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Summary 

Freshwater fisheries management requires knowledge of not only the resource but 
angler preferences and the extent to which preferences vary. This paper reports 
results from an internet-based stated preference survey of anglers in the North 
Canterbury region. Discrete choice models are used to investigate how the quality of 
fishery attributes impact anglers’ selection of fishing sites. The models reveal 
significant preference heterogeneity between anglers for particular fishing site 
attributes. Furthermore, anglers’ preference intensities for identical attributes vary 
between sites. Consequently, efficient allocation of resources entails spatial and 
social components.  

Keywords: discrete choice analysis, latent class, mixed logit, angler heterogeneity, 
New Zealand recreational trout fisheries 

 

Introduction 

Freshwater recreational angling is a popular activity in New Zealand. Annual full-
season license sales over the past decade have averaged 70,000 and the number of 
angler day trips per year is estimated to be approximately 1,000,000 (Unwin and 
Image 2003). A significant portion of this use is generated by overseas anglers whose 
expenditures on guides, accommodation, travel, etc. make New Zealand’s freshwater 
fisheries significant tourism assets. New Zealand’s South Island recreational trout 
fisheries, which are the focus of this paper, are renowned for pristine environments, 
high water visibility, large wild trout, low angler densities and relatively low cost of 
access (Hayes and Hill 2005). Given the South Island’s varied climate, geology and 
topography a diverse range of trout fishing sites arises, offering qualitatively 
different experiences and requiring uniquely adapted angling techniques and 
equipment (Kent 2006). 

Serious concerns have been raised by Fish and Game New Zealand (FGNZ), the 
body responsible for the maintenance, management and enhancement of the trout 
fishery resource, related to changing patterns of angler use of various types of fishing 
sites and license sale volatility (Abernathy 2006). Between the most recent National 
Angler Surveys (1994/1996 and 2000/2001) the North Canterbury Region has 
experienced some of the most drastic changes, with use of Lowland rivers and 



Mainstem rivers dropping 60% and 28% respectively. Concurrent use of the other 
predominant fishery types, Lakes and Backcountry rivers, increased only marginally 
over the same period (Unwin & Image 2003). Changes to use patterns and license 
sales volatility are serious threats to FGNZ, which relies solely on revenue from 
license sales to provide services to anglers. Further, redistributions of angling effort 
can lead to overfishing and unwanted resource pressure on fragile fisheries, 
particularly those in the backcountry (Walrond 2000; Young and Hayes 2004; White 
2007).  

It is not evident what is driving these changing activity patterns. Possible causes are 
environmental and site-attribute quality changes which are occurring at numerous 
New Zealand fishery sites. These changes are the result of influences such as, but not 
limited to, intensifying land uses (White 2007), Didymosphenia Geminata (Didymo) 
infestation (www.biosecurity.govt.nz/didymo) and angling pressure (Walrond 2000; 
Strickland and Hayes 2003; Strickland and Hayes 2004; Young and Hayes 2004). 
Complicating the matter is the fact that the types of change and degrees of change 
occurring to the individual Lowland rivers, Mainstem rivers, Backcountry rivers and 
Lakes are numerous and complex. Other influences on angler behaviour may include 
rising fuel prices, decreased time for recreation, changes in regulations, or angler 
congestion. Management strategies involve decisions over which fishing sites to 
manage, which attributes of those fishing sites to manipulate, (e.g. riparian margin 
erosion, or fish stocks), and which angler behaviours to control through fishery 
management regulations1. The myriad of factors which may impact anglers’ 
behaviours highlights the difficulty for managers in developing management 
strategies, particularly if management resources are diminished because of decreased 
license sales.  

Anglers are well known to exhibit diverse preferences and behaviours (Bryan 1977; 
Teirney and Richardson 1992; Train 1998).  Angler heterogeneity adds complexity to 
management decisions because different anglers may prefer different regulations, 
environmental and fishing site attribute qualities. Further, because various fishing 
sites offer qualitatively different experiences and require uniquely adapted angling 
techniques and equipment, it is likely that angler preferences for similar attributes 
(e.g. catch rates or the absence of Didymo) on different fishing sites may vary. 
Improved understanding of the extent and nature of trout angler heterogeneity would 
allow New Zealand fishery managers to better allocate resources and to tailor 
management of fishery sites in ways that improve total angler satisfaction, maintain 
participation and redirect angling effort so that the natural environment is not 
overused.   

