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Water-use efficiency and the effect of water deficits
on crop growth and yield of Kabuli chickpea (Cicer
arietinum L.) in a cool-temperate subhumid climate

M. RAJIN ANWAR*f, B.A. McKENZIE anp G.D. HILL

Plant Sciences Group, Soil, Plant & Ecological Sciences Division, P.O. Box 84, Lincoln University,
Canterbury, New Zealand

SUMMARY

The present study was conducted from 1998 to 2000, to evaluate seasonal water use and soil-water
extraction by Kabuli chickpea (Cicer arietinum L.). The response of three cultivars to eight irrigation
treatments in 1998/99 and four irrigation treatments in 1999/2000 at different growth stages was
studied on a Wakanui silt loam soil in Canterbury, New Zealand. Evapotranspiration was measured
with a neutron moisture meter and water use efficiency (WUE) was examined at crop maturity. Water
use was about 426 mm for the fully irrigated treatment and at least 175 mm for the non-irrigated
plants. There was a significant correlation (P <0-001) between water use and biomass yield (R*=0-80)
and water use and seed yield (R*=0-75). There were also highly significant (P <0-001) interacting
effects of irrigation, sowing date and cultivar on WUE and the trend was similar to that for seed yield.
The estimated WUE ranged from 22-29 kg DM/ha per mm and 10—-13 kg seed yield/ha per mm water
use.

The three chickpea cultivars were capable of drawing water from depths greater than 60 cm.
However, most of the water use (0-49—0-93 mm/10 cm soil layer per day) came from the top 0-30 cm,
where most of the active roots were concentrated. The study has shown that using actual evapo-
transpiration and water-use efficiency, the biomass yield and seed yield of Kabuli chickpeas can be
accurately predicted in Canterbury. Soil water shortage has been identified as a major constraint to
increasing chickpea production. Drought was quantified using the concept of maximum potential soil
moisture deficit (Dp,,.x) calculated from climate data. Drought responses of yield, phenology, radi-
ation use efficiency and yield components were determined, and were highly correlated with Dpy.x.
The maximum potential soil moisture deficit increased from about 62 mm (irrigated throughout) to
about 358 mm (dryland plots). Chickpea yield, intercepted radiation and the number of pods per
plant decreased linearly as the Dp,,.x increased. Penman’s irrigation model accurately described the
response of yield to drought. The limiting deficit for this type of soil was ¢. 165 and 84 mm for the
November and December sowings in 1998/99 and 170 mm in 1999/2000. Beyond these limiting defi-
cits, yield declined linearly with maximum potential soil moisture deficits of up to 358 mm. There was
little evidence to support the idea of a moisture sensitive period in these Kabuli chickpea cultivars.
Yield was increased by irrigating at any stage of crop development, provided that the water was
needed as determined by the potential soil moisture deficit and sowing early in the season.

INTRODUCTION

Most previous studies of chickpea (Cicer arietinum
L.) water use have been undertaken in the Equatorial
tropics and in Mediterranean semi-arid regions
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(Brown et al. 1989; Dalal et al. 1997, Prasad et al.
1999). This is the first major study conducted in
Canterbury, a subhumid temperate environment
(43°38S, 172°30E). Low productivity in chickpea is
accompanied by low evapotranspirational water-use
efficiency (WUE), which is brought about by a com-
bination of decreased biomass (leaf area index) and,
for many environmental stresses, changes in WUE
(Zhang et al. 2000). To achieve maximum growth
and yield in chickpea requires an understanding of
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the detailed pattern of water use in relation to
crop phenology and assimilate partitioning into the
seeds.

The amount of soil water available for crop use
depends on rooting volume and the amount of avail-
able water held in the soil for plant growth. Studies
on chickpea water use are location specific. However,
a crop uses between 100 and 450 mm of water to
produce grain yields of 900-3000 kg/ha (Dalal et al.
1997; Prasad er al. 1999). The physiological basis
of yield determination of chickpea can be considered
by expressing yield (Y) in terms of the following
components, when other factors are non-limiting:

Y=Etx WUE (1)

where Et is the amount of water transpired (evapo-
transpiration) and WUE is defined as the quantity of
yield (biomass and seed yield) produced per unit of
water transpired and Y increases with increasing
WUE for a constant Et. Thus, WUE is particularly
important in those circumstances where growth cea-
ses as a result of depletion of a finite and limiting
water source.

The detrimental effects of drought can be modified
to some extent through management options such
as irrigation (Soltani et al. 1999) and by sowing early
in the season (Singh er al. 1997). However, in the
literature there are differing views on the effect of
irrigation timing coinciding with moisture-sensitive
periods in chickpea. Some authors (Jadhav et al.
1997) suggest that chickpea are more sensitive to
drought during flowering. However, others (Ravi
et al. 1998; Reddy & Ahlawat 1998) suggested seed
filling was the critical time for irrigation. In contrast,
Ramakrishna & Reddy (1993) demonstrated a seed
yield reduction of more than 50 % in chickpea when
they were irrigated due to excess vegetative growth,
which leads to lodging. Nevertheless, the identifi-
cation of genuine moisture-sensitive periods could
have clear benefits for irrigation management. Yield
responses to water deficit can be quantified by using
maximum potential soil moisture deficit (Dp,.x) as
a measure of stress (French & Legg 1979). Responses
to the Dpp.x are given in terms of reductions in yield
below the more stable fully irrigated yield. This
also enables a calculation of limiting deficit beyond
which yield is reduced, and the reduction in yield
per unit of potential deficit when the limiting deficit
is exceeded.

