Journal of Ecology

Journal of Ecology 2016, 104, 1259-1270 doi: 10.1111/1365-2745.12609

DIGGING DEEPER — HOW SOIL BIOTA DRIVE AND RESPOND TO PLANT INVASIONS
Plant mutualisms with rhizosphere microbiota in
introduced versus native ranges

Natasha Shelby'*, Richard P. Duncan?, Wim H. van der Putten®?, Kevin J. McGinn’,
Carolin Weser?® and Philip E. Hulme'

Bjo-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand; 2Institute for Applied Ecology,
University of Canberra, Canberra, ACT 2601, Australia; 3Department of Terrestrial Ecology, Netherlands Institute of
Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands; and “Laboratory of Nematology, Wageningen
University, Wageningen 6700 ES, The Netherlands

Summary

1. The performance of introduced plants can be limited by the availability of soil mutualists outside
their native range, but how interactions with mutualists differ between ranges is largely unknown. If
mutualists are absent, incompatible or parasitic, plants may compensate by investing more in root
biomass, adapting to be more selective or by maximizing the benefits associated with the mutualists
available.

2. We tested these hypotheses using seven non-agricultural species of Trifolium naturalized in New
Zealand (NZ). We grew seeds from two native (Spain, UK) and one introduced (NZ) provenance of
each species in glasshouse pots inoculated with rhizosphere microbiota collected from conspecifics
in each region.

3. We compared how plant biomass, degree of colonization by rhizobia and arbuscular mycorrhizal
fungi (AMF), and the growth benefit associated with each mutualist differed between provenances
(native and introduced populations) when grown with soil microbiota from each region. We also
tested whether the growth benefit of colonization by mutualists was correlated with the extent to
which alien plants were distributed in the introduced range.

4. Rhizobia colonization was generally lower among introduced relative to native provenances. In
NZ soils, 9% of all plants lacked rhizobia and 16% hosted parasitic nodules, whereas in native-range
soils, there was no evidence of parasitism and all but one plant hosted rhizobia. Growth rates as a
factor of rhizobia colonization were always highest when plants were grown in soil from their home
range. Colonization by AMF was similar for all provenances in all soils but for four out of seven
species grown in NZ soils, the level of AMF colonization was negatively correlated with growth
rate. In general, introduced provenances did not compensate for lower growth rates or lower mutual-
ist associations by decreasing shoot—root ratios.

5. Synthesis. Despite differences between introduced and native provenances in their associations
with soil mutualists and substantial evidence of parasitism in the introduced range, neither level of
colonization by mutualists nor the growth benefit associated with colonization was correlated with
the extent of species’ distributions in the introduced range, suggesting mutualist associations are not
predictive of invasion success for these species.

Key-words: alien, arbuscular mycorrhizal fungi, invasive, non-native, parasitism, plant—soil
(below-ground) interactions, rhizobia, root fungal symbiont

Introduction (Bardgett & van der Putten 2014) .anq consequently‘ can influ-
ence the performance and naturalization of plants introduced
Interactions between plants and rhizosphere microbes can to regions outside their native ranges (Nunez, Horton & Sim-
strongly affect plant growth and community composition berloff 2009; Wandrag et al. 2013). Biogeographical studies

show that opposite to the standing paradigm that ‘everything
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least to some extent (Andonian et al. 2012; Rout & Callaway
2012; Tedersoo et al. 2014), implying that plants introduced
to new locations will often leave behind microbiota from their
native range. Thus, several studies have compared the rhizo-
sphere communities with which plants associate in their
native and non-native ranges (Richardson ef al. 2000a; van
der Putten et al. 2005; Reinhart & Callaway 2006; Reinhart
et al. 2010; Callaway et al. 2011; Birnbaum ez al. 2014;
Gundale et al. 2014; McGinn et al. 2016). The microbiome
of plant roots includes antagonists such as pests, pathogens
and herbivores that suppress plant performance (Agrawal
et al. 2005; Liu, Stiling & Pemberton 2007; Mendes et al.
2011), along with symbiotic mutualists that can facilitate
resource uptake (Schulz, Boyle & Sieber 2007), buffer plants
from abiotic stress (Abd-Alla et al. 2014), protect against nat-
ural enemies (Pieterse er al. 2014) and increase or decrease
competitive ability (van der Putten & Peters 1997; Sabais
et al. 2012). While leaving behind antagonistic rhizosphere
biota has been shown to facilitate some plant invasions, the
absence of certain mutualists can hinder establishment (Mitch-
ell et al. 2006; Rodriguez-Echeverria & Cris6stomo 2009) or
limit the performance of introduced species in their new
ranges (Wandrag er al. 2013), particularly when plant-soil
mutualisms are highly specialized (Klironomos 2000; Popo-
vici et al. 2011; Bever, Broadhurst & Thrall 2013).

Legumes (Fabaceae) are one group of plant species where
loss of soil biota could impact their ability to establish and
spread in new regions due to their reliance on a specialized
mutualism with nitrogen-fixing (Parker 2001;
Rodriguez-Echeverria et al. 2012). Species in the genus Tri-
folium (true clovers), for example, associate with only one

rhizobia

biovar of nitrogen-fixing rhizobia, Rhizobium leguminosarum
biovar trifolii (Burton 1985). Clover species are specialized to
particular strains of this biovar, with substantial differences in
growth depending on how well matched a strain is to the spe-
cies of clover it colonizes (Howieson et al. 2005). Conse-
quently, the absence of a specific strain of rhizobia could
potentially limit the ability of some clover species to establish
and spread in new regions. In addition, clovers frequently
form a tripartite association involving the plant, rhizobia and
arbuscular mycorrhizal fungi (AMF; Bethlenfalvay, Newton
& Regional 1991). AMF colonization can increase the ability
of plants to take up water and nutrients, particularly phospho-
rus (Smith & Read 2010), provided the AMF are a proper
match for the species or genotype, and phosphorus is limiting
(Lim & Cole 1984). Because nitrogen fixation by rhizobia
requires high phosphorus input, rhizobia colonization of clo-
ver can fail in phosphorus-limited soils unless the plant is col-
onized by AMF (Crush 1974), whereas if highly compatible
strains of both mutualists are present, and if environmental
conditions are conducive to the mutualism (Walder & van der
Heijden 2015), plant growth increases substantially (Sprent &
James 2007). Both plant-rhizobia pairings and plant-AMF
associations are increasingly recognized to be specialized
(Klironomos 2000, 2003; Kiers et al. 2003), and differences
at the level of species or strain can result in substantial perfor-
mance differences in the host plant (Johnson, Graham &

