
Journal of Physical Education and Sport ® (JPES), 17(1), Art 36,  pp. 240 – 247, 2017 
online ISSN: 2247 - 806X; p-ISSN: 2247 – 8051; ISSN - L = 2247 - 8051 © JPES 

 

240 ---------------------------------------------------------------------------------------------------------------------------------- 

Corresponding Author APIWAN MANIMMANAKORN, E-mail: apiwanta@yahoo.com 

Original Article 
 

Low-load resistance training with hypoxia mimics traditional strength training in 

team sport athletes 
WORRAWUT THUWAKUM 

1
, MICHAEL J. HAMLIN 

2
, NUTTASET MANIMMANAKORN

 3
, 

NARUEMON LEELAYUWAT 
4,
 , PREETIWAT WONNABUSSAPAWICH 

5
,  

DISSAPHON BOOBPACHAT
 6
, APIWAN MANIMMANAKORN

7
 

1,5,6 
Exercise and Sport Sciences Program, Graduate School, Khon Kaen University, THAILAND 

2
 Department of Tourism, Sport and Society, Lincoln University, NEW ZEALAND  
3
 Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, THAILAND 
4,7
 Department of Physiology, Faculty of Medicine, Khon Kaen University, THAILAND 

4,5,7 
Exercise and Sport Sciences Development and Research Group, Khon Kaen University, THAILAND 

 

Published online: March 31, 2017  

(Accepted for publication February 05, 2017) 

DOI:10.7752/jpes.2017.01036 

        

Abstract     

The aim of this study was to investigate the effects of low-load resistance training under hypoxia 

compared to conventional resistance training. Forty male team sport athletes (20.2 ± 1.7 y, 172.5 ± 5.6 cm, 66.3 

± 9.6 kg) were divided into 4 resistance training groups; normobaric 30%1RM (CT30), normobaric 80%1RM 

(CT80), hypoxic 30%1RM (HT30), and hypoxic 50%1RM (HT50). Resistance training included 3 sets of 15 

repetitions of knee extensions and 3 sets of knee flexion, 3 day a week for 5 weeks. The hypoxic condition was 

set at FiO2 = 14%. Isometric, isokinetic and isotonic maximal voluntary contractions (MVC) along with blood 

lactate were measured before and after the five week training program. Compared to CT30, isometric MVC 

increased substantially in all other groups after training (CT80 21.0 ± 14.7%, HT30 16.9 ± 12.3%, HT50 16.7 ± 

7.9), however there was no significant difference between groups. Compared to CT30 1RM increased post 

training in the CT80 and HT50 groups (23.7 ± 10.8 % and 24.4 ± 3.8% p = 0.004, p = 0.045 respectively) with 

little difference found between CT80 and HT50 groups (0.6 ± 8.4%). Low-load resistance training under hypoxic 

conditions (HT50) mimics the strength benefits gained from traditional high load training. 

Keywords: Muscle strength, Endurance, Simulated altitude, High load, Blood Lactate 

 
Introduction 

Sport scientists, athletes and coaches recognize that resistance training is integral for improving 

muscular strength, however the ideal training regime for strength improvement is debatable. Muscular strength is 

a key factor in many sports, not only for improvement in physical performance but also for the prevention of 

injury (Kraemer & Fleck, 2005). Muscle strength and size gain is dependent on the type of exercise and intensity 

of resistance as well as training volume of the strength training program. Workloads of at least 65% of one 

repetition maximum (1RM) are required to achieve a substantial increase in strength. However, training benefits 

can be obtained throughout the RM range. High-loads (> 80% of 1RM) are used when the goal is maximum 

strength gain, moderate (> 50% of 1RM) for hypertrophy and muscle power enhancement, and low-loads (> 20% 

of 1RM) for muscular endurance
 
(American College of Sports, 2009; Hillman SK, Perrin DH., 2005). Even 

though high resistance loads are commonly used by athletes, such training may result in muscle, ligament and 

tendon injury
 
(Raske & Norlin, 2002) and reduced central arterial compliance (Miyachi et al., 2004) which may 

increase systolic blood pressure. In addition, some people are not able to lift such heavy weights (injured 

athletes, bed-rest patients, etc.). Therefore, to promote safe resistance training (avoid muscle injury and reduce 

risk of dangerous blood pressure changes) and to assist those who cannot perform high-load resistance exercise, 

low-load resistance exercise has been utilized by sport scientists in combination with other strategies such as 

venous occlusion and simulated altitude or hypoxia. Using low-load resistance exercise alone, has little adaptive 

effect on muscular strength, however, combined with either venous occlusion or hypoxia, low-load resistance 

training results in increased stress on the musculature which forces the muscle fibres to adapt and strengthen 

