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An Orthotropic Model for Heat Transfer in Pinus Radiata in Low Temperature 
Kiln~drying 

H. Liu, D. Kulasiri and S. Samarasinghe 

Abstract 

During drying, heat and mass transport in timber results in deformation. Heat 

transport in timber has long been an important topic in drying technology. In this 

paper, Lykov's formulas, which were originally developed for homogenous capillary 

porous bodies, are expanded by incorporati '~g the orthotropic properties of wood. 

Finite element analysis is used for the numerical solutions. The empirical models are 

used to generate specific heat, conductivity and convection heat transfer coefficients 

on this basis of experimental drying conditions and wood properties. Typical heat 

transport phenomena, temperature profile and thermal gradient, are illustrated using 

three-dimensional graphs. 

Introduction 

Lykov's theory (1966) has often been used in the studies of heat transport in timber 

(Gui et aI., 1990). However, Lykov's formulas are only applicable to homogenous 

and isotropic capillary porous bodies and timber is known as an orthotropic material 

with three mutually perpendicular conductive directions. In this article, a more 

realistic heat transport model for orthotropic capillary porous materials is derived as 

an extension of Lykov's theory. The solutions of this model are obtained using the 

finite element method to apply the model to wide variety of situations. The scenario 

of this simulation is low temperature drying and Pinus Radiata is chosen as the 

sample material. 

In simulation, the quality of data inputs is equally important as governing equations to 

achieve satisfactory accuracy. In this study, drying conditions and basic wood 

properties are obtained from real experiments; boundary conditions, specific heat and 

heat conductivity are calculated using widely accepted empirical models. Finally, 

simulation outcomes are illustrated using three-dimensional figures and the 

distributions of temperature and thermal gradient are visualised. 



Development of the governing equations 

After neglecting chemical reactions and dimensional changes, the energy and mass 

conservation in capillary porous bodies can be expressed by 

[la] 

and 

[lb] 

Equation [1 a] denotes the conservation of thermal energy, where T is the temperature 

, K; t is the time, s; c is the specific heat of moist solid, J kg- I KI; Po is the density of 

bone-dry solid, kg m-3
; Jh is the heat flux vector, W m-2

; H is the specific enthalpies 

of water, J kg-I; I denotes the volumetric mass disappearance (or formation) rate of 

liquid and vapour during phase change, kg m-3 S-I; H I can be considered as a heat 

source having dimensions, J m-3 S-I. Equation [lb] refers to the mass balance, where 

M is the dry basis moisture content, kg kg-I; PoM approximately equals the 

concentration of water, kg m-3
; Jm is the mass flux vector, kg m-2 S-I (Lykov, 1966). 

Lykov (1966) further developed his equations for heat and mass transport in isotropic 

materials and those equations have been adopted in the study of timber drying (Gui et 

ai., 1994; Thomas et at., 1980; Lykov, 1966). However, wood is naturally an 

orthotropic material with three major diffusion directions. Hence, more realistic and 

accurate equations should be developed for the study of timber drying. 

Heat flux Jh is strongly related to the temperature gradient and weakly related to 

moisture gradient (Dufour effect) (Thomas et al., 1980). After neglecting the effect of 

moisture gradient, heat flux in orthotropic material may be written as 

o 
[2] 

o 



where Jh is the heat flux vector, W m-2
; (Khx, Khy, Khz) are the heat conductivities, W 

mol Kl; VT = {aT, aT, aT}T is the temperature gradient vector, K mol; (x, y, z) are 
ax ay ay 

mutually perpendicular and along the tangential, radial and longitudinal direction of 

wood (Carslaw and Jaeger, 1990). 

Mass flux is known to be related to both temperature gradient and moisture gradient 

(Scon~t effect) (Thomas et al., 1980). Therefore, the mass flux in orthotropic material 

may be expressed by 

o 
o ] [DmhX 
o VM - Po 0 

Dmz 0 

o 
Dmy 

o 

= - Po{[Dm] VM + [Dmh] VT} [3] 

where Jrn is the mass flux, kg m-2 sol; (Drnx, Dmy, Dmz) are the mass diffusion 

coefficients, m2 sol; (Dmhx, Dmhy, Dmhz) are the mass diffusivities in terms of thermal 

gradient, m2 sol Kl. 

Because the heat sorce is defined as the product of mass change rate and specific 

enthalpy, the following relation exists: 

aM 
HI=-RE­

at 
[4] 

where R is the specific enthalpy 'of phase ·change, J kg-I; and E is the phase change 

coefficient, kg m-3
. Here the relation M = m1mo is used, i.e. moisture content (M) is 

defined as the mass of moisture (m) divided by the oven-dried capillary porous 

sample (mo). 