Smith 1997). Evidence for adaptive divergence has been
found as a result of the availability of compatible strains (Sei-
fert, Bever & Maron 2009), the genotypes of the partners
available (Howieson et al. 2005) and the local environmental
conditions (Porter, Stanton & Rice 2011).

Despite these strain-specialized relationships and tripartite
dependencies, there are many widespread and problematic
legume invaders, some of which are considered to be among
the worst invasive species globally (e.g. Robinia pseudoaca-
cia, Cytisus scoparius, Ulex spp., Medicago spp., Acacia
spp.. Trifolium spp.) (Pysek 1998; Richardson et al. 2000b).
The success of legumes as invaders despite their reliance on
specialized soil mutualists could be attributed to: (i) intro-
duced legumes encountering compatible mutualists outside
their native range, either because they are able to form associ-
ations with new taxa or because well-matched strains from
the native range are co-introduced [e.g. via inoculating eco-
nomically important species with rhizobia (Lowther & Kerr
2011)]; or (ii) any loss of specialized soil mutualists being
outweighed by the benefits of escaping antagonists (Callaway
et al. 2011).

There is also a third explanation that has not been widely
tested: introduced plants may adapt to differences in soil
mutualists outside their native ranges (Seifert, Bever & Maron
2009; Porter, Stanton & Rice 2011), such as by diverting
energy away from maintaining mutualists and towards other
characters that increase fitness (Tawaraya 2003). If introduced
plants lack specialized rhizosphere mutualists in their new
range, they may adapt by reducing their reliance on these
associations and consequently will be less likely to re-associ-
ate with those mutualists if they encounter them again. For
example, introduced populations of Hypericum perforatum
(Hypericaceae) in North America benefitted less from inocula-
tion by cosmopolitan AMF compared with plants from the
native range in Europe, suggesting a genetic shift resulting in
less dependence on AMF following introduction to North
America (Seifert, Bever & Maron 2009). North American
plants also had lower shoot—root ratios and finer root architec-
ture compared with native conspecifics (Seifert, Bever &
Maron 2009), potentially to compensate for the reduced AMF
association given that greater allocation to root biomass is
common among non-mycorrhizal species (Johnson, Graham
& Smith 1997) and fine root systems are an adaptation typical
of plants with low AMF responsiveness (Hetrick, Wilson &
Todd 1992; but see Maherali 2014).

Our aim in this study was to test the hypothesis that intro-
duced plant provenances have reduced mutualistic associa-
tions relative to native-range provenances in response to a
lack of specialized soil mutualists in the introduced range. To
do this, we compared the performance of introduced and
native provenances when grown in soil containing microbiota
from the introduced and native ranges. We used level of colo-
nization as a measure of the degree to which plants formed
associations with mycorrhizas and rhizobia — a higher level of
colonization would indicate a greater degree of association.
We expect the degree of association to vary by both prove-
nance and by soil origin. We then compared the growth
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benefit of native and introduced seed provenances when
grown in native-range soils and in introduced-range soils. We
made the following specific predictions:

1. If introduced-range soils lack specialized rhizosphere
mutualists (AMF and rhizobia) and introduced plants have
consequently reduced their association with these mutual-
ists, we predict that:

a When grown in introduced-range soils, plants sourced
from both the introduced and native ranges will be
poorly colonized by mutualists relative to their coloniza-
tion in native-range soils.

b When grown in native-range soils, introduced plants
will be poorly colonized by mutualists relative to native
conspecifics.

2. If introduced plants have reduced mutualistic associations,
we predict:

a Introduced plants will invest more in root biomass (i.e.
have lower shoot-root ratios) relative to native con-
specifics when grown in both introduced- and native-
range soils.

b Introduced plants will maximize relationships with avail-
able mutualists, so that the incremental growth benefit as
a factor of mutualist colonization will be greater among
introduced plants relative to native conspecifics when
grown in introduced-range soils.

3. Among introduced provenances grown in introduced-range
soil, the degree of mutualist association and the growth ben-
efit (growth rate as a factor of degree of colonization) will
be positively correlated with species’ geographic extents in
the introduced range (i.e. species that benefit more from
available mutualists will be more successful at invading).

