·								· <u> </u>	
Name and Abbreviation		Landform	Estimated Age(yr)	Altitude a.s.l. (m)	Relief (deg)	Estimated Annual Rainfall (mm)	Vegetation at Site	Soil Type	Classification (N.Z. Soil Bureau 1968b)
Hokitika	Но	River floodplain	c 1000	190	0	1920	Red beech, grasses, buttercup	Hokitika sandy loam	Recent soil from alluvium
Ikamatua (Younger Variant)	I(y)	Post-glacial degradational terrace	c 14,000	194	0	1920	Red beech, pepper tree, coprosma	Ikamatua silt loam	Lowland yellow- brown earth
Ikamatua (Older Variant)	I(o)	Post-glacial degradational terrace	c 16,000	198	0	1920	Red and silver beech, pepper tree	Ikamatua fine sandy loam	Lowland yellow- brown earth
Ikamatua (Wetter Variant)	I(w)	Post-glacial degradational terrace	c 16,000	197	0	1920	Manuka scrub, grasses	Ikamatua fine sandy loam (Weakly podzolised, weakly gleyed variant)	Lowland yellow- brown earth
Ahaura	Ah	Low glacial outwash terrace	c 18,000	210	0	1920	Red and silver beech, grasses	Ahaura silt loam	Lowland yellow- brown earth
Kumara	Ku	Intermediate glacial outwash terrace	≥70,000	250	0	1920	Manuka scrub, mosses, sedges, grasses	Kumara , silt loam	Lowland podzol; hydrous. (gleyed podzol)
Okarito	0k	High glacial outwash terrace	▶130,000	390	5	1920	Manuka scrub, bracken fern, umbrella fern, grasses, occasional orchid	Okarito loamy sand ls	Lowland podzol; hydrous.(strongly) gleyed podzol)

TABLE 1. PRINCIPAL ENVIRONMENTAL AND PEDOLOGICAL FEATURES OF THE SOILS OF THE REEFTON CHRONOSEQUENCE.

262

Name and Abbreviation	1	Landform	Estimated Age(yr)	Altitude a.s.l. (m)	Relief (deg)	Estimated Annual Rainfall (mm)	Vegetation at Site	Soil Type	Classification (N.Z. Soil Bureau, 1968b)
Hokitika	Но	River floodplain	c 1000	190	0	1920	Red beech, grasses, buttercup	Hokitika sandy loam	Recent soil from alluvium
Ikamatua (Younger Variant)	I(y)	Post-glacial degradational terrace	c 14,000	194	0	1920	Red beech, pepper tree, coprosma	Ikamatua silt loam	Lowland yellow- brown earth
Ikamatua (Older Variant)	I(0)	Post-glacial degradational terrace	c 16,000	198	0	1920	Red and silver beech, pepper tree	Ikamatua fine sandy loam	Lowland yellow- brown earth
Ikamatua (Wetter Variant)	I(w)	Post-glacial degradational terrace	c 16,000	197	0	1920	Manuka scrub, grasses	Ikamatua fine sandy loam (Weakly podzolised, weakly gleyed variant)	Lowland yellow- brown earth
Ahaura	Ah	Low glacial outwash terrace	c 18,000	210	0	1920	Red and silver beech, grasses	Ahaura silt loam	Lowland yellow- brown earth
Kumara	Ku	Intermediate glacial outwash terrace	≥70,000	250	0	1920	Manuka scrub, mosses, sedges grasses	Kumara , silt loam	Lowland podzol; hydrous. (gleyed podzol)
Okarito	0k	High glacial outwash terrace	>130,000	390	5	1920	Manuka scrub, bracken fern, umbrella fern, grasses, occasional orchic	Okarito loamy sand ls	Lowland podzol; hydrous.(strongly) gleyed podzol)

TABLE 1. PRINCIPAL ENVIRONMENTAL AND PEDOLOGICAL FEATURES OF THE SOILS OF THE REEFTON CHRONOSEQUENCE.

62

Non-occluded P* Occluded Inorganic P* Acid-extractable P* Residual P*	<pre>pH (H₂0) volume-Weight Loss on Ignition \$ Cray Cation Exchange Capacity Base Saturation Exchangeable Al Exchangeable Mg Exchangeable Mg Exchangeable Mg Exchangeable Mg Exchangeable Mg Total Ca Total Al Total Al Total Al Total P Total N Total P Total N Total P Total N Fieldes & Perrott Test (<2 mm) Fieldes & Perrott Test (<2 mm) Gibbsite (% in<2 mm) Gibbsite (% in<2 mm) Gibbsite (% in<2 mm) Shotapart (100)/I Feldapar (002)</pre>	TABLE S STMDLE CODDELATION (
0.369 -0.408 0.471 -0.009 0.297 -0.162 -0.151 0.304 0.015 0.229 0.224 0.065 0.700 0.693 0 -0.054 -0.751 0.891 0.411 0.727 0.006 0.202 0.478 0.402 0.546 0.353 0.344 0.479 0.389 0 0.156 0.134 -0.239 -0.454 -0.151 0.624 -0.325 0.022 0.401 0.340 0.352 0.054 0.614 0.529 0 0.119 -0.703 0.669 0.358 0.611 -0.103 0.207 0.268 0.284 0.532 0.566 0.286 0.645 0.628 0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.577 0.726 0.809 0.744 -0.096 0.789 0.407 0.335 -0.248 0.560 0.522 0.720 0.592 0.597 0.686 0.638 -0.499 0.459 -0. 0.241 -0.446 0.617 0.514 0.211 0.742 0.870 0.819 0.060 0.192 0.152 0.611 0.800 0.652 0.781 0.508 -0.222 0.014 -0. 0.638 -0.510 0.351 0.418 -0.696 0.543 -0.095 -0.247 -0.595 -0.203 0.175 -0.219 -0.137 -0.326 -0.114 -0.245 -0.331 0.089 -0. 0.519 -0.596 0.770 0.787 0.046 0.803 0.660 0.531 -0.114 0.339 0.254 0.698 0.734 0.594 0.743 0.650 -0.356 0.154 -0.	Total Mg	

• 5

N

O
 / Occluded Inorganic P
 O
 Acid-artractable P

	IGNITION-Chronosequence.												
Soil a	nd Horizon	Depth (m)	(H ₂ 0)	н (кс1)	M(%)	LOI(%)							
Ho 1	A ₁₁	0.18	4.2	3.8	3.1	11.0							
	A ₁₂	0.20	4.5	4.1	2.0	6.0							
	c	n.d.	5.4	4.5	0.3	1.2							
I(y) 1	0	0.03	n.d.	n.d.	14.1	76.5							
	A	0.07	4.5	3.7	4.8	15.4							
	AB	0.09	4.9	4.1	3.2	9.0							
	B ₂	0.13	5.1	4.2	2.4	5.7							
	B ₃	0.12	5.1	4.3	1.8	3.5							
	c	n.d.	5.2	4.7	0.1	1.0							
I(o) 1	OA	0.03	4.5	3.8	8.9	49.8							
	A	0.07	4.7	4.0	6.2	21.3							
	B ₂₁	0.15	4.9	4.3	5.6	13.2							
	B ₂₂	0.17	5.3	4.5	3.7	6.6							
	C ₁₁	0.13	5.2	4.7	1.4	2.7							

5.2

3.7

4.2

4.7

4.9

5.4

5.4

5.4

5.2

n.d.

0.09*

0.13

0.17

0.08

0.23

0.15

0.05

n.d.

4.6

3.1

3.4

3.8

4.1

4.4

4.4

4.5

4.4

0.4

5.8

8.4

3.9

6.1

2.5

2.0

0.7

1.1

1.2

31.2

36.3

18.3

13.9

5.2

4.2

2.0

2.7

يد . بو

C₁₂

^A2

OA

A

A_{2g}

B₂₁

B₂₂

^C11

^C12

I(o) 2

I(w) 1

TABLE 3. HORIZON DEPTHS, pH, % MOISTURE AND LOSS-ON-

TABLE 3. cont.

Soil an	ld Horizon	Depth (m)	(H ₂ 0) ^{pl}	н (кс1)	M(%)	LOI(%)
Ah 1	A	0.08	4.6	4.0	7.3	27.6
	AB	0.10	4.7	4.2	6.4	17.6
	B ₂₁	0.14	4.9	4.5	8.2	10.1
	B ₂₂	0.19	5.2	4.8	6.0	6.0
	B ₃	0.15	5.1	4.7	4.4	5.5
	C ₁₁	0.15	5.1	4.6	3.4	4.4
	C ₁₂	n.d.	5.0	4.8	1.5	2.3
Ku 1	A	0.15	4.4	3.5	2.3	12.8
	A ₂ G	0.10	4.5	3.5	1.4	6.5
	G	0.21	4.7	3.4	1.8	4.7
	₿ _h G	0.11	4.3	3.6	3.1	8.7
	В ₂ G	0.04	4.7	3.8	1.4	3.6
	B _a G	0.15	4.8	4.1	1.4	2.5
	ເົ	n.d.	4.7	4.1	2.3	5.3
0k 1	A	0.14	4.1	3.2	1.9	12.6
	AG	0.06	4.3	3.4	1.0	6.5
	G	0.12	4.4	3.6	0.7	2.0
	₿ ₂ Ġ	0.19	4.6	4.1	1.3	2.7
	В ₃ G	0.11	4.6	4.1	0.8	1.5
	ເ້	n.d.	4.7	4.3	0.8	1.6

* Depth from surface 0.07 m.

TABLE 4. HORIZON DEPTHS, pH, % MOISTURE AND LOSS-ON-

IGNITION - Transect 1.

Soil	Distance from Stump (m)	Horizon	Depth (m)	н ₂ 0	pH KC1	M(%)	L0I(%)
Ah 1	7.25	A	0.08	4.6	4.0	7.3	27.6
		AB	0.10	4.7	4.2	6.4	17.6
		^B 21	0.14	4.9	4.5	8.2	10.1
Ah 2	5.25	A	0.06	4.4	3.5	6.0	28.4
		AB	0.12	4.5	3.8	5.7	21.4
		^B 21	0.14	5.0	4.5	5.3	8.7
Ah 3	3.25	A	0.07	4.4	3.8	6.4	32.2
		AB	0.11	4.6	3.7	6.5	27.8
		^B 21	0.14	5.0	4.4	7.6	13.8
Ah 4	2.10	OA	0.06	3.9	3.2	11.0	54.1
		A ₂	0.14	4.6	3.7	7.4	22.8
		B ² 21	0.15	4.9	4.4	6.5	12.8
Ah 5	0	A ₂₁ *	0.08	3.6	2.9	2.8	13.7
		A.22	0.04	3.8	3.2	6.6	23.3
		B ₂₁	0.16	4.7	4.3	7.5	13.8

Depth from surface 0.20 m.

.

TABLE 5. HORIZON DEPTH, pH, % MOISTURE AND LOSS-ON-IGNITION -

	Distance f	rom Trees		······································		<u> </u>	,	
Soil	From Beech 1.11 m (dbh)	From Beech O.68 m (dbh)	Horizon	Depth (m)	ر ^H 20	PH KCl	M(%)	LOI(%)
Ah 6	1.75	13.70	0	0.09	3.2	n.d.	28.7	89.9
			A ₂	0.06	3.4	2.8	7.9	40.2
			^B 21	0.14	4.7	4.2	5.9	15.8
Ah 7	4.00	11。45	0	0.05	3.6	2.7	11.9	81.4
			A	0.10	4.0	3.4	9.0	34.0
			^B 21	0.15	4.7	4.4	5.1	12.5
Ah 1	7.70	7.75	A	0.08	4.6	4.0	7.3	27.6
			AB	0.10	4.7	4.2	6.4	17.6
	•		^B 21	0.14	4.9	4.5	8,2	10.1
Ah 8	11.95	3.50	A	0.12	4.6	3.7	5.8	25.8
	:		^B 1	0 <u>.</u> 18	5.0	4.2	7.3	17.4
			^B 2	0.15	5.1	4.5	5.5	10.0
Ah 9	14。40	1.05	OA	0.09	4.3	3.5	9.7	46.7
			AB	0.17	4.7	3.9	6.3	23.5
			^B 21	0.16	5.1	4.5	5.1	10.2

Transect 2.

Soll and 1	Vendeen	Siz	2e			
SOLL AND I	nor12011	≥2 mm	✓ 2 mm	Tota1	Inorganic**	Organic**
				(kg l	$na^{-1}x 10^4$)	· · ·
Ho 1	A ₁₁	ο	138	138	123	15.2
	A ₁₂	0	221	221	208	13.3
· · ·	C*	537	293	830	289	3.5
Total to:	0.38 m	0	359	359	331	28.5
n de la composition de la composition de la composition de la composition	0.76 m (actual)	537	652	1189	1157	32.0
•	0.76 m (est.)	0	955	955	920	35.6
I(y) 1	0	0	n. d .		<u> </u>	
· · · ·	A .	0	51	51	43	7.8
	AB	0	89	89	81	8.0
· · ·	B ₂	0	140	140	132	8.0
	B	0	148	148	143	5.2
	C*	67	495	562	490	5.0
Total to:	0.38 m	0	354	354	328	26.4
	0.76 m (actual)	67	923	990	956	33.9
	0.76 m (est.)	,0	958	958	925	34.3
I(o) 1	OA,	0	.10	10	5	5.0
	A	0	39	39	31	8.4
	B ₂₁	0	122	122	106	16.1
	B ₂₂	0	191	191	178	12.6
	C ₁₁	23	159	182	155	4.3
•	C12*	243	200	443	198	2.4
Total to:	0.38 m	0	318	318	279	39.1
	0.76 m (actual)	266	721	987	939	48.7
•	0.76 m (est.)	0	874	874	824	50.6

TABLE 6.WEIGHTS OF SIZE SEPARATES AND OF ORGANIC AND INORGANICFRACTIONS - Chronosequence.

TABLE 6. cont.

Soil and I	Horizon	Ň	Size			
		>2 mm	< 2 mm	Total	Inorganic**	Organic**
				(kg h	$a^{-1} x 10^{4}$)	
I(w) 1	OA	· . 0	59	59	38	21.6
	A	. 0	129	129	105	23.7
	A _{2g}	O	72	72	62	10.0
•	B ₂₁	· 0	247	247	234	12.9
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	B ₂₂	0	171	171	164	7.2
	C ₁₁	76	31	107	30	0.6
•	C ₁₂	n.d.	n.d.	-	-	-
Total to:	0.38 m	0	260	260	205	55.3
	0.76 m (actual)	0.1	678	678	603	75.4
	0.76 m (est.)	0	678	678	603	75.4
Ah 1	A	0	40	40	29	11.0
	АB	0	64	64	53	11.3
· · · ·	B ₂₁	0	100	100	90	10,1
	B ₂₂	0	180	180	169	10.7
•	B ₃	0	205	205	194	11.3
	C ₁₁	0	207	207	198	9.1
	^C 12	n.d.	n.d.	-	-	-
Total to:	0.38 m	0	261	261	225	35.8
	0.76 m (actual)	0	727	727	666	60.5
	0.76 m (est.)	0	727	727	666	60,5

TABLE 6. cont.

Soil and I	Horizon		Size								
	· ·	> 2 mm	< 2 mm	Total	Inorganic**	Organic**					
		$(kg ha^{-1} x 10^4)$									
Ku 1	A	0	70	70	61	9.0					
	A ₂ G	0	103	103	96	6.7					
	G	Ο	293	293	279	13.7					
•	B _h G	0	129	129	118	10.8					
	B ₂ G	0	48	48	46	1.7					
	B ₃ G	0	209	209	204	5.2					
	C C	n.d.	· . .	<u> </u>	<u> </u>						
Total to:	0.38 m	. 0	354	354	330	24.1					
	0.76 m (actual)	0	852	852	804	47.1					
	0.76 m (est.)	0	852	852	804	47.1					
Ok 1	A	0	113	.113	99	14.4					
-	AG	0	83	83	78	5.4					
	G	0	185	185	181	3.7					
	₿ ₂ Ģ	0	340	340	331	9.2					
· .	BG	0	189	189	186	2.8					
•	C*	0	208	208	205	3.3					
Total to:	0.38 m	0	488	488	462	26.4					
	0.76 m (actual)	0	1118	1118	1080	38.9					
;	0.76 m (est.)	0	1118	. 1118	1080	38.9					

* To a depth of 0.76 m.

** Calculated from Loss-on-Ignition data.

MECHANICAL	ANALYSIS-	Chronose	quence.	
4				
				- / 1
			•	271

				•	Pij	pette					F	ractio	nation	
Soil and	Horizon	C. 5	f.s	si	¢l	с. в	f.s	si	_c1	Total	s	si	c.cl	f.c1
	1. 1.		· ((%) ·			(kg	ha ⁻¹	x 10 ⁴)			(%)	
Ho 1	A ₁₁	14	49	26	11	19	67	36	15	137	70	23	4.9	2.1
	A ₁₂	19	50	23	8	42	.111	51	18	222	77	18	3.5	1.5
• •	C*	86	10	1	3	251	29	3	9	292	95	4	0.4	0.3
•		Total	to O.	.38 m		61	178	87	33	359			, , 4 .	
		9	6 of To	tal	_	17	50	24	9	-	[·	· .		
		Total	to 0.	76 m		312	207	90	42	651				
	100 and 100 an	9	6 of To	otal		48	32	14	6	_				
I(y) 1	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d,	n.d.	n.d,	-	n.d.	n.d.	n.d.	n.d.
• •	A	9	42	31	1.8	5	21	16	9	51	58	28	10,0	4.1
	AB	9	43	30.5	17.5	8	38	27	16	89	59.5	29	7,8	3.8
•	B ₂	11	47	30	12	15	66	42	17	140	66	25.5	5.9	2.7
r	^B 3	18	51.5	5 21.5	9	27	76	32	13	148	75	19.5	4.0	1.7
	C*	26	65.5	5 5.5	3	129	325	27	15	496	90	8	1.4	0.6
		Total	L to Q.	38 m		42	163	101	49	355	1	1		·
		9	b of To	otal		12	46	28	14	. .				
		Total	L to O.	76 m		184	526	144	70	924				••
	·	9	of To	ota1		20	57	16	8	-				
I(0) 1	OA	n.d.	n.d.	n.d.	n.d.	4	2	2	2	10	63.5	20	7.6	8.8
ν, ·	. A	21	39	19	21	8	. 15	7	8	38	65.5	21	7.9	5.6
	^{.B} 21	20.5	41.5	5 26	12	25	51	32	15	123	67.5	20	7.7	4.8
	B22	31.5	41	22.5	5	60	78	43	10	191	73	17	5.7	4.1
	^C 11	54	31.5	5 11	3	86	50	17	5	158	87.5	9	2,1	1.5
•	^C 12 [*]	51.5	43	2.5	3	103	86	5	6	200	92	5	1.2	2.2
		Total	L to O	.38 m		83	128	74	33	318				
		9	6 of To	otal		26	40	23	10	-	1	•		
		Total	L to O.	.76 m		286	282	106	46	720	· .			
		9	6 of To	otal		40	39	15	6	· -				
İ(0) 2	A2		n.d.	•		-	_	-	-	-	63	25	7.8	4.3
I(w) 1	OA	n.d.	n.d.	n.d.	n.d.	7	29	16	7	59	60	27.5	7.0	5.6
•	A	12	50	20	18	15	65	26	23	129	66	22	7.7	4.5
	A2a	12	· 51	23	14	8	37	17	10	72	69	18.5	7.8	4.8
	B ₂₁	16	53.5	5 23	7.5	39	1 32	57	18	246	75.5	15.5	5.8	,3.2
÷ .	B22	26	49	5 18.5	6	44	84	32	10	170	77.5	15	4.9	2.4
	C11	74.5	18	4.5	3	23	6	1	1	31	93	5.5	1.1	0.6
· . · ·	^C 12	38	50	8	4	-	-	-	-	-	88.5	8.5	2.0	0.9
	·	Tota	L to O	.38 m		30	131	59	40	260	1	· · , · , ·		
		9	6 of To	otal		12	50	23	15	· _ ·	1			
, · ·		Tota	L to 0.	.76 m	· · ·	113.	347	148	68	676	ļ .	· . ·		
-		9	6 of Te	otal		17	51	22	10 `	-	}	۰.		

TABLE 7.

TABLE	7.	Cont

·														
•					Pipe	ette				6	Fr	actio	nation	
Soil and	Horizon	C.S	f.s	si	c1	c.s	f.s	si		Total	s	si	c.c1	f.c1
•				(%)			(kg h	a ⁻¹ x	104)			·		
Ah 1	A	15.5	.38.5	22.5	23.5	6	15	9	9	39	57.5	25	9.8	7.5
	AB	11.5	. 46	31	11.5	7	30	20	7	64	59.5	23.5	9.8	7.2
	^B 21	12	52	29	7	12	51	29	7	99	61	23.5	8.8	6.9
	B ₂₂	15	43.5	27.5	14	27	78	49	25	179	63.5	21	8.4	7.2
	^B 3	18	43	23	16	37	88	47	33	205	69	18	7,2	5.8
111	C11	26.5	54	15	4.5	55	112	31	9	207	76	15	4.7	4.4
· · ·	^C 12	50	.41.5	5.5	3	-	-	-		-	93	4.5	1.3	- 1.3
-		Tota1	to 0.3	8 m		34	121	73	31	259				
		i	% of To	tal		13	47	28	12	-	1			
		Tota1	to 0.7	6 m		126	337	175	87	725				
•			% of To	tal	• .	17	46	24	12	-	-	-		
Ku 1	A	3.5	44.5	37	15	2	31	26	11	70	52.5	36	7.7	3.7
	A ₂ G	3	42.5	42	12.5	3	44	43	13	103	52.5	35	8.0	4.3
	Ğ	2.5	43.5	36.5	17.5	7	127	107	51	292	52.5	27.5	11.4	8.5
	B _h G	6.5	37.5	30	26	8	48	39	34	129	51	28	11.1	9.6
•	B2G	9.5	43.5	35	12	5	21	17	6	49	57	31	6.7	5.0
·	B ₃ G	9	42	29	20	19	88	60	42	209	56.5	31.5	7.1	5.0
	c	39.5	29	15	16	-	-	-	_	· -	72.5	17	5.9	4.5
•		Total	to 0.3	18 m		9	154	135	56	354			r	
• •		\$	of Tot	a1		3	44	38	16	-				
•		Total	to 0.7	ю́т.		44	359	292	157	852				
		×	of Tot	al		5	42	34	18					
Ok 1	A	3	60	31	5	3	68	35	6	112	55	40.5	4.1	0.3
	AG	3	43	45	9	2	3 6	37	7	82	53.5	40.5	4.9	0.9
· · · ·	G	1	51	40	8	2	94	74	15	185	55.5	36	5.6	2.7
•	₿ ₂ Ģ	3	49	38	10	10	166	129	34	339	55.6	36.5	5.4	2.5
	B3G	10	42	36.5	11.5	19	79	69	22	189	54.5	34	6.8	4.6
	C*	34	34	24	8	71	71	50	17	209	69.5	20.5	5.8	4.2
•	·	Tota1	to 0.3	18 m		10	250	187	39	486				
		×	of Tot	a1		2	51	38	8	-				
: 1		Total	to 0.7	/6 m		107	514	394	101	1116				
		4	of Tot	a 1		10	46	35	9					
		<u> </u>				l								

to a depth of 0.76 m.

Note:

Volume-weights for I(o) 1, OA and I(w) 1, OA calculated from fractionation data, as no pipette values available, and for Ah 1, AB and B_{21} , where incomplete dispersion occurred with pipette method. In these instances the ratio c.s : f.s was assumed to be that observed for the underlying horizon.

273.

TABLE 8. MECHANICAL ANALYSIS - Transect 1.

	· <u>·······</u>				
			Fra	ctionation	
Soil and	d Horizon	Sand	Silt	Coarse Clay	Fine Clay
en en ser en En ser en ser En ser en ser	1917 		· · · · · · · · · · · · · · · · · · ·	(%)	· · · · · · · · · · · · · · · · · · ·
Ah 1	A	57.5	25	9.8	7.5
	AB	59.5	23.5	9.8	7.2
	^B 21	61	23.5	8.8	6.9
Ah 2	A	58.5	26.5	8.6	6.3
	AB	59.5	25	9.3	6.3
	^B 21	59.5	19.5	8.0	13.3
Ah 3	A	59	25.5	7.6	8.0
	AB	58	25.5	8.1	8.4
	^B 21	54	22.5	8.7	14.9
Ah 4	0A.	58	26	8.0	8.2
	A ₂	55.5	27	9.0	7.7
	^B 21	53.5	23.5	9.5	13.5
Ah 5	A ₂₁	61.5	25	7.1	6.3
	A22	54.5	26.5	9.0	9.8
	B ₂₁	56	24.5	9.6	9.8

TABLE 9. MECHANICAL ANALYSIS - Transect 2.

