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ABSTRACT 

Most wood boards contain knots. Knots are known as the most weakening factor affecting 
mechanical properties and the major cause of drying deformation. Some useful 
mathematical models were developed in this article for later computer simulation on the 
behaviours of knotty boards in service and in processes. Geometrical features of knot wood 
including growth angle, position and three dimensional shape were modelled. All sawn 
patterns and cutting positions were generated. Formulae and modelling steps were 
introduced and geometrical features of knots were discussed in detail using projective 
geometry. 

Keywords: knotty boards, timber drying, sawn pattern, mathematical modeling, computer 
simulation. 

NOMENCLATURE 

a semi-minor axis coefficient of elliptic cone 
3.0 length of the semi-minor axis of the base ellipse of knot wood 
A, B, B" C, C" E, F, F, coefficients 

of cutting-plane equations 
b semi-major axis coefficient of elliptic cone 
bo length of the semi-major axis of the base ellipse of knot wood 
D distance from the lower end of board to the lower end of log 
D, distance of a thickness surfaces of board to the axis oflog 
D2 distance of a width surfaces of board to the axis of log 
H hight ofthe vertex of knot wood 
fro hight ofthe centre of the base of knot wood 
k enlargement scale 
L axis of global Cartesian coordinate system, along the longitudinal direction of log 
Lo length of board 
0, a origin of local coordinate systems 
o origin of the global Cartesian coordinate system 
R axis of the global Cartesian coordinate system, ROL crosses the major symmetric 

plan of knot wood, which is determined by the axes of knot wood and log 
ro distance from the centre of base ellipse to the axis of log 
r1 distance from the knife to axis of log during veneer peeled 
T axis of the global Cartesian coordinate the system 
To thickness of board 
x, y, x,y, z axes ofthe local Cartesian coordinate systems 

Wo width of board 
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a angle of the thickness side of board to the major symmetric plane of knot wood 
<I> angle between the diameter of knot on the log and the axis of log 
e growth angle 

1. INTRODUCTION 

Most sawn boards contain knots and they were reported to be the most weakening factor of 
wood mechanical properties in service and the major cause of drying deformation (Grant et 
aI., 1984; Walker, 1993). Knot size and positions directly affect the wood strength. Failure' 
generally occurs in the surrounding area of knots during testing the mechanical properties of 
knotty boards (Zandbergs and Smith, 1987; Cramer and Goodman, 1985). During seasoning, 
the maximum warping was found below the oval part of margin or arris knots as shown in 
Figure 1, when typical dimensions of knots were greater than the half of the board where the 
oval presented. Moreover, the most severe check in a knotty board was found to be knot 
check, which ran normally along the symmetric axes of the broken knots (Liu et aI., 1996). 

4f: /~ 
Artis / 

FIG. I. Knot shapes, types and associated drying defects 

Due to the dominant influences of knots on mechanical properties and drying deformation, 
finite element analysis has been employed to study the stresses associated with knots. In 
several previous studies, knots were modelled as circles (Zandbergs and Smith, 1987; 
Cramer and Goodman, 1983). Their study can be further extended if all shapes and positions 
of knots are included. . 

Considering that the sawn patterns and the knot geometry can lead to wide variations in 
physical properties of boards, practical mathematical models for generating knotty boards 
and panels should have the following properties: ' 

(1) All geometrical properties of knot wood should be taken into account, including growth 
angle, location and 3-dimensional shape; 

(2) The boards dimensions, thickness, width and length, should be included; 

(3) All sawn patterns such as flat sawn, quarter sawn, intermediate sawn and veneer peeled 
need to be included; 

(4) Formulae of knot shapes should be given and geometrical features of knots in boards 
thus can be studied. 

(5) Parameters of equations can easily be measured in practice. 
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Samson (1993), after a thorough literature review, found models satisfying the above criteria 
were not available. One hundred and twenty radiata pine boards were observed during this 
study. The information of previous studies was obtained from the Forest Research Institute of 
New Zealand (Fenton, 1967; Kinimonth and Whitehouse, 1991). 

The objective of this study is to develop relevant mathematical models to aid in later 
computer simulation of the behaviour of knotty boards in drying process and in service. 