We tested these predictions using seven species in the
genus Trifolium that are native to Europe but were acciden-
tally introduced and have naturalized in New Zealand to vary-
ing degrees (Table 1). This is a strong system to investigate
potential post-naturalization differences in rhizosphere mutual-
ists for several reasons. First, Trifolium can derive great nutri-
tional benefit from associations with rhizobia and AMF
(Bethlenfalvay, Newton & Regional 1991), but the degree of
benefit can differ among AMF strains or genotypes (Johnson
et al. 2012; Werner & Kiers 2015), and colonization by rhi-
zobia is strictly limited by species-strain compatibility (Yates
et al. 2005) and the density of compatible rhizobia in the soil
(Yates et al. 2008; Drew et al. 2011). Second, our previous
work in this system supports the prediction that the composi-
tion of mutualists that colonize plants differs between ranges:
although rhizobia strain richness in the root nodules of Tri-
folium spp. growing in New Zealand was comparable to the
levels in plants growing in native UK soils, < 3% of strains
were shared between ranges (McGinn et al. 2016). Although
the effectiveness of rhizobia for non-agricultural clovers in
New Zealand has not been tested (Boswell er al. 2003), opti-
mal rhizobia for non-agricultural species introduced as seed
contaminants (Gravuer 2004) are likely to be rare because rhi-
zobia colonize directly from the soil. Even if compatible soil
mutualists from the native range are introduced, they must
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compete with widely naturalized agricultural rhizobia in New
Zealand (Greenwood 1964; Lowther & Kerr 2011), and natu-
ralized rhizobia are highly competitive (Denton et al. 2003).
Third, having multiple closely related congeners in the same
naturalized range is beneficial because although individual
populations would have been subjected to various stochastic
factors, they would have encountered similar biotic and abi-
otic factors. This enables a more direct investigation of post-
naturalization differences that may have been shaped by the
conditions of the non-native range and it minimizes the role
of chance or founder effects in the results (Keller & Taylor
2008). Finally, because these seven species have spread to
varying degrees throughout New Zealand, we can use species
as a unit of replication to investigate whether differences in
mutualist association are correlated with invasion success. For
the seven species, there is no correlation between New Zeal-
and naturalization date and countrywide geographic extent
(Pearson’s correlation = —0.34, P = 0.45; Fig. S2 in Support-
ing Information) eliminating the potentially confounding fac-
tor of residence time (Richardson ef al. 2000b; Gravuer
2004).

We expected some degree of phenotypic plasticity among
plants from both provenances in each soil type. However, we
predicted that if post-naturalization adaptations have occurred,
the difference between provenances would be greater than the
plastic responses of these plants and conform to our predicted
pattern. Specifically, we predicted that plants from the intro-
duced range would have lower mutualist association than
natives in both ranges. We further predicted that introduced
plants would have greater performance than natives in the intro-
duced range but poorer performance than natives in the native
range. Our goal was to test the specific hypotheses above; how-
ever, our experimental design and statistical analyses were set
up to allow us to identify and quantify any difference in mutual-
ist association and benefit between provenances — including
differences in the opposite direction predicted.

Materials and methods

To test whether native and introduced provenances differ in perfor-
mance and mutualist association, we performed two glasshouse exper-
iments in which plants were inoculated with soil microbiota from
either the native range (Spain or the UK) or the introduced range
(New Zealand). Because of logistic and biosecurity issues associated
with moving soil between these countries, the glasshouse experiments
with native-range soils were conducted at the Netherlands Institute of
Ecology in Wageningen, the Netherlands, in Northern Hemisphere
summer 2012, while experiments with introduced-range soil were car-
ried out at Lincoln University in Canterbury, New Zealand, in South-
ern Hemisphere summer 2013.

STUDY SPECIES

We selected seven non-agricultural Trifolium species that were intro-
duced accidentally to New Zealand (Gravuer 2004): T. arvense,
T. campestre, T. glomeratum, T. micranthum, T. ornithopodioides,
T. striatum and T. tomentosum (Table 1). All seven are annual spe-
cies recorded as being naturalized in New Zealand for between 84
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Table 1. Summary information for the seven species of Trifolium used in this study

Year naturalized New Zealand

Trifolium species in New Zealand distribution*® Shoot : root ratio AMF (%) Rhizobia score (0-3)
T. arvense L. 1880 83 NZ:33 + 0.2 40+ 1.0 0.95 + 0.08
SP: 35+ 0.2 9.0 + 25 2.00 + 0.00
UK:39 £ 0.2 104 + 3.3 2.00 + 0.18
T. campestre Schreb. 1867 46 NZ:33 + 04 10.9 + 3.1 1.85 + 0.08
SP: 52 + 14 11.2 £ 4.0 1.69 + 0.13
UK: 4.1 + 0.5 59 + 1.6 1.60 + 0.13
T. glomeratum L. 1870 44 NZ: 53 + 0.9 45+ 0.9 0.79 + 0.24
SP: 8.0 + 1.2 8.0+ 23 1.69 + 0.27
UK: 6.5 £ 1.1 7.8 + 19 1.60 + 0.27
T. micranthum Viv. 1854 23 NZ: 4.7 + 04 14.8 + 4.8 1.60 + 0.16
UK: 33 £0.2 13.1 +£ 5.0 1.90 + 0.31
T. ornithopodioides L. 1930 26 NZ: 3.6 + 0.2 13.8 + 3.8 1.57 £ 0.31
UK: 35+ 04 179 +£ 5.3 2.23 + 0.30
T. striatum L. 1878 44 NZ:2.1 +03 10.3 + 2.3 1.60 + 0.16
SP: 23 +£ 0.2 8.0 +£22 1.60 + 0.22
UK: 2.1 £0.2 94 + 32 1.60 + 0.27
T. tomentosum L. 1948 21 NZ:70 £ 14 124 £ 32 2.00 £+ 0.17
SP:56 + 1.4 9.0 + 2.6 1.50 + 0.34

Colonization by arbuscular mycorrhizal fungi (AMF) were calculated as a percentage of ‘hits” from 100 intersects (see Materials and methods for
details). Rhizobia scoring was based on a 0-3 score that accounts for the size, abundance and colour of root nodules (Table S3). Shoot-root
ratios, mean percentage colonization by arbuscular mycorrhizal fungi (AMF) and mean rhizobia score are given as means + SE, calculated sepa-
rately by seed provenance. NZ = New Zealand, SP = Spain, UK = United Kingdom. Distribution data are from Gravuer (2004).

*Number of 10 km x 10 km NZMS260 grids occupied by at least one population.

and 160 years, suggesting sufficient time to adapt to the novel rhizo-
sphere communities of the introduced range (Atwood & Meyerson
2011). Estimates of species distributions in New Zealand were taken
from Gravuer (2004). In each inter-provenance comparison, species
served as the unit of replication.

