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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

Adaptation of biofuel cell technology for electricity generation 

from wastewater and lactose measurement 

 

by 

Mimi Hani  Abu Bakar 

Biofuel cell (BFC) is an emerging renewable technology that can perform high direct energy 

conversion efficiency to electricity. BFC system uses low energy density sources, such as organics in 

wastewater and converts them into electricity. The system is based on biological catalysts such as 

microorganisms and enzymes, which are capable of consuming the organics in the sewage for 

metabolism. In the process, the BFC system will convert the organics in the wastewater and reduce 

the biological oxygen demand of the sewage to a safe level before it is released to the environment. 

Nevertheless, commercialisation of BFC applications are still a long way to go due to many 

weaknesses that have to be overcome. Culturing exoelectrogenic bacteria and applying new 

materials to enhance catalytic process in microbial fuel cell (MFC) are some of the options to improve 

MFC operation. The aims of this study are two-fold: To develop (i) a MFC for electricity generation 

from wastewater by bacteria isolated from a trickling filter, and (ii) an enzymatic fuel cell (EFC) for 

continuous measurement of lactose concentration in dairy wastewater as well as electricity 

generation. This thesis shows that the multi-cultured bacteria could generate electricity after 30 days 

exposure to oxygen at a concentration of 7.5 ppm and that the fabricated graphite-epoxy composite 

anodes possess the desired characteristics of a good electrode. Such fabricated electrodes can be 

prepared within a very short time-span compared to commercial electrodes. These electrodes are 

cheap and flexible for surface modification. However, due to inherent high resistance of the graphite-

epoxy composite, it was unable to generate as much current intensity as commercial material 

electrodes. This study has highlighted several areas that can be further explored such as reducing 

inherent resistance in graphite composite electrode and the potential use of combined multi-walled 

carbon nanotube (MWCNT)-diazonium salt within graphite matrix as a reusable high performance 

electrode.  

Keywords: biofuel cell, microbial fuel cell, enzymatic fuel cell, aerobic, composite, cellobiose 

dehydrogenase, aryl diazonium. 
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Chapter 1 

Introduction 

1.1 Background 

Our world is dependent on energy for growth and development. At present, the world is facing an 

energy crisis since the consumption of fossil fuels is projected to last only for another 120 years 

(Eriksson, 2010). To address the problem, clean alternative energy based on renewable sustainable 

energy is favoured to ensure a stable supply and clean sustainable environment for strong nation 

development. Among the wide range of emerging renewable technologies, a biofuel cell (BFC) 

system stands out because it can perform high direct energy conversion efficiency to electricity, up 

to 81% (Rabaey et al., 2004). This high-energy conversion efficiency to electricity is far superior to the 

combustion method, which seldom achieve 40%. A further advantage of the BFC system is its 

capability to simultaneously extract energy and treat wastewater to a state acceptable for the 

aquatic ecosystem. Some of these attributes are made possible through utilizing the free and well 

diverse microorganisms and fabricated electrodes. There are two types of BFCs, one is microbial fuel 

cell (MFC) that uses microbes and the other is the enzymatic fuel cell (EFC), which uses isolated 

enzyme(s) mainly from these microbes.  

 

1.2 Aims 

The main aims of this PhD project are: 

i. To understand the role of long term oxygen exposure on enriched multi-cultured 

bacteria in MFC system 

ii. Fabricate graphite-epoxy composite electrodes with more than 70% of graphite using 

simple procedure(s) and apply them in MFC system with enriched multi-cultured 

bacteria 

iii. Lactose detection and electricity generation using the above mentioned fabricated 

electrodes immobilized with cellobiose dehydrogenase (CDH) in EFC system 

1.3 Objectives and hypotheses 

1. To analyse the effect of long term oxygen exposure on enriched multi-cultured bacteria of 
anode in MFC system.     
 

Emphasis will be on characterising the MFC performance by plotting power (P) vs current density (I) 

over varying load ranges using enriched multi-cultured bacteria exposed to oxygen for an extended 

time period. 

Hypothesis:  Selected exoelectrogenic bacteria will tolerate both aerobic and anaerobic conditions. 

 

2. To investigate the capability of MFC system when operated with graphite-epoxy composite 

electrode fabricated with more than 70% of graphite using simple procedure(s) and within  

24 h. 
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Emphasis will be to:  

 Operate MFCs using the exoelectrogenic bacteria selected from a tricking filter (see Objective 

1) on fabricated graphite based anodes. 

 Comparison of fabricated carbon anode and fabricated carbon anode embedded with multi-

walled carbon nanotube (MWCNT) for electron transfer improvement in MFC.   

Hypotheses:   

i. The fabricated graphite-epoxy composite with more than 70% graphite shows 

electrochemical response almost similar to the conductive commercial graphite rod. 

ii. 9,10-anthraquinone-2,6-disulfonic acid disodium salt/ polypyrrole-modified fabricated anode 

improves the electron transfer in MFC. 

 

3. To investigate the performance of immobilised CDH for lactose detection and its stability 

using aryl on graphite-epoxy electrodes developed from objective 2 with and without 

MWCNT. 

 

Emphasis will be to use the anode immobilised with CDH (from fungus, Phanerochaete sordida) and 

lactose as a substrate. 

Hypotheses: 

i) The current measured by the prepared electrodes will be proportional to the lactose 

concentration. 

ii) Graphite-epoxy composite anode in EFC will help to produce a continuous current signal for 

up to 25 days. 

 

1.4 Thesis format 

This thesis acknowledges the contribution from other researchers with the term ‘they’ and ‘their’ 

while referring to the original results observed by myself with the term ‘this study’. Some chapters 

(3, 4, and 5) in this thesis are organized as stand-alone scientific publications. This has led to some 

overlap in the materials and methods section (particularly between chapters 3, 4, and 5). Some 

material has been intentionally left out of the general introduction and literature review to avoid 

repetition in the introductions to data chapters. The specific discussions in each data chapter 

(chapters 3 to 5) contain most of the discussion material, while a more concise general conclusion at 

the end is aimed to raise synergies between the different chapters and to show the coherence of 

different chapters to the overall purpose of the research. That too has been intentionally kept short 

to avoid repetition. 
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Chapter 2 

Literature Review 

2.1 Energy conversion 

In reality, it is not possible to convert energy at 100% efficiency. Factors such as type of fuel and 

instrument to convert the energy to work hinder the possibility of higher efficiency (the second law 

of thermodynamics). For instance, gasoline’s energy density is 45 MJ/ kg (Golnik, 2003). The 

conventional pathway for harnessing the free energy from this non-renewable fossil fuel using an 

internal combustion engine can only give 35% of work efficiency (Lewis, 2008) while most of the 

internal energy is lost into the surrounding as heat. Although this pathway gives poor energy 

conversion, the combustion is still popular due to its simplicity and available infrastructure. 

Unfortunately, non-renewable fossil fuel will eventually come to an end. Alternative fuels that are 

renewable, sustainable and non-pollutant need to be available and functional before the world runs 

out of fossil fuel to ensure continuity in energy supply. This creates opportunity for renewable energy 

technologies that come either direct from sunlight or manifested from sunlight, in the form of 

biomass, wind and water. These choices of renewable technology, except biomass, are very costly 

and highly dependent on geographic aspects. Renewable biomass is diverse, ranging from living 

organisms, dead organisms to biodegradable waste (Nag, 2008) and can be converted to energy 

through various means.  

2.2 Bioenergy conversion 

Biomass can be converted to different energy carriers, such as methane, ethanol, hydrogen and 

electricity (Rittmann, 2006) (Table 2.1). In the bioenergy conversion pathways, the first step involves 

biocatalytic activity. The normal biology conversion pathways will be through fermentation reaction 

that requires anaerobic environment. Different fermentation will dictate the type of energy carriers. 

For instance, when yeast ferments glucose through glycolysis pathway, ethanol will be produced. In 

this pathway, 91% energy from the glucose, which is -15.96 MJ/ kg will be retained in ethanol (The 

Japan Institute of Energy, 2008). Alternatively, the methanogenesis pathway will produce methane 

from fermentation of glucose. In order to tap the methane to produce electricity, a combustion 

process is needed. This further reduces the net energy output to only 33% of electrical-energy 

conversion efficiency. Unlike methane and ethanol, hydrogen and electricity do not require 

combustion to liberate the electrons. These two energy carriers can go through an isothermal direct 

redox process via the fuel cell that boosts the electrical-energy conversion efficiency to more than 

50%. 
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Table 2.1  Analysis of energy carriers’ outlet from glucose 

Energy carrier Gibbs free 

energy 

(kJ/ mol 

C6H12O6) 

Electrical 

energy-

conversion 

efficiency 

(%) 

Net yield 

 

(kJ/ mol 

C6H12O6) 

C2H5OH -2,630  -870 

C6H12O6                   2C2H5OH + 2CO2 …. (fermentation) 

C2H5OH + 3O2                 2CO2 + 3H2O … (combustion) 

  

~33 

 

CH4 -2,450  -730 

C6H12O6                   3CH4 + 3CO2 ….  (biomethanation) 

CH4 + 2O2                     CO2 + 2H2O… (combustion) 

  

~33 

 

H2 + CH4   -2,590  -1,090 

C6H12O6 + 2H2O                     2CH3COOH + 4H2 + 2CO2    

 …. (fermentation)   

2CH3COOH                   2CH4 + 2CO2 … (biomethanation) 

2H2 + O2                    2H2O                   

 … (chemical fuel cell) 

CH4 + 2O2                     CO2 + 2H2O    … (combustion) 

  

 

 

~55 

 

 

                    

~33 

 

Electricity -2,870  -1,870 

C6H12O6 + 6H2O                     24H+ + 24e- + 6CO2    

 …. (bacterial catabolism)   

4H+ + 4e- + O2                    2H2O           

… (microbial fuel cell) 

  

 

~65 

 

 

Source: (Logan, 2004; Rittmann, 2006; The Japan Institute of Energy, 2008) 

2.3 Fuel Cell as clean alternative energy 

Fuel cell technology is a form of renewable energy source that is being actively engaged through 

research. Although bound by the second law of thermodynamics, fuel cell has higher energy 

efficiency as compared to a Carnot heat engine. A fuel cell converts chemical energy directly to 

electrical energy as work (Hassanzadeh & Mansouri, 2005) without any need for combustion. This is 

an advantage with regards to the environment and work conversion efficiency. The principle of fuel 

cell was first published in 1838 by Christian Friedrich Schönbein and after languishing for more than a 

century, a resurgence of research in this technology is beginning to show improvement in power 

output.  
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A basic single fuel cell (Figure 2.1a) is constructed with two compartments of anode and cathode 

separated by a selective permeability membrane. These compartments are connected together with 

a conductor forming an external circuit. During a fuel cell operation, the substrate, which acts as fuel 

will be oxidized in the anode compartment. This releases electrons and hydrogen ions with the 

assistance from the catalyst at the anode. Due to the selective permeability membrane, only 

hydrogen ions are able to flow to the cathode. The potential difference between the anode and 

cathode drives electrons to move through the external circuit to reach the cathode. Electrons that 

reached the cathode will reduce an electron acceptor, usually oxygen in air and will combine with 

hydrogen ions to produce water.  

 
 

 

 

Figure 2.1  Chemical fuel cell (a), Microbial fuel cell (MFC) (b) and Enzymatic fuel cell (EFC) (c). 

Source: aCalifornia Institute of Technology (2013), bEmilygardel (2010) and cZebda et al. (2011) 

 

2.4 Types of biofuel cells (BFCs)  

In comparison with chemical fuel cells, a BFC has the advantage to work at ambient temperatures 

that requires less external energy source. BFCs are categorized into two groups based on the 

biocatalyst used, the microbial fuel cell (MFC) (Figure 2.1b) that uses the microbes and the enzymatic 

fuel cell (EFC)(Figure 2.1c) that uses isolated and purified enzymes. Though the catalysts are 

different, the working mechanisms of these biofuel cells are similar, which is extracting electrons 

(a) (b) 

(c) 

Pt metal 
(catalyst) 

Biofilm 
(catalyst) 

Enzyme 
(catalyst) 
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through favoured substrate oxidation and passing them to an anode electrode. The electron then 

travels to the cathode via an outer circuit. 

2.4.1 Microbial fuel cell (MFC) 

Advantages of bacteria (prokaryote) and yeast (eukaryote) are that they are abundant in nature, easy 

to self-replicate, able to consume various biodegradable organics for carbon source (Chae et al., 

2009) and have flexible low operating temperature between the range of 15 to 60oC (Logan, 2008). 

The carbon source, which is also called as substrate, is the energy source and contains nutrients for 

microorganism.  

The common electrochemical reactions in an MFC are as shown in equations (1) – (4). 

  

Glucose as substrate: 

Anode:  

 

Cathode:  

 

 

Acetate as substrate: 

Anode:  

 

Cathode:  

 

Figure 2.2    Half reactions in an MFC when glucose and acetate is used separately as substrate in 
anode compartment. 

Organic compounds; such as acetate, butyrate, propionate and glucose that serves as electron donor 

(Chae et al., 2009) will be broken down to simple molecular unit, to go through process of  glycolysis 

and citric acid cycle (Figure 2.3). Series of oxidation processes will take place with the assistance of 

the coenzymes NAD+ and FAD and other electron carriers between the cytoplasm and the cell 

membrane. At the cell membrane, the electron transfer chain (ETC) takes place through redox sites 

bound in the membrane and finally to a soluble terminal electron acceptor, such as oxygen or some 

inorganic compounds, such as nitrate, sulphate, carbon dioxide (Cutright 2002; Osman et al., 2010).  

C6H12O6 + 6H2O                                 6CO2 + 24e- + 24H+                          -----------  (1) 
 

O2 + 4e- + 4H+                                    2H2O                                                  -----------  (2) 

microbe 

air cathode 

CH3COOH + 2H2O                                 2CO2 + 8e- + 8H+                           -----------  (3) 
 

O2 + 4e- + 4H+                                         2H2O                                             -----------  (4) 

microbe 

air cathode   
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Figure 2.3 Glimpse at bacterial cell and respiration mechanism 

Source: (Midlands Technical College, 2012; Portland Community College, 2000)  

 

Oxygen and nitrate are preferred terminal electron acceptors over the solid anode in BFCs due to 

their high redox potentials (Table 2.2) and their excessive presence inhibited the electricity 

generation. However, this is not crucial because any oxygen left in the anode compartment will soon 

get exhausted through bacterial respiration. Commonly, the bacteria at the anode compartment will 

usually be in an anaerobic environment (Table 2.1b). To gain energy, bacteria needs to perform 

anaerobic respiration. Since this is an oxidation-reduction reaction process, it could only happen 

when the electron acceptor is more electronegative than the electron donor. 

Table 2.2  Redox potentials of various couples at T: 303 K (based on Standard Hydrogen Electrode, 
SHE) and pH 7 (unless stated otherwise). 

