestrous 

cyclicity in any species. Thyroidectomy has been shown not to affect the steroid 

feedback responses required for generation of the pre-ovulatory LH surge or for 

suppression of ovulation during the luteal phase in breeding season ewes (Webster et 

ai., 1991a). Nicholls et al. (1988b) showed that ewes thyroidectomized just prior to 

the breeding season initiated cycles at the same time as control animals, but thereafter 

continued to cycle for more than one year and were still cycling when general 

debilitation necessitated termination of the experiment. There may be species 

differences in the requirement of thyroid hormones for oestrous cyclicity, since in two 

separate studies, thyroidectomy or suppression of thyroid function in female goats has 

been shown to impair or even abolish normal ovarian function (Walkden-Brown et aI., 

1996; Reddy et al., 1996). Although the plasma progesterone concentration and 

ovarian status of THX hinds during the non-breeding season in Experiment 1 indicate 

this is not the case for red deer, it should be noted that many of the progesterone 

episodes seen in THX and THX+T4 hinds were shorter in duration than those of 
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euthyroid hinds and irregular in occurrence, suggesting a possible role for thyroid 

gland secretions other than T 4 or its metabolite T 3 for normal ovarian function. 

Nevertheless, normal mating, conception and pregnancy have been recorded in at least 

5 thyroidectomized hinds (see Chapter 8), indicating that if such a role exists it is not 

an absolute requirement for successful breeding in this species. 

Replacement of thyroid hormones to physiological levels in Experiment 1 restored the 

seasonal pattern of oestrous cyclicity in thyroidectomized hinds to that of euthyroid 

control hinds. This confirms that the effects of thyroidectomy are due to the absence 

of thyroid hormones. It could be argued that the cessation of oestrous cycles in the 

thyroid hormone-replaced hinds was actively driven by increasing concentrations of 

the exogenously administered T 4, rather than being permitted by the mere presence of 

thyroid hormones. The premature termination of the breeding season in ewes injected 

with large doses of T 4 (O'Callaghan et al.; 1993) and its extension in ewes with 

suppressed thyroid secretion (Follett arid Potts, 1990) lend some support to this 

possibility. However recent studies in which thyroid hormone levels have been 

manipulated approximately within the normal physiological range have failed to alter 

the timing of the non-breeding season in either ewes (Dahl et al., 1995) or red deer 

stags (Shi and Barrell, 1994). Since the T4 implants in Experiment 1 produced very 

similar circulating T 4 and T 3 concentrations to those seen in euthyroid animals, it is 

unlikely in the light of the aforementioned studies that the onset of anoestrus was due 

to the gradual increase in concentrations of exogenously administered thyroid 

hormones. 

An intriguing finding from Experiment 2 is the striking similarity of LH profiles in 

ovariectomized control and thyroidectomized hinds in the presence of oestradiol. LH 

concentrations in plasma of thyroidectomized hinds in Experiment 2 were profoundly 

suppressed by oestradiol during the period of the year corresponding to the non­

breeding season of entire, non-pregnant hinds (Figure 5.2; also see Meikle and Fisher, 

1996). This is in marked contrast to the growing body of evidence for the ewe (e.g. 

Moenter et al., 1991; Webster et aI., 1991a), in which it has repeatedly been 

demonstrated that the thyroid gland is required for oestradiol-induced suppression of 

LH concentrations. It is possible that the low plasma LH concentrations in THX hinds 

merely reflect profound suppression by oestradiol at the level of the pituitary gland 
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(see Baker et al., 1995; Meikle and Fisher, 1996), even though pulsatile GnRH 

secretion remains high as is known to occur in the thyroidectomized ewe (Webster et 

al., 1991b). However this is unlikely for two reasons. Firstly, exogenous GnRH­

induced LH concentrations in thyroidectomized hinds did not decline until October 

whereas basal LH concentrations declined in August around the time of the onset of 

the non-breeding season (compare Figures 5.3 and 5.4), so a loss of pituitary 

responsiveness to GnRH cannot account for the low basal LH concentrations in the 

intervening period. Secondly, the number ofLH pulses detected over the four hour 

intensive sampling period in late October was reduced in thyroidectomized oestradiol­

treated hinds; indicating that the effect was occurring at the level of GnRH pulse 

generation since GnRH and LH pulses are temporally (and presumably causally) 

coupled (Clarke and Cummins, 1982; Levine et al., 1982; Karsch et al., 1987; Barrell 

et al., 1992; Karsch et al., 1993). 

The elevated plasma LH concentrations in thyroidectomized hinds relative to control 

animals which were recorded in the absence of oestradiol during November indicate 

that there is a major species difference between sheep and deer in the mode of action 

of thyroid hormones on regulation of seasonal breeding cycles. From this result it can, 

be argued that thyroid hormones are required specifically for the steroid-independent 

component of seasonal reproductive regulation which transiently but profoundly 

suppresses plasma LH concentrations around the time of the summer solstice in this 

species (Meikle and Fisher, 1996). 

There was a pronounced seasonal pattern of LH concentrations released in response to 

exogenous GnRH in control hinds in Experiment 2. During the breeding season and 

while oestradiol implants were present during the non-breeding season, there was no 

effect of thyroidectomy on LH response to exogenous GnRH; however in 

thyroidectomized hinds responsiveness was significantly elevated compared with 

control animals during the non-breeding season (November) when oestradiol was 

absent. This suggests that the steroid-independent seasonal variations in pituitary 

responsiveness to GnRH which have recently been described for red deer hinds 

(Meikle and Fisher, 1996) may also be dependent on the presence of thyroid 

hormones. An effect of thyroid hormones in deer at the level of the anterior pituitary 

gland may represent another difference in the mode of thyroid hormone action 



between red deer and sheep, since in the latter species the responsiveness of the 

anterior pituitary gland to GnRH exhibits very little or no seasonal variation (e.g. 

Jenkin et al. 1977; Brewer et al. 1995). 

In the thyroidectomized hind, oestradiol appears to retain the ability to suppress 

reproductive neuroendocrine function during the non-breeding season at both the 

hypothalamic and anterior pituitary levels. It is possible that the effects of 

thyroidectomy on steroid-independent pathways were masked by the potent steroid­

dependent suppression of LH concentrations while oestradiol was present in 

Experiment 2, but that in the ovary-entire hinds in Experiment 1 endogenous 

oestrogen secretion was low enough to allow the steroid-independent effects to be 

manifest as a continuation of oestrous cyclicity throughout the non-breeding season. 
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Differences in the degree of gonadotrophin suppression exerted by steroid­

independent mechanisms are known to' exist between various of species and breeds of 

birds and mammals (e.g. Gibson et al., 1975; Garcia and Ginther, 1976; Lincoln and 

Kay, 1979; Lincoln and Short, 1980; McLeod et al., 1996). It has been suggested that 

these differences may reflect the degree of domestication (Goodman and Karsch, 

1981), since seasonal gonadotrophin fluctuations in the absence of gonadal steroids 

are greater in the Soay ram, a relatively undomesticated breed (Lincoln and Short, 

1980), compared with the domestic Suffolk ewe (e.g. Robinson et al., 1985). As red 

deer have been introduced to the farm environment only within the last 30 years 

(Fisher and Bryant, 1993), their reproductive neuroendocrine function may be more 

akin to that of relatively undomesticated animals. The present results indicate that the 

thyroidectomized, ovariectomized red deer hind offers an unique and interesting 

animal model for studying the relative roles of steroid-dependent and steroid­

independent mechanisms of gonadotrophin suppression. 

In conclusion, the results presented here do not fit into the commonly proposed model 

for regulation of seasonal breeding in the domestic ewe, whereby steroid-dependant 

regulation is considered to be the major determinant of seasonality (e.g. Karsch et al., 

1993). Rather, the overall finding that the transition to anoestrus in red deer hinds can 

be prevented by thyroidectomy, a treatment which appears to disrupt steroid­

independent but not steroid-dependent processes, strongly suggests that the former 
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mechanisms may be at least as important in regulating seasonal breeding as the latter 

in this species. 



Chapter 6 

Pulsatile LH secretion in the ovariectomized, 
thyroidectomized red deer hind following treatment with 
dopaminergic, opioidergic and serotonergic agonists and 

antagonists 

6.1 Introduction 
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Little is known about the neuronal control of seasonal fluctuations in GnRH secretion 

in deer. Since the vast majority of the GnRH neurons do not possess oestradiol 

receptors in the ewe (Karsch and Lehmen, 1988; Lehmen and Karsch, 1993) and other 

species (Shivers et al.; 1983; Sullivan et al., 1990; Watson et al., 1992), it is generally 

considered that the effects of this steroid in suppressing tonic LH secretion during 

anoestrus must be relayed via at least one type of neural system. Convincing evidence 

has been obtained over the last 15 years to show that dopaminergic neurons fulfil this 

role in the ewe (Meyer and Goodman, 1985; Halvem et aI., 1991; Viguie et aI., 1996) 

and ram (Tortonese and Lincoln, 1994a; 1994b). This has been most clearly 

demonstrated by measuring changes in LH secretion in response to injection of 

receptor agonists and antagonists. In such experiments, dopaminergic D2 receptor 

agonists are able to transiently suppress circulating LH concentrations during the 

breeding season, while in the non-breeding season D2 receptor antagonists overcome 

LH suppression (e.g. Tortonese and Lincoln, 1994a). Recently it has been shown that 

the dopaminergic neurons themselves reflect afferent input from an adrenergic system 

(Goodman, 1989). 

Several reports have indicated that opioid peptides are also able to suppress 

circulating LH concentrations in ewes during the non-breeding season in the absence 

of gonadal steroids (Shillo et al. 1985; Yang et al.; 1988; Schall et al., 1991), while 

others disagree with this finding (Brooks et al. 1986b; Meyer and Goodman, 1986; 

Whisnant and Goodman, 1988). Steroid-independent seasonal suppression of LH 

secretion probably also involves a serotonergic neural system, since serotonin reduces 

(Riggs and Mal ven, 1974) and cyproheptadine (a serotonergic antagonist) increases 
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(Meyer and Goodman, 1986) pulsatile LH secretions in castrate sheep. As seen in the 

previous chapter, the ovariectomized red deer hind presents a unique model for 

studying such steroid-independent mechanisms of reproductive suppression due to the 

large seasonal fluctuations in plasma LH concentration exhibited by this species. 

The seasonal transition to the state of reproductive quiescence in the ewe (Webster et 

ai., 1991a; Thrun et ai., 1996, 1997) and red deer stag (Shi and Barrell, 1994) has 

been shown within the last decade to be· dependent on the presence of thyroid 

hormones. In the ewe, this role is specifically manifest as a disruption of onset of 

oestradiol-induced GnRH suppression in animals thyroidectomized during the 

breeding season (Webster et ai., 1991b), so that LH concentrations remain elevated 

throughout the non-breeding season (Moenter et ai., 1991; Webster et ai., 1991a; Dahl 

et ai., 1994; 1995; Thrun et ai., 1996). Since the mechanism by which thyroid 

hormones elicit seasonal tr<\nsitions is not yet understood, the current experiment was 

set up to test if the thyroid glands are required for the development of inhibitory 

neuronal pathways at the end of the breeding season in red deer hinds. 