STUDY LOCATIONS

We collected New Zealand seed and soil from Banks Peninsula, a
region comprising a variety of habitats broadly representative of the
naturalized range of Trifolium in the South Island (Boswell et al.
2003). We selected two locations in the native range (northern
Spain and southern United Kingdom) that broadly match the latitude
of New Zealand and encompass a wide range of climates and soil
communities (Tables S1 and S2). Ideally, tests comparing native
and introduced provenances would use the source provenance in the
native range (Gundale et al. 2014), but this is rarely possible as the
origins of most founding populations are unknown. The native
ranges of these Trifolium species encompass much of Europe, but
most of New Zealand’s agricultural clovers were imported from the
UK (Gravuer 2004), making the UK a likely source location for
accidental introductions and an appropriate native-range comparison.
We also sampled from northern Spain to include a region that more
closely matched the sampling latitude in New Zealand (Colautti,
Maron & Barrett 2009) and to use an additional species, T. tomento-
sum, that is not native to the UK but widely naturalized in New
Zealand. At all sites in both ranges, the study species co-occurred
with other Trifolium species, particularly 7. repens. Although there
are native legumes and native rhizobia in New Zealand (Weir
2006), Trifolium species only associate with one rhizobia biovar,
Rhizobium leguminosarum bv. trifolii, and the only nitrogen-fixing
plants identified at the New Zealand study sites were Trifolium and
Medicago species.

RHIZOSPHERE SOIL COLLECTION

Soil collection and storage methods were designed to maintain the
viability of the rhizosphere microbiota sampled in each range. We
used this approach with the goal of inoculating experimental pots
with a representative mixture of rhizosphere microbiota, including the
rhizobia and mycorrhizas associated with these plants growing in the
wild in each location. While some studies have inoculated experimen-
tal pots with specific soil biota to test for the effects of individual
biota on plant performance, our goal was to capture the net effect of
the rhizosphere microbiota on plant growth. In each country and for
each species, we collected soil at five sites — at least 1 km apart —
and sampled a wide range of soils and therefore soil communities. At
each site, we collected approximately 100 mL of rhizosphere soil
from beneath 10 plants of the target species located at least 1 m apart
and placed these soils in separate bags. We sterilized our digging
equipment with Dettol or bleach between sites to avoid cross-contam-
ination of soil biota. The soil samples collected from each of the 10
individual plants of each species at each site were air-dried (Reinhart
et al. 2003), bulked within each of the five sites (i.e. the five soil site
replicates) and sieved to 4 mm. Keeping the five sites separated
enabled us to preserve the spatial variation within each range; bulking
within a single site allowed us to cover the spatial within-site varia-
tion properly. We removed all visible macrobiota and roots before
storing the soils in sealed bags in cool storage rooms (1622 °C).

SEED TREATMENT

For each species, seed was hand-collected from a minimum of 12
plants at one site in each country (New Zealand, Spain and the UK).
Field plants of 7. arvense in the UK were not setting seed at the time
of collection so we sourced UK seed from a germplasm centre in the
UK (Herbiseed, Reading, UK); T. tomentosum was only sampled in
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New Zealand and Spain as it is not native to the UK; and 7. micran-
thum and T. ornithopodioides were only sampled in New Zealand
and the UK because we could not locate sufficient populations in
Spain. Seed from a single site is not expected to capture all of the
within-species variation in a given range (Erfmeier & Bruelheide
2005); however, we made species our unit of replication. If, as a gen-
eral rule, introduced legumes tend to lose mutualistic associations,
then most populations in the introduced range should show this pat-
tern and we should observe it, on average, across a group of replicate
species. We intend our study to function somewhat like a meta-analy-
sis, enabling us to detect trends that are common to a group of func-
tionally similar species. All seed was treated to remove existing
microbiota from the seed coat by sterilizing in a 10% solution of
household bleach for 2 min and rinsing thoroughly in de-ionized
water. Seeds were then scarified gently with a scalpel to perforate the
testa and germinated on sterile glass beads under species-specific tem-
perature and day length requirements in a germination cabinet.

GLASSHOUSE EXPERIMENTS

We grew plants in 1-L pots in glasshouses; each pot was composed
of a background soil that had been sterilized either by successive
autoclaving (two cycles of 20 min at 121 °C) in New Zealand or by
gamma irradiation (> 25 kGray) in the Netherlands (Table S5). To
inoculate each pot with rhizosphere microbiota cultured by con-
specifics from each range, we added a 10% (v/v) inoculum of unster-
ilized soil from a single site from each country. This inoculation
approach serves to minimize differences in abiotic soil properties (pH,
macro- and micronutrient content, etc.) and standardize the effects of
nutrient flushes that occur after soil sterilization. Seedlings of each
species were transplanted into pots after all had developed their first
true leaves. Seedlings that died within the first week were replaced.
Pots were assigned random locations in the glasshouses, rotated every
2 weeks and watered to species-standardized weights on a weekly or
twice-weekly basis as needed. During the experiments, we responded
to outbreaks of thrips by releasing biocontrol mites Amblyseius cuc-
umeris (twice in New Zealand and once in the Netherlands) and we
applied a topical, non-systemic fungicide (Chlorotek; Taranaki
NuChem, New Plymouth, New Zealand) equally to all 7. campestre
plants in New Zealand to combat powdery mildew. Plants of the
same species were harvested on the same day after approximately
3 months when plants began forming flower buds, indicating an ener-
getic switch from growth to reproduction. Roots were washed gently,
scored for rhizobia colonization (details below and in Table S3), and
each plant was separated into roots and shoots before being oven-
dried at 65 °C. We used growth rate (dry biomass in g/number of
glasshouse-grown days) to standardize comparisons (McKenney et al.
2007). Roots and shoots were weighed separately to provide a shoot—
root ratio (S : R ratio).