(Wernbom, Augustsson, & Raastad, 2008). As such, low-load resistance exercise (20-50% of 1RM), in 

combination with venous occlusion, has been proposed as an alternative to high-load resistance exercise
7
.   

 Similar to venous occlusion in combination with low-load resistance training, recent studies have 

reported an enhancement in muscle strength after low-load resistance exercise combined with hypoxia
 

(Manimmanakorn, Hamlin, Ross, Taylor, & Manimmanakorn, 2013). It is thought that during venous occlusion 

the blood flow restriction probably causes substantial hypoxia
 
(Downs et al., 2014; Loenneke & Pujol, 2009; 

Manini & Clark, 2009) which may play a key role in muscle adaptation (Manimmanakorn et al., 2013; Scott, 

Slattery, Sculley, & Dascombe, 2014), thus training under hypoxic conditions may be responsible for the 

increased force, endurance and size of the muscle rather than the reduced blood flow per se.  
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 To date, there has been little research exploring what resistance loads  when combined with hypoxia, 

produces the optimal strength adaptation and whether such training is superior to the standard practice of 

80%1RM training under normoxia. Therefore, this study aimed to investigate the effectiveness of 5 weeks of two 

different low resistance training loads (30%, or 50%1RM) combined with hypoxia (compared to low-load 

30%1RM and conventional resistance training of 80%1RM in normoxia) on muscle strength, endurance and 

physical performance. 

 

Methods 

Participants 

 Forty high performance team sports athletes (males aged 20.2 ± 1.7 years, soccer = 27, hockey = 3, 

basketball = 10) volunteered for this study. All athletes completed the Physical Activity Readiness Questionnaire 

and a skill-related physical fitness test. All athletes met the inclusion criteria as follows: they reported no 

exposure to an altitude of > 1,000 m within the last 3 months, no history of severe acute mountain sickness, no 

contraindicative health conditions, or medications (e.g., anabolic steroids, creatine, sympathoadrenal drugs) 

during the study and no resistance training within past 3 months. The athletes were excluded if they had any 

health problems such as; hypertension, cardiovascular disease, pulmonary disease, diabetes mellitus, orthopedic 

problems (e.g. bone, joint, muscle) and carcinoma. Athletes were informed about the experimental procedures as 

well as the purpose of the study and what was required of them. A written informed consent approved by the 

local human ethics committee was attained by each athlete prior to the start of the study. 

Experimental design 

 This study is a randomized controlled trial comparing the muscle strength and endurance of extensor 

muscle groups, physical fitness performance and blood lactate changes after five weeks of training. The athletes 

were randomly divided into four experimental groups based on the level of intensity of resistance training: the 

low-load resistance exercise (30%1RM) while breathing room air (normobaric control training; CT30, n = 10), 

the low-load resistance exercise (30%1RM) while breathing 14% oxygen concentration [hypoxic condition 

(hypoxic low-load resistance exercise; HT30, n = 10)], low-load resistance exercise (50%1RM) while breathing 

14% oxygen concentration [hypoxic condition (hypoxic low-load resistance exercise; HT50, n = 10)], and high-

load resistance exercise (80%1RM) while breathing room air (normobaric high-load resistance exercise; CT80, n 

= 10). The hypoxic condition was generated using a hypoxicator machine (model: ATS-HP–Hyperoxic; Altitude 

Technology Solutions Co., Ltd. (ATS), Australia).  

