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Abstract 

 

Radiation use efficiency (RUE), and subsequent partitioning between shoots and roots were 

investigated for ‘Grasslands Kaituna’ lucerne crops grown in the cool temperate climate of 

Canterbury, New Zealand. Crops were grazed by sheep every 28 or 42 days and yielded 12 

and 23 t DM/ha.year, respectively. The RUE for above ground shoots (RUEshoot) was 1.7-2.0 

g DM/MJ of intercepted photosynthetically active radiation (PARi) in spring but decreased 

systematically to ≤1.0 g DM/MJ PARi in autumn . The RUE for total biomass, (RUEtotal) 

ranged from 1.3 to 3.1 g DM/MJ PARi in response to air temperature and defoliation 

treatment. The lowest RUEtotal in mid summer for the treatment defoliated every 28 days was 

related to a 20% decline in the leaf photosynthetic capacity measured at 1000 μmol 

photons/m2.s (Pn1000) and at saturating light (Pmax). In turn, the reduction in Pn1000 was related 

to differences in specific leaf nitrogen (SLN), through changes in specific leaf weight (SLW) 

rather than the leaf N concentration of 4 to 6% DM. 
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The fractional partitioning of DM to roots (proot) increased from near zero in winter/early-

spring to >0.45 in autumn, which explained the observed seasonality of RUEshoot. For the 

treatment defoliated each 42 days, proot increased linearly from ~0.05 to >0.45 as Pp increased 

from 10.5 to 16.5 h. In decreasing photoperiods proot averaged 0.45. There was a linear 

increase (R2=0.52) in proot with Tsoil/Tair but only in the treatment defoliated each 42 days. 

Agronomic treatments that result in sub optimal N reserves post grazing can be expected to 

produce conservative canopy characteristics but reduced photosynthetic capacity of the first 5 

main stem leaves. Beyond this development stage, canopy expansion may be reduced with 

more conservative leaf N.   

 

Key words: Alfalfa; carbon and nitrogen partitioning; light use efficiency, photosynthesis, 

shoot/root ratio, root reserves, simulation modelling. 

 

Introduction 

 

The productivity and persistence of lucerne (Medicago sativa L.) stands is influenced by the 

frequency of cutting or grazing (Keoghan, 1982). Several studies have suggested a defoliation 

schedule based on calendar days, thermal-time units or the developmental stage of the crop 

(e.g. Belanger et al., 1992; Brown et al., 1990; Moot et al., 2003). For example, in the 

subtropical climate of Queensland (Australia), the annual yield of several lucerne cultivars 

was optimized through a fixed 35 day cutting interval (Gramshaw et al., 1993). In temperate 

climates, infrequent defoliations are recommended in autumn to allow the accumulation of 

root reserves required to support the following spring regrowth (Belanger et al., 1999; Moot 

et al., 2003). Albeit useful on site, such recommendations are not universally applicable. This 
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is because the physiological processes that control growth and development of lucerne crops 

respond to seasonal environmental signals and these responses may be modified by 

defoliation management (Christian, 1977; Fick et al., 1988). Previous research (Teixeira et 

al., 2007a; Teixeira et al., 2007b; Teixeira et al., 2007c) has shown that grazing each 28 days 

reduced annual shoot yield by ~50% compared with the 23 t DM/ha.year produced by crops 

defoliated each 42 days. This reduction was predominantly explained by the limited 

interception of photosynthetically active radiation (PARi) in the frequently defoliated crops 

due to reduced rates of expansion of primary and axillary leaves. However, lucerne shoot 

yield is also affected by the efficiency of conversion of PARi into aerial biomass (i.e. 

radiation use efficiency for shoot DM production, RUEshoot) which can be seasonal (Khaiti 

and Lemaire, 1992) and sensitive to defoliation frequency (Avice et al., 1997). These authors 

observed that the RUEshoot of ‘Europe’ lucerne was 1.45 and 1.87 g DM/MJ PARi for crops 

defoliated at 30 and 45 days respectively. This difference could be caused by the low 

availability of root N reserves which are observed in frequently defoliated lucerne crops 

(Teixeira et al., 2007b). Specifically, photosynthetic capacity is dependent on N supply and 

RUE is strongly associated with net photosynthesis at the canopy level (Sinclair, 1991; 

Sinclair and Horie, 1989). Thus agronomic or management factors that restrict N supply may 

affect photosynthetic capacity. Alternatively, RUEshoot could be affected by changes in the 

partitioning of DM between shoots and roots as speculated by Avice et al. (1997).  