Couple Potential 

(V) 

Couple Potential 

(V) 

aCO2/ C6H12O6, 24 e- -0.43 bMethylene blue ox/red, 1e- 0.01 
a2H+/ H2, 2e- -0.42 aS4O6

2-/ S2O3
2-, 2e- 0.02 

aCO2/ CH3OH, 6e- -0.38 aFumarate, succinate, 2e- 0.03 
aNAD+/ NADH, 2e- -0.32 aCytochrome box/red, 1e- 0.04 
aCO2/ acetate, 8e- -0.28 aUbiquinoneox/red, 2e- 0.11 
aS0/ H2S, 2e- -0.28 cFerrocene/ferrocenium, 1e- 0.17 
aSO4

2-/ H2S, 8e- -0.22 aFe3+/ Fe2+, 1e- (pH=7) 0.20 
aPyruvate/ lactate, 2e- -0.19 aCytochrome cox/red, 1e- 0.25 
b2,6-AQDS/ 2,6-AHQDS, 2e- -0.19 aCytochrome aox/red, 1e- 0.39 
bFAD/ FADH2, 2e- -0.18 aNO3-/ NO2-, 2e- 0.42 

http://classes.midlandstech.edu/carterp/courses/bio225/chap05/lecture4.htm
http://spot.pcc.edu/~jvolpe/b/bi234/lec/3_metabolism/images/fig5-21_ETC.JPG
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bMenaquinone ox/red, 2e- -0.08 aNO3-/ ½ N2, 5e- 0.74 
bPyocyanin ox/red, 2e- -0.03 aFe3+/ Fe2+, 1e- (pH=2) 0.76 
  a½ O2/ H2O, 2e- 0.82 

Source: aLogan (2008), bDu  et al. (2007) and cMailley et al. (2003)  

When oxygen is supplied to the cathode that has been separated from the anode by a membrane, it 

attracts the bacteria in the anode compartment, which is anaerobic to transfer their electrons to the 

anode. This happens because oxygen has a very high electronegativity (Table 2.2) and will draw the 

electrons from the bacteria, creating a flow of electrons through the external circuit from anode to 

cathode. The bacteria that are capable of performing anodic respiration without help from soluble 

exogenous mediators are called exoelectrogens (Schaetzle et al., 2008).  

2.4.2 Enzymatic fuel cell (EFC)  

In contrast to MFC, an EFC utilizes enzymes as biocatalyst and has specific action, which is confined 

to a single compound or a family of compounds. Unlike MFC that utilizes the whole microorganisms, 

an EFC uses the enzyme instead (Figure 2.1c). The inability of an enzyme to regenerate itself as 

microorganism could, causes an EFC to have a much shorter operational life in comparison to an 

MFC. Each enzyme has specific activity and highly selective in choices of substrates. This is unlike 

bacteria that are able to consume a variety of substrates as fuel in MFC. The substrate specific 

limitation leads to the application of several enzymes for complete oxidation of only one substrate. 

For instance, in the process to oxidize ethanol to acetate at an EFC anode compartment, two types of 

enzymes and a coenzyme are required. The first enzyme, alcohol dehydrogense, oxidizes the ethanol 

to acetaldehyde with the help of coenzyme NAD+ (Equation 5). The second enzyme, aldehyde 

dehydrogenase, then oxidizes the acetaldehyde to acetate with the help of coenzyme NAD+ 

(Equation 6). These oxidation processes produce four electrons which when transferred to the 

cathode, reduce oxygen to water (Topcagic & Minteer, 2006) (Equation 7).   

Anode:  

 

                     
                             CH3CHO                                              CH3COOH + 2e- + 2H+   -----------(6) 
                   
 

Cathode:  

 

Figure 2.4   Half reaction in an EFC when ethanol is used as substrate in anode compartment. 

CH3CH2OH                                              CH3CHO + 2e- + 2H+       -----------(5) 
 

O2 + 4e- + 4H+                                           2H2O                              -----------(7) 

Alcohol 
dehydrogenase 

2NAD+ 2NADH 

Aldehyde 
dehydrogenase 

2NAD+ 2NADH 
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In addition to that, only a small current signal is detected from the EFC in comparison to an MFC.  

Although the latter seems like a disadvantage towards the EFC, it actually proves that an EFC system 

could become a control system on specific substrate. 

2.5 Electron transfer pathways 

Electron transfer pathways across interfaces are very important to all living systems and involve 

molecules both large, such as redox proteins and redox enzymes and small, such as NADH, quinones, 

ions and redox mediators. Only few of these biocatalysts that could perform direct electron transfer 

(DET) to an electrode while many others are still onto mediated electron transfer (MET).  

2.5.1 Mediated electron transfer (MET) 

For the DET incompetent biocatalysts, assistance from artificial redox mediator is required to 

overcome the energy barrier caused by activation polarization (Du  et al., 2007) and proceeds at 

much faster rates (Schaetzle et al., 2008). During the early mediator application in BFC, soluble 

mediator type was chosen such as neutral red (NR) (Daniel et al., 2009; Ieropoulos et al., 2005), 

methylene blue (MB) (Daniel et al., 2009; Ieropoulos et al., 2005; Rahimnejad et al., 2011b), thionine 

(Ieropoulos et al., 2005; Tanaka et al., 1983), meldola's blue (MelB)(Ieropoulos et al., 2005), 2-

hydroxy-1,4-naphthoquinone (HNQ)(Ieropoulos et al., 2005) and Fe(III) EDT (Vega & Fernandez, 

1987). When in oxidized state, the soluble mediator penetrates the outer membrane and cytoplasmic 

membrane of the cell. The electrons produced by the bacterial cell, which are carried by electron 

carriers such as NADH and FADH2 during the substrate oxidation process will be passed on to these 

mediators. The reduced mediators will then diffuse out of the cell and transfer the electrons to the 

anode surface (Du  et al., 2007; Wang  et al., 2006). Although adding soluble mediators into the BFC 

system is simple, the problem occurs when the system is in continuous flow mode, hence requires 

the  expensive mediators to be continually replenished (Park & Zeikus, 2002). In addition to that, 

these mediators are toxic and should be removed before wastewater is discharged to the 

environment (Prasad et al., 2007). 

2.5.2 Direct electron transfer (DET) 

Microbial cells gain energy from pumping of protons across the inner membrane to form a proton 

gradient, which drives the formation of ATP from ADP through ATPase (Franks & Nevin, 2010). 

Extracellular electron transfer acts to move the electrons to the anode surface. The microorganism 

that are able to perform DET are known as exoelectrogens. Studies on electron transfer between 

bacteria and an anode has led to the findings that bacteria such as Pseudomonas aeruginosa (Logan 

& Regan, 2006) and Shewanella oneidensis (Lanthier et al., 2008) are able to reduce an external 

electron acceptor at a distance, without the addition of exogenous mediators using self-produce 
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Enzyme kinetics of CDH enzyme 

During lactose oxidation, the FAD domain, which performs the catalysis in the CDH enzyme, will 

accept two electrons from the substrate (Figure 2.6). This will oxidize the lactose into lactobionic acid 

and eventually reduce FAD to FADH2 (Equation 8 – 9). The electrons will be passed one at a time to 

the heme domain (Fe3+/ Fe2+), which lies about 15 Å from the FAD domain via a flexible linker. Upon 

being reduced, the heme will released a proton to the solution and flavin semiquinone is formed 

(Equation 10). The reduced heme will then be reoxidized by transferring the electrons to an external 

electron acceptor provided there are no dissolved electron acceptor in the solution (Equation 11). 

Process of fully oxidizing FAD will continue in Equation 12 - 13 to enable the CDH to catalyse 

oxidation of another substrate molecule (Larsson et al., 2000; Ludwig et al., 2010). 

Substrate oxidation at FAD domain: 

Lactose + CDH(FAD,Fe3+)                                    LactoseCDH (FAD,Fe3+)                                                (8) 

LactoseCDH (FAD,Fe3+)                                     Lactobionic acid + CDH (FADH2,Fe3+)                           (9) 

ET from FAD to heme and DET from heme to external electron acceptor: 

CDH (FADH2,Fe3+)                                     CDH (FADH*,Fe2+) + H+                                                                                                                                                                                           

CDH (FADH*,Fe2+)                                     CDH (FADH*,Fe3+) + e-                                                            (11) 

CDH (FADH*,Fe3+)                                     CDH (FAD,Fe2+) + H+                                                                (12) 

CDH (FAD,Fe2+)                                         CDH(FAD,Fe3+) + e-                                                                  (13) 

Figure 2.6    Half reaction of lactose oxidation by CDH at external electron acceptor 

In nature, CDH enzyme is produced by white rot fungi from the phyla of Basidiomycota 

(Phanerochaete sordida, Phanerochaete chrysosporium and Trametes villosa) and Ascomycota 

(Myriococcum thermophilum). Between these two phyla, basidiomycete CDHs show substrate 

specificity towards β-1,4-  linked substrates, such as cellobiose, lactose and a distinct discrimination 

over glucose and maltose (Tasca et al., 2009). These features makes the CDH enzyme an efficient 

oxidizing agent and a preferred enzyme in shuttling the electrons from the substrate, especially 

lactose to the electrode (Canevascini et al., 1982; Henriksson et al., 2000). In addition, the CDH 

because of its robust characteristic is able to extend the lifespan of EFC (Tasca et al., 2009).   

(10) 
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2.6 Modification of anode 

The ability for DET requires fulfilment of at least one of the following (Kumar et al., 2013; Tasca et al., 

2011a): 

i) Close proximity of the active site of the redox enzyme to the protein surface, or 

ii) Connection with the protein surface/ microorganism by a build in electron transfer pathway 

constructed by a chain of redox active cofactors/ electric wire, or  

iii) Strength of adhesion between protein surface/ microorganism and the electrode surface  

Unfortunately, the above prerequisites are not enough to ensure high electron transfer rates since it 

is dependent on correct orientation of the active site and vicinity to the electrode surface. This has 

initiated the researchers to experiment on various ways to get the desired effect through anode 

modifications (Table 2.3). 

Table 2.3  Types of anode modifications 

Types Aim 

Surface treatment  

Ammonia Increase adhesion of microorganisms onto the anode interface by 

enhancing the positive charge of the electrode surface 

(microorganisms are negatively charged) 

Acid 

Heat Facilitate adhesion and inoculation of microorganism on the electrode 

surface by increasing surface area of anode materials. 

Electrochemical oxidation Generates new native functional groups such as carboxyl to create 

strong hydrogen bonds between microorganisms and anode. 

Nanostructured 
materials 

Enhance surface area of the electrodes 

Conductive polymers 
and composites 

Enhance electronic conductivity of anode materials 

Polymer 
nanocomposites 

Enhance both electronic conductivity and surface area, hence 

decreased the electron and mass transfer resistance and increased 

contact between electrode and microorganisms. 

Source: Kumar et al. (2013) and Li et al. (2014) 
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2.6.1 Carbon-epoxy composite electrode 

Carbon in many aspects conforms to most of the criteria of a good biosensor (Chaplin, 2004; Logoglu 

et al., 2006), such as: 1) Highly specific in its operation and maintain stability when in storage, 2) 

Operation should be independent of physical parameters used in the measurement, such as stirring, 

pH and temperature. This is related to electrode surface coating with catalyst, which should be 

hydrophilic and have good mechanical properties and stable over the temperature and pH ranges 

used, 3) Output has to be accurate, precise, reproducible and linear over the analytical range and 

free from noise, 4) Resistant to fouling or proteolysis (breakdown of proteins or peptides into amino 

acids by the action of enzymes), 5) System should be cheap, portable and simple, and 6) System 

should be marketable,  thus making it a popular material for electrode fabrication. A carbon-epoxy 

composite consists of cheap construction material with an output exhibiting rigid feature. This 

happens when the epoxy resin that contains the epoxide groups cross-linked (cured) with 

polyfunctional hardeners that contains amine to form thermosetting polymer, often possess strong 

mechanical properties with good resistance to high temperature and chemical (Bhatnagar, 1996; 

Karayannidou et al., 2006). These resins contain hydroxyl groups (OH), which created hydrogen 

bonding throughout the backbone and able to perform other cross-linking reactions (Figure 2.7).  

 

 

Figure 2.7  Epoxy resin cross-linking with primary amines 

The curing process is exothermic and the epoxy resin shrinks on curing, which introduces stress to 

the product. Since the epoxy resins have good electrical insulation properties, suitable conductive 

fillers and curing agents need to be applied to make the resins conductive and semi conductive 

(Bhatnagar, 1996). 

 
The OH will take in hydrogen from carbon black that mixed with the epoxy resin polymer and left the 

surface of carbon black high in electron density (Martin et al., 2005). Since graphite is a conducting 

material with regards to its delocalized electrons, the combination between the graphite as filler and 

the epoxy resin provide versatility in fabricating custom made electrodes, i.e. having various sizes 
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and shapes, and easy adaptation to wide electrode configurations (Kirgoz et al., 2006). Apart from 

that, it is also simple to make and have reusable surface through polishing.  

However, the graphite-epoxy composites was known to have significant ohmic resistance and large 

capacitance, which in turn produces a response delay (O'Hare et al., 2002). Based on Ma et al. (2010) 

and Martin et al. (2005), application of nanotubes could improve conduction pathway in the epoxy 

matrix and increase its conductivity when made as filler at a low carbon nanotube (CNT) loading, as 

low as 0.5 wt.% (Ma et al., 2010; Martin et al., 2005).   

2.6.2 Carbon nanotube (CNT) 

There are two subclasses of CNT; the single walled CNT (SWCNT), consist of single hallow tube with 

diameter between 0.4 – 2 nm and multiwalled CNT (MWCNT), consist of multiple concentric 

nanotubes with diameter between 2 – 100 nm. For SWCNT, the diameter and chirality defined its 

characteristic either metallic or semi-conductors while MWCNT is regarded as metallic conductors. 

Treatment with mineral acids, such as nitric (HNO3) and sulphuric acid (H2SO4) will cause the capped 

ends of the CNT to be removed and reveal the open ended tubes. These open ended tubes contain 

dangling bonds of sp2 carbon.  The sp2 is CNT bonding structure and responsible for CNT’s extremely 

high mechanical properties. These sp2 will become active when in organic solvents by involving 

further in chemical reaction or produced other oxygenated functional groups. Creation of specific 

functional groups can increase the rate of electron transfer that is surface independent (Gooding, 

2005) 

2.7 BFC applications 

Based on the reported BFC studies, there are many of its attractive features, such as operating at 

moderate temperature, wide choices of fuel, low fuel concentration and fuel selective ability that 

show opportunities for broad applications. Some of the practical applications of the BFC identified by 

Bullen et al. (2006) are in the bioremediation, power generation sectors and control processes 

(Bullen  et al., 2006).  