Discrete Choice Analysis (DCA), which integrates random utility theory into a 
statistical model, has become a highly popular means for understanding angler 
preferences and forecasting angler choice; “the numerous applications (Train 1998) 

                                                           
1 “So what’s motivating so many anglers to give trout fishing away?  One obvious possibility is that 
they found their angling experience just didn’t measure up to their expectations and this 
dissatisfaction was the catalyst for them dropping out.  In this context, establishing what makes the 
difference between a good day’s trout fishing and one that is not so good becomes critically important 
to understand how angling participation can be sustained.  Although FGNZ can’t do much to prevent a 
gusty north-westerly snarling up your cast, we can do something to prevent riverbeds becoming slick 
with algae due to pollution, and we can do something to facilitate access.  If the root causes of angler 
dissatisfaction are factors we can influence, then we need to know what they are so we can remedy 
them” (Abernathy 2006 pg. 85). 



suggest that recreational fishing is the most popular outdoor recreation activity 
studied by choice modelers”(Hunt 2005).  Recreational fishery managers can employ 
DCA to gain important insights into anglers’ likely responses to new management 
scenarios. Though not the focus of this paper, DCA can be used to conduct 
nonmarket valuation and to estimate anglers’ willingness-to-pay for fishing site 
improvements (Oh, Ditton et al. 2005). To improve understanding of angler 
preferences for various attributes and regulations on the different types of fishing 
sites, and the extent to which preferences vary among anglers, we estimate discrete 
choice models using anglers’ stated choices collected in an internet-based choice 
experiment.   

In the next section, we summarize the fundamental concepts of DCA, including the 
nature of stated choice experiments.  We then report the study design process, 
including focus groups, experimental design generation, survey piloting, survey 
administration and results. The following section briefly describes survey 
participants and reports econometric results. The paper concludes with discussion 
and identifies some management implications. 

 

Discrete choice analysis 

DCA uses information on single preferred outcomes from a set of alternatives in 
order to make inferences about the relative values of attributes of those alternatives. 
The information used in DCA can come from observations of actual choices in a real 
setting (revealed preferences), or from choices made in hypothetical settings, known 
as choice experiments (stated preferences) (Louviere and Hensher 1982; Louviere 
and Woodworth 1983).  Applied to anglers, the assumptions underlying DCA are as 
follows: individual anglers choose the alternative which provides the highest utility 
(Thurston 1927); individual anglers derive utility from of the constituent attributes of 
an alternative, not from the alternative itself (Lancaster 1966); from the analyst’s 
perspective, an angler’s utility is composed of two parts - an observable component 
and an unobservable component (Manski and Lerman 1977).   

In applying DCA the analyst must observe attribute qualities associated with each 
alternative when the angler made their choice. The analyst specifies utility functions 
for each alternative in an individual angler’s choice set. The utility function for each 
alternative is composed of a systematic part, which is the observed portion of utility, 
and a stochastic part, which is the unobserved portion of utility. The unobserved 
portion of utility arises because the analyst cannot accurately account for all 
attributes and factors which affect each individual’s choice. While not fully accurate, 
the unobserved portion of utility can be likened to an error term. The analyst 
observes levels for the attributes present in the individuals’ alternatives but cannot 
observe individuals’ preferences. In order to estimate these preferences statistical 
procedures are used. Conventional choice models, such as the Multinomial Logit 
(MNL) model, use maximum likelihood estimation procedures to estimate 
parameters for each attribute in the observed portion of the utility function.   
 
Let individual angler i’s utility (U) for alternative j be composed of a vector of 
attributes X, describing the alternative and the individual. Vector β represents the 



angler’s preferences.  ε represents the unobserved portion of utility, with each 
individual’s level of unobserved utility being random. Formally, U is defined as: 

Uij  = βXij + εij   where βXij = Vij 

The probability of individual i selecting alternative n is 

 Pi(n) = Prob [Vin + εin ≥  Vim + εim]  ∀m ≠ n 

= Prob [Vin – Vim ≥  εim - εin]  ∀m ≠ n 
 
Different assumptions about the distribution of the unobserved effects ε gives rise to 
different choice model formulations. An assumption that the unobserved utility (εij) 
for an angler’s alternatives are  independently and identically (IID) Extreme Value 
type 1 produces the MNL model (McFadden 1974; Train 2003) in which the 
probability that alternative n is chosen from all alternatives available to the 
individual is:   
 
P(n) = exp(µVin).(∑j exp(µVij)

-1 

µ is a scale parameter, inversely proportional to the standard deviation of ε. 
 
While it is the most commonly used choice model, MNL exhibits well known 
restrictions (Train 2003; Hensher, Rose et al. 2005). The first is that all anglers have 
homogeneous preferences. In other words, the parameter vector β is the same for 
everyone in the population. Secondly, because of the assumption that the unobserved 
utilities are distributed IID with extreme value distributions, the model assumes that 
individuals’ repeated choices, whether in a SP or RP context, are uncorrelated. 
Thirdly, MNL exhibits the property known as Independence from Irrelevant 
Alternatives (IIA). IIA dictates that the ratio of choice probabilities for any pair of 
alternatives (in this case fishing sites) is independent of any other alternative 
available in the set of choices. The IIA property forces the assumption that anglers 
substitute to alternative fishing sites in a proportional manner. Consider, for instance, 
an angler’s choice set which contains a lake, a backcountry river and a lowland 
stream. When IIA holds, a change in the attributes of one alternative, for instance 
closure of the lowland stream, would result in proportional changes in the 
probabilities of the angler selecting the lake and backcountry river alternatives. 
However, because of natural affinities for different locations and other reasons, such 
outcomes might not occur in practice. 