In the first experiment, reported here a receptor agonist and antagonist were used to 

test the hypothesis that the thyroid glands are required for a dopaminergic neural 

system to suppress LH secretion in ovariectomized oestradiol-treated red deer hinds 

during anoestrus. The second experiment tested whether the thyroid glands are 

required for dopaminergic, opioidergic or serotonergic neurons to suppress LH 

secretion during anoestrus in the absence of gonadal steroids. As it is well established 

that prolactin secretion is modified by these neurotransmitter pathways (Schillo et ai., 

1985; Thomas et al., 1988; Johnson et ai., 1990, Parrott and Goode, 1992; Lipmam et 

al., 1992; Aurich et al., 1996), prolactin responses to these drugs were measured in 

addition to LH as an indicator of their biological effectiveness. 
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6.2 Materials and Methods 

Animals and Management 

Ten mature red deer hinds (mean live weight at the beginning of the study 86.7 ± 4.4 

kg) were ovariectomized or ovariectomized and thyroidectomized (THX) (n = 5) early 

in the breeding season (May 1995). 

Experiment 1 

To test if the thyroid gland is required for a doparninergic neuronal pathway to 

mediate oestradiol-induced suppression of LH in red deer during the non-breeding 

season, hinds were treated in early June 1995 with slow-release silicone rubber 

implants containing oestradioI17-~ and challenged with a dopaminergic agonist and 

antagonist during the breeding and non-breeding season as outlined below. Oestradiol 

implants were removed between 1 August and 25 August as part of another 

experiment. 

In July (mid-breeding season), all hinds received an i.m. vehicle (3.0 m1 of a 1: 1 

mixture of 15% ethanol and 0.1 M tartaric acid) injection followed 4 hours later by 

either a single i.m. injection of the dopamine-D2 receptor agonist 2-bromo-a­

ergocriptine methane sulfonate (bromocriptine, 0.06 mg.kg- l ) or the dopamine-D2 

receptor antagonist S( -)-sulpiride (0.60 mg.kg- l ). The ethanol/tartaric acid mixture 

was the vehicle for both drugs; both vehicle components have been shown separately 

not to affect LH concentrations in sheep (Meyer and Goodman, 1985; 1986). Blood 

samples were taken every 10 minutes for plasma LH analysis from the time of vehicle 

injection until 5 hours after drug injection. Plasma prolactin concentrations were 

measured at -240, -120,0,40,80, 160 and 300 minutes relative to drug injections. 

Four days later hinds received the same treatment but were injected with the other 

drug, so that all animals received both agonist and antagonist. This procedure was 

repeated during late October (non-breeding season). Drugs and dosages were selected 

for their ability to elicit changes in LH and prolactin concentrations and for absence of 

clinical side effects (McNeilly and Land, 1979; Curlewis et al., 1988; Milne et al., 

1990; Ssewannyana and Lincoln, 1990; Tortonese and Lincoln, 1994) in similar 



studies in sheep and red deer. All drugs were purchased from Sigma Chemical Co. 

(St Louis, MO, USA). 

Experiment 2 
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To test if the thyroid gland is required for inhibitory neural pathways to suppress LH 

concentrations in red deer during the non-breeding season in the absence of gonadal 

steroids, hinds were treated at least 3 months after oestradiol implant removal with 

receptor agonists during the breeding season and receptor antagonists during the non­

breeding season. In July 1996 all hinds were treated with 0.06 mg.kg-1 bromocriptine 

Lm. and blood sampled for plasma LH and prolactin concentrations as for Experiment 

1, except that the vehicle was 3 ml of 15% ethanol. Four days later, hinds were 

treated with a saline vehicle injection followed 4 hours later by a single injection of 

0.12 mg.kg-1 serotonin creatine sulphate complex (Sigma Chemical Co., St Louis, 

MO, USA) i.v. in 1.5 ml of 0.9% saline solution. After a further 3 days, hinds were 

treated with a saline vehicle injection followed 4 hours later by a single injection of 1 

mg.kg-1 morphine sulphate i.v. in 3.0 rnl of 0.9% saline solution (David Bull 

Laboratories, Melbourne, Australia). Blood samples were taken at 10 minute intervals 

from the time of vehicle injection until 4 hours after serotonin or morphine injection 

for measurement of plasma LH concentrations and for measurement of plasma 

prolactin concentrations at -240, -120, 0, 10,20,40,80 and 160 minutes relative to 

morphine injection. Serotonin was administered as described by Thomas et al. 

(1988), who demonstrated a central site of action for peripherally injected serotonin in 

ewes. Morphine was administered as described in other published experiments 

(Ebling and Lincoln, 1985; Lincoln et ai., 1987), none of which reported any side­

effects at this dose. 

In early November receptor antagonists were injected following exactly the same 

protocol and sampling regime as for the agonists during the breeding season. 

Antagonists for dopamine, serotonin and opioid peptides were sulpiride (0.60 mg.kg- 1 

i.m.), cyproheptadine (3.0 mg.kg-1 i.v.) and naloxone (2.5 mg.kg-1 i.v.) (Sigma 

Chemical Co., St Louis, MO, USA). The vehicle for sulpiride was 3 ml 0.1 M tartaric 

acid, for cyproheptadine 1.5 rnl of 50% ethanol and for naloxone 2 ml 0.9% saline 

solution. The doses of cyproheptadine and naloxone were based on previous studies 

in sheep (Ebling and Lincoln, 1985; Meyer and Goodman, 1985; 1986; Lincoln et aI., 
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1987; Schall et al., 1991; Kao et al., 1992), none of which reported any adverse 

behavioural side-effects. However in another study (Le Corre and Chemineau, 1993) 

respiratory depression in 40% of animals was reported following injection of 

cyproheptadine at 3.0 mg.kg- I Lv. 

Data analysis 

One THX hind became debilitated and died during 1995 and was not replaced until 

June the next year; data from this hind are excluded from the non-breeding season of 

Experiment 1. 

Responses to drug injections were identified using paired Student's t-tests to compare 

average post-drug LH values with average pre-drug values, or in the case of plasma 

prolactin concentrations, with the concentration immediately before drug injection 

since a large diurnal variation was observed for this hormone. As thyroidectomy did 

not affect concentrations of prolactin or the prolactin response to drug challenges, 

these data were pooled for euthyroid and thyroidectomized hinds. To examine the 

effects of thyroidectomy and season on mean plasma LH concentration, LH pulse 

frequency, LH pulse amplitude and prolactin concentration, pre-drug injection data 

from the 2 intensive sampling dates in each season were pooled prior to analysis of 

variance or paired t-tests as appropriate. Hormone concentrations were transformed 

to their logarithms (base 10) before statistical analysis. Mean values are presented ± 

SEM. 

6.3 Results 

Experiments 1 and 2: Plasma Tj Concentrations 

Plasma concentrations of total T3 were similar in Experiments 1 and 2. In euthyroid 

hinds, a seasonal pattern of plasma total T3 concentration was observed with nadir 

concentrations of 0.9 ± 0.1 nmol.l-1 in winter (June) and peak concentrations of 1.9 ± 

0.2 nmol.l- 1 in late summer (P < 0.001). In contrast, mean concentrations of plasma 

total T3 in THX hinds were low « 0.2 nmol.l-1) at all times and often undetectable 

(average concentration over both experiments was 0.1 ± 0.1 nmol.l-1). 
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Experiment 1 

Mean plasma prolactin concentrations prior to drug injections in all hinds were lower 

during July (breeding season) than during October (early non-breeding season) (73.1 ± 

17.5 ng.ml-1 and 146.9 ± 32.8 ng.ml-1 respectively; P < 0.01). Sulpiride caused an 

increase (P < 0.01) in plasma prolactin concentrations in both seasons. Bromocriptine 

decreased plasma prolactin concentrations in October (P < 0.00 1) but the decrease 

was not significant in July (P > 0.05) when concentrations were already low (Figure 

6.1). 

In contrast to prolactin, mean plasma LH concentration, pulse frequency and 

amplitude in all hinds were unaffected by bromocriptine or sulpiride in either season 

(P > 0.05) (Figure 6.2). Mean plasma LH concentration and pulse frequency during 

the period prior to drug injections were lower in October than in July in both 

euthyroid and THX hinds (P < 0.05) but pulse amplitude declined significantly (P < 

0.05) in euthyroid hinds only (Table I). 

Experiment 2 

In contrast to Experiment 1, mean plasma prolactin concentration in all hinds prior to ~ 

drug injections was not significantly lower during the breeding season than during the 

non-breeding season (277.8 ± 57.1 ng.ml-1 and 228.9 ± 27.2 ng.ml-1 respectively; P> 

0.05). Bromocriptine and morphine both caused a decrease (P < 0.01) whereas 

sulpiride, cyproheptadine and naloxone caused an increase (P < 0.01) in plasma 

prolactin concentration (Figure 6.3). Serotonin did not affect plasma prolactin 

concentration (P> 0.05). 

Mean plasma LH concentration, pulse frequency and amplitude in all hinds were 

unaffected by any of the drug treatments in July or by sulpiride and naloxone in 

November (P > 0.05), except for a small increase in pulse amplitude following 

sulpiride (P < 0.05) (Figure 6.4). Cyproheptadine caused all three LH parameters to 

decline significantly (P < 0.05) in euthyroid and THX hinds in November 

(representative examples shown in Figure 6.5). Mean plasma LH concentration, pulse 

frequency and pulse amplitude during the period prior to drug injections were lower in 

November than July in euthyroid hinds (P > 0.05). In THX hinds mean pulse. 
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Figure 6.1 Mean (± SEM) concentrations of plasma prolactin in response to bromocriptine 
(0) or sulpiride (A) during July (breeding season; panel a) or October (non-breeding season; 
panel b) in ovariectomized estradiol-implanted hinds in Experiment 1. Arrows denote drug 
injection times. Note that the scale differs for the two graphs. Data are pooled from euthyroid 
(n = 5) and THX (n = 4) hinds. 
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Figure 6.2 Mean (± SEM) change in plasma LH concentrations (open bars), LH pulse 
frequency (shaded bars) and LH pulse amplitude (solid filled bars) in ovariectomized estradiol­
implanted hinds in Experiment 1 following bromocriptine or sulpiride during the breeding 
season or non-breeding season as indicated at the top of the graph. There were no significant 
responses (P > 0.05) (paired t-tests). Data are pooled from euthyroid (n = 5) and THX (n = 4) 
hinds. 
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Figure 6.3 Mean concentrations of plasma prolactin in response to bromocriptine (0), 
morphine (.6.) and serotonin (0) injections during July (breeding season; panel a) and sulpiride 
(0), naloxone (..6.) and cyproheptadine (0) injections during November (non-breeding season; 
panel b) in ovariectomized hinds in Experiment 2. Arrows denote drug injection times. Note 
that the scale differs for the two graphs. Data are pooled from euthyroid and THX hinds (n = 
5). SEM is shown as an average for clarity. 

BREEDING SEASON NON-BREEDING SEASON 4----------------------
Bromocriptine Morphine Serotonin Sulpiride Naloxone Cyproheptadine 

3 

* 

-4 
* 

-5 

* 

Figure 6.4 Mean (± SEM) change in plasma LH concentrations (open bars), LH pulse 
frequency (shaded bars) and LH pulse amplitude (solid filled bars) in ovariectomized hinds in 
Experiment 2 following drug challenges during the breeding season or non-breeding season 
as indicated at the top of the graph. Asterisks denote significant responses (P < 0.05) (paired 
t-tests). Data are pooled from euthyroid and THX hinds (n = 5). 
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Figure 6.5 
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Individual plasma LH profiles representative of ovariectomized hinds treated with 

cyproheptadine during the non-breeding season in Experiment 2. Panel (a) is representative of 

euthyroid hinds; panel (b) is representative of thyroidectomized hinds. Note that the scale differs 

for the two graphs. Closed circles denote the peak of each pulse. 
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frequency did not decline (P > 0.05) and mean plasma LH concentration and pulse 

amplitude increased (P < 0.05) in November (Table 6.2). 

