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The widely recognized externalities associated with livestock disease control have prompted 

countries throughout the world to invest in centralized control schemes designed to lower 

disease prevalence.  As disease levels drop and fiscal deficits climb, however, many 

governments are beginning to reconsider the design and delivery of their animal health services 

(Umali, et al., 1994).  The Animal Health Board in New Zealand, for example, is concerned 

that the regulatory policies implemented to encourage participation in the national bovine 

tuberculosis control scheme have distorted market signals and removed some of the private 

incentive to control disease.  Consistent with the ongoing shift to a more market-oriented 

economy, the Animal Health Board is attempting to identify and implement policies which 

encourage producer participation, yet convey more accurately the cost of disease (AHB, 1995).   

 

The success of the Animal Health Board’s efforts to motivate cost effective disease control 

depends critically on whether their new policies generate consistent rather than opposing 

incentives for individual livestock producers to control disease.  Much of the previous 

literature on animal health economics, however, consists of ex post evaluations of national 

control schemes which offer limited insight as to the potential behavioural responses of 

producers who raise livestock primarily for economic profit (Dietrich, et al., 1987; Ebel, et al., 

1992; Liu, 1979).  This paper utilizes recent advances in the dynamic bioeconomic literature to 

develop a behavioral model of livestock disease control.  The model is estimated and solved 

for a region in New Zealand where efforts to control bovine tuberculosis have been 

complicated by the existence of an effective wildlife reservoir for disease.  The model is 

unique in its integration of disease dynamics, inter-species interaction, control-induced 

migration, and individual optimizing behaviour into one, unifying optimal control model. 

 

General results from the theoretical model suggest that individual profit maximizing producers 

are not likely to eradicate disease from their herds due to the sharply increasing marginal cost 

of control as prevalence and vector density decline.  Policies which encourage higher levels of 

disease control may be necessary, therefore, to achieve prevalence levels which meet stringent 

human health and international trade standards.  Estimation and calibration of the theoretical 

model using bioeconomic data collected from a tuberculosis endemic region in New Zealand 

allows us to examine the potential impact of several proposed policy changes within the 

context of a specific empirical application.  Numerical results, validated with actual whole herd 

testing histories, suggest that compensation payments for test positive cattle are inflating the  
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implicit value of infected stock and reducing private incentive to control disease.  When annual 

testing is enforced by regulation, the introduction of a ‘user pays’ system for diagnostic testing 

simply transfers the cost of control to those who use the services.  It should be noted, however, 

that subsidized testing provides producers with a powerful incentive to comply with program 

objectives.  The success of policies which focus on controlling the wildlife reservoir for disease 

depends critically on whether the pest population recovers after control operations, as well as 

the probability of disease transmission between and among species. 

 

 

1. Empirical Problem 

 

This paper was motivated by the need to develop a more thorough understanding of the 

complex biological and economic dynamics which influence the spread and maintenance of 

bovine tuberculosis in New Zealand.  Although centralised control efforts have dramatically 

reduced the apparent prevalence of Tb in New Zealand over the past fifty years, recent control 

efforts have been compromised by the existence of a persistent wildlife reservoir of disease.  

Epidemiological research suggests that the Australian brushtailed possum is serving as the 

primary non-cattle source of infection.  Effective disease control therefore requires the 

combined efforts of ecologists as well as veterinarians, epidemiologists and economists.  The 

model developed below seeks to integrate the biological dynamics of pest and disease control 

into an economic framework which captures the behavioural responses of individual producers 

making economic decisions in a constrained environment. 

 

Currently used control measures for bovine Tb in New Zealand include diagnostic testing and 

subsequent slaughter of test positive cattle, the controlled movement of cattle from infected 

herds, slaughterhouse surveillance, and possum control operations.  In order to encourage 

participation in the test and slaughter program, policies such as subsidized testing and 

compensation for reactor cattle have been introduced.  Animals are tested each year and 

positive reactors are slaughtered.  Producers receive a subsidized price for test positive 

animals, which has recently been reduced from 85 to 65% of fair market value.  An additional 

check for tuberculous cattle is conducted at the slaughterhouse.  Lesioned carcasses are traced 

back to the farm of origin, where producers receive a salvage price determined by the market 

for cattle by-products.  Subsidies have also been received in the form of possum control 
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 operations, which are funded from a combination of government, industry, and individual 

landowner sources.  

 

The Animal Health Board is concerned that the current mix of policies is distorting market 

signals and sheltering producers from the true cost of disease.  As a consequence, the Board is 

considering a number of policy changes which will introduce a more market-oriented approach 

to disease control.  Discussion has focused on reducing compensation payments and 

introducing a ‘user pays’ system for testing.  Funding for possum control operations will be 

sought from those who contribute to the possum problem , as well as those who benefit from 

possum control.  Government monies will therefore continue to be used to fund operations on 

Crown land. 

