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Th is study was conducted to improve the pentachlorophenol 
(PCP) bioremediation ability of white-rot fungi in highly 
contaminated fi eld soils by manipulating bioaugmentation 
variables. Th ese were the dry weight percentage of fungal 
inoculum addition (31–175 g kg−1), PCP concentration (100–
2137 mg kg−1 PCP), fungal inoculum formulation, and time (1–
7 wk). Five fungal isolates were used: the New Zealand isolates 
Trametes versicolor (L.: Fr.) HR131 and Trametes sp. HR577; 
the North American isolates Phanerochaete chrysosporium 
Burds. (two isolates) and Phanerochaete sordida (Karst.) Erikss. 
& Ryv. Pentachlorophenol removal, manganese peroxidase, 
and laccase activity, and the formation of chloroanisoles in the 
contaminated fi eld soils were measured. Th e majority of PCP 
removed by the Trametes isolates was in the fi rst week after 
bioaugmentation. Th e maximum PCP removal by the fungi 
varied from 50 to 65% from a 1065 mg kg−1 PCP contaminated 
fi eld soil. Pentachlorophenol was preferentially converted to 
pentachloroanisole (PCA) by the Phanerochaete isolates (>60%), 
while 2 to 9% of the PCP removed by two Trametes isolates 
was converted to PCA. A pH increase was measured following 
bioaugmentation that was dependent on PCP concentration, 
fungal inoculum addition, and formulation. Th is, together with 
rapid initial PCP removal, possibly changed the bioavailability 
of the remaining PCP to the fungi and signifi cantly decreased 
the sequestering of PCP in the contaminated fi eld soils. Th e 
research supports the conclusion that New Zealand Trametes 
spp. can rapidly remove PCP in contaminated fi eld soils. 
Bioavailability and extractability of PCP in the contaminated 
fi eld soil may signifi cantly increase after bioaugmentation.
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Pentachlorophenol (PCP) has been used as a fungicide in 

the New Zealand timber industry since 1950 and there are an 

estimated 800 PCP-contaminated timber treatment sites throughout 

New Zealand (Sazbo, 1993). Pentachlorophenol is reported as 

a probable human carcinogen by the USEPA and persists in the 

environment, with a reported half-life of up to 5 yr (NTP, 1999). In 

New Zealand, PCP residue levels can be as high as 35 g PCP kg−1 

soil as a direct result of timber treatment from 1950 to 1990 (Walter 

et al., 2005b). Th ese high residue levels have undergone little change 

during the last 10 yr (Walter et al., 2007), probably because of aging. 

Aging of persistent organic pollutants can retard biodegradation rates 

and produce what is called “hockey stick kinetics” (Alexander, 1999). 

Th ere is initial rapid biodegradation of the compound in question, 

and then the biodegradation rate slows down or is stopped completely 

because the remainder of the xenobiotic has been sequestered, in some 

form, and is unavailable for biodegradation (Northcott and Jones, 

2000). Hydrophobic organic chemicals mainly sequester on or into 

the soil organic matter and can involve diff usion of the compound 

into soil micropores and nanopores, sorption into soil organic matter, 

covalent bonding (i.e., oxidative coupling), hydrogen bonding or 

complexing of some description. Th e sequestering process is time 

dependent and some aged residues can be up to fi fty years old (Luthy 

et al., 1997; Alexander, 1999; Northcott and Jones, 2000). Not all 

of these processes are undesirable. For instance, oxidative coupling is 

regarded as benefi cial, because the polymerization or covalent bonding 

process can render the xenobiotic biologically inactive (Rüttimann-

Johnson and Lamar, 1996, 1997).

White-rot fungi (Basidomycetes) are forest-dwelling organisms 

that play a major role in the global carbon cycle by being some of 
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the few organisms that can degrade wood lignin. Th e extracellu-

lar enzymes that make this possible are nonspecifi c and these en-

zymes can be used to degrade a wide range of persistent organic 

pollutants (Bumpus and Aust, 1985). Th erefore, bioremediation 

technologies (specifi cally bioaugmentation: the growth of foreign 

microorganisms under favorable conditions for inoculation into 

the contaminated medium) have been developed that make use 

of these properties for the cleanup of timber treatment facilities 

where PCP was used. White-rot fungi require co-substrate addi-

tion for growth and survival in the contaminated soil as they are 

not native to this environment (Lamar and Dietrich, 1990b).

Th e amount of fungal inoculum for bioaugmentation into 

contaminated soils typically ranges from 30 to 250 g kg−1 on 

a dry weight basis of colonized fungal inoculum to soil (Lamar 

and Dietrich, 1990b; Lamar et al., 1993a, 1993b; Morgan et al., 

1993; Leštan et al., 1996; Leštan and Lamar, 1996; Walter et al., 

2005a, 2005b). Subsequently, the lower fungal inoculum values 

yielded less PCP bioremediation, especially above PCP concen-

trations of 1000 mg kg−1 for both aged residue and spiked PCP.

Pentachlorophenol removal rate data for a preliminary study 

(Walter et al., 2005a) using New Zealand white-rot fungi was 

reported as 5.3 mg kg−1 d−1. However, the fungal growth sub-

strate used had a high C/N ratio (293:1), a low fungal inoculum 

loading rate (30 g kg−1 dry wt.), and the fungal inoculum was in 

stationary phase culture (21 d). Later work demonstrated that 

a lower C/N ratio (50:1), higher fungal inoculum loading (103 

and 175 g kg−1 dry wt.), and younger culture age removed sig-

nifi cantly more PCP from a contaminated fi eld soil with similar 

characteristics (Ford et al., 2007). Accordingly, PCP biodegrada-

tion rate data require investigation, for these new fungal inocu-

lum loading rates, culture ages, and formulation.