2.7.1 Bioremediation 

Human activities often cause adverse impact on environment, such as crude oil spill, untreated 

sewage effluent, uncontrolled chemigation, gasoline spill/ dumping and chlorinated solvents. Since 

the world can be seen as a closed system, the consequences of these contaminations will eventually 

be thrown back at us. This happens when permeable soil or an aquifer loaded with contaminants 

leaches into the ground water system, which we then later used in our everyday life. To lessen the 
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Scott et al., 2007). In this context, wastewater from a wastewater treatment plant is a suitable choice 

(Antonopoulou et al., 2010). Wastewater contains a wide range of highly diluted contaminants, such 

as organic waste, metals, chemicals, microorganisms and solvents (Ferguson et al., 2003), which have 

yet to be biodegraded, manifested as the biological oxygen demand (BOD) value. A typical influent of 

wastewater to a wastewater treatment plant has a BOD value of 300 mg/ L (Bitton, 2005), and need 

to be lowered to ≤ 20 mg/ L to avoid environmental water pollution (Rich, 2003). By applying the 

MFC treatment to the present infrastructure of the wastewater treatment system, the effluent from 

a wastewater treatment system will not just have a compliant BOD value, but also a reduction in 

sludge and a self-sustaining treatment process (Venkata Mohan et al., 2014). Based on prior 

research, MFC can reduce almost 100% of the chemical oxygen demand (COD) in various types of 

wastewaters (Kiely et al., 2010; Lu  et al., 2009; Min et al., 2005) while concurrently generating power 

density until 260 mW/ m2 (Min et al., 2005). In a different study done on performance durability and 

stability of MFC, Moon et al. (2006) made artificial wastewater from glucose and glutamic acid to 

closely resemble the actual wastewater as substrate (Moon  et al., 2006). The use or artificial 

wastewater was to reduce unknown variables in the study with regards to their two chambers MFC. 

The biocatalyst used in the MFC was an enriched mix consortia originating from activated sludge of 

the wastewater treatment plant. They reported that a maximum power density of 560 mW/ m2 was 

achievable for a 20 mL anode by fixing its feeding rate at 0.53 mL/ min and maintained the 

temperature at 35oC. 

Conventional wastewater treatment system 

The conventional wastewater treatment plant requires wastewater to undergo four different 

consecutive treatments, which are preliminary, primary, secondary and tertiary treatment. The 

preliminary and the primary treatment perform physical process of removing large objects and 

sedimentation of suspended solid respectively. This removes up to 35% of organic material and 65% 

of suspended solids. The secondary treatment performs aerobic biological method, which utilizes 

microorganisms to further remove biodegradable dissolved organic matter until less than 30 mg/ L. 

Most of the dissolved organic matters are removed in the secondary treatment stage. The final stage 

is the tertiary treatment where further removal of organic solid until 15 mg/ L takes place. The 

remainder, such as raw sludge and biological solids, which are the by-products of the four main 

treatments, are then directed to digesters. These by-products with BOD more than 2,000 mg/ L will 

be further consumed by anaerobic bacteria that inhabit the digester (Chan et al., 2009). 

2.7.3 Control process  

Another important application that has the potential for BFC would be in the context of control 

process. This is a process to rectify situation based on comparing actual performance monitored 
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against a standard (Farlex 2012), such as in BOD sensors and biomedical sector. The common 

industrial practise to quantify the degree of organic contamination in natural waters as well in 

wastewater monitoring process is through BOD5, which is time consuming and demand for skilled 

operator (Abrevaya et al., 2015). The use of MFC in this area seems appropriate because the 

Coulomb generated in the MFC is proportional to the concentration of the fuel consumed by the 

exoelectrogen bacteria, provided there is inhibition of other unwanted electron acceptors other than 

the exoelectrogen in the anodic compartment (Chang et al., 2005; Lorenzo et al., 2009). 

In biomedical sector, many researches are focusing on implantable biomedical devices. This is crucial 

to closely monitor blood glucose concentration to reduce the risk of diabetes complication (Jiang et 

al., 2008). Hence, importance are placed on design requirement, small, low power source system 

(BarriËre et al., 2006), low concentration sensitivity and longer stability performance. For this 

purpose, enzyme is preferred rather than a whole microorganism cell because of its high substrate 

selectivity and action specificity. Recently, a research team from Joseph Fourier University in 

Grenuble, France implanted an improved design of glucose blood monitoring devise into two rats. 

The device showed maximum power of 6.5 mW, which is 3.5 mW less than power requirement of a 

pacemaker and could last for three months (Weaver, 2010).  

Apart from research in medical area, some of the studies in this field has also focuses on application 

in dairy products, such as lactose (Conzuelo et al., 2010; Eshkenazi et al., 2000; Göktug et al., 2005; 

Gülce et al., 2002; Jenkins & Delwiche, 2003; Rajendran & Irudayaraj, 2002; Stoica et al., 2009; Tasca 

et al., 2009), which is also the interest in this study.  

 

  Figure 2.9 The major component of bovine milk in % (w/w) 

Source: Walstra (2003) 
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Lactose from dairy plantation 

Lactose is a disaccharide in milk synthesized from two simple sugars: galactose and glucose. In terms 

of taste, lactose is 16% less sweet than ordinary table sugar, which makes it unqualified as 

sweetening agent. Lactose composition varies from species, for instance human’s milk has 7% of 

lactose composition while bovine milk has 4.6 % (  Figure 2.9). 

In dairy industry, whey was previously treated as waste, and released into the environment through 

land irrigation and sewer causing environmental pollution (Fox, 2009). The uncontrolled disposal of 

whey has caused lactose to pollute the environment by inducing the growth of microorganism, which 

in turns increase the BOD value of water. To reduce this problem, lactose is recovered from whey to 

become raw material for food and pharmaceutical industries, such as in production of infant milk 

formula and filler/ binder in tablets and capsules respectively. The pure lactose is obtained from 

whey, which has gone through series of process involving evaporation to induce lactose 

crystallization and washing to remove impurities. This process however did not manage to recover 

100% of the lactose, contributing to traces of lactose in the wastewater stream (Kellam, 1998). 

At present, techniques to detect lactose in milk products include chromatography and mass 

spectrometry which offer high sensitivity and good reliability results. However, such analytical 

techniques are expensive, require skilled personnel and are time consuming (Yakovleva et al., 2012). 

Some of the requirements for an efficient biosensor is low cost and to be able to give a fast analytical 

response. Safina et al. (2010) improved lactose detection sensitivity by using CDH as a biocatalyst 

(Safina et al., 2010). The lactose linear detection limit they obtained was 0.0005 to 0.1 mM. The 

minimum detection limit is lower than when using common enzymes such as β-galactosidase and 

glucose oxidase or β -galactosidase separately with reported detection limit range of 0.1 to 3,500 

mM (Göktug et al., 2005) and 0.2 to 5 mM (Jenkins & Delwiche, 2003) respectively. Conzuelo et al. 

(2010) examined the performance of trienzyme electrodes: β -galactosidase, glucose oxidase and 

peroxidase for lactose detection. They were able to detect lactose at concentration between 0.0015 

to 0.12 mM with an operational lifetime of 28 days (Conzuelo et al., 2010). 

2.8 BFC improvement 

Commercialising BFC applications are still in infancy and many weaknesses have to be overcome. 

Improvement in power density and energy efficiency, suitability of electrode materials used, cell 

design, performance durability, enzyme / mediator immobilization technique are some that need to 

be addressed (Nandy et al., 2015; Osman et al., 2011; Osman et al., 2010) to significantly increase 

MFC power generation, and durability together with improvement in the detection limit for EFC. 
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Therefore, in this research, areas of study will focus on the durability of the power performance of 

anaerobic MFCs and suitability of electrode materials to increase electricity generation and 

operational lifetime for application in both MFCs and EFCs. 
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3.1 Abstract 

A microbial fuel cell (MFC) system is a bioenergy converter that utilizes bacteria to generate 

electricity through bacterial metabolic pathway. A typical MFC consists of two electrodes: the anode 

and the cathode, two compartments for anolyte and catholyte separated using a selective 

permeability membrane and a conductor to link the electrodes together. In an MFC, bacteria are in 

an oxygen- free anolyte compartment together with a suitable carbon source. The high 

electronegativity at the cathode relative to the anode attracts the bacteria in the anode 

compartment to transfer electrons outside their cell to the anode, which acts as electron acceptor. 

Many authors have reported of the harmful effect of dissolved oxygen in anolyte that will reduce the 

capability of the bacteria to transfer electrons to external anode, and in some cases it can results in a 

complete loss of electrochemical activity of bacteria within three hours of exposure to air. In this 

work, enriched multi-cultured anaerobic inoculum was obtained from effluent of MFC operated for a 

long duration. This inoculum was used for both aerobic and anaerobic MFCs. After allowing 30 days 

for the bacteria to acclimatize in their new environment, the condition of these systems were 

changed by swapping the aerobic into anaerobic and anaerobic into aerobic for 11 days. This was 

done to study the effect of long time exposure of the MFCs in oxygen on the electrochemical 

performance. Results proved that prolonged exposure of enriched multi-cultured anaerobic bacteria 

culture from effluent to oxygen at 7.5 ppm had lowered the power generation in MFCs. The situation 

however was reversible once the anaerobic environment was introduced into the system, showing 

improvements up to 100% in Pmax and Imax and a reduction in Rint up to 53%. Future studies would be 

conducted to develop a more in-depth understanding of electrochemical performance of MFCs 

before and after gas swapping, and understanding its effect on microbial community in the biofilm 

and half-wave redox potential (E1/2). Studies can also be carried out using electrode polarization and 

further investigation is required to understand the effect of different oxygen concentration on MFC 

performance. 

 

 

 

 

Keywords: microbial fuel cell, aerobic, oxygen exposure, wastewater 
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3.2 Introduction 

A microbial fuel cell (MFC) system is a bioenergy converter that utilizes bacteria to generate 

electricity through bacterial metabolic pathway (Rittmann, 2006). A typical MFC consists of two 

electrodes: the anode and the cathode, two compartments for anolyte and catholyte separated using 

a selective permeability membrane and a conductor to link the electrodes together. MFC behaves as 

an electrochemical cell, using oxidation/ reduction activity in its operation. In an MFC, bacteria are 

put in an oxygen- free anolyte compartment together with suitable carbon source, while the 

catholyte acts as electron sink. The high electronegativity at the cathode in relative to the anode 

attracts the bacteria in the anode compartment to transfer electrons outside their cell and pass it to 

anode electrode, which acts as electron acceptor. These bacteria are known as exoelectrogens and 

could transfer electrons to anode electrode via direct electron transfer (DET): nanowires, surface 

blebs, self-produced/ endogenous chemical mediators, and via mediated electron transfer (MET): 

self-produced hydrogen for interspecies hydrogen transfer and intermediate metabolites (Logan, 

2008). When oxygen and other anaerobic electron acceptors: nitrate (NO3-), sulphate (SO42-), sulphur 

(S) or fumarate, existed in the anolyte, electricity generation in the MFCs will be impacted. Tests on 

the impact of oxygen in air on anaerobic MFCs had been done on both single cell culture, such as 

from the genus Shewanella (Kim et al., 2002; Li et al., 2010), Escherichia coli (E.coli) (Wang  et al., 

2006)  and multi-cultured bacteria from anaerobic wastewater treatment streams (Kim et al., 2004; 

Liu et al., 2005). Most of them discovered that the dissolved oxygen in anolyte will reduce the 

capability of the bacteria to transfer electrons to external anode. Kim et al. (1999) in their research 

on biosensor, found that Shewanella Putrefaciens completely loss its electrochemical activity within 

three hours of exposure to air (Kim et al., 1999). Wang et al. (2006) discovered that E.coli had about 

61- 68% decreased in capability to reduce external mediator, hexacyanidoferrate (III) [Fe(CN)6]3- in 

anaerobic MFC when oxygen is presence (Wang  et al., 2006). In the case of multi-cultured bacteria, 

Liu et al. (2005) found that the diffusion of oxygen to the anolyte from the cathode site would lead to 

21- 50% loss of substrate to aerobic oxidation by bacteria (Liu et al., 2005), which translates as the 

loss of generated electricity through the MFC. A more detail work was done by Li et al. (2010) on the 

response of Shewanella decolorationis with oxygen (Li et al., 2010). Within about six days, they had 

changed the flowing of gas into the MFCs about five times between argon gas and air to create 

alternate condition of aerobic (0.4 day)-anaerobic (0.6 day) –aerobic (1.1 days) – anaerobic (2 days)-

aerobic (2.2 days). They discovered that when in contact with oxygen, S. decolorationis was able to 

produce a lot of nicotinamide adenine dinucleotide (NADH), which in turns increase in charge 

production. However, the oxygen dissolved in the anolyte will influenced the bacteria for aerobic 

respiration and biomass production that leads to current reduction in MFCs. Though other available 

findings pointed out the adverse effect of oxygen on generation of current by bacteria in MFCs, to 

our knowledge there are no reports that show long term oxygen exposure on anolyte in MFC. In this 
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work, effluent from a long duration operated enriched multi-cultured anaerobic air-cathode MFC was 

made as inocula for aerobic and anaerobic MFCs. After allowing 30 days for the bacteria to 

acclimatize in their new environment, the conditions of the system were changed by swapping 

between the nitrogen and air. This turned the aerobic into anaerobic and anaerobic into aerobic and 

were let to acclimatize in their new condition for 11 days. The electrochemical performance of the 

MFCs before and after the gas swapping were compared in view of maximum power density (Pmax), 

current density (Imax) at Pmax and internal resistance (Rint) accomplished within the systems.  

 

This study was conducted to analyse the effect of oxygen long time exposure on enriched multi-

cultured bacteria of anode in acetate fed air-cathode MFC system. The consequence of alternate 

presence and absence of oxygen in air were characterised through polarization and power curves. 

From the results obtained, prolonged exposure towards oxygen at 7.5 ppm had lowered the power 

generation from MFCs, when using effluent from enriched multi-cultured anaerobic bacteria culture 

as inocula. The situation however was reversible once anaerobic environment was introduced into 

the system, showing improvement up to 100% in Pmax and Imax and a reduction in Rint up to 53%. 

3.3 Methods 

3.3.1 Chemicals 

Chemicals were of analytical grade. Peptone from casein was purchased from Merck (Darmstadt, 

Germany). Yeast extract was purchased from Scharlau (Barcelona, Spain). Ammonium chloride 

(NH4Cl) and sodium acetate anhydrous (CH3.COONa) was purchased from AnalaR®, BDH Laboratory 

Supplies (Poole, England). Di-sodium hydrogen orthophosphate anhydrous (Na2HPO4) and potassium 

chloride (KCl) were purchased from Fisher Scientific UK Ltd. (Leicestershire, UK). Sodium dihydrogen 

orthosphosphate (NaH2PO4.H2O) was purchased from LabServTM, Biolab (Aust) Ltd. (Victoria, 

Australia).  