Many DCA applications in recreational fisheries research (Bockstael, McConnell et 
al. 1989; Oh and Ditton 2006) have employed MNL and other restrictive choice 
model forms which conflict with the angler diversity identified in the leisure studies 
literature (Ditton, Loomis et al. 1992). MNL shortcomings are widely recognized in 
the choice modelling literature and a strong research emphasis over the past decade 
has been toward finding increasingly flexible models which accommodate individual 
heterogeneity and relax IID (Train 2003). DCA progression toward improved 
flexibility using logit formulations has included Nested Logit (NL) (Hauber and 
Parsons 2000), Cross Nested Logit (CNL) (Hunt, Boxall et al. 2007), and Latent 
Class models (LCM) (Boxall & Adamowicz 2002; Morey, Thatcher & Breffle 2006).  
However, these model forms are still semi-restrictive; for instance NL and CNL 
maintain preference homogeneity and IID within nests and LCM maintains IID and 
assumes preference homogeneity within latent classes.   



The Mixed Logit (ML) model can overcome these limitations (Train 1998). ML 
allows preference parameters to be estimated over a parametric distribution which 
uncovers the extent of population heterogeneity. Further, ML allows correlation 
among an individual’s choices and almost completely relaxes IID.  Error components 
can be added to the ML to completely relax IID, allowing individuals’ substitution 
patterns to become fully flexible.   

The ML extends the MNL depiction of the utility function in the following manner: 

    Uij = βXij + ηXij + εij          

In this formulation β represents the population mean impact of attribute X on the 
angler’s utility, while η is the population deviation relative to the population mean.  
As before, ε represents the unobserved portion of utility, which is IID and 
independent of other terms in the equation. Each individual’s level of unobserved 
utility is random. The analyst observes X and estimates β and η. The analyst can test 
whether alternative parametric distributions for η, e.g., normal, lognormal, uniform 
or triangular, provide better approximations of population preferences. While not the 
focus of this paper, the ML model can be further specified to account for sources of 

heterogeneity in the distribution of random parameter means, variances and εij using 
attributes of decision makers (Greene, Hensher et al. 2006; Greene and Hensher 
2007). 

The first study to introduce ML on the individual level investigated damages to 
recreational trout angling in Montana caused by mining operations (Train 1998). 
Train found statistically significant variation among angler preferences and for 
fishery attributes and also found that ML improved model statistical performance 
compared to MNL. Since Train’s pioneering study ML has been widely applied in 
fields such as transport (e.g. Brownstone, Bunch & Train 2000), marketing (e.g. 
Revelt & Train 1998), and health economics (e.g. Borah 2006). However, there have 
been few further recreational angling applications. Phaneuf, Kling & Herriges (1998) 
found ML to significantly improve model performance when investigating 
individuals’ site choices in the Wisconsin Great Lakes Region. Breffle, & Morey 
(2000) in their application to Maine and Eastern Canadian Atlantic salmon anglers 
found that ML explained choices significantly better then MNL and found that 
“restricting preferences to be homogeneous often leads to significantly different 
mean consumer surplus estimates” (Breffle & Morey 2000, p.2). Provencher & 
Bishop (2004) investigated the out-of-sample forecasting performance of MNL, 
LCM and ML in an application to salmon angling on Lake Michigan. They found 
that, while ML identified statistically significant preference heterogeneity among 
anglers and improved model fit relative to MNL, the ML model performed equally as 
well as LCM, and at least on one measure underperformed the MNL in terms of out-
of sample forecasting.  

One area overlooked by most, if not all, applications of DCA to recreational angling 
pertains to the estimation of site-specific preference parameters, rather than assuming 
that the same preference parameters apply to all sites. In other words, research has 
commonly assumed that the utility anglers derive from specific attributes is 
independent of the fishing site. Previous research (e.g. Train 1998) has relied on 
alternative specific constants to capture inter-site differences in anglers’ behaviors.  
Our research calls into question this assumption, particularly in the case of New 



Zealand trout fisheries where diversity of fishing site settings, fishing site attributes 
and angler techniques abound. Further, relatively few studies have taken advantage 
of the benefits of stated preference data to estimate angler preferences using DCA. 
Hunt (2005) found that out of 50 studies in the published literature, only three of 
these used stated preference data (e.g. Banzhaf, Johnson & Mathews 2001). This 
study is the first DCA application to a New Zealand recreational trout fishery, it 
makes a novel contribution to the literature by estimating angler preferences for site-
attributes at different fishing sites. 