	- 	Fractionation							
Soil and Ah 6 Ah 7 Ah 1 Ah 8 Ah 9	i Horizon	Sand	Silt	Coarse Clay	Fine Clay				
				(%)					
Soil and Ah 6 Ah 7 Ah 1 Ah 8	0	39	34	2'	7				
	A ₂	55.5	25.5	9.1	10.1				
	^B 21	57.5	24.5	7.7	10.3				
Ah 7	0	53	29	1	B				
	A	57.5	26.5	9.3	7.0				
	B 21	72	20.5	8.0	9.5				
Ah 1	A	57.5	25	9.8	7.5				
	AB	59.5	23.5	9.8	7.2				
	^B 21	61	23.5	8.8	6.9				
Ah 8	A	56.5	26.5	8.3	8.9				
	B ₁	53.5	24	10.7	11.7				
	^B 21	54.5	22	9.7	13.8				
Ah 9	OA	55	28.5	8.8	7.5				
	AB	53	26	10.0	11.0				
	^B 21	55.5	23	9.6	12.0				

							<u></u>		·	<u></u>	
					Exchangeable Cations						
Soil and	Horizon	CEC	TEB	BS	Na	Mg	. A1	K	Ca	Fe	
: · ·		(me/100) E)	(%)		•	(me/10) g)			
Ho 1	A ₁₁	18.3	10.6	58	0.45	2.60	2.76	1.06	6.46	0.10	
	A ₁₂	11.3	4.68	41	0.37	1.09	1.95	0,38	2.84	0.00	
er e e	c	3.41	1.03	30	0,14	0.16	0.43	0.16	0.57	0.00	
I(y) 1	0	n.d.	n.d.	n.d.	n.d.	n.d.	1.51	n.d.	n.d.	0.07	
	Å	23.6	5.34	23	0.46	2.06	6.35	0.82	2.00	0.16	
	AB	13.9	2.92	21	0.30	0.69	3.85	0.81	1.12	0,12	
•	B ₂	9.63	1.78	18	0.24	0.28	2.49	0.58	0.68	0.05	
	Ba .	7.74	1.11	14	0.24	0.10	1.39	0.31	0.46	0.03	
	c .	1,00	0.85	85	0.21	0.18	0.06	0.21	0.25	0.03	
I(o) 1	OA	51.2	n.d.	n.d.	n.d.	n.d.	2.55	n.d.	n.d.	0.31	
	A	23.1	3.18	14	0.41	1.07	5.18	0.59	1.11	0.34	
	B ₂₁	14.5	1.40	10	0.32	0.36	3.22	0.30	0.42	0.10	
	·B22	7.38	0.65	9	0.26	0.11	1.35	0.20	80.0	0.10	
	C11	4.26	0.55	13	0.29	0.05	0.53	0.07	0:14	0.04	
	^C 12	1.71	0.53	31	0.15	0.12	0.18	0.12	0.14	0.04	
1(o) 2	A ₂	40.0	2.39	6	0.42	1.09	10.2	0.49	0.39	0.64	
İ (w) 1	OA	49.6	20.5	42	1.19	3.66	6.73	2.77	12.9	0.60	
	A .	27.6	3.30	12	0.27	0.74	6.72	0.24	2.05	0.12	
4	A2g	8.31	1.95	24	0.35	0.34	5.44	0.14	1.12	0.01	
:• · · · ·	^B 21	8.62	0,82	10	0.24	0.10	1.42	0.13	0.35	0.00	
	^B 22	7.24	0.59	8	0.20	0.10	1.52	0.11	0.18	0.04	
	C ₁₁	3.02	0.98	33	0.26	0.13	0.91	0.17	0.42	0.01	
	^C 12	4.85	0.82	17	0,19	0.10	1.20	0.16	0137	0.05	
والمتحدث والمتحدث والمتحدث	1	1			1.1.1				• •		

TABLE 10. CATION EXCHANGE ANALYSES - Chronosequence.

TABLE 10. cont.

				•		Excha	ngeab1e	Cation	5	-
Soil and	Horizon	CEC	TEB	BS	Na	Mg	A1	ĸ	Ca	Fe
		(me/1	00 g)	(%)			(me/10) с g)		
Ah 1	. A	31.4	4.77	15	0.43	1.28	6.07	0.11	2.95	0.27
	AB	19.8	1.20	.6	0.22	0.28	4.56	0.40	0.30	0.11
•	^B 21	9.04	0.49	5	0.21	0.09	1.66	0.10	0.09	0.11
	B ₂₂	5.21	0.46	9	0.19	0.06	0.34	0.11	0.10	0.06
	B ₃	5.86	0.50	8	0.18	0.06	0.50	0.13	0.13	0.06
÷	C11	5.18	0,50	10	0.21	0.06	0.33	0.11	0.12	0.13
	C ₁₂	2.84	0.47	17	0.15	0,04	0.22	0.07	0.21	0.06
<u></u>		<u> </u>						·		
Ku 1	A i	14.2	3.92	28	0.38	1.00	3.85	0.44	2.10	0.23
•	A₂ ^G	9.23	2.08	23	0.19	0.43	4.85	0.11	1.35	0.18
	G	12.2	2.33	19	0.33	0.38	8.89	0.09	1.53	0.10
	B _h G	22.4	2.83	13	0.31	0.40	10.8	0.12	2.00	0.03
	B ₂ G	9.84	1.40	14	0.31	0.17	4.46	0.20	0.72	0.07
	₿ ₃ G	5.58	0.64	12	0.28	0.06	2.47	0.14	0.16	0.03
	C	12.0	1,11	9	0.40	0.14	3.98	0.36	0.21	0.07
Ok 1	A	14.0	4.77	34	0.48	0.89	0.67	0.44	2.96	0.00
	AG	7.23	1,98	28	0.34	0.22	1.31	0.11	1.31	0.00
	G	4.23	0.86	21	0.23	0.10	2.61	0.05	0.48	0.02
· .	BG	6.08	0.59	10	0.19	0,05	2.70	0.04	0.31	0.02
•	Б ₂ G	3.22	0.46	14	0.20	0.06	1.83	0.05	0.15	0.03
	ر C	3.63	0.53	15	0.29	0.05	1.59	0.07	0.12	0.00
	· · · · · · · · · · · · · · · · ·	<u>}_</u> ·				· · · · · -			<u>.</u>	

Note:

Exchangeable Al and Fe are assumed to be present as trivalent ions.

276

					Excha	ngeàble	Cation	s	. #
Soil and	Horizon	CEC TEB	BS	Na	Mg	A1	K	Ca	Fe
· · · · · · · · · · · · · · · · · · ·		(me/100 g)	(%)			(me/10	0 в)		
Ah 1	A	31.4 4.77	15	0.43	1.28	6,07	0.11	2.95	0.27
	AB	19.8 1,20	6	0.22	0.28	4.56	0.40	0.30	0.11
	B ₂₁	9.04 0.49	5	0.21	0.09	1.66	0.10	0.09	0,11
Ah 2	A 4	33.5 4.06	12	0.44	1.14	11.5	0.62	1,86	0.76
441	AB	27.8 1.81	7	0.41	0.47	9.24	0.39	0.54	0.44
	^B 21	8.24 0.67	8	0.35	0.06	1.47	0.11	0.15	0.02
Ah 3	A	39.2 14.5	37	0.40	3.45	6.80	1.03	9.58	0.56
1	ÁB .	34.2 7.65	22	0.44	1.80	8.84	0.87	4.54	0.58
	^B 21	18.5 1.32	7	0.37	0.13	3.13	0.54	0.28	0.09
An 4	OA	65.1 n.d.	n.d.	n.d.	n.d.	9.62	n.d.	n.d.	0.98
	Ag	41.4 1.97	5	0.40	0.65	12.2	0.46	0.46	0.57
	B_21	15.7 0.77	5 i	0.31	0.10	2.95	0,22	0.14	0.05
Ah 5	A ₂₁	22.9 1.25	5	0.26	0.38	4.51	0.19	0.42	0.11
	A_22	46.1 1.54	3	0.28	0.58	18.3	0.35	0.33	0.95
· · · ·	B ₂₁	15.7 0.69	4	0.34	0.12	3.48	0,08	0.15	0.00

CATION EXCHANGE ANALYSES - Transect 1. TABLE 11.

Note:

Exchangeable Al and Fe are assumed to be present as trivalent ions.

TABLE 12.	CATION EXCHANGE	ANALYSES -	Transect 2.
			بالمحاصي المحاذ بيها المتخلف ويهو التخذ

		r		· · · · · · · ·			فمرجع وأحجاجه والمحج				
			<u> </u>		<u> </u>	Excha	ngeable	Cation	.s		
Soil and	Horizon	CEC	TEB	BS	Na	Mg	A1	K	Ca	Fe	
		(me/1	00 g)	(%)	(me/100 g)						
Ah 6	0	113.9	15.5	14	1.78	7.65	11.0	1.30	4.76	0.90	
	A2	72.4	7.35	10	0.98	2.91	10.8	1.24	2.22	1.74	
	B ₂₁	19.4	1.19	6.	0.30	0.20	5.31	0.51	0.18	0.12	
Ah 7	0	94.6	19.6	21	2.42	5.26	4.25	0.48	11.4	0.42	
	A	43.1	4.00	9	0.43	1.20	12.7	1.01	1.36	1.06	
	^B 21	13.9	0,81	6	0.31	0.16	3.44	0.21	0.13	0.05	
Ah 1	A	31.4	4.77	15	0.43	1.28	6.07	0.11	2.95	0.27	
· .	AB	19.8	1.20	6	0.22	0.28	4,56	0.40	0.30	0.11	
	^B 21	9.04	0.49	5	0.21	0.09	1.66	0.10	0,09	0 .1 1	
Ah 8	A	30,2	7.84	26	0.33	1,52	6.45	0.73	5.26	0.28	
	B.	20.8	1.04	5	0.28	0,19	4.83	0.41	0.16	0.01	
	^B 21	7.62	0,80	11	0.28	0.08	1.51	0.26	0.18	0.00	
Ah 9	OA	60.9	17.8	29	0.71	4.96	4.86	3.11	9.02	0.72	
•	AB	26.8	2.37	9	0.34	0.60	8.49	1.05	0,38	0.28	
	^B 21	9.17	1.30	14	0.50	0.14	1.81	0.54	0.12	0.00	

Note: Exchangeable A1 and Fe are assumed to be present as trivalent ions.

TABLE 13. CATION EXCHANGE ANALYSES - Chronosequence.

(Volume-weight data: calculated from Tables 6 and 10),

				F	xchangea	able Cati	ons		
Soil and	Horizon	CEC .	TEB	Na	Mg	A1	К	Ca	Fe
·		(me ha ⁻¹	x 10 ⁶)		(1	cg ha ⁻¹)	•		
Ho 1	A ₁₁	252	146	144	437	342	571	1784	26
. V	A ₁₂	250	103	187	293	387	326	1257	0
	C*	100	30	94	57	113	183	338	0
Total to:	0.38 m	502	249	334	730	729	897	3041	26
	0.76 m	602	279	425	787	842	1080	3379	26
I(y) 1	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	A .	120	27	54	126	289	162	202	16
	AB	124	26	61	75	309	280	198	21
	B ₂	134	25	76	47	313	319	189	13
•	Ba	114	16	83	18	184	176	135	8
	c*	49	42	240	109	26	407	248	30
Total to:	0.38 m	435	86	232	257	1003	849	657	54
	0.76 m	541	128	514	375	1121	1344	972	88
I(o) 1	OA	50	n.d.	n.d.	n.d.	23	n.d.	n.d.	6
•	A	91	12	37	51	184	90	87	27
	B ₂₁	177	17	89	53	353	141	103	24
	B_22	141	13	115	27	232	148	32	37
	C_11	68	9	108	· 10	76	45	46	12
	^C 12 [*]	34	10	69	29	33	95	56	26
Total to:	0.38 m	426	39	214	125	737	344	214	85
	0.76 m	561	61	418	170	901	519	324	132
I(w) 1	OA	295	122	163	265	360	645	1539	67
	A	356	43	81	116	781	121	531	29
н. К	A	60	13	.41	30	354	39	162	1
· · · ·	~в В ₂₁	229	20	134	31	314	129	172	ο
	Baa	124	10	80	21	234	75	63	12
	ес С ₁₁	9	3	18	5	25	21	26	1
. '	C ₁₂	-	-	-	-	-	<u>-</u>	÷.	
Total to:	0.38 m	711	178	285	411	1495	805	2232	97
	0.76 m	1052	211	517	468	2068	1030	2493	110
		1		I			•		

TABLE 13. cont.

						Exchar	ngeable	Cations	
Soil and i	Horizon	CEC	TEB	Na	Mg	A1	к	Ca	Fe
· 		(me ha	$x^{-1}x10^{6}$)			(kg l	1a ⁻¹)		
Ah 1	A	1.26	19	40	62	219	17	236	20
· ·	AB	128	8	33	22	265	100	39	13
ан Алтан алтан алт	B ₂₁	90	5	47	11	148	38	17	20
	B ₂₂	93	8	79	14	55	74	34	21
	B	120	10	84	16	93	101	52	24
	C11*	71	7	66	10	41	62	34	35
	с ₁₂	-	·	-	<u>-</u>	-	-		
 Total to:	0.38 m	372	35	145	99	649	178	303	60
	0.76 m	628	57	349	135	821	392	412	133
Ku 1	A	100	28	61	86	244	121	294	30
	A_G	. 95	21	46	53	448	45	276	34
. •	G	358	68	220	134	2342	105	890	55
	B _b G	289	37	92	63	1256	63	517	7
	B ₂ G	47	7	35	10	192	38	69	6
• .	B ₁ G	116	14	136	15	465	115	68	12
•	c	-	-	-		-	-	-	-
Total to:	0,38 m	416	91	243	222	2142	231	1121	98
	0.76 m	1005	175	590	361	4947	487	2114	144
Ok 1	A	160	54	126	123	69	195	675	0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AG	60	16	64	23	98	3 6	218	0
	G	78	16	98	23	434	36	179	7
•	₿ ₂ Ġ	206	20	150	21	823	54	212	13
•	₿ ₃ Ĝ	60	9	88	14	311	37	57	11
	C*	76	11	140	13	299	58	50	0
Total to:	0.38 m	368	92	335	176	861	284	1139	11
n an an Arrange an Arrange An Arrange an Arrange an Arrange an Arrange An Arrange an Arrange an Arrange an Arrange an Arrange an Arrange an	0.76 m	640	126	666	217	2034	416	1391	31

To a depth of 0.76 m.

TABLE 14. CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT.

I. <u>Characteristics of selected groupings - Chronosequence</u>.**

	<u> </u>						·	. <u>.</u> .	
	Number	CEC		Oxidisable	Carbon*	Cla	ay	Sil	t
Grouping	of Samples	Range (me/10	Mean 00 g)	Range (%)	Mean	Range (%)	Mean	Range (%)	Mean
All Soils:	29	1.00-31.4	11.01	0.12-11.0	2.71	3.0-26.0	12.4	1.0-45.0	26.6
Upper Horizons	11	7.23-31.4	16.91	1.76-11.0	5.23	5.0-23.5	14.4	19.0-45.0	30.1
Lower Horizons	18	1.00-22.4	7.40	0.12-4.40	1.17	3.0-26.0	11.1	1.0-40.0	24.4
Yellow-brown Earths:	18	1.00-31.4	11.73	0.12-11.0	2.90	3.0-23.5	11.8	1.0-31.0	20.6
Upper Horizons	7	11.3-31.4	20.20	1.76-11.0	5.52	8.0-23.5	16.6	19.0-31.0	25.1
Lower Horizons	11	1.00-14.5	6.33	0.12-4.40	1.23	3.0-16.0	8.7	1.0-30.0	17.7
<u>Gley Podzols</u> :	11	3.22-22.4	9.83	0.15-6.50	2.40	5.0-26.0	13.3	29.0-45.0	36.4

* Data taken from Tan (1971).

** I(w) 1 excluded.

TABLE 15. CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT.

II. Characteristics of selected groupings - Transects.

Grouping	Number of Samples	CEC Range Mean (me/100 g)	Ignition Loss Range Mean (%)	Clay Range Mean (%)	Silt Range Mean (%)
All Soils	27	7.62-113.9 33.38	8.7-89.9 26.4	13.4-27.0 18.4	19.5-34.0 25.0
Transect 1	15	8.24- 65.1 28.57	8.7-54.1 21.9	13.4-23.6 17.7	19.5-27.0 24.6
Transect 2	15	7.62-113.9 38.20	10.0-89.9 30.8	15.7-27.0 19.2	20.5-34.0 25.5

TABLE 16. CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT.

III. <u>Simple correlation coefficients between % oxid. C and CEC</u>, and their respective regression equations - Chronosequence.

Grouping	Simple Correlation Coefficient (r)		Regr	ession	Equation	•	Propor Variab Attrib	tion ility uted (%)	of in Y to X
<u>All Soils</u> :	0.878***	Y (3.65)		4.33	+ 2.46 (0.26)	x		61	
Upper Horizons	0.832**	Y (4.18)	=	4.94	+ 2.29 (0.51)	x		71	
Lower Horizons	0.788***	Y (3.26)	=	3.15	+ 3.62 (0.70)	X		57	
Yellow-brown Earths:	0.962***	Y (2.41)	=	3.75	+ 2.74 (0.19)	x		68	
Upper Horizons	0.967***	Y (1.87)	=	8.65	+ 2.09 (0.25)	X .		57	•
Lower Horizons	0.888***	Y (1.88)	=	3.00	+ 2.70 (0.46)	x		52	
<u>Gley Podzols</u> :	0.582	Y (4.80)	=	6.23	+ 1.50 (0.70)	X		37	

* Significant at 5% level; ** Significant at 1% level; *** Significant at 0.1% level.
• Y = a + bX, where Y represents the estimated CEC, and b is the regression coefficient for the variable, % oxid. C (X). Values in brackets represent standard errors.

283

TABLE 17. CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT.

IV. <u>Simple correlation coefficients between % LOI and CEC</u>, and their respective regression equations - Transects.

Grouping	Simple Correlation Coefficient (r)	Regression Equation	Proportion of Variability in Y Attributed to X (%)
All Soils	0.969 ***	$\begin{array}{rcl} \mathbf{Y} &= -0.02 &+ & 1.27 & \mathbf{X} \\ (6.44) & & & (0.06) \end{array}$	100
Transect 1	0.919***	$\begin{array}{rcrcrcr} Y & = & 1.77 & + & 1.23 & X \\ (6.30) & & & & (0.15) \end{array}$	94
Transect 2	0.979***	$\begin{array}{rcl} Y &=& -1.58 &+& 1.29 & X \\ (6.87) & & & (0.07) \end{array}$	104
* Significant at	5% level; ** Signific	ant at 1% level; *** Significan	t at 0.1% level.

• Y = a + bX, where Y represents the estimated CEC, and b is the regression coefficient for the variable, % LOI (X).

Values in brackets represents standard errors.

V. <u>Simple</u>	correlation coeffic	zients between % clay and CEC, ession equations - Chronosequen	<u>ce</u> .
Grouping	Simple Correlation Coefficient (r)	Regression Equation	Proportion of Variability in Y Attributed to X (%)
All Soils:	0.702 ***	$\begin{array}{rcl} \mathbf{Y} &= 0.67 + 0.84 \ \mathbf{X} \\ (5.44) & & (0.16) \end{array}$	94
Upper Horizons	0.768 **	$\begin{array}{rcl} Y &= 3.23 + 0.95 \ X \\ (4.83) & (0.26) \end{array}$	81
Lower Horizons	0.717 ***	$\begin{array}{rcl} Y &= 1.04 + 0.57 \ X \\ (3.70) & (0.14) \end{array}$	86
Yellow-brown Earths	: 0.806 ***	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	105
Upper Horizons	0.795 *	$\begin{array}{r} \mathbf{Y} = 3.87 + 0.98 \ \mathbf{X} \\ (4.44) & (0.33) \end{array}$	81
Lower Horizons	0.609 *	$\begin{array}{r} \mathbf{Y} \\ (3.26) \end{array} = 2.53 + 0.44 \mathbf{X} \\ (0.19) \end{array}$	60
Gley Podzols:	0.534	$\begin{array}{r} Y \\ (4.99) = 3.17 + 0.50 X \\ (0.26) \end{array}$	68

* Significant at 5% level; ** Significant at 1% level; *** Significant at 0.1% level.

• Y = a + b X, where Y represents the estimated CEC, and b is the regression coefficient for the variable, % clay (X).

285

Values in brackets represent standard errors.

·····		Chronosequence.		<u></u>		-	
Grouping	Regression	• Equation	R ²	Test of Si for Partia Coefficien	gnificance 1 Regression t∎	Proportion Variability Attribute and X_2 : (on of ity in Y ed to X ₁ (%)
				^t 1	t ₂	x ₁	x2
All Soils:	Y = 0.47 + 1. (2.85) (0	97 X + 0.42 X (0.10) ² (0.10) ²	0.865**	8.50***	4.27***	48	47
Upper Horizons	$\begin{array}{r} Y = 1.07 + 1. \\ (3.52) & (0) \end{array}$	$\begin{array}{c} 60 \ x + 0.52 \ x \\ 0.53 \end{array} \right)^1 (0.24)^2$	0.808**	3.00*	2.17*	49	44
Lower Horizons	$\begin{array}{r} Y = 0.27 + 2. \\ (2.56) & (0) \end{array}$	$\begin{array}{r} 67 \ x_{1} + 0.36 \ x_{2} \\ 0.62 \end{array} + \begin{array}{r} 0.36 \ x_{1} \\ (0.11)^{2} \end{array}$	0.781**	4.29***	3.32**	42	54
Yellow-brown Earths:	$\begin{array}{c} Y = 2.69 + 2. \\ (2.39) & (0 \end{array}$	$\begin{array}{r} 47 \ x_{1} + 0.16 \ x_{2} \\ 32)^{1} (0.14)^{2} \end{array}$	0.929**	7.81***	1.10	61	16
Upper Horizons	Y = 8.66 + 2. (2.09) (0	$\begin{array}{c} 09 \ \mathrm{X}_{1} & - \ 0.002 \ \mathrm{X}_{2} \\ 0.49 \end{array} \right)^{1} (0.28)^{2}$	0.935**	4.32*	-0.01	57	0
Lower Horizons	Y = 2.19 + 2. (1.87) (0	$\begin{array}{r} 39 \ x_1 + 0.14 \ x_2 \\ 0.54) \ (0.13)^2 \end{array}$	0.815**	4.40**	1.06	46	19
<u>Gley Podzols</u> :	$\begin{array}{c} Y = -2.87 + 1. \\ (3.01) & (0) \end{array}$	$\begin{array}{r} 82 \ x_{1} + 0.63 \ x_{2} \\ 0.44 \end{array} + \begin{array}{r} 0.63 \ x_{2} \\ (0.16)^{2} \end{array}$	0.769**	4.10**	3.86**	44	85
* Significant at 5%	level; ** Signif	icant at 1% level	; *** S	ignificant	at 0.1% level	(t-test or	n1y).
• $Y = a + b_1 X_1 + b_2$ regression coe	X ₂ , where Y repr fficients for the	esents the estimate variables, X_1 (%	ted CEC, oxid.C)	and b and and X_2^1 (% c	b ₂ the partial laỹ), respect	al ively.	
• t_1 and t_2 are t-te	st values for b ₁	and b ₂ , respective	ly.			•	r.
Values in brac	kets represent st	andard errors.					· · · · · ·

CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT .

TABLE 19.

TABLE 20. CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT.

VII. Multiple regression equations relating CEC with % oxid. C, % clay

and % silt - Chronosequence.

Grouping	·	Regressi	on Equatio	on	R ²	Test of for Par Regress	Significa tial ion Coefft	ance	Propo Varia Y At to X	ortic abili ttrik	on of ty in outed & X ₃ :(%
			·			t ₁	t ₂	t ₃	X ₁	x2	x ₃
<u>All Soils</u> :	Y = 1.54 (2.84)	+ 1.96X (0.23)	+ 0.46X (0.10) ²	- 0.06X (0.05) ³	0.870**	8.49***	4.40***	-1.11	48	52	-14
Upper Horizons	Y =13.08 (2.66)	+ 1.35X (0.41)	$^{+ 0.41X}_{(0.19)^2}$	- 0.30X (0.11) ³	0.903**	3.26*	2.18	-2.65	42	35	-53
Lower Horizons	Y = 0.43 (2.65)	$+ 2.67X_{0.64}^{+}$	$^{+ 0.37X}_{(0.13)^2}$	- 0.01X (0.07) ³	0.781**	4.15***	2.78*	-0.21	42	59	- 3
Yellow-brown Earths:	Y = 1.12 (2.00)	$+ 2.71X_{(0.28)}^{1}$	-0.13X $(0.16)^2$	$+ 0.20X (0.08)^3$	0.955**	9.71***	-0.79	2.72*	67	-13	35
Upper Horizons	Y = 0.46 (1.64)	$+ 2.58X_{(0.46)}$	-0.20X $(0.24)^2$	+ 0.35X (0.19) ³	0.968**	5.57*	-0.82	1.87	70	-16	44
Lower Horizons	Y = 1.59 (1.61)	+ 2.03X (0.50)	-0.11X (0.17) ²	+ 0.18X (0.09) ³	0.880**	4.05**	-0.64	1.96	39	-15	50
<u>Gley Podzols</u> :	Y = 2.94 (3.14)	$+ 1.78X \\ (0.47)^{1}$	$^{+ 0.57X}_{(0.20)^2}$	-0.14X (0.23) ³	0.780**	3.82**	2.88*	-0.59	43	77	-52
* Significant at 5%	level; ** S	ignifican	t at 1% 10	evel; ***	Significa	nt at 0.	1% level ((t-test	only).	
• $Y = a + b_1 X_1 + b_2 X_1$ partial regres respectively.	$2^{+} 3^{X}_{3}$, wh sion coeffic	ere Y rep ients for	resents tl the varia	ne estimato ables, X ₁	ed CEC, an (%oxid.C),	^{d b} 1, b ₂ X ₂ (% cli	and b ₃ th ay) and X	ne } (% si]	.t),		•
• t_1 , t_2 and t_3 are	t-test value	s for b ₁ ,	b_2 and b_2	, respecti	vely.	Values standa:	in bracke rd errors.	ets repr	resent	t	287.