Th ere is more than one PCP degradation pathway and 

Phanerochaete chrysosporium Burds. and Phanerochaete sordida 

(Karst.) Erikss. & Ryv. are reported to promote preferentially a 

PCP methylation reaction to pentachloroanisole (PCA) as part 

of its fungal PCP mineralization pathway (Lamar et al., 1990, 

1993b; Walter et al., 2004). Th is is catalyzed by a transmem-

brane methyl transferase, in P. chrysosporium not an extracellular 

enzyme (Aust et al., 2004). A wide variety of microorganisms 

promote this transformation as a general microbial detoxifi ca-

tion response to PCP (Laine and Jorgensen, 1996). However, 

PCA is more hydrophobic than PCP and therefore has the po-

tential to bio-accumulate, which makes its production undesir-

able (Laine and Jorgensen, 1996). Th ere are also reports of PCA 

production from PCP biodegradation by Trametes versicolor (L.: 

Fr.) (Tuomela et al., 1999; Walter et al., 2004). However, the 

PCA levels produced from T. versicolor biodegradation of PCP 

are typically <10% of the total PCP degraded, in contrast to P. 
chrysosporium where >50% of PCP degraded can be converted 

to PCA (Walter et al., 2004). A majority of these white-rot 

fungal PCP degradation pathway studies were either conducted 

in vitro or in PCP-spiked soils rather than aged residues from 

contaminated timber treatment sites (Rüttimann-Johnson and 

Lamar, 1997; Tuomela et al., 1999; Walter et al., 2004). Th ere-

fore, levels of PCA produced by white-rot fungal biodegrada-

tion processes of aged residues also require analysis.

Th e objectives of this study were initially to determine the 

eff ects of fungal inoculum loading and PCP concentration 

in the contaminated fi eld soil on fungal extracellular enzyme 

expression and PCP removal after bioaugmentation, and in 

addition, to investigate the fungal PCP biodegradation rate in 

a ?1050 mg kg−1 PCP-contaminated fi eld soil (Ford et al., 

2007) and the PCA production over 7 wk for two New Zea-

land Trametes isolates and compare this with two cataloged 

North American P. chrysosporium isolates (ATCC 24725 and 

ATCC 3541) and one P. sordida isolate (ATCC 90628).

Materials and Methods

Materials
Th e American white-rot fungi, Phanerochaete chrysosporium 

(ATCC 3541) and Phanerochaete sordida (ATCC 90628), were 

purchased, whereas Phanerochaete chrysosporium (ATCC 24725) 

was gifted by Professor Stephen Aust, Utah State University, Lo-

gan, UT. Th e New Zealand white-rot fungal isolates Trametes ver-
sicolor HR131, and a Trametes sp. HR577, were supplied by Hor-

tResearch, Lincoln. All fungi were grown on malt extract agar 

(Merck, Darmstadt, Germany) at 26 ± 2°C in the dark for 6 to 

7 d. Isolates were maintained in 20% glycerol (BioLab, Clayton, 

VIC, Australia) on 1.0 cm diam. malt extract agar plugs, stored 

at –80°C (Walter et al., 2003). All chemicals used were of analyti-

cal grade. Acetone, hexane, phosphoric acid, methanol, heptane 

(Mallinckrodt), and calcium carbonate (BDH) were supplied by 

Biolab New Zealand Ltd. Technical grade pentachlorophenol was 

supplied by Sigma Chemical Company (St. Louis, MO, USA). 

Th e Douglas fi r [Pseudotsuga menziesii Mirbel (Franco)] and 

Monterey pine (Pinus radiata D. Don) sawdusts used for fungal 

inocula production were sourced fresh from a local sawmill in the 

Canterbury region. Sawdusts were air-dried, sieved (2.8 mm ap-

erture, BS410, serial No. 081815) and stored in the dark at room 

temperature. Corn grits (320 mesh), kibbled rye, and corn meal 

starch were obtained from a local bulk store retail outlet (Bin 

Inn). Th e fi eld soil contaminated with technical grade PCP (aged 

PCP residue) was obtained from a disturbed environment at a 

sawmill in the Bay of Plenty region in the North Island of New 

Zealand. Th e characteristics of the technical grade PCP-contami-

nated fi eld soil were reported in a previous publication (Ford et 

al., 2007). Th e dilution soil to produce “the PCP soil mix” was a 

Temuka clay loam (“clay loam”) from Lincoln, New Zealand as 

described by Walter et al. (2004). Th e spectrophotometer for the 

enzyme assays was a Cary 50 Bio UV/VIS spectrophotometer 

(Varian Australia Pty Ltd).

Methods
Th e methodology for growth of the fungi for bioaugmentation 

and subsequent production of the soil microcosms is outlined in a 

previous publication (Ford et al., 2007). Briefl y, the contaminated 

fi eld soil was sieved (4.00 or 2.80-mm sieve) and diluted with 

an air-dried clay loam of the same sieve size to enhance fungal 

survival. Th is PCP–soil mix was then hydrated and mixed with 

the co-substrate amendment and fungal inoculum (SAFI). Th is 

ratio of co-substrate amendment and fungal inoculum (the “SAFI 
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ratio”) was varied in the diff erent experiments. Th e soil microcosm 

control cultures consisted of mixing 135 g of co-substrate amend-

ment (no fungal inoculum) with the PCP–soil mix and measuring 

the PCP concentration at the start of the experiment (time zero 

controls) and after 3 or 7 wk of incubation (aged controls: co-

substrate addition only, no white-rot fungus) Th e fungal growth 

substrates for fungal inoculum production were formulates F2 and 

F8 with C/N ratios of 200:1 and 51:1, respectively (Etheridge et 

al., 1998). F2 consisted of 750 g kg−1 pine sawdust, 167 g kg−1 

deglutinated cornmeal, and 83 g kg−1 starch, and F8 of 563 g kg−1 

pine sawdust, 387 g kg−1 kibbled rye, and 50 g kg−1 starch (Leštan 

et al., 1996; Walter et al., 2004, 2005a). Th ese mixes were then 

hydrated to a moisture content of 560 g kg−1 before sterilization 

(121°C, 20 min). Th e co-substrate amendment, F15, was com-

posed of 330 g kg−1 Douglas fi r sawdust and 110 g kg−1 corn grits 

(dry wt.) and 560 g kg−1 moisture. Th e sawdust and grain moisture 

content was determined (60°C, 72 h). Th e fungal inoculum and 

co-substrate amendment were produced by the methods published 

previously (Ford et al., 2007).