 

The bioeconomic model presented in the next section was developed to gain insight into the 

economic trade-offs associated with various policy options, and to determine whether proposed 

changes are consistent with individual producer behaviour. The dynamics of the cattle herd and 

the possum populations which constrain the optimal control model are depicted in Figure 1.  

Susceptible cattle become infected with tuberculosis following effective contact with infected 

herdmates or possums.  Disease incidence therefore depends primarily upon the number of 

cattle in each disease state, the size of the wildlife reservoir, a set of epidemiological rate 

parameters, and the level of testing and marketing activity in each period.  Because intra-

uterine transmission of bovine tuberculosis is extremely uncommon, both classes of cattle are 

assumed to contribute to the biological growth of the susceptible herd.  The model also 

incorporates migratory pressure from a relatively densely populated uncontrolled habitat after 

control operations have reduced possum numbers near the cattle herd.  In the absence of 

control, the change in the possum populations is determined by the biological growth rate and 

the migratory flux between controlled and uncontrolled habitats.  Possums in the vicinity of a 

cattle operation can be further reduced by harvesting. 

 

 

2. Model Structure 

 

The optimal control model contains four state and three control variables.  The two state 

variables for cattle comprise susceptible (St) and infectious (It) stock, and the state variables 

for the wildlife reservoir include an ‘in contact’ population that may transmit disease to cattle  
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(P1t) and a neighbouring population in an uncontrolled habitat (P2t).  According to Equation 1, 

the cattle producer’s objective is to select a marketing (Mt) and testing (Tt) strategy for cattle, 

and a harvest scheme for the wildlife population (Ht) that maximizes discounted net revenue 

from the sale of cattle. 

 

(1)         maximize
T M H
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t t t t t t t
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, ,

        


 1 1 1 2 2
0

  

       1 2 1 1S I T M S I PC H P dt t t t t t t t     , t  

 

Cattle producers are assumed to be operating in a perfectly competitive environment, facing 

price p for non-infected cattle.  The parameter l represents a levy on all cattle slaughtered, 

which provides funding for the centralized disease control scheme.  The control variable for 

marketing is expressed in percentage terms, so the gross revenue from marketing healthy cattle 

is (p - l)MtSt. 

 

Because producers cannot distinguish between healthy and infectious animals by casual 

observation, the marketing activity reduces both categories of cattle indiscriminately.  All 

infectious stock sent to market will, however, be detected through routine slaughterhouse 

surveillance.  Producers may receive a small percentage of market value () for infected 

animals if all or part of the carcass can be salvaged for manufacturing purposes.  One of the 

direct costs associated with disease, therefore, is the reduction in carcass value of infected 

cattle. 

 

Testing is hypothesized to occur after the marketing activity has taken place, leaving a 

population of (1 - Mt)(St + It) individuals to test.  Cattle that test positive are removed from the 

herd and slaughtered.  Compensation is paid for all test positive animals as a percentage of 

market price, which is represented in the model by the parameters i.  The average annual cost 

per head of producing cattle (1) is assumed to be independent of disease status.  The average 

cost of testing cattle is represented by the parameter 2.  

 

The cost of harvesting possums which serve as vectors for disease is represented in Equation 1 

by PC(Ht,P1t).  Harvest costs can be expected to increase with harvest activity (Ht) and 

decrease with possum density (P1t).  The cost function for the empirical application was  
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estimated with data from twenty ground control operations which had been performed in a 

variety of habitat sites throughout New Zealand. 

 

Equations 2 and 3 describe the net rate of change in the population densities of healthy and 

infectious cattle through time: 

 

(2)           S a S I
S I

K
S I S P Z M S T M S bSt t

t t

c
t t t t t t t t t t  
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





       1 1 11 2 1     

(3)       I S I S P Z M I T M I bt t t t t t t t t t        1 1 21 1 I . 

 

Because supplementary feeding is uncommon in New Zealand, the beef cattle production 

process is heavily reliant upon the capacity of the pasture to support stock.  A modified logistic 

equation was therefore used to model the biological growth of the cattle herd, where a reflects 

the fecundity of the herd and Kc represents the carrying capacity of the pasture for cattle. 

 

Infected animals are the principal source of tuberculosis for susceptible cattle, who may 

become infected by either ingesting or inhaling live bacteria (Blood and Radostits, 1989). 

Following the methodology suggested by Anderson and May (Anderson and May, 1979a, 

Anderson and May, 1979b), the rate at which cattle become infected is proportional to the 

number of encounters between susceptible cattle and either infectious cattle or the wildlife 

reservoir.  The constants of proportionality (i) are comprised of two components:  the 

probability of close contact between an infectious and a susceptible individual, and the 

probability that transmission will occur as a result of the contact (Nokes and Andersen, 1988). 