 

The fractional partitioning of DM to roots (proot) has previously been shown to differ 

seasonally (Brown et al., 2006). Khaiti and Lemaire (1992) observed that lucerne RUEshoot 

ranged from 1.1 g DM/MJ PARi in autumn to 1.8  g DM/MJ PARi in summer in the 

temperate climate of Northern France. In their study, when RUE was expressed in relation to 
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total biomass (i.e. shoots plus roots; RUEtotal) its value was conservative at 2.3 g DM/MJ 

PARi throughout the year (i.e. regardless of environmental conditions). In contrast in New 

Zealand, Brown et al. (2006) showed that RUEtotal of  ‘Grassland Kaituna’ lucerne was 

responsive to air temperatures below 18ºC.  

 

These previous observations suggest that the seasonality of RUEshoot may reflect differences 

in (i) carbon assimilation (e.g. photosynthesis or RUE) and (ii) DM partitioning between 

shoots and roots, in response to environmental factors (e.g. temperature, photoperiod), but the 

relationships are insufficiently quantified to be predictive (Brown et al., 2006; Collino et al., 

2005; Noquet et al., 2001). Furthermore, any additional impact of defoliation frequency, 

which changes the demand for carbon and nitrogen in perennial organs (Richards, 1993), has 

not been investigated. As a result, the lack of explanation about the underlying processes that 

control RUEshoot, RUEtotal and proot limits the mechanistic understanding of lucerne growth 

processes and compromises the accuracy of current simulation models (Confalonieri and 

Bechini, 2004; Gosse et al., 1984; Robertson et al., 2002). The objective of this research was 

to quantify the seasonal pattern of lucerne RUEshoot of individual regrowth cycles in response 

to long (42-day) or short (28-day) frequency of defoliation and describe mechanisms that 

explain any differences in RUEshoot through the analysis of RUEtotal, proot, leaf photosynthesis 

rates, and the N status of leaves. 

 

Materials and Methods 

 

Experimental site and defoliation treatments  
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A field experiment was conducted from 14 June 2002 to 04 October 2004 at Lincoln 

University Canterbury, New Zealand (43°38’S, 172°28’E, 11 m a.s.l). The soil is a 

‘Wakanui’ deep silt loam (USDA Soil Taxonomy: Aquic Ustochrept, fine silty, mixed, 

mesic) classified as ‘Pallic’ in the New Zealand Soil Classification system (Hewitt, 1993; 

Watt and Burghan, 1992). An established, fully irrigated, two year old crop of ‘Grassland 

Kaituna’ lucerne was subjected to four contrasting defoliation treatments. Treatments were 

imposed as a complete randomized block design (4 replications) being a combination of (i) 

two grazing frequencies (28 or 42 days) and (ii) two periods when these grazing frequencies 

were imposed (before and/or after 4 February). For two treatments, a constant grazing 

frequency of 42 days (L, long cycle) or 28 days (S, short cycle) was applied throughout the 

year (LL and SS treatments, respectively). For LS and SL treatments, the 28 or 42-day 

grazing frequency was applied from early-spring until mid-summer (4 February) and then 

switched to the alternative treatment for the remainder of the year.  

 

Sheep of mixed age classes grazed the individual 315 m2 plots and any residual stem left 

post-grazing was trimmed to a height of ~50 mm to aid measurement of new shoot regrowth 

but avoid damage to the crown or emerging basal shoots. Crops were irrigated to avoid water 

stress, fertilized as required for optimal yields and weed ingression was avoided by chemical 

control. Additional details about the site and crop management were given in Teixeira et al 

(2007b).  

 

Initial research quantified annual shoot yield, rates of canopy development and 

concentrations of endogenous reserves in crowns and taproots (Teixeira et al., 2007a; 

Teixeira et al., 2007b). They showed the greatest differences were between LL and SS 
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treatments so these were subjected to further detailed measurements of RUE, DM partitioning 

patterns, photosynthesis rates and leaf nitrogen concentration.  

 

Measurements 

 

Accumulated intercepted photosynthetically active radiation (∑PAR i) 

 

Accumulated intercepted PAR (∑PARi) was calculated by summing daily estimates of 

intercepted PAR (PARi) for each regrowth period. Daily PARi was obtained by multiplying 

the daily available above canopy PAR of each day (PARo) by the fractional PAR interception 

(PARi/PARo). Daily PARo was calculated from hourly logs of incoming total solar radiation 

(Ro) taken with a pyranometer LI-200SA (LI-COR Inc., Lincoln, Nebrasca, USA) on site as 

0.5 x Ro (Szeicz, 1974). The PARi/PARo was estimated from measurements of fractional 

diffuse non-interceptance (DIFN) taken with a canopy analyser LAI-2000 (LI-COR Inc., 

Lincoln, Nebraska, USA). Detailed methodology of sampling and calibration of the LAI-

2000 were given in Teixeira et al. (2007c). Briefly, readings of DIFN were taken in 

predominantly diffuse light conditions (e.g. twilight) at 7 day intervals, starting 10 days after 

the last grazing day of each regrowth cycle. Measurements were taken as one reference above 

canopy and five random below canopy readings per plot.    

