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Abstract Exotic invaders are some of the most serious insect pests of agricultural 

crops around the globe. Increasingly, the structure of landscape and habitat is 

recognized as having a major influence on both insect pests and their natural enemies. 

Habitat manipulation that aims at conserving natural enemies can potentially 

contribute to safer and more effective control of invasive pests. In this paper, we 

review habitat management experiments, published during the last ten years, which 

have aimed to improve biological control of invasive pests. We then discuss during 

what conditions habitat management to conserve natural enemies is likely to be 

effective and how the likelihood of success of such methods can be improved. We 

finally suggest an ecologically driven research agenda for habitat management 

programmes. 
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Introduction 

Exotic invaders are some of the most serious arthropod pests in agricultural 

landscapes. In the USA, for example, introduced arthropod pests have been estimated 

to cause losses worth around $20 billion each year (Pimentel et al. 2005).  For many 

of these invasive pests, chemical pesticides are still the dominant form of control, 

contributing to additional costs in the form of degraded environmental and human 

health (Mack et al. 2000; Paoletti and Pimentel 2000). Classical biological control, 

i.e., the intentional introduction of exotic natural enemies, has had some spectacular 

successes in controlling invasive pests (Zeddies et al. 2001; Menzler-Hokkanen 

2006), but only about 10 % of all introductions have contributed to management of 

the targeted arthropod pests (Greathead and Greathead 1992; Gurr and Wratten 2000). 

It has been suggested that low availability of key resources for natural enemies, such 

as alternative food and overwintering sites, in many agroecosystems is one reason 

limiting biological control effectiveness (Gurr and Wratten 1999). Support for this 

hypothesis comes from various studies showing that density and diversity of natural 

enemies tend to be higher in landscapes with a high proportion of non-crop vegetation 

(see Bianchi et al. 2006 for a review). Habitat management can be used to provide 

natural enemies with resources that can be limiting in agroecosystems (Barbosa 1998; 

Pickett and Bugg 1998; Landis et al. 2000; Gurr et al. 2004; Jonsson et al. 2008). This 

approach can lead to improved biological control, but it often requires in-depth 

knowledge of the natural enemies and the most appropriate, selective resources to 

deploy. In this paper we discuss how habitat management can be used to conserve 

natural enemies of invasive pests. We first give a general introduction to habitat 

management and review how successful this approach has been to improve biological 
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control of invasive pests to date. We then discuss under what circumstances different 

types of habitat management are likely to be effective, and how the likelihood of 

success can be improved. Based on this, we finally propose an ecologically driven 

research agenda to inform development of habitat management programmes for 

invasive pests. 

 

Habitat management and biological control 

The potential for pest management through habitat manipulation has long been 

recognised. Elton (1958) and Pimentel (1961) suggested that outbreaks of pest insects 

are less likely in diverse crop situations than in monocultures. Root (1973) found that 

pest populations were lower in polycultures of collard (kale) and meadow vegetation 

compared to collard monocultures. He identified two potential mechanisms behind 

such patterns: the ‘resource concentration’ hypothesis where specialist herbivores are 

less likely to find and remain on host plants within a polyculture and the ‘enemies’ 

hypothesis where natural enemies are more effective in diverse crop environments 

(Root 1973). We concentrate this review on effects relating to the ‘enemies’ 

hypothesis. 

 

The ‘enemies’ hypothesis implies that habitat management can be used to conserve 

and enhance natural enemies (Pickett and Bugg 1998; Landis et al. 2000). This type of 

conservation biological control can provide natural enemies with a favourable 

microclimate, shelter, hibernation sites and alternative food sources, such as nectar, 

pollen and alternative prey (Landis et al. 2000). One of the most well-known habitat 
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management techniques to conserve natural enemies is the provision of beetle banks. 

These are usually grass covered earth banks located in the middle of a field (Thomas 

et al. 1991, 1992). These banks can provide overwintering sites for ground living 

predatory beetles in the families Carabidae and Staphylinidae and for spiders and this 

can increase their density (Thomas et al. 1991, 1992) and diversity (MacLeod et al. 

2004). Predation has been found to increase close to beetle banks (Collins et al. 2002), 

but this effect is not universal (Prasad and Snyder 2006). Other ecological advantages 

of the banks are that relatively rare European farmland bird and mammal species nest 

on, and hunt along them (Thomas et al. 2001). 

