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Farmers’ use of mobile phone applications in Abia state, Nigeria 

 

by 

Victor Chimaobi Okoroji 

 

In developing countries such as Nigeria, agriculture is the main source of livelihood where over 70 

percent of the population engage in farming. They are mostly smallholders who are often subsistence 

farmers with minimal use of technology and low productivity. The use of mobile applications in 

agriculture can help smallholders access agricultural information and financial services, improve access 

to markets and enhance visibility for supply chain efficiency. Unfortunately, most farmers have not 

fully exploited these benefits because of lack of uptake in the use of mobile application technology. 

This study seeks to explore and examine the current level of use of mobile applications for agriculture 

in Abia State, Nigeria and the factors that affect the uptake of this technology. 

A conceptual model which builds on the extended Technology Adoption Model (TAM2) was empirically 

estimated using Structural Equation Modelling (SEM) to examine the factors that influence the 

adoption of mobile applications. Primary data were collected from a sample of approximately 260 

farmers. Data were analysed using descriptive statistics and SEM with the help of IBM SPSS and IBM 

AMOS software. 

The study results revealed the current state of mobile application use and the factors that affect the 

adoption of these applications by farmers. The structural model showed that seven of the direct 

hypothesised relationships in the research model were supported. Social influence (SI), Perceived 

usefulness (PU), Information/awareness (IA) and Intention to use (ITU) affected the adoption of mobile 
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applications positively, while perceived risk (PR) and Perceived cost had a negative impact on their 

adoption. 

This study contributed extensively to farmers’ technology usage literature through its findings. It 

proved that extended TAM is a suitable model to explain the factors that influence mobile application 

adoption behaviour. It helped in bridging the information gap between agricultural application 

developers and farmers by revealing some important demographic information of farmers such as 

their age, gender, educational level, the type of farming carried out and most importantly, the factors 

that affected the adoption and continuing use of mobile applications by farmers. 

Keywords: Mobile applications, smartphone, smallholders, ICT adoption, Structural Equation 

Modelling, Extended Technology Adoption Model, TAM2, SEM 
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CHAPTER ONE 

Introduction 

1.1 Background 

Nigeria is a developing country in West Africa with a population of 195 million (World Population 

Review, 2018). Agriculture is the base of the country’s economy and has remained the main source of 

livelihood for most inhabitants (FAO, 2017). It has also contributed significantly to the improvement of 

Nigeria’s Gross Domestic Product (GDP) over the last 10 years (Sertoglu, Ugural, & Bekun, 2017). In 

2016 and 2017, agriculture dominated the non-oil sector of the economy, contributing 21.26 percent 

in 2016 and 24.44 percent in 2017 to Nigeria’s nominal GDP (National Bureau of Statistics, 2017). 

According to the National Bureau of Statistics (NBS) in 2005, as cited in Ogunniyi and Ojebuyi (2016, p. 

173), over 80 percent of the population lived in rural areas. About 70 percent of the population 

engaged in agriculture and they are made up of smallholders who cultivate or own farmland less than 

five hectares (Ofana, Efefiom, & Omini, 2016). These smallholders produce over 80 percent of all 

agricultural produce in the country.  

According to Nwajiuba (2012), Nigeria has about 79 million hectares of arable land, and over 32 million 

hectares are cultivated for both crop and livestock production. But the current production rate has 

been unable to feed Nigerian’s growing population leading to food security issues and high food import 

bills. As at April 2018, the population of the country has increased by 1.6 million with an annual growth 

rate of 2.63 percent (World Population Review, 2018). A review of agricultural productivity in Nigeria 

by the International Food Policy Research Institute IFPRI (2009) showed that inconsistent provision of 

farm inputs and services by government, marketing of farm commodities, use of traditional 

management practices, absence of GPS for livestock productivity, inadequate information on the use 

of modern technology and practices, as well as poor extension service delivery were among the factors 

that hindered agricultural productivity. IFPRI findings revealed that these challenges were more 

pronounced because the majority (80 percent) of farmers in Nigeria are smallholders who cannot 

afford the cost of using modern technologies and farm practices. 
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Although agriculture in Nigeria has been of great importance to the economy, it is confronted by most 

of the challenges that hamper agricultural improvement in developing countries and include: a low 

level of mechanisation in agriculture, high illiteracy levels among the farmers, lack of credit facilities for 

farmers, weather vagaries, low technology diffusion, poor infrastructure, inadequate access to 

markets, defective research and extension services, implementation inefficiency, practice of tenure 

ownership, pests and diseases and imperfect information (Abutu, 2014; Aker, 2010, 2011; Ofana et al., 

