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Abstract 

Contaminant transport by liquid flow in a porous medium is modeled by 
the addition of a stochastic term to Darcy's flow equation. The resulting 
stochastic differential equation is studied using results from the theory of 
diffusions as embodied in the Dynkin formula. 

The resulting integral equation for the probability distribution of fluid 
elements is solved for the case of a spatially homogeneous medium with
out micro diffusion. This distribution is shown to also solve a deterministic 
transport equation containing an effective diffusion constant, analogous to 
the hydrodynamic dispersion equation. This relates the stochastic and de
terministic approaches to the contaminant transport problem. The case of a 
non-homogeneous medium is discussed, leading to a tentative conclusion that 
the stochastic description will not reduce to a dispersion equation in general. 

1 Introduction 

The modelling of contaminant transport by the flow of water in natural aquifers is 
of considerable interest, e.g. for ecological studies and resource planning. To set 

. u.p a mathematical model for this problem it is firstly necessary to understand the 
underlying flow of fluid through a porous medium, and secondly to superimpose on 
this a description of the transport process. 

The overall flow rate can be obtained from Darcy's law (Fetter [6]) 

(1) 

Here v(x) is the fluid velocity at position x and dJ is the gravitational potential 
(i.e .. hydraulic head). The material properties are the hydraulic conductivity h~ and 

• Financial support in the form of a Lincoln Doctoral Scholarship to OIle of us (\VSV) is gratefully 
acknowledged 



the porosity <p, the latter being the fraction of the total volume occupied by voids 
that can be filled by fluid. In what follows it will be assumed for simplicity that 
the flow is I-dimensional so that the position reduces to a scalar variable x, and 
that there is a constant piezometric gradient h, i.e. 1;( x) = - hx. Also, at first 
we assume that the medium is homogeneous so that K, and 1; are independent of x. 
These simplifications reduce Darcy's law to a constant velocity Vo = K,h/ <po 

Solute transport in a free flowing liquid can be described by deriving a continuity 
equation for the solute concentration e(x, t) in the form 

ae/at = -V'(e v - Dm' V'e) (2) 

The flux density in the brackets consists of (i) the convection term representing 
solute carried along by the fluid flow, and (ii) the diffusion term determined by a 
diffusion tensor Dm that in simple cases reduces to a scalar coefficient. This term 
is an expression of Fick's law and represents molecular scale or microdiffusion. 

In a porous medium, micro diffusion e.g. in a stationary fluid is suppressed 
by the inreased path length of a diffusing particle as it travels around the grains 
of the medium, giving rise to an effective diffusion coefficient D*. Despite this, 
experimental observation (Bear [l]'Rashidi et al [10]) shows that for flow in the 
presence of a porous medium the diffusion of dissolved contaminants is enhanced 
beyond that in free flow. The reason is evidently that the pore structure deflects 
the fluid elements into tortuous flow paths, producing additional mixing of liquid 
carrying different solute concentrations. The implication is that a more detailed 
description of the flow than that contained in Darcy's law is needed to model solute 
transport. This introduces a statistical element into the description, since it is 
clearly not feasible to know or model the mechanics of the flow in a natural medium 
that has an unlimited variety of pore shapes and sizes. 

The continuum (deterministic) approach (e.g. Bear [1], [2], [3]) is to split the 
fluid velocity into averaged and fluctuation contributions. Since fluctuations bv 
definition average to zero, they can only produce net solute transport when they 
represent fluid exchange between points at different concentrations. Hence a net 

. fluctuation solute flux proportional to the concentration gradient is plausible. 

By making this Fickian assumption, t~e explicit inclusion of statistical terms is 
avoided and equation (2) may still be used if the velocity is reinterpreted as the 
averaged velocity and D* is augmented by adding a dispersion coefficient D to it. 
The resulting equation is known as the advection-dispersion equation (Fetter [6]). 

It is also plausible to assume that dispersion is proportional to the average flow 
velocity, so the relation D = cw is used to extract a pure materials constant a called 
tht' dispersivity. The dispersivity has the dimensions of a length and by length 
scale arguments (Bear [2]) can be expressed as proportional to the pore size with a 
coefficient of order 1. 



Many authors have studied alternative approaches in which the statistical de
scription is more explicitly incorporated. In the work of Dagan [4],[5] random varia
tions in the variables such as velocity and concentration are treated as perturbation 
terms. However, a more profound way is to allow random variations of the ma
terial properties, as that adresses the source of randomness more directly. Being 
coefficients in the differential equations such as (1) the material properties are the 
driving terms, and this leads to stochastic differential equations (SDE's) as used, 
for example, by Unny [11]. 