Exercise testing  

 After familiarization and 1-2 days prior to the training, all muscle contractile force estimations were 

conducted on the dominant leg with the athletes seated in an isokinetic machine (Primus RS, model: PR30, BTE 

technology USA). Athletes were placed on a chair with their back upright and with their dominate leg firmly 

secured (via Velcro straps) to the lever of the machine. The pivotal point of the lever was visually aligned with 

the rotation axis of the knee joint to maintain appropriate position during all testing. Maximal isometric 

voluntary contraction (MVC) measurements were completed by asking the athletes to produce the highest 

possible force for six seconds (MVC6). The athletes were verbally encouraged to produce the highest force 

possible during the two trials (interspersed with one minute recovery); subsequently the highest force from both 

trials was used for analysis. After 3-5 min rest, a muscle isokinetic strength test was conducted at angular 

velocities of 60
o
.sec

-1
 and 180

o
.sec

-1
, between the range of 0 and 90 degrees. Five trials were taken at each 

angular velocity (2 min rest between each trial), and the highest value obtained was used for further analyses. 

After a further 3-5 min rest, dynamic muscle endurance was measured by calculating the number of repetitions 

the athletes could complete at a constant cadence (1 s concentric and 1 s for eccentric movement) with a 

40%1RM load (Reps40 of 1RM). After a further 3 min rest, the muscle strength-endurance test was performed 

on the isokinetic machine. Athletes performed 3 sets of 10 repetitions (30s recovery between each set) at angular 

velocity of 60
o
.sec

-1
. Fatigue was calculated from this test by comparing the peak force developed in the first 

versus the last set.  One to three days before and after the 5-week resistance training period all athletes 

completed a series of sport specific performance tests. The athletes were accustomed with these tests which were 

a regular part of their normal testing routines. Explosive power was estimated by the maximum effort 

countermovement jump test using standard procedures (Swift Yardstick Vertical Jump Tester made in Australia), 

while explosive speed was measured by a 10 and 20-m sprint. We used standard procedures for testing aerobic 

fitness via the maximal multistage 20-m shuttle run test (20-MST)
 
(Leger & Lambert, 1982). Maximal oxygen 

consumption (VQO2max) and maximal attained speed (MAS) were predicted based on 20-MST data
 
(Flouris, 

Metsios, & Koutedakis, 2005). All tests were performed at the same time of day under similar temperature 

conditions on a nonslip surface in a covered stadium.  A visual analogue scale was used for determining 

knee extensor muscle pain
 
(Summers, 2001). The athletes were asked to record their daily subjective rating of 

pain (0 no pain, 10 severe pain) after they completed their resistance training. 

 Training program Resistance training was performed on a knee extension and flexion training device (leg 

flexion-extension S-105, STRIVE Fit LLC, USA) and consisted of 3 sets for flexion followed by 3 sets for 
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extension, (i.e.6 sets of 15 reps), with 60 s of rest between sets, three training session per week for 5 weeks. All 

groups performed a warm-up consisting of 3 sets of 10 reps at 20%1RM, before each training session. Training 

intensity and volume for the normoxic groups (FIO2 = 20.9%) were set at 30% of 1RM (CT30) and 80% of 1RM 

(CT80). The hypoxic groups (HT30 and HT50) trained with FIO2 = 14% and either 30% of 1RM (HT30), or 

50%1RM (HT50). The 1RM strength was re-assessed after 3 weeks of training to adjust the training load in all 

groups. The range of motion in each set of exercise was from 90 to 0
o
 (0

o
 at full extension).  

 

Measures 

1RM measurement 

 One day before and 3 days after the 5-week training period, we measured knee extension 1RM using a 

stationary weight machine (leg extension S-105, STRIVE Fit LLC, USA) under normoxic conditions. Athletes 

completed a standardized warm-up and stretch for several minutes prior to testing. To estimate 1RM we used the 

10RM test and formula as proposed by Brzycki (1998) (1RM = weight lifted/1.0278-(0.0278 × reps)
 
(Brzycki, 

1998).  

Heart rate and SpO2 monitoring Heart rate and SpO2 were monitored daily before training and at the end of each 

set (6 sets/day) of resistance exercises by a pulse oximeter (Beurer model: PO30 made USA) in all groups.  

Blood lactate measurement A small blood sample (15-50µl) was taken from the athlete’s fingertip before, 

immediately, 15 and 30 minutes after the isokinetic knee extension fatigue test and analysed for blood lactate 

(ACCU-CHEK Safe-T-Pro Plus). 