Experiments for Assessment of Bioaugmentation Parameters

Eff ect of SAFI Ratio

Th is experiment was designed to determine the eff ect of fi ve 

diff erent ratios of substrate amendment to fungal inocula (SAFI 

ratio) on extracellular enzyme expression and PCP residue analysis 

after bioaugmentation. Th e PCP–soil mix consisted of 36.5 g 

of contaminated fi eld soil, 247 g of clay loam and 60 g of water 

(4.00-mm sieve). One hundred and thirty fi ve grams of SAFI was 

added to this mix and then distributed into three 280-mL (Ford et 

al., 2007) containers (157 g each) to produce the soil microcosms. 

Th is amount (135 g) was used in subsequent experiments. Th e 

fi ve diff erent SAFI ratios, 85:15, 70:30, 50:50, 30:70, and 15:85 

were used. Alternatively, using a unit-based expression, 1.000 kg of 

the 85:15 SAFI ratio consists of 850 g of co-substrate amendment 

(F15) and 150 g of fungal inocula (F8). Th e SAFI to PCP–soil 

ratio, by dry weight was 1:4 (Morgan et al., 1993). Th e dry weight 

of fungal inocula therefore varied from 31 to 175 g kg−1 PCP-

contaminated soil. A total of 30 soil microcosms (157 g each) were 

produced for 10 treatments, hence three containers in triplicate for 

each isolate (2) at each SAFI ratio (5) were used. In addition, the 

SAFI ratios above (45 g total weight for each container) for both 

isolates were inoculated into 92 g of clay loam, with 21 g of water 

as a control, without the PCP-contaminated fi eld soil. Th ere was 

one container for each isolate at each SAFI ratio. Th e incubation 

temperature for this experiment and subsequent experiments was 

23°C ± 2°C. Sampling for laccase activity was on Days 3, 6, 9, 12, 

and 15. Only the extracts on Days 12 and 15 were tested for MnP 

activity. Th e PCP–soil mixes inoculated with the 50:50, 30:70, and 

15:85 SAFI ratios were stored at –20°C after 3 wk of incubation 

for chlorophenol residue analysis.

Eff ect of PCP Concentration

Th e aim of this experiment was to assess the eff ect of fi ve dif-

ferent PCP concentrations in the PCP–soil mix (4.00-mm sieve) 

on white-rot fungal colonization and PCP biodegradation. Th e 

fungal growth substrate used was F8. Th e isolates were HR131 

and HR577. Th e fi ve combinations by weight for the aged PCP 

residue (6495 mg kg−1 dry wt.), clay loam, and water respectively, 

used to produce the PCP–soil mixes were 9.1, 266, and 67 g; 

18.2, 260, and 64 g; 36.5, 247, and 60 g; 73.0, 220, and 50 g; 

and 109.5, 193, and 40 g. Th ese PCP–soil mixes were designed 

to give the following approximate PCP levels in the time zero 

and aged controls (Ford et al., 2007): 175, 375, 750, 1500, and 

2250 mg kg−1, respectively (dry wt). Th e SAFI ratio was constant 

at 30:70. Th is gave 10 treatment combinations in triplicate, pro-

ducing 30 × 280 mL, SAFI-inoculated PCP–soil mix containers 

at the fi ve diff erent PCP concentration levels for both white-rot 

fungi isolates. Th e sampling for laccase and MnP activity, and 

PCP biodegradation was as above; however, all repeated measures 

time points were sampled nondestructively for laccase and MnP.

Biodegradation Time Course

Th e aim of the biodegradation time course was to assess PCP 

disappearance over 7 wk for the two New Zealand Trametes 
isolates (HR131 & HR577), and in addition, to correlate these 

with enzyme assay data, and to compare them with literature 

values (Walter et al., 2005a) for biodegradation rates of PCP. Th e 

fungal growth substrates were F2 and F8. Th is gave a 22 factorial 

design with fi ve repeated measures. Th e sampling times were 1, 

2, 3, 5, and 7 wk. Th is destructive sampling regime resulted in 

the production of 60 containers, 20 lots of triplicate containers 

with 157 g of material (2.80-mm sieve) produced as above in 

each container. Th e SAFI ratio was 15:85, and the soil mixture 

consisted of 36.5 g contaminated soil, 247 g clay loam, and 60 g 

water giving a fi nal PCP concentration of 1065 mg kg−1.

Trametes spp. vs. Phanerochaete spp. for PCP Removal

Th e aim was to inoculate the PCP–soil mix with P. chryso-
sporium (two isolates) and P. sordida grown on the Monterey 

pine kibbled rye-based formulate F8 to assess PCP degradation 

and PCA production, and to compare with the New Zealand 

Trametes isolates (HR131 and HR577), particularly T. versicolor. 
Th ree Phanerochaete isolates were grown on F8 under the condi-

tions reported previously (Ford et al., 2007) for the New Zealand 

Trametes isolates T. versicolor HR131 and isolate HR577, then 

inoculated into the PCP–soil mix (2.80-mm sieve, fi nal PCP 

concentration of 1065 mg kg−1) in triplicate as reported previous-

ly (Ford et al., 2007) with a SAFI ratio of 15:85. Th e co-substrate 

amendment was F15. After 7 wk of incubation at 23°C, the Pha-
nerochaete isolate soil microcosms were fumigated using a sodium 

azide solution (Rost et al., 2002), before storage at −20°C.

Chemical Residue Analysis and Extracellular 

Enzyme Measurement
Most of the methodology was reported in a previous study 

(Ford et al., 2007). Briefl y, laccase was measured by peroxide 

independent dimerization of 2,6 dimethoxyphenol (λ 465 

nm); and manganese peroxidase activity by measurement of 

the formation of the Mn III malonate complex (λ 270 nm) 

spectrophotometrically. Th e sampling from the soil micro-

cosm containers (3–5 g), with a 1.5 cm diam. cork borer, for 

extra cellular enzyme activity was performed in duplicate. 
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Th ese subsamples were then extracted with pH 4.5 malonate 

(1 h) and fi ltered with Whatman’s No 5 fi lter paper. Penta-

chlorophenol and lower substituted chlorophenol residue 

analysis were performed by acetone–hexane extraction from 

the aged fi eld soil in acidic (pH < 1.0) conditions (phosphoric 

acid). Th e chlorophenols and standards were derivatized with 

acetic anhydride before analysis by gas chromatography with 

electron capture detection (ECD) as reported in a previous 

study, or mass spectrometry (MS). Anisole standards were 

produced from a chlorophenol mix containing PCP; the three 

tetra chlorophenol isomers and four trichlorophenol isomers 

were derivatized with diazomethane and were analyzed by 

GC with either ECD (Ford et al., 2007) or MS as the detec-

tor, depending on availability of equipment and the detection 

level required. All values were expressed on a dried weight 

basis (60°C, 3 d). Finally, all white-rot fungi soil microcosm 

cultures and controls for the factorial and non-factorial and 

subsequent experiments were stored at –20°C after 1 to 7 wk 

of incubation, respectively, and analyzed for PCP, PCA, and 

lower substituted chlorophenol biodegradation at a later date.