Survey Design 

Revealed preference studies are problematic because of the large number of fishing 
sites (100+ in the North Canterbury region addressed in this study) and variable 
weather patterns in New Zealand freshwater fisheries. Some sites are unfishable in 
particular weather conditions, so weather variability makes collecting data on angler 
choices and measuring attributes of all fishing sites at the time when anglers made 
their decisions highly difficult. Consequently, a stated preference approach was 
adopted. Choice experiments have decided advantages for understanding New 
Zealand anglers’ choices because they can overcome problems associated with 
multicollinearity and lack of variability in attribute levels found in actual fishing 
sites. They can also be used to restrict the number of choices and conditions at 
substitute sites. The initial step for designing the choice experiment was to decide 
which fishing site alternatives to use and which attributes to describe them with. 

Focus groups and National Angler Survey categories identified the principle fishing 
site alternatives. These were: Mainstem-Braided River, Backcountry River, Lowland 
Stream, Lake, and Not Fish. Extensive literature reviews, consultation with FGNZ, 
and focus groups conducted with fishing clubs were used to ascertain salient fishing 
site choice attributes which were relevant to FGNZ management. The nine fishing 
site attributes chosen and the levels that the attributes could take are reported in 
Table 1. 

Experimental designs are used to construct the arrangement of attribute levels shown 
to angler respondents for each alternative over different choice scenarios. Often the 
aim of experimental design generation is to vary the attribute levels in a way which 
maximizes understanding of angler preferences for the analyst. Use of prior 
information about angler preferences can greatly improve experimental design 
efficiency and minimizes the number of choice observations needed to achieve 
statistically significant model fits (Ferrini & Scarpa 2007; Rose & Bliemer 2005; 
Rose & Scarpa forthcoming).  For this study a Bayesian D-Efficient design (Jaeger 
and Rose 2008) was generated based on information gathered in pilot studies 
undertaken using a hard copy survey of Nelson-Marlborough fishing club members 
and an internet survey administered to anglers in the Central South Island region.  
Feedback on the selection of attributes, attribute levels, alternative descriptions, 
ability to understand the survey, and choice complexity was also gathered during the 
pilots and used to refine the survey.  

Portraying realism and importance to respondents in choice experiments is 
paramount (Cummings & Taylor 1998). Considerable care was taken to ensure that 
the attribute levels selected provided realistic choice scenarios. For instance, 
Backcountry Rivers generally have much higher water visibility, larger average trout 



size, and are more costly and time consuming to access than other fishing site types. 
Consequently, the study favoured alternative specific attribute levels which would 
reflect these differences (Table 1). Further, to maintain realism in the choice tasks, 
highly unrealistic attribute level combinations were not used; in particular scenarios 
with high cost accompanying low travel times. In addition, the attribute levels for 
Didymo and Riparian Margin were unbalanced. Ngene software was used to generate 
the Bayesian D-Efficient Design. The design resulted in 96 choice scenarios which 
were blocked into 16 randomised sets of six choice questions to eliminate order bias.   

Table 1: Attributes 

 
Mainstem-

Braided River 
Backcountry 

River 
Lowland Spring-

fed Stream  
Lake 

Cost $30, $60, $90 $60, $90, $120 $20, $40, $60 $60, $90, $120 

One Way Travel 
Time (Minutes) 

30,60,90 60,90,120 20,40 ,60 60,90,120 

Angler Encounters 0,1,2 0,1,2 0,1,2 0,1,2 

Water Visibility 
(Meters) 

1,3,5 2,5,8 1,3,5 1,3,5 

Angler Catch 1,3,5 1,3,5 1,3,5 1,3,5 

Trout Size (lbs) 2, 3.5, 5 3.5, 5, 6.5 2, 3.5, 5 2, 3.5, 5 

Bag Limit 0,2 0,1 0,2 0,2 

Riparian Margin 
Pristine,  

Erosion due to 
stock 

Pristine,  
Erosion due to 

stock 

Pristine,  
Erosion due to 

stock 

Pristine,  
Erosion due to 

stock 

Didymo Present,  
Not Present 

Present,  
Not Present 

Present,  
Not Present 

Present,  
Not Present 

 

The sampling frame included the 6405 anglers with email contacts in the North 
Canterbury FGNZ database. An email from North Canterbury FGNZ invited survey 
participation. The message described the nature of the survey and its relevance and 
provided a web link to the survey. One reminder email notice was sent one week 
after the initial invitation. The survey ran for two weeks in April 2008.  