TABLE 21. CEC AS A FUNCTION OF ORGANIC MATTER, CLAY AND SILT.

VIII. Multiple regression equations relating CEC with LOI and % clay - Transects.

Grouping	Regression Equation •	R ²	Test of Si for Partia Regression	gnificance 1 Coefft	Proport Variabi Attribu and X ₂ :	ion of lity in Y ted to X ₁ (%)
		and an a start of the start of the start of the start of the start of the start of the start of the start of th	t ₁	t ₂	x ₁	x ₂
All Soils	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.939**	20.31***	-0.20	100	- 4
Transect 1	$\begin{array}{rcl} Y &=& 3.58 \ + \ 1.22 \ X &=& 0.09 \ X \\ (6.55) && (0.16) \ & (0.64) \end{array}$	0.845**	7.37***	-0.14	93	- 6
Transect 2	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.958**	16.17***	-0.09	104	- 3

* Significant at 5% level; ** Significant at 1% level; *** Significant at 0.1% level (t-test only).

- Y = a + $b_1 X_1 + b_2 X_2$, where Y represents the estimated CEC, and b_1 and b_2 the partial regression coefficients for the variables, X_1 (LOI) and X_2 (% clay), respectively.
- \blacksquare t₁ and t₂ are t-test values for b₁ and b₂, respectively.

Values in brackets represent standard errors.

TABLE 22.

			Т	otal Eleme	nts			
Soil and	Horizon	Mg	A1	Si	К	Ca	Ti	Fe
			. –	(%)				
Ho 1	A, ,	0.85	8.17	33.3	1.81	0.96	0.36	3.16
	A ₁₂	0.82	8,28	32.6	1.74	1.04	0.36	3.22
e e su su su su su su su su su su su su su	C	0.81	6.80	32.6	1.95	0.92	0,28	2,93
I(y) 1	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	A	0.85	8.61	32.7	1.64	0,81	0.37	4.01
	AB	0.83	8.69	33.4	1.78	0.82	0.40	3.49
	B ₂	0.85	8.38	32.5	1.72	0.83	0.36	3.55
	B	0.86	7.70	33.1	1.79	0.89	0.40	3,43
4	c	0.94	7.16	33.7	1.69	1.14	0.33	3.20
I(o) 1	OA	0.55	7.73	34.8	1.44	1.30	0.41	3.52
	A	0.46	7.75	35.0	1.40	0.81	0.44	3,51
	^B 21	0.46	7.80	34.5	1.53	0.75	0.41	3.52
	B ₂₂	0.63	7.98	33.4	1.54	0.78	0.40	3.53
	C ₁₁	0.83	7.90	33.6	1.74	0,88	0.35	3.38
	C ₁₂	0,90	7.01	33.1	1.83	0.91	0.36	3.33
I(o) 2	A_2	0.38	6.70	36.2	1.34	0.78	0.55	2.89
I(w) 1	OA	0.48	6.96	36.9	1.24	0.87	0.48	1.43
	A	0.33	6.99	37.2	1.32	0.69	0.51	1.14
	A2R	0.50	8.14	35.3	1.55	0.69	0.49	1.88
• •	B_1	0.85	7.83	32.6	1.62	0.72	0.45	3,56
	B_22	0.82	8.25	32.1	1.67	0.69	0.46	3.50
	C ₁₁	0.72	7.26	34.3	1.63	0.83	0.33	2.31
	C ₁₂	0.82	7.16	33.1	1.67	0.87	σ.46	2.97
Ah 1	A	0.34	7.06	35.3	1.39	0.73	0.52	4.09
	AB	0.34	7.02	35.5	1.29	0.76	0.52	3.83
•	B ₂₁	0.46	8.08	34.3	1.52	0.66	0.49	3.85
	B ₂₂	0.63	8.11	34.6	1.79	0.65	0.45	3.70
	B	0.72	8.20	32.7	1.91	0.72	0.43	3.60
	C11	0.81	7.85	32.5	1.91	0.76	0.42	3.35
	C ₁₂	0.73	7.32	32.5	2.08	0.93	0.42	3.32
.Ku 1	A	0.11	3.03	43.0	0.56	0.13	0.48	0.62
	A ₂ G	0.10	3.13	42.2	0.53	0.12	0.48	0.47
	G	0.17	4.41	40.8	0.65	0.17	0.52	0.59
	B _b G	0.17	4.13	41.2	0.69	0.19	0.54	0,59
	BG	0.14	3.63	42.1	0.59	0,20	0.44	0.55
	В _д G	0.13	3.51	42.2	0.61	0.17	0.46	0.65
	c´	0.28	4.20	38.8	1.06	0.27	0.41	1,65
Ok 1	A	0.07	0,71	45.0	0.06	0.13	0.37	0.24
	AG	0.03	1.18	45.1	0.10	0.09	0.37	0.24
	G	0.06	1,86	44.2	0.22	0.09	0,42	0.29
	B ₂ G	0.05	1.70	44.0	0,18	0.07	0.43	0.56
	B ₃ G	0.10	2.57	43.6	0,30	0.06	0.49	0.43
	c	0.13	3.18	42.2	0.68	0.07	0.40	0.48

(< 2 mm material).

TABLE 23. TOTAL Mg. AI, Si, K, Ca, Ti AND Fe - Chronosequence.

(>2 mm material).

Soil and	Horizon			Total Ele	ements			
		Mg	A1	Si (%)	K	Ca	Ti	Fe
Ho: 1	C	1.03	6.72	30.8	2.02	1.49	0.45	2.94
I(y) 1	C	1.04	5.97	30.9	1.76	1.38	0.46	2.51
I(o) 1	^C 11 C ₁₂	1.28 1.13	4.97 6.85	28.7 30.3	1.70 2.14	1.50 1.50	0.55 0.44	2.87 2.94
I(w) 1	^C 11 ^C 12	0.62 n.d.	6.15 n.d.	31.4 n.d.	1.91 n.d.	0.83 n.d.	0.39 n.d.	2.19 n.d.
Ah 1	^C 12	n.d.						
Ku 1	C	0.67	5.41	30.6	2.18	0.80	0.28	2.53

TABLE 24.

Soil	and Horizon			Total	. Eleme	nts		
		Mg	A1	Si	K	Ca	Ti.	Fe
<u></u>					(%)			
Ah 1	A	0.34	7.06	35.3	1.39	0.73	0.52	4.09
	AB	0.34	7.02	35.5	1.29	0.76	0.52	3.83
	^B 21	0.46	8.08	34.3	1.52	0.66	0.52	3.85
Ah 2	A	0.30	6.37	37.3	1.48	0.72	0.59	3.06
	AB	0.31	7.26	36.3	1.32	0.67	0.58	3.20
	^B 21	0.54	8.64	32.3	1.71	0.70	0.47	3.80
Ah 3	A	0.27	5.55	37.1	1.08	0.75	0.61	2.78
	AB	0.26	5.84	36.7	1.00	0.67	0.56	3.48
	^B 21	0.44	8,90	32.6	1.39	0.69	0.46	3.75
Ah 4	OA	0.37	6.28	36.0	1.14	1.07	0.60	3.31
	A ₂	0.28	6.78	35.7	1.09	0.64	0.57	3.76
	^B 21	0.44	8.50	33.1	1.62	0.68	0.53	3.86
Ah 5	^A 21	0.18	5.11	38.0	1.17	0.51	0.58	0.80
	A ₂₂	0.26	6.00	37.6	1.08	0.57	0.64	2.25
a	^B 21	0.46	8.62	33.9	1.42	0.62	0.56	4.20
		1						

TABLE 25.

Soil and	Horizon			Total	Eleme	nts		-
		Mg	A1	Si	ĸ	Ca	Ti	Fe
		-			(%)			
Ah 6	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	A_2	0.30	6.04	36.0	1.30	0.71	0.56	2.78
	^B 21	0.36	7.02	34.8	1.23	0.70	0.49	3.84
Ah 7	0	0.51	5.41	36.2	1.15	1.23	0.36	2.16
	A	0.38	7.67	35.2	1.29	0.74	0.53	3.52
	B ₂₁	0.54	8.67	33.1	1.57	0.73	0.46	3.27
Ah 1	A	0.34	7.06	35.3	1.39	0.73	0.52	4.09
	AB	0.34	7.02	35.5	1.29	0.76	0.52	3.83
	^B 21	0.46	8.08	34.3	1.52	0.66	0.49	3.85
Ah 8	A	0.26	5.47	36.8	1.15	0.70	0.53	3.12
	^B 1	0.38	8.46	33.8	1.32	0.59	0.44	4.35
	^B 2	0.49	8.50	32.0	1.53	0.73	0.50	3.79
Ah 9	OA	0.28	5.81	35.7	1.11	1.17	0.49	3.03
	AB .	0.31	6.28	35.9	1.15	0.72	0.54	4.09
	^B 21	0.54	8.05	32.5	1.62	0.67	0.50	3.82

	(, , , , , , , , , , , , , , , , , , ,	from Ta	bles 6 a	and 22).		1 1 1 1 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Soil and Horizon		Total Element Mg Al Si $(\pi 10^3)$ $(\pi 10^4)$ $(\pi 10^5)$		Si (x10 ⁵)	к (я10 ⁴)	(kg ha ⁻ Ca (x10 ³)	(kg ha ⁻¹) Ca Ti (x10 ³) (x10 ³)	
Но 1	A ₁₁	10.4	10.0	4.09	2.22	11.8	4.42	3,88
an an an an an an an an an an an an an a	A ₁₂ C*	17.1	17.2 19.7	6.79 9.42	3.62 5.64	21.6 26.6	7.49 8.09	6.70 8.47
I(y) 1	0	n.đ.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	A	3.65	3.70	1.40	0.70	3.48	1.59	1.72
:	AB	6.72	7.04	2.71	1.44	6.63	3.24	2.83
	B ₂	11.2	11.0	4.28	2.27	10.9	4.74	4.68
	B	12.2	11.0	4.71	2.55	12.7	5.70	4.57
	C*	46.1	35.1	16.5	8.28	· 55.9	16.2	15.7
I(o) 1	OA	0.27	0.39	0.17	0.07	0.65	0.20	0.18
. •	A	1.43	2.41	1.09	0.44	2.52	1.37	1.09
	^B 21	4.88	8.27	3.66	1.62	7.95	4.35	3.73
	B ₂₂	11.3	14.3	5.99	2.76	14.0	7.17	5.90
	C ₁₁	11.8	11.2	4.77	2.47	12.5	4.97	4.80
	^C 12 [*]	17.8	13.9	6.55	3.62	18.0	7.13	6.59
I(w) 1	ÓA	1.83	2.66	1.41	0.47	3.32	1.83	0.55
. '	A	3.49	7.38	3.93	1.39	7.29	5.39	1.20
	A_2.g	3.12	5.08	2.20	0.97	4.30	3.06	1.17
	^B 21	19.9	18.3	7.62	3.79	16.9	10.5	8.33
	^B 22	13.4	13.5	5.26	2.73	11.3	7.53	5.73
·	C ₁₁	2,16	2.18	1.03	0.49	2.49	0.99	0.69
***** 	^C 12	-	-	. -	-	-	-	· -

TABLE 26. TOTAL Mg, A1, Si, K, Ca, Ti AND Fe - Chronosequence.

(Volume_weight data <2 mm material: calculat

. .

TABLE 26. cont.

Soil and	Horizon		Tota	1 Elemen	its	(kg ha		
	•	Mg	A1	Si	К	Ca	Ti	Fe
		(x10 ³)	(x10 ⁴)	(x10 ⁵)	(x10 ⁴)	(x10 ³)	(x10 ³)	(x10 ⁴)
Ah 1	A	0.99	2.06	1.03	0.41	2.13	1.52	1.19
	AB	1.82	3.75	1.90	0.69	4.06	2.78	2.05
	^B 21	4.12	7.24	3.07	1.36	5.91	4.39	3.45
•	B ₂₂	10.6	13.7	5.84	3.02	11.0	7.58	6.23
	B3	14.0	15.9	6.35	3.71	14.0	8.35	6.99
	C ₁₁	16.1	15.6	6.45	3.79	15.1	8.33	6.65
•	^C 12	· - .		-	- .	-	-	-
Ku 1	A	0.68	1.86	2.64	0.34	0.80	2.94	0.38
	₽ ² G	0.96	3.00	4.05	0.51	1.15	4.60	0.45
	G	4.75	12.3	11.4	1.82	4.75	14.5	1.65
	₿ _h G	2.01	4.89	4.88	0.82	2.24	6.39	0.70
	B ₂ G	0.64	1.67	1.94	0.27	0.92	2.03	0.25
	₿ ₃ G	2.65	7.14	8.59	1.24	3.46	9.36	1.32
•	C	-		-	-	-	-	•
Ok 1	A	0.70	0.71	4.48	0.06	1.30	3.69	0.24
	AG	0.24	0.93	3.54	0.08	0.71	2.90	0.19
	G	1.09	3.37	8.01	0.40	1.63	7.61	0.53
	₿ ₂ Ĝ	1.65	5.62	14.5	0.60	2.31	14.2	1.85
	^B 3G	1.86	4.78	8.10	0.56	1.12	9.11	0.58
	C*	2.67	6.52	8.65	1.39	1.44	8.20	0.98

* To a depth of 0.76 m.

TABLE 27. TOTAL Mg, A1, Si, K, Ca, Ti and Fe - Chronosequence.

(Volume-weight data; >2 mm material: calculated from Tables 6 and 23).

Soil and	Horizon	Mg :	A1	Si	к	Ca	Τi	Fe
		(x10 ³)	(x10 ⁴)	(x10 ⁵)	(x10 ⁴)	(x10 ³)	(x10 ³)	(x10 ⁴)
Ho 1	C*	55.3	36.1	16.5	10.8	80.0	24.2	15.8
I(y) 1	C*	6.97	4.00	2.07	1.18	9.25	3.08	1.68
I(o) 1	с ₁₁	2.94	1.14	0.66	0.39	3.45	1.27	0.66
	^C 12 [*]	27.5	16.6	7.36	5.20	36.5	10.7	7.14
I(w) 1	^C 11	4.71	4.67	2.39	1.45	6,31	2.96	1.66

* To a depth of 0.76 m.

TABLE 28.	SUMMARY OF TOTAL Mg.	A1, Si, K, Ca.	Ti AND Fe - Chronosequence.	(To a de	pth of 0.38 m)

	Total Weight		(kg ha ⁻¹)			% of Total Weight								
Soil	Mg	A1	Si	K	Ca	Ti	Fe	Mg	Al	Si	K	Ca	Ţi	Fe
	(x10 ³)	(x10 ⁴)	(x10 ⁵)	(x10 ⁴)	(x10 ³)	(x 10 ³)	(x10 ⁴)							
Ho 1	27.5	27.3	10.9	5.84	33.4	11.9	10.6	1.72	17.1	68.1	3.65	2.09	0.74	6.62
I(y) 1	27.7	27.2	10.7	5.69	27.4	12.4	11.5	1.75	17.2	67.7	3.60	1.73	0.78	7.27
I(o) 1	15.2	22.0	9.50	4.24	21.8	11.4	9.51	1.12	16.2	70.1	3.13	1.61	0.84	7.01
I(w) 1	8.44	15.1	7.54	2.83	14.9	10.3	2.92	0.85	15.2	75.7	2.85	1.50	1.03	2.93
Ah 1	7.26	17.4	7.84	3,41	15.6	11.1	8.66	0.66	15.6	70.5	3.06	1.40	1.00	7.78
Ku 1	4.57	12.5	13.8	1.97	4.89	16.5	1.85	0.29	7.97	88.0	1.26	0.31	1.05	1.18
0k 1	2.54	6.77	20.6	0.73	4.37	18.7	1.54	0.17	3.11	94.7	0.33	0.20	0.86	0.71
<u></u>					· · · · · ·	<u> </u>	<u></u>	.	<u></u>				· <u> </u>	
TABLE 29. SUMMARY OF TOTAL Mg, A1, Si, K, Ca, Ti AND Fe - Chronosequence (To a depth of 0.76 m).

			Tot	al Weigh	t	(kg ha	¹)			×	of To	tal We	ight		
Sc	ji 1	Mg	A1	Si	ĸ	Ca	Ti	Fe	Mg	A1	Si	ĸ	Ca	Ti	Fe
		(x10 ³)	(x10 ⁴)	(x10 ⁵)	(x10 ⁴)	(x10 ³)	(x 10 ³)	(x10 ⁴)						_	
Ho 1	of<2 mm	50.9	46.9	20.3	11.5	60.0	20.0	19.1	1.73	16.0	69.1	3.92	2.04	0.68	6.51
·	of>2 mm	55.3	36.1	16.5	10.8	80.0	24.2	15.8							
	Σ <+>2 mm	106.2	83.0	36.8	22.3	140.0	44.2	34.9	1.98	15.4	68.5	4.15	2.60	0.82	6.50
	Adjusted Total	75.0	67.3	30.0	17.3	87.5	28.4	27.8	1.74	. 15.6	69.5	4.01	2.03	0.66	6.44
I(y) 1	of < 2 mm	79.9	67.8	29.6	15.2	89.6	31.5	29.5	1.86	15.8	69.1	3.55	2.09	0.73	6.88
	<u>of >2 mm</u>	7.0	4.0	2.1	1.2	9.3	3.08	1.7							
	∑< +>2 mm	86.9	71.8	31.7	16.4	98.9	34.6	31.2	1.90	15.7	69.1	3.58	2.16	0.75	6.81
	Adjusted Total	83.2	70.3	30.8	15.8	93.8	32.6	30.6	1.87	15.8	69.1	3.54	2.10	0.73	6.86
I(o) 1	of <2 mm	47.5	50.5	22.2	11.0	55.6	25.2	22.3	1.49	15.8	69.7	3.45	1.74	0.79	7.00
	<u>of >2 mm</u>	30.4	17.7	8.0	5.6	40.0	12.0	7.8							. ·
	∑< + > 2 mm	77.9	68.2	30.2	16.6	95.6	37.2	30.1	1.78	15.6	69.0	3.79	2.18	0.85	6.87
	Adjusted Total●	61.7	61.7	27.4	13.9	69.7	30.9	27.5	1.57	15.7	69.7	3.53	1.77	0.79	6.99
I(w) 1*	of <2 mm	41.7	46.9	20.4	9.35	43.1	28.3	17.0	1.44	16.3	70.7	3.24	1.49	0.98	5.89
Ah 1*	of < 2 mm	42.2	53.1	22.5	11.7	47.2	30.2	24.3	1.29	16.3	69.0	3.59	1.45	0.93	7.45
Ku 1*	of <2 mm	11.7	30.9	33.5	5.00	13.3	39.8	4.75	0.31	8.08	87.6	1.31	0.35	1.04	1.24
0k 1*	of < 2 mm	8.21	21.9	47.3	3.08	8.51	45.7	4.36	0.16	4.31	93.0	0.61	0.17	0.90	0.86

297.

• Assumes <2 mm material fills volume actually occupied by >2 mm.

* Only <2 mm material present to 0.76 m.

TABLE 30. ANNUAL LOSSES OF TOTAL ELEMENTS DURING VARIOUS PERIODS OF SOIL DEVELOPMENT - Chronosequence.

					Ann	ual Los	ses					_		
Period	Mg	A1	Si	K	Ca	Ti	Fe	Mg	A1	Si	K	Ca	Ti	Fe
			(kg ha ⁻¹	x 10	· ⁻¹)			(As bea	% of ginnin	amount g of pe	remai	ining x 10	at -3)	
I(y) 1 to I(o) 1	63	2 60	600	73	28	5	100	23	9.6	5.6	13	10	3.9	8.7
I(o) 1 to Ah 1	40	230	600	42	31	1.5	43	26	11	5.6	9.8	14	1.3	4.5
Ah 1 to Ku 1	0.52	9.4	-115*	2.8	2.1	-1.0	13	0.72	0.54	-1.5	0.81	1.3	-0.94	1.5
Ku 1 to Ok 1	0.34	9.6	-113	2.1	0.09	-0.37	0.52	0.74	0.77	-0.82	1.1	0.18	-0.22	0.28
I(y)1 to Ok 1	2.2	18	-85	4.3	2.0	-0.54	8.6	0.78	0.65	-0.80	0.75	0.73	-0.44	0.75
I(y)1 to I(w) 1	96	600	1580	140	63	11	430	35	22	15	25	23	8.5	37

(To a constant depth of 0.38 m).

* Negative sign indicates a gain.

298

TABLE 31.

MOLAR ELEMENTAL RATIOS - Chronosequence.

(Calculated from the data in Table 28).

			Soil			<u> </u>	
Ratio	Ho 1	I(y) 1	I(o) 1	I(w) 1	Ah 1	Ku 1	Ok 1
Si/Mg	35	34	54	77	93	261	701
Si/Al	3.8	3.7	4.1	4.8	4.3	11	29
Si/K	26	26	31	37	32	97	393
Si/Ca	47	56	. 63	73	71	402	672
Si/Ti	157	147	142	124	121	143	188
Si/Fe	21	19	20	51	18	149	264
A1/Mg	9.0	8.9	13	16	22	25	24
A1/ K	6.8	6.9	7.5	7.7	7.4	9.2	13
A1/Ca	12	15	15	15	17	38	23
A1/Ti	41	42	34	26	28	14	6.4
Al/Fe	5.3	4.9	4.8	11	4.2	14	9.1
Fe/Mg	1.7	1.8	2.7	1.5	5.2	1.8	2.6
Fe/K	1.3	1.4	1.6	0.72	1.8	0.66	1.5
Fe/Ca	2.3	3.0	3.1	1.4	4.0	2.7	2.5
Fe/Ti	7.6	8.0	7.2	2.4	6.7	0.96	0.70
K/Mg	1.3	1.3	1.7	~ 2.1	2.9	2.7	1.8
K/Ca	1.8	2.1	2.0	2.0	2.2	4.1	1.7
K/Ti	6.0	5.6	4.6	3.4	3.8	1.5	0.48
C a/Mg	0.73	0.60	0.87	1.1	1.3	0.65	1.0
Ca/Ti	3.8	2.6	2.3	1.7	1.7	0.36	0.28
Mg/Ti	4.6	4.4	2.6	1.6	1.3	0.55	0,28

299.

TABLE 32. COR	RECTED '	VALUES	FOR TOT	AL Mg,	Al, Si,	к, са,	Ti, AND	Fe - Ch	ronoseq	uence.				
			•	(C alc ul	ated fr	om data	in Table	es 6, 22	a nd 28).		8 1		
(A) (Assumed: (i) Si ii) Ti	consta consta	nt Ah 1 nt PM t	to Ok o Ah 1	1	<u>.</u>		(В) <u>Assum</u> (i) (ii)	ed: Constan (0.0 Parent Sec	t annua 38 kg h materia tion (A	1 loss ' a 1) 1 value:)	Fi 5 from	· · · · · · · · · · · · · · · · · · ·
· <u> </u>	1				Tot	al Weig	ht (kg ha	a-1)						·····
Soil	Mg	A1	Si	K	Ca	Ti	Fe	Mg	A1	Si'	K	Ca	Ti	Fe
	(x10 ³)	(x1 0 ⁴)	(x10 ²)	(x10 ⁴)	(x10 ²)	(x10 ⁷)	(x10 ⁴)	(x1 0 ²)	(x10 ⁺)	$(x10^{2})$	$(x10^{4})$	$(x10^{2})$	$(x10^{3})$	(x10 ⁴)
Parent Material (Ho 1, C)	34.3	28.8	13.8	8.31	39.0	11.9	12.4	34.4	28.9	13.8	8.34	39.1	11.9	12.4
Но 1	27.5	27.2	10.9	5.84	33.4	11.9	10.6	27.5	27.2	10.9	5.84	33.4	11.9	10.6
I(y) 1	26.6	26.1	10.3	5.46	26.3	11.9	10.9	25.5	25.0	9.87	5.23	25.2	11.4	10.4
I(o) 1	15.8	22.9	9.90	4.44	22.7	11.9	9.94	15.0	21.8	9.42	4.23	21.6	11.3	9.46
I(w) 1	9.74	17.4	8.72	3.27	17.2	11.9	3.37	9.27	16.6	8.30	3.11	16.4	11.3	3.21
Ah 1	7.78	18.6	8.39	3.65	16.7	11.9	9.29	7.36	17.6	7.93	3.45	15.8	11.2	8.78
. Ku 1	2.78	7.62	8.39	1.20	2.97	10.0	1.12	2.57	7.06	7.77	1.11	2.75	9.26	1.04
0k 1	1.03	2.76	8.39	0.30	1.78	7.62	0.63	0.94	2.52	7.67	0.27	1.63	6.97	0.58

300.