Therefore, the main objective of the present exper-
iment was to examine the response of yield shown in
Eqn [ under different irrigation regimes and thus de-
termine the physiological basis of yield variation.
Secondary objectives were to investigate the water
extraction pattern, the influence of drought and to
determine whether moisture-sensitive periods exist
for this crop.
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MATERIALS AND METHODS

The experimental design, site and husbandry methods
are fully described in the companion papers (Anwar
et al. 2003 a, b). However, sampling and measurement
details specific to this paper will be described. Briefly,
two experiments were carried out at Lincoln Uni-
versity, New Zealand, with a split-split plot ran-
domized complete block design with eight irrigation
levels during the 1998/99 season and four irrigation
levels during 1999/2000 as main plots. Subplots were
two sowing dates (3 November and 7 December in
1998/99 and 18 October and 22 November in 1999/
2000). Three high-yielding Kabuli chickpea cultivars
(Sanford, Dwelley and B-90) were sub-subplots.

Soil moisture content was measured weekly using
the Time Domain Reflectometry (TDR) Trase system
1 Model 6050X1 for the top 0-30 cm of the soil profile.
Moisture in the remaining soil depth was measured
with a Neutron probe (NMM) model 3300 at 10 cm
intervals to a depth of 100 cm in all 96 plots in 1998/
99 and to 110 cm in all 48 plots in 1999/2000. Water
use was assumed to be equivalent to the evapo-
transpiration (Et) between sowing and physiological
maturity, which was calculated using the soil water
balance approach:

Et=(P+I)—SWC—Ro—D ©)

where Et=evapotranspiration, P =rainfall (mm),
I=irrigation (mm), SWC=change in soil water con-
tent from time 1 to time 2 at 0—100 cm in 1998/99 and
0-110 cm depth in 1999/2000, Ro =runoff (mm) and
D =drainage (mm).

In this experiment Ro was assumed to be zero, as
the experimental site was level, and irrigation was
applied by T-tape at a rate that was well below soil
infiltration capacity. Drainage was also assumed to be
zero below 100-110 cm soil depth, as the volumetric
water content of the soil did not exceed field capacity
at any time.

The water-use efficiency (WUE) was calculated
as the total dry matter (TDM) production and final
seed yield of the treatment divided by the total
quantity of water used over that period and analysed
using a model in which dry matter production is re-
lated linearly to the ratio of transpiration (E) and
the daytime vapour pressure deficit (Bierhuizen &
Slatyer 1965):

Transpiration efficiency = C/E;
=k/(e*—e) 3)

where C is the daily growth rate, k is an empirical
constant with the dimensions of pressure and (e* —e)
is the daytime vapour pressure deficit. Tanner & Sin-
clair (1983) used theoretical arguments and published
values of C, E,. and (e* —e) for several crops to esti-
mate values of k. They concluded that k is a stable
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Fig. 1. Actual water use of Kabuli chickpea as a linear func-

tion of water received in Canterbury, New Zealand during

1998/99 and 1999/2000 seasons. Ynov(gesjesy=100-141-15

X, R*=096. Ypecasosony=—194+1:04 X, R*=0-96.

Y (1999/2000 = 140-4+1-13 X, R*=0-98.

parameter, which characterizes the transpiration
efficiency of a crop.

Daily daytime vapour pressure deficit data were
collected from the records of the Broadfield
Meteorological Station at Lincoln University.

Effective rooting depth (ERD) was derived from
the neutron probe data. On a given date, ERD was
defined as the depth at which soil water content was
not significantly different from the measurement
made on the previous date, during a period of tran-
spiration and in the absence of water supply (Silim &
Saxena 1993). Total soil water content was calculated
by summing the water content of each slice in the soil
profile. The topsoil layer was 30 cm while all other
layers were 10 cm thick. Water extraction patterns of
all treatments were checked to assess the maximum
depth from which water was extracted. Cumulative
water use per soil layer was calculated by partitioning
the drainage to the next soil layer. Regressions of the
cumulative water use over time for each soil layer were
taken. The mean slopes of the regressions of each
treatment (equivalent to water use per day) were then
analysed by ANOVA, and the LSD at the 5% level
of significance was calculated for each layer down to
100 cm in 1998/99 and to 110 cm in 1999/2000.

A simple index of potential soil water deficit (Dp)
was calculated as the accumulated difference between
the Penman evapotranspiration and irrigation and
rainfall amounts for each treatment, as described by
Jamieson et al. (1995). The maximum potential soil
moisture deficits (Dppax) for any treatment was taken
as the maximum value of Dp attained during growth.
This index gives a measurement of the maximum
water stress experienced by the crop (Penman 1971;
French & Legg 1979).

All data were analysed with a standard analysis of
variance using GENSTAT for Windows 3.2 (Lawes
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Table 1. The mean effects of irrigation, sowing date
and cultivar on water use (WU) during the pre- and
post-anthesis phases of growth and on maximum po-
tential soil moisture deficits (Dp,,.x) at physiological
maturity of Kabuli chickpea in New Zealand during

1998/99 season
Irrigation Pre-anthesis  Post-anthesis  Dppax
treatmentst WU (mm) WU (mm) (mm)
Nil 71 104 311
Full (e-m) 255 171 102
Full (e-f) 231 158 136
Half (e—f) 130 176 226
Full (f-p) 77 188 232
Half (f-p) 75 153 274
Full (p—m) 63 163 265
Half (p—m) 75 134 285
Mean 122 156 229
S.E. (D.F.=7) 61 12-8 0-1
P 0-001 0-05 0-001
Sowing date
November 3 144 142 269
December 7 100 169 189
S.E. (D.F.=38) 36 576 0-1
P 0-001 0-05 0-001
Cultivar
Sanford 123 154 229
Dwelley 120 158 229
B-90 123 156 229
S.E. (D.F.=32) 19 23 01
P ns ns ns
CV (%) 89 85 0-2

+ Irrigation treatments: Nil=rainfed; full=full irrigation
to replace water lost from evapotranspiration; half=
irrigated with half the amount of full; e-m =emergence to
maturity; e-f=emergence to flower; f~p=flower to pod;
p—m=pod to maturity; ns =nonsignificant.