Statistical analysis The values are expressed as means ± SD. All data were tested for normal distribution with the 

Kolmogorov-Smirnov statistic.  The results in SpO2, blood lactate, heart rate, %fatigue and subjective scores 

(RPE score, Pain score) were analysed using an independent t-test to compare the control groups with the 

hypoxic groups. To compare pre and post training within groups a paired t-test was conducted. The MVC6, 

number of Reps, 1RM, isokinetic force (velocity at 60
o
.sec

-1
 and 180

o
.sec

-1
), and physical performance 

parameters were analysed using a specifically designed spreadsheet available for controlled trials to calculate 

magnitude-based inferences for effect sizes
 
(Hopkins, 2006). Then to make suppositions about true (population) 

values of the effect, the uncertainty in the effect was expressed as 90% confidence limits (CL). The chances that 

the true effects were substantial were estimated by the spreadsheet
 
(Hopkins, 2006). We generated the smallest 

worthwhile change value by multiplying the baseline between-subject standard deviation by Cohen’s value of 

the smallest worthwhile effect of 0.2 (Cohen, 1998). Effects that were simultaneously both > 75% likely positive 
and < 5% negative were considered large and beneficial. An effect was regarded unclear if its confidence 

interval overlapped the thresholds for substantiveness; that is, if the effect could be considered positive and 

negative. 

 

Results 

 There were no significant differences in athletes’ characteristics between groups. Compared to 

normoxic groups (CT30, CT80) the hypoxic groups (HT30, HT50) blood oxygenation saturation showed 

substantially lower blood oxyhaemoglobin saturation levels (SpO2) at the end of every set (set 1 to set 6) during 

training (Fig. 1). No difference in SpO2 levels were found within either normoxic or hypoxic groups. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Changes in SpO2 (mean ± SD) before and at end of each set during training sessions in the hypoxia 

groups and control group *Significant difference between CT30 and HT30 or HT50), 
#
significant difference 

between CT80 and HT30 or HT50). 
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 Compared to baseline the MVC6 of the knee extensors changed by -0.9 ± 7.4%, 21.0 ± 14.7%, 16.9 ± 

12.2%, and 16.7 ± 7.9% in the CT30, CT80, HT30, and HT50 groups respectively, while 1RM increased over the 

same time by 4.9 ± 4.8%, 23.7 ± 10.8%, 5.0 ± 2.5%, and 24.4 ± 3.8% in CT30, CT80, HT30, and HT50, and groups 

respectively. Relative to CT30, HT30 and HT50 increased in explosive force measured via the vertical jump test 

(5.3 ± 3.7% and 4.4 ± 6.5%), speed  10 m (-9.9 ± 5.1% and -10.0 ± 6.3%) after training (Table 1a-d). Compared 

to HT30, individuals in the HT50 group showed similar changes in performance indicators after the resistance 

training intervention (except for 1RM).  

Table 1.The percent changes in muscular and physical performance indices after 5-weeks resistance training. 

Change in performance % 
Chance that the true 

difference in substantial 

 

  Difference 

90%CL 
% Qualitative 

a)   CT30 vs HT30 CT30 HT30    

Muscular Performance      

    MVC6    -0.9 ± 7.4   16.9 ± 12.2  19.5 ± 12.7 98 very likely 

    Number of reps -15.2 ± 25.6   10.8 ± 16.0  34.3 ± 20.9 99 very likely 

    1RM    4.9 ± 4.8     5.0 ± 2.5   -0.1 ± 3.8 33 unclear 

    Isokinetic contraction 

        CON 60o.sec-1 

 

 33.8 ± 13.7 

 

  36.4 ± 18.6 

 

 -7.4 ± 24.1 

 

24 

 

unclear 

        CON 180o.sec-1  22.5 ± 17.9   37.7 ± 10.0  16.4 ± 15.9 94 likely 

        ECC 60o.sec-1  11.1 ± 22.2   18.0 ± 22.6    7.1 ± 24.9 68 unclear 

        ECC 180o.sec-1  23.0 ± 9.0   23.7 ± 15.1    0.2 ± 11.4 45 unclear 

Physical Performance      

    Vertical jump    -0.9 ± 4.5     5.3 ± 3.7    4.0 ± 4.8 86 likely 

    Speed 10 m    -3.4 ± 5.3    -9.9 ± 7.3   -3.1 ± 6.0 74 unclear 

    Speed 20 m    -5.0 ± 3.8    -7.1 ± 4.8   -2.0 ± 4.8 65 unclear 

MAS     2.7 ± 4.1     4.3 ± 3.4    1.6 ± 3.9 60 unclear 

V.O2max     3.6 ± 7.2     5.6 ± 7.1    2.1 ± 6.4 62 unclear  

      

b) 