2. MODELLING GEOMETRY OF KNOT WOOD 

Nature of knot 
The base of a branch embedded in a stem is called knot wood, which is a hom or cone-like 
solid with the vertex at the pith (Pugel, 1980). Knot wood may be approximately described 
as an elliptic cone 

[1] 

where {x, y, z; o} are the local coordinate system, z is along the symmetric axis of knot 
wood, and the origin is at the vertex of knot wood (Figure 2). There are two natural 
symmetrical axes in the base ellipse of knot wood. The minor axis is along the horizontal, 
whereas the major axis is along the vertical directions of the tree (Figure 2). The elliptic 
cross-section of a branch produces lease wind resistance and allows it to bear more weight, 
which can be seen from the formula of moment of intertia of solid beam with elliptic cross 
section given by Pilkey (1994): 

7t 
1= -~-b J 4 '4J 0 

[2] 

where ao is the semi-minor axis of ellipse in the horizontal direction and bo is the semi-major 
axis in the vertical direction of ellipse. The strength of the branch is proportional to I and 
thus proportional to ao and bo

J
• The two symmetric axes of base ellipse of knot wood are an 

important geometric feature and will significantly reduce the complexity of formulae for 
later modelling. 

To prevent stress concentration, the intersection of branch and stem is filleted smoothly. The 
diameter of the branch varies there abnormally. Therefore, when measuring the axes of base 
ellipse of knot wood for calculating a and b in Equation [1], the position of measurement 
should be taken immediately under the bark. 
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FIG. 2. Knot wood and sawn patterns 

The remains of knot wood in sawn board are called knots, whose two-dimensional shapes are 
decided by the cutting angle of the cutting plane to the axis of knot wood. If the cutting 
plane is in the region between parallel to the lateral surface of knot wood and perpendicular 
to the axis of knot wood, then the knot is called an oval, otherwise it is called a spike (Figure 
1). An oval can have closed elliptic or circular rings and all rings on spike are unclosed. 
However, knot shapes have not been rigorously defined. The long narrow elliptic knots are 
called spikes in practice as well. 

Knot types refer to the three dimensional shapes of knots and position in boards (Figure 1). 
Knot types are classified as face, margin, arris and other. The boundary of a face knot is 
entirely inside the surface. An arris intersects an edge of a board and consists of a partial 
oval and a spike, or sometimes two ovals. A margin intersects the edges of a board and 
appears on three adjacent surfaces of this. A margin knot contains two ovals and one spike, 
sometimes one oval and two spikes. The other type is defined as the knots excluded from the 
descriptions of face, margin and arris. 

For the investigation of knot shapes in sawn board, a cutting plane (Figure 2) is given in the 
local Cartesian coordinate system {x, y, z; o} of knot wood as 

z=Ax+By+C [3] 

Knot shapes as the intersection of a knot wood and the cutting plane can be obtained by 
SUbstituting Equation [3] into [1]. The intersection now can be expressed by 

[4] 

Equation [4] is a typical two dimensional quadratic equation and represents all conical 
curves. Therefore, the two dimensional shapes including oval and spike can look like a 
circle, an ellipse, a parabola or a hyperbola depending upon the position of the cutting plane 
given by Equation [3]. 
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3. MODELLING GEOMETRY OF KNOTS ON SAWN BOARDS AND PEELED 
PANELS 

Modelling the geometrical properties of knot wood 
In order to discuss the shapes of knots presented in boards, the Equation [1] must be 
transformed to a global coordinate system {T, R, L; O}, where 0 is at the centre on 
the bottom of a log, L is the axis of the log, ROL crosses the major symmetric plane of 
knot wood, which is determined by the axes of knot wood and log (Figure 2), T is 
perpendicular to L and R. In global coordinate system, Equation [1] can be 
transformed into 

T2 (Rcose - Lsine + Hsine)2 
a2 + b2 =(Rsine+Tcose-Hcose)2 [5] 

where H is the height of knot wood vertex in the log and e (O<e<nI2) is the growth 
angle of knot to the axis of stem (Figure 3 (a)). The transformation from Equations 
[1] to [5] can be obtained by rotating local coordinate system{x, y, z; o} to {x', y', z'; 
o'} and then moving {x', y', z'; o'} to coincide {T, R, L; O}. The rotational 
transformation from {x, y, z; o} to {x', y', z'; o'} can be expressed by (Figure 3 (b)) 
the following equation: 

x 1 0 0 0 x' 

y 0 cose -sine 0 y' 
= [6] 

z 0 sine cose 0 z' 

