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Abstract 20 

The accumulation of Cd in soils worldwide has increased the demand for methods to reduce 21 

the metal’s plant bioavailability. Organic matter rich soil amendments have been shown to be 22 

effective in achieving this. However, it is not known how long these amendments can retain 23 

the Cd, and whether dissolved organic matter (DOM) released from them can enhance the 24 

metal’s mobility in the environment. In this study we sought to test the Cd binding capacity 25 

of various organic soil amendments, and evaluate differences in characteristics of the DOM 26 

released to see if they can explain the lability of the Cd-DOM complexes. We collected ten 27 

organic soil amendments from around New Zealand: five different composts, biosolids from 28 

two sources, two types of peat and spent coffee grounds. We characterised the amendments’ 29 

elemental composition and their ability to bind the Cd. We then selected two composts and 30 

two peats for further tests, where we measured the sorption of Ni or Zn by the amendments. 31 

We analysed the quality of the extracted DOM from the four amendments using 3D 32 

Excitation Emission Matrix analysis, and tested the lability of the metal-DOM complexes 33 

using an adapted diffusive gradients in thin-films (DGT) method. We found that composts 34 

bound the most Cd and that the emergent Cd-DOM complexes were less labile than those 35 

from the peats. Ni-DOM complexes were the least labile. The aromaticity of the extracted 36 

DOM appears to be an important factor in determining the lability of Ni complexes, but less 37 

so for Zn and Cd.   38 
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1. Introduction  39 

Cadmium is a non-essential trace metal that has accumulated in soils worldwide (Kabata-40 

Pendias, 2007). Its relatively high availability for plant uptake allows it to be transported 41 

from soils, through the food chain and eventually pose a potential risk to humans and animals 42 

(Kabata-Pendias, 2007; Gall et al., 2015). The accumulation of Cd in soils has been linked to 43 

sustained application of phosphorous fertilizers, where it is a naturally occurring contaminant 44 

(Loganathan et al., 2003; Kelliher et al., 2017; Salmanzadeh et al., 2017). Cadmium can also 45 

enter soils through road runoff, industrial emissions and land application of biosolids and 46 

effluents  (Kabata-Pendias, 2007). There are no low-cost means of removing Cd from soils, 47 

and consequently, there has been an increasing focus on options for reducing the 48 

bioavailability of Cd instead (e.g. Simmler et al. (2013a); Al Mamun et al. (2016)).  49 

Various types of soil amendments have been considered as potential means by which to 50 

reduce the uptake of Cd by plants (Bolan and Duraisamy, 2003; Valentinuzzi et al., 2015; Al 51 

Mamun et al., 2017; Shaheen et al., 2017). The ideal amendments should reduce Cd uptake, 52 

but not impact on the availability of important macro or micronutrients, such as P, Fe or Zn. 53 

(Beesley and Marmiroli, 2011; Valentinuzzi et al., 2015), or introduce other contaminants 54 

(Beesley et al., 2011; Paramashivam et al., 2017). Moreover, they should be readily available 55 

and affordable to allow for their widespread use (Al Mamun et al., 2016).  56 

Recent work has shown the potential for different types of organic amendments to bind soil 57 

Cd in agricultural soils (Simmler et al., 2013b; Al Mamun et al., 2017), as well as other trace 58 

metals (e.g. Pb, Zn, As and Cu) in industrial contaminated soils (Bolan et al., 2014; Abad-59 

Valle et al., 2017; Van Poucke et al., 2017). The ability for different organic amendments to 60 

influence trace metal bioavailability is informed by the characteristics of the organic matter 61 
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that is employed (e.g. pH, CEC, humification degree) and the metal of concern (e.g. affinity 62 

for solid and solution phase complexing ligands), as well as the soil type (Albiach et al., 63 

2000; Bolan et al., 2014).  64 

Zinc and nickel can accumulate in soils through a variety of means, including: atmospheric 65 

deposition and application of sewage sludge, animal manure and phosphate fertilizers. Both 66 

metals are essential to biota at low concentrations (Gonnelli and Renella, 2013; Mertens and 67 

Smolders, 2013). Moreover, Zn deficiency in plants has been linked to increased plant uptake 68 

of soil Cd (Chaney, 2010). On the other hand, elevated concentrations of Ni and Zn can also 69 

have deleterious effects on biota throughout terrestrial food chains (Gall et al., 2015). Both of 70 

these metals are intermediate Lewis acids, and are therefore expected to show a greater 71 

affinity to intermediate and hard Lewis acids (e.g. carboxylic and phenolic functional groups) 72 

than Cd, which is a soft Lewis acid. Cadmium is expected to bind strongly to soft Lewis 73 

bases in organic matter (e.g. reduced sulphur functional groups). By comparing the binding of 74 

these metals by a range of organic amendments, we can discover which amendments are 75 

suited for optimal management of soils used for food production, and gain insight into the 76 

chemical characteristics of the amendments that allow them to best serve this function. This 77 

comparison can also be extended to examine the potential mobilization of these metals from 78 

the amended soils. 79 

Organic matter-based amendments that have been used to immobilize contaminants in soils 80 

may be destabilized, resulting in the release of any associated trace metals back into the soil 81 

(Grybos et al., 2007; Huang et al., 2016). Moreover, several studies have shown that 82 

dissolved organic matter (DOM) can induce metal mobilization through the formation of 83 

metal-DOM complexes (see: Bolan et al. (2011) and references therein). Although DOM 84 

represents a labile energy source for soil microbes, the readily mineralizable fraction has been 85 
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found to be often less than 40% of the total  (Kalbitz et al., 2000; Haynes, 2005). This makes 86 

it a potentially powerful vector for mobilizing otherwise immobile trace metals in the 87 

environment and raises the question of what potential risks may be associated with metal-88 

DOM complexes that are transported from contaminated soils. 89 

We aimed to determine the trace metal (Cd, Ni and Zn) sorption capacities of different types 90 

of organic matter, with a particular focus on Cd. We also sought to elucidate whether the 91 