Table 6.1 LH pulsatility in ovariectomized oestradiol-implanted hinds in 
Experiment 1. 

Pulse parameter Season Euthyroid Thyroidectomized 

Concentration Breeding season 4.2±1.8a 

Non-breeding season 0.8±O.lb 

Number / 4 h Breeding season 1.9±O.4a 

Non-breeding season 0.7±O.3b 

Amplitude Breeding season 1.8±0.9a 

Non-breeding season 0.6±O.03b 

Means not assigned common superscript letters within a pulse parameter are 
significantly different (P < 0;05). 

Table 6.2 LH pulsatility in ovariectomized hinds in Experiment 2 

2.0±0.4a 

0.7±0.lb 

1.8±O.7a 

0.8±O.3b 

0.9±O.3b 

0.7±O.04b 

Pulse parameter Season Euthyroid Thyroidectomized 

Concentration Breeding season 4.3±1.0a 

Non-breeding season 1.5±0.2b 

Number / 4 h Breeding season 4.2±O.la 

Non-breeding season 2.0±0.3b 

Amplitude Breeding season 3.7±1.2a 

Non-breeding season 1.9±0.5b 

Means not assigned common superscript letters within a pulse parameter are 
significantly different (P < 0.05). 

4.7±1.1a 

9.3±1.8c 

4.2±O.6a 

4.3±O.3a 

4.3±O.8a 

8.8±1.8c 

Morphine caused panting and signs of anxiety (e.g. pacing behaviour) in 3 of the 10 

hinds, beginning approximately 30 minutes after injection and lasting up to 4 hours. 

Cyproheptadine caused haemolysis, occasional vocalisation, disorientation and 

agitation when handled in all hinds. These effects, which were particularly severe in 2 

of the 10 hinds, lasted for 2-2.5 hours. 

," -~ - . r:;- .. -. !. - ,. 
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6.4 Discussion 

This study is the first of its kind to be reported for deer. Most of our present 

understanding of the neural pathways regulating seasonal reproductive cycles comes 

from experiments using the ewe (e.g. Meyer and Goodman, 1985). The current results 

strongly suggest that the neural mechanisms which modify GnRH secretion may differ 

between the two species, since treatment with dopaminergic and opioidergic agonists 

and antagonists which have previously been shown to evoke clear LH responses in 

sheep failed to do so in deer, and treatment with a serotonin antagonist which 

increases LH secretion in ovariectomized sheep caused suppression of pulsatile LH 

secretion in ovariectomized deer. 

In Experiments 1 and 2, the dopamine agonist bromocriptine and antagonist sulpiride 

were administered at doses which have been shown to be effective in evoking LH 

responses lasting for over 4110urs in rams (Tortonese and Lincoln, 1994a). Since 

bromocriptine suppressed LH concentrations and pulse frequency only under short 

days and sulpiride increased LH concentrations and pulse frequency only under long 

days, it was concluded in that study as in most similar studies using ovariectomized 

oestradiol-treated ewes (Meyer and Goodman, 1985; Thiery et ai., 1989; Whisnant 

and Goodman, 1994) or entire ewes (Meyer and Goodman, 1985; Curlewis et ai., 

1991; Tilbrook and Clarke, 1992), that an inhibitory DA neural system is activated 

during the non-breeding season to suppress LH and bring about the sexually inactive 

state. In two studies using ovariectomized oestradiol-treated ewes (Kao et aI., 1992; 

Le Corre and Chemineau; 1993b) and one using entire or testosterone-treated castrate 

rams (Tilbrook and Clarke, 1992), there was no LH response to the dopamine 

antagonist pimozide. Although the results of these studies may initially appear to be 

comparable to the results of Experiment 1, it must be noted that whereas sulpiride is a 

specific DA-D2 antagonist (Kebabian and CaIne, 1979; Niznik, 1987), pimozide is 

less specific for these receptors and binds also to DA-Dl receptors in the brain (Pinder 

et ai., 1976). In a comparative study of the two drugs, sulpiride elicited an LH 

response under long days in entire rams while pimozide was ineffective in this regard 

(Tortonese and Lincoln, 1994), and it was surmised that activation of DA-Dl 

receptor-mediated responses may possibly negate effects on GnRHILH secretion. 

Since the lack of LH responses in red deer hinds in Experiment 1 is not in agreement 

with most comparable studies in entire or castrated steroid-treated sheep, the current 
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results indicate that the neuromodulation of GnRH pulse generation differs between 

the two species. Although a mere quantitative species difference in the dose of 

bromocriptine or sulpiride required to elicit an LH response in red deer hinds cannot 

be ruled out, it is suggested rather that DA-D2 receptor-mediated neural pathways are 

not important modulators of steroid-dependent suppression of LH in hinds, based on 3 

observations. Firstly, the doses of bromocriptine and sulpiride were generally 

sufficient to generate robust changes in prolactin secretion, a response known to be 

activated by DA-D2 receptor agonists and antagonists in sheep (Ssewannyana and 

Lincoln, 1990) and red deer hinds (Curlewis et ai., 1988; Milne et ai., 1990). 

Although prolactin responses do not necessarily prove that the dose of drug used was 

sufficient to affect DA-D2 receptor mediated pathways controlling GnRH secretion, 

they do at least show that the drug treatments were effective in binding to DA-D2 

receptors and evoking an appropriate biological response. Secondly, administration of 

bromocriptine at five times the dose used in the current experiment to ovariectomized 

oestradiol-implanted hinds during the non-breeding season caused similar prolactin 

responses to those shown here, while LH secretion remained unchanged (G.M. 

Anderson and G.K. Barrell, unpublished). This indicates that the lack of an effect of 

bromocriptine in Experiment 1 on LH secretion was unlikely to be due to an 

inadequate dose. Thirdly, differences in neuromodulation of seasonal reproduction 

between sheep and other species are known to exist; for example DA agonists and 

antagonists do not evoke LH responses in the anoestrous mare (Besognet et ai., 1996). 

Most studies of DA neural pathways using the ovariectomized sheep without steroid 

replacement have concluded that steroid-independent seasonal reproductive changes 

are not mediated by dopamine (Meyer and Goodman, 1986; Thiery et ai., 1989; 

Tilbrook and Clarke, 1992). This is in agreement with results from Experiment 2 in 

which bromocriptine and sulpiride evoked prolactin but not LH responses in 

ovariectomized hinds without oestradiol. Steroid-independent pathways are of 

particular significance to red deer reproduction (Meikle and Fisher, 1996) since they 

are appear to make a much larger contribution to seasonal breeding in this species 

than in the ewe, where they have received relatively little attention. Therefore the 

current experiment also examined the role of endogenous opioid peptides, which 

appear to play an inhibitory role that is independent of oestradiol in some (ShiUo et ai. 

1985; Yang et al.; 1988; Schall et ai., 1991) but not all (Brooks et al. 1986b; Meyer 

and Goodman, 1986; Whisnant and Goodman, 1988) studies of seasonal LH secretion 

in ovariectomized sheep, and serotonin, which has also been reported to be inhibitory 

to pulsatile LH secretion in ovariectomized ewes in several studies (Riggs and 
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Malven, 1974; Meyer and Goodman, 1986; Whisnant and Goodman, 1990). As was 

the case for bromocriptine and sulpiride, there was no LH response to morphine and 

serotonin in the breeding season or to naloxone in the non-breeding season, although 

plasma prolactin concentrations were significantly increased by morphine and 

decreased by naloxone. One possible explanation for the lack of LH response to these 

drugs that endogenous opioid peptides suppress LH secretion during puberty in red 

deer hinds but non-opioidergic systems progressively take over this role during post­

pubertal maturation, as has been demonstrated in some experiments in the ewe 

(Brooks et al. 1986a; Schall et al., 1991), cow (Wolfe et al., 1991) and human 

(Genazzani et al., 1993). The current results also do not preclude a role for opioids in 

inhibiting GnRH pulse size as has been demonstrated by Goodman et al. (1995) in 

ovariectomized ewes irrespective of oestradiol treatment, since the effects of naloxone 

on episodic GnRH secretion in that study were not clearly reflected in episodic LH 

secretion and would be unlikely to be detected in studies such as the current 

experiment where GnRH was not measured directly. Notwithstanding these 

considerations, the present results indicate that endogenous opioid peptides do not 

playa major role in steroid-independent seasonal suppression of LH concentrations in 

red deer hinds. 

The suppression of pulsatile LH secretion by cyproheptadine during the non-breeding 

season may indicate that a stimulatory serotonergic system operates in red deer hinds. 

This finding represents a further contrast between neuroendocrine control of 

seasonality in sheep and deer, since cyproheptadine suppresses LH secretion in 

ovariectomized ewes (Meyer and Goodman, 1988; Whisnant and Goodman, 1990). 

Cyproheptadine appeared to suppress plasma LH concentrations and pulses to a 

greater degree in THX hinds than in euthyroid hinds (Figure 6.5). During the 

breeding season, intravenous injection of serotonin was without effect. A possible 

explanation for these results is that the degree of serotonergic stimulation is greatest 

during the breeding season resulting in high plasma LH concentrations, and declines 

progressively via thyroid hormone-dependent mechanisms during the non-breeding 

season resulting in decreasing plasma LH concentrations. In November, when 

serotonergic stimulation would be lowest in euthyroid hinds, blockade of these 

pathways with cyproheptadine would result in a very moderate decline in LH 

secretion. In THX hinds, serotonergic stimulation would be maintained throughout 

the breeding season, so that antagonism with cyproheptadine would result in a large 

decline in LH secretion. The lack of an LH response to serotonin during the breeding 

season may have been due to maximal stimulation of pulsatile LH secretion by 
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serotonergic pathways at this time of the year, so that further stimulation with 

serotonin or serotonergic antagonists was not possible. However, the lack of a 

prolactin response to serotonin may indicate that the dose employed in this 

experiment, which was able to elicit a two-fold increase in plasma prolactin 

concentrations lasting for over a hour in ewes (Thomas et ai., 1988), was insufficient 

to alter LH and prolactin secretion in deer. 

In one study in ovariectomized ewes (Deaver and Dailey, 1982), low-doses of 

serotonin slightly decreased, while a higher dose elevated mean LH concentration. 

The authors suggested that different classes of neurotransmitter receptors may exist 

with different affinities for agonists and antagonists, so that activation or inhibition of 

these receptors might affect secretion of LH differently. It is therefore possible that 

the absence of an LH response to serotonin in the current study can be explained by 

the dosage, as well as the method of administration, since in the study of Deaver an 

Dailey continuous infusions of serotonin were used. 