1 0 0 0 1 1 

And the translation from {x', y', z'; o'} to {T, R, L; O} can be described by the 
equation (Figure 3 (c)): 

x 1 0 0 0 T 

Y 0 cose -sine Hsine R 
= [7] 

z 0 sine cose -Hcose L 

1 0 0 0 1 1 
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FIG. 3. Coordinate systems and knot wood properties 

In practice, the base of a knot wood can more easily be measured than the semi-vertex angle 
of elliptic cone and thus the symmetrical axes of base ellipse are adopted as the parameters of 
knot wood. Assuming that ao and bo are the semi-minor and semi-major axes of the base 
ellipse immediately under the bark respectively, and that Ho and ro denote the vertical and 
radial position of the centre of the base ellipse respectively (Figure 3 (a)), the parameters of 
Equation [5] can be replaced by the measurements as (Figure 3 (d)) 

H= Ho- ro/tan(8) 

a= aosin(8)/ro 

b:= bosin\8)/ro 

[8] 

[9] 

[10] 

Equation [8] is immediately obtained using trigonometry. In order to obtain Equations [9] 
and [10], we know that: 

1. The intersection of plane z= ro/sin(8) and the elliptic cone [1] is an ellipse, 
2. The major and minor axes of this intersection are on the two symmetric planes of the 

elliptic cone, and 
3. The error of [10] is less than bosin(8) sin2(8)/(2 r02) and is negligible. 

The above results are illustrated in Figure 3 clearly and will not be discussed in detail. 

Equation [4] can now be rewritten as 

r2 [Reos8 - Lsin8 +sin8(Ho-ro/tan8)]2 

(aosin8 I ro)2 + (bosin2 8 I ro)2 

=[Rsin8 + Leos8 -eos8(Ho-ro/tan8)]2 [11] 

All geometrical properties of knot wood are now included in Equation [11]. 
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Generating swan pattern and cutting positions 
Note that the longitudinal direction of boards is parallel to the L axis, opposite surfaces of 
boards are parallel to each other, and adjacent surfaces are perpendicular. Therefore, the 
corresponding cutting planes (Figure 4) of the two ends of board can be given as 

L=D [12] 

L=D+Lo [13] 

where D is the distance from the lower end of a board to the bottom of the log, and Lo is the 
length of the studied board. 

FIG. 4. Geometry of cutting planes 

The cutting plane of side surfaces can be given as 

T=AR+B 

T=AR+B\ 

1 
T=--R+C 

A 

1 
T=--R+C\ 

A 

[14] 

[15] 

[16] 

[17] 

where A, B, BJ, C and C\ are coefficients of cutting planes and will be determined by 
measurements later. Equations [14], [15], [16] and [17] denote the left, right, top and bottom 
surfaces of board respectively in Figure 4, where the L axis is towards the plane of the paper. 

Assuming that the cutting angle of the left side surface to the knot wood is a, which is also 
the planar angle of the major symmetric plane of knot wood to the cutting plane (Figure 4), 
we can have 

A=-tana [18] 

Introducing To and Wo to represent the thickness and width of board during flat sawn and 
intermediate sawn, or the width and thickness during quarter sawn, D\ and D2 to denote the 
distances of the left surface and the top surface of board to the axis oflog (Figure 4), the rest 
of the parameters of Equations [12] to [16] can be expressed by measurements as 
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B =Dl/COSa [19] 

[20] 

c= -D2/sina [21] 

c 1= -(D2 -To)! sina [22] 

Three dimensional geometrical features of knots in sawn boards 
The fraction of knot area within a rectangle over the area transverse section of board 
(rectangle) is called the Knot Area Ratio (KAR), which is used in the grading rules to 
describe the knotty ratio of structural boards. 

The remains of knot wood presented on a pair of adjacent surfaces of a board contain at least 
one oval. The adjacent surfaces are perpendicular to each other and the vertex angle of knot 
wood never exceeds 90°. Hence it is impossible to cut two spikes on a pair of adjacent 
surfaces of a board. In other words, there is at least one oval in a pair of adjacent surfaces. 
Large oval knots are responsible for maximum warping during drying, which implies that 
large margin and arris knots are more likely to produce maximum warping. 