All analytical solution was made using distilled water unless otherwise stated. 

3.3.2 Inoculum, buffers, reagents and media  

The inoculum was originated from sludge collected from plastic media of aerobic trickling filter in 

Bromley wastewater treatment plant. It was enriched in acetate fed air-cathode MFCs (Appendix A) 

for about eight months when the anolyte was used as inoculate in this study. Working buffer was a 

50 mM phosphate buffer solution (PBS) (0.31 g/L NH4Cl, 3.12 g/L NaH2PO4∙2H20, 4.58 g/L Na2HPO4, 

and 0.13 g/L KCl) at pH 7 (Kim et al., 2005; Rader & Logan, 2010), used for preparing acetate media 

and for analysis. Basal media of 7 mM acetate (1 g/ L CH3 COONa, 1 g/ L peptone of casein and 2 g/ L 

yeast extract) was dissolved in PBS prior to use (Atlas, 2005). The media was autoclaved at 121 oC for 

15 min prior to use. 
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3.3.5 Analytical methods and calculation 

Cell voltage (E) across the external resistor and cell current generated from the anode fixed potential 

poised were measured every twice a day using a Digitech QM 1326 multimeter or every 30 s to 30 

min using a four channel Quadstat 164 potentiostat (eDAQ Pty Ltd, NSW, Australia) and continuous 

recording using an e-corder 1621 (eDAQ Pty Ltd, NSW, Australia) data acquisition system. Current (I) 

and power (P) were calculated using the Ohm’s law, where E represents circuit’s potential and Rext 

represents circuit external resistance, with the current density, Idensity and power density, Pdensity 

normalized by the projected area of the anode (Luo et al., 2011): 

   ,                                                                                       --------------      (1) 

   ,                                                                                   --------------      (2) 

Dissolved oxygen concentration in the anolyte was determined before the gas swapping activity from 

the aerobic MFCs as 7.5 ppm, by HQ40d portable multi-parameter meter (pH/ conductivity/ 

dissolved oxygen/ ORP/ ISE) (Hach Company, Colorado, US). The polarization curve and the power 

density curves were produced by using method in Luo et al.  (2011) and Watson and Logan, (2011) to 

obtain the open circuit voltage (OCV), Pmax, Imax and Rint of the system (Luo et al., 2011; Watson & 

Logan, 2011). In this study, the polarization curves were obtained using multiple resistors (820 kΩ to 

18 kΩ), with each resistance changed in decreasing order after every pseudo steady-state achieved 

or not more than 20 min intervals (which ever comes first) over a complete fed batch cycle. Analysis 

was conducted once the voltage output was stabilised after replenishing the media. The analysis was 

done for two consecutive cycles to ensure that the voltage response was unchanged with successive 

cycles.  

3.4 Results and discussion 

Current density shows that once the anode poising was discontinued, only anaerobic MFCs show 

high current density with total daily average from day-8 till day-25 of 38.26 ± 0.13 mA/ m2 and lowest 

by aerobic MFCs of 2.08 ± 0.01 mA/ m2  while the control gave an average of 20.65 ± 0.28 mA/ m2 

(Figure 3.2). As soon as the MFC characterisation started (day 23 24 and 25), the aerobic MFCs began 

to show significant in current density (t-test, p<0.05), which is higher than anaerobic MFCs with total 

daily average from day-26 till day-30 of 70.93 ± 0.19 and 67.49 ± 0.32  mA/ m2 respectively. In the 

control, there was not much increase in current density recorded after day-26, 30.69 ± 0.68 mA/ m2. 
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happened, the current generated will be low since the anode potential will be much too low to 

attract the bacteria to release electrons to the anode. This might attributed to the moment surged in 

current intensity once the MFC characterisation was stopped. Similar incident was experienced by 

Aelterman et al. (2008), in their studies on the effect of Rext ranges towards MFCs current generation 

(Aelterman et al., 2008). They found that the current intensity of their MFCs increased by 3.29-fold 

when they changed the Rext from 50 to 10.5 Ω.  

 

Figure 3.3  Effect of gas swapping (   ) between the aerobic and anaerobic MFCs.  

The air-cathode MFCs were inoculated with anolyte from operating 8-months old enriched MFC 

and fed with 7 mM acetate (pH 7). The frequency of batch feeding mode was in average every 

two days (represented by   ). The MFCs were kept at 28 oC. (n=2) 

 

The switching of gasses between the anaerobic and aerobic MFCs began on day-33 until day 44. The 

total daily average current calculated for the 11 days after gas swapping did not show any significant 

in current density (t-test, p>0.05) between before (day-26 to 30) and after gas swapping for each 

MFC conditions (day-33 to 44): 49.89 ± 0.19 mA/ m2(anaerobic MFCs) and 74.81 ± 0.18 mA/ m2 

(aerobic MFCs) (Figure 3.3). However, when looking at the individual daily average in current density 

(Table 3.1), there seems to be clear decreasing trend for the anaerobic MFCs from the beginning of 

the swapping till day-43. For aerobic MFCs, the effect of nitrogen bubble seems to be rather slow in 

comparison to the anaerobic MFCs. 

Table 3.1 Daily average current calculated after gas swapping (± standard error of mean) (n=2). 

Day 
Anaerobic MFCs bubbled with air  

(mA/ m2) 

Aerobic MFCs bubbled with nitrogen 

(mA/ m2) 

33 -34 53.40 ± 0.58 71.92 ± 0.16 

34 (feed) -35 97.89 ± 0.85 127.57 ± 0.63 

35 -36 33.89 ± 0.17 85.28 ± 0.39 
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36 (feed) -37 82.84 ± 0.69 124.66 ± 0.59 

37 -38 30.68 ± 0.17 69.21 ± 0.17 

38 (feed) -39 74.19 ± 0.75 87.11 ± 0.53 

39 -40 30.70 ± 0.08 50.43 ± 0.04 

40 (feed) -41 69.36 ± 0.54 72.69 ± 0.44 

41 (feed) -42 31.66 ± 0.16 47.88 ± 0.07 

42 (feed) -43 33.08 ± 0.29 52.23 ± 0.25 

43 (feed) -44 28.49 ± 0.23 49.15 ± 0.17 

 

The impact of the gas swapping before and after can be observed through the polarization and the 

power curves.  Comparisons done on the OCV from the polarization curves between the aerobic and 

anaerobic MFCs before and after the gas swapping (Figure 3.4a), which was about 20 days apart and 

the control, shows that the aerobic MFCs possessed 2.3 fold higher OCV than before the gas 

swapping (150 mV, vs. Ag/ AgCl), and 1.2 fold higher OCV than both the anaerobic (before and after 

gas swapping) and the control MFCs (300 mV, vs. Ag/ AgCl)(Figure 3.4a). The OCV zone is known as 

the activation loss zone and refers to the electron transfers reaction at the electrode surface. The 

OCV is the highest voltage produced in an MFC, measured in the absence of current and take into 

consideration various potential losses as follows (Logan et al., 2006; Osman et al., 2010) (Equation 3 

and 4). 

                                                                                                        -----------------      (3) 

                                                                    -----------------      (4) 

Where the  is the measured cell voltage,  is the sum of all internal losses of the MFC,  

represents the overpotentials of the anode and cathode respectively. The 

overpotential of the anode and cathode reflect the influence of slow kinetics of heterogenous 

electron transfer, which is the movement of electrons between a chemical species and a solid-state 

electrode, together with ohmic resistance and concentration gradients (Tayhas et al., 1994). is 

the cell electromotive force from the differece of cathode potential, Ecat to anode potential, Ean , and 

represents the sum of all ohmic losses. Hence, apart from the low concentraiton of oxygen in air 

(ca. 21%), the reduced in OCV could be attributed to factors, such as potential generated by the 

exoelectrogen that formed the anodic biofilm, diffused oxygen into the anode compartment that 

interrupts the anodic  biofilm and inefficient oxygen reduction reaction (ORR) occurs at the cathode 

site (Cheng et al., 2006). Ideally, an OCV of an air-cathode MFC should be around +595 mV (vs. 

Ag/AgCl) (+800 mV, vs. SHE) when pure oxygen is used. However when air is used at the cathode 
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state and the reduction in current density was gradual. This could be due to the bacteria adapting to 

an aerobic state. Hence, the multi-cultured exoelectrogenic bacteria in MFCs originated from aerobic 

wastewater system after exposure to oxygen in air for a long duration (30 days) has the potential to 

produce high electricity performance when introduced into an anaerobic environment.  

 

Figure 3.5  Oxygen concentration within biofilm 

Notes:  

a. Concentration of oxygen at the bulk fluid and at the surface of the biofilm is 0.14 mM. 

Moving from the bulk to the interior of biofilm the oxygen concentration drop to become 

anaerobic (Cunningham et al., 2001-2008). 

b. Biofilms can contain bacterial clusters (or micro-colonies), channels or pores through which 

water can flow (carrying nutrients through the biofilm), void areas within biofilms no longer 

populated with bacteria, and streamers created by bulk fluid flow (Dirckx, 1997). 

 

Although both the Pmax and the Imax showed expected results with the swapping of gasses, the Rint for 

aerobic MFCs showed an increment of 2.1-fold after the gas swapping. Comparison between the Rint 

 
a 

(a) 

(b) 



 39 

of aerobic and anaerobic MFCs after the gas swapping however shows that the nitrogen replacing 

the air in aerobic MFCs, reduced its Rint lower than that of anaerobic MFCs. This effect can be seen 

clearly in the power curves where the curve of aerobic MFCs after the swapping was not symmetrical 

as the power curve of the anaerobic MFCs (Figure 3.4b). Based on Logan et al. (2006), the symmetric 

nature of the power density curve obtained from the MFC characterisation analysis, which was also 

seen in this study represents a high Rint in an MFC mostly due to the ohmic resistance (RΩ) at the 

point of Pmax (Logan et al., 2006). RΩ can be derived from any material that creates resistance in the 

system, such as substrates, bacteria, gap between electrodes, loose contacts between components, 

and low ionic conductivity in the substrate. The continuous air bubbling in the anode chamber 

probably helped with the growth of aerobic microbes due to a direct reduction of oxygen in the cell 

to increase biomass production. Although increase in biomass means increase in the NADH 

production, which leads to increase in electrons production, most of these electrons however will be 

consumed for biomass before able to  generate electricity (Li et al., 2010). This could be the reason 

for the high Rint observed from aerobic MFCs before the gas swapping with very poor Imax and Pmax 

(Logan, 2008). 

Table 3.2  Details obtained from MFC electrochemical characterizations. 

MFC 
Pmax          

(mW/ m2) 

Imax                                    

(mA/ m2) 

Rint                               

(k) 

Anaerobic- before gas swap 10.88 ± 8.33 114.61 ± 49.97 30.55 ± 0.00 

Anaerobic- after gas swap 7.87 ± 2.13 41.29 ± 5.35 226.40 ± 2.45 

Aerobic- before gas swap 0.02 ± 0.02 2.50 ± 2.25 50.92 ± 0.00 

Aerobic- after gas swap 24.07 ± 4.06 106.22 ± 11.20 107.79 ± 3.89 

Control 2.91 ± 2.52 31.09 ± 17.94 2.41 ± 0.00 

 

Although this study was able to culture exoelectrogen from aerobic sludge originated from trickling 

filter, the electrochemical performance was way too low from results that have been reported in 

other publications, which is no less than 100 mW/m2. According to (Haslett, 2012; Rahimnejad et al., 

2011a), the performance of MFCs are commmonly associated with the following: 1) Substrates 

oxidation in the anode compartment, 2) Microorganism used for inoculum, 3) Mediator, 4) 

Permeabililty of cation exchange membrane (if any), 5) Electrode material and their surface area, 6) 
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Electron acceptor at the cathode chamber, 7) Electron trasport pathway to anode surface, 8) 

Overpotential at the electrodes, 9) External load applied, 10) Distance between electrodes, 11) Mass 

transport, and 12) Operational temperature (Haslett, 2012; Rahimnejad et al., 2011a). For instance 

Feng et al. (2010b) analysed the effect of acid modified carbon fiber brush in 28 mL air-cathode MFC 

having 20% inoculum from domestic wastewater with external load of 1 kΩ, achieved Pmax of  1,370 

mW/ m2 (Feng et al., 2010b). Watson and Logan (2011) adapted similar MFC design with an 

increased of inoculum concentration upto 50%, different type of microorganism and used a non 

modified carbon fiber brush, had achieved 1.6 fold lower Pmax than the later (Watson & Logan, 2011). 

Santoro et al. (2012) on the other hand with completely different MFC design, used 4.6 fold more 

volume and non modified carbon cloth for anode and cathode, only achieved 268 mW/m2 of Pmax 

(Santoro et al., 2012).  To identify the reason of poor electrochemical performance in this study and 

to reduce such high Rint, the variables affecting the performance of MFCs listed above need to be 

analyzed and compare them with those having similar MFC designs.  

3.5 Conclusions 

The goal of this study was to analyse the effect of long-duration exposure towards oxygen in air 

through gas swapping on the electrochemical performance of enriched multi-cultured bacteria in air-

cathode MFCs. The results showed that prolong exposure in 7.5 mg/L (ppm) of dissolved oxygen 

MFCs for a month on the enriched multi-cultured bacteria culture, will produce only low power and 

current generation. This however is not permanent since it could easily and quickly be rectified with 

improvements up to 100% in Pmax and Imax and a reduction in Rint of up to 53%, when introduced into 

an anaerobic environment. Future studies could be carried out to gain a more in-depth 

understanding on electrochemical performance of MFCs before and after gas swapping, and also 

understanding of its effect on microbial community in the biofilm and half-wave redox potential 

(E1/2). Further research can also be carried out on electrode polarization and the effect of different 

oxygen concentration ranges on MFC performance. 
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4.1 Abstract 

Properties such as electrical conductivity, low resistivity, chemicals and corrosion resistance are 

mostly found in carbon based materials. Epoxy resin is excellent for electrical insulation and can be 

used as a conductor with the addition of conductive filler. Combinations of carbon and epoxy show 

qualities of a conductive electrode, mechanically strong with design flexibility and thus makes them 

suitable as electrodes in microbial fuel cell (MFC). In this study, graphite-epoxy composites were 

fabricated with multi-walled carbon nanotube (MWCNT) embedded in the matrix surface. 9,10-

Anthraquinone-2,6-disulfonic acid disodium salt / polypyrrole (PPy/AQDS) was used as mediator, 

covalently electrografted on electrode’s surface. Electrochemical stability of anodes during 

continuous operation were measured in air-cathode MFCs. It appears that maximum power in MFC 

could be increased up to 42% with surface modification using PPy/AQDS. Internal resistance (Rint) 

could be reduced up to 66% with the inclusion of MWCNT. These findings show that a one-day 

fabrication of a-ready-to-use conductive electrode is possible for graphite content between 70-80% 

(w/w). 

