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Abstract: It has become very clear that stochasticity in biology is a rule rather than exception. Gillespie 
stochastic simulation algorithm (GSSA) (direct method) is the first algorithm proposed to model stochasticity 
in biochemical systems. However, the computational intractability of direct method has been identified as the 
main challenge for using it to model large biochemical systems. In this paper, a novel variant of the GSSA is 
proposed to address computational intractability of the direct method. The direct method is combined with a 
Mapping Reduction Method (MRM) to target a single run of the direct method to be accelerated by 
advancing the system through several reactions at each time step to replace the single reaction in GSSA. 
MRM is a framework for mimicking parallel processes occurring in large systems using a large number of 
threads that work together and seen as a single system. It is used for parallel problems to be processed across 
large datasets using a large number of nodes working together as a single system. Link between GSk3 and 
p53 in Alzheimer's disease (AD) is modelled using the proposed method and tested and validated by 
comparing it with the direct method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The framework of GSSA/MRM includes four 
steps. These steps are initialization, election 
(mapping), selection (reduction) and 
updating. As shown in Figure 1. Initialization 
step is used to create a thread pool that 
includes 𝑇𝑇 threads (reactions) and initialize 
the system by calculating the propensity 
function (aj) for each reaction. Election step 
is mainly used to elect the number of threads 
equal to the number of reactions that have 
aj > 0 to run GSSA. Each thread that runs 
GSSA is able to determine the next reaction 𝑗𝑗 
to occur and its time step 𝜏𝜏. All reactions that 
are returned from the election step are filtered 
and only reactions that are able to fire are 
selected. GSSA/MRM is equal to GSSA if 
only one reaction is selected. If two reactions 
are selected and to reduce the number of time 
steps as GSSA does, the time step 𝜏𝜏 is the 
sum of the time steps from both threads. If 
more than two reactions are selected, the time 
step is calculated as the sum of the largest 3𝜏𝜏. 
Then, 𝑡𝑡 is updated and the number of 
molecules is updated. The simulation is 
repeated until all possible reactions have been 
fired or the time of simulation is exceeded. 
This paper shows that GSSA/MRM is faster 
than GSSA due to the possibility of firing 
more than one reaction at each time step.  

Keywords: GSSA, MRM, Alzheimer’s 
disease, p53, GSk3 
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Update molecules count.  

𝑡𝑡 =  𝑡𝑡 + 3 largest 𝝉𝝉   

Update molecules count.  

Repeat until simulation is completed  

Figure 1. Schematic of GSSA/MRM  
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1. INTRODUCTION 

It has become very clear that noise in biology is a rule rather than exception (Sauer 2012). Therefore, 
stochastic models have received a great deal of attention recently leading to many recent reviews  (Raser and 
O'shea 2005, Gillespie 2007, Česka, Šafránek et al. 2014, Burrage, Burrage et al. 2017, Pischel, Sundmacher 
et al. 2017). Stochastic models are widely used to model biological systems classified as small systems (<100 
molecules for each species in a given system). Direct method, also known as the Gillespie Stochastic 
Simulation Algorithm (GSSM), is the first algorithm used to stochastically model biochemical system. In 
each time step, the direct method uses the current state of the system and determines which reaction will 
occur next and when it will occur (Gillespie 1977).  

However, the computational intractability of direct method has been identified as the main challenge for 
using it to model large biochemical systems. Different extensions of the direct method have been proposed to 
cope with its computational intractability. These extensions are: (1) the first reaction method (Gillespie 
1977); (2) the next reaction method (Gibson and Bruck 2000); (3) the optimized direct method (Cao, Li et al. 
2004); (4) the sorted direct method (McCollum, Peterson et al. 2006); (5) the logarithmic direct method 
(Madani, Poirier et al. 2006); and (6) the tau-leap modified Poisson method (Cao, Gillespie et al. 2006). 