CT30 vs HT50 

 

CT30 

 

HT50 

   

Muscular Performance      

    MVC6   -0.9 ± 7.4   16.7 ± 7.9   13.2 ± 7.7 99 almost certainly 

    Number of reps   -2.0 ± 27.9   16.0 ± 9.0   24.9 ± 22.1 96 very likely 

    1RM    4.9 ± 4.8   24.4 ± 3.8   12.2 ± 7.4 99 almost certainly 

    Isokinetic contraction 

        CON 60o.sec-1 

 

 33.8 ± 13.7 

 

 37.9 ± 16.4 

 

  4.9 ± 22.0 

 

29 

 

unclear 

        CON 180o.sec-1  22.5 ± 17.9  27.4 ± 18.4   3.0 ± 18.9 58 unclear 

        ECC 60o.sec-1  11.1 ± 22.2  26.5 ± 16.0   5.9 ± 22.1 66 unclear 

        ECC 180o.sec-1  23.0 ± 9.0  25.5 ± 24.4   4.3 ± 14.0 67 unclear 

Physical Performance      

    Vertical jump    -0.9 ± 4.5    4.4 ± 6.5   5.5 ± 5.8 91 likely 

    Speed 10 m    -3.4 ± 5.3 -10.0 ± 6.3  -6.4 ± 6.0 94 likely 

    Speed 20 m    -5.0 ± 3.8   -7.4 ± 7.0  -2.4 ± 5.9 68 unclear 

      

MAS    2.7 ± 4.1    1.5 ± 3.1  -0.6 ± 3.7 22 unclear 

V.O2max    5.8 ± 5.7    3.5 ± 5.8  -1.4 ± 5.7 22 unclear 

Table 1 (Cont.) 

Change in performance % 
Chance that the true 

difference in substantial 

 

  Difference 

90%CL 
% Qualitative 

c)  CT80vs HT50 CT80 HT50    

Muscular Performance      

    MVC6 21.0 ± 14.7 16.7 ± 7.9 -4.3 ± 13.3 22 unclear 

Number of reps 17.2 ± 12.7 16.0 ± 9.0 -4.5 ± 11.5 19 unclear 

    1RM 23.7 ± 10.8 24.4 ± 3.8 0.6 ± 8.4 46 unclear 

    Isokinetic contraction 

        CON 60  o .sec-1 

 

39.5 ± 10.0 

 

37.9 ± 16.4 

 

-3.8 ± 13.8 

 

25 

 

unclear 

CON 180  o .sec-1 40.9 ± 10.6 36.9 ± 15.9 -9.1 ± 19.6 16 unclear 

        ECC 60  o .sec-1   28.2 ± 9.4 26.5 ± 16.0 -1.7 ± 14.4 36 unclear 

        ECC 180  o .sec-1 21.6 ± 12.3 25.5 ± 24.4    4.4 ± 20.1 63 unclear 

Physical Performance      

    Vertical jump      0.8 ± 2.3 4.4 ± 6.5   -0.1 ± 4.3 32 unclear 

    Speed 10 m     -6.4 ± 2.5   -10.0 ± 6.3     0.5 ± 5.8 31 unclear 

    Speed 20 m     -4.1 ± 4.8     -7.4 ± 7.0   -3.3 ± 4.7 59 unclear 
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MAS     1.6 ± 4.9 1.5 ± 3.1   -0.1 ± 4.2 31 unclear 

V.O2max 3.6 ± 8.7 3.5 ± 5.8   -5.9 ± 4.7 39 unclear 

      

d) 

HT30vs HT50 

 

HT30 

 

HT50 

   

Muscular Performance      

    MVC6 16.9 ± 12.2 16.7 ± 7.9 -1.5 ± 11.6 34 unclear 

    Number of reps 10.8 ± 16.0 16.0 ± 9.0 6.0 ± 19.4 68 unclear 

    1RM 5.0 ± 2.5 24.4 ± 3.8 15.1 ± 3.0 100 almost certainly 

    Isokinetic contraction 

        CON 60  o .sec-1 

 