Substituting Equations [2], [3] and [4] into [la] and [Ib], then we have the heat 

transport equation, 



aM 
-= V' {[Dm] V'M + [Dmh] V'T} at 

o 

o 

[5b] 

thermal) diffusivities, m2s-1
• Lykov's theory (Lykov, 1966) is therefore extended to 

orthotropic materials. .. 

Heat convection is a frequently used boundary condition for the solution of heat 

transport equations, because assuming convective heat transfer between the boundary 

and environment is more realistic than assuming a constant boundary temperature. In 

fact, the temperature on a sample surface arises from web-bulb temperature and then 

approaches dry-bulb temperature during kiln drying. The heat convection transfer is 

described by the convection coefficient (also called film coefficient or transfer 

coefficient), that is the mean of heat flux over the temperature difference between the 

boundary and environment, as 

[6] 

where hh is the heat convection coefficient, W m-2 Kl; Jh is the heat flux through the 

boundary, W m-2
; Ta is the bulk temperature of airflow, K; Ts is the temperature of the 

moist wood surface, K; <DE is the Ackermann correction factor for the influence of 

moisture-vapour flux and approximates to unity in normal cases (Keey, 1978). 

When drying begins, the surface of a board instantly drops to equilibrium moisture 

content and remains constant under a steady drying condition. The constant boupdary 

condition is an accurate description of mass transport in timber drying. In addition, 

the constant boundary condition is far simpler than the convection boundary 

condition. As a result, the constant boundary condition is normally applied and can 

be expressed as 

M=Me (t>O) [7] 



where M is moisture content, kg kg-I; Me is the equilibrium moisture content under a 

certain drying condition, kg kg-I. 

Numerical solution 

The finite element method is employed for the numerical solution to extend the 

applicability of the developed model to a wider realty. Following the general 

procedures of Galerkin's method (Reddy et ai., 1988; Zienkiewicz, 1977), the 

solution domain Q of a capillary porous body is divided into N elements of r nodes 

each. The approximate values of temperature and mass over each element are defined 

as 

r 

T(e)=:I M(x,y,z)Ti(t) ={TI,Tz, ... Tr}-{Nl,Nz, ... Nr}T={T}-{N}T, [8a] 
i=l 

and 
r 

M(e)=:I M(x, y,Z)Mi(t)={M1,Mz, ... Mr}-{Nl,Nz, ... Nr}T={M}_{N}T [8b] 
j=l 

where Ni are the shape functions, Ti and Mi are the approximate functions for 

temperature and moisture content respectively at node i. In each element, the gradient 

of temperature and the moisture content can be written in matrix notation 

{)Nl {)Nl {)Nl 
-- --

{)x dy {)z 
{)Nz {)Nz ()Nz 

-- --
V'T(e) = {T} {)x {)y dZ = {T} [B] [9a] 

{)Nr {)Nr {)Nr 

{)x dy {)z 

Similarly, 

[9b] 



.. 

After some manipulation, the expansions of all r algebraic equations can be written in 

matrix and vector forms as 

{~: } f {N}T {N}dV + {T} f [B][Dh][B]T dV + {M} f [B][Dhm][B]T dV 
~ ~ ~ 

-{T}fhh{N}T{N}dS = f Me{N}TdS-f hhTa{N}TdS [10] 
s s s 

where [Dhm] = (R£I cpo) [Dm], r.t is the integral domain, V ;j the volume, S is the 

surface of the sample. 

Modelling boundary conditions and heat- diffusivities ofradiata pine 

Even though a developed mathematical model permits a wide applicability for drying 

problems, the simulation outcomes may be unreliable if the inputs are inappropriate. 

Previously, many researchers have simply assigned some values to their models 

without a solid experimental or theoretical basis, which definitely reduced the 

accuracy of the results (Kamke and Vanek, 1994; Kouali et ai., 1992). In this article, 

the empirical models of convection boundary condition and heat- diffusivities of 

radiata pine are presented on the basis of previous experimental studies. The effect of 

moisture gradient on heat transport is normally negligible in timber drying (Kulasiri 

and Samarainghe, 1996; Siau, 1995; Lykov, 1966), the corresponding coefficients are 

hence not presented. 

Heat convection is mainly strongly related to the air-velocity and drying temperature, 

and weekly related to water-vapour (Pang, 1966; Salin; 1988; Keey, 1978). Stevens et 

ai. (1956) studied the heat convection under different air velocities in a laboratory 

kiln. They recorded the heat convection coefficients at air speeds ranging from 0.45 

m S-l to 2.7 m S-l under constant 60 °C/ 50°C dry bulb and wet bulb temperatures. A 

linearly regressed relationship of the obtained coefficients with respect to air 

velocities was suggested. Stevens and Johnston (1955) also investigated the influence 

of temperature on heat convection coefficient using a fixed air speed of 1.2 m S-l. 