The internet survey instrument consisted of multiple frames informing respondents 
of the nature of the choice experiment, along with directions and examples for 
completing the choice scenarios. The internet survey instrument was chosen over 
hard copy format due to advantages relating to cost and time savings (Dillman 2007). 
Considerable time was spent in the introduction to the survey describing the 
alternatives and their attributes and portraying the relevance of the survey to 
respondents (Cummings & Taylor 1998). In addition to completing six choice 
scenarios, each respondent was asked a number of questions relating to their angling 
background. The survey was designed to take 15 minutes. In order to motivate 
participation, respondents were entered into a draw to win their choice of a Sage fly 
rod or a $1000 gift certificate to a New Zealand based fishing and hunting store.  
Figure 1 presents an example choice scenario screen. 



Figure1: Choice scenario example 

 

 

Results 

Usable responses were received from 813 of the 6405 people on the FGNZ database 
who were sent email invitations to complete the survey. These responses resulted in 
4878 completed choice scenarios. Average survey completion time was 14 minutes 
and 57 seconds. It is not known how many of the emails that were sent were received 
by the intended recipients, so the actual response rate is unknown, but is greater than 
the 12.7% indicated by the figures above. The median respondent:  

• Was between 41 and 50 years of age;  

• Had 22 years of fishing experience; 

• Fished 11-20 days per year; 

• Earned $60,000 – $80,000 personal income; 

• Fishing was their second most important recreational activity.   

• Had intermediate fishing skill. 

 

Only 8% of respondents were internationally based, with 84% living in Canterbury. 
Ninety five percent of participants were male, 19% belonged to fishing clubs, and 
64% used the internet to access fishing-related information. Lakes were the most 



commonly fished waters, being fished by 76% of survey participants. Lakes were 
also the water type the anglers fished most often (26% of participants said they 
fished most often on Lakes). Corresponding figures for other water types were: 
Backcountry Rivers (73%, 23%), Braided Rivers (72%, 22%), Mainstem Rivers 
(65%, 19%), and Lowland streams (50%, 9%). 

Nlogit 4.0 was used to conduct model estimation. Table 2 presents results from the 
multinomial logit model a two-class latent class model and a mixed logit model all 
estimated with non site-specific parameter estimates. 
 

Table 2: Statistical Models (Generic Parameters)  

  MNL (1) LCM (2) ML(3) 
    Class 1 Class 2 Mean Spread 

(Triangular) 

Cost -0.00695*** -0.00772*** -0.00772*** -0.0150*** 0.0377*** 

Travel Time -0.00567*** -0.00388* -0.00779*** -0.00825*** 0.0309*** 

Visibility 0.0518*** 0.0926*** 0.0315*** 0.0697*** 0.375*** 

Catch 0.110*** 0.156*** 0.0938*** 0.142*** 0.655*** 

Fish Size 0.166*** 0.262*** 0.143*** 0.226*** 0.692*** 

Bag 0.187*** -0.00000 0.269*** 0.207*** 1.170*** 

Margin -0.418*** -0.586*** -0.392*** -0.575*** 1.269*** 

Didymo -0.284*** -0.357*** -0.283*** -0.407*** 1.413*** 

Encounters -0.038 -0.273*** 0.0605*** -0.0836*** 0.602*** 

Mainstem 0.140 -0.0576 0.318 1.012***   

Backcountry 0.590* 1.303** 0.105 1.434***   

Lowland -0.157 -0.399 -0.0202 0.554**   

Lake 0.122 -0.0151 0.326 0.951***   

Constant   -1.326*** 0     

Fly only   1.008*** 0     

All methods   -2.627** 0     

Backcountry    2.008*** 0     

Beginner   -1.172*** 0     

Class Prob   0.336 0.664     

Parameters 13 30 22 

AIC 2.935 2.813 2.753 

BIC 2.952 2.853 2.782 

LL -7144.692 -6831.230 -6692.311 

Note: ***, **, * = Significance at 1%, 5%, 10% level 

 
The use of maximum likelihood estimation and not ordinary least squares as the 
estimation procedure necessitates use of statistical tests other than the F-statistic to 
determine how well the parameters fit the data. The Akaike and Bayesian 
Information Criteria (AIC and BIC), are two measures which can used to compare 
models with different numbers of parameters. Lower scores are preferred. The 
likelihood ratio test (LRT) may also be used to compare models. 

Parameter estimates in the MNL (1) carry expected signs. Higher cost and greater 
travel time were both evaluated negatively, as were damaged riparian margins and 



didymo infestations. Increased encounters with others were not significant. Better 
water visibility was evaluated positively, catching more trout, bigger trout and 
increased bag limits were all evaluated positively. The alternative specific constants 
indicate the mean effect of all unobserved influences on anglers’ choice for each 
fishing site alternative. The positive and significant alternative specific coefficient 
for Backcountry River indicates that, ceteris paribus, anglers preferred to fish at a 
Backcountry River. 