Agricultural Trust, Rothamsted Experimental

Station).

RESULTS
Seasonal evapotranspiration

Full details of the climate during the two seasons can
be found in Anwar et al. (2003 a). The actual evapo-
transpiration of Kabuli chickpea was a linear func-
tion of total water received (irrigation plus rain) in
both years (Fig. 1). Irrigation applied at different
phenological stages significantly affected the pre- and
post-anthesis phases and total crop water use, which
depend on the amount of water applied and the time
of irrigation (Tables 1 and 2). In the 1998/99 season,
the mean post-anthesis water use (averaged over all
irrigation treatments) was about 28 % higher relative
to pre-anthesis water use (Table 1). However, under
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Table 2. The effects of irrigation, sowing date and
cultivar on total water use, water use efficiency for dry
matter (WUE * DM’ kg/ha per mm of water use) and on
maximum potential soil moisture deficits (Dp,..) at
physiological maturity of Kabuli chickpea during 1999/

2000
Total water meax

Irrigation use (mm) WUE DM (mm)

Nil 342 19-8 326

Full (e-m) 466 234 170

Full (f-p) 400 219 267

Full (p—m) 400 227 272

Mean 402 219 258
S.E. (D.F.=6) 42 0-52 0-1
P 0-001 0-05 0-001
Sowing date (SD)

October 18 420 209 249

November 22 385 229 268
S.E. (D.F.=16) 32 0-78 0-1
P 0-001 ns 0-001
Cultivar (Cv)

Sanford 401 22-3 259

B-90 403 21-6 258
S.E. (D.F.=16) 22 0-78 0-1
P ns ns ns
CV (%) 2:7 17-4 0-1

F Irrigation treatments as in Table 1.
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full irrigation from emergence to maturity (e—m) and
emergence to flowering (e—f), the pre-anthesis water
use was about 4649 % more than the post-anthesis
water use. Total crop water use varied from
157426 mm and was significantly affected by the
irrigation by sowing date interaction (Fig. 2). The
evapotranspiration from e—m was significantly higher
(P<0-001) for the fully irrigated treatments and was
about 90 % greater than in rainfed and late irrigated
crops. Kabuli chickpea under full and half irrigation
used ¢. 226 and 209 mm of water, respectively, when
irrigation was applied late (pod fill to physiological
maturity; p—m). November-sown Kabuli chickpea
used 169-450 mm water, which was about 4-23 %
more than the December-sown fully irrigated (e-m
and e—f) crops. However, in rainfed and p—m irrigated
plots the December-sown crop used more water
(about 7-29 %) relative to the November sown crop
(Fig. 2).

In 1999/2000, post-anthesis water use depended
on the significant interactions (P<0-01) of sowing
date by cultivar and irrigation by sowing date on
post-anthesis water use (Table 3). Generally, irrigated
crops (e—m) sown in October used more water at post-
anthesis than the same crops sown in November.
Averaged over irrigation treatment, the mean post-
anthesis water use (250 mm) was 64 % greater than
pre-anthesis water use. The total crop water use
varied 342-466 mm, and was significantly (P <0-001)
affected by both irrigation and sowing date (Table 2).

I Et Nov. sowing
1 Et Dec. sowing

—@)— WUE Nov. sowing
—(O— WUE Dec. sowing
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200 -
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1
)
W
WUE (kg (biomass)/ha/mm of water use)

Nil Fe-m) F(e-f)  H(e-f)

F(f-p)  H(fp) F(p-m) H(p-m)

Stages of irrigation treatments

Fig. 2. The irrigation by sowing date interaction for total water use and water-use efficiency (WUE) of Kabuli chickpea in
New Zealand, during 1998/99 season. Nil: rainfed; F: full irrigation to replace water lost from evapotranspiration; H:
irrigated with half the amount of full; e-m: emergence to maturity; e—f: emergence to flowering; f—p: flower to podding;

p—m: pod to maturity.
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Table 3. The sowing date by cultivar interaction for pre and post-anthesis water use (WU) and irrigation by
sowing date interaction for post-anthesis WU (mm) of chickpea during 1999/2000

Cultivars

Sowing date

Pre-anthesis WU

Post-anthesis WU

Post-anthesis WU

Irrigation
Sowing date Sanford B-90 Sanford B-90 treatments™ 18 Oct 22 Nov
18 Oct 160 173 259 248 Nil 207 206
22 Nov 142 134 243 250 Full (e-m) 295 258
Full (f-p) 261 250
Full (p-m) 253 272
S.E. (D.F.=16) 65 3-8 66

* Irrigation treatments as in Table 1.

The evapotranspiration from e-m was significantly
higher (P<0-001) for the fully irrigated treatments
and was about 17-36% greater than in the nil and
late irrigated crops. October-sown chickpea used
420 mm of water, which was only 9 % more than the
November-sown crops.

Accumulated water use in relation to yield

There were strong linear relationships between final
biomass (TDM) and total water use in both sowing
dates in 1998/99 with an R? of 0-84 and 0-92 respect-
ively (Fig. 3a). November and December-sown
chickpea crops produced 2-31 and 3-28 g/m®> TDM
respectively for each mm of water used. Parallel linear
relationships (R*=0-80, P<0-001) were also observed
in the 1999/2000 season (Fig. 3 ¢). In addition, chick-
pea seed yield in the November sowing (1998/99)
was linearly correlated with total water use (R2=0-75,
P<0-01) but the seed yield from December-sown
chickpea crop showed a poor correlation with total
water use (Fig. 3b). However, in 1999/2000 for all
treatments, both October- and November-sown
chickpea showed a highly significant (R*=0-78, P<
0-001) linear relationship between seed yield and total
water use (Fig. 34d).