2016; UN, 2013). According to Aker, Ghosh, and Burrell (2016), most of the the agricultural problems 

as described by Abutu (2014), Ofana et al. (2016) and the United Nations (UN) (2013) that hamper 

agricultural productivity and development in developing countries could be addressed or managed 

effectively through the use of mobile phone applications by the farmers. 

The use of mobile phones has been identified as one of the existing forms of Information 

Communication Technologies (ICTs) that can improve agricultural productivity and accelerate rural 

development processes (Asa & Uwem, 2017; Nyamba & Mlozi, 2012; Qiang, Kuek, Dymond, & Esselaar, 

2012). Similarly, Chukwunonso and Tukur (2012), in their study carried out in Nigeria, recognised the 

mobile phone as a form of ICT that can contribute to poverty reduction and socio-economic 

development through its application in agriculture. In 2006, Torero and Von Braun predicted that 

mobile phones would be the ICT that will have the greatest diffusion and impact on the poor masses 

which include rural smallholders. They contend that mobile phones will help to reduce the 

marginalisation of the poor by promoting communication that is not restricted by time, distance, 

volume and medium, thereby surmounting the obstacles created by territory and social standing. 

There has been a growing awareness of the usefulness of mobile phones and this has drawn the 

attention of individuals, businesses, governmental and non-governmental organisations to the myriad 

of purposes a mobile phone can serve in various sectors such as agriculture, health, business, 

education and the entertainment sector (Baumüller, 2012, 2015). In the agricultural sector, 

Costopoulou, Ntaliani, and Karetsos (2016) highlighted some of the important services that could be 

achieved through the use of mobile phones which include weather forecasting for farmers, agricultural 

product market prices, information for agricultural machinery and equipment, agricultural business 
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news, management of irrigation systems, yield forecasting and monitoring, dairy farming, management 

of agricultural products and crop sensors and registration of soil types. These services can be achieved 

through smartphones as a smartphone is needed to provide a platform where various mobile 

applications can be installed before usage. 

1.2 Smartphone and mobile applications 

Within the last decade, smartphones and mobile applications have become part of peoples’ daily lives 

and most essential in how they carry out their daily activities. It has helped in real-time information 

acquisition, communication, entertainment and for productive purposes. According to the Pew 

Research Center (2016), smartphones are mobile phones that can access the internet and support 

application installation. Qiang et al. (2012) identified some advantages of smartphones over low-end 

mobile devices which include a touchscreen, a wider user base, delivery of instant information 

conveniently, affordability, the ability to deliver personalized information to owners, and voice 

communication support.  

Smartphones have witnessed a high rate of adoption worldwide because of their affordability and 

continuing improvement in functionality (Richard, 2015). The International Data Corporation (IDC) 

study on smartphone shipments worldwide showed that shipments would reach 1.77 billion units in 

2021 from 1.53 billion shipped in 2017, which will result in a compound annual growth rate (CAGR) of 

3.8 percent (Scarsella & Stofega, 2017). Similar research by the Pew Research Center (2016) shows that 

internet usage in developing countries increased from 45 percent in 2013 to 54 percent in 2015 just as 

smartphone usage increased from 21 percent in 2013 to 37 percent in 2015. It is worth noting that 

smartphones require internet connectivity for installed applications to function effectively. 

Mobile applications (mobile apps) are software programmes designed to run on mobile devices like 

smartphones and tablets (Costopoulou et al., 2016). They are mostly built to provide users with similar 

services to those accessible on desktop and laptop computers (PCs). The functions they perform are 

essential and specific, ranging from productivity, entertainment, and access to information. They are 
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designed to be interactive and easy to use and also provide users with mobile contents such as text, 

audio, recordings, images, graphics and videos. 