TABLE 33. CORRECTED' ANNUAL LOSSES OF TOTAL ELEMENTS DURING VARIOUS PERIODS OF SOIL DEVELOPMENT

Chronosequence.

(Calculated from data in Section (B) of Table 32).

		· · · ·	· · · ·		Annua	1 Loss	es							
Period	Mg	A1 kg ha ⁻¹	Si x 10 ⁻¹	к)	Ca	Ti	Fe	Mg (1	Al As % c bee	Si of amou ginning	K unt ren ; of pe	Ca maining priod x	Ti ; a t : 10 ⁻³)	Fe
I(y) 1 to I(o) 1	52	160	225	50	18	0.38	47	21	6.4	2.3	9.6	7.1	0.33	4.5
I(o) 1 to Ah 1	38	210	745	39	29	0.38	34	26	9.6	7.9	9.2	13.4	0.34	3.6
Ah 1 to Ku 1	0.92	20	3.1	4.5	2.5	0.38	15	1.3	1.2	0.04	1.3	1.6	0.34	1.7
Ku 1 to Ok 1	0.59	7.6	1.7	1.4	0.19	0.38	0.77	2.3	1.1	0.02	1.3	0,68	0.41	0.74
I(y) 1 to Ok 1	2.1	19	19	4.3	2.0	0.38	8.5	±083	0.78	0.19	0.82	0.81	0.34	0.81
I(y) 1 to I(w) 1	81	420	785	106	44	0.38	360	32	17	8.0	20	17	0.33	35

(Following Barshad, 1964).

		:	· · ·	· · · ·										• .
		190 0				1000					خرف:	> ;		
Soil and Horizon		Но 1				I(y)	1				I(o) т 🦾		
	A11	A12	c	A	AB	B 2 ·	^в 3	c	OA.	Å	B ₂₁	B ₂₂	с ₁₁	с ₁₂
Present volume (cm ³)*	18.0	20.0	1.0	7.0	9.0	13.0	12.0	1.0	3.0	7.0	15.0	17.0	13.0	1.0
Bulk density (g/cm ³)*	0.79	1.13	1.57	0.76	1.02	1.10	1.25	1.66	0.36	0.60	0.86	1.17	1.28	1.66
Weight Ti (gx10 ⁻²)*	4.42	7.49	0.433	1.59	3.24	4.74	5-70	0.542	0.204	1.37	4.35	7.17	5.59	0.588
Present weight soil (g)*	14.22	22.60	1.57	5.32	9.18	14.30	15.00	1.66	1.08	4.20	12.90	19.89	16.64	1.66
Present weight >2 µm (g)*	12.64	20.79	1.52	4.36	7.53	12.58	13.65	1.61	0.90	3.32	11.35	18.90	16.14	1.61
Present weight <2 µm (g)*	1.56	1.81	0.047	0.96	1.65	1.72	1.35	0.050	0.18	0.88	1.55	1.00	0.50	0.050
original weight >2 µm (g)*	15.55	26.35	1.52	5.59	11.40	16.68	20.04	.1.91	0.72	4.82	15.31	25.22	19.66	2.07
Original weight <2 µm (g)*	0.48	0.82	0.047	0.17	0.35	0.52	0.62	0.059	0.02	0.15	0.47	0.78	0.61	0.064
Loss of 2 jum fraction due to soil formation	2.01	= =4		1.00	0.07	h 10	6 00	0.00	0.10	1 50			0 50	0.46
(g)*	2.91	5.50		1.23	3.87	4.10	0.39	0.30	-0.19	1.50	3.90	0.32	3.52	0.40
Clay formed (g)*	0.71	1.36	0	0:31	0.98	1.03	1.61	0.075	{ - .	0.18	0.48	0.76	0.42	0.055
Total clay in absence of migration or destruction (g)*	1.19	2.18	0.047	0.48	1.33	1.55	2.23	0.134	0.02	0.33	0.95	1.54	1.03	0.119
Loss or gain of clay due t migration or destruction	1									•				
(g)*	+0.37	-0.37	0	+0.48	+0.32	+0.17	-0.88	-0.075	+0.16	+0.55	+0.60	-0.55	-0.53	-0.069
Weight parent material (PM) (g)*	16.03	27.17	1.57	5.76	11.75	17.20	20.66	1.97	0.74	4.97	15.78	26.00	20.27	2.13
Original volume PM $(cm^3)^*$	10.2	17.3	1.00	3.7	7.5	11.0	13.2	1.25	0.5	3.2	10.1	16.6	12.9	1.36
Change in volume PM (cm ³)*	+ 7.8	+ 2.7	. 0	+3.3	+1.5	+2.1	-1.2	-0.3	+2.5	+3.8	+5.0	+0.4	+0.1	-0.4
Relative clay formation $(g/100 g > 2 \mu m PM)$	4.6	5.2	0	5.6	8.6	6.2	8.0	3.9	-	3.8	3.1	3.0	2.2	2.7
Relative clay loss or gain (g/100 cm ² PM)	1 +3.6	-2.1	0	+12.9	+4.3	+1.5	-6.7	-6.0	+ 33	+ 17	+6.0	-3.3	-4.1	-4.0
Relative volume change (cm ³ /100 cm ³ PM)	+ 76	+ 16	o	+ 91	+ 20	+ 19	-8.8	- 20	+538	+120	+ 49	+2.7	+0.7	- 27
	1		-						[.					

302

TABLE 34.

Soil and Horizon		•		J(w)	1	•	<u> </u>			11	٦ A	_{ວວມ} 1.1		
	OA	A	A _{2g}	B ₂₁	B ₂₂	°11	C _{↑2} ●	A	AB	^B 21	^B 22	^B 3	C ₁₁	C ₁₂ ●
Present volume (cm ³)*	13.0	17.0	8.0	23.0	15.0	5.0	1.0	8.0	10.0	14.0	19.0	15.0	15.0	1.0
Bulk density (g/cm ³)*	0.50	0.79	0.96	1.10	1.16	1.37	1.25	0.54	0.69	0.77	1.00	1.43	1.43	1.56
Weight Ti (gx10 ⁻²)*	1.83	5-39	3.0 6	10.5	7.53	2.20	0.55	4 1.52	2.78	4.39	7.58	8.35	8.33	0.631
Present weight soil (g)*	6.50	13.43	7.68	25.30	17.40	6.85	1.25	4.32	6.90	10.78	19.00	21.45	21.45	1.56
Present weight >2 بس (g)*	5.69	11.01	6.60	23.40	16.36	6.64	1.20	3.30	5.73	9.09	16.34	18.02	20.48	1.51
Present weight <2 µm (g)*	0.81	2.42	1.08	1.90	1.04	0.21	0.050	1.02	1.17	1.69	2.66	3.43	0.97	0.047
Original weight >2 µm (g)*	6.44	18.96	10.76	37.04	26.48	7.74	1.95	5.35	9.78	15.44	26.67	29.36	29.30	2.22
Original weight <2 بس (g)*	0.20	0.59	0.33	1.15	0.82	0.24	0.060	0.17	0.30	0.48	0.82	0.91	0.91	0.067
Loss of >2 µm fraction due to soil formation (g)*	0.75	7.95	4.16	13.64	10.12	1.10	0.75	2.05	4.05	6.35	10.33	11.34	8.82	0.71
Clay formed (g)*	0.08	0.85	0.45	1.46	1.09	0.12	0.081	0.34	0.68	1.07	1.73	1.90	1.48	0.119
Total clay in absence of migration or destruction (g)*	0.28	1.44	0.78	2.61	1.91	0.36	0.141	0.51	0.98	1.54	2.56	2.81	2.39	0.188
Loss or gain of clay due to migration or destruction (g)*	+0.53	+0.98	+0.30	-0.71	-0.86	-0.15	-0.091	+0.51	+0.19	+0.15	+0.10	+0.62	-1.42	-0.141
Weight parent material (g)*	6.64	19.55	i 11.09	38.19	27.30	7.98	2.01	5.52	10.08	15.92	27.49	30.27	30.2	2.29
Original volume $PM(cm^3)$	4.2	12.5	7.1	24.3	17.4	5.1	1.28	3.5	6.4	10.1	17.5	19.3	19.2	1.46
Change in volume PM (cm ³)*	+8.8	+4.6	+0.9	-1.3	-2.4	-0.1	-0.3	+4.5	+3.6	+3.9	+1.5	-4.3	-4.2	-0.5
Relative clay formation $(g/100 g > 2 \text{ µm PM})$	1.3	4.5	4.1	4.0	4.1	1.5	4.1	6.4	7.0	6.9	6.5	6.5	5.1	5.4
Relative clay loss or gain (g/100 cm ³ PM)	+12.6	+7.9	+4.2	-2.9	-5.0	-3.0	-7.1	+14.4	+3.0	+1.5	+0.6	+3.2	-7.4	-9.7
Relative volume change (cm ³ /100 cm ³ PM)	 +207	+36	+13	-5.4	-13.7	- 1.6	-22	+ 127	+ 56	+ 38	+8.5	- 22	- 22	- 32

.

2

303.

TABLE 34. cont.

			27	C 55 C				[773			
Soil and Horizon			K					ļ		ŰŔ	I		
	A	A2G	G	B _h G	₿ ₂ G	₿ ₃ G	_c•	A	AG	G	₿ ₂ Ġ	^в з ^G	c
Present volume (cm ³)*	15.0	10.0	21.0	11.0	4.0	15.0	1.0	14.0	6.0	12.0	19.0	11.0	1.0
Bulk density (g/cm ³)*	0.48	1.04	1.42	1.21	1.21	1.41	1.32	0.83	1.41	1.55	1.81	1.73	1.50
Weight Ti (gx10 ⁻²)*	2.94	4.60	14.5	6.39	2.03	9.36	0.502.	3.69	2.90	7.61	14.2	9.11	0.586
Present weight soil (g)	* 7.20	10.40	29.82	13.31	4.84	21.15	1.32	11.62	8.46	18.60	34.39	19.03	1.50
Present weight >2 بس (g)*	6.12	9.10	24.60	9.85	4.26	16.92	1.11	11.04	7.70	17.11	30.95	16.84	1.38
Present weight <2 jum (g)*	1.08	1.30	5.22	3.46	0.58	4.23	0.21	0.58	0.76	1.49	3.44	2.19	0.12
Original weight>2 µm (g)*	10.34	16.17	51.01	22.48	7.14	32.18	1.77	12.98	10.20	26.77	49.94	32.04	2.06
um (g)*	0.32	0.50	1.58	0.70	0.22	1.00	0.055	0.40	0.32	0.83	1.54	0.99	0.064
Loss of >2 um fraction		- <u></u> -			· · · ·		_						
(g)*	4.22	7.07	26.41	12.63	2.88	15.26	0.66	1.94	2.50	9.66	18.99	15.20	0.68
Clay formed (g)*	0.72	1.20	4.48	2.14	0.49	2.59	0.111	0.18	0.23	0.88	1.72	1.38	0.062
Total clay in absence of migration or destruction (g)*	1.04	1.70	6.05	2.84	0.71	3.58	0.166	0.58	0.54	1.70	3.27	2.37	0.125
Loss or gain of clay due	e							· ·					
to migration or destruction (g)*	+0.05	-0.40	-0.83	+0.63	-0.13	+0.65	+0.045	+0.00	+ +0.22	-0.22	+0.17	-0.18	-0.005
Weight parent material (g)*	10.66	16.67	52.59	23.18	7.36	33.18	1.82	13.38	10.52	27.60	51.48	33.03	2.12
Original volume PM (cm ³)*	6.8	10.6	33.5	14.8	4.7	21.1	1.2	8.5	6.7	17.6	32.8	21.0	1.4
Change in volume PM (cm ³)*	+8.2	-0.6	-12.5	-3.8	-0.7	-6.1	-0.2	+5.5	-0.7	-5.6	-13.8	-10.0	-0.4
Relative clay formation $(g/100 g \ge 2 \text{ m PM})$	6.9	7.4	8.8	. 9.5	6.8	8.0	6.3	1.4	2.2	3.3	3.5	4.3	3.0
Relative clay loss or gain (g/100 cm ³ PM)	+0.7	-3.8	-2.5	+4.2	-2.7	+3.1	+0.4	+0.05	+3.3	-1.2	+0.5	-0.9	-0.4
Relative volume change (cm ³ /100 cm ³ PM)	+ 121	-5.8	- 37	- 26	- 15	- 29	- 14	+ 64	- 10	- 32	- 42	- 48	- 26
	<u> </u>					·		L					

304.

PM of all soils assumed to be <2 mm fraction from C horizon of Ho 1. * per horizon/cm² of surface. • values expressed/cm of horizon.

TABLE 35.PERCENTAGE OF ELEMENTS INITIALLY PRESENT IN A WEIGHT OF PARENT MATERIAL (EQUAL TO THATFROM WHICH UNIT SOIL VOLUME TO 0.38 m AT Ho 1 HAS FORMED) REMAINING AT VARIOUS STAGES

OF SOIL DEVELOPMENT.

(Calculated from data in Tables 22 and 34).

Soil	Mg	A1 (E Si % remain	lement K ing)	Ca	Ti	Fe	Depth Containing Similar Weight of PM/cm ² of Surface (m)
PM (Ho 1, C)	100	100	100	100	100	100	100	0.275
Но 1	80	94	79	70	86	100	87	0.380
I(y) 1	77	91	75	. 66	67	100	89	0.369
I(o) 1	47	80	72	53	58	100	80	0.392
Ah 1	33	65	62	45	43	100	77	0.401
Ku 1	9	30	74	17	9	100	11	0.313
0k 1	5	14	99	- 5	8	100	7	0.284
I (w) 1	34	62	63	41	45	100	35	0.416

Soil an	d Horizon	A1.	Fe	A1	Fe
		(%)	(kg ha ⁻¹	x 10 ³)
Ho 1	A ₁₁	0.25	0.50	3.11	6.13
	A ₁₂	0.24	0.45	5.00	9.38
	C*	0.11	0.28	3.18	8.09
	Total to	•: 0.38 m		8.11	15.5
		0.76 m		11.3	23.6
I(y) 1	0	0.99	0,91	• • •	
	A	0.63	0.89	2.70	3.82
	AB	0.62	0.80	5.01	6.48
	B ₂	0.54	0.71	7.07	9.36
	Β _̃	0.48	0.48	6.80	6.40
	C*	0.17	0.29	8.33	14.2
	Total to:	0.38 m		18.2	22.9
		0.76 m		29.9	40.3
I(o) 1	OA	1.22	1.15	0.61	0.57
	A	1.05	1.20	3.25	3.73
	^B 21	1.21	1.23	12.8	13.0
	B ₂₂	1.24	0.99	22.2	16.5
	C ₁₁	0.64	0.38	9.92	5.89
	C12*	0.25	0.29	4.95	5.74
	Total to:	0.38 m		- 33.6	30.0
		0.76 m		53.7	45.4
I(o) 2	A2	0.76	1.26	-	

Soil and	1 Horizon	A1 (%)	F'e	A1 (kg ha	Fe - ¹ x 10 ³)
I(w) 1	OA	0.41	0.58	1.57	2.22
	A	0.55	0.14	5.83	1.48
	A	1.01	0.29	6.29	1.80
	~б В ₂₁	1.07	0.88	25.1	20.6
	B ₂₂	0.76	0.73	13.1	11.7
	C, 1	0.35	0.22	1.05	0.66
	^C 12	0.52	0.35	-	-
	Total	to: 0.38 m	<u></u>	13.7	5.50
		0.76 m	L	52.9	38.5
Ah 1	A	0.76	1.81	2.22	5.27
	AB	0.99	1.96	5.29	10.5
	B ₂₁	1.51	1.69	13.5	15.2
	B ₂₂	1.50	1.54	25.4	25.9
	B ₃	1.19	0.80	23.1	15.5
	C ₁₁	0.69	0.54	13.7	10.7
	C ₁₂	0.44	0.50	-	. –
	Total	to: 0.38 m	· · · · · · · · · · · · · · · · · · ·	29.1	39.1
		0.76 m	L	78.6	79.5 ·

TABLE 36. cont.

Soil and	d Horizon	A1 (%	Fe)	A1 (kg ha ⁻¹	Fe x 10 ³)
Ku 1	A	0.13	0.10	0.80	0.61
	A₂G	0.12	0.04	1.14	0.38
	G	0.21	0.02	5.90	0.56
	B _h G	0.37	0.03	4.40	0.36
	B ₂ G	0.25	0.03	1.15	0.14
	В _д G	0.33	0.02	6.71	0.41
	c	0.39	0.11	-	-
	Total	to: 0.38 m	·····	5.59	1.34
		0 . 76 m		20.1	2.46
Ok 1	A	0.02	0.00	0.18	0.00
	AG	0.03	0.00	0.20	0.00
	G	0.03	0.00	0.51	0.00
	B ₂ G	0.07	0.05	2.31	1.65
	₿ _៹ ҇G	0.09	0.05	1.72	0.67
	C*	0.10	0.08	2.05	1.64
	Total	to: 0.38 m	. <u> </u>	2.66	0.52
		0.76 m	L	6.97	3.96

*To a depth of 0.76 m.

TABLE	37.	OXALATE -	EXTRACTABLE	A1 AN	DFe -	- Transect 1	۱.
					and the second diversion of the second diversion of the second diversion of the second diversion of the second	and the second se	_

Soil and	Horizon	Extra Al (%)	acted Fe	Proporti Elements Al	on of Total Extracted Fe %)
Ah 1	A	0.76	1.81	11	44
	AB	0.99	1.96	14	51
	^B 21	1.51	1.69	19	44
Ah 2	A	0.82	1.66	13	54
	AB	1.17	2.00	16	63
	^B 21	2.42	1.82	28	48
Ah 3	A	0.66	1.46	12	53
	AB	0.86	2.49	15	72
	^B 21	2.73	2.06	31	55
Ah 4 '	QA	0.62	1.62	10	49
	A ₂	1.20	2.29	18	61
	^B 21	2.50	2.12	29	55
Ah 5	^A 21	0.15	0.06	3.	8
	A 22	0.85	0.88	9	39
	^B 21	3.00	2.16	35	51

TABLE 38. OXALATE - EXTRACTABLE A1 AND Fe - Transect 2.

۰.

Soil and	Horizon	Extra	acted	Proportio Elements	n of Total Extracted
		A1	Fe (%)	A1 (*	Fe %)
Ah 6	0	1.10	1.22	-	-
	A_2	0.62	1.48	10	51
	^B 21	1,38	2.10	20	55
Ah 7	0	1.52	0.99	28	29
	A	1.18	1.82	15	49
	^B 21	1.92	1.43	22	41
Ah 1	A.	0.76	1.81	11.0	44
· .	AB	0.99	1.96	14	51
	^B 21	1.51	1.69	19	44
Ah 8	A	0.99	2.02	18	64
	B ₁	2.22	2.64	26	58
	^B 21	2.15	1.62	25	44
Ah 9	OA	0.84	1.79	15	57
	AB	1.26	2.46	20	60
	^B 21	1.78	1.68	22	45

.

310.

~

TABLE 39. PYROPHOSPHATE - EXTRACTABLE A1 AND Fe -

Chronosequence.

	و حمد بین واحد و و الا الک کار		والمتعادية والمترافية والمناورية ويوكر بالتكرية		
Soil and	Horizon	A1 (%)	Fe)	Al (kg ha	Fe x 10 ³)
Ho 1	^A 11 ^A 12 C*	0.30 0.22 0.11	0.73 0.62 0.08	3.61 4.65 3.18	9.00 11.9 2.31
	Total	to: 0.38 0.76	m	8.26 11.4	20.9 23.2
I(y) 1	O A AB B ₂ B ₃ C*	0.44 0.58 0.60 0.49 0.36 0.06	0.68 1.15 0.95 0.73 0.48 0.08	n.d. 2.52 4.93 6.40 5.04 2.94	n.d. 4.94 7.73 9.59 6.44 3.92
	Total	to: 0.38 0.76	m m	16.4 21.8	25.5 32.6
I(o) 1	0A A B_{21} B_{22} C_{11} C_{12}^* Total	1.09 1.20 1.11 0.83 0.32 0.11	1.46 2.01 1.33 0.86 0.20 0.07	0.54 3.74 11.8 14.9 4.96 2.18 27.5	0.73 6.23 14.1 14.3 3.10 1.39 32.0
	Iotai	0.76	m	38.1	39.9
I(o) 2	^A 2	0.67	0.62	-	_

TABLE 39. cont.

					· · · · · · · · · · · · · · · · · · ·	
Soil	and	Horizon	A1 (%)	Fe	Al (kg ha ⁻¹	Fe x 10 ³)
I(w)	1	OA	0.67	0.62	2.58	2.35
		A	0.72	0.18	7.60	1.89
		A	1.09	0.35	6.80	2.19
		~ъ ^В 21	0.66	0.63	15.4	14.8
		B ₂₂	0.46	0.73	7.56	11.9
		с ₁₁	0.19	0.45	0.57	1.35
		C ₁₂	0.25	0.39	-	
		Total	L to: 0.38	m	17.0	6.43
			0.76	m	39.9	33.1
Ah 1	1	A	1.51	1.91	4.41	8.23
		AB	1.95	2.73	10.4	14.6
		^B 21	1.78	1.67	16.0	15.0
		B ₂₂	0.88	0.56	14.8	9.47
		B ₃	0.85	0.47	16.4	9.09
		с ₁₁	0.81	0.45	16.2	8.98
		^C 12	0.42	0.10	-	_
		Tota	L to: 0.38	m	35.5	40.8
			0.76	m	72.8	62.4

	فعد المعالية فبعد والمترج	ومحمد في من المالي بعد المالي وعلم من عن المالي			
Soil and	Horizon	A1 (%)	Fe	$(kg ha^{-1})$	Fe3)
Ku 1	A	0.13	0.12	0.82	0.74
	A ₂ G	0.10	0.06	0.99	0.55
	G	0.18	0.03	5.17	0.76
	B _h G	0.54	0.07	6.41	0.81
	₿ ₂ Ġ	0.51	0.00	2.34	0.00
	₿ ₃ Ĝ	0.49	0.29	10.0	5.86
	c	0.64	0.36	-	-
	Tota	1 to: 0.38	5 m	5.01	1.76
		0.76	m	25.7	8.72
Ok 1	A	0.05	0.18	0.47	2.14
	AG	0.08	0.08	0.63	0.67
	G	0.11	0.13	1.92	2.44
	₿ ₂ Ġ	0.29	0.27	9.61	8.97
	₿ ₃ Ĝ	0.26	0.12	4.78	1.66
	C*	0.41	0.15	8.41	3.08
	Tota	1 to: 0.38	6 m	6.05	8.08
		0.76	m	25.8	19.0

* To a depth of 0.76 m.

.

TABLE 40. PYROPHOSPHATE - EXTRACTABLE A1 AND Fe - Transect 1.

Soil and	Horizon	Extra Al (%)	acted Fe	Proportio Elements Al	on of Total Extracted Fe %)
Ah 1	A	1.51	1,91	21	69
	AB	1.95	2.73	28	71
	^B 21	1.78	1.67	22	43
Ah 2	A	0.82	2.15	13	70
	AB	1.23	2.27	16	71
	^B 21	1.23	1.31	14	35
Ah 3	A	0.65	1.72	12	62
	AB	1.13	2.56	19	74
	^B 21	2.03	1.91	23	51
Ah 4	OA	1.17	1.81	19	55
	A2	1.46	2.76	22	73
	^B 21	1.84	1.72	22	45
Ah 5	A ₂₁	0.17	0.08	3	10
	A22	0.73	1.15	12	51
	^B 21	2.33	1.94	27	46

TABLE 2	41.	PYROPHOSPHATE -	EXTRACTABLE	A1 AND	Fe –	Transect 2
				and the second se		

Soil and Horizon		Extracted A1 Fe (%)		Proportion of Total Elements Extracted Al Fe (%)	
Ah 6	0	1.46	0.16	Uller	-
	A ₂	0.57	1.87	10	64
	^B 21	2.09	2.22	30	58
Ah 7	0	1.26	1.03	23	30
	A	1.17	2.18	15	59
1	^B 21	1.83	1.68	21	48
Ah 1	A	1.51	1.91	21	69
	AB	1.95	2.73	28	71
	^B 21	1,78	1.67	22	43
Ah 8	A	1.10	2.31	20	42
	^в 1	2.88	3.38	34	74
	^B 21	1.32	1.50	16	41
Ah 9	OA	1.01	2.26	17	72
	AB	1.66	3.13	26	76
	^B 21	1.44	1.42	18	38

TABLE 42. FIELDES AND PERROTT TEST, AND PHOSPHATE RETENTION - Transect 1.

	the second second second second second second second second second second second second second second second s	والمستعمل والمستعمل والمتحد والمتحيني فيهجوها فتتكر والمتح	أستحصب والمترك المتحد والمتحد الأخر مستكني والمتحد والمتحد المتحد	the second second second second second second second second second second second second second second second s
Soil and	Horizon	Fieldes and <2 mm (pH develop 30 mir	Perrott Test <2 jum bed after nutes)	Phosphate Retention (%)
Ah 1	A	7.7	10.5	98
	AB	9.7	11.4	94
	^B 21	11.1	11.5	98
Ah 2	A	7.3	8.1	70
	AB	8.3	9.0	85
	^B 21	11.2	11.5	97
Ah 3	A	7.2	7.5	68
	AB	7.8	8.0	79
	^B 21	11.2	11.5	97
Ah 4	OA	6.8	6.8	43
	A ₂	8.1	8.7	87
	^B 21	11.2	11.5	98
Ah 5	A ₂₁	7.0	6.9	12
	A ₂₂	7.2	7.4	58
	^B 21	11.3	11.5	98

6

TABLE 43. FIELDES AND PERROTT TEST AND PHOSPHATE

•

RETENTION - Transect 2.