Water use efficiency

In 1998/99, the mean water use efficiency (WUE) for
all treatments was 28-9 kg DM/ha per mm of water
use and 12-7 kg seed/ha per mm of water use. There
was no significant difference in WUE between the
different irrigation regimes but WUE for DM pro-
duction depended on the interaction between irri-
gation level and sowing date (Fig. 2). Crops that
received late or no irrigation in the November sowing
had the highest WUE (c. 38:3 kg DM/ha per mm

of water use). The analyses with the transpiration
efficiency model showed a stable relationship between
DM production and water use (Fig. 4). The mean
value of k (Eqn 3) was 0-041 and irrigation had no
effect on k but there were statistically significant dif-
ferences among sowing dates (1998-99) (Fig. 4).
There were also highly significant effects of both
sowing date (P<0-001) and cultivar (P<0-01) and
their interaction (P<0-01) on WUE for seed pro-
duction (Table 4). The November sowing produced
16-5 kg seed/ha per mm of water used. This was about
80 % higher than the December-sown chickpea crop.
In the December sowing cv. Sanford had the highest
WUE, which was 27 % and 71 % higher than in cvs
Dwelley and B-90. In 1999/2000, there was also a
highly significant (P <0-001) interaction between ir-
rigation, sowing date and cultivar on the WUE for
seed (Table 4). At both sowing dates, both cultivars
made more efficient use of the applied water (Full
(e—m) and rainfall) in the production of seed and this
was reflected in a greater WUE. The relationship
between WUE and irrigation supply (Table 4) shows
that per unit of water supplied, the WUE for seed was
at similar rates in both cultivars, though the rate was
greater in cv. Sanford than in cv. B-90. Cultivar
Sanford had the greatest WUE in fully irrigated (e-m)
plots but least in the nil irrigated plots. In the
November sowing cv. Sanford had a higher WUE for
seed in nil irrigated plots than cv. B-90.

Water extraction pattern

Different irrigation regimes, sowing dates and culti-
vars did not affect the final depth of water extraction,
or the extent to which each soil layer had been de-
pleted by maturity (Fig. 5). Itis also apparent that the
chickpea crop was able to extract soil water to depths
of 80 cm. Beyond 80 cm there was very little or no
depletion of soil water content over time. Soil water
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Fig. 3. Relationship between seasonal actual water use and total dry matter (a, ¢); seed yield (b, d) for Kabuli chickpeas in
Canterbury, New Zealand during 1998/99 and 1999/2000 seasons. The slope of the lines is the water use efficiency.
(@) Ynovember(dry matter)=166-7+2-31 X, R*=0-84. Ypecember(dry matter)= —115-3+3-28 X, R®=0-92. (b) YNovember
(seed yield)=80-4+1:34 X, R*=0'75. Ypecember(seed yield)=163-14+026 X, R*=0-17. (¢) Y(dry matter)= —262-2+

272 X, R*=0-80. (d) Y(seed yield)=292-0+ 1-67 X, R2=0-78.

extraction over time did, however, differ between
sowing dates and seasons at different phenological
stages. In 1998/99, chickpea plots sown in November
had an initial water content (maximum at the time of
emergence) of about 24 mm per 10 cm soil layer down
to 30 cm soil depth, and about 29-31 mm per 10 cm
soil layer down to 100 cm deep (Fig. 54, b). Corre-
spondingly, in December-sown plots, the maximum
water content was about 16 mm per 10 cm soil layer
to 30 cm soil depth and about 25-31 mm per 10 cm
soil layer down to 100 cm. The final soil water con-
tents (nearing harvest) over time were highly variable
among irrigation treatments and at different depths
down to 80 cm deep.

In both the October and November sowings in
1999/2000, the initial water content (Max) was c¢. 29
and 24 mm per 10 cm soil layer to 30 cm soil depth
and about 32-35 mm per 10 cm soil layer down to
110 cm (Fig. 5¢, d). In the October sowing the mini-
mum or final soil water content (Min) in the top
0-30 cm of the soil profile was 7 mm per 10 cm soil
layer down to 30 cm, at 90 % physiological maturity
and 15 mm per 10 cm soil layer down to 70 cm. Be-
cause of rainfall in the week after 90 % physiological
maturity (132 days after emergence) the soil water
content of the top 0—30 cm was 16 mm per 10 cm soil
layer. In the November sowing, Min in the top
0-30 cm soil profile was 6:5 mm per 10 cm soil layer
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Table 4. The three-way interaction of irrigation, sowing date and cultivar during 1999/2000 and sowing date
by cultivar interaction during 1998/99 in water-use efficiency (WUE) for seed yield of Kabuli chickpea in
New Zealand

WUE (kg seed/ha per mm of water use)

Sowing date (1999/2000)

Sowing date (1998/1999)

18 Oct 22 Nov 18 Oct 22 Nov

Irrigation
treatments*® Sanford B-90 Sanford B-90 Cultivar 3 Nov 7 Dec
Nil 5-8 7-8 10-3 77 Sanford 169 115
Full (e-m) 11-4 10-7 117 10-8 Dwelley 155 90
Full (f-p) 11-3 10-1 11-3 11-4 B-90 16-9 67
Full (p-m) 9:5 85 10-6 99
S.E. (D.F.) 0-75 (16) 121 (32)

* Irrigation treatments as in Table 1.