 
Keywords: anode, 9,10-Anthraquinone-2,6-disulfonic acid disodium salt/polypyrrole, graphite-epoxy 

composite, microbial fuel cell 
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4.2 Introduction 

 
In general, an electrode should have qualities such as good electrical conductivity, low resistivity, 

stable against chemicals and corrosion (Nandy et al., 2015). These features are mostly found in 

carbon based materials, such as graphite, thus making it popular material for electrodes (Corb et al., 

2007). Carbon with biological catalysts in many aspects also conforms to requirements of a 

biosensor, thus making it acceptable material for electrode fabrication in a microbial fuel cell (MFC). 

Epoxy resins on the other hand are polymers with good electrical insulation properties (Bhatnagar, 

1996), which is valuable in the electronics industry. This trait however is adjustable to conductor or 

semiconductor with the addition of conductive filler (Martin et al., 2005). Therefore, a combination 

of carbon as filler and epoxy resin offers fabrication of a polymer composite, which are conductive 

(Du & Jana, 2007), effortless in processing as well as moulding, and corrosion resistance (Kirgoz et al., 

2006; Vahedi et al., 2014).  

Studies conducted on carbon-epoxy composite within the field of fuel cell and biology shows its 

favourable applications in bipolar plates of proton exchange membrane fuel cell (PEMFC) and 

biosensor. In the area of bipolar plates, Du and Jana (2007) found that their fabricated carbon-epoxy 

with the total filler loading greater than 50 wt% showed good conductivity, mechanical integrity and 

chemical stability at temperature above 150 oC and at pH 4, much suitable for PEMFC application (Du 

& Jana, 2007). Llopis et al. (2005) showed that their amperometric glucose biosensor worked more 

efficiently when a mixture of glucose oxidase (GOD) powder, epoxy resin, graphite powder and 

tetrathiafulvalene-tetracyanoquinodimethane (TTF·TCNQ) were are applied at a ratio (wt%) of 

5:76:9.5:9.5 for automated detection of glucose (Llopis et al., 2005). Kirgoz et al. (2006) discovered 

that combination of the composite biosensor with a thin layer solution of Pseudomonas putida cells 

modified the surface could give minimum detection limit on phenol almost 1,000 times lower than 

thick film microbial biosensor and conventional oxygen electrode (Kirgoz et al., 2006). Later, Ocaña 

et al. (2014) found that aptamer when immobilized on the surface of graphite-epoxy composite gave 

good detection range for cytochrome c and high sensitivity, which is suitable for an aptasensor 

(Ocaña et al., 2014). Pumera et al. (2006) learnt that carbon nanotube-epoxy composite exceeded in 

both electrochemical and mechanical qualities when compared to graphite-epoxy composite for 

sensor application (Pumera et al., 2006). Based on Ma et al. (2010) and Vahedi et al. (2010), carbon 

nanotubes as filler in the epoxy system had the ability to improve conduction pathway in the epoxy 

matrix and increased conductivity at loading as low as 0.5 wt. % (Ma et al., 2010; Vahedi et al., 2014). 

These qualities; strong mechanical properties in bipolar plates and good conductivity as biosensors, 

gave the indication that the graphite-epoxy composite has the potential to be applied in an MFC 

application. Unfortunately, it is not known whether there had been studies done more than seven 
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days on the performance of the graphite-epoxy composite as electrodes in MFC.  In addition to that, 

the composite ease of shapes gives more opportunities to flexibility in reactor and electrode designs 

for MFC performance study. 

In this study, graphite-epoxy composites were fabricated with multi-walled carbon nanotube 

(MWCNT) embedded in the matrix surface. 9,10- Anthraquinone-2,6-disulfonic acid disodium salt/ 

polypyrrole (AQDS/ PPy) was used here as external mediator electrochemically grafted to the 

composites’ surfaces to induce preferred orientation on the active site and increased the electron 

transfer rates (Kumar et al., 2013; Tasca et al., 2011a). Performance of the graphite-epoxy 

composites in terms of electrochemical stability as anodes during continuous operation were 

measured in air-cathode MFCs. For this purpose, characterization of the MFC systems were 

measured through the polarization and power density analyses.  

This study was designed to analyse the graphite-epoxy composite with more than 50% graphite 

contents, fabricated in a day using simple technique, on its capability when operated as anode in air-

cathode MFCs’ environment. In addition to that, the effect of embedded MWCNT in composite 

matrix and its compatibility with AQDS/ PPy electropolymerised on its surface were also assessed 

through the MFC performance. 

The results generated showed that it is possible to make a ready-to-use conductive electrode at par 

with commercial graphite rod within 24 h using simple technique, provided the graphite content was 

between 70-80% (w/w). The anode performance in MFCs to generate maximum power, could be 

increased up to 42% with surface modification using PPy/AQDS solution. Through AQDS/ PPy surface 

modification, internal resistance (Rint) of the MFC system could be reduced by up to 48%, while a 

further 18% reduction was achieved when the graphite-epoxy composite was embedded with 

MWCNT. More data on this chapter is shown in Appendix B. 

4.3 Methods 

4.3.1 Inoculation 

Working buffer was a 50 mM phosphate buffer solution (PBS) containing NH4Cl (0.31 g/L), 

NaH2PO4∙2H20 (3.12 g/L), Na2HPO4 (4.58 g/L), and KCl (0.13 g/L) at pH 7  used for preparing acetate 

media and for analysis (Kim et al., 2005; Rader & Logan, 2010). Basal media of 7 mM acetate 

containing CH3 COONa (1 g/ L), peptone of casein (1 g/ L) and yeast extract (2 g/ L) was dissolved in 

PBS (Atlas, 2005). The media was autoclaved at 121 oC for 15 min prior to use. Analytical solution 

were made using Milli-Q water from EASYpure UV unless otherwise stated. All MFCs were inoculated 

with effluent from an existing MFC acetate batch fed operated for approximately two years, at 28 oC 

with an external resistor of 500 Ω.  
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4.3.2 Anode construction 

The base for the anodes were made from graphite powder mixed with epoxy resin in four different 

ratios by adjusting the weight of the graphite powder (% w/w):  53 (total weight of 430 g), 73 (total 

weight of 730 g), 78 (total weight of 930 g) and 84 (total weight of 1,250 g). The total filler loading 

was more than 50 wt% to get desired low inherent resistance of fabricated electrodes. Ratio 

between the resin (norSKi® part A) and its hardener (norSKi® part B) followed Pumera et al. (2006) at 

(w/w) of 20:3 (Pumera et al., 2006). The combined material was manually blend using spatula until 

the texture turned flaky and packed into the PCR tubes (ø 0.4 cm) at the length of 1.5 cm.  

For the embedding of MWCNT into the matrix of graphite epoxy composite, only two ratios of 

graphite powder were used (% w/w): 73 and 78. This was because graphite powder ratio of 53% 

(w/w) required longer curing hours while graphite powder ratio of 84% (w/w) could not produce 

detectable redox peaks when analysed using cyclic voltammetry (CV). MWCNT was prepared through 

mixing of 1 mg of MWCNT with a 0.4 mL N,N-dimethylformamide (DMF) in a vibrator for one min.  

The mixture was later topped up with 0.6 mL of 70% ethanol and sonicated in water bath for five 

minute. Loading of the MWCNT ink into the base of graphite-epoxy composite was done at different 

ratios of MWCNT (% w/w): 0.04 and 0.06.  The MWCNT mixtures were manually blend using spatula 

and dried under room temperature until the texture became muddy dry. The mixture paste was 

topped up about 0.3 cm high on the packed graphite- epoxy resin mixture in the PCR tube, to 

become the electrode’s surface.  

Prior to the surface modification methods, each of the packed PCR tubes was centrifuged at 14, 000 g 

for 1.5 min to compress and remove remaining air in the paste.  A copper wire was inserted at the 

bottom of each tube for electrical contact. The filled PCR tubes were then cured at 80 oC for 12 h. 

They were then allowed to cool at ambient temperature for 30 min. Later, each excess PCR tube wall 

was cut until the wall was at the same level with the surface of the fabricated graphite-epoxy 

composite electrodes. The electrode surface area was polished, first on a wet fine emery paper 

(Norton, P400), then rinsed with Milli-Q water and dried on paper towel before polished on white 

paper until mirror like surface appeared.  

4.3.3 Electrografting with 9,10- Anthraquinone-2,6-disulfonic acid disodium salt 
(AQDS)/ polypyrrole (PPy) 

Polypyrrole (PPy) was purified before used (Kumar & Swetha, 2011; Reiter et al., 2001). PPy was 

chosen in this study because of its high electronic conductivity and relatively long period of stability 

(Karami & Nezhad, 2013) to provide good support for AQDS. PPy was passed to a column of alumina 

about 4 cm in height stuffed in a glass pipette. Surface modification of AQDS was done using method 

described in Feng et al. (2010) (Feng et al., 2010a). Here, 4 mM PPy was added to 4 mM AQDS in 70% 
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4.3.5 Operation 

Inoculation method was adapted and adjusted from the method in Watson and Logan (2011), who 

studied the effect of AQDS/ PPy on carbon felt in dual chambered MFC (Watson & Logan, 2011). 

Here, about 50% of each 12 new MFCs were filled with anolyte and topped up with acetate media. 

The anolyte came from a two year old acetate fed MFC, where its early culture originated from 

aerobic trickling filter. The electrodes were then connected with a 1,000 Ω resistor.  

4.3.6 Analyses 

Cell voltage (E, mV) across the external resistor were measured every six times daily using a four 

channel Quadstat 164 potentiostat (eDAQ Pty Ltd, NSW, Australia) with continuous recording using 

an e-corder 1621 (eDAQ Pty Ltd, NSW, Australia) data acquisition system. Current (I, mA) and power 

(P, mW) were calculated using the Ohm’s law, I= E/Rext, where Rext is the applied external resistance. 

The current density (I/ anode area, mA/ cm2) and power density (I E/ Anode area, mW/ m2) are 

normalized by the projected area of the anode. 

Cyclic voltammetry (CV) was measured using a BASi epsilon C3 cell stand with potentiostat (BASi, 

Indiana, US). A three-electrode system was used, comprising a coiled platinum wire as auxiliary 

electrode, a Ag/AgCl electrode as reference electrode and the fabricated anodes as working 

electrode. The experiment was performed at room temperature in a Faraday’s cage. 

Polarization curve and the power density curves were produced by using anode potential poising 

method, adapted from linear sweep voltammetry method of Lanas and Logan (2013) (Lanas & Logan, 

2013). In this study, anode became the working electrode and cathode as the counter and reference 

electrode. The polarization curves were obtained starting with open circuit voltage (OCV) with each 

potential changed in decreasing order after every pseudo steady-state achieved, or not more than 20 

min intervals (whichever comes first) over a complete fed batch cycle. Analysis was conducted once 

the voltage output was stabilised after replenishing the media. 

4.4 Results and discussion  

4.4.1 Fabrication of graphite-epoxy composite anodes 

The inherent resistances measured for the fabricated graphite-epoxy composites in this study were 

also compared to the commercial graphite rod and a 20% (w/w) graphite-epoxy composite fabricated 

by Corb et al. (2007), which was fabricated using a hot press machine at 80 oC for 40 min (Table 4.1) 

(Corb et al., 2007). Samples from 53% graphite had much higher resistance than the other graphite-

epoxy composite samples in this study. At the same time, the curing time applied in this study proved 

not to be sufficient for 53% graphite where the surfaces were easily penetrated from the prodding of 
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the multimeter probes. The incomplete curing might have built the high inherent resistance for the 

53% graphite. All the fabricated samples showed significant differences (t-Test, p>0.05) in inherent 

resistance from the commercial electrode, however showed comparable inherent resistance with the 

graphite-epoxy composite electrode consisting of 20% graphite (Corb et al., 2007). Sandler et al. 

(1999) reported that the critical filler volume fraction for percolation, a conductive path created 

through three-dimensional network of conductive filler particles, is between 5 and 20 vol. % (Sandler 

et al., 1999). Llopis et al. (2005), Corb et al. (2005) and Ocaña et al. (2014) used a filler as low as 20% 

(w/w) to fabricate good graphite-epoxy composite biosensors that exhibited good conductivity (Corb 

et al., 2007; Llopis et al., 2005; Ocaña et al., 2014). However, to fabricate an epoxy composite with 

very low filler contents, either a long curing time period is required (more than two days) (Llopis et 

al., 2005; Ocaña et al., 2014) or require the help of expensive machinery, such as hot pressed 

machine (Corb et al., 2007).  

Table 4.1 Inherent resistance measured for graphite-epoxy composite anodes  

Graphite % 

(w/w) 

Inherent resistance (Ω) 

0% MWCNT 0.04 % MWCNT 0.06% MWCNT 

20* 7.3 -not available- -not available- 

53 34.0 -not available- -not available- 

73 6.1 ± 0.3 5.7 ±     0.4    5.8 ±    0.4   

78 4.3 ± 0.3 4.0 ±     0.3 4.4 ±    0.5 

84 4.6 ± 0.5 -not available- -not available- 

ø 3 mm 

commercial 

graphite rod 

0.4 ± 0.0 -not available- -not available- 

*Corb et al. (2007) evaluated the inherent resistance at sample thickness of 1 mm over sample area 

of 81 mm2. All the fabricated electrodes in this study were evaluated at sample thickness of 1.5 cm 

over sample area of 12.6 mm2. 

O’Hare et al. (2002) however, had used filler contents ranging between 40 to 60% for their electrodes 

and cured them by degassing in vacuum oven (O'Hare et al., 2002). They discovered that only the 
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electrode with 60% filler gave voltammetric peaks response similar to the classic peaks shaped of a 

solid macroelectrode. By increasing the volume filler fraction to more than 60% (w/w) in this study, a 

graphite-epoxy composite was able to be fabricated in less than a day, without using expensive 

machinery and complex method, while at the same time able to show good conductive behaviour.  