 

Another well-known type of habitat management to conserve natural enemies is the 

sowing of flower strips to provide nectar and pollen as food sources for natural 

enemies (Pfiffner and Wyss 2004; Gurr et al. 2005; Heimpel and Jervis 2005). One 

example where this approach has been successful is in the control of the light-brown 

apple moth (Epiphyas postvittana (Walker)), an invasive leafroller (Lepidoptera: 

Tortricidae) in New Zealand. This species, which originated from Australia 

(Danthanarayana 1975), is considered one of the most important pests on grapes, 

apples and other horticultural crops in New Zealand, especially on the South Island 

(Scott 1984). Availability of flowering buckwheat (Fagopyrum esculentum Moench) 

(Scarratt 2005) and alyssum (Lobularia maritima (L.)) (Berndt and Wratten 2005) can 

increase fecundity and longevity and increase the proportion of female offspring of 

Dolichogenidea tasmanica Cameron, a key parasitoid of the leafrollers. Parasitism 

rates and leafroller densities have been shown to increase and decrease respectively in 

vineyards close to buckwheat and alyssum (Scarratt 2005; Irvin et al. 2006), although 
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increased parasitism rates and/or decreased pest densities has not been achieved in all 

trials (Berndt et al. 2002; Berndt et al. 2006). Recent unpublished data indicate that 

leafroller densities can in some cases be reduced to below the economic threshold 

when flowering buckwheat is available. Provision of buckwheat has now been 

adopted as a measure to control leafrollers in vineyards in all major wine regions of 

New Zealand (Figure 1). 

  

‘Success’ of habitat management trials 

Several reviews have been published on the ‘success rate’ of habitat management 

trials. Andow (1991) found that polyculture led to decreased insect pest densities in 

52 % of studies compared with 15 % of such studies where pest densities were higher 

in polycultures. Many of these studies did not distinguish between the ‘resource 

concentration’ and the ‘enemies’ hypothesis, but based on indirect evidence it was 

suggested that positive processes related to the former are more common (Andow 

1991). Thus, although we here concentrate on effects mediated by natural enemies, it 

must be acknowledged that effects relating to the ‘resource concentration’ hypothesis 

can be significant. 

 

Gurr et al. (2000) reviewed studies of habitat management for conservation biological 

control published during the 1990s and found that 19/22 studies reported positive 

effects on natural enemy populations while 15/22 showed lower pest densities. Of 

these, only 4/8 showed positive effects on the yield or quality of the crop. More 

recently, Heimpel and Jervis (2005) reviewed evidence that floral nectar improves 
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biological control by parasitoids. In 7/20 of the reviewed studies, parasitism rates 

increased with floral nectar sources available, but in only one study was a 

concomitant decrease in pest density recorded.  

 

We conducted a similar analysis of habitat management experiments published 

between 1998 and 2007 aimed at improving biological control of invasive pests. We 

considered only peer-reviewed journal articles presenting results from open field trials 

where the effect of habitat manipulation on invasive pests was studied either through 

assessment of parasitism or predation rates and/or of pest population densities. Studies 

that did not estimate these rates were considered only if the effects on both natural 

enemy and pest densities were measured. We found 15 studies fulfilling these criteria 

(Table 1). Fourteen of the 15 papers reported at least some positive effects of habitat 

manipulation on either population densities of natural enemies or on predation or 

parasitism rates, whereas one study found that habitat manipulation decreased 

predation rates. The latter occurred probably because Harmonia axyridis Pallas 

(Coleoptera: Coccinellidae), a key predator of the rosy apple aphid, Dysaphis 

plantaginea (Passerini), was feeding on extrafloral nectaries on peach trees instead of 

the pest (Spellman et al. 2006; Brown and Mathews 2007). In 4/7 studies, pest 

densities decreased following habitat manipulation and in one the pest population 

increased close to the flower strips that were provided, probably because the pest 

itself was attracted to and feeding from the flowers (Baggen and Gurr 1998; Baggen 

et al. 1999). In one of the studies that found a negative effect of habitat management 

on pest populations the effect on predation rate was also negative (Brown and 

Mathews 2007). It was suggested that the mechanism behind decreasing pest 
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populations in this case was related to the resource concentration hypothesis (Root 

1973) rather than through improved biological control. Three of the 15 studies 

considered effects on either crop damage or yield, but none of these studies reported 

beneficial effects. Baggen and Gurr (1998) reported increased pest damage close to 

certain floral subsidies probably because the pest was exploiting those floral 

resources, whereas Schmidt et al. (2007) found that alfalfa grown as a cover crop 

decreased crop yield in soybean most likely because the alfalfa competed with the 

crop.  The latter was the only study that considered economic consequences of habitat 

management and it concluded that it was not cost effective (Schmidt et al. 2007).  