QUANTIFYING COLONIZATION BY MUTUALISTS

Colonization by rhizobia was scored during root washing. We followed
a modified protocol from Corbin, Brockwell & Gault (1977), using a O
to 3 scale that takes into account the number, size, location and colour
of root nodules (Table S3). Briefly, nodules that are pink or purple indi-
cate the presence of leghaemoglobin, an oxygen-binding protein synthe-
sized when rhizobia are actively fixing nitrogen to maintain anoxic
conditions in the nodule. White or pale-coloured nodules indicate para-
sitism — bacteria acquiring plant photosynthate without fixing nitrogen
(Melino et al. 2012). In Trifolium, pink or purple nodules larger than
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1 mm near the root crown indicate the presence of highly beneficial
nitrogen-fixing strains (Greenwood & Pankhurst 1977). Each nodule
might host as many as 10 or more strains, each of differing productivity
(Denison & Kiers 2004a,b), so it is not possible to quantify the efficacy
of nodules visually; however, nodule scores provide a proxy to charac-
terize rhizobial association and also to calculate an estimated degree of
benefit: plant growth as a function of association (Corbin, Brockwell &
Gault 1977; Wandrag et al. 2013).

Arbuscular mycorrhizal fungi colonization was quantified using a
protocol adapted from Vierheilig ez al. (1998). First, we sampled the dis-
tal 2 cm of each plant’s roots and rehydrated them in separate Eppendorf
tubes in 70% ethanol. Next, roots from each plant were placed in sepa-
rate histology cassettes and heated in a 90 °C bath of 10% KOH for
11 min to clear the cytoplasm. After rinsing with DI water, cassettes
were transferred to a 5% solution of black Schaeffer ink in white vinegar
and stained for 7 min at 80 °C. To de-stain, we rinsed the cassettes sev-
eral times in tap water and bathed them for at least 1 h in a room-tem-
perature water bath acidified with a few drops of vinegar. Roots from a
single plant were plated on a microscope slide using lactic acid and glyc-
erol and examined at 100x magnification. By moving the microscope
stage in a horizontal plane, we scanned each slide at 1-mm intervals.
When the centre of the viewing area intersected with any material, the
‘hit” was scored as an arbuscule, vesicle, internal hyphae, external
hyphae or root. Only arbuscules and vesicles were classified as AMF.
Passes were made until we had 100 observations from each plant. Plant
growth response as a function of percentage AMF colonization has been
examined previously (Clark, Zeto & Zobel 1999; Fahey et al. 2016).

STATISTICAL ANALYSES

To test the prediction that rhizobia nodulation scores and degree of
AMF colonization differ between introduced and native provenances in
native-range soil but not in introduced-range soil, in each experimental
test, we ran separate analyses for each soil origin (New Zealand, Spain
and the UK). We fitted a generalized linear mixed-effects (GLME)
model with seed provenance origin (introduced or native) as a fixed
effect and seed provenance origin x species as a random effect. This
random effect allowed for differences among species in degree of colo-
nization and allowed the effect of provenance on colonization to differ
among species, with the overall effect of provenance on degree of colo-
nization (i.e. the average effect across all seven species) captured by
the fixed-effect term. We also included as a random effect a reference
factor ref that incorporates both species and the site from which soil
was collected as an additional random effect in the model to account
for potential non-independence due to site-specific soil factors or
species x soil interactions. We fitted models of the same form, but
with different response variables (e.g. colonization, shoot—root ratios,
growth rate), to directly test for performance differences between
native and introduced provenances in each of these response variables.
We also tested for differences among introduced and native prove-
nances in the calculated growth benefit as a factor of rhizobia and
AMF colonization by running GLME models of growth rate as a
function of nodulation score and AMF score. We fitted three regres-
sion models to examine the relationship between growth rate and
mutualist colonization (percentage root infection for AMF and nodu-
lation score for rhizobia), one for each soil origin (NZ, Spain and the
UK). In NZ soil, the regression model included data from 89 pots: 7
species x 3 seed provenances x 5 replicates (with three species lack-
ing provenances in one region and one missing value). In Spain and
UK soils, the regression models included data from 47 and 60 pots,
respectively. We used these data to test for differences between
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provenances in the slope of the relationship between growth rate and
nodulation score. This meant that for each soil type, each provenance
(NZ, Spain or UK) had between 23 and 34 observations on which the
regression was fitted (Table S4). These observations comprised repli-
cates of each species, and we allowed for differences among species
to vary by fitting a mixed-effects model in which both the slope and
intercept terms for the relationship between growth rate and coloniza-
tion score was allowed to vary by species. In each case, the slope of
this regression estimates the increase in growth rate associated with
increasing the nodulation or AMF score by one, which measures the
benefit a plant gains from a given level of colonization. Plants that
derive more benefit given the same level of colonization could be
viewed as having a more effective mutualistic association. We further
predicted that the absolute level of association with available mutual-
ists and the calculated growth benefit associated with mutualist colo-
nization is greater among New Zealand species that are more widely
naturalized in New Zealand. We tested this by correlating the random
effect estimates describing, for each species, the growth benefit for
New Zealand provenances grown in New Zealand soil against the dis-
tribution of each species in New Zealand.

All statistical analyses were performed in r ver. 3.2.3 (R Develop-
ment Core Team 2013). Linear mixed-effects models were fit using
the ‘Imer’ function, which uses restricted maximum likelihood, in the
R package ‘arm’ ver. 1.6.10 (Gelman & Su 2014).

Results

COLONIZATION BY RHIZOBIA

Degree of rhizobia colonization was generally higher in native
provenances relative to introduced provenances regardless of
soil type (Fig. 1), which did not match our predictions. Aver-
aged across species and provenances, and consistent with the
prediction that introduced-range soils lack specialized mutual-
ists, the mean rhizobia nodulation scores were lowest in New
Zealand soil and higher in Spanish and UK soils (Fig. Sla).

In New Zealand soils, Spanish and UK provenances had sub-
stantially higher levels of nodulation than New Zealand prove-
nances, with 95% confidence intervals for the difference
between provenances not overlapping zero (Fig. 1a). In native-
range soils, only a single plant was not colonized by rhizobia (a
T. glomeratum plant from New Zealand), whereas when grown
in New Zealand soil, 9% of plants completely lacked rhizobia
(15% of plants sourced from New Zealand, 8% of plants from
Spain and 2% of plants from the UK; Fig. 2a). Also in New
Zealand soil, 16% (14/89) of plants hosted nodules characteris-
tic of parasitism (evenly spread across introduced and native
provenances) while none of the plants grown in either of the
native-range soils had parasitic nodules (Spain = 47 and the
UK = 60 plants; Fig. 2b), a difference unlikely to be due to
chance (Pearson xz = 18.1,d.f. =2, P < 0.001).