To reflect the strong empirical relationship between possum abundance and disease prevalence 

in cattle (Livingstone, 1991), the transmission of tuberculosis between species is assumed to be 

proportional to the density of the controlled possum population.  Prior epidemiological 

modelling of Tb in possum populations suggests that eradication of the disease in possums may 

be possible if possum density is maintained below a particular threshold level (Barlow, 1991a; 

Barlow, 1991b).  The threshold concept is characteristic of this class of models, which require 

that the generation of secondary cases must be sufficient to maintain infection within the 

population of interest.  The disease threshold for the possum population is incorporated into the 

current model by making transmission proportional to (P1t - Z), where Z represents 
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 the critical density of possums below which the disease will not persist in the population.  It is 

therefore possible, although it may not be economically optimal, to remove possums as a 

source of disease by holding them at their disease threshold. 

 

While it is assumed that producers cannot distinguish between healthy and infectious animals 

by casual observation, disease status can be estimated with the aid of a diagnostic test.  The 

parameter 1 defines the proportion of healthy cattle that are removed from the herd because of 

test positive status.  The number of false positive reactors varies inversely with the level of the 

test specificity (specificity = 1 - 1), which reflects the ability of the test to correctly detect 

non-diseased animals.  Similarly, 2 determines the proportion of infected animals that are 

removed from the herd during testing.  This proportion depends directly on the test sensitivity, 

which reflects the ability of the test to detect infected animals.  The model implicitly specifies a 

maximum number of one whole-herd test per year.  Although the overall sensitivity and 

specificity of a testing program can be improved by testing more frequently throughout the 

year, multiple testing is extremely uncommon in endemic areas.  Finally, a low rate of natural 

mortality (b) slows the growth of both cattle populations. 

 

Equations 4 and 5 represent the equations of motion for possums in the controlled and 

uncontrolled habitats, respectively.  Following Clout and Barlow (Clout and Barlow, 1982), the 

biological growth of the possum populations is described by a simple logistic equation.   
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In spatially complex ecological systems, harvesting efforts may be compromised by 

immigration from neighbouring habitats (Hickling, 1993). This migratory pressure is captured 

by a flux term which dictates the rate of movement between controlled and uncontrolled 

habitats.  The flux term is based upon the ecological modelling work of Hestbeck (1988) and 

Steneth (1988), who have observed that animals will emigrate from relatively densely 

populated habitats if the opportunity arrises.  Migration is therefore hypothesized to be density 

dependent, and will increase the speed at which managed populations recover from control 

activities.  The parameter D essentially represents the maximum number of possums that will 
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 recolonize a neighbouring area that has been completely cleared of possums.  A similar 

specification has been applied to the optimal control of beavers in North America (Huffaker, et 

al., 1992) and the management of possum populations in New Zealand (Barlow, 1993). 

 

The producer’s economic problem is therefore to maximize Equation 1, subject to Equations 2 

- 5, which represent the biological equations of motion for this bioeconomic model.  Equations 

6 and 7 place additional restriction on the state and control space, respectively, and Equation 8 

specifies the initial conditions for the state variables. 

 

(6)  S I P Pt t t t, , ,1 2  0

(7) 0 1 0 1 0 0 85 1     M T Ht t t; ; . P t  

(8)        S S I I P P P P0 0 1 0 1 2 00 0 0 20  , , ,  

 

 

3. General Implications of Optimizing Behaviour 

 

The current valued Hamiltonian for this problem is defined as follows: 

(9)        H p l M S I T M S ICV t t t t t t t        1 1 1 2 2   

 

        1 2 1 1S I T M S I PC P Ht t t t t t t t     ,   

 

       m f S I f S P M I T M I bIt t t t t t t t t t2 1 2 21 1, ,       

 

     m g P f P P Ht t t t3 2 31 1 2 ,      m g P f P Pt t4 3 32 1 2 ,  t

 

The variables mi (i = 1,2,3,4) are costate variables and can be interpreted as the implicit value 

of the stock with which they are associated (Chiang, 1992).   

 

The Hamiltonian is linear in testing and marketing, and non-linear in wildlife harvest.  The 

optimal solution will therefore consist of some combination of singular and bang-bang controls 

for Tt and Mt, and an interior solution for Ht (unless the marginal cost of harvest outweighs the 

discounted benefits).  The first order conditions for this model consist of three algebraic 
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 expressions and eight differential equations that must be solved simultaneously for the optimal 

trajectories of the state, control and costate variables.  Consequently, the complexity of this 

empirical problem precludes a complete analytical solution.  The first order conditions for 

testing and harvesting do, however, offer some insight as to what motivates profit maximizing 

producers control disease. 