٠,

Soil and	l Horizon	Fieldes and < 2 mm (pH develo 30 mi	l Perrott Test < 2 jum oped after inutes)	Phosphate Retention (%)
Ah 6	0	5.6	5.8	0
	A2	6.3	6.6	12
	^B 21	10.9	11.5	93
Ah 7	0	6.0	6.0	0
	A '	7.2	7.7	69
	^B 21	.11.1	11.5	95
Ah 1	A	7.7	10.5	98
	AB	9.7	11.4	94
	^B 21	11.1	11.5	98
Ah 8	A	7.6	8.1	76
	B ₁	11.0	11.4	97
	^B 21	11.2	11.5	98
Ah 9	OA	6.9	7.4	49
	AB	8.6	9.7	86
	^B 21	11.1	11.5	97

FROM THE B HORIZON OF A TAUPO SANDY SILT.

Property Soil, Horizon and Particle size	≪0.2 ⊔m	Taupo Sa B Hor 0.2-2 un	undy Silt Nizon 1 2-53 um	Whole Soil
Moisture loss (%)	15.5	11.2	n.d.	2.16
Loss on Ignition (%)	43.9	28.8	n.d.	6.40
Total Al (%)	25.4	14.7	6.43	7.84
Total Si (%)	17.5	26.4	29.8	29.7
Total K (%)	0.14	0.78	1.87	1.75
Total Fe (%)	7.93	5.80	2.17	3.44
Si0 ₂ /A1 ₂ 0 ₃ (molar)	1.32	3.46	8.91	7.28
$A1_{2}0_{3}/A1_{2}0_{3} + S10_{2}$ (%)	56.2	32.9	16.0	18.9
Oxalate-extractable A1 (%)	24.7	12.0	0.16	1.50
Oxalate-extractable Fe (%)	4.09	3.15	0.10	0.78
Pyrophosphate-extractable A1 (%)	4.05	2.08	0.09	0.44
Pyrophosphate-extractable Fe (%)	3.60	1.76	0.15	0.28
Oxalate-Al as % of Total Al	97	82	2.5	19
Oxalate-Fe as % of Total Fe	52	54	4.6	23
Pyrophosphate-Al as % of Total Al	16	14	1.4	5.6
Pyrophosphate-Fe as % of Total Fe	45	30	6.9	8.1
Phosphate Retention (%)	100	99	10	56
2 min. Fieldes and Perrott Test (pH)	11.2	11.2	7.4	10.4
30 min. Fieldes and Perrott Test (pH)	11.5	11.4	7.4	10.5

TABLE 45. CHEMICAL PROPERTIES OF VARIOUS WATER-DISPERSED SIZE SEPARATES

FROM	THE	Ċ	HORIZON	\mathbf{OF}	A	TAUPO	SANDY	SILT
						the second second second second second second second second second second second second second second second s		

Property Soil, Horizon and Particle Size	40 2 	Taupo C H	Sandy Si Iorizon	.lt Whole
	<0.2 Jul	U.2-2	<u> </u>	<u> </u>
Moisture loss (%)	17.5	3.50	n.d.	0.96
Loss on Ignition (%)	27.7	5.51	n.d.	3.01
Total A1 (%)	21.7	7.65	6.75	7.13
Total Si (%)	21.6	31.8	34.7	34.3
Total K (%)	0.41	1.70	1.89	1.63
Total Fe (%)	5.96	2.28	2.15	2.63
Si0 ₂ /A1 ₂ 0 ₃ (molar)	1.92	7.76	9.89	9.25
$A1_20_3/A1_20_3 + S10_2$ (%)	47.0	17.1	14.6	15.5
Oxalate-extractable A1 (%)	19.6	1.43	0.18	0.48
Oxalate-extractable Fe (%)	5.21	0.86	0.11	0.57
Pyrophosphate - extractable A1 (%)	1.38	0.31	0.09	0.15
Pyrophosphate-extractable Fe (%)	0.41	0.08	0.00	0.08
Oxalate-A1 as % of Total A1	90	19	2.7	6.7
Oxalate-Fe as % of Total Fe	87	38	5.1	22
Pyrophosphate-A1 as % of Total A1	6.4	4.1	1.3	2.1
Pyropho sp hate-Fe as % of Total Fe	6.9	3.5	0.0	3.0
Phosphate Retention (%)	99	68	9	25
2 min. Fieldes and Perrott Test (pH)	10.9	10.1	7.4	9.0
30 min. Fieldes and Perrott Test (pH)	11.2	10.5	7.4	9.2

Property	Soil, Horizon	Ah	1	0k 1
	and Particle Size	^B 21	° ₁₂	G
Total Al (%)		19.4	20.5	9.82
Total Si (%)		17.1	17.5	30.6
Total K (%)		0.97	1.12	1.88
Total Fe (%)		14.5	14.5	0.22
si0 ₂ /A1 ₂ 0 ₃	(molar)	1.70	1.65	5.99
A12 ⁰ 3/A12 ⁰ 3 + Si	0 ₂ (%)	50.0	50.8	22.1
Oxalate-extracta	ble A1 (%)	9.68	11.7	0.14
Oxalate-extracta	ble Fe (%)	8.51	6.22	0.13
Pyrophosphate-ex	tractable A1 (%)	4.33	2.65	1.63
Pyrophosphate-ex	tractable Fe (%)	5.11	1.36	0.18
Oxalate-A1 as %	of Total Al	50	57	1.4
Oxalate-Fe as %	of Total Fe	59	43	59
Pyrophosphate-A1	as % of Total Al	22	13	17
Pyrophosphate-Fe	as % of Total Fe	35	9.4	82
Phosphate Retent	ion (%)	100	100	29
2 min.Fieldes an	d Perrott Test (pH)	11.3	11.4	7.3
30 min.Fieldes a	nd Perrott Test (pH)	11.5	11.6	7.3

TABLE 46.CHEMICAL PROPERTIES OF WATER-DISPERSED <2 jum FRACTION OF</th>THREE SELECTED HORIZONS FROM CHRONOSEQUENCE.

AND Fe

TABLE 47. RATIOS OF % OXALATE- AND % PYROPHOSPHATE-EXTRACTABLE A1

TO % CLAY, AND INDEX OF ACCUMULATION OF PRECIPITATED

AMORPHOUS MATERIAL - Chronosequence.

	· · · ·	Oxalate-	extractable	Pyropho	sphate-e	ktractable	
Soil and	Horizon	<u>% A1</u>	% Fe	<u>% A1</u>	% Fe	%(A1+Fe)	Index*
· ·		% Clay	% Clay	% Clay	% Clay	% Clay	•
Но 1	A ₁₁	0.036	0.071	0.043	0.104	0.15	. <u></u>
	A 12	0.048	0.090	0.044	0.124	0,16	•
1	c	0.026	0.065	0.026	0.019	0.05	
I(y) 1	0		<u> </u>	<u> </u>			
	A .	0.045	0.063	0.054	0.082	0.14	
	AB	0.053	0.069	0.052	0.082	0.13	
•	B ₂	0.063	0.083	0.057	0.085	0.14	
*	Ba	0.084	0.084	0.063	0.084	0.15	
	ດ້	0.085	0.145	0.030	0.040	0.07	• •
I(0) 1	OA	0.074	0.070	0.066	0.089	0.16	·
	A	0.078	0.089	0.089	0.149	0.24	114
·	B ₂₁	0.097	0.098	0.089	0.106	0.20	124
•	B ₂₂	0.127	0.101	0.085	0.088	0.17	
	C ₁₁	0.178	0.106	0.089	0.056	0.15	
•	c ₁₂	0.074	0.085	0.032	0.021	0.05	
I(w) 1	OA	0.033	0.046	0.053	0.049	0.10	· · · · ·
	Å	0.045	0.011	0.059	0.015	0.07	
•	A.2.0	0.080	0.023	0.087	0.028	0.12	
	В ₂₁ .	0.119	0.098	0.073	0.070	0.14	
	B ₂₂	0.104	0.100	0.063	0.100	0.16	
	C ₁₁	0.206	0.129	0.112	0.265	0.38	11
· ,	^C 12	0.179	0.121	0.086	0.134	0.22	<u> </u>
		1 . · ·		. *			

* As defined by United States Department of Agriculture (1970). In this study CEC was measured at pH 7.0, not at 8.2. Index calculated only for those horizons where ratio of pyrophosphate-extractable
A1 + Fe to clay content meets requirements for spodic horizons.

Soi1	and Horizon	0xalate-	extractable	Pyropho	sphate-e	xtractable	Tudex*
· .		<u>% A1</u> % Clay	<u>% Fe</u> % Clay	<u>% A1</u> % Clay	<u>% Fe</u> % Clay	<u>%(A1+Fe)</u> % Clay	THUEX
Ah 1	A	0.044	0.105	0.087	0.110	0.20	182
	AB	0.058	0.115	0.115	0.161	0.28	113
	B ₂₁	0.096	0.108	0.113	0.106	0.22	17
	B ₂₂	0.096	0.099	0.056	0.036	0.09	
	B ₃	0.092	0.062	0.065	0.036	0.10	
	C ₁₁	0.076	0.059	0.089	0.049	0.14	
	°12	0.169	0.192	0.162	0.038	0.20	-
Ku 1	A	Ó.011	0.009	0.011	0.011	0.02	
	A ₂ G	0,010	0.003	0.008	0.005	0.01	
	Ğ	0,011	0.001	0.009	0.002	0.01	
	B _b G	0.018	0.001	0.026	0.003	0.03	
-	BG	0.021	0.003	0.044	0.000	0.04	•
•	B ₃ G	0.027	0.002	0.040	0.024	0.06	
•	່ຕ້	0.038	0.011	0.062	0.035	0.10	
Ok 1	A	0.005	0.000	0.011	0.041	0.05	
	AG	0.005	0.000	0.014	0.014	0.03	
	G	0.004	0.000	0.013	0.016	0.03	•
	B ₂ G	0.009	0.006	0.037	0.034	0.07	
	В _д G	0.008	0.004	0.023	0,011	0.03	
•	c	0.010	0.008	0.041	0.015	0.05	
	<u></u>						

322.

TABLE 48.RATIOS OF % OXALATE - AND % PYROPHOSPHATE - EXTRACTABLEA1 AND Fe TO % CLAY, AND INDEX OF ACCUMULATION OFPRECIPITATED AMORPHOUS MATERIAL - Transect 1.

Oxalate-extractable Pyrophosphate-extractable Soil and Horizon % Fe %(A1+Fe) Index* % A1 % Fe % A1 % Clay % Clay % Clay % Clay % Clay Àh 1 A 0.044 0.105 0.087 0.110 0.20 182 0.115 0.161 AB 0.28 0.058 0.115 113 0.106 B₂₁ 0.096 0.108 0.113 0.22 17 Ah 2 0.144 0.20 156 A 0.055 0.111 0.055 0.146 AB 0.075 0.128 0.079 0.23 240 ^B21 0.114 0.085 0.058 0.062 0.12 0.044 0,115 0.16 Ah 3 0.097 0.043 A 0.151 0.068 0.155 0.22 285 AB 0.052 0.17 B₂₁ 0.116 0.087 0.086 0.081 94 Ah 4 **OA** 0.038 0.100 0.072 0.112 0.18 342 0.072 0.137 0.087 0.165 0.25 463 Α, 0.109 0.092 0.080 0.075 0.16 63 ^B21 Ah 5. 0.011 0.004 0.013 0.006 0.02 130 A 21 0.045 0.047 0.039 0.061 0.10 147 A 22 0.111 0.120 0.100 0.22 96 0.155 B₂₁

* As defined by United States Department of Agriculture (1970). In this study CEC was measured at pH 7.0, not at 8.2. Index calculated only for those horizons where ratio of pyrophosphateextractable Al + Fe to clay content meets requirements for spodic horizons.

324。

324.

TABLE 49.

RATIOS OF % OXALATE - AND % PYROPHOSPHATE - EXTRACTABLE A1 AND Fe TO % CLAY, AND INDEX OF ACCUMULATION OF PRECIPITATED AMORPHOUS MATERIAL - Transect 2.

Soil and	Horizon	Oxalate- <u>% Al</u> % Clay	extractable <u>% Fe</u> % Clay	Pyrophos <u>% A1</u> % Clay	sphate-ext <u>% Fe</u> % % Clay	ractable <u>(A1+Fe</u>) % Clay	Index'
Ah 6	0	0.041	0.045	0.054	0.006	0.06	
	A ₂	0.032	0.077	0.030	0.097	0.13	
	B ₂₁	0.077	0.117	0.116	0.123	0.24	146
Ah 7	· 0	0.084	0.055	0.070	0.057	0,13	
	Α	0.072	0.117	0.072	0.134	0.21	350
	^B 21	0.110	0.082	0.105	0.096	0.20	-
Ah 1	A	0.044	0.105	0.087	0.110	0,20	182
	AB	0.058	0.115	0.115	0.161	0.28	113
	^B 21	0.096	0.108	0,113	0.106	0.22	17
Ah 8	, A	0.058	0.117	0,064	0.134	0.20	259
	B ₁	0.099	0.118	0.129	0.151	0.28	173
	^B 21	0.091	0.069	0.056	0.064	0.12	
Ah 9	OA	0.052	0.110	0.062	0.139	0.20	'175
	AB	0.060	0.117	0.079	0.149	0.23	277
	^B 21	0.082	0.078	0.067	0,066	0.13	

* As defined by United States Department of Agriculture (1970). In this study CEC was measured at pH 7.0, not at 8.2. Index calculated only for those horizons where ratio of pyrophosphateextractable A1 + Fe to clay content meets requirements for spodic horizons.

TABLE 50. RATIO OF OXALATE- TO PYROPHOSPHATE-

EXTRACTABLE A1 AND Fe - Chronosequence.

	A	.1	F	Fe		
Soil	To 0.38 m	То 0.76 m	To 0.38 m	To 0.76 m		
Ho 1	0.98	0.99	0.74	1.02		
I(y) 1	1.11	1.37	0.90	1.24		
I(o) 1	1.22	1.41	0.94	1.14		
I(w) 1	0.81	1.33	0.86	1.16		
Ah 1	0.82	1.08	0.96	1.27		
Ku 1	1.12	0.78	0.76	0.28		
0k 1	0.81	0.27	0.06	0.21		
<u> </u>						

TABLE 51. MINERALOGY OF THE SAND FRACTION (177 - 125 Jun).

SAMPLE	Proportion of Sand Fraction in 177-125 jum Range	Proportion of Magnetic Minerals in 177-125,um Fraction	Quartz	Feldspar	Mica	Chlorite	Garnet	Ilmenite	Horn- blende	Rutile	Zircon	Unidentifiable Strongly Weathered Grains (Includes Sericitic Residues)	<u>Quartz</u> Feldspar Ratio
	(%)	(%)		· · · · · · · · · · · · ·		. (9	%)						
Ho.1, C	3	38	22	34		6	⊶<1	2	1	n. o.	~1	24	0.6
I(y) 1, C	24	25	26	:40	8	3	~<1	*	⊲<1		~1	22	0.7
I(o) 1, C	12	35	34	27	13	4	×1	≺1	n.)o.	n.o.	n.o.	22	1.3 .
I(w) 1, C	21	33	27	32	.9	5	4	*	n.o.	n.o.	n.o.	26	0.8 -
Ah 1, C ₁₁	20	28	28	35	12	3	<1	~1	~1	n.o.	n.o.	22	0.8 .
Ku 1, A	20	5	60	5	<1	⊲ ≪ 1	· ~1 °	<1	<1	n.o.	n.o.	33	1.2
Ku 1, C	21	3	56	27	<1	<1	~1	~1	.≪1	n.o.	n.o.	16	2.1
Ok 1, A	17	17	30	3	<1	n.o.	~1	n.o.	n.o.	n.o.	n.o.	66	10
Ok 1, C	12	3	58	13	<1	n.o.	<1	<1	n.o.	n.o.	n.o.	29	4.5

n.o. not observed; * observed only as inclusions.

TABLE 52. QUARTZ (100) / PLAGIOCLASE (002) INTENSITY

RATIO FOR THE SILT PRACTION (20 - 2 um) -

Chronosequence.

Soil and	l Horizon		Ratio
Но 1	A ₁₁		1.21
•	A,	•	1.22
	C		1.35
I(y) 1	A		1.42
	AB ·		1.24
· .	B ₂		1,21
	B ₃		1.25
	ດ້		0.98
I(o) 1	Ä		1.42
	^B 21		1.40
	B ₂₂		1.39
	C ₁₁		1.07
	C ₁₂	· · · · · · · · · · · · · · · · · · ·	1.05
А Ь 1	A		1.81
	AB		1.38
	^B 21		1.30
	B ₂₂		1.18
	B ₃		1.14
	C ₁₁		1.05
	C ₁₂	<u></u>	0.84
Ku 1	A		11.3
	A2G		10.0
-	G		10.5
	₿ _h G		11.5
	B ₂ G		11.1
	₿ ₃ G		11.5
	C	<u> </u>	8.0
Ok 1	Å	•	117
	AĞ	•	110
	Ġ ·		67
	₿ ₂ Ġ		. 85
	₿ ₃ Ģ		82
	c		51

TABLE 53.

MINERALOGY OF THE FINE (< 0.2 µm) CLAY FRACTION -

	المعرب العر	<u></u>												·	
Soil a	nđ				Pł	ny11os	ilica	ates			Oth	er Mi	neral	s	
Harizo	n	*Int.N	io I	Ch	I-Ch	I-V	v	P-Ch	Мо	ĸ	G	Q	F	A	
101 120		(Weighted peak-area "percentages")									(%)	(%) I/I _M P=presen			
Ho 1	A ₁₁	-	47	13			22	2	2	14	1.5	. -			
	A 12	_	48	11	· _ ·	÷	17	7	1	16	1.9	-	Р	-	
	C	-	63	13	-	<u></u>	8	8	-	8	n.d.	8	Р	-	
I(y)1	0	n.d.	. n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	A		5	16	3	-	63	-		11	1.0	-	-	÷	
	AB	<u> </u>	7	10	-	-	34	33		17	1.4	-	-		
	Bø	}. <u>→</u>	11	10	-	-	32	31	<u>.</u>	16	1.9	-	-	÷	
	B	↓ ⊥	17	10	-	-	26	27	~	21	2.3		-		
• •	C C	+	36	14	_	-	15	19	-	.17	3.3	━.	- ,	-	
I(0) 1	ØÅ	83	<u></u>	5	-		<u> </u>			13	0.1		Р		
	A	-	ند.	7	÷	ä	49	30	÷	14	0.3	-	-	ž	
· .	B ₂₁	4	÷	4	<u> -</u>		37	45	<u></u>	14.	0.8	-	-	<u></u>	
	B_22	<u> ۲</u>	-	3	÷	<u></u>	17	57	<u> -</u>	22	1.5	· _	. ∸		
	C ₁₁	<u> </u>	20	16	-	-	15	31	÷	18	1.9	-	-	- -	
•	C ₁₂	-	38	12	- '	-	22	20	<u> </u>	8	2.2	-	Р	-	
1(0) 2	A ₂		نی <u>ب</u>	<u></u>	_	<u> </u>		_	85	15	0.1				
İ(w) 1	OÅ	85	<u></u>	· -	<u> </u>		-	<u> </u>		15	Ö	_	_		
	A	-	-		<u>→</u> ·	÷ ,	57	31	-	12	0.5	-	-	-	
	A	1 · 🛥	<u>سن</u>	6	_ `	-	39	42	- ·	13	1.0	يند		-	
	B ₂₁	· -	5	14	-		18	44	-	19	3.2	· 🗕 ·	<u> </u>	-	
	B22	<u>ــــــــــــــــــــــــــــــــــــ</u>	6	15	-	-	-17	44	<u></u>	18	4.8	-	-	· _	
	C ₁₁	<u>ت</u>	25	13	-	-	8	38	-	16	3.8	- .	-		
· · · ·	C12	-	25.	23	-	-	: 4	30		18	5.1	-	<u> </u>	- -	
	14	ľ													

Chronosequence.

Coll a	nd		·,		Phy11	osili	cate	8	· .		Oth	Other Minerals				
Horizo)n	*Int.N	10 I	Ch	I-Ch	I-V	· V	P-Ch	Mo	K	G (d)•	Q • /	F	A		
<u></u>			(we	ignte	ed peak	-area	"per	centag	'es'')		(%) -	L/ L/M	P=pr	esent		
Åh 1	Å		-	4	· 🗕 .	-	80	· -	· _	16	0.4	· · -	-			
•	AB	l 👝	-	4	<u>1</u>	_	47	39	-	10	0.7	_	- -	: +		
	B ₂₁	i	-	13	· _	-	22	51	-	14	1.3		`	-		
	B_22	-		23	11	-	6	47	. –	13	2.5	-	-	· 🗕		
1997 - A.	B	- 1		27	25	. –	_	24	. –	12	2.9	· _	· 🕳			
	C11	- 1	_	26	26	-	-	36	-	12	2.2	ىد `	-			
	C ₁₂]. –	37	11	-	- .	. –	39	- ,	13	2.2	т <mark>жа</mark> С	-	-		
Ku 1	Å	88	<u> </u>	- <u> </u>						12	0	-	· _ ·	 -		
	A ₂ G	87	_	-	-	_	_		-	13	0	_	<u> </u>	· -		
	G	82	÷	-	- '	· • •	-	·	-	18	0.1	-	<u> </u>	<u> </u>		
	₿ _h Ģ	82	-	-	-	- '	-	· –	-	18	0.3	.,=	-	-		
	B2G	-	9	-	-	7	48	· 4	-	32	0.6	· _	-	-		
• 	B ₃ G	-		-	24	-	32	12	·	32	0.6	-	- .	-		
	C		<u> </u>	: -	35 .		23	15	-	27	0.5	- -	-			
0k 1	Å	93			_	-	_			7	0	6	_			
	ÅG	88	· -		· · · -	· 🗕		. –	-	12	0	6	-	-		
	G	74	· <u>~</u>	<u></u>	-	-	-	-	-	26	0.2	Ġ	-	_ :		
•	B ₂ G	-	34	-	-	31	8	1		25	0.1	4	- '	<u> </u>		
	вда	i ∸ .	17	· 1 🛓	-	38	13	2	-	30	0.3	· _' ·	. 	-		
	ເົ່		11		-	39	9	13	-	28	0.4	. –	<u> </u>	· -		
		1	1	1.1.1							1.1.1					

* I, mica (illite); Ch, chlorite; V, vermiculite; P-Ch, pedogenic chlorite; Mo, montmorillonite; K, kaolinite; G, gibbsite; Q, quartz; F, feldspar; A, amphibole; Int., interstratified.

• Of air-dried weight, of peroxidised and deferrated samples.

Intensity is given as a percentage of the maximum quartz intensity obtained - that from the 0.2 - 2 µm fraction from the A horizon of Ok 1.

In the above table a dash indicates that the mineral was not identified by X-ray diffraction.

TABLE 54.

MINERALOGY OF THE COARSE (0.2 - 2 um) CLAY FRACTION -

330.

Chronosequence.