As was noted previously in relation to bromocriptine and sulpiride, the significant 

responses of prolactin to morphine, naloxone and cyproheptadine recorded in the 

current experiment confirm that the dosages used were sufficient to elicit biological 

responses in this species. However the response to morphine observed in hinds in 

Experiment 2 was not the same as has been reported in studies in the sheep (Schillo et 

ai., 1985 Parrott and Goode, 1992), where this opiate drug exhibits stimulatory effects 

on circulating prolactin concentrations. Opioids are thought to stimulate prolactin 

secretion by reducing dopamine release into the hypothalamo-pituitary portal 

circulation (Gudalsky and Porter, 1979; Van Loon et ai., 1980a; 1980b; Wilkes and 

Yen, 1980). Serotonin is also thought to stimulate prolactin by inhibiting 

hypothalamic dopamine release (Pilotte and Porter, 1981) as well as by stimulating the 

release of prolactin-releasing factors into hypophyseal portal blood (Kaji et ai., 1980); 

however the increase in prolactin following cyproheptadine in the current study 

suggests against serotonergic prolactin-stimulating pathways in deer. 

On all intensive sampling occasions a decline in mean plasma prolactin concentration 

was observed during the first 4 hours of sampling. As the mean plasma prolactin 

concentrations were considerably higher in these experiments than in many other 

reports of plasma prolactin concentration in red deer (e.g. Curlew is et al., 1988; Milne 

et ai., 1990), it is possible that this progressive decline is reflective of an initial stress 

period at the start of each sampling period. Although such artificially elevated 



concentrations could affect the interpretation of hormone profiles in plasma, the 

administration of all drugs in the current experiments except for serotonin produced 

immediate and profound changes in plasma prolactin concentration which 

unequivocally indicate a biological response to the drug injections. The lower mean 

concentration of plasma prolactin in hinds in Experiment 1 in the presence of 

oestradiol compared with hinds in Experiment 2, and the absence of a seasonal 

decrease in plasma prolactin concentration during the breeding season in 

ovariectomized hinds in Experiment 2 may indicate a seasonal suppressive effect of 

oestradiol on prolactin secretion; a possibility which warrants further investigation. 
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In this study neither dopamine or endogenous opioid peptides were implicated in 

seasonal LH suppression in either euthyroid or thyroidectomized red deer hinds; thus 

the pathways on which thyroid hormones act to bring about the anoestrous state 

remain to be described. Further experimentation is required to clarify the role of 

serotonergic neurons in this process. As was the case in Chapter 5, thyroidectomy 
, -

during the breeding season was unable'to overcome the steroid-dependent effects on 

LH secretion, since LH pulse frequency and amplitude were as much suppressed in 

thyroidectomized hinds as in euthyroid hinds during the non-breeding season. Taken 

together with the absence ofLH responses to DA-D2 receptor agonists and 

antagonists in Experiment 1 in this chapter, the present results indicate that the 

steroid-dependent mechanisms which contribute to seasonal breeding in the red deer 

hind operate differently to those in the ewe. 

The results for pulsatile LH secretion in euthyroid ovariectomized hinds (Experiment 

2) during the breeding season are similar to those of Limsirichaikul (1992), but during 

the non-breeding season pulse frequency and amplitude were much lower in the 

current experiment. This difference can be explained by the time of year in which 

sampling was conducted, since pulses were measured close to the breeding season in 

February and March in the study of Limsirichaikul. More recently it has been shown 

that LH concentrations in ovariectomized hinds at that time of year are similar to 

those during the breeding season (Meikle and Fisher, 1996). The present results 

describe episodic LH secretion in ovariectomized hinds during the breeding season 

and during the non-breeding season at the time of maximal reproductive 

neuroendocrine suppression (i.e. just prior to the summer solstice). In euthyroid hinds 

pulse frequency was low at this time compared with the breeding season. This finding 

is in agreement with results from ovariectomized ewes (Karsch et al., 1980; Goodman 

et al., 1982; Robinson et aI., 1985; Moenter et al., 1991), although the magnitude of 
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the seasonal change appears to be much greater in hinds. Ovariectomized ewes show 

an increase in pulse amplitude during the non-breeding season (Karsch et ai., 1980; 

Goodman et ai., 1982; Moenter et ai., 1991), but in contrast pulse amplitude declined 

in the current experiment. The role of thyroid hormones in steroid-independent 

seasonal LH secretion in the ewe has received no direct attention; however the results 

ofMoenter et ai. (1991) suggest that pulse frequency and amplitude may remain at 

breeding season levels in thyroidectomized ovariectomized ewes during the non­

breeding season. Thyroidectomy prevented the seasonal decline in LH pulse 

frequency in the ovariectomized hinds in Experiment 2, but in addition caused pulse 

amplitude to increase to more than twice the breeding season amplitudes. One 

possible explanation for this is that high amplitude pulses of GnRH occur in hinds 

during the non-breeding season as in ewes (Barrell et ai., 1992), but correspondingly 

large LH pulses are prevented due to the seasonal decline in responsiveness of the 

anterior pituitary gland to GnRH (Meikle and Fisher, 1996). Since this seasonal 

decline in pituitary responsiveness is greatly diminished in the absence of the thyroid 

gland (see Chapter 5),high amplitude LH pulses are able to be expressed in 

thyroidectomized hinds. Since methods for collecting portal blood and measuring 

GnRH have not been developed in our laboratory it is not currently possible to test 

this hypothesis directly. 

In conclusion, the absence of LH responses to bromocriptine or sulpiride in the 

presence or absence of oestradiol, despite the fact that these drugs appeared to bind 

effectively to DA-D2 receptors, as evidenced by appropriate changes in prolactin 

secretion, indicates that DA-D2 receptor-mediated neural pathways are not important 

modulators of LH regulation in this species. Furthermore, endogenous opioid 

peptides also do not appear to modulate steroid-independent LH suppression in this 

species, as morphine and naloxone elicited prolactin but not LH responses in the 

absence of oestradiol. However the serotonergic antagonist cyproheptadine 

significantly suppressed pulsatile LH secretion in the absence of oestradiol, suggesting 

that serotonin may be stimulatory in the ovariectomized red deer hind. Since the 

effects of thyroidectomy in these experiments was manifest only in steroid­

independent conditions, the role of serotonergic neural pathways deserves further 

research to determine if thyroid hormones influence seasonal reproduction in red deer 

hinds by modifying these pathways. 
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Chapter 7 

Thyroxine treatment during the non-breeding season allows 
steroid-independent suppression of reproductive 
neuroendocrine activity in the thyroidectomized 

red deer hind 

7.1 Introduction 

It has been suggested that the neuroendocrine mechanisms which bring about seasonal 

anoestrus may be responsive to thyroid hormones only during a short 'window' of 

time within the Circannual reproductive cycle (Karsch et al., 1995). If such a window 

of responsiveness was shown to exist, blockade of thyroid function during the critical 

period might enable completely aseasonal reproduction in animals that are 

traditionally seasonal breeders. Support for the existence of a window of 

responsiveness to thyroid hormones comes from recent experiments in which a brief 

(60 - 90 days) period of exposure of thyroidectomized ewes to T 4 just prior to the non­

breeding season was sufficient to bring about neuroendocrine anoestrus at the 

appropriate time (Thrun et aI., 1997). However it remains to be tested if the period of 

responsiveness continues during the non-breeding season, when inhibitory 

photoperiods and the endogenous reproductive rhythm may both be signalling that 

anoestrus should be occurring. 

The purpose of the present study was to delineate a period of thyroid hormone 

responsiveness in ovariectomized red deer hinds. This model animal is specifically 

concerned with steroid-independent mechanisms of gonadotrophin suppression, since 

only these appear to be thyroid hormone-dependent in the red deer hind. 



7.2 Materials and Methods 

Animals and management 

The experiment used 25 mature red deer hinds (mean live weight at the start of the 

experiment 94.2 ± 2.3 kg) which were ovariectomized and thyroidectomized during 

the breeding season (June, n = 16) or sourced from a previous experiment. 

Experimental Design 
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Ovariectomized hinds were allocated in June 1996 to the following treatment groups 

(n = 5 per group): (a) thyroidectomized (THX negative controls); (b) 

thyroidectomized and treated subcutaneously in the anterior neck region with 4 x 25 

mg sodium L-thyroxine tablets (Glaxo Laboratories Ltd, Middlesex, England) until 2 

August, about 40 days prior to the normal time of onset of anoestrus in cycling hinds 

(THX+early T4);(C) thyroidectomized ,and treated with T4 as above from 2 August to 

21 October, about 40 days after the normal onset of anoestrus (THX+mid T4); (d) 

thyroidectomized and treated with T 4 from 21 October to 10 February the following 

year (THX+late T4), and (e) untreated (euthyroid positive controls). Blood samples 

were collected weekly until 27 January (euthyroid and THX control hinds) or 10 

February (THX + T 4 hinds) 1997 for measurement of plasma LH concentration. Once 

every month, a 5 Jlg dose of GnRH (LH-RH acetate salt, Sigma Chemical Co., St 

Louis, MO, USA) was administered Lv. immediately following the weekly blood 

sample and a further sample obtained exactly 13 minutes latex: to assess the pituitary 

responsiveness to GnRH (calculated as the LH concentration at 13 minutes minus the 

concentration prior to injection). In July (breeding season) and November (non­

breeding season, at the time when steroid-independent suppression is maximal), blood 

samples were collected at 10 minute intervals for 4 hours to facilitate measurement of 

episodic LH secretion. Plasma total tri-iodothyronine (T3) was measured 

approximately monthly. 

Data analysis 

Hormone concentrations below the average assay sensitivity were assigned a value 

equal to the sensitivity. Suppression of LH happens gradually during the non-, 

breeding season in the ovariectomized hind (see Meikle and Fisher; 1996); therefore 

,-,!..-'-'.-,. 

I 

i 

.;- -.".' .. - ~ ~ 



the transition from reproductive neuroendocrine activity to quiescence in individual 

animals was arbitrarily taken as the date of the first sample that fell below 1 ng.ml-
1 

for 2 consecutive samples Similarly, the date of the first of 2 consecutive samples 
-1 

where LH concentrations rose above I ng.ml was taken to indicate the return to a 
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state of reproductive neuroendocrine activity. Treatment effects on the date of 

transition to reproductive quiescence, LH pulse frequency and amplitude, LH released 

in response to exogenous GnRH, and the increase in mean plasma T 3 concentration 

during periods of T 4 implantation were identified using analysis of variance followed 

by mean comparisons among groups using Student's t-test. Changes in plasma T 3 

concentration over time in euthyroid and THX control hinds were identified by linear 

regression analysis. All hormone concentrations were log transformed (base 10) to 

equalize variances before statistical analysis. Mean results are presented ± SEM. 

7.3 Results 

A seasonal increase in mean plasma concentration of total T 3 was observed 

throughout the summer in euthyroid positive control hinds (P < 0.01), with a mean 
-1 

nadir concentration of 1.06 ± 0.19 nmol.l in spring (September) and a peak 
-1 

concentration of 1.83 ± 0.21 nmol.l in late summer (February). In contrast, mean 

plasma T3 concentration remained low « 0.2 nmol.l-
1
) and was often undetectable 

throughout the year in THX control hinds. ~n the remaining three groups, mean T 3 

concentrations were low or undetectable in the absence of T4 tablets (0.05 ± 0.01 

nmol.l-
1
) and significantly elevated, albeit slightly, during periods of implantation with 

-1 
T4 tablets (0.45. ± 0.03 nmol.l ; P < 0.05 for THX+early T4 hinds and P < 0.001 for 

THX+mid T4 and THX+late T4 hinds) (Figure 7.1). 