DOM released from these substances show different qualities for enabling the transport and 92 

subsequent release of these metals for biological uptake. We used a combination of targeted 93 

chemical analyses of soil organic matter stability and capacity to bind trace metals, 94 

spectroscopic analyses of DOM quality and novel measurements of trace metal complex 95 

lability to achieve these aims. 96 

2. Material and Methods 97 

2.1. Sample collection and pre-treatment 98 

Ten different types of solid organic matter-rich substrates that are used as soil amendments, 99 

either by themselves, or as constituent parts, were selected for analysis. These were two types 100 

of peat, used coffee grounds, two types of biosolids and five different composts. Forthwith, 101 

these will be referred to as “amendments” for simplicity. The two types of peat were sampled 102 

from the Kopuatai ombrotrophic peat dome on the North Island of New Zealand, 103 

37°24'45.79"S, 175°33'23.38"E) (Sample ID: OP) and a peat formation on in the Canterbury 104 

region of NZ’s South Island (43°40'38.22"S, 172°26'52.03"E) (Sample ID: EP). The peat 105 

samples underwent an initial screening upon collection using a 10 mm mesh to discard stones 106 

and larger plant material. The coffee grounds (Sample ID: CFF) were collected from ten 107 

different coffee shops around Christchurch, NZ. The biosolids were collected from two 108 
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locations: the Kaikōura Regional Treatment Works in Kaikōura, NZ, (Sample ID: KBS) and 109 

Christchurch Wastewater Treatment Plant, Christchurch, NZ (Sample ID: CBS). KBS had 110 

undergone an initial treatment of sedimentation and anaerobic digestion in settlement ponds. 111 

CBS was thermally dried to <10% water content to eliminate pathogens and facilitate 112 

transport. Both sets of biosolids samples were provided by the plant operators. The composts 113 

were obtained from three locations. Three types of compost were purchased from Parkhouse 114 

Garden Supplies Ltd. (Christchurch, NZ). The company was only willing to provide general 115 

descriptions of their compositions, which were: (1) compost derived from commercial 116 

mushroom growing waste (Sample ID: PH), (2) fish waste and ocean botanicals (Sample ID: 117 

PHW), and (3) pig manure and sawdust (Sample ID: PHP); green waste is not used in any of 118 

these composts. Compost manufactured by Living Earth Ltd. (Sample ID: LE) is made from 119 

municipal green waste (includes: food and garden waste) collected as part of Christchurch 120 

city’s kerbside waste collection program. The fifth type of compost was purchased from 121 

Oderings Nurseries Christchurch Ltd. (Sample ID: OD), the raw materials used to make this 122 

are unknown. All samples were air-dried, manually ground and sieved using a nylon sieve (2 123 

mm mesh).  124 

2.2. Sample Analysis 125 

All sample analyses and dilutions used high-purity water (HPW, 18.2 MΩ resistivity; Heal 126 

Force® SMART Series, SPW Ultra-pure Water system, Model-PWUV). pH (Mettler Toledo 127 

Seven Easy) and conductivity (Mettler Toledo Five Easy) of the sieved samples were 128 

determined in triplicate using a 1:10 solid:water ratio (w./vol.) and 24 h equilibration time 129 

(Blakemore et al., 1987). Total carbon and nitrogen content of the amendments was measured 130 

using a Vario-Max CN Analyzer (Elementar Analysensysteme GmbH, Germany). Cold and 131 

hot water extractable carbon (CWEC and HWEC, respectively) were measured in all of the 132 
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amendments following the method described by Ghani et al. (2003). Briefly, 3g of each 133 

amendment was sequentially extracted, first with 30 mL HPW at ambient temperature for 30 134 

mins, after which the extractant was separated from the sample, filtered (0.45 µm pore 135 

diameter cellulose acetate filter) and analysed for total carbon (CWEC) using a Shimadzu 136 

TOC-VCSH analyzer (Shimadzu Corporation, Kyoto, Japan). The remaining sample was 137 

then extracted with a further 30mL of HPW at 80°C for 16 hours, after which the extractant 138 

was separated from the sample, filtered as before and analysed for total carbon (HWEC) as 139 

before. 140 

Cation exchange capacity (CEC) of the amendments was measured using the silver thiourea 141 

(AgTU) method (Blakemore et al., 1987). Briefly, 0.70 g of amendment was equilibrated 142 

with 35 mL of 0.01 M AgTU in an end-over-end shaker for 16 h. Samples were then 143 

centrifuged at 2000 rpm for 10 min, after which the supernatant was filtered through a 144 

Whatman no. 40 filter and analysed using Inductively Coupled Plasma-Optical Emission 145 

Spectrometry (ICP-OES) (Varian 720 ES - USA). 146 

Pseudo-total elemental content of the amendments was determined by microwave digestion 147 

(MARSXPRESS, CEM Corp.) of 0.5 g of sample in 8 mL of Aristar nitric acid (±69%). The 148 

digest was then filtered through Whatman no. 52 filter paper (pore size: 7 µm) and diluted 149 

with HPW to a volume of 25 mL (Kovács et al., 2000). Certified Reference Materials for soil 150 

and plant matter (International Soil analytical Exchange- ISE 921, and International Plant 151 

analytical Exchange IPE 100; Wageningen University, The Netherlands) were also analysed 152 

to confirm acceptable recovery of the analytes. The digests were analysed for Cd, P, S, Ca, 153 

Mg, K, Cd, Zn, Ni, Cu, Pb, Al and Cr using ICP-OES and showed acceptable recoveries for 154 

the analytes. The physical and chemical properties of the amendments are shown in Table 1. 155 
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The different amendments’ capacity to sorb Cd was analysed using previously developed 156 

sorption experiments using spiked solutions of 0.05 M of Ca(NO3)2  (Simmler et al., 2013b; 157 

Al Mamun et al., 2016). Briefly, 5 g batches of each amendment, except OP, were mixed 158 

with 30 mL of either 0.05 M Ca(NO3)2 (Sigma-Aldrich) extraction solution, or extraction 159 

solution that had been spiked to 2 mg L-1 (18 µM) of Cd (salt: Cd(NO3)2·4H2O, BDH, 160 