 

Sampling of shoot dry matter (DMshoot) and calculation of total dry matter (DMtotal) 

 

Shoots were cut with a set of hand shears above the crown and harvested from the area of a 

single 0.2 m2 quadrat placed randomly in each plot. These shoot dry matter (DMshoot) samples 
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were taken each 7-10 days within cycles starting ~10 days after the previous grazing. The 

material was dried in a forced air draft oven at 65°C for at least 48 hours to a constant weight.  

 

Total plant DM (DMtotal) was calculated as the sum of DMshoot and crown plus taproot DM 

taken to a depth of 300 mm (DMroot). Crown plus taproot DM were excavated on the same 

dates and from the same 0.2 m2 quadrat area where shoots were previously harvested. 

Samples were immediately kept on ice, freeze dried and weighed. The full data set for 

seasonal shoot and crown plus taproot DM was reported in Teixeira et al. (2007b). 

 

RUE calculation  

 

Radiation use efficiency for shoot DM (RUEshoot) was calculated from linear regression 

(y=a+bx) of DMshoot against ∑PARi for each regrowth cycle where the coefficient (b) 

represents RUE. The intercept (a) of regressions was not forced through the origin because, 

unlike annual crops, there may be an allocation of DM from perennial organs to shoots during 

the early stages of lucerne regrowth (Avice et al., 2001). Similarly, the radiation use 

efficiency for total DM (RUEtotal) was calculated as the linear slope between accumulated 

PARi and total crop DM  (DMtotal= DMshoot + 1.25 x DMroot). In this calculation the sample of 

DMroot taken at 300 mm was assumed to represent 80% of the total underground biomass 

(Lemaire et al., 1992). The calculation of RUEtotal was only carried out in regrowth cycles 

when there was a measurable increase in DMroot. This resulted in 16 estimates of RUEtotal 

from 36 available regrowth cycles. 

  

Due to the response of lucerne RUE to temperature (Brown et al., 2006; Collino et al., 2005), 

the estimated values of RUEtotal were reported as a function of mean air temperature (Tair) and 
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compared with the temperature framework developed by Brown et al. (2006) for ‘Grassland 

Kaituna’ in Canterbury conditions. In this temperature response, RUEtotal is nil at 0°C but 

increases linearly to an optimum RUE (RUEopt) of 3.2 g DM/MJ PARi at a mean daily Tair of 

18°C. 

 

Calculation of DM partitioning to crown plus taproot 

 

The estimates of fractional dry matter partitioning to crown plus taproot (proot) were 

calculated as the slope (b) of the linear regression DMroot= a + bDMtotal for each regrowth 

cycle. The proot was estimated for the same 16 regrowth cycles, from which RUEtotal was 

calculated.   

 

To test photoperiod and temperature as predictors of proot, an alternative rationale was used to 

indirectly derive proot for all regrowth cycles. To do this, proot was calculated from the quotient 

of ‘measured’ RUEshoot and ‘estimated’ RUEtotal  (RUE’
total) from the temperature response by 

Brown et al. (2006) as proot=1- (RUEshoot/ RUE’
total ). 

 

Leaf net photosynthesis rate  

 

Spot readings at 1000 µmols photons/m2.s (Pn1000) 

 

Approximately 740 individual readings of leaf net photosynthesis rates (Pn1000, µmol 

CO2/m2.s) were taken during 42 dates from 29 August 2002 to 02 May 2004. Readings were 

taken on 3-4 of the youngest fully expanded leaves per plot, at artificial light fluxes 

(photosynthetic photon flux density, PPFD) of 1000 µmol photons/m2.s using a portable 
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photosynthesis system LI-6400 (LI-COR Inc, Lincoln, Nebraska, USA). The Pn1000 

measurements were taken between 1100 and 1400 h in clear sky conditions. The temperature 

in the leaf chamber was set to 21°C and the CO2 concentration at 400 µmol/mol.  

 

Readings were taken after a coefficient of variation (CV) ≤ 3% was obtained for the Pn1000 

logs. Readings were adjusted according to the actual area of the leaf contained in the 

equipment chamber. Individual leaf area was quantified after photosynthesis measurements 

by opening each leaf flat onto white A4 paper and then digitally photographing it. Leaf 

surface area was then estimated by image analysis using the software QUANT (Vale et al., 

2003) which was calibrated to the number of pixels contained in a 200 mm reference scale. 