Data Analysis
Th e statistical analysis was a two-way ANOVA (Genstat 

7.2; Payne et al., 2004) with fi ve repeated measures for the 

results in Fig. 1, 2, 3, 4, 5, and 6, and an ANOVA for Fig. 

7 and 8 results. Statistical signifi cance from the two-way 

ANOVA results was expressed as the least signifi cant dif-

Fig. 1. Laccase activity for the New Zealand white-rot fungal isolates 
Trametes versicolor HR131 and Trametes spp. HR577 after 
bioaugmentation into a 697 mg kg −1 pentachlorophenol-
contaminated fi eld soil at diff erent SAFI ratios (substrate 
amendment to fungal inoculum ratio). Error bar = the 5% least 
LSD on the standard error of diff erence in the means. Pooled 
95% error bounds for the ANOVA repeated measures factor 
means (U kg−1): SAFI ratio main eff ect ± 112, time and isolate, 
and SAFI ratio and isolate eff ects ± 154, and ± 159, respectively.

Fig. 2. Laccase activity for the New Zealand white-rot fungal isolates 
Trametes versicolor HR131 and Trametes spp. HR577 after 
bioaugmentation into a clay loam soil at diff erent SAFI ratios 
(substrate amendment to fungal inoculum ratio); error bars 
represent the 95% confi dence intervals.

Fig. 3. Pentachlorophenol (PCP) removal and pentachloroanisole 
accumulation (PCA) over 7 wk by the white-rot fungal isolates 
Trametes versicolor HR131 and Trametes sp. HR577 grown on 
high and (F8) low nitrogen growth (F2) substrates (C/N = 51 and 
200) and inoculated into a 1065 mg kg−1 pentachlorophenol-
contaminated fi eld soil. Pooled 90% confi dence intervals (7 
wk, mg kg−1 dry wt.): 268–982 (PCP, F8), and 510–952 (PCP, F2); 
36–45 (PCA, F8), and 10–18 (PCA, F2); 344–662 (PCP, F8, 1-wk).
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ference calculated from the standard error of diff erence in 

means; the ANOVA results were expressed as Fisher’s least 

signifi cant diff erence. In addition, all repeated-measures data 

were analyzed by REML (Restricted Maximum Likelihood), 

utilizing Genstat 7.2 (Brown and Kempton, 1994; Payne et 

al., 2004). Th e nonlinear REML analysis was performed with 

a fi rst order autoregressive covariance structure (Payne et al., 

2004), with the exception of the results from Fig. 6 (power 

covariance structure). Four outliers were eliminated from the 

biodegradation time course (Fig. 3) and there was one missing 

datum point. Th e four outliers were greater than the starting 

PCP concentration (1065 mg kg−1 PCP). A missing-values 

algorithm (Payne et al., 2004) was used to retain orthogonal-

ity of the repeated-measures data. Th e outliers eliminated in 

the PCP biodegradation time course (Fig. 3) were from the 

week 2 and 7 time points. Th e outlying data points for week 2 

were for the two Trametes isolates grown on the F8 formulate 

before bioaugmentation into the PCP–soil mix (Discussion). 

Th e week 7 data points were for isolate HR577 grown with 

F8 and F2, respectively, before inoculation.

Results

Soils
Th e PCP–soil mix was produced in duplicate (2.80-mm 

sieve) and after co-substrate addition (time zero controls); 

the combined mean value was a PCP concentration of 1065 

± 160 mg kg−1 (n = 9, α = 0.025). Th e 7-wk aged controls 

had a PCP concentration of 1013 ± 107 mg kg−1 (n = 8, 

α = 0.025). Th e chlorophenol, fuel oil, and metal levels in 

the aged PCP residue soil sieved with the 2.80 and 4.00-mm 

sieves are reported elsewhere (Ford et al., 2007). Th e PCP 

concentrations in the fi ve PCP–soil–co-substrate amendment 

mixes (time zero controls) sieved with a 4.00-mm sieve were 

100 ± 40 (n = 3), 452 ± 720 (n = 3), 697 ± 283 (n = 5), 1675 

± 870 (n = 3), and 2137 ± 1168 mg kg−1 (n = 3) PCP on a 

dry weight basis, respectively. Th e 7-wk aged control values 

were 110, 265, and 653 mg kg−1 for the three lowest concen-

trations, respectively. Th ere were no aged 7-wk controls for 

the two highest PCP concentration treatments.

Fig. 4. Laccase activity for the New Zealand white-rot fungal isolates 
Trametes versicolor HR131 and Trametes spp. HR577 after 
bioaugmentation into various clay loam–pentachlorophenol 
(PCP)-contaminated soil mixtures. Pooled 95% error bounds 
for the factor means (U kg−1): PCP concentration and isolate 
main eff ects ± 203, and ± 128, respectively, time and PCP 
concentration eff ect ± 296.

Fig. 5. Manganese peroxidase activity response for the New Zealand 
white-rot fungal isolates Trametes versicolor HR131 and 
Trametes spp. HR577 after bioaugmentation into various clay 
loam–pentachlorophenol (PCP)-contaminated soil mixtures. 
Pooled 95% error bounds for the factor means (U kg−1): PCP 
concentration main eff ect ± 66, time and isolate, and time and 
PCP concentration eff ects ± 75, and 118, respectively.
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Eff ect of SAFI Ratio and PCP Concentration
Th ere was no diff erence between the white-rot fungi isolates 

HR131 and HR577 in laccase response (P > 0.1) for the diff erent 

SAFI ratio treatments (Fig. 1). However, there was a signifi cant 

isolate interaction with time (P = 0.017); the laccase activity for 

isolate HR577 obviously peaked earlier than T. versicolor HR131. 