 

Diagnostic Testing.  The switching function for testing is derived by differentiating the current 

valued Hamiltonian with respect to the testing variable: 

 

(10)       


     
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The resulting expression is used to synthesize the following optimal testing sequence: 
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which requires that the testing activity be set at one of its extreme values when the switching 

function is nonzero.  For example, testing will cease when the implicit value of an infected 

individual is greater than the net revenue from testing:  
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implies that: 
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The LHS of Equation 13 represents the value of an infectious animal as a productive asset of 

(healthy) calves.  The first term on the RHS represents the gross revenue obtained for each  
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correctly identified diseased animal.  This is followed by a term representing the gross value of 

healthy animals slaughtered due to false positive status after a Tb test (also expressed per 

diseased animal identified).  The gross value of false positive animals slaughtered is their 

salvage value minus their shadow value as a producing unit.  The final term on the RHS 

represents the direct cost of testing.  Note that various components of the disease control 

program affect this private decision function in different ways.  For example, by subsidizing 

testing costs (2), regulators encourage testing.  On the other hand, the levy (l) reduces the 

implicit value of a slaughtered beast, and therefore reduces the incentive to test.  Similarly, 

subsidized compensation for test positive animals (1, 2) increases the incentive to test, as 

would adopting a testing procedure with a higher test sensitivity (2) or specificity (1-1).  

Equation 13 also illustrates clearly why individual producers cannot generally be expected to 

voluntarily follow a testing program which completely eradicates disease.  As the ratio of 

healthy to infected animals rises, the costs of identifying the last diseased animals rise, making 

it uneconomic to test and remove animals from the herd. 

 

Vector control.  In addition to testing and removing infected animals, producers have a private 

incentive to reduce the disease reservoir, or local possum population in this example.  

Assuming an interior control, profits from raising cattle will be maximized when the harvest 

rate for the wildlife vector population is adjusted each period so that marginal harvest costs are 

just balanced by the discounted marginal benefits of removing the potential source of disease.  

According to equation 14, the producer reduces the possum population in a manner which 

balances the marginal removal costs with the (negative) marginal benefit of the last unit left in 

the disease reservoir: 

 

(14)  
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Estimation of a cost function for vector control in New Zealand suggests that control costs 

escalate as pest densities decline, implying that the marginal cost of harvest will increase as 

successful control efforts lower pest densities. 

 

The above analysis confirms conclusions drawn earlier (Morris and Blood, 1969; Rubenstein, 

1977; Stoneham and Johnston, 1986), that profit maximizing producers will control disease in 

the absence of regulation provided that the benefits of control outweigh the costs.  Private  
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benefits and costs can be influenced in important ways, however, by the mix and level of 

incentives associated with the Animal Health Board’s disease control program.  The complete 

elimination of disease is unlikely to be optimal for any particular individual due to the sharply 

increasing marginal costs associated with controlling disease and the wildlife reservoir at low 

levels of prevalence and density (respectively).  A collective approach may therefore be 

required to achieve eradication objectives that are more stringent than those that would be 

attained exclusively under private incentives.   

 

 

4. Results from the Empirical Model 

 

The control model was calibrated with parameter values estimated and/or derived to 

approximate current conditions in the Clarence/Waiau Tb endemic region in the South Island 

of New Zealand (See Table 1 for variable definitions and calibrated values).  Following 

Standiford and Howitt (1992), the model was specified as a non-linear programming problem 

and solved numerically on GAMS.  Results from the base run of the empirical model are 

displayed in the first column of Table 2.  Assuming an enforced annual testing regime is in 

place, a steady state cattle herd of 231 is reached within the first five time periods.  The 

marketing activity follows a singular path of 36%, or 83 head of cattle sold each time period.  

Annual revenue is maintained at $27.44/ha, or $44,672.32 for the cattle enterprise.  When the 

initial values of the parameters are set substantially above or below this level, the steady state 

is reached as quickly as possible by setting the marketing variable at one of its extreme values.  

This "most rapid approach" path is characteristic of linear control problems. 

 

The above values compare vary favourably to statistics available from the New Zealand Sheep 

and Beef Farm Survey.  At the beginning of the 1992/93 financial year Class II farms reported 

an average herd size of 233 beef animals.  Throughout the year 85 animals were marketed, 

which represents 36.5% of the opening herd.  Net revenue per hectare for the cattle enterprise 

was $27.01. 

 

Numerical results suggest that disease will persist in the herd at a real prevalence of 1.11%, 

and that seventy-five percent of the reactor cattle will be false positives.  In an effort to validate 

the model, this output was compared to actual herd histories for a small number of beef 

breeding herds in the Clarence/Waiau endemic region that have been experiencing trouble 
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 with persistent levels of Tb.  While the reactor rate predicted by the model (1.7%) is within the 

observed range of the averages calculated from the sample data (0.66% -- 1.8%), the model 

over estimated the number of false positive reactors. 

 

Post mortem analysis of reactor carcasses from the Clarence/Waiau endemic region reveals that 

approximately half of the cattle destroyed for test positive status in 1993/94 exhibited visible 

tuberculous lesions at slaughter, suggesting that at least half of the reactor cattle were actually 

tuberculous.  The proportion of false positive reactors is a function of the true prevalence of 

disease in the herd as well as the specificity and sensitivity of the tuberculosis test.  In 

particular, small increases in the specificity of the test (decreases in 1) will result in relatively 

large decreases in the absolute number of false positives.  Subsequent discussions with animal 

health officials suggest that MAF veterinarians are achieving higher levels of both sensitivity 

and specificity than those suggested by the field trial upon which the model parameter 

estimates were based, which could account for the discrepancy between model output and the 

empirical data. 