ıđ	Phyllosilicates										er Mi	nera:	1s
ı	*Int.Mo	I (We	Ch ight	I-Ch ed pea	I-V ak-are	V a "pe	P-Ch rcenta	Mo ges"	к)	G (%)●	Q I/I _M	F P=pi	A resent
A ₁₁		54	16	5		8	2	1	14	0.7	12		Р
A12		47	14	3	5	11	3	-	16	0.8	12	Р	Р
c	-	56	17	·	4	7	- 4	_	12	0.3	· 19 ·	P	Р
0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d	.n.d.
À	-	16	28	5	13	19	5	• 🗕	15	0.3	7	Р	Р
А́В	-	15	28	6	-	16	22	-	13	0.4	6	Р	₽ ·
B ₂	· -	13	13	-	-	27	40	- 1	8	0.6	6	Р	Р
B ₃	-	29	22	-	-	15	20	_	14	0.7	9	Р	Ρ.
с́	<u> </u>	34	15	. 12	-	18	9	- '	12	0.7	8	Р	Р
OA	75	_ _	17			• 📅	۰. ۲ همه		8	0.1	10	Р	P
A :		_	19	4	·	46	14	-	18	0.1	6	Р	Þ
^B 21	÷-	-	29	-	-	24	35	-	12	0.3	7	Р	Р
B ₂₂		6	24	-	-	17	39	-	14	0.7	8	Р	Р
C ₁₁	· · · · ·	40	22	- ·	-	8	16	-	14	1.5	7	Р	P
^C 12	<u> </u>	49	20	-	-	9	11	-	11	1.2	9	Ρ	Р
A ₂		-	12	· -	. –			67	.21	0.1	8	P	Р
ŎĂ	79		2					-	19 [.]	o	10	P	 Р
Á	- 1	16	12	·	-	51	7	_	14	0.1	10	Ρ	Р
A 2.E	· -	7	20	<u> </u>	-	38	25	· -	10	0.3	8	Р	Р
B ₂₁	- 1	18	33	-	-	8	28	. –	13	1.8	8	Р	Ρ
B ₂₂	} -	22	26	-	-	16	24	·	13	2.2	11	Р	Р
C ₁₁	····· –	50	18	-	· · · -	12	12	-	9	1.5	14	Р	Р
с ₁₂	<u>~</u>	45	22	-	. –	10	11	· -	12	1.2	. 11	Р	Р
	$ \begin{array}{c} 1d \\ 1 \\ A \\ 11 \\ A \\ 12 \\ C \\ 0 \\ A \\ B \\ 2 \\ C \\ 0 \\ A \\ B \\ 2 \\ C \\ 0 \\ A \\ B \\ 2 \\ C \\ 0 \\ A \\ B \\ 2 \\ C \\ 12 \\ C \\ 0 \\ A \\ B \\ 2 \\ C \\ 12 \\ A \\ B \\ 2 \\ C \\ 11 \\ C \\ C \\ 2 \\ O \\ A \\ A \\ B \\ 2 \\ C \\ C \\ 11 \\ C \\ C \\ 2 \\ O \\ A \\ A \\ B \\ 2 \\ C \\ C \\ 11 \\ C \\ C \\ 2 \\ O \\ A \\ A \\ B \\ 22 \\ C \\ C \\ 11 \\ C \\ C \\ 2 \\ C \\ 11 \\ C \\ C \\ 12 \\ C \\ C \\ 11 \\ C \\ C \\ C \\ $	n *Int.Model A_{11} - A_{12} - C - 0 $n.d.$ A - B_2 - B_2 - B_2 - B_2 - C - OA 75 A - B_{21} - B_{22} - C_{11} - A_2 - OA 79 A - B_{21} - B_{22} - C_{11} - B_{22} - C_{11} - B_{22} - C_{11} - C_{11} - C_{12} -	nd *Int.Mo I A_{11} - 54 A_{12} - 47 A_{12} - 56 0 n.d. n.d. A - 16 AB - 15 B2 - 13 B3 - 29 C - 34 OA 75 - A - - B21 - - B22 - 6 C11 - 40 C12 - 49 A - 16 A22 - - OA 79 - A - 16 A26 - 7 B21 - 18 B22 - 22 C11 - 50 C212 - 50 C12 - 45	nd*Int.MoICh (Weight) A_{11} -5416 A_{12} -4714C-5617On.d.n.d.n.d.A-1628AB-1528B2-1313B3-2922C-3415OA75-17A19B2129B22-624C11-4022C12-4920A-1612A212OA79-2A-1612A2g-720B21-2226C11-5018C12-5018C12-4522	ndPhy11*Int.MoIChI-Ch(Weighted peak A_{11} -5416 A_{12} -47142-56170n.d.n.d.n.d.n.d.A-16285AB-15286B2-1313-B3-2922-C-341512OA75-17-A194B2129-B22-624-C11-4920-A212-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-1612-A-	nd Phy1losili *Int.Mo I Ch I-Ch I-V (Weighted peak-are A_{11} - 54 16 5 - A_{12} - 47 14 3 5 C - 56 17 - 4 0 n.d. n.d.n.d. n.d. n.d. n.d. A - 16 28 5 13 AB - 15 28 6 - B2 - 13 13 - - B3 - 29 22 - - CA 75 - 17 - - A - 19 4 - - B21 - - 29 - - - B21 - - 29 - - - C11 - 40 22 - - - A2 - - 12 - - - <td>ndPhyllosilicatesh*Int.MoIChI-ChI-VV(Weighted peak-area "peak")A_{11}-54165-8A_{12}-47143511C-5617-47On.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d. n.d.n.d.AB-162851319AB-15286-16B2-131327B3-292215C-341512-18OA75-17A194-46B212924B22-624-17C11-4022-8C12A-1612A-161238B21-1833-8B22-2226-16C11-5018-12C12-4522-10</td> <td>Phy1losilicatesa*Int.MoIChI-ChI-VVP-Ch(Weighted peak-area"percents"A_{11}-54165-82A_{12}-471435113C-5617-4740n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d.n.d.A-1628513195AB-15286-1622B2-13132740B3-29221520C-341512-189OA75-17A-194-4614B21292435B22-624-1739C11-4920911A212A-1612-517A2g123825B21-1833-828B22-2226-1624C11-5018-1212C12<td< td=""><td>Phy110sillicates Phy110sillicates * Int.Mo I Ch I-Ch I-V V P-Ch Mo A_{11} - 54 16 5 - 8 2 1 A_{12} - 47 14 3 5 11 3 - C - 56 17 - 4 7 4 - 0 n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d.n.d. AB - 16 28 5 13 19 5 - AB - 15 28 6 - 16 22 - B2 - 13 13 - - 27 40 - B3 - 29 22 - - 15 20 - C - 34 15 12 - 18 9 - C - - 19 4 - 46<td>Phyllosilicates int.Mo I Ch I-Ch I-V V P-Ch Mo K (Weighted peak-area "percentages") A_{11} - 54 16 5 - 8 2 1 14 A_{12} - 54 16 5 - 8 2 1 14 A_{12} - 47 14 3 5 11 3 - 16 C - 56 17 - 4 7 4 - 12 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. A - 16 28 5 13 19 5 - 15 B - 15 28 6 - 16 22 - 13 B_2 - 13 13 - - 27 40 8 B_3 - 29 22 - - 15 20 - 14 C - 34 15 12 <t< td=""><td>nd Phyllosilicates Oth 1 *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G ($(\#)$ A_{11} - 54 16 5 - 8 2 1 14 0.7 A_{12} - 47 14 3 5 11 3 - 16 0.8 C - 56 17 - 4 7 4 - 12 0.3 O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d. n.d. AB - 16 28 5 13 19 5 - 15 0.3 AB - 15 28 6 - 16 22 - 13 0.4 B2 - 13 13 - - 27 40 8 0.6 B3 - 29 22 - 15 20 - 14 0.7 C1 -<!--</td--><td>Phyllosilicates Other Min h *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G Q A_{11} - 54 16 5 - 8 2 1 14 0.7 12 A_{12} - 47 14 3 5 11 3 - 16 0.8 12 C - 56 17 - 4 7 4 - 12 0.3 19 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d.</td><td>Phyllosilicates Other Mineral A Tht.Mo I Ch I-Ch I-V V P-Ch Mo K G Q F A₁₁ - 54 16 5 - 8 2 1 14 0.7 12 - 4 A₁₂ - 47 14 3 5 11 3 - 16 0.8 12 P C - 56 17 - 4 7 4 - 12 0.3 19 P C - 56 17 - 4 7 4 - 12 0.3 19 P O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d</td></td></t<></td></td></td<></td>	ndPhyllosilicatesh*Int.MoIChI-ChI-VV(Weighted peak-area "peak") A_{11} -54165-8 A_{12} -47143511C-5617-47On.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d. n.d.n.d.AB-162851319AB-15286-16B2-131327B3-292215C-341512-18OA75-17A194-46B212924B22-624-17C11-4022-8C12A-1612A-161238B21-1833-8B22-2226-16C11-5018-12C12-4522-10	Phy1losilicatesa*Int.MoIChI-ChI-VVP-Ch(Weighted peak-area"percents" A_{11} -54165-82 A_{12} -471435113C-5617-4740n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d.n.d.A-1628513195AB-15286-1622B2-13132740B3-29221520C-341512-189OA75-17A-194-4614B21292435B22-624-1739C11-4920911A212A-1612-517A2g123825B21-1833-828B22-2226-1624C11-5018-1212C12 <td< td=""><td>Phy110sillicates Phy110sillicates * Int.Mo I Ch I-Ch I-V V P-Ch Mo A_{11} - 54 16 5 - 8 2 1 A_{12} - 47 14 3 5 11 3 - C - 56 17 - 4 7 4 - 0 n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d.n.d. AB - 16 28 5 13 19 5 - AB - 15 28 6 - 16 22 - B2 - 13 13 - - 27 40 - B3 - 29 22 - - 15 20 - C - 34 15 12 - 18 9 - C - - 19 4 - 46<td>Phyllosilicates int.Mo I Ch I-Ch I-V V P-Ch Mo K (Weighted peak-area "percentages") A_{11} - 54 16 5 - 8 2 1 14 A_{12} - 54 16 5 - 8 2 1 14 A_{12} - 47 14 3 5 11 3 - 16 C - 56 17 - 4 7 4 - 12 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. A - 16 28 5 13 19 5 - 15 B - 15 28 6 - 16 22 - 13 B_2 - 13 13 - - 27 40 8 B_3 - 29 22 - - 15 20 - 14 C - 34 15 12 <t< td=""><td>nd Phyllosilicates Oth 1 *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G ($(\#)$ A_{11} - 54 16 5 - 8 2 1 14 0.7 A_{12} - 47 14 3 5 11 3 - 16 0.8 C - 56 17 - 4 7 4 - 12 0.3 O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d. n.d. AB - 16 28 5 13 19 5 - 15 0.3 AB - 15 28 6 - 16 22 - 13 0.4 B2 - 13 13 - - 27 40 8 0.6 B3 - 29 22 - 15 20 - 14 0.7 C1 -<!--</td--><td>Phyllosilicates Other Min h *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G Q A_{11} - 54 16 5 - 8 2 1 14 0.7 12 A_{12} - 47 14 3 5 11 3 - 16 0.8 12 C - 56 17 - 4 7 4 - 12 0.3 19 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d.</td><td>Phyllosilicates Other Mineral A Tht.Mo I Ch I-Ch I-V V P-Ch Mo K G Q F A₁₁ - 54 16 5 - 8 2 1 14 0.7 12 - 4 A₁₂ - 47 14 3 5 11 3 - 16 0.8 12 P C - 56 17 - 4 7 4 - 12 0.3 19 P C - 56 17 - 4 7 4 - 12 0.3 19 P O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d</td></td></t<></td></td></td<>	Phy110sillicates Phy110sillicates * Int.Mo I Ch I-Ch I-V V P-Ch Mo A_{11} - 54 16 5 - 8 2 1 A_{12} - 47 14 3 5 11 3 - C - 56 17 - 4 7 4 - 0 n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d.n.d. AB - 16 28 5 13 19 5 - AB - 15 28 6 - 16 22 - B2 - 13 13 - - 27 40 - B3 - 29 22 - - 15 20 - C - 34 15 12 - 18 9 - C - - 19 4 - 46 <td>Phyllosilicates int.Mo I Ch I-Ch I-V V P-Ch Mo K (Weighted peak-area "percentages") A_{11} - 54 16 5 - 8 2 1 14 A_{12} - 54 16 5 - 8 2 1 14 A_{12} - 47 14 3 5 11 3 - 16 C - 56 17 - 4 7 4 - 12 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. A - 16 28 5 13 19 5 - 15 B - 15 28 6 - 16 22 - 13 B_2 - 13 13 - - 27 40 8 B_3 - 29 22 - - 15 20 - 14 C - 34 15 12 <t< td=""><td>nd Phyllosilicates Oth 1 *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G ($(\#)$ A_{11} - 54 16 5 - 8 2 1 14 0.7 A_{12} - 47 14 3 5 11 3 - 16 0.8 C - 56 17 - 4 7 4 - 12 0.3 O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d. n.d. AB - 16 28 5 13 19 5 - 15 0.3 AB - 15 28 6 - 16 22 - 13 0.4 B2 - 13 13 - - 27 40 8 0.6 B3 - 29 22 - 15 20 - 14 0.7 C1 -<!--</td--><td>Phyllosilicates Other Min h *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G Q A_{11} - 54 16 5 - 8 2 1 14 0.7 12 A_{12} - 47 14 3 5 11 3 - 16 0.8 12 C - 56 17 - 4 7 4 - 12 0.3 19 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d.</td><td>Phyllosilicates Other Mineral A Tht.Mo I Ch I-Ch I-V V P-Ch Mo K G Q F A₁₁ - 54 16 5 - 8 2 1 14 0.7 12 - 4 A₁₂ - 47 14 3 5 11 3 - 16 0.8 12 P C - 56 17 - 4 7 4 - 12 0.3 19 P C - 56 17 - 4 7 4 - 12 0.3 19 P O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d</td></td></t<></td>	Phyllosilicates int.Mo I Ch I-Ch I-V V P-Ch Mo K (Weighted peak-area "percentages") A_{11} - 54 16 5 - 8 2 1 14 A_{12} - 54 16 5 - 8 2 1 14 A_{12} - 47 14 3 5 11 3 - 16 C - 56 17 - 4 7 4 - 12 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. A - 16 28 5 13 19 5 - 15 B - 15 28 6 - 16 22 - 13 B_2 - 13 13 - - 27 40 8 B_3 - 29 22 - - 15 20 - 14 C - 34 15 12 <t< td=""><td>nd Phyllosilicates Oth 1 *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G ($(\#)$ A_{11} - 54 16 5 - 8 2 1 14 0.7 A_{12} - 47 14 3 5 11 3 - 16 0.8 C - 56 17 - 4 7 4 - 12 0.3 O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d. n.d. AB - 16 28 5 13 19 5 - 15 0.3 AB - 15 28 6 - 16 22 - 13 0.4 B2 - 13 13 - - 27 40 8 0.6 B3 - 29 22 - 15 20 - 14 0.7 C1 -<!--</td--><td>Phyllosilicates Other Min h *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G Q A_{11} - 54 16 5 - 8 2 1 14 0.7 12 A_{12} - 47 14 3 5 11 3 - 16 0.8 12 C - 56 17 - 4 7 4 - 12 0.3 19 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d.</td><td>Phyllosilicates Other Mineral A Tht.Mo I Ch I-Ch I-V V P-Ch Mo K G Q F A₁₁ - 54 16 5 - 8 2 1 14 0.7 12 - 4 A₁₂ - 47 14 3 5 11 3 - 16 0.8 12 P C - 56 17 - 4 7 4 - 12 0.3 19 P C - 56 17 - 4 7 4 - 12 0.3 19 P O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d</td></td></t<>	nd Phyllosilicates Oth 1 *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G ($(\#)$ A_{11} - 54 16 5 - 8 2 1 14 0.7 A_{12} - 47 14 3 5 11 3 - 16 0.8 C - 56 17 - 4 7 4 - 12 0.3 O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d. n.d. AB - 16 28 5 13 19 5 - 15 0.3 AB - 15 28 6 - 16 22 - 13 0.4 B2 - 13 13 - - 27 40 8 0.6 B3 - 29 22 - 15 20 - 14 0.7 C1 - </td <td>Phyllosilicates Other Min h *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G Q A_{11} - 54 16 5 - 8 2 1 14 0.7 12 A_{12} - 47 14 3 5 11 3 - 16 0.8 12 C - 56 17 - 4 7 4 - 12 0.3 19 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d.</td> <td>Phyllosilicates Other Mineral A Tht.Mo I Ch I-Ch I-V V P-Ch Mo K G Q F A₁₁ - 54 16 5 - 8 2 1 14 0.7 12 - 4 A₁₂ - 47 14 3 5 11 3 - 16 0.8 12 P C - 56 17 - 4 7 4 - 12 0.3 19 P C - 56 17 - 4 7 4 - 12 0.3 19 P O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d</td>	Phyllosilicates Other Min h *Int.Mo I Ch I-Ch I-V V P-Ch Mo K G Q A_{11} - 54 16 5 - 8 2 1 14 0.7 12 A_{12} - 47 14 3 5 11 3 - 16 0.8 12 C - 56 17 - 4 7 4 - 12 0.3 19 O n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d.	Phyllosilicates Other Mineral A Tht.Mo I Ch I-Ch I-V V P-Ch Mo K G Q F A ₁₁ - 54 16 5 - 8 2 1 14 0.7 12 - 4 A ₁₂ - 47 14 3 5 11 3 - 16 0.8 12 P C - 56 17 - 4 7 4 - 12 0.3 19 P C - 56 17 - 4 7 4 - 12 0.3 19 P O n.d. n.d.n.d. n.d. n.d. n.d. n.d.n.d.n.d

TABLE 54. cont.

		an Allanda ya kata ana a Ta	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>				<u>`</u>			T	<u> </u>		
Soii and Horizon		Phyllosilicates									Other Minerals			
		*Int.Mo	Ī	Ch	I-Ch	' I-V	v	P-Ch	Мо	К	.G	Q	F	A
·	•	·	(We	ight	ed pea	k-are	a "p	ercenta	ges '	')	(%)	1/1 _Ň	P=p	resent
An 1	A		· 🛥	15	-	_	61	11	-	12	0.3	10	Þ	P
	AB	⊢	-	5	• = .	-	51	35	-	10	0.4	- 13	P .	Р
	^B 21	-	<u></u>	17	• -	-	19	50	- .	14	1.2	10	P	P
	B22	<u></u>	-	36	9	-	16	23	-	16	4.4	10	Р	P
· · ·	B	<u> </u>	12	29	10	-	11	22	-	17	5.5	9	Ρ	Р
	C11	.	14	33	13	-	7	18	-	16	4.2	8	Р	Р
	C ₁₂	-	38	17	8	-	12	9	-	16	3.7	7	P	P
<u> </u>	<u> </u>					. 25	<u> </u>	·					<u>.</u>	
Ku 1	A	82	-	¥	-	-	-	-	-	17	0.1	33	Р	<u> </u>
	A ₂ G	77	12	· 🛥	-		-	-	-	13	0.1	· 38	Р	÷ .
	G	90	÷	<u> </u>	· _	-	÷	÷	-	10	0.3	32	Р	-
	B _h G	87		<u> </u>	- '	-		-	-	13	0.5	33	P	-
	B2G	-	12	-	18	10	27	10	÷.,	23	0.8	44	·P	. 🛖
	₽gœ	<u> </u>	7	حنة	19	i.	21	25		28	0.7	50	Р	-
•	C	-	27	÷	17	8	19	14	-	16	0.8	41	P	
<u></u>		<u></u>										<u> </u>		<u> </u>
OK 1	A	56	-	-	-	-	-	· _	-	4,4	0	100	Р	-
	AG	13	48	÷	. –	-	7		7	26	0	71	-	· _
	Ģ	78	. 🗕	-	-	-	<u> </u>	· –	-	22	0.2	58	P	<u></u>
	₿ ₂ Ġ	-	37	-	16	20	4	3	. – `	20	0	67	P	<u>ن</u>
	^в 3 ^с	-	24	-	19	12	10	9	- '	26	0.2	48	Р	- ,
	C	-	29	4	17	3	7	12	. -	28	0.2	40	P	· <u>-</u> ,

and

1

refer to key at foot of Table 53.

331 -

"WEIGHT" OF CLAY-SIZED (< 2 jum) PHYLLOSILICATE MINERALS PER

Soil and	i Horizon	Mineral									
•		*Int.Mo	I	Сћ	I-Ch (g)	I-V	v	P-Ch	Мо	K	
Ho 1	A ₁₁	· _	36	10	2		8	1		10	
	A 12	-	24	7	1	2	6	2	0.2	8	
•••	c	-	4	1	· –	0.2	0.5	0.4	-	0.7	
I(y) 1	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
	A	-	18	35	6	13	45	5	-	20	
	AB	· •	14	26	5	-	25	30	-	17	
	^B 2	 .	11	10	-		25	32	-	9	
	B ₃	. –	-14	11	-		10	13	<u> </u>	10	
	C	· _	7	3	2	÷ .	3	2	<u></u>	. 3	
		<u>_</u>				·					
I(o)-1	OA	130	-	17 .	-	.—	-	_	-	18	
	A	4	-	19	3	-	64	28	-	22	
	^B 21	· •• .	-	24	-	÷	36	49	-	16 .	
	^B 22	-	3	15	`_	-	17	46	-	17	
	^C 11	-	11	7	<u> </u>	÷	4	8	-	6	
	^C 12	-	14	5	-	÷	6	6	. – .	3	
I(w) 1	OA	103	-	1					 	22	
	A	-	12	9	-	-	65	19	-	16	
•	A _{2g}	. -	5	18	-	-	48	40	-	14	
. •	^B 21	. .	12	24	-	-	10	30	-	14	
	^B 22	· · .	12	16	-	-	12	22	-	11	
· .	C ₁₁	<u>-</u>	7	3	. –	-	2	4	_	2	
	^C 12	-	11	6	· <u></u> ;	-	2	5	-	4	

KILOGRAM OF INORGANIC MATERIAL < 2 mm - Chronosequence.
TABLE 55. cont.

Soil and	Horizon	Mineral									
•		*Int.Mo	I	Ch	I-Ch (g)	I-V	v	P-Ch	Мо	к	
Ah 1	A	-		18	-	-	120	11		24	
	AB	-	-	8	<u> </u>	-	84	32	-	17	
• •	^B 21	-	<u> </u>	24	-	·	32	79	<u> </u>	22	
	B ₂₂	-	-	47	15	-	18	53	÷	23	
	B	-	9	37	15	-	8	30	-	19	
	C11	-	5	24	16	-	3	23	-	11	
	^C 12	-	10	4	1	••••••••••••••••••••••••••••••••••••••	2	6	-	4	
Ku 1	A	96	·	_	 				-	18	
	A ₂ G	· 99	10		-	- .	-	-	-	16	
•	G	112	-	-	:-	_	·_	· -	-	27	
·	₿ _h Ġ	165	-		· <u> </u>	• 🗕	-		-	42	
	BG	-	13	-	16	31	20	7	-	31	
· .	BGG	- ·	5	يت ا	25	<u>.</u>	31	24	-	3 6 .	
•	c	-	16	-	26	1.6	22	15	-	22	
Ok 1	A	26	<u>، حدم مرم</u> خد	_		-	-	-		18	
	AG	14	23	• 🛥	·, 	÷	3	_	3	14	
•	G	64		-	-		-	-	-	19	
	B ₂ G	-	28	—	9	19	4	2	-	18	
	B ₂ G	-	24	-	13	26	13	7		31	
• • • •	c	-	21	2	10	18	8	12	-	28	

*; refer to key at foot of Table 53.

TABLE 56.

334.

<u> </u>		· · · · ·							<u> </u>	<u></u>				
Soil and	d			P	hyllos	ilica	tes				0th	er Mi	ner	als
Horizon		*Int.Mo	I	Ch	I-Ch	I-V	v	P-Ch	Мо	к	G	Q	F	Α
			(We	eight	ed pea	ik-are	a "p	ercent	ages	")	(%)	I/I	4 P=1	present
Ah 1	A	-	_	4	-	_	80	· -	-	16	0.4	-	-	- .
	AB	-	-	[:] 4	. –	· _	47	39	-	10	0.7	· _	· -	-
a	^B 21	-		13	. =	-	22	51	-	14	1.3	. –	·	-
Ah 2	A	82	_	_	_	_	_	· _		18	n.d.	<u>~</u>	_	-
	AB		-	-	—	-	84	-	-	16	n.d.	-	-	-
	^B 21		-	14	-	· –	21	49	-	16	n.d.	-	-	-
Ah 3	Å	81	_	-	-	_	-	_	_	19	n.d.	-		-
•	AB	-	-	-	-	-	85	-	-	15	n.d.	<u> </u>	-	- '
	^B 21	-	-	16	-	-	24	45	-	14	n.d.		-	-
Ah 4	OA	-				-	_	<u> </u>	91	9	n.d.	_	-	
	A,	-	-	-	-	-	84	-	-	16	n.d.	· _	_	-
	⁸ 21	-	-	-	-	-	16	74	-	10	n.d.	. -	· _	-
Ah 5	A21	-	_	_	-	_	-	<u> </u>	88	12	0	-	_	_
	A22	-	-	-	-	-	-	2	82	18	0		-	-
•	^B 21	-	-	2	-	-	÷	80	<u>à</u>	18	1.3	-	-	-

.

and ; refer to key at foot of Table 53.