Th ere were signifi cant diff erences (P < 0.001) among the SAFI 

ratios (Fig. 1). Th ese were less pronounced for the three SAFI ra-

tios with the most fungal inoculum, 50:50, 30:70, and 15:85. 

However, there was a signifi cant interaction between isolate type 

and SAFI ratio (P = 0.032), because there was considerably lower 

laccase activity for isolate HR577 in the 50:50 SAFI ratio inocula-

tion compared with T. versicolor (P < 0.05). Th e highest fungal 

inocula loading, the 15:85 SAFI ratio, was quickest at colonizing 

the PCP–soil mix after 3 d (P < 0.05); this was more pronounced 

for isolate HR577 than for T. versicolor HR131. Th e laccase activ-

ity in both isolates had peaked and was declining at 15 d (Fig. 1). 

Th e laccase activity produced by the 50:50 SAFI ratio treatments 

for both isolates after bioaugmentation was no diff erent from when 

this treatment was used in a previous study (Ford et al., 2007).

In contrast, in the controls without PCP (Fig. 2) only the two 

SAFI ratios with the highest fungal inoculum loading (15:85 and 

30:70) promoted a signifi cant laccase response. Th e laccase peak 

was signifi cantly (P < 0.05) lower and later (12 d) than was ob-

served in the aged PCP residue-supplemented clay loam (Fig. 1). 

Th e grand laccase means and 95% confi dence intervals for the 

control white-rot fungal cultures without PCP-contaminated soil 

addition and the PCP–soil mix cultures were 150 ± 70 U kg−1 

and 1090 ± 100 U kg−1, respectively. Th erefore, the PCP–soil 

mix induced laccase. Th ere was considerable colonization of the 

control soil (zero PCP) by the fungi at the two highest fungal 

inoculum loadings by both isolates after 16 h. Th ere was no lac-

case or MnP activity detected in the 7-wk aged controls with no 

white-rot fungi addition.

Th ere was evidence of an isolate diff erence for MnP expres-

sion (P = 0.050), with T. versicolor HR131 expressing more 

MnP than isolate HR577, and a fungal inocula loading diff er-

ence (P < 0.001). Th e grand MnP mean was 271 ± 54 U kg−1. 

Th e MnP control readings (no PCP-contaminated fi eld soil, 

grand MnP mean = 105 ± 54 U kg−1) were somewhat lower 

than reported elsewhere (Boyle, 1994). Th e PCP residue 

analysis results are presented in Fig. 7.

Increasing the PCP concentration by adding a greater propor-

tion of PCP-contaminated soil (Fig. 4) in the PCP–soil mixes 

produced a signifi cant increase in laccase expression (P < 0.001); 

there was a signifi cant laccase response diff erence for the two 

isolates (P = 0.011) because T. versicolor HR131 expressed more 

laccase than isolate HR577 (Fig. 4). Th ere was a sharp decrease in 

laccase activity after 6 d for the two highest PCP concentration 

treatments for T. versicolor HR131 (Fig. 4). Furthermore, there 

was an equivalent decrease in laccase activity for isolate HR577 

in the 697 mg kg−1 PCP–soil mix after 6 d, as well as for the two 

Fig. 6. Laccase and manganese peroxidase (MnP) activity for isolates 
T. versicolor HR131 and Trametes sp. HR577 grown on high 
and low nitrogen growth substrates (C/N = 51:1 and 200:1) 
and inoculated into a 1065 mg kg−1 pentachlorophenol-
contaminated fi eld soil. Standard errors of diff erences (95%) 
for factor means (U kg−1): MnP formulate main eff ect, time and 
isolate eff ect, time and formulate eff ect ± 7, ± 15, and ± 15, 
respectively; laccase formulate and isolate main eff ects ± 29, 
time and isolate, and time and formulate eff ects ± 56, formulate 
and isolate eff ect ± 41.

Fig. 7. Pentachlorophenol removal over 3 wk by the white-rot 
fungal isolates Trametes versicolor HR131 and Trametes sp. 
HR577 after bioaugmentation at diff erent SAFI ratios (co-
substrate amendment and fungal inocula ratio) into three 
pentachlorophenol-contaminated fi eld soils. The error bars 
represent Fisher’s least signifi cant diff erence, * = signifi cance at 
the 5% level, † = signifi cance at the 10% level.
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higher PCP treatment levels (Fig. 4). According-

ly, the time and PCP interaction (P < 0.001) for 

laccase response was also signifi cant. Th e visual 

colonization levels (mycelial appearance) were 

highest for the two lowest PCP concentration 

treatment levels and there was little evidence 

of mycelia present in the two higher treatment 

levels for the T. versicolor HR131 isolate.

Th e main factors, time and PCP concentra-

tion of the soil mix (P < 0.001 and P = 0.003, 

respectively), had a signifi cant eff ect on MnP ex-

pression (Fig. 5). Th e peak MnP expression was 

for the 697 mg kg−1 PCP treatment; subsequent-

ly, as the PCP concentration of the PCP–soil mix 

increased, MnP activity dropped considerably. 

Th ere was a signifi cant interaction between PCP 

concentration and time (P = 0.002) as MnP ex-

pression peaked after 9 d. Th e overall means of 

both isolates demonstrated no signifi cant isolate 

diff erences (P > 0.1). However, a signifi cant time and isolate eff ect 

(P = 0.007) was apparent, as isolate HR577 expressed higher levels 

of MnP than T. versicolor earlier in the time course (3 & 6 d). Th e 

PCP residue analysis results are presented in Fig. 7.

Eff ect of Diff erent Inoculation Techniques on Residue Analysis

PCP

Th ere was signifi cant PCP reduction by at least one white-rot 

fungal isolate in four out of seven treatments (P < 0.1). Alternative-

ly, only one out of fi ve, for the 30:70 SAFI ratio treatments, at the 

fi ve diff erent PCP concentrations, was signifi cant for PCP removal. 