 

The marginal values on a number of the constraints provide interesting economic information 

on this complex system.  The shadow value for testing is small in magnitude, but negative in 

all time periods.  The implication is that enforced testing on an annual basis imposes an 

economic cost on the system despite the fact that the veterinary charges are not borne directly 

by the producer.  Under the assumed values of the parameters, therefore, profit maximizing 

producers cannot be expected to test in every period.  Increasing the initial number of infected 

animals results in a positive marginal value for the testing constraint early in the first few 

years, suggesting that the optimal strategy is to test early in the time horizon. 

 

The marginal values on the equations of motion represent the costate variables for each 

respective state variable.  Of particular interest is the costate variable for infected cattle.  

Although infected cattle have a smaller implicit value than healthy cattle, the fact that the 

costate variable is positive implies that infected cattle are a productive economic asset despite 

their contribution to the disease process.  Policy analysis in the following sections indicates 

that reactor compensation has a profound effect on the implicit value of infectious cattle. 

 

The model predicts that possum harvesting activities will be maintained at a low level of 

approximately 2% of the farm possum population, which encourages a small amount of  
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migration from the adjacent habitat.  Although the costate variable for possums indicates that 

they have negative economic value, the costs of harvesting under the assumed wage precludes 

a more rigorous level of control. 

 

 

5. General Policy Implications 

 

The Animal Health Board is concerned that national tuberculosis control policies such as 

reactor compensation and subsidized possum control have distorted market signals and 

deterred individual producers from more active participation in the disease control process.  As 

a consequence, the Board is seeking to identify policies which achieve lower levels of disease 

by encouraging individual producers to take more responsibility for the level of disease within 

their herds (AHB, 1995).  Numerical simulation with the model estimated above provides a 

means by which the relationship between potential policies and the resulting level of disease 

can be explored before costly policies are instituted. 

 

5.1 Eliminating Compensation Payments 

 

One of the policies under investigation by the Animal Health Board is payment for reactor 

cattle.  Compensation payments will be reduced under the latest National Tb Strategy, and 

closely reviewed in the years that follow.  For simulation purposes, a ‘no compensation’ policy 

was approximated by increasing 1 and decreasing 2 (second column of Table 2).  Results 

suggest that producers would achieve a slightly lower prevalence without compensation by 

increasing the possum harvest rate and maintaining a smaller herd to reduce both between and 

within species transmission.  A similar level of sales is obtained by marketing a larger 

percentage of a smaller herd.  Annual revenue falls by $0.11 per hectare, or approximately 

$179.08. 

 

One variable of particular interest is the value of the costate variable on infected cattle.  In the 

ceteris paribus absence of compensation, the implicit value of an infected animal becomes 

negative.  While it is still not optimal to test every period (the marginal value on the testing 

constraint becomes negative after the fifth period) the elimination of compensation implies a 
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 very different value for infected stock.  As a consequence, producers take a more active role in 

controlling the spread of disease within their herds.  

Compensation was initiated in part to encourage compliance with Tb control measures (AHB, 

1995).  There is a perception, therefore, that the elimination of compensation payments may 

prompt non-compliant behaviour.  Numerical work with the empirical model indicates that 

when testing is a choice variable, the elimination of compensation leads to a decrease in testing 

activity, which results in a higher level of prevalence on average.  These results support the 

Board’s concern, and provide a prime example of how the success of one policy (elimination of 

compensation) depends critically on the existence of another (enforced testing). 

 

5.2 User Pays for Tuberculosis Testing 

 

In an effort to make the costs of tuberculosis control more transparent, the Board considered 

several proposals which would have required producers to pay directly for tuberculosis testing.  

The latest National Tb Strategy indicates that whole herd testing will continue to be funded 

from the slaughter levy, but that producers are expected to pay for ancillary testing and tests 

associated with movement control.  As with reactor compensation, the Board will monitor the 

testing policy, and propose changes if they feel that the goals of the strategy are being 

compromized.  A ‘user-pays’ system for whole herd testing was simulated by increasing the 

cost of the test, but continuing to force the producer to test annually.  When annual Tb testing 

is enforced by regulation, increasing the cost of testing serves primarily to reduce annual 

revenue for producers of breeding and/or store stock in endemic regions (Policy 3 in Table 2).  

The very slight reduction in prevalence results from the maintenance of a smaller steady-state 

herd.  Producers who fatten store stock for slaughter would clearly be the major beneficiaries 

of a policy which increase the variable cost of testing as they maintain proportionately fewer 

breeding animals which require regular testing.   