Mean plasma LH concentrations and periods of reproductive neuroendocrine activity 

for individual hinds are shown in Figure 7.2. As expected, mean LH concentrations in 

euthyroid control hinds were high during winter and spring (June - mid-October) and 

low during early summer (mid-October - December). The mean date for onset of 

reproductive neuroendocrine quiescence was 19 October ± 6.6 days; with reproductive 

activity resuming again on 20 December ± 1.9 days. In all THX negative control 

hinds however, LH concentrations remained high throughout the summer so that 

reproductive quiescence could not be detected. A similar pattern was observed for 
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Figure 7.1 Mean (± SEM) plasma concentrations of total T3 in (a) euthyroid 
control (e) and THX control (0) hinds, and (b) THX+early T4 (b.), THX+mid T4 
(0) and THX+late T4 hinds (0) (n = 5). Shaded horizontal bars indicate times of 
T4 treatment (4 x 25 mg T4 tablets subcutaneously) for the three THX+ T4 groups 
respectively. Vertical bars denote the time of the end of the breeding season for red 
deer hinds in New Zealand. 
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Figure 7.2 Mean (± SEM) plasma concentrations of LH in (a) euthyroid control (e) 
and THX control (0) hinds, and (b) THX+early T4 (Il), THX+mid T4 (D) and THX+late 
T4 (0) hinds (n = 5). Horizontal lines indicate times when individual hinds were defined 
as being reproductively active. Vertical bars delineate the mean period of reproductive, 
quiescence in euthyroid positive control hinds. 
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THX+early T4 hinds. In 3 of the 5 THX+mid T4 hinds, the dates of reproductive 

quiescence onset were not different to those of euthyroid controls (18 October for all 3 
-1 

hinds; P > 0.05), however LH concentrations returned to > 1 ng.ml within 2 - 3 

weeks in 2 of these hinds (1 and 8 November) while remaining low until 23 December 

in the third hind (which had plasma T3 concentrations 2-3 times higher than others in 

this group). In the remaining 2 THX+mid T4 hinds (in which plasma T3 
-1 

concentrations averaged 0.1 nmol.l ; the lowest of all T4-treated hinds), reproductive 

quiescence was not recorded despite a decline in LH concentrations around this time. 

Reproductive quiescence occurred significantly later than for euthyroid controls in 4 

THX+late T 4 hinds (17 December ± 2.5 days; P < 0.001); in the remaining hind 

reproductive quiescence was not detected although a decline in LH concentrations 

occurred. Reproductive activity resumed on 27 January and 3 February for 2 of the 4 

hinds in which quiescence occurred, but LH was still suppressed in the other 2 hinds 

at the end of the experiment (10 February). 

Data for pulsatile LH secretion during July and November are shown in Table 1. The 

mean number of LH pulses was lower in November than July in euthyroid control 

hinds (P < 0.001) and in the THX+mid T4hind which had low LH concentrations 

from October until December (no pulses were detected over the 4 hour sampling 

period in November in this hind). In all other hinds, number of pulses did not differ 

significantly between July and November (P > 0.05) while pulse amplitude increased 

in November (P < 0.05). Individual LH profiles representative of hinds which became 

reproductively quiescent or remained reproductively active are shown in Figure 7.3. 

In all hinds, there was a seasonal change in pituitary responsiveness to exogenous 
-1 

GnRH, with maximal responsiveness (38.3 ± 2.8 ng.ml ) occurring during late July 

(breeding season) and minimal responsiveness in November and December (non­

breeding season), although responsiveness was also lowered during T 4 implantation in 

February in THX+late T4 hinds (9.2 ± 2.6) compared to THX+early T4 (19.6 ± 3.3) 

and THX+mid T4 (24.6 ± 3.4) hinds (P < 0.05) (Figure 7.4). Pituitary LH response to 

GnRH during November and December was lower in euthyroid control hinds (average 
-1 

of both months: 6.6 ± 1.1 ng.ml ) than in all other treatment groups (average: 15.4 ± 
-1 

1.2 ng.ml ) (P < 0.05). At all other times of the year, LH responses to GnRH were 

not significantly different between groups. 
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Figure 7.3 Representative individual plasma LH profiles from intensive 
sampling periods during the breeding season (a) and non-breeding season (b). 
Upper p~nels ar~ representative of euthyroid po~itive control hin~s and a single 
THX+mld T4 hmd; lower panels are representative of all other hlllds (see text for 
further details). Closed circles denote the peak of each pulse. 
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Figure 7.4 Mean (± SEM) plasma LH concentrations, measured at 0 and l3 
minutes, in response to 5 JlgGnRH Lv. in euthyroid control (e), THX control 
(O),THX+early T4 (.t.), THX+mid T4 (0) and THX+late T4 (0) hinds (n = 5) 
during July (maximal response), December and November (minimal response) and 
February (latter 3 groups only). Average SEM at each time is shown at the top of 
the graph. Asterisks indicate significant (P < 0.05) differences in response of all 
groups compared to euthyroid control hinds during NovemberlDecember or to 
THX +mid T 4 hinds during February. 
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Table 7.1 LH pulse characteristics in deer during 4 hour intensive sampling 
periods in July (breeding season) and November (non-breeding season) 

Group Number / 4 hours Amplitude 

July November July November 

Euthyroid control 4.0± 0.3 1.0 ± 004** 3.3 ± 1.3 1.1 ± OA NS 

THX control 3.0±0.7 3.0 ± OANS 3.3 ± 0.8 14.5 ± 1.9** 

THX+early T4 204 ± 004 2.5 ± 0.5NS 4.9 ± 1.7 8.3 ± 2.0* 

THX+mid T 4 204 ± 0.6 2.8 ± 0.7NSt 1.5 ± 0.5 11.1 ± 2.1 ** 

THX+late T4 204 ± 0.2 3.8 ± 0.8NS 2.7 ± 0.6 7.7 ± 1.6* 
NS = non-significant; * P < 0.05; ** P < 0.001 
tData from one hind with no detectable pulses are excluded from this mean (see text 
for details). 

7.4 ' Discussion 

The present results demonstrate that thyroid hormones have a season-specific role in 

mediating the steroid-independent suppression of plasma LH concentrations in red 

deer hinds since T 4 replacement in thyroidectomized hinds during the breeding season 

did not initiate this suppression whereas T 4 replacement applied around and after the 

end of the breeding season did. The results confirm recent findings in the ewe which 

demonstrated that thyroid hormones need only be present for a short time prior to the 

end of the breeding season to permit the seasonal decline in LH concentrations (Thrun 

et al., 1996; 1997); they also extend these findings by demonstrating that the red deer 

hind remains capable of responding to thyroid hormones for at least 40 days after the 

breeding season. Because T 4 replacement at the latest occasion attempted in the 

present study was generally effective in bringing about neuroendocrine reproductive 

quiescence, the offset of the period of thyroid hormone responsiveness cannot be 

identified, as was set out in the objectives for this experiment. Our results suggest 

that if such a window of neuroendocrine responsiveness exists, it begins less than 40 

days prior to the transition to the non-breeding season and extends beyond this 

transition for an as yet unknown period of time. 

Only 3/5 hinds which received T 4 replacement around the time of the end of the 

breeding season (August to October) entered reproductive quiescence, and the 
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duration of quiescence was brief (2 - 3 weeks) in 2 of these hinds, indicating that the 

transition to the reproductively inactive state had not been totally achieved. However 

the thyroid hormone concentrations achieved by this mid-T4 treatment were probably 

at the margin of those required to restore normal seasonal reproductive patterns to 

those seen in euthyroid control hinds. This is corroborated by the observation that the 

one hind in which duration of suppression of LH concentrations and pulsatile 

secretion of LH in November was similar to that of euthyroid control hinds had the 
-1 

highest T 3 concentrations for the group (mean 0.5 nmoLl ), and the 2 hinds in which 

LH was not completely suppressed had barely detectable plasma concentrations of T 3 
-1 . 

(mean 0.1 nmoLl ); these were the lowest concentrations recorded from any of the T 4 

treated hinds while the implants were in place. Interestingly, these low T 3 

concentrations equate approximately to 5 nmol.l-
1 

T4 (assuming a 50:1 total T4:total T3 

ratio based on previous studies (see Chapter 5) using the same implants) which is 
-1 

close to the minimum threshold concentration of 2 nmol.l T 4 estimated to be 

required for achieving anoestrus in she'ep (Thrun et al., 1997). It should be noted that 

all 5 hinds in the THX +mid T 4 group showed a decline in plasma LH concentrations 

during October. It is likely that much of the variation in response to T 4 treatment prior 

to October can be explained by circulating thyroid hormone concentrations achieved 

by the implants being near to threshold in some animals. 

The results of this experiment strongly suggest that the mechanisms which suppress 

plasma LH concentration in ovariectomized hinds are responsive to thyroid hormones 

only when the prevailing photoperiods and/or the endogenous reproductive rhythm are 

inhibitory to reproductive activity, since T4 replacement during inductive short 

photoperiods (i.e. THX+early T4 group) caused no reproductive suppression whereas 

T4replacement during inhibitory long or increasing photoperiods (i.e. THX+late T4 

and THX+mid T4 groups) did. If this is the case, the 'window' of responsiveness to 

the inhibitory influence of thyroid hormones under natural conditions would be 

expected to continue throughout the summer until the endogenous signalling 

mechanisms and decreasing photoperiods signal the next breeding season. In support 

of this concept, treatment of thyroidectomized stags with T 4 implants or even a single 

injection of T 3 during summer caused cessation of rutting behaviour and antler casting 

in red deer stags (G.M. Anderson, unpublished observations). The recent finding that 

T 4 replacement of thyroidectomized ewes about 1 month prior to the onset of the 
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breeding season in autumn (when photoperiods are decreasing) did not cause serum 

LH concentrations to fall (Thrun et aI., 1997) lends further support to the argument 

that thyroid hormones exert their action only during inhibitory photoperiods and the 

appropriate phase of the endogenous rhythm. An important underlying assumption 

here is that thyroidectomy does not prevent neuroendocrine perception of 

photoperiodic changes or generation of the endogenous reproductive rhythm, but it is 

the normal response of the hypothalamo-hypophysial axis to these stimuli which is 

disrupted. That thyroidectomy does not disrupt sensitivity to photoperiodic stimuli 

has been repeatedly demonstrated by appropriate prolactin and melatonin responses to 

fluctuating photoperiods in thyroidectomized animals (Jacquet et ai., 1986; Nicholls 

et ai., 1988b; Moenter et ai., 1991; Shi and Barrell, 1992; Dahl et ai., 1994a). To 

confirm unequivocally the existence of an endogenous rhythm of reproductive 

function in thyroidectomized animals would presumably require that they be 

maintained under long-term fixed photoperiods (or pinealectomized) and treated with 

thyroid hormones at different times of the year. To date this has not been 

demonstrated. 