Pentachlorophenol removal varied from 40 to 80% across all treat-

ments that were signifi cant for PCP reduction (Fig. 7). Th e results 

for the higher PCP concentration treatments (1675 and 2137 mg 

kg−1) showed 46 and 37% reduction of PCP by isolate HR577, 

but these results were statistically insignifi cant (P > 0.1). Th ere was 

an increase in pH over the time course of the experiments for all 

treatments apart from the 7-wk aged control without any white-rot 

fungal addition (no pH change) and the controls without PCP-

contaminated soil addition (a pH decrease). Th e magnitude of the 

pH increase changed with SAFI ratio and the concentration of the 

PCP-contaminated fi eld soil in the PCP–soil mix.

Other Chlorophenols and Anisoles

All treatments (apart from the two 30:70, 697 mg kg−1 PCP 

treatments in Fig. 7) demonstrated signifi cant 2,3,4,6-tetrachlo-

rophenol reduction (P < 0.1), but there was no statistical evi-

dence that it was entirely fungal promoted, as signifi cant reduc-

tions were also noted in the 7-wk aged controls. Trichlorophenol 

anisole derivatives were detected (2,4,6 and 2,3,4 isomers, ?30 

μg kg−1) in two treatments (15:85 SAFI ratio treatment and one 

697 mg kg−1 PCP, 30:70 SAFI ratio treatment, Fig. 7) and two 

aged controls (175 and 375 mg kg−1 treatments, Fig. 7). Th ere 

was no PCA production greater than 5% of the original PCP 

concentration in any treatments and statistically, there were no 

signifi cant diff erences between isolates in Fig. 7.

Biodegradation Time Course
Figure 6 shows that the two New Zealand Trametes isolates, 

when grown on the F8 growth substrate before bioaugmentation, 

promoted higher laccase and MnP activity overall than when 

grown on the F2 growth substrate (P < 0.001). All the main eff ects 

and their two factor interactions had a signifi cant eff ect for laccase 

expression (P < 0.001). In contrast, for the MnP expression, there 

was no signifi cant diff erence between the two isolate types. How-

ever, both the time and formulate main eff ects had a signifi cant 

eff ect on MnP expression (P < 0.001); the two factor interactions 

for time and formulate, time and isolate, were also signifi cant (P < 

0.001). Th e MnP activity peak was lower than noted for previous 

work (Ford et al., 2007) (note the change of scale) and probably 

peaked between weeks 1 and 2. Th e formulate diff erence observed 

for laccase activity was due to the low mean laccase reading in 

the inoculated PCP–soil mix for isolate HR577 grown on the F2 

growth substrate (Fig. 6). Th ere was more visual colonization on 

the surface of the PCP–soil mix by both T. versicolor and isolate 

HR577 when grown on the F8 growth substrate, than when they 

were grown and inoculated on the F2 growth substrate. Non 

white-rot fungal species were observed colonizing all the PCP–soil 

mixes within 9 d after bioaugmentation, but not in the aged con-

trols, as in previous work (Ford et al., 2007).

In addition, the pH of the PCP–soil mixes after bioaug-

mentation changed. Th is change was dependant on growth 

substrate formulation. Both Trametes isolates, when grown on 

the F8 growth substrate, increased the pH of the PCP–soil mix 

from 5.5 to 7.6 after 1 wk. Th is eff ect was not observed when 

the fungi were grown on the F2 growth substrate, since there 

was no detectable pH change when isolate HR577 was inocu-

lated (pH 5.6), and the pH of the PCP–soil mix fell to pH 5.0 

when isolate HR131 was inoculated. Th ere are no reports in 

the literature of a pH rise in aged PCP residue contaminated 

fi eld soils after bioaugmentation of white-rot fungi. Th e pH of 

the F8 fungal inoculum before inoculation was 5.3.

Th e time factor for the biodegradation of PCP over time 

course (Fig. 3) was not signifi cant (P > 0.1) when analyzed by 

Fig. 8. Pentachlorophenol removal and pentachloroanisole (PCA) accumulation after 7 wk by 
the white-rot fungal isolates Trametes versicolor HR131, Phanerochaete chrysosporium 
(ATCC 34351 & 24725), and Phanerochaete sordida (ATCC 90628), grown on a high 
nitrogen growth substrate (C/N = 51:1) before bioaugmentation into 1065 mg kg−1 
(dry wt.) pentachlorophenol-contaminated fi eld soil. The 90% confi dence intervals (7 
wk, mg kg−1 dry wt.): P. chrysosporium (pooled), 339–777 (PCP), and 584–743 (PCA); P. 
sordida (not pooled), 0–781 (PCP), and 715–1034 (PCA).
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repeated measures factorial analysis. Th is suggests most of the 

observed PCP biodegradation or disappearance (Roy-Arcand 

and Archibald, 1991) probably occurred within the fi rst week. 

Both New Zealand Trametes isolates, when grown on the F8 

growth substrate, removed more PCP overall from the PCP–

soil mix than when grown on the F2 growth substrate before 

bioaugmentation (P = 0.035). T. versicolor HR131 removed 

more PCP than isolate HR577 (P = 0.001) from this PCP–

soil mix (1065 mg kg−1). Th e two factor interaction between 

isolate and formulate was also signifi cant (P = 0.016). Th is is a 

result of T. versicolor HR131 removing more PCP than isolate 

HR577, when the F2 growth substrate was used (Fig. 3).

Th e PCA increase (Fig. 3) over the 7-wk time course from 

both fungal growth substrates was signifi cant (P < 0.001). Th e 

growth substrate diff erence for PCA production was also sig-

nifi cant (P < 0.001), with more PCA being produced by the 

lower C/N ratio formulate (F8) than by the cornmeal starch 

formulate (F2). Th ere was also a small signifi cant diff erence 

between the isolates for PCA production (P = 0.092) because 

T. versicolor HR131 produced more PCA than Trametes sp. 

isolate HR577. However, this is probably a consequence of T. 
versicolor removing more PCP overall.