375 differences between the rate of daily water use down
to 40 cm soil depth and these depended on the irri-
gation by sowing date interaction. In 1998/99, fully

300k AP irrigated November-sown chickpeas used 0-93 mm of
water per 10 cm soil layer per day, in the 0-30 cm soil

) profile. The rainfed crop used about 0-57 mm of water
= per 10cm soil layer per day, which was about
£ 225} 11-20 % more than the December-sown crops (Fig.
%D 6). Below the 30 cm soil profile daily water use pro-
2 gressively declined but the fully irrigated chickpea
= 150} crops always used more water. In general, at all
%’ depths (down to 80 cm), November-sown chickpeas
5 used more water daily relative to the December-sown
751 crops. From fully irrigated (109 mm irrigation, during
1999/2000 season) plots, the October-sown chickpea
used 0-88 mm of water per 10 cm soil layer per day, in
the 0-30 cm soil profile. The water use declined to

9 ' ' ' ' 0-66 mm of water 10 il 1 day i
0-0 02 0-4 0-6 0-8 per cm Soil layer per day In

E,/(e*-e) (mm/mb)

Fig. 4. Relationship between mean daily growth rate and the
mean ratio of transpiration to vapour pressure deficit (E/
(e* —e)) between successive harvests. Slopes of the regression
lines, which were forced through the origin, give values for k
of 0-041 mb (R*=0-85) for November sowing (1998/99; @),
0-038 mb (R*=0-69) for December sowing (1998/99; (1) and
0-043 mb (R*=0-91) for the season 1999/2000 ().

and soil water depletion below 30 cm depth was
similar to the October sowing. Rapid depletion of
soil water in the 0-30 cm soil profile layer indicated
the presence of more roots (MaXoots)) and gradual
depletion, even down to 80 cm, suggests an estimated
effective rooting depth (ERD) of ¢. 80 cm.

Daily water use

The daily water use of chickpea at different depths
(Figs 6 and 7) shows that there were significant

the nil irrigation plots. Accordingly, daily water use
declined from 0-82 mm of water per 10 cm soil layer
per day in the November-sown fully irrigated
(109 mm) chickpeas to 0-53 mm of water per 10 cm
soil layer per day in the unirrigated plots. At the
40 cm depth October-sown plants irrigated from
flowering to podset (61 mm) had the highest rate of
water extraction at 0-27 mm of water per day. Below
80 cm soil depth there was hardly any water use in all
the treatments.

Soil water deficits

In the 1998/99 season, the maximum potential
soil moisture deficits (Dpnax) Varied between
102-311 mm (Table 1) with a mean Dp,;,x of 229 mm.
The Dpmax for the non-irrigated plots increased
steadily throughout the experiment and reached
358 mm in the November sowing, which was a 35 %
higher Dp.x than in the December sowing. In fully
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Fig. 5. Variation in volumetric soil water content with depth in Kabuli chickpea plots during 1998/99 (a, b) and 1999/2000
(¢, d) seasons. Max: maximum soil water content near field capacity (day of emergence); Min: minimum soil water content
at each depth nearing harvest. Horizontal dotted lines show the estimated effective rooting depth (ERD) and maximum
ERD value (Max,os). Each data point is the mean of two replicates. Bars indicate L.s.p. (P <0-01).

irrigated plots the Dp,., reached a maximum of
142 and 62 mm for the November and December
sowings, respectively. In both sowings the late irri-
gation treatments attained similar Dpy.x values

(c. 257-340 mm for the November and 207-224 mm
for the December sowing).

In 1999/2000, unirrigated chickpea plots recorded
significantly (P <0-001) higher Dp,.x values than the
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Fig. 6. Daily water use per depth of Kabuli chickpea under eight irrigation treatments (listed under Fig. 2) in the 1998/99
season. Bars indicate L.s.D. (P <0-01) for main effect of irrigation (IR) and sowing date (SD).

full and late irrigated plots (Table 2). There were sig-
nificant Dp,,, differences between sowing dates. The
November-sown plots recorded Dp.,.x values about
8% higher than the October-sown plots. The mini-
mum Dp,ax (170 mm) was recorded in fully irrigated
(e-m) plots. The soil moisture deficits (Dpy,.x) for the
rainfed treatment increased steadily throughout the
experiment, and attained a maximum value of 315
and 337 mm in the October and November sowings,

respectively. In the October-sown, fully irrigated
treatment, the Dpp,., increased linearly to 72 days
after sowing (DAS) and then decreased to 53 mm and
again maintained a maximum of 163 mm (Dppay)-
This was about 9% less than in the November sow-
ing. In both sowings, the fully irrigated (flower to pod
[f-p] and p—m) treatments attained a similar Dpp,.x
(254-278 mm), although the timing of the maximum
differed markedly.
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Fig. 7. Daily water use per depth of Kabuli chickpea under four irrigation treatments (listed under Fig. 2) in the 1999/2000
season. Bars indicate L.s.D. (P <0-05) for main effect of irrigation (IR) and sowing date (SD).

Yield response to water deficit

The maximum TDM and seed yield achieved under
different irrigation regimes could be related empiri-
cally to the Dp,.x experienced (Penman 1971 ; French
& Legg 1979). Both TDM production and seed yield
decreased linearly as Dp,,., increased above the lim-
iting deficits of 142 and 62 mm in the November and
December sowing respectively (Fig. 8). In the 1998/99
season, TDM differed significantly among the differ-
ent estimated levels of Dpyax (P<0-01) and sowing
dates (P<0-05). As Dpmax increased from 142 to
358 mm the TDM decreased from 1126 to 652 g/m?in
the November-sown crops compared to 1135 to
503 g/m? TDM in the December with 62 to 264 mm
Dpmax (Fig. 8a). From the significant (P<0-01;
R?>>0-79) linear regression, the slope of the lines
corresponds to a TDM reduction of 2-89 and 3-49 g/
m? for every mm of Dpy.x above 142 and 62 mm
in the November and December sowings, respect-
ively. In the November sowing, seed yield also
decreased linearly with increased Dppn.x (Fig. 8b).
The regression was highly significant (P<0-01)
and accounted for 72% of the variation. Over the
range of Dp.x values experienced by the Kabuli
chickpea crops (142-358 mm), for each additional