As was observed in ovariectomized hinds in the previous chapter, pulse frequency in 

euthyroid hinds was low during the non-breeding season (November) compared with 

the breeding season, and there was also a decline in pulse amplitude (albeit non­

significant) during the non-breeding season. Thyroidectomy prevented the seasonal 

decline in LH pulse frequency, and in addition caused pulse amplitude to increase 

approximately four-fold compared with breeding season amplitudes. The results for 

episodic LH secretion confirm that all hinds except euthyroid controls and a single 

THX+mid T4 treated hind were equivalent to being reproductively active in 

November, since pulse frequency remained elevated at this time. Presumably if 

sampling for pulsatile LH secretion had been conducted earlier in November while 

most of the THX+mid T4 group were still reproductively suppressed, this may have 

provided further confirmation of their responsiveness to thyroid hormones around the 

end of the breeding season. Similarly, it may have been of value to have monitored 

pulsatile LH secretion in January following the decline in mean plasma LH 

concentration in THX+late T4 treated hinds. 
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The stimulatory effect of thyroidectomy on pulsatile secretion of LH in hinds during 

November indicates that thyroid hormones may modify the output of the hypothalamic 

GnRH neurons, since each individual LH episode has been shown to be temporally 

related to (and presumably the direct consequence of) an episode of GnRH (Clarke 

and Cummins, 1982; Levine et aI., 1982; Karsch et aI., 1987; Barrell et al., 1992; 

Karsch et aI., 1993). Therefore, the maintenance of high LH concentrations 

throughout the summer following thyroidectomy in this experiment probably reflects a 

continuation of elevated episodic GnRH secretion during this period as has been 

shown in the ewe (Webster et aI., 1991b). The observation that thyroid hormone 

receptors are present in neuroendocrine tissues including GnRH neurons (Janson et 

aI., 1994) and the demonstration that thyroid hormones can act centrally to alter 

hypothalamic secretions. (Dahl et aI., 1994b), support this view. In the present 

experiment and others involving red deer (Shi and Barrell, 1992, see also Chapter 5), 

evidence was also obtained for an effect of thyroidectomy at the level of the pituitary 

gland, since in all THX hinds the seaso·nal decline in LH release following a GnRH 

challenge during November was markedly reduced (although not completely 

abolished). It is interesting that T 4 treatment around the end of the breeding season 

(see THX+mid T4 hinds, Figure 7.4) did not entirely overcome this effect; as is also 

evident in a previous study in red deer stags (Shi and Barrell, 1994). One possible 

explanation for this is that the action of thyroid hormones at the level of the pituitary 

gland might be dose-responsive, since T 4 treatment in both studies achieved plasma T 3 

concentrations considerably lower than those seen in euthyroid deer. In THX+late T4 

hinds pituitary responsiveness to GnRH was also lowered in February relative to 

THX+early T4 and THX+mid T4 hinds. This may reflect a delayed response to T4 

treatment as was observed for basal LH concentrations, although the time taken to 

respond to T 4 was much greater for pituitary responsiveness than for basal LH. 

Collectively, our observations imply that thyroid hormones act in a different way and 

have a different response time at the pituitary level than at a central level. 

In conclusion, this study has shown that thyroid hormones are required for the steroid­

independent mechanisms which suppress LH in this species during inhibitory 

photoperiods and the appropriate phase of the endogenous rhythm, and it is 

hypothesised that thyroid hormones remain effective in this regard throughout most of 

the non-breeding season. The results do not support the existence of a brief window 
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of neuroendocrine responsiveness to thyroid hormones which acts only around the end 

of the breeding season in red deer hinds, since exposure to T 4 starting about 6 weeks 

after this time brought about suppression of plasma LH concentration. 



Chapter 8 

Feasibility of out-of-season breeding in thyroidectomized 

red deer hinds 

8.1 Introduction 

III 

Considerable research effort has been devoted to advancing the timing of conception 

in red deer (e.g. Adam et aI., 1986; Moore and Cowie, 1986; Fennessy et aI., 1986; 

Duckworth and Barrell, 1988; 1991;. Wilson, 1992). This is due primarily to the 

economic costs of meeting the feed requirements of lactating hinds following calving 

in December, when pasture in many parts of New Zealand undergoes a seasonal 

decline in growth rate and quality. Other advantages of advancing the breeding 

season of deer include being able to grow the young to the desired carcase weight at 

the time of optimum venison schedules in Northern Hemisphere markets (mid August 

to late December), reduced weaning stress due to heavier (earlier born) calves and 

better returns on weaner stags and hinds due to increased live weights (Wilson, 1989). 

The hormonal treatments which have been evaluated to date for advancement of 

breeding in female deer are based on those already employed successfully for other 

species of livestock such as sheep and cattle (Barrell, 1985; Wilson, 1989). These 

involve either parenteral administration of PMSG or GnRH in conjunction with a 

period of intravaginal progesterone treatment, or administration of melatonin (orally 

or parenterally) in a manner designed to mimic the effects of inductive photoperiods 

during the breeding season. While all these techniques will induce ovulation prior to 

the normal breeding season, only the latter has proved successful in advancing the 

date of calving with any degree of reliability (Asher et ai., 1994b). For example, the 

use of subcutaneous melatonin implants has led to calving advancements of up to 6 

weeks (Asher, 1990). This treatment is contra-indicated during pregnancy however as 

it may impair lactogenesis (Asher et aI., 1994) and is therefore limited in its potential 

for changing the breeding season of red deer. 



112 

The low pregnancy rates achieved following treatment with progesterone and GnRH 

or GnRH analogues (Moore and Cowie, 1986; Fisher et ai., 1986; Duckworth and 

Barrell, 1988), even when given in conjunction with oestradiol to induce overt oestrus 

and mating (Duckworth and Barrell, 1991) suggest that insufficient GnRH release is 

not the only factor limiting ovulatory activity in anoestrous red deer hinds. It is 

possible that the reduction in pituitary responsiveness to GnRH during the non­

breeding season (Meikle and Fisher, 1996; see also results in Chapters 4,5 and 7) 

renders such treatments ineffective in stimulating the hormonal changes required for 

synchronised oestrus and ovulation. Another possibility is that a functional corpus 

luteum is required prior to ovulation to secrete some essential steroid for successful 

conception. In natural mating systems, a 'silent' ovulation at the start of each 

breeding season (Webster and Barrell, 1985, Asher et aI., 1991) could fulfil this role. 

Thyroidectomy was shown in previous experiments (Chapters 5 and 7) partly to 

overcome the seasonal decline in pituitary responsiveness to GnRH and permit 

oestrous cyclicity during the non-breeding season. Manipulation of thyroid gland 

function may therefore provide a means for artificial control of the breeding season in 

female deer. The current experiment describes an attempt to induce mating, ovulation 

and conception in thyroidectomized red deer hinds. If successful out-of-season 

breeding could be demonstrated in thyroidectomized hinds, treatments might then be 

developed for on-farm use involving suppression of thyroid gland secretions or 

blocking thyroid hormones at their site of action during the non-breeding season. 

Because many of the progesterone episodes recorded in thyroidectomized hinds in 

Chapter 5 appeared to be shortened in duration and irregular in occurrence compared 

with those recorded in euthyroid hinds, the efficacy of intravaginal progesterone 

treatment for synchronising oestrus and ovulation in thyroidectomized hinds was 

examined initially during the breeding season. 

8.2 Materials and Methods 

Animals and Management 

The experiment used 15 mature red deer hinds (mean live weight at the start of the 

experiment 102.3 ± 2.3 kg) which were thyroidectomized at the start of the breeding 
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season (March and April) (THX, n = 10) or remained euthyroid as controls. A further 

control hind was added in August. Two stags (mean live weight in December 154.3 ± 

4.3 kg) were used to enable detection of oestrus. One stag was vasectomized in April 

and used to enable detection of oestrus during the breeding season and non-breeding 

season, the other remained fertile and was used for out-of-season breeding. Both stags 

were thyroidectomized in late June to prevent the seasonal decline in reproductive 

traits such as testosterone concentration, testis diameter and responsiveness of the 

pituitary gland and testes to exogenous GnRH (Shi and Barrell, 1992). 

Experimental Design 

To test if thyroidectomized hinds exhibit overt oestrus and develop a functional 

corpus luteum following oestrus synchronization in the breeding season, ovulation 

was synchronized in all hinds in May by treating with a controlled internal drug 

releasing device (CIDR Type G; InterAg, Hamilton, NZ) containing 0.3 g 

progesterone intravaginally from 15 days previously, renewed after 10 days (Fennessy 

et al., 1990). CIDRs were inserted while hinds were restrained in a crush using a 

modified CIDR applicator with a 10 cm barrel. A vasectomized stag was run with the 

hinds from 2 days before until 6 days after CIDR withdrawal. Hinds were 

continuously observed for oestrus and mating from 15 to 100 hours after CIDR 

withdrawal, and the occurrence of ovulation was determined by laparoscopy 8 days 

after CIDR withdrawal, as described in Chapter 3, section 3.2. Heart rate was 

measured 12 days after CIDR withdrawal. To test if the synchronization treatment 

described above was equally effective during the non-breeding season, hinds were 

again synchronized for ovulation in late October, and oestrus, ovulation and heart rate 

Were recorded as before. 

To test if out-of-season conception can be induced in thyroidectomized hinds 

following mating by a thyroidectomized stag, hinds were synchronized as above in 

early December, except that 200 J.D. PMSG (Folligon, Intervet International, 

Boxmeer, Holland) was administered intramuscularly at the time of CIDR withdrawal. 

A presumably fertile (non-vasectomized) stag was substituted for the vasectomized 

stag, and hinds were monitored for oestrus and mating from 10 to 80 hours after CIDR 

withdrawal and for ovulation at 14 days after CIDR withdrawal. Any hinds not mated 

on this occasion were immediately re-synchronized with an 11 day CIDR treatment 

I 
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(CIDRs renewed after 9 days) in conjunction with 750 flg i.m. cloprostenol 

(Estrumate, Pitman-Moore, Upper Hutt, NZ) at the time of CIDR renewal and 400 

lV. Lm. PMSG at the time of CIDR withdrawal. Hinds were observed for oestrus 

from 10 to 100 hours after CIDR withdrawal. Ovulation was not checked for on this 

occasion. 

Plasma progesterone concentration was measured in twice-weekly blood samples, 

except for periods during and for I month following CIDR treatment, when hinds 

were blood sampled thrice-weekly for plasma progesterone concentration. Pelage 

score was assessed each month. 

Data analysis 

For calculation of the number of oestrous cycles during the breeding season, the date 

used forthe transition from the breeding season to the non-breeding season was 5 

September (based on results of Meikle and Fisher, 1996). Treatment effects on the 

number of hinds in each group which showed oestrus or ovulated were determined by 

a chi-squared test for differences between proportions. All other effects were 

identified by one-way ANOV A. 

8.3 Results 

Two THX hinds died during cold weather in June and September. A decline in body 

condition had been noted in both hinds, and they were preferentially fed lush pasture 

throughout the winter. The hind which died in June was replaced immediately with a 

newly thyroidectomized hind; the hind which died in September was not replaced. 

All data from these hinds were included in the statistical analysis. 

Mean plasma T3 concentrations were 1.5 ± 0.2 ~mol.l-I in euthyroid control hinds 

and low or undetectable (0.1 ± 0.1 nmol.l- I) in THX hinds (P < 0.001). In control 

hinds, mean plasma T3 concentrations were lower in July (1.1 ± 0.1 nmol.l- I ) than in 

January (1.8 ± 0.2 nmol.l- I) (P < 0.01). In control hinds, growth of summer pelage 

(as evidenced by pelage scores greater than I) began on 16 November ± 5.7 days. 

Summer pelage growth was delayed in 6/9 THX hinds (11 December ± 4.0 days, P < 
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0.05), and in 3/9 THX hinds there was no evidence of summer pelage growth by the 

end of the experiment (February) (Plate 8.1). Mean pelage scores at the end of the 

experiment were 5.0 ± 0.0 in control hinds and 3.3 ± 0.6 in THX hinds. 