Introduction of 0.04% MWCNT into the surface matrix had reduced the inherent resistance of the 

plain graphite-epoxy composite samples, although not significantly (t-Test, p>0.05) by 7% less for 

both 73 and 78% samples (Table 4.1). For samples with 84% graphite, the addition of 0.04% MWCNT 

into the surface matrix had turned the surface very dry and brittle. After increasing the concentration 

of MWCNT to 0.06%, the inherent resistance of each samples had increased to 2% for 73% graphite, 

9% for 78% graphite and had caused very brittle surface for 84% graphite. The embedding of 0.04% 

MWCNT within composite matrix that consists of graphite more than 70%, was able to bring down 

the inherent resistance of the graphite-epoxy composite slightly. However, adding another 0.02% 

more had proven to give unfavourable effect through increasing the inherent resistance for the 

samples. Both samples from the 73 and 78% graphite might end up like the 84% graphite samples if 

more than 0.06% MWCNT added into its system. Though the MWCNT could contribute towards 

reinforcement of a MWCNT-epoxy composite system (Allaoui et al., 2002), too much filler in an 

epoxy system will create non-homogeneity in dispersion, especially when using simple hand shearing 

as applied in this study. This may have a lesser effect on conductivity (Allaoui et al., 2002) but 

increases the possibility of  mechanical failure. It was reported that the structural failure in one of the 

studies of MWCNT-epoxy composite system, was due to the addition of MWCNT from 0.05 to 0.5% 

(w/w) (Vahedi et al., 2014). They explained that the increased in fillers will prevent the movement of 

polymer chains from the epoxy causing the system to become brittle. The amount of low loading 

however, is dependent on epoxy system, aggregation mechanism and the type of filler applied 

(Martin et al., 2004). In this study, the MWCNT was added into an epoxy mixture that already had 

graphite as its filler. Therefore the reason of too much filler might have led to the surface failure of 

84% graphite samples. 

The ability of the fabricated epoxy composite electrodes to deliver current response from the 

reaction of electrolyte can be measured through CV.  The redox potential of the ferricyanide / 

ferrocyanide calculated from the half waves, E1/2 obtained from the plain graphite-epoxy composite 

electrodes when compared to standard reduction potential, Eo’ of ferricyanide / ferrocyanide, which 

is +162 mV (vs Ag/ AgCl) (Logan et al., 2006), shows astray from the Eo’: 73% graphite detected about 

69 mV more while 78% and 84% graphite  detected more than 72 mV (Figure 4.2). There was no 

significant difference (t-Test, p>0.05) for E1/2 detected between the 78% graphite samples and ø 3 

mm commercial graphite (E1/2 = 234 ± 0.3), which was used for comparison.  
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compared to the 0.04% (w/w) MWCNT loading and the ø 3 mm commercial graphite. No E1/2 analysis 

was done to 84% graphite samples due to the surface failure after the incorporation of MWCNT into 

the surface matrix. From the E1/2 analysis, the 78% graphite samples show as if the addition of 

MWCNT into its system did not improve nor worsen the current response ability, unlike 73% graphite 

samples where 0.04% loading was able to improve its current detection. This could be due to the 

effect of the filler  agglomerating during blending and curing, creating conductive network, which 

covers the nonconductive epoxy area (Martin et al., 2004). Although the inherent resistance results 

show the ø 3 mm commercial graphite had the lowest resistance, the E1/2 performance of the 

fabricated graphite-epoxy composites (73 and 78% graphite contents) had showed to be comparable 

in current response to the ø 3 mm commercial graphite in this study albeit the inherent resistances. 

For surface modification with PPy and AQDS, 78% graphite samples and MWCNT loading of 0.04% 

(w/w) were applied due to not much difference in current response between the two MWCNT 

loading as well as the low inherent resistance and consistent E1/2 showed by 78% graphite samples. 

Figure 4.3 shows that the electrografting technique had successfully modified the electrode surfaces. 

For the embedded MWCNT with AQDS through the formation of redox potential, was seen at E1/2 

close to Eo’ of AQDS, -395 mV (vs Ag/AgCl) (Du  et al., 2007). This is promising for application as 

mediatored anode  in MFC, due to the Eo’ reported for NAD+/NADH is -525 mV (vs A/AgCl) (Logan, 

2008), which is lower than the surface modified electrodes. The results in this study agrees with Feng 

et al. (2010a), who had obtained E1/2 at -451 mV (vs Ag/AgCl) when using pretreated carbon felts as 

base for the electrodes (Feng et al., 2010a). Although the peaks were not clear for the plain graphite-

epoxy composite samples, there are evident current size and E1/2 differences between the initial 

modified electrodes and after 24 h rinsing in PB solution, where the current size and E1/2, became 

smaller in current and slightly more negative in E1/2 potential. Feng et al. (2010a) also observed the 

difference in peaks size and clarity between two different materials, glass carbon and carbon felt, 

after their surface modified with AQDS/ PPy (Feng et al., 2010a). They explained that curves with 

larger currents represented enhancement made by PPy/AQDS on the modified surfaces while good 

peak clarity denotes the low charging inherit current by the electrode. The shift of waves to negative 

potential in voltammetry analysis reflected the change in the equilibrium of the active redox couple 

as a function of the equilibrium constant, Keq = [OH-][H+]/ [H2O], and can be mathematically explained 

by the Nernst equation, E= Eo’ – (RT/F)* ln([C]/Keq[A]) (Compton et al., 2012). The R represents the 

gas constant of 8.3147 J/K mol, T represents the temperature, F represents the Faraday constant of 

96,485 C/ mol and [C] represents the reduced concentration of substrate [A] in mol/ dm3 when 

species A is in equilibrium with species B from A ⇋  B, B  + e  ⇋ C. The rinsing had removed the 

excess modification from the electrode surface. This might have caused the electrode surface to 











 56 

4.5 Conclusion 

We have demonstrated that it is possible to prepare a ready to use electrode within one day from 

graphite-epoxy composite with more than 70% graphite using a simple and cheap technique, while 

showing similarity in current response close to the conductive commercial graphite rod. We have 

also shown that the fabricated electrodes are capable to be used as anodes in MFCs, while the Pmax 

could be increased by 42% and Rint reduced by 48% through simple surface electrografting with 

AQDS/ PPy solution. Although anode samples with embedded MWCNT were not superior in 

maximum power density compared to samples without MWCNT, the Rint however showed a 

reduction by up to 66% for the anode with PPy/AQDS surface modification. Further studies are 

required to determine whether the anode with embedded MWCNT will show a higher maximum 

power density if allowed to operate for a much longer duration. 
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5.1 Abstract 

Milk is an important ingredient in our day to day diet bacause of the high quality nutrients in it. In the 

dairy industry including cheese fermentation processes, there is a need to control the release of 

lactose into wastewater streams. There are methods adopted to recover the lactose and to 

transform the lactose into energy through renewable energy (RE) pathways. In this study, graphite-

epoxy composite electrode was surface modified with cellobiose dehydrogenase (CDH) enzyme using 

aryl diazonium. These designed composite electrodes were tested on its capability as biosensor for 

sensitivity on detecting the lactose as well as its capability as an anode in enzymatic fuel cell (EFC) on 

long term electrochemical stability in generating electricity from lactose oxidation. The results 

showed that the CDH-Aryl diazonium modified on surface of fabricated graphite-epoxy electrodes 

are conductively sensitive and the Michaelis Menten constant Km for CDH is comparable to available 

commercial electrodes reported in the literature. The current intensity was 86% more with the above 

mentioned electrodes when modified with embedded multi-walled carbon nanotube (MWCNT) and 

gave a high reproducibility signal. These electrodes are stable up to a month when continuously 

operated. The maximum lactose detection using the above mentioned electrode with embedded 

MWCNT is higher than the already existing electrodes with MWCNT on surface. However, the current 

intensity was high with MWCNT on surface than the electrodes with embedded MWCNT in 

fabricated graphite-epoxy electrodes.  

 

 

Keywords: anode, biosensor, cellobiose dehydrogenase/aryl diazonium, enzymatic fuel cell, graphite-

epoxy composite, lactose 
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5.2 Introduction 

Milk is an important constituent of our daily because of its inherent nutrients, such as carbohydrates, 

fat, protein, vitamins and minerals and enzymes. In the dairy industry, there is a need to control the 

lactose effluent polluting the wastewater streams. Raw milk has a BOD5  of about 100 g/ L (Janni et 

al., 2007) while the soluble carbonaceous tolerance adopted by the New Zealand government is less 

than 0.002 g/ L daily (Barnett et al., 1998). This standard was set to reduce water pollution by 

bacteria while ensuring the accessibility of aquatic ecosystem to soluble oxygen in waterways. For 

this reason, there have been reports published on methods to remove lactose from the waterways 

including recovering lactose from dairy waste streams using filtration techniques, ultra and nano and 

reverse osmosis (Chollangi & Hossain, 2007; de Souza et al., 2010), and converting lactose and other 

organic matters to biogas by using the up flow anaerobic sludge-fixed film (UASFF) (Najafpour et al., 

2008). The latter technique is a branch of renewable energy where it uses the internal energy from 

unwanted biomass and transforms it into a useful source of energy. Another branch in renewable 

energy, which also is an extension from biosensor technology that directly converts energy through 

electrochemical pathway from biomass into electricity is the enzymatic fuel cell (EFC). Enzyme 

applied in EFC would have specific activity and highly selective in choices of substrates. For instance, 

lactose can be determined using biosensors employing a single cellobiose dehydrogenase (CDH) 

enzyme. CDH is an extracellular enzyme with narrow substrate specificity: active on cellobiose and 

lactose while showing distinct discrimination over glucose and maltose (Tasca et al., 2009). The 

enzyme has two prosthetic groups, the dehydrogenase (FAD domain) and a cytochrome (heme 

domain). During lactose oxidation to lactobionic acid in an external mediator- free environment, the 

FAD domain with the maximum capacity of accepting two electrons, will oxidized the lactose while 

reducing itself to FADH2. The electrons on the other hand will be channelled one at a time via a 

flexible linker through the heme domain, which lies about 15 Å away from the FAD domain and get 

transferred to the electron acceptors, an electrode (Henriksson et al., 2000). Various studies were 

done on the CDH- modified electrodes for biosensor and EFC applications with lactose as the target 

substrate with trend to investigate and improve the electron transfer from the CDH to the 

electrodes. The CDH capability in performing DET and high substrate specificity without need to 

compete with oxygen makes the enzyme a preferred choice (Wang et al., 2012) when involving 

lactose / and cellobiose as substrate.  
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Table 5.1 Some publications on interaction between lactose and CDH-modified electrodes for 
biosensor and EFC applications. 

Electron 

acceptor 

Interest Source Year 

Graphite 

rod (Ø 3.05 

mm) 

Investigate the performance of DET between whole 

CDH / FAD fragment adsorbed directly on electrode 

surface and whole CDH / FAD fragment cross-linked in a 

mediator on electrode surface for biosensor application 

(CDH source: Phanerochaete chrysosporium) 

(Larsson et 

al.) 

1996 

Graphite 

rod (Ø 3.05 

mm) 

Effect of pH and ionic strength on the 

bioelectrocatalysis of cellobiose and lactose at CDH- 

modified graphite electrodes for biosensor application 

(CDH source: Phanerochaete chrysosporium) 

(Larsson et 

al.) 

2000 

Graphite 

rod (Ø 3.05 

mm) 

Evaluating detection limit, linear range, sensitivity of 

sensor and long term stability of CDH-modified graphite 

electrodes for lactose and cellobiose  in flow injection 

mode: in the presence and absence of 1,4-

benzoquinone for biosensor application (CDH source: 

Myriococcum thermophilum) 

(Harreither 

et al.) 

2007 

Graphite 

rod (Ø3.05 

mm)  

Investigate the DET performance of CDH from different 

sources of fungi in the presence and absence of SWCNT 

modified to anode surface for EFC application (CDH 

source: Phanerochaete sordida, Sclerotium rolfsii, 

Myriococcum thermophilum, Trametes Villosa and 

Phanerochaete chrysosporium )  

(Tasca et 

al.) 

2008  

Graphite  
(3 mm x 3 

mm)  

Comparing DET and MET between CDH and anode in a 

membrane-less EFC (CDH source: Phanerochaete 

sordida)  

(Tasca et 

al.) 

2009  

Graphite 
rod (Ø3.05 
mm)  

Investigate the performance of integrating CDH with 

specifically developed polymer mediator with respect to 

conversion of lactose for EFC application.  

(Stoica et 

al.) 

2009  
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Graphite 
based SPE 
(Ø1.80 
mm) 

Improve efficiency of direct bioelectrocatalysis by CDH- 

electrosynthesised PANI –graphite based SPE (CDH 

source: Myriococcum thermophilum) 

(Trashin et 

al.) 

2009 

Carbon 
based SPE 
(Ø na) 

Improve a lactose biosensor designed by Stoica et al. 

(2006) using graphite rod as based with cross-linked 

CDH-MWCNT modified carbon based SPE to make it 

small, more sensitive and suitable for on-line mode 

(CDH source: Phanerochaete sordida)  

(Safina et 

al.) 

2010  

Glassy 
carbon 
electrode 
(Ø3.00 
mm)  

Investigate the effect of negatively/ positively charged 

SWCNTs on DET interaction between heme and 

electrode with respect to current density and stability 

of the produced electrodes for EFC application (CDH 

source: Phanerochaete sordida)  

(Tasca et 

al.) 

2011  

Graphite 
(Ø na)  

Investigate the influence of different concentrations of 

sodium chloride on the performance of CDH from 

various sources in solution and immobilised on 

electrode area for EFC application (CDH source: 

Phanerochaete chrysosporium, Myriococcum 

thermophilum, Pichia pastoris, Humicola insolens and 

Aspergillus oryzae)  

(Schulz et 

al.) 

2012  

Graphite 

rod (Ø na) 

Combined thermometric/amperometric biosensor, 

which is separated from immobilised CDH on pore glass 

in a flow system assisted by benzoquinone (BQ) as  

mediator (CDH source: Phanerochaete chrysosporium) 

(Yakovleva 

et al.) 

2012 

Carbon 

based SPE 

(Ø 4.00 

mm) 

Developed an automated at-line lactose biosensor for 

monitoring dairy wastewater streams using SPE 

modified with MWCNT using a prototype design, 

Lactosenz TM 

(Glithero et 

al., 2013) 

2013 

Note: DET = direct electron transfer, MET= mediatored electron transfer, SPE = screen printed 

electrode and MWCNT = multi-walled carbon nanotube, CNT = carbon nanotube 

Graphite material is a common electrical conductor due to its π bonding between C atoms creating 

layered, planar structure that allow electrons to move freely (Chang, 1994). At the same time, 
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graphite gives good electrochemical reversibility to electrode reactions (Zhu et al., 2008). CNT on the 

other hand is well known for its ability to mediate fast electron transfer kinetics on a wide range of 

electroactive species (Balasubramanian & Burghard, 2006; Muti et al., 2012; Wang et al., 2011). So 

far, amalgamation of these two electrical conductive materials; graphite and CNT, has shown good 

conductivity improvement in electrodes activity (Gong et al., 2012; Larsson et al., 1996; Zhu et al., 

2008). In recent advances, graphite-epoxy composites are being studied for improvement in 

mechanical and electrical features. In view of utilization, research works were done particularly in 

biosensor (Kirgoz et al., 2006; Llopis et al., 2005; Ocaña et al., 2014; Pumera et al., 2006) and bipolar 

plate (Du & Jana, 2007; Yu et al., 2011) sectors. Since the epoxy resins have good electrical insulation 

properties, suitable conductive fillers and curing agents need to be applied to make the resins 

conductive or semiconductive (Bhatnagar, 1996). The advantages of a conductive graphite-epoxy 

composites, lie on the versatility in fabricating custom made electrodes, i.e. having various sizes and 

shapes, simple to prepare and easy adaptation to wide electrode configurations (Kirgoz et al., 2006). 