2. GILLESPIE STOCHASTIC SIMULATION ALGORITHIM GSSA (DIRECT METHOD) 

The direct method is a well-known technique used to stochastically model biochemical reactions and it is 
roughly equivalent to the Chemical Master Equation (CME). The CME is an exact method that is used to 
enumerate all possible states for any stochastic system at any given time by tracking the behaviour of the 
system (Gillespie 1992).  

Using GSSA, a PDF (probability density function) 
can be obtained from an infinite number of 
simulations and this PDF is identical to the true 
distribution of the system, as given by the CME 
(Haugh 2004). However, an identical PDF to the true 
distribution is never reached but an accurate PDF that 
depends on the system or type of application could be 
achieved using a high number of repeats of the GSSA 
(Gillespie 2007). The GSSA is used to generate a 
step-by-step trajectory of the system instead of 
following the time evolution of the probabilities of 
the CME. In each time step, the GSSA uses the 
current state of the system and determines which 
reaction will occur next and when it will occur. 
Assume a system involves N molecular 
species (S1, … … … … , SN); that are represented by 
X(t) =�X1(t), … … … … , XN(t)� (the state vector), 
where Xi(t) is the number of molecules of Si at 
time t; and M reactions channels (R1, … … … … , Rm). 
The GSSA steps along in time reaction-by-reaction, 
governed by the reaction probability (aj) (propensity 
function) and by the state change vector vj =
�v1j, … . , vN�. aj(x)dt gives the probability that one 
reaction will occur in the next time step. The steps of 
the direct method are summarized in Figure 2. 

3. GILLESPIE STOCHASTIC SIMULATION ALGORITHIM/ MAPPING REDUCTION 
METHOD (GSSA/MRM) 

3.1 Mapping Reduction Method (MRM) 

The proposed approach, MRM, is a method for processing large data sets on a single multi-processor 
computer (using threads or processors) (Dean and Ghemawat 2008), a cluster (Barroso, Dean et al. 2003), or 
a grid (Bent, Thain et al. 2004). The MRM is also defined as a framework that is used for parallel problems 
to be processed across large datasets using a large number of nodes working together and seen as a single 

Initialize # of species (Si), molecules (n) for each 
species in the system, chemical reactions Rm reaction 
rates (kj) and Set t = 0. 

Increase the time step by the randomly generated 
time τ.  
Update molecule count based on the reaction occurred. 

Calculate aj =  hj. Kj for each reaction j and a0 =
∑ aj , hj is the number of distinct combinations of 
individual reactants for reaction j 

 

Generate two random numbers (r1, r2) from a 
uniform distribution on (0; 1). Determine the next 
reaction to occur such that 

 ∑ aj−1 < r2. a0 ≤ ∑ aj And time for that reaction τ =
� 1
a0
� . ln( 1

r1
) 

Yes 

NO 

The simulation is completed  

Figure 2.  Schematic of the direct method 

If # of   Rm =0 OR t has been exceeded 

t = t + τ 
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system. Each node performs the same task and is controlled and scheduled by software (Dean and Ghemawat 
2008, Lämmel 2008). A single multi-processor computer is able to employ multiple threads or processors to 
work in a parallel manner on the same machine (Dean and Ghemawat 2010). A computer cluster is composed 
of a set of loosely, or tightly, connected computers on the same local network and using the same hardware. 
A computer grid is also a set of connected computers but these computers are not only shared over 
geographically distributed systems, but also use heterogeneous hardware (Mann, Trasatti et al. 2003).  

Implementing MRM using a single machine is less complex than using a cluster or a grid because the input 
data is split only among worker threads that all reside on the same machine and typically use the same data 
store (Lattanzi, Moseley et al. 2011). Additional complexity is added into the process when multiple 
computers are used to run MRM because the input data have to be split among all computers within the 
cluster using a master node (McKenna, Hanna et al. 2010). Another challenge for using a cluster is that 
different physical memories on different machines have to be used to save data from the reduction method 
(Lv, Hu et al. 2010). A cluster is needed to implement MRM especially when the input and output data are 
too large to fit into the memory of a single computer (Ferreira Cordeiro, Traina Junior et al. 2011). 