To standardize Pn1000 for specific environmental (e.g. temperature) and management 

conditions on the sampling day (Peri et al., 2004), Pn1000 values for each plot were 

normalized by the mean maximum Pn1000 observed on the sampling day (Pn1000max) and 

multiplied by an optimum Pn1000 of 31.5 μmols CO2/m2.s measured for ‘Grasslands Kaituna’ 

in Canterbury from previous long-term measurements (Teixeira, 2006; Varella, 2002). 

Normalized values of Pn1000 (Pn’
1000) were then compared by ANOVA as pooled means 

during the initial (≤150ºCd, basis 5ºC) and final (>150ºCd) stages of each individual regrowth 

cycle (Equation 1). 

 

Equation 1 

Pn’
1000= (Pn1000/Pn1000max) x 31.5 

 

Photosynthetic light response curves 
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In addition to the Pn1000 readings, photosynthetic light response curves were measured with 

the portable photosynthesis system in 102 individual leaves during 14 dates from 28 

September 2002 to 28 April 2003. Readings were taken at seven PPFD intensities: 0, 100, 

250, 500, 750, 1000, 2000 µmol photons/m2.s on 3 or 4 of the youngest fully expanded leaves 

of each plot from LL and SS treatments. The criteria for taking measurements were a 

minimum waiting time of 60 seconds and a CV ≤ 3% for each measurement. The 

photosynthesis system configurations and criteria used to perform the light response curves 

were the same as for the Pn1000 readings. 

 

A non-rectangular hyperbola (Equation 2) was fitted to the data to obtain the main parameters 

from the light-response curves (Thornley and Johnson, 2000):  

 

(Equation 2) 

Pn= (Pmax  + α x PPFD) – [(Pmax + α x PPFD)2-(4 x θ x α x PPFD x Pmax)]-Rd 

                                                         2 x θ 

 

Where Pn is the leaf net photosynthesis rate (µmol CO2/m2.s), Rd is the rate of dark 

respiration (µmol CO2/m2.s). The parameters α, θ and Pmax represent the initial slope (µmol 

CO2/µmol photons), the convexity (dimensionless) and the upper asymptote (µmol CO2/m2.s) 

of the light-response curve. Curves were fitted with Sigmaplot v.8 (SPSS, Inc.) using the 

following constraints: α>0; 0.3<θ<1.0; 2.0< Pmax<70.0; Rd <5.0. 

 

Based on the observation that the effects of the defoliation treatment on crop yield and 

endogenous root reserves occurred mainly after the first spring of 2002/03 (Teixeira et al., 
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2007b), the parameters of the light-response curves were analysed as pooled averages for 

separate spring and summer-autumn periods.  

 

Data analyses 

 

When years or regrowth cycles were compared, the experiment was analysed as a split-plot 

design with as period the main plot and defoliation frequency as the subplot. Seasonal trends 

were shown graphically by displaying the average and the standard error of the mean (SEM) 

of each measured variable. Linear and non-linear functions were fitted between explanatory 

and dependent variables using SIGMAPLOT version 8.02 (SPSS Inc.). The variables and the 

regression coefficients of equations were compared using analysis of variance (ANOVA). In 

all cases, means were compared whenever treatment effects in the ANOVA presented 

P<0.05. Then, a Fisher’s protected least significant difference (LSD) was used to separate 

means at the 5% level (α=0.05). The software used for statistical analysis was GENSTAT 7th 

edition (Lawes Agricultural Trust, IACR, Rothamsted, UK). 

 

Results 

 

Shoot radiation use efficiency (RUEshoot) 

 

Shoot radiation use efficiency (RUEshoot) followed a consistent seasonal pattern being higher 

(P<0.05) in early-spring/summer than autumn (Figure 1). For example, the RUEshoot of the 

LL treatment decreased (P<0.01) from ~1.7 g DM/MJ PARi in October 2002 (early-spring) to 

~1.0 g DM/MJ PARi in late May (autumn). The exception to this pattern was the last autumn 

cycle of LL in 2002/03 which had RUEshoot of ~2.5 g DM/MJ PARi. However, this result was 
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inflated by the low shoot yield of <400 kg DM/ha. Overall, RUEshoot for both treatments was 

higher (P<0.05) in the second (2003/04) than the first year, particularly during summer.  

 

The effect of grazing treatments on RUEshoot was characterized by a strong interaction 

(P<0.01) with season. The SS treatment had the highest RUEshoot in late-winter/early-spring 

(>2.0 g DM/MJ PARi; Figure 1) when yield ranged from 1.0 to 2.0 t DM/ha in the second and 

first year, respectively. During spring/summer, the periods of greatest DM accumulation, 

there were no differences between treatments with an average RUEshoot of 1.5 g DM/MJ 

PARi.  