From previous research, we were able to quick fabricate conductive graphite-epoxy composites 

consist of more than 70% (w/w) of graphite content within a day, using cheap and simple technique. 

Aryl diazonium salts on the other hand is simple to prepare, rapid in electroreduction, large choice of 

reactive functional groups and provides strong covalent bonding between the aryl and the surface: 

polymers, biomacromolecules and nanoparticles (Mahouche-Chergui et al., 2011). Tasca et al. (2011) 

observations on covalent binding of CDH to glassy carbon electrode, it is better to make the 

electrode’s surface positively charged using diazonium salts from amine group, since it will create a 

better interaction between the modified surface and the negatively charged heme domain (Tasca et 

al., 2011a).  

To our knowledge, there are no reports on the capability and reliability of graphite-epoxy composite 

for use as an electrode for lactose detection. By combining the graphite-epoxy composite with CDH 

using aryl diazonium bonding, new insights could be obtained for better and more sensitive lactose 

detection. 

In this study, graphite-epoxy composites were fabricated with MWCNT embedded in the matrix 

surfaces. Safranin/ aryl diazonium was electrochemically grafted to the composites’ surfaces to 

create strong covalent bonding and induced preferred orientation between the negatively charged 

CDH and positively charged electrodes’ surfaces. The sensitivity of the composite electrodes in 

detecting lactose was compared to the capability of other published papers on lactose biosensor 

while the electrochemical stability of the electrodes in continuous operation was monitored through 

EFC system. 
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The aim of this study was to investigate performance of immobilized CDH bonded using aryl on 

graphite-epoxy electrodes with and without embedded MWCNT, for sensitivity in lactose detection 

and continuous detection stability. Emphasis was on performance of the electrode in increasing the 

maximum detection of lactose analysis, shorter response time, and sensitivity of the sensor in 

boosting the amount of electron transfer from the heme domain of the CDH to the electrode and 

long term operational stability of the electrode performance in continuous flow environment.  

The results obtained showed that the CDH-Aryl diazonium modified on surface of fabricated 

graphite-epoxy electrodes are conductively sensitive and similar in producing Michaelis Menten 

constant, Km for CDH similar to electrodes reported in literature. The electrodes modified with 

embedded MWCNT showed increase in current intensity up to 86% when compared with electrodes 

without any MWNCT. These electrodes were stable for about a month when operated continuously. 

However, the electrodes with  embedded MWCNT, could not provide a current intensity as high as 

electrodes with  MWCNTs on the surface but electrodes with embedded MWNCT  was able to 

improve the detection of maximum lactose with high reproducibility. More data on this chapter is 

shown in Appendix C. 

5.3 Methods 

5.3.1 Chemicals 

Chemicals were of analytical grade. Potassium ferrocyanide K4Fe(CN)6 was purchased from AnalaR®, 

BDH Laboratory Supplies (Poole, England). Potassium ferricyanide K3Fe(CN)6 was purchased from 

UNIVAR, Ajax Finechem (Wellington, NZ). N,N-Dimethylformamide (DMF), sodium nitrate NaNO2 and 

aryl diazonium were purchased from Sigma (Auckland, NZ). Lactose C12H22O11.H2O was purchased 

from Fisher Scientific (New Hampshire, US). Citric acid monohydrate C6H8O7.H2O powder, 

hydrochloric acid (11.7 M HCl) and sodium hydroxide NaOH pellets were purchased from LabServ™, 

Thermo Fisher Scientific, NZ Ltd. (North Shore City, NZ). ). Tri-sodium citrate C6H5Na3O7.2H2O and 

safranin were purchased from BDH Laboratory Supplies (Poole, England). The 5% functionalized-

COOH Multi walled carbon nanotubes (MWCNT) was purchased from DropSense (Spain). Graphite 

powder with ultra ‘F’ purity was purchased from Ultra Carbon Corp. (Michigan, US). Resin norSKi® 

part A and hardener norSKi® part B were purchased from norSKi® (Wellington, NZ).   

All analytical solutions were made using Milli-Q water from EASYpure UV (Barnstead, New 

Hampshire) unless otherwise stated. The buffer used for lactose analysis was a citrate buffer (CB) (0.1 

M C6H8O7.H2O/ 0.1 M C6H5Na3O7.2H2O, 1.0 M KCl) with pH adjusted to 4.5 using 1.0 M NaOH (Safina 

et al., 2010; Tasca et al., 2009).  
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The stock reagent of lactose (0.2 M C12H22O11.H2O) was made into several range of concentrations by 

diluting lactose solution with CB solution using the following equation: V1= (M2xV2)/ M1. The V1 is the 

volume to be added in mL from the original lactose source, M1 is the concentration of the original 

lactose source, M2 is the end concentration of lactose while V2 is the end volume required for testing. 

All of the prepared lactose with different concentrations were stored in different bottles and stored 

at 4 oC when not in use. 

5.3.2 Enzyme strain 

Solution of CDH from Phanerochaete sordida was provided by Dr. Roland Ludwig, BOKU, Austria. The 

CDH has a volumetric activity of 291 U/ mL and a specific activity of 23.9 U/ mg protein. The enzyme 

unit (U) is a unit for the amount of a particular enzyme. One U is defined as the amount of 

the enzyme that produces a certain amount of enzymatic activity, that is, the amount that catalyzes 

the conversion of 1 micro mole of substrate per minute. 

5.3.3 Preparation of working electrodes 

The base for the anodes were made from graphite powder mixed with epoxy resin in % (w/w) ratio of 

78:22. The total filler loading was more than 50 wt% to produce a fast drying conductive electrode 

with low inherent resistance. Ratio between the resin (norSKi® part A) and its hardener (norSKi® part 

B) followed Pumera et al. (2006) at (w/w) of 20:3 (Pumera et al., 2006). The combined material was 

manually blend using spatula until the texture turned flaky and packed into the PCR tubes (ø 0.4 cm) 

at the length of 1.5 cm. For the embedding of MWCNT into the matrix of graphite epoxy composite, 

MWCNT was prepared through mixing of 1 mg of MWCNT with a 0.4 mL N,N-Dimethylformamide 

(DMF) in a vibrator for 1 min.  The mixture was later topped up with 0.6 mL of 70% ethanol and 

sonicated in water bath for five minute. Loading of the MWCNT ink into the base of graphite-epoxy 

composite was done at % (w/w) ratio of 0.04:1.  The MWCNT mixtures were manually blend using 

spatula and dried under room temperature until the texture became muddy dry. The mixture paste 

was topped up about 0.3 cm high on the packed graphite- epoxy resin mixture in the PCR tube, to 

become the electrode’s surface. Prior to the surface modification methods, each of the packed PCR 

tubes was centrifuged at 14, 000 g for 1.5 min to compress and remove remaining air in the paste.  A 

copper wire was inserted at the bottom of the tube for electrical contact. The filled PCR tubes were 

then cured at 80 oC for 12 h. They were then allowed to cool at ambient temperature for 30 min. 

Later, the excess PCR tubes wall were cut until the wall was at the same level with the surface of the 

fabricated graphite-epoxy composite electrodes. The electrode surface area were polished first on a 

wet fine emery paper (Norton, P400), rinsed with Milli-Q water and dried on paper towel before 

polished on white paper until mirror like surface appeared. Modification with aryl diazonium adapted 



 65 

steps from Picot et al. (2011) and Commault et al. (2015) was done on the fabricated electrodes 

(Commault et al., 2015; Picot et al., 2011). Here, 0.1 M HCl was mixed with 0.01 M safranin and 

dissolved in Milli-Q water for total volume of 5 mL. The mixture was placed in ice bath and under 

nitrogen flow while kept in complete darkness. About 0.02 M of NaNO2 was added into the mixture. 

Surface of the electrode was then modified through electropolymerization in a three-electrode 

electrochemical cell consisting of the anode as working electrode, a Pt auxiliary for counter electrode 

and an Ag/AgCl for reference electrode. A potentiostat (EC epsilon, BASi, IN, USA) was used to 

control the constant potential of -0.161 V (vs. Ag/AgCl) applied to the anode until total coulombic 

charge consumed is about 300 mC/ cm2 (Initial P= 0 mV, tQuiet= 2s, 1st step = -161 mV; 1,200 s, 2nd step 

= 0 mV; t= 0s). The freshly prepared modified electrode was rinsed several times in Milli-Q water and 

absorbed dry on paper towel. The modified electrodes were rinsed with large volumes of water and 

allowed to air dry. CDH- modified electrodes were prepared by pipetted 10 µL of CDH solution onto 

each aryl/ graphite-epoxy electrode’s surface to adsorb by the surface at 4 oC under controlled 

humidity, overnight. 

5.3.4 Enzymatic fuel cell air-cathode system construction 

Stability of the fabricated anodes during continuous lactose detection were analysed using a 

miniature air-cathode enzymatic fuel cell (EFC) (Figure 5.1).  The EFCs consist of a thin drum shaped 

polyethylene reactor (ø 4 cm) with one wall made from hard polyethylene and the other from Ultrex 

membrane (BASF Fuel Cell Inc, Somerset, NJ, USA). The air-cathode made from 10% Pt-carbon cloth 

(Fuel Cell Earth LLC, Stoneham, MA) (12.6 cm2) was fastened to the exterior wall of the Ultrex 

membrane with a nickel plate (4 cm x 1 cm) and an elastic band. The working electrode had the 

modified area facing the Ultrex membrane interior wall at a constant distance of about 1-2 mm and 

was inserted through a small hole made by butynol Dunlop sheet (2 cm x 1 cm) that was fixed onto 

an opening on the hard polyethylene wall. This is to ensure snug fitting between the electrode and 

the electrode insertion port at the EFC wall to avoid electrolyte leaking. To enable application of 

reference electrode (Ag/ AgCl) during the amperomety analysis, a small insertion hole was made at 

the top of the polyethylene wall, almost parallel to the Ultrex membrane and perpendicular to the 

inserted graphite rod. The maximum volume of the EFC was 5 mL and the system was equipped with 

self-drained ability (cut 1 mL polyethylene pipette tip) to naturally maintain the volume of electrolyte 

and avoid overflow from occurring. 
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Figure 5.1 The in-house EFC made in this study equipped with self-drained system. 

5.3.5 Electrochemical measurements 

Electrochemical analyses were conducted using direct current potential amperometry (DCPA) with a 

four- channel potentiostat (QuadStat 164, eDAQ Pty Ltd, New South Wales, Australia) and data 

acquisition system (e-corder 1621, eDAQ Pty Ltd, New South Wales, Australia) connected to a 

computer. A three-configuration electrodes were applied: bioanodes for working electrodes, 

auxiliary electrodes and Ag/ AgCl (3 M KCl) for reference electrodes. Analyses done in batch mode 

applied Pt while in continuous mode applied the air-cathode itself for the auxiliary electrodes. 

Sensitivity in lactose detection was done in both batch and continuous mode. The anode was set at 

potential +100 mV (vs. Ag/AgCl), which was adapted from Safina et al. (2010) where she found that 

Phanerochaete sordida worked well when the electrodes were poised at +100 mV (vs. Ag/ AgCl) 

(Safina et al., 2010). Here, 12 different lactose concentrations were tested: 0.04 mM, 0.08 mM, 0.3 

mM, 0.5 mM, 1 mM, 2 mM, 3 mM, 4 mM, 5 mM and 10 mM, 15 mM and 25 mM. Analysis in 

continuous mode introduced flushing with 0.1 M CB in between the lactose detection with the flow 

rate of 0.5 mL/ min. The anode performance stability analysis was done using a fixed lactose 

concentration of 5 mM, following Tasca et al. (2011) based on the same Km value obtained in this 

study (Tasca et al., 2011a). 

5.4 Results and discussion 

5.4.1 Sensitivity in lactose detection 

The study of maximum detectable lactose concentration could show the highest lactose 

concentration capable to be oxidized by the enzyme before the enzyme becomes saturated and no 

longer produce significant current even though there is an availability of substrate. 
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generated at 34 mM lactose concentration (Figure 5.2). This gives the possibility of the anodes in this 

study to generate higher maximum in current and power density when operated in EFC. The 

Michaelis- Menten constants (Km) obtained from the fabricated electrodes were within the range of 

0.65 – 0.78 mM, which is not much different from the Km obtained for PsCDH in Tasca et al. (2011) 

(Tasca et al., 2011a) (Table 5.2). Km focusses on enzyme activity of CDH, measured via the generated 

current produced by the liberated electrons from the oxidation of lactose concentrations through the 

external circuit. Study on the Km when analysed in electrochemical cell upon different concentrations, 

helps selecting bioelectrodes with a larger Km value for application in tough condition of continuous 

lactose detection in an EFC system. A high Km value will show the capability of the system to operate 

at higher concentration of lactose before the enzyme became saturated. This would offer the 

possibility to tap into more electrons out from the oxidation of high lactose concentration to 

generate current with greater intensity. For the studied bioelectrodes, applying surface modification 

with embedded MWCNT did not significantly increase the Km values. This indicates that the high 

current intensity achieved was due to the contact between CDH and MWCNT located on the 

electrode’s surface (Ludwig et al., 2010).  To obtain a high electron transfer rate, the heme domain of 

the CDH must be in the correct orientation to the electrode surface, which is less than 20 Å away 

(Tasca et al., 2011a). This was proven by  Tasca et al. (2011) in their experiment on glucose biosensor 

via Corynascus thermophiles (CtCDH) (Tasca et al., 2011b). By comparing between the presence and 

non-presence of SWCNT, they found the performance of CtCDH through application of SWCNT on the 

surface of the spectrographic graphite electrode, had increased the Km of glucose concentration 

higher by 1.2-fold and improved the current intensity by almost two-fold at 300 mM glucose (the 

maximum glucose concentration analysed in the study) while still having the same maximum linear 

detection range as the SWCNT-free biosensor. Effect of continuous lactose flow with intermittent 

buffer flushing had given a slight increase in Km values. Km is affected by several factors, such as pH, 

temperature, ionic strengths and the substrate concentration. The slight increase in Km could be due 

to the continuous flow mode maintaining consistent environment for the enzyme by supplying fresh 

feed every time into the system. 