3.2 GSSA/MRM 

The GSSA and its variants advance the state of the system under study by executing one reaction at a time. In 
cases where the system involves a large number of reactions, its simulation with these methods becomes 
prohibitively expensive. Here, we propose a novel variant of the direct method of GSSA to address its 
computational intractability by using MRM on a single multiprocessor computer to advance the system by 
several reactions. Specifically, a single run is targeted to be accelerated by advancing the system through 
several reactions in each time step.  MRM/GSSA is divided into four steps.  These steps are initialization, 
election (mapping), selection (reduction), and updating the system as shown in Figure 1. The pseudo code of 
these steps is summarized in Table 1. 

4. CASE STUDY: LINK BETWEEN GSK3 AND P53 IN ALZHEIMER' DISEASE  

Alzheimer's disease (AD) is mainly characterized by the presence of two proteins and their aggregation 
relationship. These proteins are amyloid-beta (Aβ) and micro-tubular binding protein (tau) accompanied by 
glial cell activation (Nicoll, Wilkinson et al. 2003, Nicoll, Barton et al. 2006, Boche, Denham et al. 2010, 
Maarouf, Daugs et al. 2010, Zotova, Holmes et al. 2011). 

Recently it has been suggested that glycogen synthase kinase-3β (GSK3β) is implicated in familial forms of 
AD. An increase in tau hyper-phosphorylation is indirectly caused by p53. Evidence has also suggested that 
GSK3β and p53 interact and this interaction has the responsibility to increase the activity of both proteins. 
Under normal cellular conditions as shown in Figure 3 (A), the level of p53 is kept low due to the binding 
with Mdm2 that targets p53 for proteasomal degradation. When cells are stressed, p53 is stabilized and may 
then interact with GSK3β. The interaction between p53 and GSK3β is suggested to be an important 
contributor to cellular outcomes (Proctor and Gray 2010).  Proctor and Gray, (2010) proposed a stochastic 
simulation model to test this hypothesis. The stochastic model demonstrates that an increase in not only 
levels of Aβ plaques, but also levels of tau tangles is caused by increasing the activity of GSK3β. Therefore, 
Proctor and Gray (2010) in their model focused on the link between p53 and GSK3β and they suggested that 
modulating this interaction could be a useful therapeutic strategy.   

5.  RESULTS FROM TESTING AND VALIDATION OF GSSA/MRM 

In order to not only test, but also verify the quality of MRM/GSSA, it is used to model the link between 
GSk3 and p53 in AD. We show that GSSA/MRM is a useful way to model biochemical systems when the 
number of reactions with propensity functions (𝑎𝑎𝑗𝑗) greater than zero is quite large. This is because 
GSSA/MRM employs a large number of threads to run GSSA. Thus, the chance for multiple reactions to be 
eligible for the selection step is high. Therefore, the main difference between GSSA and GSSA/MRM is that 
GSSA advances the state of the system by executing one reaction at a time while MRM/GSSA advances the 
system state by several reactions within a calculated time step, τ. Therefore, it is mainly used to accelerate a 
single run of GSSA and explicitly include the concurrency feature. GSSA/MRM is compared with GSSA 
from three angles – results, performance in term of CPU time and representation of stochasticity.  
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Table 1. The pseudo code of GSSA/MRM 

A- Initialization step   Transfer time steps for X reactions 
Election_time_step_array to the 
Selection_time_step_array 
} 

• If some reaction indexes are the same (for 
example, 𝐿𝐿 threads return the same index,
𝑗𝑗):  

 Call Function 1() for all different 
reactions 
For same reactions  
 Check the number of molecules for 

each species in reaction 𝑗𝑗 
 If the number of molecules for each 

participant species in reaction 𝑗𝑗 is 
enough to run reaction 𝑗𝑗 𝐿𝐿 times, 
reaction 𝑗𝑗 is eligible for the selection 
step 𝐿𝐿 times. So, 

 Transfer the  𝐿𝐿 reactions from the 
Election_index_array to the 
Selection_index_array 

 Transfer the 𝐿𝐿 time steps for reaction 𝑗𝑗 
from Election_time_step_array to the 
Selection_time_step_array 
  Else 
 Set 𝑥𝑥= the number of molecules for a 

species in reaction 𝑗𝑗 that has the 
smallest number of molecules. 