AnalaR). The mass of OP used was reduced to 2 g to ensure a sufficient separation between 161 

solid and solution phases. A vortex mixer was used to agitate the mixtures for 3 min, after 162 

which the pHs of replicate sets of each mixture were adjusted to 4.5.5, 6.5 (±0.02) using 2 M 163 

HNO3 (BDH Aristar) or 2 M NaOH (BDH AnalaR). The mixtures were then placed in an 164 

end-over-end shaker for 2 h, after which they were centrifuged at 3000 rpm for 20 min. The 165 

supernatant was then filtered through Whatman no. 52 filter paper and analysed for the same 166 

analytes as the digests using ICP-OES.  167 

The metal adsorption coefficients (Kd) for the different soil amendments were determined at 168 

each pH as described by Simmler et al. (2013b) (Eq. 1): 169 

( ) ( )1

1
1

Metal sorbed by substrate  
 

Metal in solution (  )d

mg kg
K L kg

mg L

−
−

−=   170 

( )( ) ( )
( )

spike eq b

eq b

VC C C m
C C

− − ×
=

−
    (Eq. 1) 171 

Where Kd describes the solid-solution phase partitioning of the analyte of interest, Cspike is the 172 

concentration of metal in the spike solution, Ceq is the concentration in the spike solution 173 

after equilibration with the amendment, and Cb is the metal concentration in the unspiked 174 

extractant solution after equilibration. The volume of extractant (0.03 L) and mass of 175 
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amendment used (0.002 or 0.005 kg) were V and m, respectively. Extraction samples Ceq and 176 

Cb were analysed in triplicate for each amendment-pH combination. 177 

The results of the sorption experiment were used to select four amendments for further 178 

analysis. These were the two peat samples (OP and EP), Parkhouse mushroom-derived 179 

compost and Living Earth municipal composts (PH and LE).  180 

A further sorption experiment using 0.05 M Ca(NO3)2 spiked with Cd, Ni and Zn (salts used: 181 

Cd(NO3)2·4H2O, Ni(NO3)2·6H2O, and Zn(NO3)2·6H2O (BDH, AnalaR)) was carried out on 182 

these amendments at pH 5.5 as before. The molar concentrations of the metals in the spike 183 

solution were the same as those of Cd (18 µM) in the previous sorption experiment. The 184 

extracted solutions from the four amendments were divided into subsets. Three subsets were 185 

allocated for DGT analysis (see below). The other subsets were analysed in triplicate for 186 

dissolved Cl-, SO4
2-, NO3

- and NH4
+ using a Shimadzu Ion Chromatograph (Thermo 187 

Scientific, DIONEX, ICS-2100), total organic carbon (measured as non-purgeable organic 188 

carbon, NPOC) and dissolved inorganic carbon (DIC) using the Shimadzu TOC-VCSH 189 

analyser. Differences between the mean Kd values measured for Ni, Cd and Zn in the four 190 

amendments were tested by ANOVA with Tukey’s post-hoc test using Minitab® 17 (Minitab 191 

Inc, State College, Pennsylvania, USA) at the 0.05 level of significance. 192 

2.3. Dissolved Organic Matter Quality 193 

The Ultra-Violet Absorbance of the dissolved organic matter in the extracts was measured at 194 

254, 270 and 350 nm using a UV-VIS spectrophotometer (UVmini-1240, SHIMADZU) 195 

(Carter et al., 2012). The specific UV-absorbance for the dissolved organic matter (DOM) at 196 

the set wavelengths was calculated using Equation 2. 197 
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[ ]
1000A

SUVA
b DOC

λ
λ

×=
×

      (Eq. 2.) 198 

Where, λ is the wavelength (nm) at which the absorbance (Aλ) is measured, b is the path 199 

length through quartz cell (cm) and [DOC] is the dissolved organic carbon concentration (mg 200 

L-1). 201 

Fluorescence excitation-emission matrices (EEMs) for organic matter extractions were 202 

obtained by measuring fluorescence emission intensity across excitation wavelengths ranging 203 

from 240-600 nm and emission wavelengths ranging from 245-820 nm using a Horiba 204 

Aqualog fluorescence spectrophotometer (Kyoto, Japan). All sample fluorescence intensities 205 

were normalized using the pure water Raman peak intensity (350 nm excitation, 398 nm 206 

emission) at the same analytical settings as the sample. Parallel factor analysis (PARAFAC) 207 

for EEM results was conducted to identify statistically independent components within the  208 

EEM set, and their relative contributions to the sample EEMs (Fellman et al., 2010). 209 

PARAFAC analysis was carried out in MATLAB using the N-way toolbox and DOMFlour 210 

toolbox for MATLAB (Stedmon and Bro, 2008) following sample screening for outliers. The 211 

optimal number of components was selected in order to minimise the residual sum of squares 212 

and maximise model core consistency (Murphy et al., 2013). On the basis of these criteria a 213 

two-component model was adopted.        214 

2.4. Diffusive gradients in thin-films analysis 215 

The lability of Cd, Ni and Zn in the extracts obtained from the sorption experiments on the 216 

four different amendments was analysed by adapting the method used by Amery et al. (2010). 217 

A 1 mL gel layer containing 1 g Chelex-100 cation binding resin (200-400 mesh, Bio-Rad) in 218 

an agarose gel matrix (1.5%)(Total Lab Systems, molecular grade) was cast onto the bottom 219 
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of a flat-base 30 mL sample vials (1.2 cm internal radius); henceforth, this is referred to as 220 

the binding layer. A 1.36 cm3 agarose-only (1.5%) layer was cast on top of this: the diffusive 221 

layer forthwith. During casting it was observed that there was a small amount of even 222 

adhesion to the sides of the SV-DGT, resulting in a slightly concave diffusion layer surface. 223 

The vial containing the diffusion and binding layers was placed on a lab shaker with HPW for 224 

24 h, during which the water was changed three times. The gels were then conditioned with 225 