1 mm of deficit, about 1-69 g/m? of seed yield was lost.
However, there was no consistent relationship (R*=
0-14) between seed yield and Dpy,.x in the December-
sown crops. Similarly in 1999/2000, both TDM and
seed yield decreased significantly (P<0-001; R*>
0-86) with increased Dpp,.x. The linear regression
showed that in the October and November sowings,
TDM decreased by 2:56 and 2-29 g/m? per mm Dpjpax
(R*=0-86-0-93; P<0:001) respectively (Fig. 8¢).
Seed yield showed a similar pattern and yield de-
creased by 177 and 1-22 g/m? per mm Dppax (R*=
0-88-0-91; P<0-001) for the October and November
sowing respectively (Table 2 and Fig. 8d).

Solar interception response to water deficit

In both seasons, total intercepted photosynthetically
active radiation (PAR) over the life of the crop de-
creased with increased Dpp,.x (Fig. 9). The decrease
was strongly linear (R?>0-82; P<0-001). However,
the effect of stress was less severe in the December
1998/99 sown crops, as shown by the lower slope
(0-79 MJ/m?). Over the 2 years, as the mean Dpyax
increased from 62 to 358 mm corresponding total
PAR decreased from 1039 to 729 MJ/m? The
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Fig. 8. The relationship between dry matter production, seed yield and maximum potential soil moisture deficit of Kabuli
chickpeas during 1998/99 and 1999/2000 seasons. (a) Total dry matter, 1998/99: (@) November sowing, ¥'=1602-9 —2-89 X,
R®=0-79. (OJ) December sowing, Y=1431-2—3-49 X, R®=0-84. (b) Seed yield, 1998/99: (@) November sowing,
Y=9184—1-69 X, R?=0-72. ([J) December sowing, ¥=281:4—0-26 X, R2=0-84. (¢) Total dry matter, 1999/2000: (®)
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2000: (@) October sowing, Y=817-9—1-77 X, R*=0-88. ((J) November sowing, Y =706-4—1-22 X, R*=091.

relationship between radiation use efficiency (U) and
Dpmax for the 2 years is presented in Fig. 9b,d. The
U showed a marked decline from 1-29 to 0:66 g dry
matter (DM)/MJ PAR over the range of Dppay
values experienced by the crop (62-358 mm). Neither
sowing date nor season produced significantly
different slopes and intercepts. This indicated a rela-
tively constant decline in U for each additional 1 mm
of Dpmax, about 0-:002 g DM/MJ PAR was lost.

Pods per plant and limiting deficit

The number of pods per plant decreased as the water
deficit increased in the November sowing in 1998/99

and in 1999/2000. The regression was highly signifi-
cant (P<0-01) and accounted for 87 and 78 % of the
variance at a given Dp..x (Fig. 10a,c). However,
in the December 1998/99 sowing the relationship
between pods per plant and Dp,.x was weak and
accounted for only 32 % of the variance.

In 1998/99, both the November and December
sowings showed a highly significant relationship
when their TDM relative to the fully irrigated
crops was plotted against Dp.x (R2=0-79; P<0-01
and R*=0-85; P<0-:001 for the November and
December sowing respectively) (Fig. 105). This in-
dicated a limiting deficit (cDppax) of about 165 and
84 mm for the November and December sowings,



296

1100 p (@)

1000 [

900

(MJ/m?)

800 |

Total intercepted PAR

700

AN
N\

M. RAJIN ANWAR, B.A. McKENZIE AND G.D.HILL

r ©

AN
N

Radiation use efficiency
(g dry matter/MJ PAR)

06

AN
)

00 1 1 L

ro(@

/
’/
1 ) 1 1 1

0 100 200 300

400 0 100 200 300 400

Maximum potential soil moisture deficit (mm)

Fig. 9. The relationship between total intercepted PAR, radiation use efficiency and maximum potential soil moisture deficit
of Kabuli chickpeas during 1998/99 and 1999/2000 seasons. (a) Total intercepted PAR, 1998/99: (@) November sowing,
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respectively, for this soil. This assumes that the
growth of fully irrigated crops was not restricted
by water deficit. The slopes of the lines indicate that
yield declined by about 0-26 and 0-31% for the
November and December sowings, respectively, for
each mm increase of Dp,a, above cDpax. For 1999/
2000, the relationship between relative TDM pro-
duction of rainfed or partially irrigated yield to that
of a fully irrigated crop and Dpy,.x is presented in
Fig. 10d. Neither the October nor the November
sowing gave significantly different slopes and inter-
cepts, so the data were pooled. The regression was
highly significant (P <0-001) and accounted for 85 %
of the variance. This indicated an approximate
cDpmax of 170 mm, assuming that the fully irrigated
crop was not restricted by water deficit. The yield loss

as Dppax increased above each mm cDp,,,x Was about
0-23%.

Prediction of yield

The relationship between yield and total actual
evapotranspiration is usually linear and can be de-
fined by a slope and an (extrapolated) intercept on
the evapotranspiration axis (Fig. 3). Yield of this
chickpea crop was related to the cumulative total
evapotranspiration. Equation 1 was used to verify
the prediction of DM increase and seed yield. As
shown in Fig. 11, the relationship between the pre-
dicted and actual DM production and seed yield
for all treatments over the 2 years was highly signifi-
cant with an R?*=0-98, indicating the yield could
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be predicted reasonably well from WUE and evapo-
transpiration.