 

[Figure 1, suggested place] 

 

Radiation use efficiency for total dry matter (RUEtotal) 

 

The pooled treatment average RUEtotal was 2.2±0.4 g DM/MJ PARi, with individual values 

ranging from 1.3 to 3.1 g DM/MJ PARi (Figure 2). To account for temperature effects, 

estimated values of RUEtotal were compared with the temperature framework proposed by 

Brown et al. (2006). The RUEtotal values of the LL treatment were consistent with the 

temperature framework (RMSD of 0.4 g DM/MJ PARi) and increased (P<0.06) at 0.10 g 

DM/MJ.ºC as Tair ranged from 8 to 18ºC. In contrast, there was no systematic influence 

(P=0.88) of Tair on RUEtotal in the SS treatment. This was mainly because in four of the eight 

analysed regrowth cycles of the SS treatment, RUEtotal was 0.7-1.0 g DM/MJ PARi less than 

predicted. This increased the RMSD in relation to the model to 0.9 g DM/MJ PARi for the SS 

treatment.  
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[Figure 2, suggested place] 

 

Fractional partitioning of DM to crown plus taproots (proot) 

 

The fractional partitioning of DM to crown plus taproots (proot) increased (P<0.01) from 

<0.05 in late-winter/early-spring to 0.33 in summer and >0.45 in mid-autumn in the LL 

treatment (Figure 3). During spring and autumn, the proot in the SS crops followed a similar 

pattern to LL treatment. By contrast, during summer proot was on average 0.13 in the SS 

treatment compared with 0.33 in LL treatment. 

 

[Figure 3, suggested place] 

 

Net photosynthesis of leaves  

 

The impact of treatments on Pn1000 depended on the stage of crop regrowth. Pn1000 readings 

taken in the first half of regrowth cycles (<150°Cd) were ~20% greater (P<0.05) in the LL 

treatment (24.9 µmol CO2/m2.s) than the SS treatment (20.4 µmol CO2/m2.s) (Table 1). In 

contrast, after 150°Cd, both treatments had a similar (P=0.34) Pn1000 of ~24 µmol CO2/m2.s. 

 

[Table 1, suggested place] 

  

Specific leaf nitrogen and leaf photosynthesis 
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The specific leaf nitrogen (SLN) explained 68% of the differences in normalized Pn1000 

(Pn’1000) that increased (P<0.01) from 15 µmol CO2/m2.s at a SLN of 1.5 g/m2 to ~30 µmol 

CO2/m2.s at a SLN of 3.4 g/m2 (Figure 4 a). 

 

[Figure 4, suggested place] 

 

The response of leaf photosynthesis to SLN followed a saturation curve with a projected null 

Pn’1000 at an SLN of 0.92 g/m2. While N%leaf ranged from 4 to 6% DM, without any 

systematic effect on leaf Pn’1000 (0.29<P<0.70, Figure 4 b), SLW ranged from 35 to 70 g/m2 

and explained 81% of the variation in leaf Pn’1000 (Figure 4 c). 
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Discussion   

 

Overall, results showed that the conversion efficiency of PARi into DM (i.e. RUEshoot and 

RUEtotal) and the partitioning of DM to roots (proot) of lucerne crops differed seasonally and 

were affected by defoliation frequency.  

 

The seasonality of RUEshoot, RUEtotal  and proot 

 

There was a consistent seasonal pattern of change in lucerne RUEshoot, regardless of 

defoliation frequency and the amounts of root endogenous reserves (Figure 1). The range and 

pattern of RUEshoot, that declined from ~1.7 g DM/MJ PARi in spring to <1.0 g DM/MJ PARi 

in autumn, was in accordance with previous observations for the temperate climates of France 

and New Zealand (Brown et al., 2006; Duru and Langlet, 1988; Khaiti and Lemaire, 1992). 

This regular seasonality suggests that environmental factors exerted a stronger control of 

RUEshoot than the availability of C and N, created by the defoliation treatments. Nevertheless, 

air temperature (Tair) was a poor predictor (P=0.41, R2=0.11) of RUEshoot (data not shown) 

which differs from the observations made by Collino et al. (2005) for lucerne crops grown in 

the temperate Argentinean pampas. This contrast may be explained by the fact that, in the 

current experiment, RUEtotal and proot (the two components that influence RUEshoot) responded 

separately to temperature. The RUEtotal increased linearly (P<0.06) with air temperature (Tair) 

in LL treatment (Figure 2), but the proot was poorly associated with Tair (P=0.26, data not 

shown). The response of RUEtotal to Tair (Figure 2) is consistent with the increase in leaf net 

photosynthetic rates of the lucerne leaves with air temperature, observed under controlled 

environments (Al Hamdani and Todd, 1990; Murata and Honma, 1968).  
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The largest seasonal differences in RUEshoot were caused by changes in the fractional 

partitioning of DM to roots (proot). As the growth season advanced from spring to autumn, the 

retention of DM in shoots diminished (i.e. proot increased from <0.05 to ~0.45; Figure 3). 