0.01 M NaNO3 for at least 8 h before deployment. The use of diffusive and binding layers 226 

within a confined test vessel allowed the application of the underlying principles of the 227 

diffusive gradients in thin-films (DGT) technique, but in relatively small volumes; forthwith, 228 

these devices are referred to as small volume-DGT (SV-DGT) devices.  229 

2.4.1. Theory of SV-DGT  230 

When a simple solution containing trace metals, existing mainly as their hydrated (free) ion 231 

species, is deployed in an SV-DGT device, the metal ions diffuse through the diffusive layer 232 

and towards the binding layer, where they are rapidly bound by the chelating resin. Within 233 

approx. 60 minutes a linear concentration gradient is formed within the diffusive layer and a 234 

diffusive flux progressively depletes trace metal from the solution. When the diffusive flux 235 

into the binding layer is greater than the diffusive flux from the solution, a diffusive boundary 236 

layer (DBL) emerges perpendicular to diffusive layer. Using Fick’s first law of diffusion, the 237 

flux, J (mol cm-2 s-1), of metal from the solution at a given time (t) can be calculated using 238 

Equation 2: 239 

( ) ( ) ,0
DL w

i
DL DBL

D D
J t C t t T

δ δ
 

= + < < 
 

     (Eq. 2) 240 
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where, Ci is the trace metal concentration at the edge of the DBL, DDL and Dw are the 241 

diffusion coefficients of the metal in the diffusive layer and the solution, respectively, and 242 

δDL and δDBL are the length of the diffusive pathway through the diffusive layer and the DBL 243 

respectively. 244 

In conventional DGT solution deployments, the volume of solution is large enough to allow 245 

an assumption to be made that the solute concentration in the solution does not change 246 

significantly during the deployment. Due to the small volume used here, this does not apply. 247 

If an assumption is made that the rate of diffusion of solute is the same in the diffusion layer 248 

and the surrounding solution, and that the flux of trace metal is directly proportional to the 249 

concentration at the edge of the DBL, then the change in the solution concentration can be 250 

modelled by including Eq. 2 into the expression for first order decay (Equation 3). 251 

( )

0

DL

DL DBL sol

D A
t

V

tC C e
δ δ

 ×− ×  + × = ×    (Eq. 3) 252 

Where, C0 and Ct are the metal concentrations in a solution with a known volume (Vsol) at the 253 

start of the deployment and at the end of the deployment, respectively, and the cross-sectional 254 

area of the SV-DGT device is given by A. Given the highly confined nature of the SV-DGT 255 

device, and the slightly concave gel-solution interface, accurate determination of δDL and δDBL 256 

is challenging. However, when Ct and C0 are known, Equation 3 can be solved for the sum of 257 

δDL + δDBL. The sum of these two terms is referred to forthwith as the apparent diffusion layer 258 

(ADL, δA), which is an operationally-defined lumped parameter that integrates differences in 259 

rates of diffusion between the DBL and the diffusion layer, as well as the average length of 260 

the diffusive path between the bulk solution in the SV-DGT and the resin layer-diffusion 261 

layer interface during the deployment.  262 
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When partially labile trace metal complexes are present, the depletion of the free metal ions 263 

perturbs the equilibrium between the free metal ion and the metal complexes, and the 264 

complexes begin to dissociate to re-establish the equilibrium. Under these conditions, the rate 265 

at which the trace metal concentration in the test solution is depleted is determined by:  266 

(1) the concentration of free metal ions in the solution 267 

(2) the length of the diffusive pathway between the solution and the binding layer, under 268 

well stirred conditions this is closely approximated by the thickness of the diffusive layer 269 

(3) the diffusive characteristics of the metal ion species present in the solution 270 

(4) the concentrations of the metal-ligand complexes present and the rates at which they 271 

diffuse and dissociate. 272 

Under conditions where the availability of trace metal to be bound by the resin layer is 273 

limited by the rate at which its complexed species can dissociate, the rate of trace metal 274 

depletion is reduced. In equation 3, this can be represented by increasing δA, given that all 275 

other variables can be constrained by careful experimental design and previously established 276 

diffusion coefficients in the agarose gels used here (Zhang and Davison, 1999; Wang et al., 277 

2016). This concept is analogous to the ‘apparent diffusive boundary layer thickness’ 278 

developed by Warnken et al. (2007). By comparing δA,C measured in a control solution, 279 

where most of the metal exists as free metal ions, against δA,T that has been determined in test 280 

solutions deployed under identical deployment conditions, specifically: the same SV-DGT 281 

device physical characteristics, temperature, stirring rates and deployment time, it is possible 282 

to gain a semi-quantitative estimate of the differences in lability of the dissolved complexes 283 

in the test solutions. By using the diffusion coefficient of the free-metal ion in calculating 284 

δA,T, the kinetic limitation imposed by the partially labile complex can be related to the metal 285 

availability in the well-defined control solution. 286 
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In test solutions where the complexes are highly labile and/or the majority of the metals exist 287 

as free metal ion species, the ratio δA,T/δA,C will be close to unity. In solutions where the 288 

complexes are not labile within the timescale of the deployment, the complexes can diffuse 289 

into the resin layer (Lehto et al., 2006; Shafaei Arvajeh et al., 2013; Galceran and Puy, 2015). 290 

This results in a ‘dilution’ effect where metal concentration is still depleted in the test 291 

solution. This provides a theoretical maximum for δA,T/δA,C  which is metal-specific and 292 

determined by the relative volumes of the deployment solution and the total volume within 293 

the SV-DGT where the complex can dissociate (i.e. the sum of the resin layer, diffusion layer 294 

and deployment solution volumes). For the SV-DGT devices used to analyse Cd, Ni and Zn 295 

here, where the ratio of Vsol to total available volume is 0.81, therefore the theoretical 296 

maximum values of δA,T/δA,C are 4.13 (Cd), 4.17 (Ni) and 4.26 (Zn). The differences between 297 

the metals are determined by their respective diffusion coefficients in agarose. 298 