The LCM (2) reported in Table 2 incorporates a limited degree of angler 
heterogeneity. The two-class model is presented here for brevity; three and more-
class models allow further discrimination. The two-class model is preferred over the 
MNL (1) on AIC, BIC and likelihood ratio test criteria (χ2 = 626.9, 17 degrees of 
freedom, p<0.000000) and reveals significant preference heterogeneity not 
uncovered by MNL (1). Preferred fishing method, preferred fishery type and 
experience were important determinants of class allocation. The positive coefficient 
for fly only shows that anglers who fish exclusively with fly were more likely than 
others to be a member of Class one. Class one anglers were not influenced in their 
choice of sites by bag limits, whereas bag limits were strong positive influences for 
Class two anglers. Class one anglers’ site choices were negatively influenced by 
encounters, whereas class two anglers preferred encounters with other anglers. Class 
one anglers preferred Backcountry Rivers, ceteris paribus. 

The mixed logit model was estimated using triangular distributions. Constraints on 
spread parameters, (and hence on heterogeneity), while offering behaviorally 
sensible outcomes because they restrict the signs on parameters, resulted in poorer 
model fit. Spread parameters in Table 2 are unconstrained. Shuffled Halton draws 
were specified in preference to regular Halton draws because they provide better 
coverage of the distribution space when estimating a large number of parameters 
(Bhat 2003; Train 2003, pg 236). Model convergence and parameter stability 
occurred when 2500 draws were used. Based on AIC, BIC and likelihood ratio test 
criteria ML (3) offers an improvement in fit over both MNL (1) and LCM (2). All 
spread parameters were highly significant, indicating the presence of heterogeneity.  
All mean parameters have expected signs and are significant. All alternative specific 
constants are significant. 

In order to test the hypothesis that site-specific parameters better capture angler 
preferences multinomial logit, latent class and mixed logit models were estimated 
with site specific parameters (Table 3). Cost and travel time parameters were 
specified to be invariant across fishing sites. Adoption of site-specific parameters for 
the remaining attributes added computational burden but permitted investigation of 
whether anglers’ taste intensities for similar attributes differed across the various 
fishing site types.   

The site-specific MNL (4) model has the same overall pattern as the generic MNL 
(1) model, with two notable differences. No site-specific constants were significant 
in the expanded model, whereas the constant for Backcountry Rivers was positive, 
although of marginal significance, in the generic model. Whereas encounters were 
not significant in the generic model, they had a low level of significance in the 
backcountry in the site-specific model.  The role of encounters is highlighted more 
clearly by the site specific LCM (5). Encounters were negative influences on Class 
one anglers’ choice of Mainstem-Braided, Backcountry and Lowland Rivers. 



Encounters acted as positive influences on Class two anglers’ probability of choosing 
to fish Backcountry Rivers. Encounters were not significant influences on choice of 
Lakes for either class. Better water visibility was a positive determinant of choice on 
Mainstem and Backcountry Rivers and on Lakes for Class one anglers, but was 
unimportant for Lowland streams or for Class two anglers at Lakes. Models that 
incorporate site-specific attribute parameters contrast the differential importance of 
visibility at different fishing sites.  

The site specific ML (6) model was estimated using triangular distributions, which 
performed best on statistical grounds. Like the generic ML model specification, 
constraints placed on the spread parameters resulted in a poorer model fit. Spread 
parameters in Table 3 are unconstrained. Shuffled Halton draws were specified. 
Parameter stability was achieved with 1500 draws. 

ML (6) spread parameters for water visibility on Mainstem Rivers and for catch on 
Lakes were non-significant, indicating that angler preferences were homogeneous for 
these particular site attributes. The mean parameter estimate for water visibility on 
Lowland Streams was not significant, in contrast to MNL (4), but consistent with 
LCM (5). Parameter means for encounters on all fishing sites were insignificant. All 
other attribute spread and mean parameters were significant.  The large numbers of 
significant spread parameters were again indicative of preference heterogeneity 
amongst anglers. 

 
  



Table 3: Statistical Models (Alternative Specific Parameters) 