The only difference in observation is the current intensity generated from this study, where the 

current intensity is greater in batch rather than in the continuous mode (Table 5.2). Significant 

statistical differences (t-test, p<0.05) however, were seen only in the batch mode at lactose 

concentrations of 0.5 and 5 mM, where current intensity from the surface modified graphite-epoxy 

electrodes were higher than the electrodes without embedded MWCNT. At the same time, on 

average for each electrode types, the current reproducibility is higher (smaller RSD %) on the 

electrodes with embedded MWCNT, especially in the continuous mode (t-test, p<0.05).This shows 

that the existence of embedded MWCNT had improved the conductivity of the electrodes. Although 
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graphite-epoxy composite electrodes have rather high inherent resistance (Kirgoz et al., 2006), the 

adding of MWCNT into the system however was able to reduce it (Spitalsky et al., 2010). The MWCNT 

may have dampen the effect of the non-conductive epoxy resin and eventually increased the 

reproducibility of results, compared to the graphite-epoxy electrodes without embedded MWCNT 

that had rather low reproducibility. A similar effect due to surface treatment with CNT yet with a 

different approach from this study, was also observed by Safina et al. (2010)(Safina et al., 2010). 

Their study on biosensor on the effect of CDH from Phanerochaete sordida, when cross- linked 

directly onto MWCNT on carbon screen printed electrode (cSPE) for lactose detection, showed that 

the existence of MWCNT on the cSPE showed an improvement in current density by 1.5 to 2.5 times 

higher than the cSPE without MWCNT. In fact, other studies that had CDH directly linked to SWCNT 

showed high current intensity (Table 5.2). 

Table 5.2   Anode reproducibility test at several lactose concentrations 

Anode sample 

 Lactose (mM) 

 0.5 5 

   

Km   

Current Density                   

(Mean)    RSD     

Current Density                   

(Mean)    RSD     

(mM) (µA/ cm2)  (%) (µA/ cm2)  (%) 

MWCNT added 
     

CDHAryl diazonium/ 
MWCNT epoxy graphite 
composite  (batch) 

 

~0.65 4.6 ±    0.5 20 24.0 ±    1.5 11 

CDHAryl diazonium/ 
MWCNT epoxy graphite 
composite (continuous) 

 

~0.75 5.2 ±    2.3 78 19.2 ± 3.8 35 

No MWCNT (Control) 
     

CDHAryl diazonium/ 
epoxy graphite composite 
(batch) 

 

~0.75 1.7 ±    0.1 10 9.3 ±   2.0 30 

CDHAryl diazonium/ 
epoxy graphite composite 
(continuous) 

        

 

~0.78 8.5 ±    8.3 138 

 

13.6 ± 12.7 

 

132 
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aCDHAryl 
diazonium/SWCNT/ 
Glassy carbon 

0.70          na         na 500          na 

bPEGDGE-
CDH/SWCNT/graphite 
rod 

2.3 na na 80 na 

a(Tasca et al., 2011a) & b(Tasca et al., 2008). PEGDGE = poly(ethylene glycol) diglycidyl ether 

Note: RSD = (standard deviation/ mean) x 100 = relative standard deviation to express the precision 

and repeatability of a response. Small RSD% shows good reproducibility (Safina et al., 2010).  

In this study, MWCNT was not exposed on the surface of the base electrode, instead the MWCNT 

was mixed into the matrix graphite composite. The embedded MWCNT in the fabricated graphite 

composites might create continuous electrical wires to allow easy DET flowing from cytochrome that 

bonded covalently onto the aryl diazonium compound to the fabricated electrode and all the way to 

the copper wire, which acts as current collector. Synthesis of aryl diazonium salt from safranin was 

chosen to obtain protonated state from phenazine-NH2 when in acidic environment, pH 4.5. The 

negatively charged cytochrome from the CDH will be attracted to the dangling positively charged -

NH3
+

 with its other end covalently bonded to the graphite surface (Figure 5.3). Hence, these 

functional charged groups should increase both the interaction forces and orientation of the enzyme 

on the surface of the electrode (Tasca et al., 2011a) and improve the DET.  

 

  

 

 

(a) 

(b) 

(c) 

diazonium ion 
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Figure 5.3  Molecular representation of safranin (a), the formed diazonium ion getting ready to 
make bonding (b) and the attachment of the aryl diazonium salt through covalent bond onto a 
surface (c). 

Safranin = 3,7-Diamino-2,8-dimethyl-5-phenylphenazin-5-ium chloride 

Having molecular formula of C20H19ClN4 

 

The fast response time, less than a minute per sample is slightly faster than 2 minutes per sample 

obtained by Yakovleva et al. (2012) for their lactose biosensor (Yakovleva et al., 2012). This fast 

sampling obtained through fabricated graphite electrode might be due to the wide electrode active 

surface area and correct orientation of CDH and -NH3
+ that favours easy flow of electron transfer 

from CDH to electrode.  

5.4.2 Prepared electrodes provide continuous current signal  

The duration stability test was done in air-cathode MFCs with 5 mM of lactose continuously flowing 

into the system. The analysis was carried out onto the fabricated graphite composite electrodes for a 

length of 25 days (Figure 5.4). Results showed that anodes with MWCNT embedded into the surface 

matrix gave almost consistent and higher in averaged current density, about 86% more than anodes 

without embedded MWCNT at the fixed lactose concentration. Due to technical problems, analysis 

done to anodes without embedded MWCNT was discontinued on the 7th day of EFC operation. Set 

aside the technical problems, this shows that the fabricated anodes are capable in working within 

long duration and still sensitive without any significant decrease in analytical response. To our 

knowledge, continuous stability analysis on lactose detection conducted to a CDH modified 

electrodes for more than a day (Glithero et al., 2013; Safina et al., 2010; Yakovleva et al., 2012) have 

been reported on commercial electrodes such as SPEs and graphite rods, however none on graphite-

epoxy composite electrodes. Although using the commercial SPE modified with MWCNT could give 

better performance in RSD% and smaller concentration detection as in Glithero et al. (2013) (0.002 

mM to 29 mM), the in-house fabricated graphite epoxy composite electrode in this study offers the 

flexibility and freedom in designing the electrode shape based on the desired reactor, while 

maintaining equally fast detection time as the SPEs. In addition, this study targets on high generation 

of current from the lactose oxidation besides concentration detection for lactose monitoring. Hence, 

electrode stability analysis on the graphite-epoxy composite while functioning as anode under 

potential poising for lactose continuous detection and generating high currents look promising for 

further development in real EFC condition without any anode poising.  
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Chapter 6                                                                                                   

General discussion, Conclusions and Future Research 

BFCs are categorized into two groups based on the biocatalyst used, the MFC that uses the microbes 

and the EFC that uses isolated and purified enzymes. Though the catalysts are different, the working 

mechanisms of these biofuel cells are similar, which is extracting electrons through favoured 

substrate oxidation, and transferring them to an anode. The electron then travels to the cathode via 

an outer circuit. At present, the power generated by the BFCs are not substantial, about 2 W/ m2 

(Nandy et al., 2015) when compared to chemical fuel cell, which is about 550 kW/ m2 (Markillie, 

2010). Studies are actively being carried out with MFC to improve the power production and reduce 

cost in a variety of different areas such as electrode material, reactor design, inoculum and substrate 

rich in electrons. It is also crucial to have the anode compartment free from soluble oxygen and other 

soluble anaerobic electron acceptors such as, nitrate (NO3-), sulphate (SO42), sulphur (S) or fumarate, 

which have adverse effect on electricity generation in MFCs (Kim et al., 2004). Among the above 

mentioned soluble electron acceptors, the most electronegative is oxygen, which accounts for 21% of 

air in the atmosphere. This study was conducted to achieve three objectives. The first objective was 

the preparation of enriched exoelectrogen culture exposed to oxygen for an extended time period to 

provide the inoculum for the second objective. The second objective was focused on graphite-epoxy 

composite electrode fabrication for better electricity generation and the third objective was 

immobilization of CDH on the electrodes prepared in the second objective to detect lactose  

The first objective (Chapter 3) was to provide an understanding of the long term exposure to oxygen 

on enriched exoelectrogen culture and this culture was used as the inoculum in the second objective. 

The results showed that after 30 days of exposure of anolyte in 7.5 ppm of soluble oxygen, the 

exoelectrogens became inactive from donating electrons to the external anode for electricity 

production. It is important to have the anode compartment free of diffused oxygen from the cathode 

especially during start up (Hutchinson et al., 2011). Though the exoelectrogens are believed to be 

facultative bacteria, only when the area is suitable for anaerobic bacteria to survive and perform 

anodophilic transfer, then only current density started to gain pace. In the air bubbling anode 

chamber, the growth of aerobic microbes might has increase due to a direct reduction of oxygen in 

the cell to increase biomass production. The diffused oxygen is consumed in the outer layer of 

biofilm, providing favourable conditions for growth of facultative and strict anaerobic in the deep 

layers of the biofilm. Fortunately, this result was not permanent because on subsequent exposure to 

an anaerobic environment, the exoelectrogens regained their productivity by generating up to 100% 
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of Pmax and Imax while reducing the Rint to 53%. Ringeisen et al. (2007) showed that single culture 

exoelectrogens became active once they discontinued the aerobic substrate for seven minutes  from 

reaching the system (Ringeisen et al., 2007). The same phenomenon was also observed by (Li et al., 

2010). My study showed that exoelectrogen bacterial community is robust and able to survive for 30 

days in aerobic environment and then switch its electron transfer pathway from aerobic to 

anaerobic.  

The exoelectrogens from the first objective was used as the inoculum for the experiments designed 

to achieve the second objective (Chapter 4). As mentioned in the earlier paragraph, the emphasis of 

the second and third objectives in this study was to analyse the performance of the fabricated 

graphite-epoxy composite electrode with a more than 70% graphite content. Attention was given to 

the composite electrode because of the attractive qualities it offers including improved conductivity, 

strength and design flexibility. The graphite content of more than 70% was applied throughout the 

electrode to reduce the inherent resistance and electrode preparation time. The second objective 

was able to provide evidence that graphite-epoxy composite with more than 70% graphite content 

could be fabricated within 24 h. The graphite content allowed faster drying thus reducing the time 

for electrode preparation without using expensive machinery and complex method, while at the 

same time able to show good conductive behaviour. Samples with 73% graphite and 0.04% MWCNT 

loading improves E1/2 detection in electrochemical analysis, with ferricyanide/ ferrocyanide as 

electrolyte. This could be due to the effect of filler agglomeration during blending and curing, 

creating conductive network, which covers the non-conductive epoxy area. When MWCNT was 

embedded into the composite matrix, lower OCP were recorded from these anodes. This shows the 

contribution of MWCNT in keeping down the anode potential regardless with or without the AQDS/ 

PPy for surface modification. Low anode potential, as close to the Eo of NAD+/ NADH is necessary to 

prevent the bacteria from gaining metabolite energy, thus reducing maximum attainable voltage for 

MFC. On the other hand, electrodes with embedded MWCNT bring down the Rint in the MFC system 

occurred within the system. Rint of an MFC system could refer to resistance experienced by the 

electrons through the electrodes and interconnections, resistance experienced by the ions through 

the membranes, the ionic strength in the electrolytes and many more occurred within the system. 

Up to 22% of Rint was reduced in the MFC system, compared to the plain graphite-epoxy electrode. 

Higher reduction in the Rint up to 66% was seen when the graphite-epoxy electrodes had their surface 

modified with AQDS/ PPy. The surface applied mediator acted as a catalyst on the electrode and at 

the same time reduced the large overpotentials of the electrodes, which resulted in : 1) activation 

due to energy lost during electron transfers, 2) bacterial metabolism through substrate oxidation and 

3) mass transport referring to flux of reactants and products during the reaction. As for the Pmax, 

surface modified plain graphite-epoxy electrode showed a higher Pmax than the surface modified 
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embedded MWCNT graphite-epoxy electrodes, and significant differences in Pmax between the 

modified and unmodified electrodes were evident. Electrode surface modification acts as a catalyst 

by reducing the large overpotentials of the electrode (Feng et al., 2010a; Ramakrishnappa et al., 

2011), thus improving the Pmax and Rint. The reason for the low Pmax generated by embedded MWCNT 

graphite-epoxy electrodes were not clear and requires further study. 

In objective 3 (Chapter 5) the graphite-epoxy electrode was surface modified with aryl diazonium to 

prepare a covalent bond for the CDH enzyme. These electrodes were able to detect a maximum 

lactose concentration of 70 mM. The slight increase in Km happened in continuous lactose flow could 

be due to the continuous flow mode maintaining a constant environment for the enzyme by 

supplying fresh feed every time into the system. A high Km value will show the capability of the 

system to operate at higher concentrations of lactose before the enzyme became saturated. This 

would offer the possibility to tap into more electrons from the oxidation of high lactose 

concentration to generate current with greater intensity. The range of lactose detection was similar 

with or without embedded MWCNT. However, the embedded MWCNT increased the current up to 

86% and was stable in long-term operation compared to the electrode without embedded MWCNT. 

The existence of embedded MWCNT improved the conductivity of the electrodes. The MWCNT may 

have dampen the effect of the non-conductive epoxy resin and eventually increased the 

reproducibility of results. Concurrently, the embedded MWCNT might create continuous electrical 

wires to allow easy DET flowing from cytochrome that bonded covalently to the electrode’s surface. 

This research has contributed to the advancement of knowledge in the BFCs in the perspective of 

oxygen effect and alternative anode material. This study has emphasised the detrimental effect of 

soluble oxygen within the anode compartment of MFC and showed that exoelectrogens could survive 

when exposed to soluble oxygen of 7.5 ppm for 30 days. These exoelectrogens can rebound when 

exposed to anaerobic conditions and provide 100% improvement in both Pmax and Imax. Recent 

studies show the increase of composite electrodes application in BFCs being investigated to reduce 

the cost of BFCs from using noble metals. However, most of these researchers were unable to 

completely detach their studies from using non-precious metals such as nickel (Huang et al., 2015; 

Karthikeyan et al., 2016), iron (Liu et al., 2015), silver and iron (Ma et al., 2015) and manganese and 

iron (Burkitt et al., 2016) in their electrodes fabrication due to the high current performance they 

bring.  Graphite-epoxy composite gives the ability to fabricate anode material in-house. This study 

shows that the graphite-epoxy electrodes are cheap and flexible for fabrication when compared to 

commercial electrodes. These electrodes can be easily fabricated within 24 h to be used as 

conductive electrodes for the BFCs.  
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As a way forward, study can be extended to examine long term effects of different oxygen 

concentrations on the exoelectrogens to identify the maximum tolerable limit of oxygen exposure 

and understand the effect of MWCNT position. The position of MWCNT play a crucial role in creating 

a stronger link with the CDH while maintaining strong adhesion within the electrode’s matrix. The 

work can also be extended to reduce the inherent resistance of graphite-epoxy composite 

electrodes. 
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B.3 Cyclic voltammograms (CV) of graphite composite anodes at multiple 
scan rates. 

 

 

CV done at four different scan ranges of 20, 50, 70 and 100 mV/s for plain graphite-epoxy composite 
electrodes with 73% (w/w) graphite contents (530:200) (a) and 78% (w/w) graphite contents 
(730:200) (b). Analysed using CV in 50 mM ferricyanide/ferrocyanide electrolyte. (n=3). 

 

 

 

(a) 

(b) 
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