Between early May and early September, THX hinds a similar number of 

progesterone episodes to the control hinds (3.6 ± 0.7 and 4.6 ± 004 respectively; P> 

0.05), but in 3 THX hinds progesterone episodes were evident only following CIDR 

treatment (see example in Figure 8.1, panel d). Overt oestrus was recorded in fewer 

THX hinds than control hinds in the period following CIDR withdrawal in May (P < 

0.05). A similar trend was observed for the occurrence of ovulation, but the 

difference was not significant (P > 0.05). In control hinds, the occurrence of oestrus 

and ovulation was lower in the period following CIDR withdrawal in October 

compared with July (P < 0.05), however in THX hinds there was no significant 

difference between the two seasons in the proportion of hinds exhibiting oestrus and 

ovulation (P > 0.(5) (TableS.I). The interval from CIDR withdrawal until the onset 

of oestrus was not affected by thyroidectomy or season (64.7 ± 4.5 h; P > 0.05) and 

the duration of oestrus were not affected by thyroidectomy during May (10.7 ± 204 

hours; P > 0.05). In the 3 THX hinds which exhibited overt oestrus during October, 

the duration of oestrus tended to be much shorter (0.5 ± 004 h) than in May, but this 

effect did not reach statistical significance due to low numbers (P < 0.07). 

Mean heart rates in THX hinds were lower in May than in October (45.4 ± 2.3 and 

54.2 ± 2.6 respectively, P < 0.05) but were not significantly lower than heart rates in 

control hinds at either of these times (50.8 ± 3.1 and 55.5 ± 2.5 respectively) (P> 

0.05). 

Table 8.1 Percentages of hinds in each group showing oestrus or ovulating 
following CIDR withdrawal in May and October. Within a parameter, values not 
assigned common superscript letters are significantly different (P < 0.05). 

Group Oestrus Ovulation 

May October May October 

Control (n = 6) 100.Oa O.Ob 100.Oa O.Oc 

THX (n = 9) 44.0b 33.3b 55.0ab 44 Abc 

""'--,""--,-' 
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Plate 8.1 Representative THX (left) and euthyroid control (right) hinds during 
summer (December). Note that the THX hind has not moulted the pale winter coat. 

In early December, the occurrence of oestrus and ovulation was low in both groups 

following CIDR withdrawal and injection of 200 LU. PMSG; only 2 matings (both 

with THX hinds) were recorded. Upon ultra onic pregnancy diagnosis, one of 

these 2 hind was found to be pregnant. However when all other hinds were 
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re ynchronized with cloprostenol and progesterone CIDRs in conjunction with 400 

LU. PMSG, the occurrence of oestrus increased in both groups (P> 0.05) (Table 8.2) . 

Time to onset and duration of oestrus (48.6 ± 3.2 hand 3.2 ± 1.1 h respectively) were 

not affected by thyroidectomy or dose of PMSG (P < 0.05). In 3/3 control and 2/5 

THX hinds which were mated following 400 LU. PMSG, successful pregnancies were 

recorded as indicated by the presence of foetuses and placentomes upon ultrasonic 

examination. Foetal crown to rump measurement averaged 26.0 ± 0.6 mm on day 45 

and 56.0 ± 0.0 mm on day 58 after mating; these values were within the normal range 

reported by Bingham et al., (1990) indicating normal foetal development. 

Establishment of pregnancy was associated with a sustained increase in plasma 

progesterone concentration beginning soon after mating and continuing until sampling 
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Figure 8.1 Representative individual profiles of plasma progesterone concentration for 
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ceased in early February (see examples in Figure 8.1, panels b, d and e). This pattern 

was also evident in all 4 THX hinds which were mated by the fertile stag during 

December but were not diagnosed as being pregnant by ultrasonic examination (see 

example in Figure 8.1, panels c), suggesting that conception occurred but the resultant 

embryos or foetuses were aborted prior to ultrasonic examination. 

Table 8.2 Percentages of hinds in each group exhibiting oestrus or ovulating 
following CIDR withdrawal in December and injection of 200 I.V. or 400 LV. PMSG. 
Within a parameter, values not assigned common superscript letters are significantly 
different (P < 0.05). 

Group % Oestrus % Ovulation 

200 I.V. 4001.V. 200 LV. 400 LV. 

Control (n = 6) O.Oa 50.0bc 33.3a not measured 

THX (n =9) 22.2ab 71.4c 22.2a not measured 

8.4 Discussion 

The results of this experiment indicate that thyroidectomy impairs ovarian function in 

female red deer, since fewer THX hinds exhibited oestrus following synchronization 

with progesterone during the breeding season and there was a non-significant decline 

in ovulation rate compared with control hinds. In the non-breeding season the 

occurrence of oestrus and ovulation was maintained at a similar level in THX hinds, 

while in control animals oestrus and ovulation ceased to occur following progesterone 

withdrawal. Collectively these results imply that although thyroid gland secretions 

inhibit reproduction during anoestrus (as was also shown in Chapter 5), they also have 

a supportive effect on the hypothalamo-pituitary-gonadal axis for the occurrence of 

ovulation and overt oestrus behaviour during the breeding season. 

It is possible that changes in metabolic rate may trigger changes in reproductive 

function (Kennedy and Mitra, 1963). Thyroid hormones are involved in a wide 

variety of metabolic functions, and a reduced metabolic rate could have contributed to 
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the poor reproductive performance of THX hinds in the current experiment However 

because heart rate was not significantly lowered by thyroidectomy in either season, it 

cannot be determined from these results whether lowered metabolic would have had a 

major influence on reproductive performance of THX hinds. 

The published literature on the thyroid hormone requirements for successful 

reproduction suggest considerable variation exists between species. In female cattle, 

the incidence of overt oestrus following progesterone and oestradiol treatment was 

higher in thyroidectomized cows than euthyroid cows, although measures of the 

intensity of oestrus showed no effect of thyroidectomy (Stewart et al., 1993). In 

contrast, behavioural signs of oestrus were reduced in thyroidectomized mares (Lowe 

et al., 1987). Similarly, Reddy et al. (1996) observed a suppression of behavioural 

oestrus in female goats indu~edto hypothyroidism with thiourea and Walkden-Brown 

et al. (1996) reported cessation of oestrous cyclicity in this species following 

thyroidectomy. Silent ovulations in Egyptian water buffalo were associated with 

significantly reduced serum T3 and T4 concentrations (Boradady et al., 1985). In 

rats, ovulation rate was reduced following 131I-radiothyroidectomy (Mattheij et al., 

1995). Data from several studies in ewes suggest that oestrous cyclicity is not 

dependent on the thyroid gland (Falconer, 1963; Brooks et al., 1965; Nicholls et al., 

1988b; Peeters et al., 1989), although Brooks et al. noted a reduction in twinning and 

lower lamb birth weights in thyroidectomized ewes. 

Since preovulatory plasma LH concentration was not measured in this experiment, it 

is not possible to determine if thyroid gland secretions are required at the 

hypothalamo-hypophyseallevel for generation of the increase in gonadotrophin 

secretion which culminates in the LH surge (Caraty et al., 1995), or at the ovarian 

level for follicular steroid production. The administration of a high dose of PMSG to 

stimulate follicle development increased the incidence of overt oestrus and ovulation 

in hinds in the current experiment. While initially this might imply that the effects of 

thyroidectomy on oestrous cyclicity were due to inadequate secretion of pituitary 

hormones during the follicular phase, it should be noted that the dose of PMSG 
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required to stimulate ovulation in the current study was higher than that normally 

employed for successful induction of oestrus and ovulatory responses 2-3 weeks 

before the onset of natural mating activity (Asher et ai., 1994b). This may indicate a 

reduction in ovarian responsiveness to gonadotrophin stimulation in THX hinds. The 

results of other studies also strongly suggest an ovarian site of action of thyroid 

hormones. For example, induction of hypothyroidism was associated with reduced 

oestradiol and progesterone concentrations and impaired oestrous cyclicity in goats 

(Reddy et ai., 1996) and lowered steroid metabolism in growing follicles and corpora 

lute a in rats (Mattheij, 1995). In vitro, T3 has been shown to stimulate progesterone 

formation in ovarian follicles (Bhattacharya et ai., 1996), and T3 and T3 augment 

FSH-stimulated processes such as LH receptor induction by granulosa cells (Maruo et 

ai., 1987). 

A surprising finding in this experiment is the efficacy of a high dose of PMSG in 

inducing reasonably successful (50%) out-of season pregnancies in euthyroid control 

hinds. There are no published reports of attempts to achieve breeding of red deer this 

far out-of-season using progesterone and PMSG, however when administered in 

February or March this treatment typically results in 10-20% of treated hinds calving 

despite induced ovulation rates of 70-85% (e.g. Fisher et ai., 1986; Moore and Cowie, 

1986; Fennessy et ai., 1986; Fennessy and Fisher, 1988). These low calving 

percentages have been attributed in part to low fertility of stags in February and early 

March (Fennessy and Fisher, 1988), since in one study fertility was improved (59% of 

progesteronelPMSG-treated hinds calving) when melatonin-treated stags were used 

(Moore, 1987), and in another study 79% of progesteronelPMSG-treated hinds 

conceived following artificial insemination in March (Fennessy et ai., 1991). The 

current results lend some support to this argument, since the stag used for mating in 

December exhibited rutting behaviour characteristic of the breeding state, and 

previous studies have shown that thyroidectomized stags do not experience a seasonal 

decline in reproductive traits such as testosterone concentration, testis diameter and 

responsiveness of the pituitary gland and testes to exogenous GnRH (Shi and Barrell, 

1992). 
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Another possible reason for successful out-of-season pregnancy in these euthyroid 

hinds may be social stimulation of ovarian activity. For example, oestrus and 

ovulation was induced in anovulatory ewes (Zarco et al., 1995) and goats (Restall et 

al., 1995) by exposure to females induced to oestrus. Such a social cue may have 

been provided by cycling THX females in the current experiment. Furthermore, the 

presence of a stag in which rutting behaviour was advanced by melatonin treatment 

has been shown to advance the breeding season in adult red deer hinds (Moore and 

Cowie, 1986; Wilson, 1992), and in yearling hinds the timing of puberty was slightly 

advanced if they were reared with a stag in the same paddock (Fisher et al., 1995). In 

the current experiment, the hinds which were mated in late December had been kept 

in one paddock with either a vasectomized or fertile rutting stag for over 2 months. 

Both stags showed typical herding behaviour during this time and interacted closely 

with the hinds. This contact would presumably have provided powerful olfactory, 

visual and auditory stimuli for reproductive activity in the hinds. Such stimulatory 

effects of male animals on reproduction in anovulatory females have been described 

for sheep (Martin et aI., 1986). The argument that successful out-of-season breeding 

in euthyroid hinds in the current experiment may have been achieved at least in part 

by social stimulation and mating with a fertile stag implies that the current inability to 

alter markedly the breeding season of deer on farms is not primarily due to a lack of 

responsivenss of the hind to hormonal treatments. The use of thyroidectomized stags 

to provide stimulatory social cues to the hinds and for out-of-season mating could 

prove to be a useful tool for further investigating this possibility and for future out-of­

season breeding studies. 