Incorporating the effect of temperature and air velocity, heat convection coefficients 

for timber drying may be expressed as 

hh = 8.9417 V + 0.1242 T + 1.3687 [11] 

where T is the dry bulb temperature of the conditioned air stream, C. This model is 

applicable for a temperature below 100°C and humidity around 60% - 70%, above 

which there may be devi'!tion. 

Heat diffusivity is the capacity of a material to absorb heat from environment. It is 

determined by specific heat, heat conductivity and density. A model of specific heat 

was given by Siau (1995). In his formula, the specific heat is determined by both 

temperature and moisture content. When the moisture content is lower than 0.05 kg 

kg-I, the specific heat can be calculated by 

1260[1 +0.004(Tc - 30)] + 4185M 
c =------------

l+M 
(M < 0.05) [12a] 

where c is the specific heat, J kg- I KI; Tc is the Celsius temperature, °C; M is the 

moisture content, kg kg-I. 

When the moisture content is between 0.05 to 0.30, the specific heat of wood 

increases due to the influence of bound water. After adding the increment, specific 

heat is now written as 

1260[1 +0.004(Tc-30)]+4185M + 1674(M -0.05) 
c=-----~--------------

l+M 
(0.05:::; M:::; 0.3) [l2b] 

Once the moisture content exceeds the fibre saturation point, the maximum increment 

of specific heat is added and the expression of specific heat may be simplified as 

1260[1 + 0.004(Tc - 30)] + 4185M + 418.5 
c=---------------

I+M 
(0.3:::; M) [l2c] 



The heat conductivity measures the heat flux through a sample. Maclean (1941) 

tested large amount of samples and proposed an empirical model of heat conductivity. 

This model was quoted by Walker (1993) and Siau (1995) as 

pw 
KTR = (0.200 + 0.38M) + 0.024 

(1+M)1000 
(M~O.4) [ 13a] 

KTR = pw (0.200 + 0.52M) + 0.024 
(1 +M)1000 

(M > 0.4) [13b] 

KL= 2.5 KTR [13c] 

where KTR and KL is heat conductivity in a transverse section and longitudinal 

direction, respectively, W m- I KI ; pw is the wet-basis density of moist sample, 

kg m-3
; M is moisture content of samples, kg kg-I. 

Simulation examples 

The setting of drying conditions and wood properties are recorded in Table 1. A 

group of corresponding simulation inputs is shown in Table 2. Simulated temperature 

profile and thermal gradient are illustrated in Figures 1 and 2. 

Experimental values Coefficient Unit 

Dry-bulb temperature 60 °c 

Humidity 0.7 Dimensionless 

Air speed (V) 2 m S-I 

Initial temperature 25 °c 
Initial moisture content 0.871 kcrkcr- 1 

t:> t:> 

pw 695 k -3 gm-

po 413 kcr m-3 
b 

Table 1. A set of experimental values of drying conditions and wood properties. 



(l 

Simulated parameters Coefficient Unit 

Specific heat 2461 J kcr-1 Kl 
.::0 , 

Heat convection coefficient 30 Wm-2 K 1 

Transverse heat conductivity 0.2665 Wm-1K1 

Longitudinal heat conductivity 0.6662 Wm-1K1 

DhT: DhR: DhL 2.2: 2.2: 5.5 (10-7
) m2 S-l 

Table 2. A set of simulated inputs for the heat transport equations based on empirical 

models. 
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61] _ 081 

Figure 3_6 (a) Temperature profile in a 118 section of a clearwood board after 8 

minutes of drying. (Longitudinal x radial x tangential = 1 m x 0.04 m x 0.15 m; 

inputs are shown in Tables 1 and 2; the unit of the legend is 0 C.) 
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.056703 
5.824 
11. 592 
17.359 
23.127 
28.894 
34.662 
40.429 
46.197 

51. 965 

Figure 3.6 (b) Thermal gradient in a 118 section of a clearwood board after 3 minutes 

of drying. (Longitudinal x radial x tangential = 1 m x 0.04 m x 0.15 m; inputs are 

listed in Tables 1 and 2; the unit of the legend is K m"'.) 

Discussion 

The heat transfer model was developed on the basis of energy conservation and 

experimental results. The solutions of formulae were obtained using the finite 

element method. Hence, this developed 'model shouI'd be applicable to all drying 

conditions and orthotropic capillary porous materials. The scenario of this simulation 

is low temperature drying. In this case, the influences of moisture profile are 

negligible both on boundary connective heat transfer and interior heat transport 

(Keey, 1978; Kulasiri and Samarasinghe, 1996). However, the effect of moisture 

profile could be significant in extreme conditions; for instance, in the study of fire 

resistance. In these cases, heat diffusivity models should be redeveloped, since the 

models were originally obtained from normal drying conditions. 
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