DISCUSSION
Yield response in relation to water use

Growing conditions over the 2 years of the study diff-
ered, as shown by rainfall distribution, temperature,
solar radiation and the Penman evapotranspiration
(Anwar et al. 2003a). The total rainfall during the

growing seasons was approximately 200260 mm and
Kabuli chickpea yield was related to water use and
sowing date in a similar way to that for lentils
(McKenzie & Hill 1990) grown in the same environ-
ment and in chickpea (Silim & Saxena 1993; Prasad
et al. 1999). Irrigation at any growth stage produced
increased yield (both biomass and seed). However,
the highest yields for all cultivars were achieved
where drought stress was completely eliminated by
irrigating throughout the growing season. This
response may be a function of differing balances
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between canopy size and crop water demand (Lawlor
1995). Alternatively, both total biomass and seed
yield production under rainfed conditions can be
expected to be lower as a direct function of their
shorter growth cycle, and lower total intercepted
radiation receipt (Thomas & Fukai 1995). The major
cause of yield reduction under rainfed and late irri-
gation conditions was low DM accumulation and the
production of fewer pods per plant (Anwar et al.
2003 ). Partitioning the DM of rainfed plants into
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yield components demonstrated a significantly lower
harvest index (40 %, mean of 2 years) compared with
the irrigated crops (48 %, mean of 2 years) (Anwar
et al. 2003 b). The initial conclusions from yield and
water use data from the present study are that Kabuli
chickpeas use between 165 and 466 mm of water to
produce a biomass yield of between 577 and 1130 g/
m? and a seed yield of between 249 and 492 g/m?.
Within this range there is a close linear relation
(R*=0-80 to 0-92 for DM and R?=0-75 to 0-78 for
seed yield) between the amount of water use and yield
(Fig. 3).

Seasonal evapotranspiration

Pre-, post-anthesis and total water use was signifi-
cantly (R*=0-96, P<0-001) regulated by irrigation
regimes and by rainfall (Fig. 1). Under full irrigation
(e—m) and early irrigation (e—f), total water use was
highest and ranged from 350-466 mm. This agrees
with previous work in Canterbury where a fully irri-
gated lentil crop used 332 mm (McKenzie & Hill
1990). In India, Prasad et al. (1999) and in Northern
Syria, Zhang et al. (2000) made similar observations
in chickpea crops. Irrigation increased soil moisture
content, stomatal opening, leaf area index and in-
creased crop duration and these components caused
higher transpiration. The present study also revealed
significant differences in the pre-, post-anthesis and
total water use among sowing dates, where early sown
crops transpired more water (Tables 1 and 2). How-
ever, a combination of high summer temperatures
and potential evapotranspiration during December—
January (1998/99) was probably the main cause
of greater post-anthesis water use in the 1998/99
December-sown crops (Table 1). This observation is
common in low-rainfall, temperate environments
where differences in water use have been reported for
different grain legumes or agronomic treatments
(McKenzie & Hill 1990).

Water-use efficiency

The dependence of water-use efficiency (WUE) on
water supply has been demonstrated for various grain
legumes including chickpea and changes in WUE may
reflect changes in grain yield (Ali et al. 2000). The
estimates of WUE for Kabuli chickpea in the present
study (22-29 kg DM/ha per mm water use and
10-13 kg seed yield/ha per mm water use) were com-
parable to those reported for chickpea grown else-
where (Herridge et al. 1995; Dalal et al. 1997).
However, the WUE values in the present study ap-
pear higher than those reported by Zhang et al. (2000)
for chickpeas grown in a Mediterranean environment
(8-7 kg DM/ha per mm and 3-2 kg seed yield/ha per
mm water use). Part of the higher WUE in the results
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from the present study could be attributed to the dif-
ferent climate. At the site of the present experiments,
during the growing season there was high solar radi-
ation (1624 MJ/m? per day), high mean daily mini-
mum temperature (8—11 °C) and a long photoperiod
(more than 15 h). In addition, the magnitude of the
seed yield response in their experiments, about
848 kg/ha on a fine clay (calcixerollic) soil was about
77% less than the average response 3635 kg/ha
reported here. Alternatively, by analysing with the
transpiration model (Eqn 3 and Fig. 4), the mean
value of k=0-041+0:001 mb was within the range
for C; crops (0-040-0-065 mb) given by Tanner &
Sinclair (1983). This means that dry matter pro-
duction cannot be increased without using more
water in transpiration (E,). The conditions required
to achieve maximum yields are the same as for maxi-
mum water use. Consequently, the main prospect
for improving WUE lies in improved management to
increase E, as a fraction of evapotranspiration.
However, there are limits to such improvements; the
WUE can only approach transpiration efficiency as
the upper limit (Tanner & Sinclair 1983). Growing
crops in humid climates where vapour pressure deficit
is small could also increase transpiration efficiency.
Further, root weight could have an effect on WUE,
but almost all reports of WUE are based on top dry
matter only. This is an area where further work is
required.

Water extraction pattern and water uptake rates

It was evident from the Neutron-probe measurements
that none of the irrigation or rainwater was lost to
drainage or to deep percolation from sowing to ma-
turity. The differences in the pattern of variation in
the volumetric soil water content with time depended
on rainfall and irrigation and the amount of water
remaining in the soil profiles usually increased with
the number of irrigations. Thus, an increase in soil
moisture content on successive dates was attributed
to rainfall/irrigation and a decrease was attributed
to root uptake. Generally, the surface horizons lost
water more or less exponentially and the slope be-
came more gradual with depth (Fig. 5). At some
depths the initial gradual loss of water at a particular
time (date) was followed by an accelerated rate of
water loss. Dardanelli et al. (1997) has suggested
that the depth of soil to which accelerated rate of
soil drying was observed can be considered as the
‘effective rooting depth’. In the present study the
effective rooting depth (ERD) was approximately
0-90 cm. An increase in the frequency of irrigation
presumably resulted in higher root proliferation,
mostly in the upper layer (0—30 cm) (Silim ez al. 1993).
Thus, more water was used by the plants from the
upper soil layer.
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The daily rate of water uptake decreased with
depth and depended on the irrigation by sowing
date interaction (Figs 6 and 7). Leport et al. (1999)
reported that a chickpea crop in Australia used
90 % of the water from 0-80 cm soil depth. The mean
daily water use of the three Kabuli chickpea cultivars
ranged from 0-49-0-93 mm per 10 cm soil layer per
day from 0-30 cm in the soil profile and decreased
logarithmically from the immediate subsoil layer.