36.4 ± 18.6 

 

37.9 ± 16.4 

 

   1.4 ± 17.7 

 

40 

 

unclear 

        CON 180  o .sec-1 37.7 ± 10.0 36.9 ± 15.9 -1.2 ± 16.2 51 unclear 

        ECC 60  o .sec-1 18.0 ± 22.6 26.5 ± 16.0 -4.6 ± 18.0 27 unclear 

        ECC 180  o .sec-1 23.7 ± 15.1 25.5 ± 24.4    0.1 ± 27.9 47 unclear 

Physical Performance      

    Vertical jump  5.3 ± 3.7 4.4 ± 6.5 -1.7 ± 5.7 19 unclear 

    Speed 10 m     -9.9 ± 5.1   -10.0 ± 6.3     1.4 ± 6.3 24 unclear 

    Speed 20 m     -7.1 ± 3.6     -7.4 ± 7.0 -0.7 ± 6.0 46 unclear 

MAS     4.3 ± 3.2 1.5 ± 3.1 -2.5 ± 3.5 5 unclear 

V.O2max     5.6 ± 5.8 3.5 ± 5.8 -4.2 ± 5.9 6 unclear 

± 90% confidence limits; MVC6, the peak maximum isometric voluntary contraction in 6s; Number of reps, the 

number of repetitions able to be performed at 40% 1RM; 1RM, one repetition maximum; CON, concentric 

contraction; ECC, eccentric; MAS, maximal attained speed during the 20-m shuttle run test; VQO2max, estimated 

maximal oxygen consumption from the 20-m shuttle run test. 
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Figure 2. Changes in blood lactate concentration before,  immediately, 15 min and 30 min after the first day (a) 

and last day (b) of training session.*Significant p < 0.05 (CT30 vs HT30), 
#
significant p < 0.05 (CT30 vs HT50) 

The blood lactate concentration increased immediately after the initial exercise in all groups however, no 

significant differences between groups (p < 0.05) were found (Fig. 2a). After 5 weeks of training however, 

compared to CT30, HT30 and HT50 groups showed substantially lower post-exercise (15 and 30 min post) blood 

lactate concentration (Fig. 2b). 

 The amount of fatigue during isokinetic knee extension was significantly decreased in HT30  

(-10.2 ± 5.5%) and HT50 (-7.4 ± 2.2%) when compared to their baseline. In addition, the difference between pre 

and post-tests in fatigue rate improved by 7.2%, 6.6%, 12.5%, and 13.2% in the CT30, CT80, HT30, and HT50  

respectively. Significant differences were only found when comparing CT30 and HT50 (Table 2). 

 

Table 2. The knee extension fatigue rates (%) in concentric and eccentric contraction before and after 5-week 

resistance training. 

 CT30 CT80 HT30 HT50 

pre 20.8 ± 8.1 18.7 ± 7.8 22.8 ± 9.7   20.6 ± 12.1 

post 13.6 ± 3.9 12.0 ± 9.7     10.2 ± 5.5* 7.3 ± 2.2* 

Fatigue rate (%) 

concentric  

differences      -7.1 ± 8.9      -6.6 ± 6.3    -12.5 ± 8.8  -13.2 ± 12.1
¥
 

pre     20.0 ± 15.7     20.4 ± 10.9      18.1 ± 10.4   20.8 ± 16.3 

post     16.2 ± 9.9     14.1 ± 8.9     16.7 ± 8.2   10.0 ± 6.2 

Fatigue rate (%) 

eccentric  

differences      -3.7 ± 19.6      -6.4 ± 10.2      -1.3 ± 15.0  -10.8 ± 19.0 

Values are mean ± SD. 
¥ 
Significant p < 0.05 (CT30 vs HT50), *Significant p < 0.05 (pre vs post). 