This article deals mainly with the SDE approach obtained by modeling the deflec
tion of fluid trajectories by individual grains, as random fluctuations of the materials 
coefficients that produce a stochastic displacement term in the flow equation (1): 

<t 

dx = -u(x, t)dt + I dB(x, t, 0) (3) 

Here u(x, t) is the righthand side of (1), and reduces to Vo in the case of a 
stationary homogeneous problem. B(x, t, 0) represents a Wiener process with 0 
labeling individual realisations and I is an amplitude that regulates the extent to 
which the path is perturbed. 

The addition of the stochastic term to the flow equation somewhat complicates 
the allocation of units of measurement, since according to the principles of Ito cal
culus a dimension T~ has to be allocated to B. This is avoided by introducing 
the convention that all coordinates and times are henceforth to be interpreted as 
dimensionless ratios having been divided by a length scale Xo and time scale to. 
The proper scaling will be restored in the final results when appropriate criteria for 
choosing the scaling constants will also become clear. 

In the porous flow problem, fluid element displacements at neighbouring points 
(e.g. while traversing a pore) are not independent, and so the finite pore size can 
be modeled by introducing a spatial covariance function C(Xl' X2) as 

(4) 

Here, the angular brackets signify averaging over all representations, the spatial 
and time correlations have been assumed to be independent and the time correlation 
factor is the expression for a generalised Wiener process, i.e. for q(s) = 1 it reduces 
to the standard Wiener process as associated with Brownian motion. 

A functional form for the spatial covariance must be chosen that is mathemati
cally tractable and reflects the physical properties of the porous medium. A plausible 
choice might be an exponentially peaked function, C(Xl' X2) = exp( -IXl - x211 A) 
in which /\ is the correlation length and would be chosen to be some average pore 
diameter. The detailed functional form is not important for the purpose of this 
article. 



The chosen spatial correlation is implemented by making a Karhunen-Loeve (KL) 
expansion [8] for the coordinate dependence of the B(x, t, B). This means that the 
covariance function is used as the kernel in an integral eigenfunction equation which 
is solved for the eigenfunctions fn(x) and eigenvalues en, and then used to transform 
(3) into 

(5) 
n 

The result of the KL expansion is that the Wiener process in space and time has 
been replaced by a sum of simpler independent Wiener processes Bn(t, B) in time 
only. The sum over n in principle runs "ver the infinite set of eigenfunctions of the 
covariance function, but is for practical reasons truncated at a cutoff value typically 
of the order of 10. 

2 Expectation values for the concentration profile 

In a straightforward approach, Ito calculus ( see Kloeden et al [7]) may be used to 
generate numerical solutions in the form of individual realisations of the flow path 
from (5). The resulting flow velocity may be substituted in (2) and by averaging a 
large number of realisations, an expected concentration profile can be generated. 

However, SDE theory (Oksendal [9]) makes powerful tools available for the cal
culation of expectation values without explicit sampling. In particular, the theory 
of diffusions is relevant here. It is based on Dynkin's formula (Oksendal [9], theorem 
7.4.1): 

(6) 

Here X T is a stochastic variable evaluated at a stopping time T, EX is the ex
pectation value over all realisations that start at an initial value x, and f is an 
arbitrary function. The symbol A in the integral represents a partial differential 

. operator called the generator, and it can be constructed from an SDE provided that 
the latter takes the form of a diffusion. A diffusion is defined as a set of 1-st order 
equations 

(7) 

where X t and B may be vectors of variables, and the coefficients band u cor
respondingly matrices. The generator A. is a 2-nd order deterministic differential 
operator with coefficients formulated in terms of band u: 

(8) 



To apply Dynkin's formula, one chooses f as the solution of an equation chosen to 
simplify the integral, such as Af = O. Then the expectation value of that particular 
function is directly given by the formula. 

The contaminant transport problem is specified by equations (2) and (5). The 
second of these is already in the desired diffusions form. The first, the transport 
equation, does not conform in general. However, for many systems it is adequate 
(Rashidi et al [10]) to neglect microdiffusion by putting Dm = 0 in (2) to obtain 

de du 
dt = -c(x, t) dx (9) 

for 1-dimension!!l flow. Equations (5) and (9) together are in the appropriate 
form in the pair of variables (x,c), to allow construction of the generator 

of du 0 f 1 2 02 f 
A f = u(x)- - - c(x,t) - + -I' C(x)-

ox dx oc 2 ox2 
(10) 

To derive (10), it is noted that O"(x) is in the case of (5) a row vector with 
components (Fn fn(x)) and use has been made of the identity 

(11) 
n 

which follows directly from the eigenfunction equation, and C(x) = C(x, x). 