In summary, while thyroidectomized hinds did not display a seasonal decline in ability 

to ovulate or display oestrus behaviour following synchronization with progesterone, 

the incidence of ovulation and overt oestrus was low in both seasons, suggesting that a 

side-effect of thyroidectomy may be impaired fertility. Following gonadal stimulation 

with a high dose of PMSG and joining with a fertile, rutting stag, six out-of-season 

pregnancies were obtained from eight matings. However because three of these 
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pregnancies occurred in euthyroid control hinds no improvement in out-of-season 

reproductive performance could be attributed to thyroidectomy. An important 

implication of these results is that before the effects of the thyroid glands on seasonal 

reproduction can be exploited to achieve practical out-of-season breeding, techniques 

must first be developed for blocking their specific effects on the reproductive 

neuroendocrine centres without necessitating the induction of hypothyroidism. 
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Chapter 9 

General Discussion 

The primary objective of the studies described in this thesis was to improve our 

understanding of the ways in which the thyroid gland influences seasonal cycles of 

reproduction in the red deer hind. Collectively the experiments have shown that 

thyroid hormones have a specific role in permitting steroid-independent suppression 

of seasonal reproductive activity, and they suggest that the steroid-independent 

pathways playa relatively important role in the control of seasonal breeding in female 

red deer. As a focus for the discussion in this chapter, a conceptual model of the role 

of the thyroid glands in modulating steroid-dependent and steroid-independent 

suppression of reproduction during the non-breeding season is presented for red deer 

hinds (Figure 9.1). Each numbered site on this model is discussed below in relation to 

the results of the studies in this thesis. 

Several important species differences in neuroendocrine control of seasonality 

between the red deer hind and the domestic ewe (a species which has been used much 

more extensively than the hind as an animal model for experiments on seasonal 

reproduction) have become apparent from these experiments. Since techniques used 

for advancing the onset of seasonal breeding in sheep are relatively ineffective in deer, 

an understanding of how control of seasonal reproduction differs between these 

species will aid in the development of manipulative techniques that are appropriate to 

red deer. Therefore, comparisons between deer and sheep are made in relation to the 

conceptual model. 

Chapter 4 describes two experiments which were conducted using ovariectomized 

oestradiol-implanted females as the animal model to study the effects of 

thyroidectomy and timing of thyroid hormone replacement on seasonal 

neuroendocrine reproduction. This model is commonly used in similar studies in 

ewes (e.g. Moenter et aI., 1991; Thrun et aI., 1997), since seasonal reproductive 

quiescence is usually attributed primarily to the dramatic increase in negative 

feedback of oestradiol on the hypothalamic GnRH pulse generator (e.g. Karsch et al., 
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1993). A decrease in mean plasma concentrations of LH were recorded in all hinds 

regardless of timing or dose of thyroid hormone treatment. This provided initial 

evidence that thyroid hormones are not involved in the steroid-dependent suppression 

of LH (Site 1 in Figure 9.1) in female red deer, and this finding was confirmed in two 

following experiments using euthyroid and thyroidectomized ovariectomized 

oestradiol-treated hinds without thyroid hormone replacement (Chapters 5 and 7). 

Oestradiol retained the ability to suppress GnRH pulse frequency (as indicated by LH 

pulse frequency measurements) in thyroidectomized hinds during the non-breeding 

season. Oestradiol also decreased LH pulse amplitude; but since GnRH was not 

measured it is not possible to say if this reflects a seasonal loss of pituitary 

responsiveness to GnRH (Meikle and Fisher, 1996) or a direct effect of oestradiol on 

GnRH pulse amplitude. A reduction in GnRH pulse amplitude by oestradiol during 

the non-breeding season would be inconsistent with the effects of this steroid in the 

ovariectomized oestradiol-treated ewe, which exhibits high amplitude, low frequency 

pulses of GnRH during the non-breeding season in response to oestradiol (Karsch et 

a/., 1993). 
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Figure 9.1 A conceptual model of the role of thyroid hormones in steroid-
dependent and steroid-independent suppression of reproduction during the non­
breeding season in red deer hinds. Numbered points are discussed in the text. 
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The lack of effect of thyroidectomy on seasonal fluctuations in oestradiol negative 

feedback contrasts with a growing body of literature from Karsch and his coworkers 

(e.g. Moenter et ai., 1991; Webster et al., 1991 a; Dahl et ai., 1995b) which clearly 

demonstrate a permissive role for thyroid hormones iri oestradiol-induced suppression 

of LH concentrations. It has been hypothesized that seasonal changes in output of the 

GnRH neurosecretory system in the ovariectomized oestradiol-treated ewe could 

result at least in part from a thyroid hormone dependent seasonal rearrangement of 

synaptic inputs onto GnRH neurons (Karsch et ai., 1995). In the red deer hind, 

thyroid hormones may target different neural pathways which do not mediate 

oestradiol feedback, or alternatively an entirely different set of neurons may convey 

oestradiol feedback in deer, which are not responsive to thyroid hormones. The 

absence of an LH response to a dopaminergic-D2 receptor agonist or antagonist in 

hinds (Chapter 6) is evidence that the latter possibility may be the case, since 

dopaminergic neurons are known to mediate oestradiol negative feedback in sheep 

(Meyer and Goodman, 1985; Halvern et ai., 1991; Tortonese and Lincoln, 1994a; 

1994b; Vigui6 et ai., 1991). Further evidence that dopamine may not be involved in 

LH suppression in deer comes from the demonstration that suppression of circulating 

plasma prolactin concentrations in red deer hinds by long-acting bromocriptine 

treatment causes a delay of the onset of anoestrus (Curlewis et ai., 1988), a result 

which would appear paradoxical if this DA-D2 agonist also exhibited a direct 

inhibitory action on the GnRH neurosecretory system. The possibility that oestradiol 

does not require mediation by interneurons (indicated at Site 2 in Figure 9.1) to 

influence GnRH secretion in deer cannot be ruled out; however the consistent finding 

of an absence of oestradiol receptors on GnRH neurons across a diverse range of 

species (Herbison, 1995) suggests that such a direct action is unlikely. 

In contrast to the lack of an effect of thyroidectomy in the presence of oestradiol 

implants, it was shown that the dramatic decrease in circulating plasma LH 

concentrations that occurs during the middle of the non-breeding season in 

ovariectomized red deer hinds in the absence of oestradiol did not occur in 

thyroidectomized hinds (Chapter 5), and this steroid-independent LH suppression was 

able to be restored by an appropriately timed thyroxine replacement treatment 

(Chapter 7). Plasma LH pulse frequency remained high during the non-breeding 
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season in thyroidectomized hinds, indicating that the thyroid gland is required for the 

seasonal decline in frequency of GnRH pulses (Site 3, Figure 9.1). Neither dopamine 

or endogenous pep tides appear to playa major role in this suppression (see Chapter 

6), however the inhibitory effects of the serotonin antagonist cyproheptadine provided 

preliminary evidence for a stimulatory role of serotonergic neural pathways in the 

control of LH secretion the in ovariectomized red deer hind, as has also suggested for 

the ewe (Deaver and Dailey; 1982). Three pivotal questions to be answered in 

relation to a role for serotonin are: does serotonin stimulate LH secretion; can a 

seasonal increase in serotonergic stimulation explain any or all of the increase in 

plasma LH concentrations and pulse frequency during the breeding season, and are the 

steroid-independent effects of thyroidectomy attributable to a blockade of a seasonal 

decline in serotonergic stimulation? Experiments which will address these questions 

(not a part of this thesis) are currently being conducted. 

In Chapter 7, it was shown that thyroidectomy reduced but did not completely abolish 

the seasonal decline in pituitary responsiveness to GnRH, indicating a participatory 

role for thyroid hormones in this process (Site 4, Figure 9.1). Low-dose thyroxine 

replacement (Chapter 7) did not entirely overcome this effect of thyroidectomy, 

suggesting that the action of thyroid hormones on pituitary responsiveness to GnRH 

may be dose responsive. Measurements of pulsatile LH concentration in 

ovariectomized hinds (described in Chapters 6 and 7) suggested that the low­

amplitude of LH pulses during the non-breeding season may be a result of reduced 

pituitary GnRH responsiveness, since thyroidectomized hinds in which pituitary 

responsiveness was partially restored had very large amplitude LH pulses, similar to 

those that occur in ovariectomized anoestrous ewes (Karsch et ai., 1980; Goodman 

and Karsch, 1982; Moenter et ai., 1991). A low releasability ofLH from the pituitary 

gonadotrophs could partly explain the failure of attempts to advance the breeding 

season of red deer hinds using GnRH infusions (Fisher and Fennessy, 1985; Fisher et 

ai., 1986; Moore and Cowie, 1986) or injections of a GnRH analogue (Duckworth and 

Barrell, 1988; 1991). 

The study described in Chapter 7 sought to identify the period during which the 

steroid-independent mechanisms of gonadotrophin suppression were responsive to 

thyroid hormones. The results of that experiment suggest that thyroid hormones exert 
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their action only during inhibitory photoperiods and the inhibitory phase of the 

endogenous rhythm (Site 5, Figure 9.1). This conclusion has practical implications in 

relation to the possible exploitation of the thyroid gland to achieve out-of-season 

reproduction. For example, any treatment which suppressed or blocked the effect of 

thyroid hormones would presumably have to begin before the transition to the non­

breeding season and continue throughout the inhibitory photoperiods of summer until 

the desired time of conception. 

The degree of steroid-independent suppression is directly correlated with the length of 

both natural and artificially manipulated photoperiods in the red deer hind (Fisher and 

Meikle, 1995; Meikle and Fisher, 1996) and the ewe (Robinson et al., 1985), although 

seasonal changes in LH pulse frequency were still observed in ovariectomized ewes 

held on constant long photoperiods (Robinson et al., 1985). Because the experiment 

described in Chapter 7 was conducted outdoors under natural lighting, it was not 

possible to deterinine if the 'window' of steroid-independent responsiveness to 

thyroid hormones is timed by inhibitory photoperiods or the inhibitory phase of the 

endogenous rhythm, or both. If thyroxine could be shown to exert its action only 

during the non-breeding season in hinds that were devoid of photoperiodic cues, this 

would provide strong evidence for the existence of an extant endogenous rhythm in 

thyroidectomized animals, the expression of which was constituitively dependent on 

the presence of thyroid hormones. 

The finding that the transition to anoestrus in cycling red deer hinds (Chapter 5) can 

be prevented by thyroidectomy, which disrupts steroid-independent but not steroid­

dependent processes, strongly suggests that the former mechanisms are at least as 

important in regulating the seasonal occurrence of ovarian cyclicity and ovulation 

(Site 6, Figure 9.1) as the former in this species. This is in contrast to the commonly 

proposed model for the ewe, whereby steroid-dependent regulation is considered to be 

the major determinant of seasonality (e.g. Karsch et al., 1993). However 

thyroidectomy had little effect on the occurrence of mating behavior or ovulation 

following progesterone priming in the non-breeding season (Chapter 8), and did not 

improve the number of out-of-season pregnancies when compared with euthyroid 

control hinds. During the breeding season, mating behavior and ovulation following 

progesterone treatment tended to be reduced by thyroidectomy. These results suggest 
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that while thyroidectomy can overcome steroid-independent seasonal reproductive 

inhibition, a reduction in fertility may be a side-effect of hypothyroidism. Therefore, 

development of technologies to induce out-of-season breeding in red deer hinds by 

exploiting the role of thyroid hormones should be focused on identifying and blocking 

their proximal effects on the hypothalamic GnRH pulse generator and anterior 

pituitary gland, rather than simply reducing their concentrations in general circulation. 
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