 299 

2.4.2. SV-DGT measurements 300 

To enable more direct comparison of the specific ligands present in the different organic 301 

matter extracts, the extracts from the sorption experiments carried out for Cd, Ni and Zn at 302 

pH 5.5 were modified to achieve matching metal:DOC molar ratios in the solutions. 303 

Cadmium, Ni and Zn were added to their respective extract solutions to match the highest 304 

metal:DOC molar ratio in the extract solutions (Zn in the EP extract solution) (Table 2). The 305 

conductivities of the extract solutions were measured and adjusted to 10.5 mS·cm (± 2.0) 306 

using NaNO3 to approximate a consistent ionic strength between solutions, while reducing the 307 

possible time within which microbial degradation might influence the DOM. The extracts 308 

were then equilibrated at 5 °C for 24 h, after which they were brought to room temperature 309 
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and deployed in SV-DGT devices placed on a laboratory shaker for 24 h. A subsample of 310 

each test solution was then collected and analysed for Cd, Ni and Zn using ICP-OES.  311 

The SV-DGT probes were also used to analyse the lability of Cd, Ni and Zn from complexes 312 

formed from two synthetic model ligands, nitrilotriacetic acid (NTA, Sigma-Aldrich) and 313 

ethylenediaminetetraacetic acid (EDTA, Titriplex III, MERCK). These were made in 0.05 M 314 

Ca(NO3)2 solutions and adjusted to pH 5.5, as before. The ligand concentrations used here 315 

were chosen to achieve consistent metal:ligand molar ratios (Table 2). The model ligand test 316 

solutions were allowed to equilibrate for 24 h before deployment. Each extract and model 317 

ligand solution was analysed in triplicate. 318 

 319 

2.5. Speciation modelling 320 

The speciation of the metals in the model ligand solutions was modelled using Visual 321 

MINTEQ ver. 3.1 (Gustafsson, 2016). The speciation in the organic matter extracts was 322 

estimated using the Windermere Humic Acid Model (WHAM) VII (Tipping et al., 2011). 323 

The proportion of DOM as fulvic acid (FA) in the peat extracts was assumed to be 25%, with 324 

the rest as humic acid (HA) (Tipping et al., 2003). Laborda et al. (2008) found that almost all 325 

of the DOM in compost extracts was FA at pH 5, given the slightly higher pH used in this 326 

work, the proportion of DOM as FA in the PH and LE extracts was set at 95%.  327 

 328 

  329 
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3. Results and Discussion 330 

3.1. Cadmium sorption capacity of the organic amendments. 331 

The results from the batch sorption experiments confirmed the previously observed high 332 

capacity of composts to sorb Cd (Figure 1.) (Ulmanu et al., 2003; Al Mamun et al., 2016). Al 333 

Mamun et al. (2016) suggested that the high CEC of certain composts could be an important 334 

feature of these amendments’ capacity to bind Cd. This is further supported by the results 335 

from these experiments. A regression analysis found that CEC correlated positively with the 336 

logKd measured in these amendments and explained 64% of the variation at pH 5.5 (p< 0.01, 337 

n = 10; not shown), which may explain why the compost derived from fish waste and ocean 338 

botanicals (PHW) did not appear to sorb Cd as well as the other composts. This can also be 339 

seen in KBS, CFF and OP. The contrasting abilities of CBS and KBS biosolids to sorb Cd 340 

may also be related to their CECs. Fard et al. (2011) showed a positive relationship between 341 

pH and Cd sorption capacity of biosolids and a similar pattern is seen here. The low pH KBS 342 

did not sorb much Cd at pH 4.5, while the Kd of CBS was over ten times higher than that of 343 

KBS at around pH 4.5; however, at pH 6.5 CBS’s Kd only increased ~20% from the Kd at pH 344 

4.5. On the other hand, the Kd of KBS increased twelve-fold across the same pH range, which 345 

suggests that Cd adsorption onto variable charge binding sites may be a significant 346 

component of the overall binding of Cd to KBS. These results suggest that careful pH 347 

management of biosolids amended soil is an important consideration when managing the 348 

trace metal uptake from those soils. This is especially important given the relatively high Cd 349 

concentrations in KBS (3 mg kg-1) and CBS (1 mg kg-1) (Table 1). 350 

Peat and coffee grounds are often used as a growth amendment in soil-less growth media, as 351 

a bulking agent in composts, and peat has been proposed as a potential medium for treating 352 
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wastewater (Brown et al., 2000; Barreto et al., 2007; Farrell and Jones, 2010), which 353 

informed the decision to their use them in this study. Despite the marked difference in their 354 

provenance, the two peat samples showed almost an identical capacity to sorb Cd, while the 355 

coffee grounds bound relatively little Cd. The two peats’ CECs are very similar, while CFF 356 

had the lowest CEC of the amendments considered and that is reflected in the amendments’ 357 

ability to bind Cd (Table 1). 358 

The two composts tested for Ni and Zn sorption bound more Cd than either of the two other 359 

metals, although the differences are only significant between Cd and Zn at pH 5.5 (p<0.05) 360 

(Figure 2.). Simmler et al. (2013b) suggested that reduced organic sulphur-containing 361 

functional groups (soft Lewis bases) in lignite enable it to bind Cd effectively. Al Mamun et 362 

al. (2016) subsequently proposed that these functional groups may also be important in 363 

allowing composts to reduce the dissolved Cd concentrations, and hence plant bioavailability 364 

of the metal. However, they also noted that the relatively high bioavailability of Zn in the 365 

compost-amended soils may have also affected the uptake of Cd by the plant. The stronger 366 

binding of Cd over Zn and Ni seen here provides further support for these both these theories. 367 

There are few significant differences in the peats’ capacity to sorb the different metals: their 368 

CECs are approximately a half those of the composts, which is reflected in differences in Kd 369 

values for each of the metals between the peats and the composts (Figure 2; Table 1).  370 

 371 

An important question regarding the use of organic amendments for managing the 372 

bioavailability of potentially hazardous trace metals in soils is the longevity of the effect, and 373 

the fate of the bound trace metals if the organic matter is degraded through microbial action. 374 