Equation (10) already contains the first significant result from the application 
of SDE theory. While the details of the covariance function contained in its eigen
functions and -values determines the behaviour of an individual realisation through 
equation (5), only the diagonal value C(x) remains in the generator that eventually 
determines all expectation values. In a homogeneous medium it is in fact plausible 
to assume that C(x) - C, i.e. constant, so that the covariance function is apparently 
averaged out completely on taking expectation values. This is not quite accurate, as 
the correlation length will reappear when proper scaling of variables is restored in the 
final results. Nevertheless, a major simplification of the dependence on microscopic 
media properties is contained in the reduction to C(x). 

In the case of a homogeneous medium u(x) = Vo and the middle term in (10) 
falls away leaving a generator independent of the concentration, and in fact identical 
to that obtained from the flow equation on its own. This implies that all statistical 
information is contained in the fluid element position, which is plausible in the 
absence of microdiffusion. It is noted that this simplification only applies for a 
homogeneous medium. 

The expectation value of most interest in the flow problem, is that of the posi
tion of a fluid element after an elapsed time t. This can be obtained from a slight 
elaboration of the Dynkin formula, called Kolmogorov's backward equation (Ok
semlal [9], theorem 8.1.1). This requires solution of the partial differential equation 



A f = (al fat). Using the appropriate simplifications of (10) for a homogeneous 
medium, we find a solution to be 

(12) 

where a is the arbitrary constant arising from separation of position and time 
variables. Substituting this in the Kolmogorov equation yields 

(13) 

By expanding botl' sides as power series in a, it is easy to see that the average 
position propagates at a constant speed Vo while the variance increases proportional 
to t. A more complete description of the statistics is obtained by defining p(x, tj as 
the probability density, for a fluid element that starts at (0,0) to arrive at (x, t). 
Then (13) may be written as an integral equation for p(x, t) 

(14) 

When micro diffusion is neglected, the solute concentration is simply carried along 
with the fluid element so that at time tits expectaion value is easily calculated from 
the injection profile at x = 0 and a known probability distribution: 

E[c(x, t)] = it c(O, t - t)p(x, t)dt (15) 

In particular, for a 6-function injection pulse at t = 0 the expected concentration 
and probability distribution become identical. 

The remarks above about the time developement of low-order moments of the 
distribution suggests that a reasonable trial solution of the integral equation (14) 
would be a propagating Gauss peak, with width G"( t) starting at 0 and increasing 
with time: 

p(x, t) = 
1 _ (x-v,gt)2 

--e (7-

.,foG" 
(16) 

Substituting this in (14) shows that (16) is in fact an exact solution provided 
that 

(17) 

The result just derived, that a concentration pulse injected into the fluid is spread 
by stochastic perturbation at a rate proportional to Vt, is reminiscent of the classical 



theory of diffusion. In fact, for I-dimensional stationary flow the diffusion equation 
IS 

OC OC 02C 
-+vo--D- = 0 ot ox OX2 (18) 

and it is easily shown by substitution of (16) in (18) that the former solves the 
latter provided that 

a(t) = 2Vi5i (19) 

Compari"g (17) and (19) it is concluded that in the absence of micro diffusion 
and in a homogeneous porous medium, the effects of stochastic scattering by the 
pore structure is equivalent to that of introducing a macroscopic diffusion with an 
effective diffusion coefficient D. This proves the basic heuristic assumption made in 
the traditional deterministic theory of contaminant transport, for the rather simple 
case under discussion. 

Moreover, the derivation allows us to express the macroscopic parameter D in 
terms of microscopic medium properties. Eliminating a from (17) and (19) and 
bearing in mind that I and C are defined as coefficients in dimensionless equations 
and hence themselves dimensionless, we can write the properly dimensioned equation 

D = ~12C(x5) 
2 to 

(20) 

It remains to choose the scaling constants. In Darcy's equation, there is only one 
physical quantity that can determine a scale, namely the homogeneous flow velocity 
vo. As only the ratio xo/to appears in that solution it is sufficient to identify the 
ratio with vo. Equation (20) shows that when a stochastic term is added this is no 
longer true and two separate scaling constants must be chosen. 