 

When is habitat management likely to be successful? 

Here we discuss factors that are likely to affect the outcome of habitat management 

experiments, and that can help explain the mixed effectiveness of such trials to date. 

Success of habitat management is likely to depend both on the composition of the 

local food web and the extent to which suitable and limiting resources are provided 

that target the right natural enemies.  

 

Selecting target species  

A first prerequisite for habitat management to improve biological control is that 

potentially effective natural enemies are available in the food web of the targeted 

herbivore. Invasive species may frequently lack specialist natural enemies and this 

may require introductions of the latter through classical biological control 

programmes. Although habitat manipulation was initially developed to support native 
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natural enemies, this approach can be useful for conserving introduced natural 

enemies as well (Gurr and Wratten 1999).  

 

A continuing discussion relates to whether one or multiple natural enemies are needed 

for effective biological control. In many cases success of classical biological control 

programmes has been attributed to single species, even if multiple species have been 

introduced (Denoth et al. 2002). However, experiments explicitly studying the 

relationship between natural enemy diversity and biological control suggest that this 

relationship is highly idiosyncratic (Straub et al. 2008). One way that increasing 

natural enemy diversity may positively affect biological control is through the 

‘sampling’ effect. This implies that with increasing diversity in a natural enemy 

community it is more likely that particularly effective species are present. Thus, the 

‘sampling’ effect is not an effect of diversity per se but relies on species’ identity and 

properties. Several studies have shown that species identity is an important factor in 

prey suppression (Schmitz and Suttle 2001; Chalcraft and Resetarits 2003; Straub and 

Snyder 2006). Cardinale et al. (2006) argued that the ‘sampling’ effect is often a main 

driver of diversity - ecosystem function relationships. If the only benefit from 

increasing natural enemy diversity for biological control is that the most effective 

natural enemy is more likely to be present, then it may be most efficient to identify 

that species by experiment and then target it in habitat management measures (Snyder 

et al. 2006).  

 

Several studies have found a positive relationship between natural enemy diversity 

per se and biological control (Aquilono et al. 2005; Snyder et al. 2006; Straub and 
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Snyder 2008). Such effects can occur when the feeding niches of different natural 

enemy species complement each other. Two mechanisms that can lead to niche 

complementarity are resource partitioning and facilitation. Resource partitioning 

occurs, for example, when different natural enemy species forage on different parts of 

a plant (Straub and Snyder 2008), when they attack different life stages of the pest 

(Wilby and Thomas 2002) or feed on different pest species (Finke and Snyder 2008). 

Facilitation implies that the presence of one natural enemy species facilitates feeding 

by another species. Losey and Denno (1998) studied consumption of pea aphids, 

Acyrthosiphon pisum Harris, by one foliage living and one ground living predator and 

found that aphid consumption was the highest when both predator species were 

present. In the presence of the foliage living predator aphids dropped off the plant and 

became accessible for predation by the ground living predator. If niche 

complementarity is important in a natural enemy community, it may be most effective 

to target functionally complementary species of natural enemies in habitat 

management measures. This can be done, for example, by supplying a combination of 

resources that benefit ground living and foliage living natural enemies. Frank and 

Shrewsbury (2004) combined beetle banks and flower strips to support ground living 

and foliage living natural enemies and found a positive effect on predation rates of 

turf grass pests on golf course fairways. However, this study did not compare the 

combined effect of flower strips and beetle banks with the effect of these two 

measures separately, so it could not be concluded whether combining the two 

measures created a stronger effect on biological control.  
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In some cases increasing natural enemy diversity may have a negative effect on 

biological control because of intra-guild predation or inter-specific interference 

(Rosenheim et al. 1993; Finke and Denno 2004, 2005; Costamagna et al. 2008). 