The remains of knot wood presented on a pair of opposite surfaces of board are similar 
figures. One is the enlargement of another. The scale of enlargement can be obtained by 
mathematical calculation. Assume that A pair of cutting planes parallel to the axis of knot 
wood in the local coordinate system {x, y, z; o} as 

y=Ex+F [23] 

y=Ex + Fl [24] 

where E, F 1 and F are the coefficients of cutting planes. Substituting [23] and [24] into [I], 
the shapes of knots on cutting plane [24] and [25] can respectively be expressed by 

[25] 

(x + N 2 EFI)2 Z2 
N2E2(1-FI2N2) - E2(1-FI2N2) =1. [26] 

where N2=a2b2/(b2+a2E2). The lengths of the principle axes of Equation [25] over their 
counterparts in Equation [26] make the enlargment scale, k, is given by 

[27] 

Therefore, Equations [25] and [26] present similar figures and the scale of enlargement 
equals to k. Now knot shapes on a pair of opposite surfaces of board are proved to be 
similar. This result greatly simplified the work of constructing knotty boards during 
modelling stress concentration in the surrounding a knot. This conclusion also can be 
proved with projective geometry. Regarding the opposite surfaces as a pair of parallel 
planes and the knot on one plane as a perspective projection of another. The centre of this 
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perspective projection is the vertex of the knot wood. According to projective geometry, a 
planar curve and its perspective projection on a parallel plane are similar figures (Xu, 1980). 

Knot shapes in veneer peeled panels 
During veneer peeling, the log is rotated as if a cantilevered cylinder and the knife cuts at the 
gradient direction of the circular boundary of logs (Walker, 1993). The cutting locus is a 
cylindrical surface and can be expressed by 

.,..2 2 2 
1 + R = rj [28] 

where rj is the radius of locus cylinder or the distance from the edge of knife to the centre of 
. rotation. Combining Equations [28] and [5], the shape of the knot as a three-dimensional 

curve can be expressed as 

.,..2 2 2 
1 + R = rj [28] 

n 2_R2 (Rcos8-Lsin8+Hsin8)2 2 
+ b2 =(Rsin8+Tcos8-Hcos8) 

a2 [29] 

co c' 

FIG. 5. Formation of knot shapes on veneer peeled panel 

The projection of the knot on TOL plane as shown in Equation [29] is a quadratic curve with 
a closed boundary (see Figure 5), thus representing an ellipse. When the knot on the surface 
of the cylinder is spread out on a panel, it is an egg-like oval (Figure 6). 

FIG. 6. Knot shapes on spread panel 

For the convenience of discussion, knot shapes on the surface of the cylinder and the spread 
panel are termed as the object and the image respectively. Looking at Figure 5, diameters aa 
and bb of knot on cylinder are parallel and perpendicular to the axis of log respectively, so 
their images still bisect each other on the panel. W j W 2 W 3 is a given plane perpendicular to 
TOL and crosses through diameter cc'. The intersection of the cylinder and the plane W is 
an ellipse shown in Figure 5 as W j W 2 W 3. The true figure of cc' on the cylinder is shown as 
arc COC' on the circumference ofW j W2W3• Note that OC and OC' have different length, 
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which are the image of oc and oc'. Therefore, the semi-diameters of the knot on the spread 
panel have different lengths and the knot shape is no longer an ellipse, though it still has an 
enclosed boundary. The pith of knot wood is now off the centre of the knot (Figure 6). 

Assuming the angle of W to log axis is ~, then the ellipse WI W 2 W 3 can be expressed as 

x2 y2 
. 2+-2=1 

(rI/sm~) r1 
[30] 

where {x, y; o} is a local coordinate system shown in Figure 6. The image of diameter cc' 
can be calculated using 

S= fJl+Y' 2 dX [31] 
coC' 

where S is the true length of coc', COCO is the locus of integral, y is the subject of x and 

determined by Equation [30], y'is the differential of y. The knot shape on the spread 
panel can be calculated using Equations [28] to [31]. 

4. GENERATE KNOTS ON SAWN BOARDS 

Generating two-dimensional shapes 
If H< D < Ho or H< D+Lo < Ho, the knot on the butt or upper end can be generated in 
mathematical software Maple V (Char et aI., 1994) by combining Equations [11] and [12] or 
[11] and [13]. 