 MNL (4) LCM (5) Mixed Logit (6) 
  Class 1 Class 2 Mean Spread 

Cost -0.00623*** -0.00697*** -0.00697*** -0.00917*** 0.0413*** 
Travel Time -0.00497*** -0.00293 -0.00734*** -0.00779*** 0.0276*** 
Visibility: Main 0.0817*** 0.123** 0.0792*** 0.124*** 0.183 
Visibility: Back 0.0730*** 0.0963*** 0.0637*** 0.083*** 0.451*** 
Visibility: Low 0.0495** 0.104 0.0281 0.0426 0.411*** 
Visibility: Lake 0.0462* 0.167*** -0.00575 0.074* 0.424*** 
Catch: Main 0.121*** 0.153** 0.118*** 0.122*** 0.546*** 
Catch: Back 0.189*** 0.229*** 0.204*** 0.256*** 0.598*** 
Catch: Low 0.119*** 0.148** 0.113*** 0.103*** 0.492*** 
Catch: Lake 0.0781*** 0.159*** 0.0453** 0.136*** 0.265 
Fish Size: Mai 0.239*** 0.367*** 0.213*** 0.304*** 0.361*** 
Fish Size: Back 0.268*** 0.311*** 0.373*** 0.424*** 0.541*** 
Fish Size: Low 0.144*** 0.161* 0.149*** 0.138*** 0.452*** 
Fish Size: Lake 0.116*** 0.239*** 0.0580* 0.163*** 0.709*** 
Bag: Main 0.201*** 0.00616 0.278*** 0.332*** 1.321*** 
Bag: Back 0.125*** -0.0254 0.365*** 0.232*** 1.540*** 
Bag: Low 0.1394*** -0.00718 0.188*** 0.221*** 1.264*** 
Bag: Lake 0.1728*** -0.0720 0.270*** 0.273*** 0.806* 
Margin: Main -0.484*** -0.817*** -0.414*** -0.662*** 1.0406*** 
Margin: Back -0.497*** -0.701*** -0.503*** -0.788*** 1.844*** 
Margin: Lowl -0.447*** -0.556*** -0.449*** -0.626*** 0.754** 
Margin: Lake -0.358*** -0.333*** -0.373*** -0.595*** 2.081*** 
Didymo: Main -0.376*** -0.432*** -0.382*** -0.487*** 1.639*** 
Didymo: Back -0.376*** -0.490*** -0.408*** -0.524*** 1.812*** 
Didymo: Low -0.255*** -0.169 -0.310*** -0.349*** 1.406*** 
Didymo: Lake -0.245*** -0.280** -0.228*** -0.399*** 1.727*** 
Encounters: Main -0.0571 -0.350*** 0.0189 -0.0726 0.558 
Encounters: Back -0.0695* -0.303*** 0.155*** -0.0204 0.443 
Encounters: Low -0.0389 -0.324*** 0.0418 -0.0851 0.628 
Encounters: Lake 0.00550 -0.123 0.0477 0.0285 0.660* 
ASC: Main -0.174 -0.724 0.0489 -0.00512  
ASC: Back -0.324 0.624 -1.768*** -0.920  
ASC: Low 0.0513 0.0295 0.141 0.529  
ASC: Lake 0.507 -0.263 1.113*** 0.309  
Constant  -1.234*** 0  
Fly only  0.996*** 0  
All methods  -2.256** 0  
Backcountry  1.933*** 0  
Beginner  -1.170*** 0  
Class probs  0.348 0.652  

Parameters 34 72 64 
AIC 2.937 2.815 2.744 
BIC 2.982 2.911 2.829 
Log likelihood -7128.411 -6794.241      -6628.056 

Note: ***, **, * = Significance at 1%, 5%, 10% level  

 

Table 4 summarizes statistical fit measures for the models in Tables 2 and 3. 



 

Table 4: Model fit 

 Form Site-

specific 
LL Parameters AIC BIC Likelihood Ratio Test  

(Specific vs Generic) 

1 MNL No -7144.7 13 2.935 2.952  

2 LCM No -6831.2 30 2.813 2.853  

3 ML No -6692.3 22 2.753 2.782  

4 MNL Yes -7128.4 34 2.937 2.982 32.6, 21, 0.0508 

5 LCM Yes -6794.2 72 2.815 2.911 74.0, 42, 0.0017 

6 ML Yes -6628.1 64 2.744 2.829 128.4, 42, 0.0000 

Likelihood Ratio Test  : χ2,  degrees of freedom, p 

 

Generic versus Site-Specific Parameters 

Comparisons between models 1 & 4, 2 & 5, and 3 & 6 test the significance of site-
specific parameters (Table 4). Evidence is mixed. AIC and BIC scores increased with 
the site-specific attribute models for the MNL and LC models - although the 
difference was small.  For the ML model there was a decrease in AIC in moving to 
the site-specific model, although BIC increased. These results indicate that the more 
parsimonious generic models are preferred. In contrast the LRT tests suggest the site-
specific models are preferred. 

 

Angler heterogeneity 

Test of the importance of heterogeneity are provided by comparisons of multinomial 
logit models, which do not permit angler heterogeneity, with latent class and mixed 
logit models, which do accommodate heterogeneity (Table 4). For all cases the 
heterogeneous models, despite additional parameters, significantly improve 
behavioural predictions, as evidenced by the decreasing AIC and BIC scores. ML, 
which allows for individual preferences, outperforms LCM, which imposes within-
class homogeneity, based on the AIC, BIC and likelihood ratio test criteria.  