Prasad and Snyder (2006) evaluated the effect of beetle banks in vegetable crops in 

NW USA and SW Canada. It was found that beetle banks provided through the winter 

increased the density of predatory beetles in the field during the following crop 

season, but predation rate of sentinel fly eggs in the crop was unaffected. Further 

experimentation suggested that intra-guild predation by a large predatory beetle was 

partly responsible for this lack of effect on predation rate. Thus, if intra-guild 

predation is strong, habitat management may not improve biological control, although 

it conserves individual natural enemies. However, habitat manipulation may in some 

cases decrease the intensity of intra-guild predation. Finke and Denno (2006) showed 

that by adding structural diversity in the form of thatch to a salt marsh food web, 

intra-guild predation decreased and predation on a plant hopper herbivore increased. 

The mechanism was that thatch provided a refuge from intra-guild predation for a 

predatory mirid bug. The potential for habitat management to decrease negative 

interactions among natural enemies in crop systems has not been studied. 

 

The local species pool of natural enemies in the crop is partly dependent on the 

composition of the landscape surrounding the field. Fields located in complex 

landscapes with a low proportion of annual crops and a high diversity of other 

vegetation types tend to have a higher diversity of natural enemies than do fields in 

simpler landscapes dominated by agriculture (Öberg et al. 2007; Schmidt et al. 2008; 

Gardiner et al. 2009a). Landscape structure may particularly affect beta diversity, i.e. 
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the difference in species composition among sites (Tscharntke et al. 2008). A high 

beta diversity may be important as an insurance against fluctuating environmental 

conditions (insurance hypothesis; Yachi and Loreau 1999; Tscharntke et al. 2008). If 

different natural enemy species are effective during different environmental 

conditions, seemingly redundant species may become important in reducing pest 

populations in certain situations. The effect of the insurance hypothesis on biological 

control has not been rigorously tested, however (Tscharntke et al. 2008).  

 

Selecting resources to provide  

To be successful, habitat management should provide natural enemies with suitable 

resources that are limiting for these species and that do not invoke unwanted side 

effects. A convenient way of screening large numbers of food plants is to study 

visitation rates of natural enemies in the field (Fiedler and Landis 2007a, b). This 

method can give information about attractiveness of food plants, which is an 

important factor to consider when selecting which plant species to provide for 

biological control (Kean et al. 2003; Bianchi and Wäckers 2008). However, flower 

attractiveness is not strictly related to other floral attributes such as nectar 

accessibility (Wäckers 2004), so additional experiments are needed to fully evaluate 

the suitability of flowering plants for natural enemies. Laboratory studies can be used 

to assess the suitability of food plants by studying how they affect various natural 

enemy traits including longevity and fecundity (Baggen and Gurr 1998; Tylianakis et 

al. 2004; Robinson et al. 2008), sex-ratio (Berndt and Wratten 2005) and dispersal 

ability (Wanner et al. 2006) that are all likely to influence natural enemy efficacy. 

However, laboratory trials are not enough to predict how resource provision will 
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affect natural enemies in the field. Unequivocal evidence that resources such as nectar 

and shelter are limiting for natural enemies in agroecosystems is rare. However, Lee 

and Heimpel (2008) showed that nectar feeding on floral resource subsidies by the 

parasitoid Diadegma insulare (Cresson) in the field can lead to increased gut content 

of sugars and improved longevity and fecundity. This study thus provided unique 

evidence that parasitoids can be sugar limited in the field and that provision of floral 

resource subsidies can help remedy this.  

 

The extent to which certain resources are limiting for natural enemies will depend on 

what is available within the crop (extrafloral nectaries, honeydew, flowering weeds, 

alternative prey etc), but also on the composition of the landscape surrounding the 

field. Thies and Tscharntke (1999) found higher parasitism rates on rape pollen 

beetles close to the field edge compared to in the centre in structurally simple 

landscapes dominated by agriculture but no such effect was found in complex 

landscapes. It has also been shown that conversion to organic farming has the largest 

effect on spider density in wheat fields in simple landscapes (Schmidt et al. 2005). 

Both these studies suggest that resource availability in the surrounding landscape is 

likely to influence the effectiveness of local schemes to conserve natural enemies. 