These results indicate that the increase in the partitioning of DM to roots was not abrupt, but 

occurred gradually from spring to summer, suggesting a systematic response to 

environmental signals. Both photoperiod (Pp) and temperature (Tsoil/Tair) were tested as 

predictors of proot, as these environmental factors are associated with nitrogen and carbon 

partitioning between shoots and roots of lucerne crops (Brown et al., 2006; Gosse et al., 

1984; Hargreaves, 2003; Noquet et al., 2001). The strong linear increase (R2=0.97) and the 

range of response of proot to “increasing” photoperiod (IPp) in the LL treatment (Figure 5 a) 

was consistent with the observations of Morot Gaudry et al. (1987) in the temperate climate 

of France. These authors measured marked carbon (14C) allocation to lucerne roots to be 20% 

in spring but increase to 50% in autumn. Although the relative allocation of DM to roots (i.e. 

proot) was greatest in autumn at ~0.45 (Figure 3), the maximum absolute flux of DM to 

lucerne roots occurs slightly earlier in the season, during mid-summer (Teixeira et al., 

2007b). At this time, when proot was ~0.30, total amounts of assimilation of C 

(photosynthesis) and N (mineral uptake and N2 fixation) are greater than in autumn due to 

more favourable temperatures and incoming radiation.  

 

The test of Tsoil/Tair as an empirical predictor of proot (Figure 5 b,d) eliminated the hysteresis 

in the LL treatment, but the low coefficient of determination suggests that other factors may 

influence the partitioning patterns of lucerne crops. This contrasts with annual crops such as 

wheat (Triticum aestivum) and maize (Zea mays) in which the temperatures experienced by 

shoots and roots were the main driver of DM partitioning, regardless of the concentration of 

nitrogen or carbohydrates in these organs (Engels, 1994).  
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[Figure 5, suggested place] 

 

The effect of defoliation treatments on RUEshoot, RUEtotal and proot 

 

The lack of response of RUEshoot to defoliation treatments during the periods of greatest DM 

accumulation (spring/summer) was caused by the compensatory changes that occurred 

between RUEtotal and proot. These maintained the overall seasonal pattern as unchanged. 

Specifically, RUEshoot was unaffected by the low RUEtotal of the SS treatment during summer 

(Figure 2) because this was counterbalanced by the greater retention of DM into shoots in this 

treatment (i.e. lower proot in summer, Figure 3). This reduced partitioning of DM to roots in 

the SS treatment could be an artefact of the short duration of the 28 day treatment. This 

interrupted the regrowth when the proportion of DM allocated to storage organs was 

increasing through the grazing cycle.  

 

During the late-winter/early-spring period, RUEshoot was consistently higher in the SS 

treatment (2.0-2.4 g DM/MJ PARi) than the LL treatment (1.5-1.8 g DM/MJ PARi). The first 

harvest of SS treatment was taken 15 days earlier than LL treatment and this could 

overweight the initial period of spring regrowth in the RUE calculation. During early spring, 

the retention of DM in shoots was the highest (Figure 3) with additional remobilization of 

DM from roots to shoots (Avice et al., 1996) producing a consequent increase in the value of 

RUEshoot.  

 

The evidence from four summer regrowth cycles of the SS treatment indicated that frequent 

defoliations reduced RUEtotal to half the values observed in the LL treatment (Figure 2). 
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Although it is unclear why this response was not common for all regrowth cycles in SS 

treatment, these results were consistent with the decline of ~20% in Pn1000 in the early stages 

of regrowth of these crops (Table 1). In addition, a 20% lower (P<0.05) average net leaf 

photosynthesis rate (Pmax) was also observed in the SS treatment during summer/autumn 

(Figure 6), but the number of measurements of light response curves was insufficient to allow 

an ANOVA for comparison of stages of regrowth.  

 

[Figure 6, suggested place] 

 

Under field conditions, the factors that are most likely to impact on leaf photosynthesis rates 

are N supply, water availability and temperature (Lawlor, 2001). Of these only the 

availability of endogenous root N were manipulated through the frequent defoliation 

treatments.  

 

Endogenous root N was reduced by up to 65% in the SS treatment (Teixeira et al., 2007b). 