Th e PCP biodegradation rate in the 7-wk aged controls 

was 1.1 ± 5.2 mg kg−1 d−1, (α = 0.025, n = 8) on a dry weight 

basis. Th is rate is similar to a killed control biodegradation 

rate reported in another study (5.4 mg kg−1 d−1, standard 

error = 0.74) (Walter et al., 2005a), with a similar PCP–soil 

mix. Th erefore, this result was no diff erent from a zero PCP 

biodegradation rate. Th e PCP biodegradation rate calculated 

in the fi rst 7 d of the time course (Fig. 3) by combining the 

results from both Trametes isolates was 80 ± 50 mg kg−1 d−1 

(α = 0.025, n = 6). Th is result is signifi cantly higher than 

other literature values reported for PCP biodegradation rates 

(Laine and Jorgensen, 1997) in PCP-contaminated soil. How-

ever, only two time points were used to calculate this rate and 

the aged nature of the contaminated soil probably contributed 

to the signifi cant variation; therefore, it should be regarded 

only as an approximate value.

Phanerochaete spp. vs. Trametes spp.
Th e three Phanerochaete isolates reported in Fig. 8 pro-

duced, on average, PCP removal similar to the New Zealand 

Trametes isolates when grown on the F8 growth substrate, for 

bioaugmentation into the PCP–soil mix. Overall removal of 

PCP was 40 to 65%. However, there was considerable varia-

tion among individual replicates, since there was up to 95% 

reduction (P. sordida) of PCP in some of the samples analyzed, 

and this resulted in a somewhat infl ated LSD value (Fig. 8). 

However, as for Fig. 3, there was less variation in PCA pro-

duced. Phanerochaete sordida removed the most PCP (65%) 

of all the white-rot fungi and produced the highest amount of 

PCA (Fig. 8). Th e majority of PCP removed was converted to 

PCA by the three Phanerochaete isolates. Phanerochaete sordida 

was the only white-rot fungus that completely colonized the 

1065 mg kg−1 PCP–soil mix in the entire study.

Discussion

Eff ect of SAFI Ratio and PCP Concentration
Th e laccase activity in the “PCP–soil mix” may have been 

induced by the fuel oil co-contaminant or by copper (Gianfreda 

et al., 1999), as well as by PCP. Copper is a laccase co-factor, and 

preliminary experiments (data not shown) demonstrated that 

diesel fuel when added to the growth substrate induced laccase 

activity. Th e rise in soil pH values above 7.0 for the SAFI ratios 

30:70 and 15:85 after 3 wk could also have contributed to the 

insignifi cant diff erences measured for laccase activity (Fig. 1) for 

the three SAFI ratios 50:50, 30:70, and 15:85, since pH values 

above 7.0 inhibit laccase activity (Gianfreda et al., 1999).

Th e toxicity of PCP to the fungus appears to have inhibited 

signifi cant biodegradation at 1675 and 2137 mg kg−1 PCP, 

since the PCP removal was statistically insignifi cant (Walter et 

al., 2005a). However, the variability in some of the results was 

signifi cant (Fig. 7). Th erefore, the PCP-contaminated fi eld soil 

and the clay loam were passed through the smaller sieve size 

(2.80 mm) for all subsequent experiments to reduce the variation 

in the results. Th e insignifi cant PCP reduction in both the 30:70 

SAFI ratio treatments when inoculated into the PCP–soil mix 

(697 mg kg−1 PCP concentration, Fig. 7) was a surprise, because 

this treatment had given the highest levels of MnP production 

(Fig. 5) for both isolates in this series of experiments. A possible 

explanation for this phenomenon is discussed below.

Biodegradation Time Course
Th e aged nature of the PCP-contaminated fi eld soil suggests 

the possibility that a reasonable portion of the PCP was still 

sequestered to the point of not being extractable by the meth-

odology that was used (Alexander, 1999; Northcott and Jones, 

2000). Th e extraction effi  ciency of PCP from the spiked soil 

samples in a substrate amendment–clay loam mix was 99.4% of 

that extracted from a spiked solvent blank without any soil. Th is 

problem has been reported before with the same soil (Walter et 

al., 2005a). However, PCP in a PCP–soil mix (800 mg kg−1), the 

same as used in this study, was reduced to 4 mg kg−1 over 2 yr 

(Walter et al., 2005b). Th is could not occur without some release 

of highly sequestered PCP, even though it was a slow process.

Th ere was a signifi cant increase in the PCP levels in three 

of the four formulate isolate combinations from week 1 to 2 

after inoculation in the biodegradation time course, even with 

the outliers eliminated from week 2. Th is may possibly be the 

result fi rst of random variation, which is unlikely since the 

PCP disappearance in the fi rst week is correlated with the lac-

case activity in Fig. 6. Th e only treatment that did not show 

this trend had the lowest laccase activity after 1 wk and the 

lowest PCP reduction (Fig. 3 and 6). Some potential mecha-

nisms for this phenomenon are discussed below.

First, the initial rapid disappearance of bioavailable PCP may 

have resulted in diff usion of PCP out of micropores and nano-

pores present in the soil mix components. Second, there was an 

increase in pH from 5.5 to 7.6 in two treatments after week 1 

with the outliers eliminated (see data analysis), and since PCP is 
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generally sequestered in soil at low pH (Divincenzo and Sparks, 

1997, 2001), this probably aided the release of sequestered PCP 

for extraction. Th ere was no pH change in the aged controls with 

no white-rot fungi and the bioaugmentation treatment with the 

lowest extracellular enzyme activity. Th is suggests the PCP increase 

in the three treatments from week 1 to 2 (Fig. 3) were white-rot 

fungal promoted. Th is increase in pH after bioaugmentation was 

not expected, since the production of organic acids by the fungi 

usually results in a pH fall (Leštan et al., 1996; Walter et al., 2004, 

2005a), which was observed in the control treatments without any 

PCP-contaminated fi eld soil addition (Fig. 2.).

Th ird, bound PCP residues, for instance bound by hydrogen 

bonding or complexed with clay or soil organic matter (Alexan-

der, 1999), have undergone a reaction catalyzed by the white-rot 

fungal extracellular enzymes or some other biotic or abiotic 

mechanism, and been extracted as PCP (Northcott and Jones, 

2000). Th erefore, the PCP rise in the treatments with the outli-

ers eliminated in the data analysis was probably a combination 

of both the pH rise promoted by the fungi, and the diff usion 

mechanism promoted by the PCP concentration gradient change 

mentioned previously. Th e latter mechanism was probably the 

main mechanism that promoted the PCP concentration rise after 

week 1 when the fungal inoculum was the isolate HR131–F2 

formulation. Th e eff ect of the third mechanism is unknown.