COLONIZATION BY AMF

Colonization by AMF varied among species and seed origin,
with average colonization levels ranging between 4.0% + 1.0
(SE) and 17.9% =+ 5.3 (Table 1). We predicted all prove-
nances should behave similarly and be poorly colonized in
New Zealand soils, but here UK provenances had higher

mean AMF colonization relative to New Zealand provenances
(Fig. 1b). When grown in native-range soils, we expected
native provenances to be more strongly colonized than intro-
duced provenances, but here there were no significant differ-
ences in AMF colonization between native and introduced
provenances (Fig. 1b).

GROWTH RATE AND SHOOT-ROOT (S : R) RATIOS

Native plants grew faster, on average, than introduced plants
in all soils (Fig. 3a). Shoot—root ratios showed all plants allo-
cated more to above-ground biomass (Table 1). As evidence
of compensation for lower mutualist associations, we
expected lower S : R ratios in introduced relative to native
provenances in all soils, but this was not supported. In UK
soil, UK plants had significantly lower S : R ratios compared
with NZ conspecifics (Fig. 3b); in all other soils, S : R ratios
did not differ significantly between native and introduced
provenances (Fig. 3b).

CALCULATED GROWTH BENEFIT OF MUTUALIST
ASSOCIATION

Plants colonized by rhizobia from the same geographic range
derived more growth benefit per level of rhizobia nodulation
compared with plants colonized by rhizobia from a different
source range (Fig. 1c). When grown with soil microbiota
from the introduced range, New Zealand provenances had sig-
nificantly greater growth rates per nodule score compared
with native provenances, while the opposite was true when
plants were grown in soil inoculated with native-range biota
(Fig. 1c). The same was not true for AMF, as there were no
clear differences in calculated growth benefits of AMF associ-
ation between provenances, regardless of whether the AMF
originated from the same or a different range (Fig. 1d).

Among introduced provenances grown in New Zealand
soil, colonization by rhizobia (Fig. 4a) and AMF (Fig. 4b)
varied among species, but the growth benefit as a factor of
rhizobia colonization was always positive (Fig. 4c), whereas
the growth benefit as a factor of AMF colonization was nega-
tive on average for four of the seven species (Fig. 4d).

GEOGRAPHIC EXTENT

In contrast to our predictions, the degree of growth benefit
(growth rate as a factor of mutualist colonization) among
plants from introduced provenances was not correlated with
species’ geographic distributions (Fig. 4). Although species
differed substantially in their calculated growth benefit as a
factor of association with rhizobia (Fig. 4c) and AMF
(Fig. 4d) in New Zealand soil, these values were not predic-
tive of the extent of their distribution.

Discussion

We tested the prediction that alien plants differ in their rela-
tionship with rhizosphere mutualists compared with native
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Fig. 1. The mean difference in rhizobia nodulation score (a), growth benefit as a factor of rhizobia nodulation (b), colonization by arbuscular
mycorrhizal fungi (AMF) (c) and growth benefit as a factor of AMF colonization (d) between introduced (New Zealand, NZ) and native (Spain,
SP and United Kingdom, UK) provenances, averaged across seven species of Trifolium. Plants were grown in glasshouse pots inoculated with
microbiota sourced from NZ, SP or UK soils. In each panel, circles show the mean difference between NZ (the reference class, which is set to
zero) and either SP or UK provenances. A value of zero indicates no difference between introduced and native provenances averaged across all
species, and a positive value indicates native provenances had, on average, greater colonization or greater growth benefit compared with intro-

duced provenances. Solid lines are 95% confidence intervals.

conspecifics. By inoculating glasshouse pots with soil micro-
biota cultivated by conspecific plants growing in each range,
we were able to compare native and introduced plants’ perfor-
mance, degree of root colonization by AMF and rhizobia, and
mutualist benefit (growth rate as a factor of colonization by
each mutualist). We used species as our unit of replication to
test for a common response among introduced Trifolium spe-
cies. Furthermore, using species that have naturalized to dif-
fering degrees in the introduced range allowed us to ask
whether mutualist colonization or benefit correlated with inva-
sion success.

EVIDENCE FOR REDUCED MUTUALIST ASSOCIATION

Our first hypothesis — that Trifolium will be poorly colonized
in the introduced range and that introduced provenances
would have lower colonization by AMF and rhizobia com-
pared to native conspecifics in native-range soils — was only
partially supported, and only in the mutualism with rhizobia.
The lower rhizobia colonization levels among all plants in
introduced-range soil support the assumption that strains asso-
ciated with New Zealand’s non-agricultural Trifolium species
are less compatible or available than those in the native range.
Nevertheless, this comparison could be confounded by differ-
ences in glasshouse conditions and so we restrict our infer-
ences to comparisons between provenances within each range.
New Zealand provenances had significantly lower rhizobia

colonization compared to native conspecifics in UK soils, but
in Spanish soils, nodulation scores were similar. Rhizobia and
AMF colonization were also lower among introduced prove-
nances compared with native conspecifics in New Zealand
soil, which was contrary to our predictions. Provenances from
the introduced range may be exhibiting decreased or more
selective associations with rhizobia mutualists, but the similar
nodulation scores of introduced and native plants in Spanish
soils (grown in parallel with the UK soil treatment) suggest
that other factors are affecting colonization levels, such as dif-
ferences in antagonist biota among the soil origins, a factor
that we did not study here.