The mean ± SD of daily pain score at the end of exercise for 15 training sessions in CT80 was significantly higher 

(5.5 ± 1.0, p < 0.05) compared with HT30 (3.5 ± 1.0) and HT50 (4.5 ± 1.0).    
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Discussion 

 This research investigated the optimal load for resistance training combined with hypoxia (30%1RM 

and 50%1RM) in an attempt to improve muscular strength and increase physical performance in team sport 

athletes. This study has three major findings. Firstly, for the most part, muscular performance (MVC6, 

CON60
o
.sec

-1
, CON180

o
.sec

-1
, number of reps and 1RM) improved in the hypoxia groups (HT30, HT50) 

compared to the normoxia control group (CT30) and it seems that 50%1RM may be slightly better than 30%1RM 

when compared with CT30 for resistance training under hypoxic conditions. Secondly, low-load resistance 

(50%1RM) training under hypoxia has similar performance benefits to the more traditional high-load resistance 

training protocol and finally, compared to CT30 resistance to muscular fatigue was only improved in the HT50 

group. Moreover resistance training while breathing hypoxic air was at least as effective as traditional resistance 

training using 80%1RM (CT80 group). These results represent new and unique findings as there has been no 

study that has investigated the effects of resistance exercise with different loads combined with hypoxia and no 

study that has compared low-loads (30%1RM and 50%1RM) with traditional high resistance training 

(80%1RM).  

 We found a positive effect of low-load resistance training under hypoxic conditions on muscular 

strength. Peak force or MVC6 significantly increased by 16.9 % and 16.7% in the HT30 and HT50 groups 

respectively, but dropped by -0.9% in the control group (CT30) after 5 weeks of knee extension training (Table 

1). Moreover, this peak force increase was similar to the force changes that occur with traditional high-load 

resistance training (CT80 = 21% improvement). These results suggest that both hypoxic workloads were 

sufficient to induce muscular strength gains after short-term resistance training in hypoxia corroborating 

previous research on female athletes (Manimmanakorn, Hamlin, Ross, Taylor, & Manimmanakorn, 2013). In the 

current study, the low-load resistance training without hypoxic gas showed no improvement in muscle strength 

while the addition of a hypoxic stress to the working muscles resulted in performance improvement. These 

results have demonstrated that 30%1RM and 50%1RM loads in addition to breathing 14% O2 put more stress or 

created more work load for the muscles than that in control training group. Obviously the only thing different 

between these two hypoxic groups is the amount of workload as the hypoxic stress was the same. So a 

substantial improvement in 1RM strength (almost certainly) between groups is due to the additional stress caused 

by the different workloads not the different hypoxic loads. With more stress on the muscle perhaps the more 

anaerobic it becomes and the greater the hypoxic stress. This would be intriguing to measure in future studies. 

 The mechanisms involved in higher force production with hypoxic resistance training include an 

enhancement in muscle cross-sectional area. Previous research found that resistance training under hypoxic 

conditions induced greater muscle hypertrophy (hypoxic group increased 16.6% compared to 5.8% in the 

normoxic group) of the triceps muscle following an 8-week elbow extension training protocol (3 sets, 3 days a 

week at an intensity of 10RM at 12.7% FIO2) compared with normoxic training (Kurobe et al., 2015). Similar 

results were reported by Manimmanakorn et al. (2013) after 5 weeks of low-load resistance knee extensor 

training (20%1RM) in female athletes. It is possible that hypoxia may have a direct effect on contractile protein 

accretion and thereby contribute to the hypertrophy stimulus, although, this has not been well examined 

(Manimmanakorn, Hamlin, Ross, Taylor, & Manimmanakorn, 2013). It is suggested that increases in 

myofibrillar volume, sarcoplasmic reticulum, cytoplasmic density, T-tubule density, and sodium potassium 

ATPase activity occur following resistance training. Consequently, these changes result in muscle size gain, and 

induce increased muscle function, and enable greater expression of strength
 
(Baechle, Earle, 2008). The addition 

of hypoxia may exacerbate these cellular adaptations. But not all studies report hypertrophy accompanying 

resistance training with hypoxia. Friedmann et al. (2003) reported that 4 weeks of low-load (30%1RM) knee 

extension exercise under normobaric hypoxia (FiO2 = 12%) did not induce  muscle cross-sectional area
 

(Friedmann et al., 2003). Differences in training protocols, duration of training and recovery between sets and 

hypoxic stress conditions probably contribute to the differences reported in these studies.  