 Number of eligible 𝑗𝑗 for the selection 
step =  𝐿𝐿 − 𝑥𝑥 

 Select indexes of 𝑗𝑗 that have a large 
time step.  

 Update the Selection_index_array. 
 Update the 

Selection_time_step_array. 

1- Create a thread pool that contains 𝑇𝑇 number of 
threads,  

𝑻𝑻 = #  𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐫𝐫𝐫𝐫 𝐫𝐫𝐭𝐭𝐫𝐫 𝐫𝐫𝐬𝐬𝐫𝐫𝐫𝐫𝐫𝐫𝐬𝐬 
The number of threads in the thread pool 
is set to be equal to the number of 
reactions for two reasons.  

• All reactions in the system might have the 
ability to fire together. 

• Creating and terminating threads as needed 
is an expensive process in terms of time.    

2- Initialize the biochemical system 
3- Create arrays Election_index_array and 

Election_time_step_array to store the indexes 
and time steps, respectively that are returned 
from threads.   

4- Create Selection_index_array and 
Selection_time_step_array to store the indexes 
and time steps, respectively, after the selection 
step.     
B- Election step 

1. Elect M threads to run GSSA  
𝑴𝑴 = # 𝒇𝒇𝒇𝒇 𝒕𝒕𝒕𝒕𝒕𝒕𝒓𝒓𝒕𝒕𝒊𝒊𝒇𝒇𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕𝒕𝒕𝒉𝒉𝒕𝒕 𝒕𝒕𝒋𝒋 > 𝟎𝟎  

2. Each thread returns an index and a time step.   
3. Store the index of the next M reactions to 

occur in the Election_index_array and M time 
steps in the Election_time_step_array. 

C- Selection step  
 Test the eligibility of each reaction as 

follows: 
If all reaction indexes in the 
Election_index_array are different 
Function 1() 
{ 

 Check reactions that needs same 
molecules ( F reactions) 

If molecules are enough for F reactions to 
be executed.  

  All reactions in the Election_index_array 
are eligible for the selection step. 

 Transfer time steps for all different 
indexes from the 
Election_time_step_array to the 
Selection_time_step_array 

Else 
 Depending on the number of molecules, # 

reactions X reactions that could be 
executed are determined and reactions 
with maximum are selected.  

 X reactions are eligible for the selection 
step. 

D- Updating the system 
 

 Update the number of molecules 
Update the molecules in the number of 
species in all the next reactions to occur 
in the Selection_index_array. 

 Update the time of the system 
If Selection_time_step_array length =1 
t = t + Selection_time_step_array[0]  
If Selection_time_step_array length =2 
t = t + Selection_time_step_array[0] +
 Selection_time_step_array[1]   
If Selection_time_step_array length > 2 
 t = t + The largest three time steps   

in the Selection_time_step_array 
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Figure 3. GSK3/p53 hypothesis for AD. (A) Binding relationship between p53 and Mdm2 under normal 
conditions targets p53 for proteasomal degradation. (B) Under stressed conditions, p53 is stabilized and it 

forms complex with GSK3β. This not only increases the production of Aβ, but also hyper phosphorylates tau. 

5.1 Results 

Figures 4 and 5, respectively, demonstrate the behaviour of p53 from four runs of GSSA and GSSA/MRM. 
GSSA/MRM shows good representation of the behavior of p53 comparable to GSSA even though it 
advances the system by several reactions.  