This is especially pertinent when considered in the context of predicted effects of forecasted 375 
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changes in global temperature and rainfall patterns on organic matter stability in soils (e.g. 376 

Puissant et al. (2017)). The cold and hot-water extraction methods sample different pools of 377 

carbon from the amendments. Previous studies have shown that the CWEC fraction consists 378 

mostly of hydrophilic carbon (e.g. amino sugars, carbohydrates and low molecular weight 379 

organic acids, polysaccharides and high molecular weight fulvic acids) (Haynes, 2005; Said-380 

Pullicino et al., 2007). The focus here is on the HWEC fraction, which has been associated 381 

with weakly adsorbed dissolved organic matter to mineral surfaces and humic acids, and has 382 

been used as a general indicator of the labile fraction of the organic carbon in soils (von 383 

Lützow et al., 2007). Out of the amendments considered here, the HWEC fraction of CBS 384 

was over twice as high as the next highest (PH) (Table 1) and between three to ten times 385 

higher than values measured in soils under different land uses (Ghani et al., 2003) . While the 386 

Kd of CBS was relatively high (~400 L kg-1 at pH 5.5, Figure 1) compared to most other 387 

amendments here, its high Cd concentration, combined with the apparent vulnerability to 388 

microbial degradation, could be seen as valid reasons for restricting its use as a soil 389 

amendment. The two peats (EP, OP) and the municipal and mushroom-derived composts (LE 390 

and PH) had the next highest HWEC fractions, which prompts the subsequent investigation 391 

into the lability of Cd, Ni and Zn associated with the DOM extracted from them by the 0.05 392 

M Ca(NO3)2 and the chemical characteristics of that DOM. 393 

 394 

3.2. Speciation and lability of cadmium, nickel and zinc in the organic matter 395 

extracts  396 

Geochemical modelling of the extracted solutions using WHAM suggested that over 99.4% 397 

of the total Cd, Ni and Zn was complexed by the DOM in all of the respective extracts (Table 398 
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2). This is considerably higher than seen in previous work when the WHAM model has been 399 

used to estimate trace metal speciation in soil extracts (Tipping et al., 2003; Cornu et al., 400 

2011; Ren et al., 2015). This is almost certainly due to the very low metal:DOC ratios in the 401 

extracts, driven mainly by the large amount of DOM extracted from the organic amendments.  402 

With this in mind, it is important to acknowledge that the lability and speciation estimates 403 

carried out here are artificial and unlikely to be directly representative of most soil 404 

environments, where the amount of soil organic matter than can equilibrate with porewater is 405 

considerably less, and a proportion of the DOM is likely to be mineralized rapidly and/or sorb 406 

to soil solid interfaces (Lehmann and Kleber, 2015). It does however provide an opportunity 407 

to estimate conservatively whether complexed metals might become available for biological 408 

uptake or a chemical reaction, following a change in equilibrium. Kinetic limitations have 409 

been reported previously for trace metal uptake by plants (Degryse et al., 2006; Custos et al., 410 

2014) and organisms native to sediments (Amirbahman et al., 2013), and natural water 411 

(Jansen et al., 2002; Buffle et al., 2009; Shaked and Lis, 2012). These conditions are often 412 

identified when equilibrium-based methods fail to predict biological uptake (Zhao et al., 413 

2016).  414 

Amery et al. (2010) used a similar type of DGT design to the one employed here to show that 415 

the method can be used to analyse complex lability and obtain comparable kinetic 416 

information to the more conventionally used competitive ligand exchange method (CLEM) 417 

(Lam et al., 1999). In our work the SV-DGT analyses confirmed the previously observed 418 

kinetic limitation of Zn and Ni release from NTA and EDTA complexes and that Zn 419 

complexes were more labile than those of Ni, and a greater kinetic limitation of both metals’ 420 

dissociation from EDTA complexes (Bowles et al., 2006). Analyses of the compost and peat 421 

extracts showed that the Zn and Cd complexes are relatively labile when compared to Ni, 422 
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which agrees with previous measurements in natural waters  (Warnken et al., 2007; Levy et 423 

al., 2012) and hints at relatively low solubility of organic matter containing reduced sulphur 424 

functional groups at this pH. Cadmium was relatively labile in the OP extracts, however 425 

significantly less so in the EP and compost extracts, especially LE. This could indicate that 426 

Cd-DOM complexes mobilized from soils where these composts had been used to manage 427 

Cd bioavailability may persist longer in soils before dissociation than when peat similar to 428 

OP was used. If composts were used to manage Ni contamination, under leaching conditions 429 

this could conceivably increase Ni mobility in the soil, more than a less labile complex, such 430 

as Zn, whose ability to participate in chemical reactions or be taken up by biota would be less 431 

kinetically limited. 432 

 433 

3.3. Quality of the dissolved organic matter in the extracts 434 

Excitation-emission matrix (EEM) fluorescence of the extracts was characterised by 435 

fluorophores consistent with aromatic (humic-like) organic acids (peaks C and A), proteins 436 

and amino acids (tryptophan- and tyrosine-like; peaks T1 and T2) that are common features 437 

of humic extracts (see: Supporting Information) (Senesi et al., 1991). Steady-state 438 

fluorescence EEMs integrate information on the mixture of compounds present in DOM 439 

which have been shown to consist of fluorophores with multiple excitation peak centres for 440 

both proteins and humic substances (Li et al., 2013). Despite the complexity of EEM 441 

fluorescence, previous workers have shown the applicability of this method for understanding 442 

both DOM metal binding properties (Luster et al., 1996; Baker et al., 2008; Ohno et al., 2008) 443 

and biodegradability (Hudson et al., 2008; Hansen et al., 2016).  444 
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The Peak T fluorophore indicates of the proportion of bioavailable organic matter (Marschner 445 

and Kalbitz, 2003), and hence the potential for microbial activity in the sample (Hudson et 446 

al., 2008). Peak T fluorescence in our samples showed a declining relationship with the 447 

emission wavelength of maximum fluorescence intensity at Peak C (Figure 3 b), which has 448 

been shown to increase in tandem with the degree of aromaticity and conjugation in soil 449 

organic matter (Senesi et al., 1991). DOM aromaticity (i.e. phenolic content) may diminish 450 