 

Once again it is important to note that the results of this analysis rely on the fact that annual 

tuberculosis testing is enforced by regulation.  The variable cost of testing is an important 

component of the switching function for testing, and can be expected to influence the annual 

decision to test.  Numerical analysis confirms this expectation, by revealing a strong (direct) 

relationship between the cost of testing and the resulting level of disease when producers 

choose the level of testing activity that maximizes profit. 
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5.3 The Wildlife Reservoir 

 

Given 1) the base values for the parameters, 2) the ‘closed herd’ assumption, and 3) an 

enforced testing regime, the key force driving disease dynamics in the system is reinfection 

from the wildlife reservoir.  The following subsections examine the implications of an 

exogenous reduction in the population of possums that have direct access to cattle.  The results 

of the analysis are shown to depend critically on 1) whether and how quickly the possum 

population manages to recover from control operations, and 2) whether producers are expected 

to fund continuing maintenance control directly.  A subsidy on the direct cost of possum 

control is considered in the final sub-section. 

 

Elimination of the Wildlife Reservoir.  The successful elimination of the wildlife reservoir was 

simulated by setting 
2
 equal to zero.  Results indicate that if possum are eliminated as a 

source of tuberculosis, annual testing will eventually drive disease from the cattle population.  

Steady state values for the state and control variables (Policy 4 in Table 2) indicate that in the 

absence of tuberculosis, producers would market more animals from a larger herd, thereby 

increasing their annual revenue by over $520 per year. 

 

Recovery of the Possum Population.  While the results reported above imply that eliminating 

the wildlife reservoir will lead to the eventual eradication of disease in cattle, concern has been 

raised about the implications of population recovery through reproduction and immigration of 

possums from neighbouring (uncontrolled) habitats.  Prior modelling work suggests that 

immigration may pose a particular threat to producers on small blocks of land when possum 

control is periodic (Hickling, 1993).  To develop an appreciation for the possible effects of 

population recovery, periodic possum control operations were simulated by exogenously 

reducing the possum population in the controlled habitat every 5 years.  

 

Under the assumed values of the parameters, the possum population recovers from control 

operations quite rapidly through reproduction and immigration from the uncontrolled habitat.  

Disease consequently persists in the cattle herd at an average level of approximately 0.56%.  

Reducing the dispersion parameter slows the rate of recolonization, but disease remains in the 

herd at low levels even in the absence of immigration.  The clear implication of these  
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simulation results is that possum control operations must be persistent and well monitored if 

they are to be effective as a disease eradication strategy. 

 

Implications of a Single Exogenous Reduction in the Possum Population.  The AHB has 

signalled a commitment to a policy that would involve a one-time subsidized reduction of the 

possum population, provided landowners actively maintain these populations at low levels.  

The Board envisions that landowners will fund these operations either collectively, or by direct 

contribution (AHB, 1995).  While it may be tempting to assume that producers acting 

independently will maintain a control program initially undertaken on their behalf, economic 

theory tells us that such sunk costs are irrelevant for current (and future) decisions.  

Exogenously funded control efforts do not change the basic incentive structure facing an 

individual producer. Paradoxically, reductions in the possum population serve only to make 

individually funded control more expensive, as control costs are inversely related to population 

density.  Producers should therefore not be expected to maintain possum numbers at low levels 

if such control activities were not optimal prior to any activity undertaken by the AHB.  This 

phenomenon is demonstrated in Figure 2, which compares the timepath for prevalence 

following a single exogenously funded control operation to the disease level in the base run. 

 

In the simulated 'one-off' control scenario prevalence is initially driven below the base level, 

but it climbs to the steady-state level reached in the base run relatively rapidly.  This is hardly 

surprising, as none of the parameters which dictate the steady state values for the state and 

control variables have changed.  Removal of the dispersion flux terms does not change the 

qualitative results of the model, it simply takes longer for the controlled population to recover.  

In either case the producer-funded harvest rate starts at a lower level than without the one-off 

policy, and then increases smoothly to the original steady state level. 

 

Subsidizing Possum Harvest.  Results from the analytical model indicate that when making 

possum control decisions, producers balance the (private) marginal cost of harvest against the 

benefits of a reduction in the level of prevalence.  Policies aimed at changing the marginal cost 

of harvest can therefore be expected to have a much more profound effect on producer 

behaviour than policies which exogenously reduce the possum population.  A subsidy on the 

cost of possum control was simulated by reducing the cost per day of harvesting possums.  

Predicably, there is a direct relationship between the level of subsidy and the resulting amount 

of effort directed towards possum harvest.  More detailed numerical work, however, indicates  
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that the responsiveness of prevalence to a reduction in the cost of harvesting possums depends 

critically on the level of transmission between possums and cattle, as well as the range of 

subsidy under consideration. 