Δ	RI	Æ	57	

MINERALOGY OF THE COARSE (0.2-2 µm) CLAY FRACTION - Transect 1

				Ph	yllos:	Llica	tes	ч.			Other	Min	iera	ls
Soll an Horizon		*Int.Mo	Ţ	Сћ	I-Ch	I-V	v	P-Ch	Мо	ĸ	G 🚽	Q	F	A
			(We:	ighted	peak-	-area	"pe	rcenta	ige s ⁱⁱ)	(%)	I/I	• P=]	present
Ah 1	A	-		15	_		61	11	-	12	0.3	10	Р	Р
	AB	-	-	5 ·	. –		51	35	. –	10	0.4	13	Р	Р
	B ₂	1 -		17	-	· -	19	50	- '	14	1.2	10	Р	Р
Ah 2	A	82	<u> </u>	2	 		_	_		16	n.d.	15	Þ	Р
	ÅB		39	9	· 24	22	15		1	15	n.d.	15	Ρ	Р
	B ₂	1 -	10	25	-	-	33	17	. –	15	n.d.	12	Р	P
Ah 3	A	. 87		-		· _				13	n.d.	21	Р	P
•	AB	88	-	-	-	-	-	. 🐪		12	n.d.	23	Р	Р
•	^B 2	1 -	-	35	-	-	33	18	• 	14	n.d.	12	Р	P
Ah 4	OÅ	÷	 	<u>+</u>	-		_	<u></u>	93	7	n.d.	18	P	P
-	A,	-		12	. –	43	27	3	÷	15	n.d.	18	Ρ	P
••	B ₂	1		23	-	÷	34	27	_	16	n.d.	12	Þ	P.
Ah 5	Å.,	1 -	<u> </u>		· -	-	<u>_</u> ,	· · ·	88	17	0.03	22	P	P
	A ₂	2 -	<u>-</u>	3	-	· 	-		78	19	O .	17	P	P
1 . 1	в ₂	~	-	14	.4	-	41	30	-	11	0.8	14	P	Р

÷.

and 🔎

•; refer to key at foot of Table 53.

Soi	1 and	1		-	Pł	yllosi	licate	.			Other	Mine	ral	S
Hor	izon		'Int.Mo	I (We	Ch eighte	I-Ch ed peak	I-V -area	V "per	P-Ch centa _é	Mo K ges")	G (%)●	Q I/I _N	F P=	A present
Ah	6	0 4 A ₂	-			_	· · ·		_	86 14	n.d. n.d.	· - .		
·		B 21	-	-	4	-	. _	21	58	- 17	n.d.	<u>-</u>	-	-
Ah	7	0	•			· · · ·					n.d.			
•		A B ₂	83	-	-	· _	-	- 39	45	- 17 - 16	n.d. n.d.	-	-	- · - ,
Ah	1	A	-		4		-	80		- 16	0.4	<u> </u>		
:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AB B ₂	1 -	 '	4 13	- 1 -	-	47 22	39 51	- 10 - 14	0.7 1.3	-	. -	-
Ah	8	A	-		<u></u>			83		- 17	n.d.			-
•		B ₁	_	· -	. –	-	-	28	56 ~ 0	- 16	n.d.	-	. –	· - `
•		^B 2	-	-	8		-	. –	78	- 14	n.a.	-	.	
Atà	<u></u>	ÖÅ	86		<u>.</u>	· · ·		· · ·	-	- 14	n.d.		-	
•		AB	· · · · ·		3	· – ·	-	70	14	- 13	n.d.	-	-	÷ .
		^B 2	-	ند	/-	- -	-	26	56	- 18	n.d.	-	<u> </u>	<u></u>

TABLE 58. MINERALOGY OF THE FINE (<0.2 µm) CLAY FRACTION - Transect 2.

and "; refer to key at foot of Table 53.

<2 µm fraction only determined. Data given in Table 59.

TABLE 59. MINERALOGY OF THE COARSE (0.2 - 2 µm) CLAY FRACTION-Transect 2.

								· · · ·					_ <u></u>
Soil ar	nd		•	P	hyllosi	licate	5			Other	Mine	rals	•. •
Horizor	1 *:	Int.Mo	I (We	Ch eight	I-Ch ed peak	I-V area	V "per	P-Ch centag	Mo K ges")	G (%)●	₽ I/I _M	F P=r	A oresen
Ah 6	0 🔻	-						-	74 26	n.d.	9	_	Р
	A ₂	- 1	÷.	-		-	-	-	72 28	n.d.	17	P	Р
	^B 21	-	-	16	-		41	33	- 10	n.d.	16	Р	P .
Ah 7	0 🔻	78	÷		· · -	-	-	-	- 22	n.d.	12	 	P
	A	86	-	4	_ _	-	-	-	- 10	n.d.	14	Р	Р
	^B 21	-	-	15	. –	-	51	23	- 11	n.d.	12	P	P ·
Ah 1	A	-	-	15	-	_	61	11	- 12	0.3	10	P	P
	ÅB	≟	-	5		-	51	35	÷ 10	0.4	13	Р	Ρ
	^B 21	- 1	-	17	-	-	19	50	- 14	1.2	10	P	P
Ah 8	A	-	-		-	36	48		- 16	n.d.	21	Р	P
4 	B ₁	-	-	8	-	-	-	82	- 10	n.d.	14	Ρ	Р
	^B 2	-	-	20	-	-	_	71	- 9	n.d.	12	Р	P
Ah 9	OA	90		-	_	-	-		- 10	n.d.	17		P
	AB	-	-	11	· · ·	28	46	-	- 15	n.d.	15	Р	Р
•	^B 21	1	· -	27		-	42	19	- 13	n.d.	13	Ρ	Р
1. A. A. A. A.		1			•					1			

*, •, and •; refer to key at foot of Table 53.

▼ Values refer to <2 µm fraction.

TABLE 60. EMPIRICAL MEASURE OF MONTMORILLONITE

CRYSTALLINITY. (After Biscaye, 1965).

Soil and	Horizon	Ratio of the 1.8 m the depth of the " low-angle side of	m peak height (p) to valley" (v) on the the peak.
		(v/p), <0.2 سبر Fraction	(v/p), 0.2-2.0 سلر) Fraction
но 4,	A ₂	0.55	0.77
I(o) 2,	A ₂	0.72	0.71
I(w) 1,	OA	0.59	0.63
Ah 2,	A	0.58	0.69
Ah 3,	A	0.56	0.50
Ah 4,	OA	0.70	0.76
Ah 5,	A ₂₁	0.89	0.91
	A22	0.84	0.88
Аћ б,	OÃ	6 2	0.73*
	A ₂	0.71	0.75
Ah 7,	A	0.54	0.60
Ah 9,	OA	0.56	0.58
Ah 10,	A ₂	0.75	0.83
Ah 11,	A ₂	0.81	0.85
Ah 12,	A ₂	0.83	0.79
Ah 13,	A ₂	0.80	0.80
Ah 14,	A ₂	0.83	0.82
Ah 15,	A ₂	0.80	0.81
Ah 16,	A ₂	0.77	0.73
Ah 17,	A ₂	0.78	0.76
Ah 18,	A ₂	0.84	0.85
Ah 19, .	A	0.63 🕇	0.66 🕇
Ah 20,	A ₂	0.70	0.76
Ku 1,	A	0.47	0.48
	A ₂ G	0.45	0.53
	G	0.43	0.63
	₿ _h G	0.38	0.29
0k 1	A	0.17	
	AG	0.17	0.43

* Clay (<2 μ m) not subdivided into fine and coarse fractions. † Peak at 1.5 - 1.6 nm. TABLE 61.

MINERALOGY OF THE CLAY FRACTIONS OF SURFACE HORIZONS COLLECTED WITHIN FIVE

METRES OF LIVING BEECH TREES, OR DECAYING BEECH STUMPS AND LOGS.

· · · · · · · · · · · · · · · · · · ·	1 ·····			· <u>-</u>				<u></u>		·				·
Soil and	Particle				. 1	Phy11	osili	cates			0t	her	Miner	als
Horizon	Size (µm)	Int.Mo*	I Weig	Ch hted	I-Ch peak	I-V area	V "per	P-Ch centag	Mo es")	К	Q I/I _M	G P =	F pres	A ent
Ho 2, A	<0.2	43	23	21		-		_	_	13	-	P		<u> </u>
• •	0.2-2	-	27	28	-	-	29	-	_	16	15	P	Р	Р
Ho 3, A	<0.2	-	· -	17	-	73		_		10	-	_	-	-
	0.2-2	-	- 34	30	-	13	12	-	-	11	12	P .	Р	P
Ho 4, A2	<0.2	82	-		-		_		_	18	-	-		-
	0.2-2	-	-	15	. – .	· _	-	-	65	20	15	-	P . '	P
Ho 5, A ₂	<0.2	74	_	3	-		_		_	23	-	_ '		_
~	0.2-2	57	8	22	-	-	-	-	-	13	19	-	Р	P
Ah 10, A,	<0.2	-	_			_	_		89	11				<u> </u>
~	0.2-2	-	. 🛥	-	-	. –	-	-	86	14	21	-	Р	P
Ah 11, A.	<0.2	-	-	_	_		-		92	8	-	-		
~	0.2-2	-	-	-	-	-	-	-	80	20	20	÷.	Р	P
Ah 12, A ₂	<0.2	-	-	<u> </u>	_	_			86	14		_	Р	
~	0.2-2	-	-	-	-	-	-	-	86	14	20	-	P	P
Ah 13,A ₂	< 0.2		-				. 📥		90	10	_		P	-
~	0.2-2	<u> </u>	-	-	-	-	-	<u>.</u>	76	24	18	-	Р	Р
Ah 14, A ₂	<0.2				_		<u> </u>		94	6	-	-	-	
	0.2-2	-	-	-	-	-		_	86	14	18	-	P	P
Ah 15, A ₂	<0.2						-	-	86	14	-	-	_	-
-	0.2-2	÷	-	-	-	-	-	· -	82	18	23	. —	P	P
Ah 16, A ₂	₹0.2	-			_	÷		-	84	16	13	-	~	
	0.2-2		-	-	-	-	<u> </u>	-	89	11	44	_	Р	Р
Ah 17, A ₂	₹0.2	÷ .	_	_	-			-	85	15	-		-	_
	0.2-2	-		-	-	-	-	-	79	21	25	. 🗕	P	Р
Ah 18, A,	₹0.2	-			_		· .	_	85	15	6		-	-
~	0.2-2	-	-	-	_	-	-	-	85	15	36	-	Р	P
Ah 19, A	<0.2	84		-	-		-		-	16	-	-	-	
· .	0.2-2	85	. <u>.</u>	· –	. 🛥 .	-	-	-	-	13	39	-	P	P
Ah 20, A.	<0.2	- -		-	_		-		86	14	-			
~ ~	0.2-2	-	-	-	-	-	-	· -	82	18	29	-	P	P

* and •; refer to key at foot of Table 53.

4 s		i	<u>C</u>	hronosequenc	<u>e</u> .	
			i			. *
Soil and		Weight Gibl of Inorgan: <2 mm as fine	bsite per kg ic Material ■ as coarse	Weight of Clay-sized Gibbsite in Soil	Proportion of Total Soil A1 as Clay-sized Gibbsite	Proportion of Gibbsite in Water-dispersed <2 µm Clay
	11 	c1ay	clay			
•		(g x	10 ⁻¹)	$ \begin{array}{c} (\text{kg ha}^{-1} \\ \text{horizon}^{-1} \\ \underline{x} 10^2) \end{array} $	(% x 10 ^{-'})	(%)
Ho 1	A ₁₁	2.9	3.2	7.6	2.6	0.4
	A ₁₂	2.9	2.7	11.6	2.3	0.6
·	C	n.d.	0.1	-	-	0.6
I(y) 1	0	n.d.	n.d.	<u> </u>		n.d.
	A	4.0	3.2	3.1	2.9	0.5
	AB	5.4	3.4	7.1	3.5	0.7
•	^B 2	5.1	3.4	11.3	3.5	0.7
	B ₃	3.9	2.8	9.6	3.0	1.1
	C*	0.2	0.9	6.0	0.6	1.2
I(o) 1	OA	0.9	0.6	0.1	0.6	0.1
	A	1.5	0.9	0.7	1.1	0.3
•	^B 21	3.8	2.0	6.2	2.6	0.6
	B ₂₂	6.0	3.9 .	17.8	4.3	1.0
	C ₁₁	2.8	3.2	9.5	2.6	1.5
	^C 12 [*]	4.9	1.4	14.5	2.1	1.9
I(w) 1	0A	0	0	0	0	0.2
	A	2.3	0.1	3.5	1.6	0.2
	A24	4.6	0.3	4.1	2.8	0.6
	B ₂₁	10.2	1.8	48.0	9.0	1.9
	B ₂₂	11.5	2.2	36.2	9.3	2.6
	C ₁₁	2.3	1.5	2.6	1.9	1.8
	^C 12	4.6	1.2		3.4	2.2

WEIGHT OF GIBBSITE AND PROPORTION OF TOTAL A1 AS GIBBSITE -

TABLE 62.

TABLE 62. cont.

Soil and Horizon	Weight of Inor as fine clay	Gibbsite per kg ganic Material <2 mm [®] as coarse clay	Weight of Cláy-sized Gibbsite in Soil	Proportion of Total Soil A1 as Clay-sized Gibbsite	Proportion of Gibbsite in Water-disperse < 2 jum Clay		
	(g	x 10 ⁻¹)	$(kg ha^{-1})$ horizon $1x 10^2$	(% x 10 ⁻¹)	(%)		
Ah 1 A	3.1	3.1	1.8	3.0	0.4		
AE	4.8	4.2	4.8	4.5	0.7		
B2	1 8.9	10.8	17.7	8.4	1.1		
B ₂	18.3	36.9	92.9	23.4	2.8		
B	16.7	39.9	109.8	23.8	3.4		
	9.6	19.5	57.8	8.5	2.4		
^C 1	2 2.9	4.8	÷	3.6	2.5		
Kul A	0	0.9	0.6	1.0	0,1		
A ₂	G O	1.1	1.1	1.2	0.1		
- G	1.0	3.0	11.1	3.1	0.2		
B _h	G 2.5	5.1	9.0	6.4	0.3		
B	G 3.0	5.2	3.7	7.7	0.6		
В,	G 3.1	4.8	16.0	7.8	0.6		
C	2.1	4.5		5.4	0.5		
Ok 1 A	n.d.	Ó	0	0	0		
Ac	Ö	0	0	0			
G	0.5	0.9	2.5	2.5	0.1		
В	G 0.2	0	0.5	0.3	0.3		
B,	G 1.2	1.2	4.5	3.2	0.3		
en l	1 1 5	1 3	57	3.0	0.4		

* To 0.76 m.

Calculated from data in Tables 7, 53 and 54.

TABLE 63.

X-RAY DIFFRACTION DATA FOR RESIDUES FROM SOIL, ROCK AND

5 A.

MUSCOVITE SAMPLES FOLLOWING 24 HOUR DIGESTION WITH 48% HF.

	٠	
	Υ.	
•		

Clay (< from Ok	2 (سر 2) 1, B ₃ G	Gran	Lte	Obs	idian	Bas	alt	Muscov	ite
d (nm)*	I/I	d(nm)	1/1 ₁	đ(nm)	1/1 ₁	d(nm)	1/1	d(nm)	1/1 ₁
0.582	100	0.584	100	0.584	100	0.584	100	0.581	100
0.303	41	0.303	52	0.303	58	0.304	55	0.302	74
0.290	65	0.291	77	0.291	100	0.292	100	0.289	100
0.249	7	0.252	8	0.252	4	0.251	5	0.250	, 5
0.231	15	0.231	19	0.231	28	0.232	25	0.230	22
0,205	17	0.205	17	0.205	20	0.206	15	0.204	30
0.193	20	0.193	27	0.193	35	0.194	28	0.193	35
0.177	33	0.177	45	0.177	54	0.178	50	0.177	50
0,169	13	0.169	4	0.170	4	0.170	5	0.169	· 9
		0.159	6	0.159	6	0.160	4	0.159	6
0.151	17	0.151	16	0.151	21	0.152	16	0.151	15

* Values for anatase, rutile, zircon, Na_2SiF_6 and K_2SiF_6 have been omitted.

TABLE 64.

X-RAY DIFFRACTION DATA FOR SOME PLUMBOGUMMITE MINERALS

NaMgA1F ₆		Ca0.5 ^{MgA1F} 6		KMgA1F ₆		Crandallite (16-162)*		Gorceixite (19-535)*	
d(nm)	1/1 ₁	d(nm)	1/1 ₁	d(nm)	1/1	d(nm)	1/1,	d(nm)	1/1 ₁
0.584	1.00	0.582	100	0.576	79	0.575	35	0.573	90
• •						0.353	35	0.352	80
0.303	53	0.303	54	0.300	100	0.297	100	0.2978	100
0.291	79	0.291	86	0.288	31	0,288	10		
н 						0.273	14		
0.251	3	0.251	7	0.249	13			0.2475	-20
						· · ·	•	0.2449	30
0.231	25	0.231	29	0.228	15	0.221	25	0.2271	50
			•			0.218	45	0.2215	60
0.205	19	0.205	24	0.203	8	0.215	10	0.2021	3 0
								0.2013	30
0.193	30	0.193	30	0.191	25	0.1917	12	0.1905	70
	•					0.1900	30 ·		,
0.177	51	0.178	63	0.176	30			0.1756	60
0.170	5	0.170	5	0.168	5			0.1675	20
0.159	7	0.159	6	0.157	5				
0.151	17	0.151	21	0.151	8				
÷		i	-	i .		1		1	•

AND COMPLEX FLUORIDES.

*Card reference to the Powder Diffraction File, published by the Joint Committee on Powder Diffraction Standards.

TABLE 65.CONCENTRATION OF P IN RESIDUES FROM <2 µm</th>FRACTION OF A KAITERITERI HILL SOILFOLLOWING VARIOUS HF TREATMENTS.

HF Concentration (%)	20	20	20	20	48
Duration of digestion	2 min	2 hr	15 hr	24 hr	24 hr
Weight of residue (mg)	51	24	22	20	11
Percentage of P in residue	0.82	1,54	0.35	0.16	0.11
Percentage of total P in residue	98	86	18	7	3

(Total P in this clay fraction was 0.043%).

X-RAY DIFFRACTION DATA FOR RESIDUES FROM <2 µm FRACTION OF A TABLE 66.

KAITERITERI HILL SOIL FOLLOWING VARIOUS HE TREATMENTS.

20% HF,	2 min	20% HF,	2 hr	20% HF, 24 hr	48% HF, 24 hr	Mineral
d(nm)	1/1	d(nm)	1/1 ₁	d(nm) I/I ₁	d(nm) I/I ₁	Species*
		,		0.582 100	0.582 100	F
0.573	41	0.573	75	0.573 🖕		Pg
0.497	10	-				Go
0.451	44					C lay (110)
0.436	23					?
0.426	20			n an an an an an an an an an an an an an		Q
0.418	63					Go
0.352	80	0.351	92	0.351 36	0.351 35	Pg, An
				0.325 20	0.325 20	Ru
0.336	100	ан. Ал				Q
				0.303 56	0.303 66	F
0.296	62	0.296	100	0.296 28		Pg
. 4				0.290 88	0.290 78	F
0.280	17					?
0.270	22	0.270	32			Pg,Go
0.258	33				х.	Go
	н. На	0.252	29			Pg
•					0.249 13	F, Ru
0.244	40		•			Go
				0.230 24	0.230 22	F
		0.221	23			Pg
0.219	11	0.218	32	:		Pg
· ···			•	0.205 24	0.205 28	F
0.190	21	0.190	46			Pg
				0.193 36	0.193 28	F
	. :	•		0.177 48	0,177 56	F
0.175	14	0.175	24			Pø
			~			-0

* F, fluoride; Pg, plumbogummite mineral; Go, goethite; Q, quartz;

An, anätase: Ru, rutile.

FIGURE 1: MAP OF THE STUDY AREA SHOWING LOCATIONS OF SAMPLING SITES.

- 5

348.

LOCATION OF SAMPLING SITES ALONG THE TWO AHAURA TRANSECTS.

FIGURE 4:

: SOIL pH DEPTH FUNCTIONS - Chronosequence.

FIGURE 5: SOIL pH DEPTH FUNCTIONS - Transect 1.

FIGURE 8: SOIL ORGANIC MATTER DEPTH FUNCTIONS - Chronosequence.

FIGURE 9: WEIGHTS OF INORGANIC MATERIAL IN CONSTANT SOIL VOLUME - Chronosequence.

FIGURE 10:

VOLUME-WEIGHTS OF SAND, SILT AND CLAY - Chronosequence.

ÁGÉ (years × 103)

FIGURE 11: CHANGE IN % COMPOSITION OF <2 mm MATERIAL WITH TIME.

FIGURE 12: CLAY DEPTH FUNCTIONS (% BASIS) - Chronosequence.

IGURE 14: SUMMATION PERCENTAGES OF $\leq 2mm$ FRACTION - Chronosequence.

FIGURE 16: CEC DEPTH FUNCTIONS - Chronosequence.

FIGURE 17: VARIATION IN EXCHANGEABLE CATIONS WITH TIME.

FIGURE 18: VARIATION IN BASE SATURATION WITH TIME.

FIGURE 19: EXCHANGEABLE Na DEPTH FUNCTIONS - Chronosequence.

FIGURE 20: EXCHANGEABLE Mg DEPTH FUNCTIONS - Chronosequence.

FIGURE 21: EXCHANGEABLE A1 DEPTH FUNCTIONS - Chronosequence.

367.

FIGURE 22: EXCHANGEABLE K DEPTH FUNCTIONS - Chronosequence.

FIGURE 23: EXCHANGEABLE Ca DEPTH FUNCTIONS - Chronosequence.

368.

FIGURE 24:

EXCHANGEABLE Fe DEPTH FUNCTIONS - Chronosequence.

369.

FIGURE 25: PROPORTIONS OF TOTAL Mg AND Ca PRESENT IN EXCHANGE-ABLE FORMS - Chronosequence.

FIGURE 26: PROPORTIONS OF TOTAL K AND AL PRESENT IN EXCHANGE-ABLE FORMS - Chronosequence.

FIGURE 27: PROPORTION OF TOTAL Fe PRESENT IN EXCHANGEABLE FORMS - Chronosequence.

FIGURE 28: TEB DEPTH FUNCTIONS - Chronosequence.

FIGURE 29: BASE SATURATION DEPTH FUNCTIONS - Chronosequence.

FIGURE 30: SCATTER DIAGRAM SHOWING THE PREDICTABILITY OF CEC BASED ON THE REGRESSION EQUATION RELATING CEC TO % OXIDISABLE CARBON AND % CLAY - Chrono-sequence.

FIGURE 31: SCATTER DIAGRAM SHOWING THE PREDICTABILITY OF CEC BASED ON THE REGRESSION EQUATION RELATING CEC TO % LOSS-ON-IGNITION AND % CLAY - Transects.

FIGURE 32:

TOTAL Mg DEPTH FUNCTIONS - Chronosequence.

377.

FIGURE 33: TOTAL A1 DEPTH FUNCTIONS - Chronosequence.

FIGURE 34: TOTAL Si DEPTH FUNCTIONS - Chronosequence.

FIGURE 36: TOTAL Ca DEPTH FUNCTIONS - Chronosequence.

FIGURE 37: TOTAL TI DEPTH FUNCTIONS - Chronosequence.

FIGURE 38: TOTAL Fe DEPTH FUNCTIONS - Chronosequence.

FIGURE 39: INORGANIC MATERIAL DEPTH FUNCTIONS - Chronosequence.

WEIGHT AI (kg ha⁻¹ x 10⁵)

FIGURE 43: VARIATION IN TOTAL CA WITH TIME.

FIGURE 44: VARIATION IN TOTAL Fe WITH TIME.

WEIGHT Si (kg ha⁻¹ × 10⁶)

390°

FIGURE 47: CHANGES IN ELEMENTAL % COMPOSITION WITH TIME.

FIGURE 48: LOSS OF TOTAL Mg, K AND Ca WITH TIME.

FIGURE 49: LOSS OF

LOSS OF TOTAL AL AND Fe WITH TIME.

FIGURE 50: LOSS OF TOTAL SI AND TI WITH TIME.

FIGURE 51: USE OF DIFFERENTIAL DTA TO DETERMINE MATERIAL EXTRACTED BY TREATMENT WITH 0.85 MOLAR NaF FOR 2 MINUTES. (D, differential DTA; U, untreated sample).

396<u>.</u>

FIGURE 52: VARIATION IN OXALATE-EXTRACTABLE A1 AND Fe WITH TIME.

AGE (years x 103)

FIGURE 53: VARIATION IN % OF TOTAL AL AND FE THAT IS OXALATE-EXTRACTABLE WITH TIME.

FIGURE 56: DEPTH FUNCTIONS OF % OF TOTAL AL THAT IS OXALATE-EXTRACTABLE - Chronosequence.

FIGURE 57: DEPTH FUNCTIONS OF % OF TOTAL FE THAT IS OXALATE-EXTRACTABLE - Chronosequence.

FIGURE 59: VARIATION IN % OF TOTAL A1 AND Fe THAT IS PYROPHOSPHATE-EXTRACTABLE WITH TIME.

404.

TIGURE 58: VARIATION IN PYROPHOSPHATE-EXTRACTABLE AL AND Fe WITH TIME.

403..

FIGURE 62: DEPTH FUNCTIONS OF % OF TOTAL AL THAT IS PYROPHOSPHATE-EXTRACTABLE - Chronosequence.