Evidently the second scale must be supplied by the stochastic term. Again, there 
is only one plausible candidate: the correlation length A introduced in defining the 
covariance function. If we choose Xo = A, and for consistency with the deterministic 
limit let xo/to = Vo, the time scale to represents the average time for a fluid element 
to traverse a pore. This is also plausible if we consider that in using a Wiener process 
to model any physical phenomenon, there is an inherent time scale that determines 
how quickly the Brownian variable wanders away from an initial value. In the fluid 
flow application, the stochastic variation is intended to model the scattering of fluid 
elements by the grains that form the pores, so that the pore traversal time is indeed 
the relevant time scale. 

The expression for the pore induced hydrodynamic diffusion (i.e. dispersion) 
constant D, now becomes 

D (21) 



This equation incorporates two key features also arrived at by heuristic argu
ments in the advection-dispersion treatment of porous flow: i) that dispersion is 
proportional to the Darcian flow velocity, allowing the calculation of dispersivity as 
a materials property, and ii) that the dispersivity is a length of the order of the pore 
size (Bear [2]'Rashidi et al [10]). The latter remark presupposes that 'Y and Care 
both of order 1; for 'Y that follows because the tortuous path in a porous medium 
can only be reproduced if the perturbing term in (3) is of similar magnitude as 
the Darcian displacement, while we have C = 1 for a standard ·Wiener process and 
values of similar magnitude is appropriate if the model is generalised to use general 
Wiener processes. 

3 Discussion 

Having shown the essential equivalence of the stochastic and deterministic ap
proaches in the case of stationary flow without micro diffusion in a homogeneous 
porous medium, it is of interest to consider whether the equivalence survives if the 
restrictions are relaxed. For example, will a variable correlation length A lead to a 
variable dispersion coefficient? There is one special case in which the answer is yes. 
If it is assumed that A is time dependent so that C = C(t), substituting 

(22) 

into the generator equation produces an easily soluble differential equation for 
s(t). Equation (16) still solves the integral equation (14) by allowing completion of 
the square in the exponent, so that O"(t) can be expressed in terms of s(t). Finally, 
subtituting the resulting expression for p(x, t) into the diffusion equation (18) gives 
rise to a second differential equation for s(t) that happens to be identical to the 
first, if a time dependent dispersion constant is introduced as 

1 
D(t) = -2 'Y C(t) (23) 

. So consistency between the solutions to the generator equation, the probablity 
distribution integral equation and the diffusion equation has been regained. 

The assumption of a time-dependent correlation length may appear contrived, 
as it is not obvious how that will come about physically. However, it may be a 
consequence of an approximation made to exploit the fact that it is easier to handle 
a time-dependent than a position-dependent A. For example, since in a homogeneous 
medium the concentration plume is at first highly concentrated about the moving 
position x = vat, the correlation length encountered by a plume moving through 
a slo·wly varying medium might be approximated by the value at the centre of the 
plume. It is also interesting to note that the resulting time dependent dispersion 
displays one form of scale dependence: a laboratory experiment measuring flows over 
a short time span would obtain a different value from a field experiment covering a 
longer period. 



However, the main purpose in discussing the time dependent case is to illustrate 
how fragile the equivalence between the stochastic and deterministic approaches 
is. If only a minor further relaxation is introduced, namely to assume that A also 
depends on position, the chain of reasoning that connects them breaks down at 
several points. It would require that s = s(x, t), and then the two differential 
equations for s obtained from the generator equation and the diffusion equation 
respectively, no more coincide. A trial solution of the form of (16) does not give a 
tractable solution to the integral equation any more. Furthermore, in such a case 
it is reasonable to assume that both u and D will also depend on x, and then both 
the generator equation and the diffusion equation acquire additional terms making 
the equations for s diverge in form even more . 

• It is therefore conjectured that the stochastic description does not reduce to 
the simpler advection-dispersion model in the case of a non-homQgeneous medium. 
While it is not logically impossible that new solutions to the new set of equations 
might again agree, it seems highly unlikely that such a happy coincidence can recur. 
A full resolution of this point will require a solution of the generator equation (10) 
in its stated form, under assumption of functional forms for u(x) and C(x) and this 
may necessitate numerical rather than analytical procedures. 

4 Conclusions 

To summarise, the main results derived in this article are 

1. Expectation values over all realisations, depend only on general features of the 
covariance function such as its diagonal value and the correlation length. This 
is in contrast to individual realisations that depend on the detailed functional 
form of the covariance function. 

2. An equivalence between the stochastic and deterministic descriptions was de
rived in the case of flow in a homogeneous porous medium. This allows the 
macroscopic dispersion constant to be expressed in terms of microscopic pa
rameters. 

Further investigation is required for the case of non-homogeneous media. 
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