 

As demonstrated in Figure 3, the response of prevalence is much more dramatic when the 

probability of effective contact between possums and cattle is high.  This makes intuitive sense 

since the implicit cost associated with not harvesting possums is much higher when the 

probability of disease transmission is high.  This is reflected in the empirical model by a much 

more negative marginal value on both of the possum populations at relatively high values of 

2.   Prevalence is also revealed to be relatively unresponsive to decreases in the cost of 

harvesting at low levels of subsidy, particularly when the probability of disease transmission 

between possums and cattle is low.  In general, the reduction in the possum population that 

follows a subsidy on possum harvest allows the producer to maintain a slightly larger herd, 

from which a greater number of cattle are marketed each year.  As expected, net revenue from 

the cattle operation increases as prevalence declines.    

  

 

6. Conclusions 

 

This paper was motivated by the ongoing debate regarding the role of the public sector in 

livestock disease control, and the empirical difficulties associated with controlling a disease for 

which an effective wildlife reservoir exists.  The optimal control methodology developed in 

this paper embeds models of disease transmission and species interaction into a dynamic 

optimization framework, incorporating non-linear relationships between the four state and 

three control variables.  First order conditions from the theoretical model confirm results from 

earlier studies:  individual profit maximizing producers are not likely to eradicate disease from 

their herds due to the increasing marginal cost of control as prevalence declines. 

 

Results from the empirical model confirm that while the current mix of policies to control 

bovine tuberculosis in New Zealand is achieving lower levels of prevalence than would prevail 

in the absence of a strategy, they also appear to be distorting market signals and removing 

some of the individual incentive to control disease.  The elimination of compensation payments 

for reactor cattle provides a more accurate indication of the value of infected stock, and 
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 encourages producers reduce prevalence by increasing their possum harvest activities and 

maintaining slightly smaller herds.  In a regulated environment the introduction of a ‘user pays’ 

philosophy for testing simply transfers the cost of testing cattle to those who use the service 

most heavily.  It should be noted, however, that compensation payments and subsidized testing 

both serve to encourage testing activity.  The elimination of these policies may therefore 

increase the risk of non-compliance.  Policies aimed directly at suppressing the wildlife 

reservoir appear to be the most effective at reducing prevalence in bovine Tb endemic areas.  

Given the tendency for possum populations to recover through a combination of migration and 

reproduction, however, control efforts must be well monitored and diligently maintained. 

 

The theoretical framework and the empirical bioeconomic model developed in this paper show 

considerable promise for the analysis of a wide range of disease control issues.  While 

countries throughout the world are reconsidering the role of the public sector in the delivery of 

animal health services, externalities associated with the control of infectious diseases suggest 

that private solutions to disease control problems will not be socially optimal.  This model 

provides a means by which important trade-offs among disease control inputs can be analysed, 

and the effects of proposed policies can be examined in a relatively inexpensive ex ante 

manner. 
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Figure 1:  Schematic Diagram of Bioeconomic System 
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Figure 2:  Trajectory for Disease:  One-off Control versus Base Run 
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Figure 3:  Disease Response to Harvest Subsidy at Various Levels of 
Possum-Cattle Transmission 
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Table 1 
Variable Definitions and Parameter Values 

 

Variable Definition Base 

St Density of susceptible cattle (state variable) hd/ha 

It Density of infected cattle (state variable) hd/hd 

P1t Density of farm possums (state variable) hd/ha 

P2t Density of forest possums (state variable) hd/ha 

Mt Marketing activity (control variable) % 

Tt Tuberculosis testing effort (control variable) % 

Ht Harvest rate for possums (control variable)  hd/ha 

 Annual discount ratea 7.05% 

p Average price of cattle ($/hd)b $570 

lt Slaughter levy ($/hd)c $8.70 

1 Compensation for non-leisioned test positive cattlec 85% 

2 Compensation for leisioned test positive cattlec 85% 

 Market value salvaged from infected cattled 35% 

1 Variable costs of maintaining herd ($/hd)e $15 

2 Cost of testing cattle ($/hd)f $1.50 

PC(Ht,P1t

)

Cost function for possum harvestg w H

P
t

t645 1

2

.









  

w Cost of time spent possum hunting ($/day)h $136 

a Maximum rate of growth for cattle herd (-t)i 67% 

Kc Carrying capacity of pasture -- cattle (hd/ha)i 0.35 
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Table 1 (continued) 

 

Variable Definition Base 

b Mortality for cattle (-t)i 2% 

rP1 Intrinsic growth rate for farm possums (-t)j 30% 

KP1 Carrying capacity for farm possumsj 3  

rP2 Intrinsic growth rate for forest possumsj 20% 

KP2 Carrying capacity for forest possumsj 2 

D Dispersion parameter (hd/ha/yr)k 1 

Z Possum disease threshold (hd/ha)l 1.4 

1 Cattle-cattle disease transmission coefficientm 3 

2 Possum-cattle disease transmission coefficientn 0.003 

1 (1 - specificity of the tuberculosis test) = % Falseo 2% 

2 Sensitivity of the tuberculosis test = % True  66% 

 
 
a  Seasonal loan rate for farm related business expenditure, secured with farm property and/or 

stock (Burt and Fleming, 1994). 
 

b  Weighted average of farm-gate prices for all cattle sold from Class II farms (NZMWB, 
(various issues)). 