Th ese mechanisms may also explain the duplicate 30:70 SAFI 

ratio treatments producing insignifi cant PCP removal despite hav-

ing signifi cantly higher MnP activity levels (P < 0.05) in the con-

taminated soil (Fig. 5 and 7) than the 50:50 SAFI ratio treatments. 

Figure 3 shows a decrease in PCP levels after week 2 in three white-

rot fungal treatments (15:85 SAFI ratio) that showed an increase 

after week 1. Th erefore, possibly the extra fungal loading in this 

treatment aided further PCP reduction after week 2 of the time 

course, while the lesser fungal loading in the 30:70 ratio treatment 

did not. In addition, the malonate extracts for MnP and laccase 

activity for the 30:70 and 15:85 SAFI ratio treatments were the 

only extracts highly colored (a dark “tan” color). Th erefore, possibly 

the 50:50 SAFI ratio treatments degraded only a limited amount 

of PCP that was bioavailable in the PCP–soil mix, and there was 

a large portion still sequestered and not extracted. Th e pH of the 

PCP–soil mixes inoculated with this SAFI ratio was 7.2 on average, 

lower than the 30:70 and 15:85 SAFI ratio values (7.5 and 7.6, 

respectively), which also supports this argument.

Drying of the PCP-contaminated fi eld soil for moisture analysis 

revealed dark brown particles that produced considerable amounts 

of color when added to dichloromethane or hexane. Th e tan color 

observed in some of the malonate extracts discussed previously 

could be caused by the pH increase to 7.5 or by some other fungal-

mediated process dissolving or partially dissolving this material. 

Th ese particles could be glassifi ed droplets (Nadebaum et al., 1992; 

Luthy et al., 1997) of the original PCP fuel oil formulation and 

could be the factor promoting the variability of the results through 

PCP extraction percentages changing in the bioaugmentation 

treatments over time (Fig. 3 and 8), as discussed previously. Th ese 

particles were easily identifi ed; therefore, their removal may allow 

signifi cantly better fungal colonization and PCP reduction in fu-

ture studies using this contaminated fi eld soil. Finally, the Microtox 

bioassay demonstrated toxicity reduction that was statistically 

signifi cant for the T. versicolor HR131 (F8 growth substrate) inocu-

lated cultures after 7 wk (data not shown).

Th e PCA increase observed in Fig. 3 after week 1 may be due 

to the colonization of non white-rot fungi that was observed 9 d 

after bioaugmentation, and an increase in biological activity of 

the native soil microfl ora. Increased PCA activity has been de-

tected in PCP-spiked soils with mixed microfl ora in a past study 

following bioaugmentation of Lentinula edodes (Okeke et al., 

1997). Th e lowest PCA level detected after 7 wk was in the aged 

controls (trend), which in combination with the PCP concentra-

tion (1013 mg kg−1) in the aged controls (co-substrate present, 

but no white-rot fungus) suggests minimal PCP biodegradation 

throughout the time course in these samples (Fig. 3).

Comparison between Trametes spp. and Phanerochaete 

spp. for PCP Removal
Th e removal of PCP with the subsequent accumulation of PCA 

for all the Phanerochaete isolates (Fig. 8) were as expected (Lamar et 

al., 1990; Lamar and Dietrich, 1990a; Walter et al., 2004). How-

ever, since the culture conditions that promote PCA production 

are not necessarily dependent on nitrogen-limiting or nitrogen-suf-

fi cient conditions (Lamar and Dietrich, 1990a; Lamar et al., 1990; 

Leštan et al., 1996), it was not anticipated that close to 100% of 

the PCP removed would be methylated to PCA with the C/N 

ratio of the formulate being 51:1. Alternatively, possibly the Pha-
nerochaete spp. isolates have also increased the bioavailability of the 

PCP sequestered in the fuel oil, not only for biodegradation, but 

also for subsequent extraction of more PCP by acetone–hexane. 

A similar pH increase to 7.6 was observed, as was reported above, 

for the New Zealand Trametes isolates. Th is would also explain the 

results in Fig. 8, since 100% of PCP conversion to PCA is unlikely; 

past studies have reported at least some mineralization or polymer-

ization of PCP as well as methylation (Lamar et al., 1990; Leštan et 

al., 1996; Rüttimann-Johnson and Lamar, 1996).

Conclusions
Th ere was evidence that the majority of PCP in a 

1065 mg kg−1 PCP-contaminated fi eld soil (a maximum of 

66%) was removed by Trametes versicolor isolate HR131 and 

Trametes sp. isolate HR577 in the fi rst week after bioaugmenta-

tion. Th e removal rate was 80 ± 50 mg kg−1 d−1 (dry wt.), α = 

0.025. Th e aged nature and physical properties of the PCP-con-

taminated fi eld soil, the extraction methodology, and chemical 

changes promoted by the white-rot fungi (pH increase) probably 

resulted in more PCP being extracted from the contaminated 

soil after the fi rst week following bioaugmentation. Th is resulted 

in an apparent drop in the amount of PCP removed. Th e un-

derlying mechanism that promoted the pH rise is unknown. 

Th e maximum PCP removed after 7 wk from this 1065 mg 

kg−1 PCP-contaminated soil was 65% by Phanerochaete sordida 

ATCC 90628. Th ere was limited PCA (2–9%) production from 

the degraded PCP by the New Zealand white-rot fungi and this 

production was growth substrate dependant. Th e majority of the 

PCP degraded was converted to PCA by the three Phanerochaete 
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spp. isolates. Th ere was no signifi cant PCP removal in contami-

nated fi eld soils above a PCP concentration of 1065 mg kg−1. 

Th e recommendations for future study include the mechanisms 

underlying the changes the white-rot fungi promote in PCP 

bioavailability and extractability in the contaminated fi eld soil, 

and the removal of glassifi ed droplets of what was considered the 

original PCP in fuel oil formulation, to enhance fungal coloniza-

tion and PCP removal from the contaminated fi eld soil. Fungal 

formulation and bioaugmentation processes have been optimized 

to facilitate white rot fungal survival and degradation of PCP in 

highly contaminated fi eld soils above 1800 mg kg−1 PCP con-

centration.
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