DOM biodegradability, whilst enhancing metal complexation strength (Baker et al., 2008).  451 

However, aromaticity will increase in DOM if biodegradation acts preferentially on aliphatic 452 

and low molecular weight DOM fractions (Hansen et al., 2016). Regardless of the precise 453 

mechanisms of causation, refractory amendments with higher metal binding strength are 454 

likely to exhibit lower protein-like fluorescence. This is consistent with the results of metal 455 

lability measurements in the studied extracts (Figure 3 a) that show a positive trend between 456 

Ni and Zn kinetic limitation and the Peak C emission wavelength. These results are broadly 457 

supported by the SUVA254 measurements (Table 2). Shafaei Arvajeh et al. (2013) observed 458 

that Ni-HA complexes were less labile than Ni-FA complexes, which further suggests that the 459 

former may be more abundant in the compost extracts. By contrast, Cd lability showed little 460 

change as a function of DOM aromaticity, probably indicating Cd complexation with non-461 

phenolic moieties in DOM ligands. This suggests that microbial degradation of DOM may 462 

reduce the mobility of Cd-DOM complexes to a greater extent than Ni-DOM complexes. The 463 

work by Amery et al. (2008) provides  further  evidence to support this hypothesis. They 464 

showed a strong correlation between Cu:DOM concentration ratios and DOM aromaticity in 465 

250 soil leachates, highlighting the role of DOM quality in determining metal-complex 466 

mobility in the environment. 467 
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The relatively simple mathematical solution and well constrained system used to assess the 468 

lability of the metal:ligand complexes here makes the SV-DGT method an attractive option 469 

for measuring the dissociation rate constants of complexes. Previous work has shown that 470 

when the kinetic window of a DGT device is changed by using different diffusion layer 471 

thicknesses, it is possible to estimate complex dissociation rate constants (Scally et al., 2003; 472 

Warnken et al., 2007). This method could be adapted to the SV-DGT device; however, 473 

measuring these rate constants was not an objective of this work. The greatest advantage of 474 

the method is that enables the analysis of trace metal complexes under circumstances where 475 

extensive dilution of sample is would normally be required, such as those from soil or 476 

sediment porewaters.  477 

As with the speciation modelling, it is important to recognize that the results herein are 478 

subject to certain caveats caused by the experimental approach used. We normalized the 479 

metal:DOC ratios across the different metal-amendment combinations after the extraction 480 

solutions had equilibrated with the amendments considered. We did this to enable 481 

comparison of the lability of the different DOM complexes and to elucidate whether the that 482 

could be related to the quality of the DOM from the different extracts. Previous studies have 483 

shown that the metal:ligand ratio is an important determinant when assessing the lability of a 484 

complex (Sekaly et al., 1999; Guthrie et al., 2003). This means that these measurements are 485 

likely to overestimate the lability of Cd in the extracts where a kinetic limitation is observed. 486 

It is also useful to note that, although numerous studies have shown that soil extractions 487 

carried out using 0.05 M Ca(NO3)2 can provide a good estimate of plant bioavailable fraction 488 

of soil Cd (Gray et al., 1999; Black et al., 2011; Black et al., 2012; Reiser et al., 2014), the 489 

ionic strength of this extraction solution is higher than what is commonly observed in most 490 

soil porewaters (Edmeades et al., 1985). Dissolution of solute from the amendments will have 491 
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contributed to this. While the high ionic strength is likely to have reduced the probability of 492 

solute binding to the agarose diffusion layer (Wang et al., 2016), it is also possible that there 493 

was a consequent increase in the perceived lability of the Ni complexes due to ligand-assisted 494 

dissociation in the resin gel (Puy et al., 2014). Further testing is needed to quantify this effect.  495 

4. Conclusions 496 

 Our results provide further evidence to suggest that composts are well-suited to managing 497 

soil Cd bioavailability, without inducing Zn deficiency in plants. However, they also indicate 498 

there may be an associated risk of Cd being transported from the location of the 499 

contamination, especially under conditions where the organic matter is destabilized. The risk 500 

of metal transport will probably be greater if compost was used to manage Ni contaminated 501 

soils, owing to its apparently greater affinity for DOM with a high aromaticity and the likely 502 

stability of the Ni-DOM complexes that emerged. While it should be recognized that this 503 

work only considered four types of organic amendments, and further work is needed to gauge 504 

whether leaching of Cd (or other trace metals) from compost amended soils is significant, 505 

there is increasing evidence that DOM quality likely to be an important factor.  506 

  507 
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Tables  739 

Table 1. Chemical properties and elemental concentrations of the amendments considered 740 
  741 

 EP OP PH LE PHW PHP CFF OD KBS CBS 

pH 7.13 (±0.00) 3.25 (±0.02) 6.92 (±0.08) 7.65 (±0. 07) 5.55 (±0.02) 6.26 (±0.00) 4.89 (±0.06) 5.30 (±0 .00) 3.68 (±0.01) 6.49 (±0.03) 

Conductivity (µS/cm) 307 (±0.35) 296 (±6.09) 4060 (±1.23) 2370 (±0.54) 309 (±0.46) 1408 (±0.46) 2893 (±0.75) 3096 (±6.82) 4340 (±0.40) 6733 (±0.89) 

CEC 
(me/100g) 26.4 21.4 42 44.8 36.1 42.2 16.8 37.9 17.4 30.9 

C (%) 15.7 46.9 34.5 22.0 16.1 25.5 50.2 30.4 26 nd 

N (%) 1.20 1.56 1.58 1.93 0.45 1.63 2.30 1.03 2.6 nd 

Water extractable C 
(µg C g-1) 671 7939 3073 2196 428 2070 37017 1173 903 6531 

Hot water-extractable C  
(µg C g-1) 