This suggests that the limited supply of nitrogen to shoots could be the reason for the limited 

photosynthetic capacity and reduced RUEtotal (Avice et al., 1997; Lawlor, 1995). A shortage 

of N supply to shoots may occur immediately after defoliations, when 65-75% of the N 

mobilized from roots is translocated to growing leaves (Kim et al., 1991). This hypothesis 

was consistent with the positive observed response of leaf net photosynthesis to specific leaf 

nitrogen (SLN, Figure 4 a). In the leaves of C3 species, such as lucerne, ~55% of the nitrogen 

is associated with the photosynthetic system (Calvin-cycle, Rubisco or the light harvest 

compounds) and photosynthesis can be affected by changes in both chemical and anatomical 

traits of leaves (Heichel et al., 1988; Lawlor et al., 2001). In this sense, the SLN can be 

conceptually analysed through its structural (specific leaf weight, SLW) and metabolic 
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(nitrogen concentration, N%leaf) components (Reich et al., 1998). In the current experiment, 

lucerne plants adapted to a limited supply of N by producing thinner leaves as indicated by 

the strong relationship between Pn’1000 and SLW (Figure 4 b). Under environmentally 

controlled conditions such a relationship was previously observed by Pearse et al. (1969) and 

Okubo et al. (1975) who measured increases of 2.5 to 4.0 fold in Pmax as SLW augmented 

from ~19 to 55 g/m2. This large plasticity of lucerne SLW (Hodgkinson, 1974) may be 

mediated by changes in the number of palisade mesophyll cell layers (Evans, 1993). For 

example, nitrogen deficiency during the early stages of regrowth could reduce the number of 

cells in the leaf primordia (Gastal and Lemaire, 2002; Gastal and Nelson, 1994) when cell 

division, DNA replication and protein synthesis are intense (Lemaire and Millard, 1999) 

affecting structural protein formation (Lawlor et al., 2001). On the other hand, at later stages 

of regrowth (e.g. >150ºCd) a recovery of the photosynthetic capacity of upper leaves would 

be expected due to the diminishing dependency of shoots on nitrogen reserves (Kim et al., 

1991) and the increasing translocation of N from basal senescing leaves to the upper canopy 

(Lotscher et al., 2003).  

 

Physiological and modelling implications  

 

Overall, results indicate that the responses of lucerne crops to frequent defoliations were 

mediated though the optimization of nitrogen use for growth. Interestingly, the strategy to 

adjust to limited N resources, in response to frequent defoliations, differed according to the 

development stage of the crop. During the early stages of regrowth (e.g. <150ºCd) there was 

a reduction in photosynthetic capacity of the first five primary leaves (Table 1). The 

expansion of these same first five leaves was previously shown to be unaffected by 

defoliation treatments or the amounts of endogenous reserves (Teixeira et al., 2007c). If the 
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scarcity of N or C from reserves persists at later stages of regrowth (e.g. >150ºCd), the 

photosynthetic capacity is recovered (Table 1) but at the expense of leaf area expansion 

(Teixeira et al., 2007c). Assuming that carbon is the most limiting resource after complete 

defoliation, maximizing the photosynthetic area (i.e. LAI) at the expense of photosynthetic 

efficiency (i.e. RUEtotal) seems a logical adaptation strategy for lucerne in the early stages of 

regrowth. The subsequent recover of photosynthetic capacity can be explained by the 

translocation of nitrogen from shaded senesced leaves (at the base of the canopy) to 

photosynthesizing leaves in the upper canopy  (Lemaire and Gastal, 1997; Lemaire et al., 

1991) at the same time when the absolute N uptake is increasing (Kim et al., 1991). These 

patterns support the rationale of a functional equilibrium between shoots and roots in which 

the balance between supply and demand for assimilates (C and N) within the whole plant 

determine growth of each organ (Lemaire and Millard, 1999). 

 

Together, these results indicate that attempts to mechanistically simulate growth and 

development of lucerne crops in response to contrasting defoliation frequencies must 

consider pools and fluxes of carbon and nitrogen in both shoots and roots. Important model 

parameters such as canopy expansion rates (e.g. LAER) and the conversion efficiency of 

radiant energy to crop DM (e.g. RUEtotal) could then be modulated by the availability of C 

and N.  

 

In current lucerne simulation modelling, RUEshoot is often treated as a parameter 

(Confalonieri and Bechini, 2004; Robertson et al., 2002). Our results show that the 

differences in RUEshoot can be modelled from the responses of proot and RUEtotal to 

environmental and management factors. Therefore, the explicit use of RUEtotal and proot to 
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simulate shoot yield (DMshoot; Equation 3) may improve the connection to the underlying 

physiological mechanisms that explain the seasonal RUEshoot (Equation 4). 

 

DMshoot=PARi x RUEtotal x (1-proot)     (Equation 3)  

 

RUEshoot=RUEtotal x (1-proot)      (Equation 4) 

 

 

In this sense, the responses of RUEtotal and proot to temperature, nitrogen and water supply 

could be derived from empirical experiments as frequently done for arable crops (Hammer, 

1998; Sinclair and Muchow, 1999). 