 We speculate that the hypertrophy of the muscle undergoing hypoxic training may be caused by the 

reduced oxygen delivery. Reduced oxygen to the muscle can cause a complex of downstream biological events 

resulting in metabolic and hormonal alternations (Scott et al., 2014). Evidence for this anaerobic situation during 

hypoxic training was found in the blood lactate levels immediately after the first training session which were 

substantially higher in the hypoxic (HT30, HT50) compared to the normoxic control group (CT30). High levels of 

blood lactate have a stimulatory effect on serum growth hormone release
 
(Stokes, 2003), which may account for 

higher levels of growth hormone found after hypoxic training (Kon et al., 2010; Kurobe et al., 2015; Nishimura 

et al., 2010), and the subsequent muscle hypertrophy
 
(Manini & Clark, 2009). 

 A new finding of the present study was that low-load (50%1RM) resistance training under hypoxic 

conditions (FiO2 = 14%) illustrated the potential to replace the conventional high-load 80%1RM resistance 

training. Our result demonstrated that the addition of a hypoxic environment (HT50) significantly increased most 

indices of muscular performance. In addition, no significant differences were found between CT80 and HT50 in all 

muscular performance parameters such as MVC6 (21.0 ± 14.7%, 16.7 ± 7.9%), number of reps (17.2 ± 12.7%, 

16.0 ± 9.0%) and 1RM (23.7 ± 10.8%, 24.4 ± 3.8%,) (Table 1c). These results suggest that the low-load 
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resistance training under hypoxic conditions resulted in sufficient stress to induce muscular strength gains 

similar to the high-load resistance training. 

 In addition to maximal voluntary force improvements, strength training under hypoxia also resulted in 

improvement of fatigue measures (Table 2). We also found that post-training blood lactate concentration rapidly 

decreased at 15 and 30 min after muscle strength testing (Fig. 2b). This may indicate enhanced blood lactate 

wash out from the circulation post training. Similar findings have been reported after 18-21 days of real altitude 

acclimatization (Bender et al., 1989; Brooks et al., 1991) or 17 days of intermittent hypoxic training with cycle 

ergometry (Casas et al., 2000). The lowering of the blood lactate concentration after strength testing in this study 

may have influenced the fatigue scores witnessed. This post-exercise reduction in blood lactate concentration 

may be associated with the haemodynamic response associated with hypoxia. The reduction of oxygenation level 

during exercise with hypoxia can cause greater reactive hyperaemic response following exercise (Scott et al., 

2014). Moreover, exercise in hypoxia is a known stimuli for compensatory vasodilatation which aims to match 

an increased oxygen supply to the increased demand at the muscle level (Casey et al., 2010). Both hyperaemia 

and vasodilation after hypoxic resistance training may play a key role in attenuating the blood lactate 

concentration. On the other hand, the increased anaerobic nature of hypoxic training may evoke adaptation and 

subsequent improvement in the muscles ability to continue to function under a low oxygen environment. Kon 

(2014) recently reported increased plasma VEGF concentration and capillary-to-fiber ratio following training 

under hypoxic conditions (Kon et al., 2014). Improvements in muscular endurance were associated with 

increases in skeletal muscle oxidative fiber types, increased activity of metabolic enzymes, improvement in 

muscle buffering capacity, and enhanced capillarization (Friedmann et al., 2003). All of these changes may result 

in lowered post-exercise blood lactate concentration and possibly an improvement in strength-endurance as was 

found in the current study. 

 Finally, this study found that hypoxic resistance training was similar to traditional high-load training in 

its effect on sport-specific performance (e.g. explosive power and 10-m speed). Moreover, daily pain score 

during training session also show substantial higher in traditional resistance training compared with hypoxic 

groups. These results suggest that low-load intensity resistance training under hypoxic conditions is able to 

evoke muscular adaptations and less muscular pain which are likely to be beneficial for team-sport athletes. 

 

Conclusion 

 Compared to a normobaric control group, low-load resistance exercise (either at 30%1RM or 50%1RM) 

under hypoxic conditions improved muscular performance (MVC6, 1RM, number of reps and % fatigue rate). In 

addition, while both HT groups substantially increased physical performance (vertical jump and speed 10 m), 

only the group that trained at 50%1RM matched all strength benefits gained (MVC6, 1RM, and number of reps) 

by traditional high load (80%1RM) resistance training. 
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