3928 4690 5219 4538 1530 3536 5 2100 3860 11265 

P (mg kg-1) 836 241 7378 2786 836 2798 1158 2976 5369 17760 

S (mg kg-1) 2538 2347 6856 2360 837 3438 1496 3056 10580 14867 

Ca (mg kg-1) 8350 1486 27916 22406 15848 15892 1140 10899 11200 30320 

Mg (mg kg-1) 2326 699 3965 4510 9168 3008 1682 2931 4043 5842 

K (mg kg-1) 2684 833 6020 5363 3000 5019 4526 4843 3379 3354 

Cd (µg kg-1) <0.21 <0.021 <0.021 0.1 <0.021 <0.021 0.01 <0.021 3 1 

Zn (µg kg-1) 49 8 649 294 73 153 9.8 441 1356 1108 

Ni (µg kg-1) 10.7 0.185 4.6 7.5 27.7 5.6 0.17 5.0 20.7 31.4 

Cu (µg kg-1) 15.8 1.7 109.9 46.3 29.7 26.2 23.3 74.0 782.9 318.1 

Pb (µg kg-1) 13.9 2.4 5.5 99.7 11.1 10.2 <0.21 7.6 135.0 60.7 

Al (µg kg-1) 15888 1364 6666 10461 28189 12229 4 9840 19008 15605 

Cr (µg kg-1) 17.9 1.2 10.2 25.3 33.7 39.5 0.0 23.9 41.9 153.2 

Where values are averages, standard errors are given in brackets (n=3). nd: not determined 
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Table 2. Solution composition in the extract and test solutions analyzed using SV-DGT.  745 

Metal Sample 
Initial [Me] 

(µM) 

Initial [DOC] 
or [ligand] 

(mM) 
Conductivity 

(mS cm) pH 
[Me] in test 

solution (µM) 

[DOC] or 
[ligand] in test 

solution 
(mM) 

Free ion 
activity (nM) % complexed 

SUVA 
(L g -1 cm -1) 

Cd 

NTA - - 10.51 5.49 1.537 (±0.005) 5.0 2.38 99.6 nd 

EDTA - - 10.06 5.59 1.362 (±0.004) 5.0 0.007 99.9 nd 

EP 0.658 (±0.008) 185.6 (± 4.9) 9.37 5.6 3.92 13.92 5.41 99.6 17.84 

OP 1.16 (±0.01) 841.6 (± 4.3) 9.50 5.5 17.77 63.06 6.36 99.9 10.31 

PH 0.35 (±0.02) 452.6 (± 16.8) 11.93 5.6 9.56 33.91 10.96 99.5 16.41 

LE 0.102 (±0.002) 378.6 (± 9.1) 12.02 5.6 8.12 28.82 11.45 99.4 24.33 

Ni 

NTA - - 10.54 5.47 1.141 (±0.008) 5.0 0.03 >99.9 nd 

EDTA - - 10.40 5.62 1.185 (±0.009) 5.0 6 × 10-5 >99.9 nd 

EP 0.95 (±0.01) 185.6 (± 4.9) 9.69 5.6 3.92 13.92 6.08 99.5 17.84 

OP 1.08 (±0.11) 841.6 (± 4.3) 9.39 5.5 17.77 63.06 7.17 99.9 10.31 

PH 0.18 (±0.02) 452.6 (± 16.8) 12.28 5.6 9.56 33.91 14.68 99.5 16.41 

LE 0.24 (±0.02) 378.6 (± 9.1) 12.39 5.6 8.12 28.82 15.67 99.4 24.33 

Zn 

NTA - - 10.56 5.51 1.106 (±0.003) 5.0 0.29 99.5 nd 

EDTA - - 10.10 5.53 1.152 (±0.002) 5.0 9 × 10-3 99.6 nd 

EP 4.36 (±0.15) 185.6 (± 4.9) 9.38 5.6 3.92 13.92 3.23 99.8 17.84 

OP 2.47 (±0.10) 841.6 (± 4.3) 9.48 5.5 17.77 63.06 3.61 99.9 10.31 

PH 7.33 (±0.08) 452.6 (± 16.8) 11.89 5.6 9.56 33.91 6.25 99.8 16.41 

LE 2.29 (±0.09) 378.6 (± 9.1) 12.02 5.6 8.12 28.82 6.75 99.7 24.33 

The concentration of DOC is given as mmol C L-1, while the concentrations of NTA and EDTA are based on their molecular weight.  
Where values are averages, standard errors are given in brackets (n=3). n.d.: not determined. 
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Figures 746 

Figure 1. Sorption of Cd at three different pHs by the organic amendments considered. The 747 

error bars show standard deviation (n=3). 748 

 749 
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Figure 2. Average Kd of Cd, Ni and Zn at pH 5.5 in two types of peat (OP and EP) and two 751 

composts (PH and LE). The error bars show standard error of the mean, different letters 752 

indicate significant differences between the means (p<0.05, n=3, except Kd,Ni for LE where 753 

n=2). 754 
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Figure 3. The relationship between the relative kinetic restriction of DOM-metal complexes 756 

(δ/δcontrol) and DOM aromaticity (Peak C Raman-normalised intensity) (a); and (b) negative 757 

correlation between DOM amino-acid fluorescence (peak T2; inferred biodegradability) and 758 

DOM aromaticity (emission wavelength of maximum Peak C fluorescence intensity). 759 

760 
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Figure 4. The relative kinetic limitation of Cd, Ni and Zn in the extracted spiked 0.05 M 761 

Ca(NO3)2 solutions from the four organic amendments and two model ligands, NTA and 762 

EDTA. The error bars show standard error (n = 3).  763 

 764 

765 
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Highlights 

• Adapted DGT method measures complex lability in small volumes 

• Composts bind Cd effectively, but may mobilize trace metals via DOM-complexes. 

• Nickel complexes are less labile than Cd or Zn complexes in compost extracts 

• Aromatic DOM reduce lability of Ni complexes, and Zn to a lesser extent. 