 

Avoiding negative side effects 

The provision of resources through habitat management can in some cases decrease 

natural enemy attack rates on the pest although the resource is suitable for the targeted 

natural enemy. For predators that are true omnivores, i.e., they feed on prey and plant-

provided resources in one life stage, decreased predation rates may occur because the 
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predator becomes satiated through feeding on plant resources. Provision of nectar and 

pollen can decrease the predation rate by ladybeetles (Spellman et al. 2006; Brown 

and Mathews 2007), predatory mites (Wei and Walde 1997) and brown lacewings 

(Robinson et al. 2008). In a similar way, presence of alternative prey for generalist 

predators may in some cases decrease predation rates on the target pest (Prasad and 

Snyder 2006). The impact of plant resources and alternative prey on true omnivores 

and generalist predators respectively is likely to depend on how different resources 

are distributed in time and space (van Rijn and Sabelis 2005). For such natural 

enemies, availability of alternative food resources may improve biological control 

primarily when the target pest is scarce (Polis and Strong 1996; Eubanks and Styrsky 

2005; Jonsson et al. 2009).  

 

Unwanted side effects of habitat manipulation may also occur if the resources 

provided benefit the pest itself (Baggen et al. 1999; Begum et al. 2006; Lavandero et 

al. 2006) or antagonists of natural enemies of the pest (Araj et al. 2008, 2009). 

Jonsson et al. (2009) studied the effect of flowering buckwheat on four trophic levels, 

including alfalfa, pea aphids (A. pisum), the omnivorous lacewing Micromus 

tasmaniae Walker and the lacewing parasitoid Anacharis zealandica Ashmead. M. 

tasmaniae is a true omnivore that feeds on floral nectar and aphids in its adult life 

stage whereas A. zealandica is a life-history omnivore that feeds only on sugar-rich 

resources such as nectar as an adult and parasitizes lacewings as larvae. Laboratory 

trials showed that fecundity and longevity of M. tasmaniae is positively affected by 

floral availability mainly when aphid availability is low (Robinson et al. 2008; 

Jonsson et al. 2009). In a field cage experiment, provision of flowering buckwheat 
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decreased lacewing densities when aphid availability was high, probably because 

buckwheat primarily benefits the lacewing parasitoid during such conditions (Jonsson 

et al. 2009). One way to decrease the risk for this type of unwanted side effects is to 

search for food plants that selectively benefit natural enemies of the pest but not the 

pest itself or key antagonists (Baggen et al. 1999; Begum et al. 2006; Lavandero et al. 

2006; Araj et al. 2008). 

 

Towards informed landscape management  

Habitat management experiments have to date mostly been conducted at a local semi-

field or field scale. However, natural enemy fecundity (Bommarco 1998), density 

(Schmidt et al. 2005) and species diversity (Öberg et al. 2007; Schmidt et al. 2008) as 

well as parasitism (Thies and Tscharntke 1999; Thies et al. 2005; Bianchi et al. 2008) 

and predation rates (Gardiner et al. 2009a) of pests are often strongly influenced by 

landscape composition, suggesting that it is important to consider large-scale 

dynamics for habitat management (Bianchi et al. 2006; Tscharntke et al. 2008). 

Landscape management might be especially important if effective biological control 

depends on a high diversity of natural enemies (Tscharntke et al. 2008). Local 

management may increase the density of a few common species whereas species 

richness often depends more on landscape composition (Roschewitz et al. 2005; 

Schmidt et al. 2005; Schmidt et al. 2008). The spatial scale to consider for 

management should ideally depend on the dispersal abilities of the targeted natural 

enemies. Marked natural enemies have been recaptured at distances around 100 m 

away from the refuges where they were marked (Corbett and Rosenheim 1996; 

Schellhorn et al. 2008) but many natural enemies are likely to move much longer 



 16

distances. Corbett and Rosenheim (1996) found that between 55 – 100 % of Anagrus 

parasitoids colonising vines in spring had overwintered outside the vineyards, 

probably in riparian habitats that were located 200 m – 10 km away. Several studies 

correlating landscape composition with parasitism rates of pests have found the 

strongest effect of landscape structure at around 1 km diameter around the crop (Thies 

et al. 2003; Thies et al. 2005; Bianchi et al. 2008), suggesting that dispersal over such 

distances is common for many parasitoids. Some predators readily move over larger 

distances; the density of ballooning spiders, for example, correlates strongly with 

landscape composition at 3 km diameter around the crop (Schmidt et al. 2008). 