EVIDENCE FOR POST-NATURALIZATION DIFFERENCES

Our second hypothesis was that alien plants compensate for
reduced mutualist associations by either allocating more
energy to below-ground biomass or by forming more effective
mutualist associations. We reject this hypothesis. First, there
was no consistent evidence that introduced plants compensate
physiologically. Shoot-root ratios of introduced provenances
were significantly higher compared with native conspecifics in
UK soil (where introduced provenances also had significantly
lower rhizobia colonization compared to natives). In New
Zealand soils, despite several significant inter-provenance dif-
ferences in both rhizobia and AMF colonization, shoot—root
ratios of all provenances were similar. Compensation may
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Fig. 2. Rhizobia colonization of Trifolium species grown in soils
inoculated with rhizosphere microbiota from their introduced (a) or
native (b) ranges. Colonization type is given as a percentage and
divided by seed provenance (New Zealand, Spain and the UK). Each
plant’s rhizobia colonization was classified as either only functional
rhizobia (white), lack of colonization (grey) or having the presence of
one or more parasitic rhizobia nodules (black). In panel B, the native-
range soils (Spain and the UK) are grouped; all plants but one (a Tri-
Sfolium glomeratum plant from New Zealand) were colonized by func-
tional rhizobia, and there was no evidence of parasitism.

have been manifested in other traits, such as thinner, more
branched root architecture or greater specific area of roots
(Seifert, Bever & Maron 2009). Root architecture was not
assessed in this study and if this form of compensation occurs
in the Trifolium system, growth rate results could have been
biased during root washing as the most delicate sections of
root systems may have been lost. It is also possible that com-
pensation was occurring and shoot-root ratios were smaller
for non-native provenances, but that the effect was con-
founded by the contribution of rhizobia nodule weight among
plants with high nodulation scores, as we did not weigh nod-
ules separately (Agren & Franklin 2003). Secondly, although
the growth benefit per level of rhizobia nodulation was
greater among New Zealand provenances compared to native
conspecifics in New Zealand soil, growth benefit was also
greater for each of the native-range provenances grown in soil
from their countries of origin. This suggests that inter-prove-
nance differences may not be attributable to post-naturaliza-
tion adaptations but simply
provenances can maximize their associations with available
soil mutualists.

evidence that Trifolium

Higher performance in association with mutualists from a
plant population’s home range could be due to plants devel-
oping more efficient interactions with available soil mutualists
and/or their ability to cultivate a subset of available soil
organisms that are the most beneficial to themselves. This
trend has been observed previously; Porter, Stanton & Rice
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Fig. 3. Differences in growth rates (a) and shoot-root (S : R) ratios
(b) between introduced (New Zealand, NZ) and native (Spain, SP,
and United Kingdom, UK) provenances, averaged across seven spe-
cies of Trifolium when grown with soil microbiota sourced from New
Zealand, Spain and the UK. Circles show the mean difference in
growth rate or S : R ratio between NZ (the reference class, which is
set to zero) and either SP or UK provenances. A value of zero
indicates no difference between introduced and native provenances
averaged across all species, and a positive value indicates native
provenances had, on average, higher growth rates or higher S : R
ratios than introduced provenances. Solid lines are 95% confidence
intervals.

(2011) found that populations of Medicago (Fabaceae) had
higher seed set when inoculated with rhizobia from the
plant’s home soil and attributed this to adaptation to local rhi-
zobia communities. Plants may develop increasingly positive
associations with locally available mutualists by rewarding
beneficial strains with more photosynthate (Werner & Kiers
2015), by signalling selectively to optimal strains in the soil
(Cooper 2007) or by levying sanctions against poor perform-
ers after nodulation (Kiers er al. 2003). Agricultural clover
populations are well known to perform better with local coex-
isting strains compared to strains isolated from conspecifics in
other locations (Sherwood & Masterson 1974), but how such
differences in partner effectiveness may affect plant perfor-
mance in the context of invasion has not yet been considered.

CORRELATION WITH DISTRIBUTION

In New Zealand soils, despite introduced provenances hav-
ing significantly greater growth benefit from rhizobia com-
pared with native conspecifics, our third hypothesis was not
supported. Among introduced provenances, species varied in
both the level of colonization by AMF and rhizobia and
they varied in the degree of growth benefit incurred by asso-
ciation — yet none of these factors were correlated with
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Fig. 4. Mean levels of colonization by rhizobia (a) and arbuscular mycorrhizal fungi (AMF) (b) and the mean levels of benefit for rhizobia (c)
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(number of 10 km x 10 km NZMS260 grids occupied by at least one population). Means were extracted from the linear mixed-effects models;
distribution data are from Gravuer (2004). All Pearson’s correlation coefficients were < 0.3, and none were statistically significant (all P val-
ues > 0.1). Letters indicate species’ names: Trifolium arvense (A); T. campestre (C); T. glomeratum (G); T. micranthum (M); T. ornithopodioides

(0); T. striatum (S); T. tomentosum (T).

species’ distributions in the introduced range. Although our
ability to generalize is limited because seed was sampled
from only one population of each species in each range, our
results suggest that neither the availability nor the degree of
benefit from associating with mutualists are factors affecting
invasion success in these species. It is possible that the dif-
ferences in these species’ distributions in New Zealand can
be explained by other factors, such as differences in their
rate of introduction as seed contaminants (Gravuer et al.
2008) or differing degrees of escape from antagonistic biota
in the soil, as the strength of enemy release has been shown
to be stronger than the benefit of mutualists in the natural-
ization of another legume, Robinia pseudoacacia (Callaway
et al. 2011). Another important consideration is that we may
have omitted important variables in our models. Nitrogen
and phosphorus levels of the collected soils could be unmea-
sured factors determining which mutualists were present
(and therefore harvested) from those soils.