 

c  National Tb Strategy (AHB, 1995). 
 

d  Scott and Forbes (1988) estimated that producers receive thirty-five percent of full market 
value for infected animals. 

 

e  Average direct expenditure per head taken from the Financial Budget Manual (Burt and 
Fleming, 1994). 

 

f  Average mustering and handling costs for typical North Island Hill Country sheep and beef 
farm stocking 340 head of cattle (Nimmo-Bell, 1994).  Should be considered ‘lower bound’. 
Does not include veterinary charges, which are currently covered by the National Tb 
Control Scheme. 

 

g  The cost function for possum control was derived by solving the following economic 
problem:    The harvest function was estimated 

econometrically using data collected from 20 ground control operations throughout New 
Zealand.  Parameter values of q = 2.54, 

Et
t t tTC E wE subject to H qE Pmin ( ) , .     1 21

1 = 0.56 and 2 = 0.96 were all significant at the  
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10% level or above.  A test of the joint hypothesis that 1 = 0.5 and 2 = 1.0 could not be 
rejected at a 0.5% level of significance, yielding the parameter values listed above. 

 

h  Represents the average cost per day for contract hunters for 9 ground-based operations on 
blocks of less than 1,000 ha (Warburton and Cullen, 1993).  Does not include the cost of 
planning the operations or their subsequent monitoring. 

 

I  Estimated from data in the New Zealand Sheep and Beef Farm Survey (NZMWB, (various 
issues)). 

 

j  Estimates of r for possums range from 0.2 to 0.59, while values for K range from fewer than 
1 to over 25 (Batcheler and Cowan, 1988). Values chosen for rP1 and KP1 appear to be most 
representative of farmland/scrub habitat.  Possum populations in forest habitats, by contrast, 
grow at a slower intrinsic rate to a smaller carrying capacity, suggesting lower parameter 
values for the uncontrolled parcel. 

 

k  Data for the estimation of this parameter was taken from a number of ecological studies  
(Clout and Efford, 1984); Green and Coleman [reported in Batchelor and Cowan, 1988], 
(Barlow, 1993) which imply that under a variety of habitat conditions, when the population 
of possums in a controlled area has been substantially reduced, possums from surrounding 
undisturbed habitats will immigrate at the rate of 1 hd/ha. 

 

l  Following current control practices, which are based on Barlow's modelling work (1991a, 
1991b), Z is set to a number representing 40% of the possum carrying capacity. 

m  Based on past attempts to estimate a coefficient for the transmission of tuberculosis between 
infectious and susceptible cattle in New Zealand, which suggest a range for i of 2.77 to 
6.12 (Kean, 1993). 

 

n  Data limitations and cost constraints have precluded precise estimates of the probability of 
transmission between possums and cattle. 

 

o  A field trial of the tuberculosis test under New Zealand field conditions suggests a 
specificity and sensitivity of 98% and 66%, respectively (Ryan, et al., 1991). 

 



Table 2 
Summary of Steadystate Values for Key Variables:  Policy Analysis 

 

    Policy1    

Variable 1 2 3 4 5
2
 6 7 

Prevalence 1.11% 1.02% 1.10% 0% 0.57% 1.11% 1.0% 

Herdsize 231 229 228 233 232 231 231 

Sales 83 83 83 85 84 83 84 

Harvest Rate 2.16% 3.61% 2.16% -- 2.54% 2.16% 4.24% 

Density P1 (hd/ha) 2.84 2.73 2.84 -- 2.1 2.84 2.68 

Density P2 (hd/ha) 1.92 1.87 1.92 -- 1.54 1.92 1.85 

Costate for S $562 $566 $569 $565 $563 $562 $563 

Costate for I $202 -$52 $205 $187 $194 $202 $200 

Costate for P1 -$0.32 -$0.55 -$0.32 $0.00 -$0.51 -$0.32 -$0.32 

Costate for P2 -$0.21 -$0.37 -$0.21 $0.00 -$0.38 -$0.21 -$0.22 

Revenue ($/ha) $27.44 $27.33 $27.23 $27.76 $27.59 $27.44 $27.46 

1 1) Base values for the parameters.  2) No compensation. 1 = 0.9, 2 = 0.9, l = $7.70.  3) User pays for testing.  2 = $5.00, l = $5.50.  4) Elimination 

of disease reservoir. 2 = 0.  5) Periodic possum control.  Exogenous harvest every 5 years. 6)  One exogenous possum control operation.  7) 50% 

Subsidy on cost of harvest; 
2 Results reported in terms of averages for t = 10 - 40.  
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