 

Discussion & Management implications 

The application of discrete choice analysis to a New Zealand freshwater fishery has 
been the result of a long period of investigation of anglers’ motivations and 
expectations. The close working relationship developed with anglers during the 
design of the study was critical to enabling development of a stated preference study 
design that was realistic to anglers, could be applied over the internet, provided 
sufficient motivation for anglers to participate, and allowed revelation of their 



underlying preferences. Modelling the complex decisions regularly faced by anglers, 
with large numbers of alternatives and many salient attributes that vary across sites, 
is a complex statistical task requiring a large amount of data. Internet application, 
while incurring substantial setup costs, allowed a large amount of data to be collected 
relatively quickly and cheaply. 

An important component of this research is prediction of changes in resource use 
contingent upon environmental changes. For example, what angler pressures would 
arise in other fisheries if didymo were to result in closure of backcountry fisheries? 
Anglers use many types of sites, with at least two thirds of anglers using each water 
type except Lowland streams. This indicates a flexible population, likely to be 
willing to transfer activity between locations according to conditions. The strength of 
the model parameters estimated so far indicates that anglers are indeed willing to 
transfer their fishing effort to alternative sites, although some anglers have strong 
preferences for particular waters. The implication is that loss of some waters has the 
potential to dramatically increase angler pressure on other waters. 

These results arise from initial investigations of a rich data set. However, even at this 
early stage the role of respondent heterogeneity is apparent. Both the latent class 
model and the mixed logit model indicate that there are distinct differences in tastes 
between anglers. These taste heterogeneities are consistent with other recent discrete 
choice recreation studies (Train 1998; Breffle & Morey 2000). While the mixed logit 
models indicated the wide reaching extent of preference heterogeneity among New 
Zealand anglers, they did not, in this instance, provide any indication of the location 
of specific angler subtypes or individuals on the parameter distributions in order to 
identify the characteristics of individuals with specific taste intensities. The latent 
class models in this instance enriched the understanding of angler heterogeneity by 
beginning to tease out distinct preferences among subgroups, and possible sources of 
heterogeneity. For instance, the parsimonious latent class model which was used to 
estimate generic parameters uncovered two classes of anglers with disparate 
preferences for angler encounters. 

Bryan (1977) hypothesised that as anglers become more specialised they refine their 
choice of equipment and become more sensitive to resource disturbance and 
encounters with others. Concern shifts from simply catching fish to catching larger 
fish, in pristine environmental settings with minimal management influence, using 
specialised equipment and skills. Bryan’s (1977) hypotheses are consistent with the 
simple latent class models presented here.  Members of Class one fit the mould of 
highly specialised anglers - what Bryan termed technique specialists and technique-
setting specialists; these anglers are more likely to be highly skilled, favour 
Backcountry Rivers, are less likely to be technique generalists and beginners, are 
averse to encounters with others, and are not concerned with bag limits. The 
relatively larger parameters on fish size, didymo and riparian margin estimated here 
for Class one anglers are consistent with Bryan’s conjecture that specialised anglers 
have strong preferences for larger size, and are more negatively affected by 
environmental degradation. Class two anglers are consistent with what Bryan termed 
occasional or generalist anglers. The contrast between the two latent classes 
emphasises the need for fisheries managers to understand and account for angler 
heterogeneity in managing freshwater fisheries.  



The adoption of site-specific parameters was expected to add explanatory power. 
However, the statistical measures used to compare model fit were inconclusive.  
Based on AIC and BIC criteria, the expected improvements of site specific models 
over the generic models did not occur. However, likelihood ratio tests indicated some 
improvement. Regardless of these conflicting performance-based statistical tests, the 
site-specific models offer some important insights and will be the subject of further 
investigation. For example, water visibility clearly has a different role at alternative 
sites. Fishing methods used in Lakes and Lowland streams are not dependent on 
sight fishing – consequently the non-significance of these parameters is 
understandable. Similarly, the role of encounters varies. Encountering other anglers 
on a Backcountry River, which is likely to have disturbed the fish, is quite different 
to encountering others while fishing on a lake where the fish are more dispersed and 
anglers and fish are not visible to each other.  

Some attributes seem to have similar effects at different sites. Examples are margin 
and didymo, particularly in the MNL model. The coefficients across sites are 
remarkably uniform. The small differences in magnitude, while possibly statistically 
significant, probably add little to the predictive ability of the model. Further 
investigation of which attribute parameters differ across sites has the potential to 
improve model performance. 

The next challenge for analysis of this data set is provide additional enrichment to 
the understanding of the nature of heterogeneity, particularly to identify which 
sectors of the angler community hold different types of preferences and to further 
extend ML with error components to capture differing variances in the unobserved 
effects. The later enhancement will permit a richer understanding of anglers’ 
substitution patterns. 
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