Response to drought

The present work showed that yield responses to
Dpmax fit reasonably well to the Penman model
(Penman 19624, b, c; Penman 1970; French & Legg
1979). As expected, the Dp,.x values were large for
rainfed and late irrigated crops (Tables 1 and 2) and
are similar to those experienced by Kabuli chickpea
crops in Syria (Saxena et al. 1990). Chickpea seed
yield is the ultimate consequence of the amount of
DM accumulated during the growing season and its
partitioning into seeds (Soltani et al. 1999). Water
deficits decrease the photosynthesis process both on a
per unit area of soil and per unit area of leaf (Lawlor
1995), subsequently DM and seed yield decreases
(Dahan & Shibles 1995). This argument is supported
by the observation of a significant measured decline in
TDM production and seed yield in response to in-
creased Dppax-

In addition, the Penman model enabled the present
authors to define the limiting soil moisture deficit
(cDpmax) of about 165 and 84 mm for the November
and December sowings in 1998/99 and 170 mm in
1999/2000 (Fig. 10b,d). This indicates that yield re-
duction is a linear response (averaged over 2 years by
0-26%) to Dpmax for Dpnax greater than cDpyay. In
Canterbury, Stone et al. (1997) reported cDppax of
approximately 90 mm for sweetcorn. This limiting
deficit allows for informed decisions about the yield
benefit (if any) to be gained by irrigation at any stage
throughout the life of the crop.

Evidence for moisture-sensitive periods

The concept of ‘moisture-sensitive periods’ is im-
portant in the context of scheduling irrigation. The
available literature is somewhat conflicting, as the
most critical period in chickpea is usually considered
to be the flowering stage (Jadhav ef al. 1997). Tomar
et al. (1999) indicated that the grain filling stage may
also be critical. Further, application of three irri-
gations at branching, pre-flowering and seed devel-
opment stages, gave the highest yield (up to 119 %
greater than the unirrigated yield) (Yusuf et al. 1980;
Nimje 1991). In the present experiments there was
little evidence to support the existence of a moisture-
sensitive period in Kabuli chickpea crops. This is be-
cause of two major problems: difficulty in quantifying
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the degree of drought during the supposed ‘sensitive
periods’ and lack of control over rainfall. However,
in the present study sowing date had the dominant
effect on grain yield as the irrigation by sowing date
and the sowing date by cultivar interactions (Anwar
et al. 2003 b) indicated that the response to drought
depended on the sowing date. Averaged over the 2
years there was a more than 100 % increase in Kabuli
chickpea seed yield as a result of full irrigation (e—m),
compared with the rainfed crops.

Analyses by Hebblethwaite (1982), in faba beans,
did not show any particular sensitive period in that
crop. From the Dp,,., analysis, no additional yield
increase will occur in response to extra water applied
once the Dpy,.y is less than 165 mm. Kabuli chickpea
yield was reduced by water deficit at any stage of de-
velopment, provided the deficits were greater than the
limiting water deficit (CDppay). The maximum Dp.«
experienced by a crop during the growing season is
the event that sets the upper limit to final yield.
Therefore, there is no point in irrigating to maintain a
low Dppay if @ large deficit has already occurred. This
applies equally at all stages of crop development be-
cause there was no evidence of any period of par-
ticular vulnerability to water deficit. This was clear
from the simple linear relationship between Dpj,ax
and yield (Fig. 8).

Unequivocal evidence on the presence or absence
of critical periods of sensitivity to water stress will
come from growing chickpeas beneath rain shelters.
However, the present findings can form the basis of
irrigation management to maximize chickpea yield in
a subhumid temperate environment where annual
rainfall averages only 600 mm.
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The overall yield response under the different
values of Dp.x was the net effect of variation of
intercepted radiation, radiation use efficiency and
number of pods per plant. Early sowing and frequent
irrigation probably created a higher vapour pressure
gradient between the crop canopy and the atmos-
phere as shown by Fiscus & Markhardt (1979).
This might have caused a relatively larger water
uptake than in the other schedules. On the other
hand, the low green area index coupled with
low stomatal conductance (Passioura et al. 1995;
Turner 1997) was mainly responsible for low water
use from the rainfed stressed plants. This was
reflected in the highest WUE in the rainfed plots
during 1998/99, which had the lowest seed and bio-
mass yield. By extracting soil water to a greater
extent, Kabuli chickpeas grown with full irrigation
always produced higher biomass and seed yields
compared with nil and late irrigation. Therefore, it
appears that irrigation water (application based on
maximum potential soil moisture deficit) could
be used efficiently in this type of soil and environ-
ment; the apparent threshold for maintenance of
favourable plant water status resulted in higher
yields. The present study has shown that using actual
evapotranspiration and water-use efficiency, the bio-
mass yield and seed yield of Kabuli chickpeas can be
accurately predicted. Therefore, yield variations
could be associated with changes in any of these
parameters.

The authors would like to thank Dr Keith Pollock
for advice on Neutron probe soil moisture measure-
ment and evapotranspiration.
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