    

Figure 4. The behaviour of p53 from four runs of GSSA. 

    
Figure 5. The behaviour of p53 from four runs of GSSA/MRM. GSSA/MRM shows good representation of 

the behavior of p53 comparable to GSSA even though it advances the system by several reactions. 

5.2 Representation of stochasticity 

MRM/GSSA showed ability to represent the stochasticity feature comparable to GSSA. Figure 6 shows the 
average behaviour of p53 from 200 runs of GSSA (red line), MRM/GSSA (blue line). At a random point (the 
vertical line in the Figure), the mean value of p53 from GSSA and GSSA/MRM are 213.5133, 178.0093. To 
check how each approach represents stochasticity, the standard deviation (σ) was calculated at that random 
point to assess how p53 values are spread around the mean µ for both approaches. GSSA/MRM is 
comparable to GSSA in terms of capturing a high level of stochasticity as indicated by their respective 
standard deviations of 59.9 and 62.3. 

5.3 Performance (CPU time) 

In MRM/GSSA, all reaction channels Rj with aj(x) > 0  that are eligible for the selected step are saved in a 
list. The system state is advanced by executing all reactions in the list where each reaction is executed just 
once. GSSA advances the system by only one reaction at each time step while GSSA/MRM advances the 
system by several reactions. Therefore, it is expected that GSSA/MRM will be more time-efficient. GSSA 
and GSSA/MRM were used to run the AD model involving the relationship between GSk3 and p53 to 
produce just one realization of the system 10 times.  As shown in Table 2, GSSA/MRM is much faster than 
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GSSA for all 10 runs. It is clearly seen that GSSA/MRM takes less than half the time required by GSSA. 
Thus, GSSA/MRM shows good performance in term of processing time compared to GSSA. 

 
Figure 6. Average of 200 runs for p53 from GSSA and GSSA/MRM. GSSA advances the system by only 
one reaction at each time step while GSSA/MRM advances the system by several reactions. GSSA/MRM 
method shows good representation of the behaviour of p53 comparable to GSSA although it advances the 
system by several reactions. At a random point (the vertical line), we compare GSSA/MRM in terms of 

stochasticity with GSSA and results revealed a close agreement. 

Table 2. CPU time for GSSA and GSSA/MRM. The average CPU time for MRM/GSSA is 
less than half that for the GSSA 

 
# GSSA MRM/GSSA 

1 9m.23s.233ms 3m.44s.212ms 

2 8m.58s.723ms 4m.31s.777ms 

3 9m.02s.641ms 2m.59s.854ms 

4 9m.41s.234ms 3m.45s.12ms 

5 7m.32s.621ms 4m.43s.13ms 

6 7m.1s.223ms 3m.04s.04ms 

7 8m.22s.431ms 2m.56s.821ms 

8 7m.32s.143ms 3m.34s.523ms 

9 9m.43s.721ms 3m.04s.241ms 

10 8m.22s.245ms 5m.10s.221ms 

AVG 8m.27s.403ms 3m.33s.367ms 

6. SUMMARY 

In summary, our proposed method produces the behavior of a biochemical system comparable to 
GSSA in terms of accuracy of representation and stochasticity.  Importantly, as expected, 
GSSA/MRM takes less than half the time required by GSSA. Therefore, GSSA/MRM is able to 
replace GSSA; it is particularly beneficial when the biochemical system contains a very large 
number of reactions.  

7. FUTURE DIRECTION 

Modelling a large biochemical system (immunization in AD (Proctor, Boche et al. 2013)) using GSSA/MRM 
is the first future direction of this research. The second direction of this research is testing and validating 
GSSA/MRM results, performance, representation of stochasticity and reliability by comparing it with not 
only GSSA, but also the modified tau leap method classified to be one of the fastest versions of GSSA. 
Analysis more in detail to connect parallelism in the propose approach to parallelism in nature.        
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