BIOGEOGRAPHICAL STUDIES OF RHIZOSPHERE
MICROBIOTA

Several aspects of this work make it both strong and a logical
extension of previous biogeographical studies. These include
using multiple congeners, inoculating plants with rhizosphere
microbial communities from both the native and invaded
range and performing quantitative assessments of both AMF

colonization and rhizobia nodulation on the same plants. This
combination of approaches is completely novel in the pub-
lished literature. Although the limitations inherent in our
study prevent us from making conclusions about specific
interactions (e.g. we do not know whether the identities of
the colonizing taxa differed by seed provenance), our work
clearly shows that plant origin plays a role in how plants per-
form in response to rhizosphere microbial communities. We
hope this work stimulates further examination into the interac-
tions between plants and rhizosphere microbiota in the native
and introduces ranges. An important next step in plant—rhizo-
sphere research will be to interrogate these rhizosphere com-
munities to see which taxa compose the rhizosphere
microbiome in the native and introduced ranges to test
whether there are taxonomic or functional trends related to
plant communities and abiotic factors. Future designs might
also consider collecting data on a broad suite of abiotic soil
properties, including phosphorus and nitrogen levels, which
might be relevant to rhizosphere community composition and
enable statistical models to account for variation related to
specific soil characters. This would enable designs to account
for plant adaption to local conditions and ‘maternal effects’,
and it could inform on abiotic correlates of rhizosphere com-
munities. A further way to generalize findings and minimize
maternal effects would be to incorporate seed from multiple
locations within each range. Also, because the effect of a par-
ticular mutualist on plant performance will be intimately
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related to the local environmental conditions, future studies
should integrate both genotype and local conditions in their
analyses.

THE SHIFTING MUTUALISM-PARASITISM CONTINUUM

Our study revealed a potential impetus for alien plants to alter
their relationship with mutualists in the introduced range: in
New Zealand soils, there was visual evidence of parasitic rhi-
zobia and we observed a negative relationship between growth
rate and degree of AMF colonization. The presence of para-
sitic strains could provide selective pressure for plants to max-
imize beneficial associations, be more selective to colonizers
or reduce associations with soil mutualists overall. Although
the incidence of parasitic rhizobia nodules was distributed
evenly among provenances, the highest rates of failed nodula-
tion (plants containing no rhizobia nodules) were among New
Zealand provenances, suggesting plants may be reducing asso-
ciations with rhizobia. Four of the five T. glomeratum plants
from New Zealand grown in New Zealand soil lacked nodules,
while T. glomeratum plants sourced from Spain and the UK
were colonized by rhizobia from these same soils. Failed
nodulation should theoretically limit plant performance, given
rhizobia’s substantial contribution to growth, yet 7. glomera-
tum 1is the third most widespread non-agricultural Trifolium in
New Zealand and the most common of the seven study species
in our sampling region in New Zealand (Table 1). Similarly,
among New Zealand provenances, we found a negative corre-
lation between AMF colonization and growth benefit for more
than half of the species when grown in New Zealand soils.
Parasitism in AMF cannot be assessed visually, but the nega-
tive correlation between degree of colonization and growth
rate suggests that strains of AMF associating with some intro-
duced Trifolium in New Zealand are generally detrimental to
plant growth. Our finding concurs with a recent meta-analysis
of AMF interactions showing that absolute AMF colonization
is similar between native and invasive plants, but the positive
correlation between AMF colonization and growth response is
generally absent among invasive plants, suggesting invaders
are less responsive to mycorrhizas (Bunn, Ramsey & Lekberg
2015).

Understanding how relationships between plants and their
soil mutualists differ between their introduced and native
ranges could provide an important mechanism for why some
plants fail to naturalize and others become invasive. The
prevalence of parasitism is largely unknown even in agricul-
turally managed fields, let alone in natural communities or
invaded systems (Johnson, Graham & Smith 1997; Denison &
Kiers 2004a; Paszkowski 2006), and genetic similarity does
not always reliably predict symbiotic effectiveness (Yates
et al. 2008). For example, two OTUs with > 97% similarity
(based on ribosomal RNA) can have genes driving substan-
tially different ecological functions (Rout & Callaway 2012).
Investigating how the mutualism—parasitism continuum may
differ between native and introduced ranges could also reveal
new patterns of adaptation among alien plant provenances and

the microbes they host. Rhizosphere mutualists such as AMF
have been shown to alter plant morphology, allometry, phenol-
ogy, the production of secondary metabolites, and fitness —
including reallocation of reproductive strategies (Johnson,
Graham & Smith 1997), suggesting great potential for plants
to respond and potentially adapt to differences when they
encounter different AMF communities outside their native
ranges. It has been suggested that invasive plants frequently
face a higher incidence of parasitism during naturalization
(Thrall et al. 2007) but that the phenomenon goes unnoticed
simply because it is masked by concurrently higher resource
levels (Karst er al. 2008), enemy release (Joshi & Vrieling
2005) or reduced competition (van der Putten & Peters 1997).
Alternatively, escape from parasitic co-evolved mutualists in
the native range could constitute an unexplored form of enemy
release for invasive plants, with concurrent potential adapta-
tions in line with EICA predictions of resource reallocation.
Indeed, higher rates of parasitism among rhizosphere biota
could help to explain why plant—soil feedbacks are generally
more negative in the native range (Beckstead & Parker 2003;
Reinhart & Callaway 2004; van Grunsven et al. 2009). In
summary, while rhizosphere mutualist absence or the presence
of non-beneficial/parasitic strains can determine naturalization
success or failure, such altered mutualisms can alternatively
stimulate post-naturalization shifts in physiology that may
result in physiological compensations or adaptations.

Conclusion

This study tested whether native and introduced plant prove-
nances differ in performance and mutualist association and
whether the benefit of mutualist association could be a predic-
tor for invasion success. Our work shows that plant origin
plays a role in how plants perform in response to rhizosphere
microbial communities. We found some evidence that intro-
duced provenances have reduced mutualist association with
rhizobia, but provenances from both ranges grew better with
rhizobia from their own range, suggesting local adaptation
instead of post-naturalization differences. Despite evidence for
negative associations with two key mutualists in the intro-
duced range, the lack of correlation between the extent of
species’ distributions and either mutualist colonization or cal-
culated mutualist benefit suggests neither are predictive of
invasion success in these species.
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