FIGURE 63: DEPTH FUNCTIONS OF % OF TOTAL FE THAT IS PYROPHOSPHATE-EXTRACTABLE - Chronosequence.

P RETENTION (%)

FIGURE 64:

54: PHOSPHATE RETENTION DEPTH FUNCTIONS - Chronosequence.

FIGURE 65: FIELDES AND PERROTT TEST DEPTH FUNCTIONS - Chronosequence.

TEMPERATURE (°C)

FIGURE 66: DIFFERENTIAL THERMOGRAMS FOR TAUPO SANDY SILT. (a, nitrogen atmosphere; b, oxygen atmosphere; c, organic matter destroyed by heating to 600°C in air, cooled, 10 mg charcoal added and reheated to 1000°C in nitrogen atmosphere).

INTENSITY

FIGURE 67: X-RAY DIFFRACTOGRAM OF (060) SPACINGS FROM SILT FRACTION OF C HORIZON OF Ho 1.

FIGURE 68:

USE OF HCL DIGESTION TO CONFIRM PRESENCE OF KAOLINITE.

TEMPERATURE (°C)

415.

FIGURE 70: DIFFERENTIAL THERMOGRAMS FOR I(y) 1.

FIGURE 72: DIFFERENTIAL THERMOGRAMS FOR I(w) 1. ((a), (b), (c) and (d) indicate sample weights of 26, 60, 40 and 62 mg, respectively).

(* Sample Wt 30 mg).

FIGURE 77: STANDARD CURVE USED FOR GIBBSITE DETERMINATION.

INTENSITY

FIGURE 78: X-RAY DIFFRACTOGRAMS OF $< 0.2 \mu m$ FRACTION FROM SELECTED SOIL HORIZONS.

(Mg-saturated/glycerol (a); K-saturated, $20^{\circ}C$ (b), $350^{\circ}C$ (c), $550^{\circ}C$ (d)).

FIGURE 80: GIBBSITE DEPTH FUNCTIONS - Chronosequence.

FIGURE 81: TRIANGULAR DIAGRAM ILLUSTRATING DEPLETION OF AL AND Fe RELATIVE TO Si - Chronosequence.

FIGURE 82: DIFFERENTIAL THERMOGRAMS OF SOME COMPLEX FLUORIDES. (A, $Ca_{0.5}MgAlF_6$; B, $(Na_{0.5}Ca_{0.25})MgAlF_6$; C, $NaMgAlF_6$; D, $KMgAlF_6$; E, basalt residue following 24-hour digestion with 48% HF).

FIGURE 83: X-RAY DIFFRACTOGRAMS OF RESIDUES FROM $<2\mu m$ FRACTION OF THE B₃G HORIZON OF Ok 1 FOLLOWING HF DIGESTION.

(a, anatase; cy, clay (110); f, complex magnesium aluminium fluoride precipitated during digestion; m, mica; pg, mineral of the plumbogummite group; q, quartz; r, rutile).

APPENDIX I

LIST OF PLANT NAMES

<u>COMMON NAME</u> American beech Blackberry Bog pine Bracken fern

Buttercup Cocksfoot Coprosma Gorse Hall's totara Hard beech Kahikatea Kamahi Manuka Matai Miro Mountain beech Pepper tree Pink pine Quintinia Red beech Rimu Rush Sedge Silver beech Silver pine

Sphagnum moss

Umbrella fern

Yellow-silver pine

Toa toa

Tussock

Totara

SCIENTIFIC NAME Fagus grandifolia Rubus fruticosus Dacrydium bidwillii Pteridium aquilinum var. esculentum Ranunculus sp. Dactylis glomerata Coprosma crassifolia Ulex europaeus Podocarpus hallii Nothofagus truncata Podocarpus dacrydioides <u>Weinmannia</u> racemosa Leptospermum scoparium Podocarpus spicatus Podocarpus ferrugineus Nothofagus solandri var. cliffortioides Pseudowintera colorata Dacrydium biforme Quintinia acutifolia Nothofagus fusca Dacrydium cupressinum Juncus spp. Carex spp. Nothofagus menziesii Dacrydium colensoi Sphagnum fulcatum Phyllocladus alpinus Podocarpus totara Chionochloa spp. Gleichenia circinata Dacrydium intermedium

APPENDIX II

PROFILE DESCRIPTIONS OF SOILS OF THE REEFTON CHRONOSEQUENCE

Note: Soil profiles are described using terms defined in "Soil Survey Method" (Taylor and Pohlen, 1962). Soil colour notation is that of "Munsell Soil Colour Charts" (1954). All grid references refer to N.Z.M.S. Sheet S. 38.

Profile:	Ho 1 (Hokitika sandy loam, site 1).
<u>Location</u> :	100 m south of Waitahu River, 10.5 km east of main Reefton - Inangahua road. (S.38/344337).
Topography:	Flat. Highest part of floodplain.
Site Vegetation:	Grass and buttercup. 8 m from edge of red beech dominated forest remnant.
Altitude: 190 m	Estimated annual rainfall: 1920 mm.

Profile:

A ₁₁ 18 cm	dark brown (10YR 3/4) sandy loam; friable: weakly developed fine granular
	and crumb structure, grading downwards
	to fine and medium nutty; no stones;
	abundant grass and numerous tree roots;
	diffuse smooth boundary,
A ₁₂ 20 cm	dark brown $(7.5YR 4/3)$ loamy sand;
	medium nutty structure; few grass or
	tree roots; distinct, slightly wavy
	boundary,
C on	white $(7.5Y 8/1)$ to grey $(5Y 6/1)$ sandy
	gravel; loose; structureless; no roots.

Parent Material:

Native Vegetation:

Silty alluvium over gravels from granite (dominant) and indurated sandstone. Red and silver beech, totara, matai, and kahikitea.

Profile:

Location:

I(y) 1 (Ikamatua silt loam, younger variant, site 1).

250 m north of road to Dauntless mine, 3.4 km east of its intersection with main Reefton-Inangahua road. (S. 38/351332).

Flat river terrace, 4 m above floodplain.

Forest remnant: red beech (0.5 - 0.6 m,

Site located 8 m from terrace edge.

d.b.h.), coprosma and pepper tree.

Many fallen logs.

Topography:

Site Vegetation:

Altitude: 194 m

7 cm

Estimated annual rainfall: 1920 mm.

Profile:

A

0 3; cm

very dark brown (5YR 4/3) partly decomposed litter of red beech leaves and twigs; distinct boundary,

dark brown (10YR 4/3) to very dark brown (10YR 2/3) silt loam; very friable; weakly developed medium and fine nutty structure; many roots; indistinct boundary,

AB 9 cm

dark yellowish brown (10YR 4/4) silt loam; friable; moderately developed medium nutty structure; few roots; indistinct boundary, B 13 cm yellowish brown (10YR 5/4) fine sandy loam; friable; weakly developed medium and fine nutty structure; very few roots; diffuse boundary,

B₃ 12 cm yellowish brown (10YR 5/5) loamy sand; friable; very weakly developed medium nutty structure; few mica flakes; very few roots; distinct to sharp boundary,

С

dark yellowish brown (10YR 4/4) sandy gravel; loose; structureless; abundant mica, quartz and rock fragments; many medium stones, dominantly granite with some indurated sandstone; no roots.

Parent Material:

on

Native Vegetation:

Red beech (dominant), kamahi, quintinia, rimu, matai and kahikitea.

Silty alluvium over gravels from granite

(dominant) and indurated sandstone.

Profile:

Location:

Topography:

Site Vegetation:

I(o) 1 (Ikamatua fine sandy loam, older variant, site 1).

140 m north of road to Dauntless mine, 3.1 km east of its intersection with main Reefton-Inangahua road. (S. 38/355334).

Flat river terrace. Separated from site I(y) 1 by minor terrace scarp.

Forest remnant: dominant red beech (0.5-0.7 m, d.b.h.), some silver beech, pepper tree. Many fallen logs.

Altitude: 198 m

Estimated annual rainfall: 1920 mm.

Profile:

OA 3 cm

A 7 cm

B₂₁ 15 cm

B₂₂ 17 cm

C₁₁ 13 cm

C₁₂ on

Parent Material:

Native Vegetation:

dark reddish brown (5YR 3/2) peaty loam with much decomposed litter of beech leaves and twigs; distinct boundary.

dark brown (8.5YR 3/4) fine sandy loam; very friable; moderately developed medium and fine granular and fine and very fine crumb structures; many roots; distinct boundary,

strong brown (7.5YR 5/6) sandy loam; very friable; moderately developed coarse and medium granular and fine and very fine crumb structures, with patches of medium nutty structure surrounding roots; few roots; indistinct boundary, yellowish brown (10YR 5/7) loamy sand; very friable; weakly developed medium and fine nutty structure; few roots; distinct boundary,

olive brown (1Y 4/4) gravelly sand; loose; structureless; few medium and small stones of granite and indurated sandstone; no roots; distinct boundary,

white (N8) to very dark greyish brown (2.5Y 3/2) sandy gravel; loose; structureless; few small stones of granite and indurated sandstone; no roots.

Silty alluvium over gravels from granite (dominant) and indurated sandstone.

Red beech (dominant), kamahi, quintinia, rimu, matai and kahikitea.

Profile:I(w) 1 (Ikamatua fine sandy loam, wetter
variant, site 1).Location:50 m south of road to Dauntless mine,
3.9 km east of its intersection with
main Reefton-Inangahua road.
(S. 38/361333).Topography:Flat. Lower-lying area of river terrace.Site Vegetation:Manuka scrub, grass.

Altitude: 197 m

Estimated annual rainfall: 1920 mm.

Profile:

OA 13 cm dark reddish brown (5YR 2/3) humose sandy loam; very friable; weakly developed fine nutty structure, breaking into moderately developed medium and fine granular and fine and very fine crumb; many roots; distinct, wavy boundary,

dark reddish brown (5YR 2/4) fine sandy 17 cm A loam; friable; weakly developed coarse to fine nutty structure grading to fine and very fine granular and crumb; few roots; indistinct boundary, A_{2g} 8 cm dark brown (7.5YR 4/2) to dark yellowish brown (10YR 4/4) and dark reddish brown (5YR 2/4) sandy loam; friable; moderately developed coarse to very fine nutty structure; few roots and worm casts; sharp wavy boundary, iron pan; dark reddish brown (5YR 2/2); 0.2 cm Bfe hard; sharp wavy boundary,

B ₂₁ 23 cm	23 cm	light yellowish brown (10YR 6/4) loamy
		sand; some iron and humus staining
		in root channels; very friable;
		moderately developed coarse and medium
	granular and fine and very fine crumb	
	structures; few roots; indistinct	
	boundary,	
B ₂₂ 15 cm	brownish yellow (10YR $6/6$) loamy sand;	
		friable; weakly developed coarse to
		very fine nutty, and fine and very fine
	crumb and granular structures; rare	
	roots; distinct boundary,	
C	5 cm	light yellowish grey (7.5Y 8) to dark
C ₁₁	5 cm	light yellowish grey $(7.5Y 8)$ to da

light yellowish grey (7.5Y 8) to dark brown (10YR 3/3) stony, sandy gravel; loose; structureless; no roots; distinct boundary,

light olive brown (2.5Y 5/4) gravelly sand; loose; structureless; few small stones of granite and indurated sandstone; no roots.

Silty alluvium over gravels from granite (dominant) and indurated sandstone.

Red beech (dominant), matai, kahikitea, kamahi, quintinia, rimu.

Ah 1 (Ahaura silt loam, site 1). 480 m south of road to Dauntless mine, 3.5 km east of its intersection with main Reefton-Inangahua road. (S. 38/355326).

Flat glacial outwash terrace. Freedraining site in slightly lower part of terrace.

Parent Material:

on

Native Vegetation:

Profile:

C₁₂

Location:

Topography:

Forest remnant: dominant red beech Site Vegetation: (0.6-1.1 m, d.b.h.) with some silver Many stumps, fallen logs and beech. litter mounds. Some grass. Recently opened to stock. Estimated annual rainfall: 1920 mm.

Altitude: 210 m

Profile:

A 8 cm brown to dark brown (7.5YR 4/4) silt loam: very friable: moderately developed medium and fine nutty structure (surface) grading downwards to moderately developed medium and fine granular and crumb: many roots at surface, few fragments of beech litter on surface; indistinct boundary.

brown to dark brown (7.5YR 4/4) and yellowish brown (10YR 5/8) sandy loam; very friable; moderately developed medium and fine granular, and fine and very fine crumb structures; few roots: distinct boundary.

brownish yellow (10YR 6/8) sandy loam; very friable; moderately developed coarse to fine granular and fine and very fine crumb structures; few roots; diffuse boundary,

brownish yellow (10YR 7/8) sandy loam; very friable: ultimate structure is fine and very fine crumb; some tendency to form coarser aggregates that are either nuts or blocks; very few roots; indistinct boundary.

B₂₂

AB

B₂₁

10 cm

14 cm

19 cm

brownish yellow (9YR 6/6) sandy loam; 15 cm very friable: massive; breaks to indefinite crumb-like structures; very few roots; distinct boundary, C₁₁ 15 cm yellowish brown (9YR 5/6) loamy sand; massive; slightly coherent, breaking to indefinite crumb-like structures: very few roots; sharp boundary, ^C12 light olive brown (3.5Y 5/6) sandy on gravel; loose; structureless; few small to large stones of granite (dominant) and indurated sandstone. Parent Material: Silty alluvium over gravels from granite

Native Vegetation:

(dominant) and indurated sandstone. Red beech (dominant), rimu, kamahi, quintinia, matai and kahikitea.

Profile:

B₃

Location:

Topography:

Site Vegetation:

Altitude: 250 m

Ku 1 (Kumara silt loam, site 1). 300 m north-east of Reefton railway station. (S. 38/322306).

Flat, intermediate level, glacial outwash terrace.

Manuka scrub, moss, sedges, grass.

Estimated annual rainfall: 1920 mm.

Profile:

15 cm A

brown to dark brown (7.5YR 4/2) silt loam; slightly plastic; non sticky; structureless: many roots: distinct boundary,

light brownish grey (10YR 6/2) heavy A₂G 10 cm silt loam: slightly plastic; moderately sticky; massive; moderately coherent; indistinct boundary, few roots: light grey (7.5Y 7/1) and dark greyish G 21 cm brown (10YR 4/2) silt loam; plastic; moderately sticky; massive; coherent; few roots: distinct boundary. dark brown (7.5YR 3/4) and light grey B_hG 11 cm (7.5Y 7/1) heavy silt loam; slightly plastic; moderately sticky; weakly developed very fine nutty structure; many roots; distinct boundary, light grey (7.5Y 7/2) silt loam with B₂G 4 cmdark reddish brown (5YR 2/2) stains along cracks and root channels; slightly plastic; slightly sticky; very weakly developed coarse blocky structure with nutty structure near cracks and some thin platy structure at bottom of horizon; many roots (in patches); distinct boundary, light grey (7.5Y 7/1) silt loam; B₂G 15 сш non plastic; non sticky; massive; moderately coherent; few roots; distinct boundary. dark yellowish brown (10YR 3/4) gritty C on silt among weathering granite stones up to 20 cm in diameter; massive; very

hard: few roots.

Parent Material:

Silty alluvium (or loess?) over gravels from granite (dominant) and indurated sandstone.

438.

Profile:Ok 1 (Okarito loamy sand site 1).Location:600 m north-west of Waitahu Dam.
(S. 38/364340).

silver pine.

<u>Topography</u>: Slightly undulating high level glacial outwash terrace. Site is 40 m from edge of terrace, and is slightly higher than the main terrace surface.

<u>Site Vegetation</u>: Manuka scrub, bracken fern, umbrella fern, grass, occasional orchids.

Altitude: 390 m Estimated annual rainfall: 1920 mm.

Profile:

A	14 cm	dark reddish brown (6YR 3/3) loamy sand; non plastic; non sticky; weakly
		developed medium and fine nutty structure; few roots; distinct boundary,
AG	6 с т	dark greyish brown (10YR 4/2) spotted with light grey (7.5Y 6/1) silt loam; firm; massive; moderately coherent; very few roots; distinct boundary,
G	12 cm	grey (5Y 6/1) silt loam; extremely firm; massive; very coherent; very few roots; patchy boundary,
₿ ₂ Ġ	19 cm.	<pre>light grey (6Y 7/1), orange (10YR 6/6) and brown (10YR 3/3) silt loam; very dark brown (7.5YR 2/3) stains on faces of major vertical cracks and of some prisms; very few roots; distinct boundary,</pre>

B₃G 11 cm

light grey (8.5Y 7/1) silt loam; few strong brown (7.5YR 5/8) mottles; very firm; massive; moderately coherent; no: roots; distinct boundary,

С

on

grey (7.5Y 6/1) gritty silt loam; very firm; massive; moderately coherent; many weathered granite stones; no roots.

<u>Parent Material</u>: Silty alluvium (or loess?) over gravels from granite (dominant) and indurated sandstone.

Native Vegetation:

Stunted forest or scrub of manuka, bog pine, pink pine, yellow-silver pine and mountain beech.
PROFILE DESCRIPTIONS OF UPPER HORIZONS OF TRANSECT SOILS, AND OF THE A_2 HORIZON OF I(o) 2.

Note: Site characters for profiles Ah 2 - Ah 9, and for I(o) 2 are similar to those listed in Appendix I for profile Ah 1 and I(o) 1, respectively.

Profile:

A 6 cm

Ah 2 (Ahaura fine sandy loam, site 2). dark brown (7.5YR 3/4) fine sandy loam; very friable; moderately developed medium and fine nutty structure (surface) grading downward to moderately developed medium and fine granular and fine and very fine crumb; root mat at surface; indistinct boundary,

AB 12 cm

patches of reddish yellow (10YR 6/8) fine sandy loam; very friable; strong to moderately developed medium to very fine nutty, and moderately developed medium and fine granular, and fine and very fine crumb structures; few roots; distinct boundary,

dark brown (7.5YR 3/4) with a few

strong brown (7.5YR 5/8) fine sandy loam; very friable; moderately developed coarse to fine granular, and fine and very fine crumb structures; some deposition of iron oxides on faces of peds; no roots; diffuse boundary,

14 cm

Profile:

A 7 cm

AB 11 cm

^B21

14 cm

Profile:

A_2

OA 6 cm

14 cm

dark reddish brown (5YR 3/2) fine sandy loam; very friable; moderately developed fine nutty structure grading downwards to moderately developed medium and fine granular and fine and very fine crumb; many roots; indistinct boundary, dark reddish brown (5YR 3/2) fine sandy loam; very friable; moderately developed medium and fine nutty structure and moderately developed medium and fine granular, and fine and very fine crumb; many roots; distinct boundary,

Ah 3 (Ahaura fine sandy loam, site 3).

strong brown (7.5YR 5/8) silt loam; very friable; moderately developed medium and fine nutty structure, and moderately developed coarse to fine granular and fine and very fine crumb; very few roots; diffuse boundary,

Ah 4 (Ahaura fine sandy loam, site 4).

dark reddish brown (5YR 3/3) peaty fine sandy loam; very friable; weakly developed fine nutty structure breaking to moderately developed medium and fine granular, and fine and very fine crumb; abundant decomposing beech leaves; many roots; distinct boundary,

strong brown (7.5YR 4/6) and dark reddish brown (5YR 2/3) silt loam; very friable; moderately to strongly dveloped medium and fine nutty structure, and medium and fine granular and fine and very fine crumb; many roots; distinct boundary,

strong brown (10YR 5/6) silt loam; B₂₁ 15 cm iron oxide staining on the faces of many peds; very friable; strongly developed medium and fine nutty structure, breaking to fine and very fine granular and crumb; few roots; diffuse boundary. Ah 5 (Ahaura fine sany loam, site 5). Profile: dark reddish brown (5YR 2/4) peaty 8 cm A 21 fine sandy loam; friable; moderately developed medium and fine nutty. granular and crumb structures; few roots; distinct wavy boundary, A 22 4 cm dark reddish brown (5YR 2/3) silt loam; friable; moderately developed medium and fine nutty and fine and very fine crumb structures; few roots; sharp wavy boundary. B_{h.fe} 0.4 cm humus/iron pan: dark reddish brown (5YR 2/2); hard; sharp wavy boundary, 16 cm yellowish brown (10YR 5/6) silt loam; B₂₁ very friable; weakly developed medium and fine nutty structure breaking to fine and very fine granular; rare roots; diffuse boundary, Profile: Ah 6 (Ahaura silt loam, site 6). dark red (2.5YR 3/6) partly decomposed 9 cm 🐳 0 moroid litter of red beech leaves and twigs; many roots; distinct boundary.

443.

dark reddish brown (2.5 YR 2/4) peaty silt loam; very friable; moderately developed medium and fine nutty structure breaking to moderately developed medium and fine granular, and fine and very fine crumb; many roots; distinct boundary.

B₂₁ 14 cm

6 cm

strong brown (7.5YR 5/6) fine sandy loam; very friable; weakly developed medium and fine nutty structure breaking to moderately developed coarse to fine granular, and fine and very fine crumb; few roots; diffuse boundary,

Ah 7 (Ahaura fine sandy loam, site 7).

0 <u>5</u> cm

10 cm

Profile:

dark reddish brown (5YR 3/3) partly decomposed moroid litter of red beech leaves and twigs; many roots; distinct boundary,

very dark brown (7.5YR 2/3) to strong brown (7.5YR 4/6) slightly peaty fine sandy loam; very friable; moderately to strongly developed medium and fine nutty structure breaking to moderately developed fine and very fine granular, and medium to very fine crumb; many roots; distinct boundary,

yellowish brown (10YR 5/6) fine sandy loam; very friable; moderately developed medium and fine nutty structure breaking to coarse to fine granular, and fine and very fine crumb; few roots; diffuse boundary,

B₂₁

A

15 cm

dark brown (7.5YR 3/4) silt loam; Α 12 cm very friable; moderately to strongly developed medium and fine nutty structure (surface) grading downward to moderately developed medium to very fine granular, and fine and very fine crumb; many roots; distinct boundary, strong brown (7.5YR 4/6) silt loam; B1 18 cm very friable; moderately developed medium and fine nutty structure breaking into medium and fine granular, and fine and very fine crumb; few roots; distinct boundary. ^B21 brownish yellow (10YR 6/6) silt loam; 15 cm very friable: breaks ultimately into fine and very fine crumb structures; some tendency to form coarser aggregates that are either nuts or blocks; very few roots; diffuse boundary, Profile: Ah 9 (Ahaura silt loam, site 9). dark reddish brown (5YR 2/3) slightly **OA** 9 cm peaty silt loam; very friable; weakly developed fine nutty structure breaking to moderately developed medium and fine granular and fine and very fine crumb: many decomposing red beech leaves and twigs; many roots; distinct boundary. dark brown (7.5YR 4/4) silt loam; AB 17 cm very friable; moderately to strongly developed medium and fine nutty structure breaking to medium and fine granular and fine and very fine crumb; few roots; distinct boundary,

Ah 8 (Ahaura silt loam, site 8).

Profile:

445.

B₂₁ 16 cm

brownish yellow (10YR 6/6) silt loam; very friable; breaks ultimately into fine and very fine crumb structure; some tendency to form coarser aggregates that are either nuts or blocks; very few roots; diffuse boundary,

Profile:

I(o) 2 (Ikamatua fine sandy loam, older variant, site 2).

A₂ 9 cm

dark brown (7.5YR 3/4) peaty fine sandy loam; very friable; weakly developed medium to very fine nutty structure breaking to fine and very fine granular and crumb; few roots; distinct boundary.

ADDENDUM

Since this thesis was completed, further work including the application of the test devised by Greene-Kelly $(1953)^1$ has confirmed that the smectite group mineral that dominates the clay fractions of the A_2 horizons at Ah 5, and referred to as montmorillonite in the text, belongs to the beidellitenontronite series. It is likely that the smectite minerals identified at other sites also belong to this series. The products formed from muscovite, the dominant mineral present in the parent material of the soils, are more likely to approach the beidellite end of the series.

Sokolova, Targul'yan and Shostak $(1971)^2$ and Belousova, Sokolova and Tyapkins $(1973)^3$ have found highly aluminous minerals of the montmorillonite (smectite) group, in which the layer charge arose in the tetrahedral positions, in the A_2 horizons of Al-Fe-humic podzolic soils. They have identified these minerals as beidellites. It is considered that more detailed examination of the smectite minerals found in the A_2 horizons of podzols from other areas will lead to further reports of the presence of minerals of the beidellite-nontronite series. Such studies may help to elucidate the conditions of formation of the minerals concerned.

GREEN-KELLY, R. 1953. The identification of montmorillonpids in clays. J. Soil. Sci. 4: 233-237.

² SOKOLOVA, T.A., TARGUL'YAN, V.O., & SHOSTAK, R.V. 1971. Description of a swelling mineral from the A₂ horizons of podzolic Al-Fe-humic soils. Pochvovedeniÿe 7: 129-137.

³ BELOUSOVA, N.I., SOKOLOVA, T.A., & TYAPKINA, N.A. 1973. Profile differentiation of clay minerals in Al-Fepodzolic soils on granite. Pochvovedeniye 11: 116-132.