However, the landscape features of importance for natural enemies depend on the 

biology of individual species. The availability of certain habitat types such as 

meadows (Kruess and Tscharntke 1994), forests (Bianchi et al. 2008) and riparian 

habitats (Corbett and Rosenheim 1996) have all been identified as important for 

certain natural enemies. Some of these species may also benefit from a high 

availability of particular crops in the landscape. Gardiner et al. (2009b) found that the 

ladybeetle Hippodamia convergens Guèrin-Mèneville was more common in 

landscapes with a high proportion of corn and soybean crops in mid-western USA.  

 

Achieving landscape management will generally require coordinated adoption of 

habitat management techniques by a group of farmers in an area. Although large-scale 

adoption of such methods is still very rare globally (Cullen et al. 2008; Griffiths et al. 

2008), notable exceptions do exist. Partnerships where farmer groups together trial 

and adopt agroecological methods at a large scale have recently emerged in different 

parts of the world, including California, New Zealand and The Netherlands (Warner 

2007; Cullen et al. 2008). These partnerships often aim at improving multiple 
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ecosystem services, such as soil retention, weed suppression and biological control by 

deploying non-crop plants (Cullen et al. 2008) and this is probably one important 

reason for their success (Fiedler et al. 2008). The ‘Greening Waipara’ project in the 

Waipara Valley, in New Zealand, is one such initiative, where to date 46 properties, 

mostly wineries, work together with researchers at Lincoln University and Landcare 

Research, New Zealand in an effort to restore native biodiversity to a region currently 

dominated by intensive agriculture and exotic vegetation (Fiedler et al. 2008; 

Tompkins 2009; Figure 2). This project began when studies showed that biological 

control of the light-brown apple moth can be improved if the non-native plant species 

buckwheat, alyssum and phacelia (Phacelia tanacetifolia Benth.) are drilled between 

the rows of vines. This led to attempts to find native plants that can have a similar 

effect (Tompkins 2009) and a focus on how native plants can provide ecosystem 

services other than biological control and contribute to conservation (Fiedler et al. 

2008). Current research projects at Lincoln University explore how the landscape 

management conducted within the ‘Greening Waipara’ project affects populations of 

a range of vineyard pests including grass grubs Costelytra zealandica (White), the 

New Zealand flower thrips, Thrips obscuratus (Crawford) and leafrollers and their 

natural enemies.  

 

Conclusions and prospects 

Habitat manipulation experiments have repeatedly demonstrated positive effects on 

natural enemy populations and/or on parasitism and predation rates but effects on 

invasive pest populations have been more varied. Few studies have considered effects 

on crop damage, yield or quality and assessments of the economic consequences of 
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habitat management for growers are extremely rare (Cullen et al. 2008). We strongly 

recommend that such effects are studied more often in the future. Careful ecological 

economic research conducted at sufficiently large number of sites is needed for 

development of general management principles for control of invasive species (Leung 

et al. 2005). This requires integration of ecology and economics to determine optimal 

responses to invasive species (Shogren and Tschirhart 2005; Ranjan et al. 2008) and 

consideration of the complexity and uncertainty involved with estimating the costs 

and benefits of invasive species (Leung et al. 2005). 

 

Our review suggests an ecologically driven research agenda to inform development of 

habitat management programmes for invasive arthropods (Figure 3). As soon as a 

target invasive is identified there are a number of key pieces of information that need 

to be collected. These include clarification of the invader’s taxonomic status and 

elucidation of its life history in the new range. Typically there will also be studies 

conducted to determine its current and potential future pest status. As part of these 

initial investigations it is critical to determine if a community of existing natural 

enemies is utilizing this new resource. In many cases, any such community will likely 

be dominated by generalist natural enemies. If no potentially effective natural enemies 

are found, it would either suggest that the species may be a candidate for importation 

(i.e., classical) biological control. Alternatively, aspects of the invaders life history or 

pest status may suggest it is unlikely to be amenable to biological control of any sort, 

and alternative or complementary management strategies should be pursued.  

 

If potentially effective natural enemies are found to exist, next steps include 

determining existing natural enemy guilds and food web structure. These may be 
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compared to those in the invader’s native range for clues as to critical missing species, 

guilds or food web linkages. Intra-guild interactions can be very important in 

determining the success of any biocontrol effort and need to be examined, as well as 

determining if keystone species exist in the system (Griffiths et al. 2008; Straub et al. 