  

In the current experiment, no simple relationship was found to derive proot from photoperiod 

or temperature (Figure 5) and an interaction between environmental signals or the impact of 

management deserves further consideration. At this stage, the uncertainties about the 

underlying mechanisms controlling DM partitioning still justify empirical attempts for 

modelling proot (Sinclair and Seligman, 1996). Nevertheless, these approaches are expected to 

be site and cultivar specificity, i.e. must be limited by the known genetic variability among 

lucerne cultivars and the interactions with the wide environmental conditions in which 

lucerne crops are grown worldwide (Irwin et al., 2001).   

 

In conclusion, frequent defoliations reduced root nitrogen reserves of lucerne crops. Limited 

supply of endogenous nitrogen to shoots explained the reduction in RUEtotal of frequently 

defoliated crops. This impact was carried through a decrease in photosynthetic capacity of the 

earliest initiated leaves post-grazing, which together with subsequent reductions in canopy 
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expansion rates, diminished total yields. When coupled with the seasonal response in 

RUEshoot, due to changes in DM partitioning to roots, these results support recommendations 

for differential grazing times based on the seasonality of lucerne production, with emphasis 

on rebuilding underground nitrogen reserves in late-summer/autumn (Moot et al., 2003). 
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Tables 

 

Table 1. Leaf photosynthesis at 1000 µmol photon/m2.s of lucerne crops subjected to 

28-day (SS) or 42-day (LL) regrowth cycles. 

Stage of regrowth  LL SS 

 µmol CO2/m2.s 

Early regrowth  (0-150°Cd) 24.9a 20.4b 

Late regrowth   (151-350°Cd) 23.5a 24.2a 

Note: Values with the same letter within rows are not significantly different (α=0.05). SEM is 0.702.  

 

Figure captions 

 

Figure 1. Seasonal shoot radiation use efficiency (RUEshoot) of lucerne crops subjected to a 

long (LL, 42 days) or a short (SS, 28 days) regrowth cycle during the 2002/03 and 2003/04 

growth seasons at Lincoln University, Canterbury, New Zealand. 

 



 

 30 

Figure 2. Total radiation use efficiency (RUEtotal) against mean air temperature of lucerne 

crops subjected to a long (LL, 42 days) or a short (SS, 28 days) regrowth cycle during 

2002/03 and 2003/04 growth seasons at Lincoln University, Canterbury, New Zealand. Note: 

Dashed line represents model developed by Brown et al. (2006) for lucerne grown in columns 

under near-field conditions. Projection to zero in dotted line. 

 

Figure 3. Fractional partitioning of DM to crown plus taproot biomass in lucerne crops 

subjected to a long (42-day, LL) or short (28-day, SS) defoliation frequency at Lincoln 

University, Canterbury, New Zealand during the 2002/03 and 2003/04 regrowth seasons. 

Dashed line indicates the overall pattern observed in LL treatment. 

 

Figure 4. Response of the normalized rate of net leaf photosynthesis (Pn’1000) to specific leaf 

nitrogen (a), specific leaf weight (b) and leaf nitrogen concentration (c). Data-points represent 

average of 3 to 4 leaves per plot. 

 

Figure 5. Estimated fractional partitioning of DM to crown plus taproot in lucerne crops 

defoliated with a long (a, b) or a short (c, d) regrowth cycle against increasing (IPp) and 

decreasing (DPp) photoperiod (a, c) and the relationship between 100 mm depth soil and air 

temperature (b, d). Note: The quotient between measured RUEshoot and estimated RUEtotal 

(RUE’total) was used to calculate proot values for each regrowth cycle (assuming no effect of 

defoliation frequency in RUEtotal). For decreasing photoperiod, slopes were not significantly 

different from zero (α=0.05) and the average proot was 0.45 (dotted lines) for LL and SS 

treatment.  
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Figure 6. Reconstruction of light-response curves pooled for LL and SS treatments during the 

summer-autumn period of 2002/03. Note: The parameters α, θ and Pmax represent the initial 

slope, the convexity and the upper asymptote of the light-response curve. Rd is the rate of 

dark respiration and PPFD is the photosynthetic photon flux density. Mean parameter values 

are followed by one standard error of the mean (SEM) for n=4. Different subscript letters 

after Pmax values indicate difference at the 0.05 significance level; all other parameters were 

similar between treatments and average values are presented. The average stage of crop 

development was ~6 leaves (mean ∑Tt of 194ºCd). During early-spring (data not plotted) all 

parameters were similar between treatments: Pmax was 36 µmol CO2/m2.s; alpha (α) was 0.07 

µmol CO2/µmol photons, theta (θ) was 0.61 and dark respiration (Rd) was 1.82 µmol 

CO2/m2.s.  

 

 