All side surfaces have the form 

T=ER+F (E:;t:O and F:;t:O) [32] 

or T=F [33] 

or R=F [34] 

The conditions for Equations [32], [33] and [34] to form a knot are 0< -FIE < ro+bo/tana, -
bo< T < bo, and 0< R <ro respectively. 

Samples of knot shapes and types 
Parameters of a knot wood sample are given as 
Ho=3 m hight of the centre of base ellipse 
ro=O.2 m distance from the centre of base ellipse to the axis of log 
ao=0.04 m length of semi-minor axis of base ellipse 
bo=0.05 m length of semi-major axis of base ellipse 
8=450 growth angle 

When one end of the board is at 
L=2.9 (m) 

then an oval knot on the end can be drawn using Maple V (Char et aI, 1994) as 
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T2 (R - 0.103)2 
(0.02)2 + (0.025)2 = 1 [35] 

0.02 

R 

0.1 0.11 0.12 

FIG. 8. An oval knot on the end of board 

When the cutting plane is 

7R+9L-25=0, 

We can simplify it into y=31.26x2 -0.00625 and describe the true figure of this spike knot 
with equation 

Y=252.03 X2 XE(-0.04,0.04) [36] 

FIG. 9. An spike on a side surface of board 

Images and figures in Figure 10 represent different types of knots. These figures are created 
by the graphic interface software AUTOCAD Release 13 (Hood, 1996). First step of 
generating a knotty board in AUTOCAD is to produce a cylinder as a log and an elliptic cone 
as a knot wood according to their measurements. The cutting process may be modelled by 
the slice function of AUTOCAD. The created knotty board can be used for further structural 
and thermal analysis. If the geometrical features of knotty boards are well understood, the 
work of creating a knotty board can be greatly simplified. 
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Arris Face Face 

Arris Margin 

FIG. 10. Samples of different knot types 

5. SUMMARY AND DISCUSSION 

As the majority of the products of sawmills, knotty boards will attract more attention in wood 
science in the future. Knots as the dominant factor weakening mechanical properties and 
causing drying deformation have not been well studied and modelled. A study of generating 
knotty boards lead to the following results: 

1. The base of knot wood on cambia is an ellipse or a circle with two natural axes along the 
horizontal and vertical direction of tree. This biological feature can help a branch to 
bear more weight and significantly reduces the complexity of mathematical models of 
knot wood. 

2. The remains of knot wood in sawn board are called knots and the two-dimensional 
shapes of knots are classified into oval knot and spike. A complete oval knot has closed 
elliptic or circular rings, whereas a spike does not have any closed ring. In practice, 
long narrow elliptic knots may be called spikes as well. 

3. Referring to the three-dimensional shapes and positions on boards, knots are divided 
into different types, ie. face, margin, arris and other. A face knot has a complete 
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boundary which lies inside board surface and shapes as an oval. A arris knot consists of 
a partial oval and a parabolic or hyperbolic spike, or sometime just two ovals. A margin 
has two similar ovals on opposite surfaces and one spike on the adjacent surface, or 
sometimes two spikes and one oval. 

4. A knot can not have two spikes on a pair of adjacent surfaces of board. The remains of 
a knot wood on a pair of opposite surfaces of board are similar figures, which implies 
that margin and arris knots contain at least one oval. Therefore, large margin and arris 
knots are liable to cause large warps, because the maximum warp is normally below a 
large oval in knotty boards. 

5. The major knot crack is along the symmetric axes of the studied knot, where the zones 
of stress concentration exist. The broken direction of knots can be given more precisely 
now as the direction determined by the symmetric axes of spike and oval. 

6. The knots on the peeled panel are egg-shaped ovals like two half ellipses pieced 
together. Their shapes are determined by Equations [30] to [33]. 

Some sawmills use automated saw machines and program their sawn patterns before cutting. 
After the knot wood properties are scanned or measured, the factors affecting boards quality, 
such as the slope of grain orientation, knot position and the symmetric directions of knots 
can be estimated by the above equations. It is therefore possible to diagnose the quality of 
sawn boards and propose an optimised sawn pattern using a small artificial intelligence 
program. 
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