2008). Again, depending on the results of such studies, importation programmes or 

alternative strategies may be initiated.   

 

Once key natural enemies are identified, it is necessary to determine if single or 

multiple species are likely to be most effective and if these species are potentially 

limited by a lack of critical resources or by particular species interactions. If resource 

limitation occurs, can selective resources be identified, as well as when, at what 

spatial scale should they be provided? For practical reasons, many of these studies 

may be conducted at small spatial scales, i.e. within field cages or small plot 

experiments. However, for habitat management approaches to be successful it is 

critical that research rapidly advances to determine the actual effective spatial scales 

of pest enemy interactions and if landscape-scale dynamics are important (Griffiths et 

al. 2008; Tscharntke et al. 2008). 

 

Based on these evaluations it should be possible to propose candidate habitat 

management practices to enhance control of the target invader. Increasingly, any such 

modifications of agricultural landscapes will need to take into consideration other 

ecosystem services, such as pollination (Tuell et al. 2008; Isaacs et al. 2009) that 

could be maintained or enhanced by the same practices. Fielder et al. (2008) suggest 

that habitat management programmes are uniquely positioned to maximize many of 

the supporting, provisioning, regulating and even cultural services that society expects 
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from its working landscapes. Finally, all of these considerations need to factor into an 

evaluation of the economic consequences for the growers. Increasingly, it is clear that 

to achieve such an optimization of ecosystem services, new incentive structures will 

need to be put in place that fairly value the full range of ecosystem services that 

working landscapes provide society (Swinton et al. 2006; Sandhu et al. 2008).  
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Figure legends 

Fig. 1 Buckwheat, Fagopyrum esculentum, in a New Zealand vineyard to enhance 

biological control of leafrollers.  

 

Fig. 2 Planting of native plant species in a vineyard in the Waipara valley, New 

Zealand.  

 

Fig. 3 Flow diagram showing a generalized research strategy for developing habitat 

management approaches for invasive arthropods. Key research questions are 

identified by question marks (?). Before proceeding to the next step the key questions 

need to be addressed. To do this additional research might be needed. At each step it 

can be decided that habitat manipulation is not likely to be successful and alternative 

strategies need to be considered. ‘HM’ is abbreviation for Habitat Management and 

‘NE’ stands for Natural Enemies.  
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Table 1 Analysis of habitat manipulation studies to conserve natural enemies of invasive pests published between 1998 - 2007. A ‘+’ denotes a 

beneficial effect from a pest management point of view, ‘-‘a deleterious effect, ‘0’ a non-significant effect and ‘NA’ that it was not studied. 

Thus, for example, a ‘+’ in the respective columns refers to an increase in enemy populations, predation/parasitism rates, crop yield and 

economic profit, and a decrease in pest populations and pest damage.   

Study Enemy population Predation/ 
parasitism 
rate 

Pest 
population 

Pest 
damage 

Crop 
yield 

Economic 
assessment 

Source 

EFN bearing peach trees in apple NA - + NA NA NA Brown and Mathews 2007 
Alfalfa as a cover crop in soybean + NA + NA - - Schmidt et al. 2007 
Floral subsidies in vines NA + 0 NA NA NA Berndt et al. 2006 
Floral subsidies in apple NA + + 0 NA NA Irvin et al. 2006 
Beetle banks in mixed vegetables + 0 NA NA NA NA Prasad and Snyder 2006 
Floral subsidies in ornamental plants NA 0/+ 0/+ NA NA NA Rebek et al. 2006 
Floral subsidies in broccoli NA + NA NA NA NA Lavandero et al. 2005 
Floral subsidies in cabbage NA 0/+ 0 NA NA NA Lee and Heimpel 2005 
Floral subsidies in turf grass NA + NA NA NA NA Rogers and Potter 2004 
Floral subsidies in wheat NA + NA NA NA NA Tylianakis et al. 2004 
Floral subsidies in vines + 0 NA NA NA NA Berndt et al. 2002 
Floral subsidies in turf grass 0/+ 0 NA NA NA NA Braman et al. 2002 
‘Refuge’ crop strips in lucerne 0 + NA NA NA NA Hossain et al. 2002 
Floral subsidies in potato NA + - - NA NA Baggen and Gurr 1998 
Floral subsidies in vines + + NA NA NA NA Stephens et al. 1998 

 