Notably, there are six categories of mobile apps which are utility mobile apps, lifestyle mobile apps, 

games/entertainment mobile apps, social media mobile apps, productivity mobile apps and 

news/information channel mobile apps (Lane & Manner, 2012; Matteo, 2018). These six categories 

cover virtually all human activities from business, health, agriculture, entertainment, sports, travel, 

tourism, education and production to finance (Costopoulou et al., 2016). Most mobile apps designed 

to aid farmers and agribusiness stakeholders fall under productivity mobile apps, news/information 

mobile apps and social media mobile apps. 

There are various types of operating systems that can be found on a smartphone, and this determines 

the type of mobile application that could be compatible with or installed in them (Divya & Kumar, 

2016). Some of the notable mobile operating systems that run on most smartphones include Android, 

iOS, Windows and Blackberry. The operating system on a mobile phone has been identified as one of 

the factors that affect the use of mobile applications by an individual (Lim, Bentley, Kanakam, Ishikawa, 

& Honiden, 2014). A user with an Android-based smartphone can only install Android-based 

applications; the same applies to iOS, Windows and Blackberry-based smartphones. In the same 

manner, an iOS user cannot use an Android mobile application if they cannot find the iOS version of 

such a mobile application. Studies have shown that Android is the most popular and the most used 

mobile operating system followed by iOS, Windows and Blackberry (Costopoulou et al., 2016; Divya & 

Kumar, 2016; Joseph & Shinto Kurian, 2013). According to Divya and Kumar (2016, p. 438), “Android 

gets 80.7 percent, and it is the best smartphone operating system in the world” because it has an open 

source operating system which makes it possible for users to install third-party applications from apps 

stores. 

Mobile application developers strive to develop each mobile app on various smartphone operating 

systems with the aim of reaching a wider user base. Because each operating system has its own 

distinctiveness, this becomes a challenge to developers because each operating system has a unique 
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coding stream. Therefore technical issues related to mobile operating systems’ continuous support, 

update and design have to be dealt with (Pastore, 2013). When mobile app developers are unable to 

replicate an app on various mobile operating systems, this becomes an issue that the end users have 

to deal with because of incompatibility of the operating system. Studies have identified lack of 

compatibility as one of the main reasons for not adopting or using a mobile application despite its 

perceived benefits (Al-Jabri & Sohail, 2012; Shaikh & Karjaluoto, 2015). 

Studies on the use of mobile applications by  farmers is an aspect of technological innovation that has 

received much attention, but most of these studies tend to generalise the term “mobile phone use” 

and “mobile phone adoption” without taking into consideration the difference between using a mobile 

phone and using a mobile phone application (Baumüller, 2015; Richard, 2015). To use a mobile 

application for any purpose, a person must have a smartphone or a tablet (a mini computer with a 

mobile operating system). This serves as a platform where applications can be installed before use. 

Although the smartphone evolved from mobile phones because of advances in technology, a mobile 

phone is simply a phone used for the primary aim of making and receiving calls and sending text 

messages. Other useful features found in a mobile phone include a calendar, calculator, alarm, clock, 

radio, and touch light. But a smartphone offers a wide range of additional services, some of which may 

be obtained on a desktop or laptop computer. Smartphones are affordable, very portable and easy to 

operate, with the ability to deliver instant and convenient services (Qiang et al., 2012). This makes 

them an ideal tool for smallholders. The ability of a smartphone to support mobile applications has 

made it easier for individuals and businesses to get things done easily and in a timely manner, thereby 

making them more productive. According to Pastore (2013), companies and businesses that make use 

of apps on smartphones have been able to stay close to their customers and remain active in their 

competitive environment. It has also created economic opportunities for employment, learning a new 

skill, receiving information or medical treatment and even starting a new business (Aker & Mbiti, 

2010). 



17 
 

1.3 Use of Mobile Applications for Agriculture in Developing Countries 

In most developing countries, the use of mobile phone applications for agricultural purposes is still 

gaining popularity, while in some developing countries such as India, Kenya, Uganda, South Africa and 

Tanzania, agricultural productivity has been improved through the use of mobile applications (Qiang et 

al., 2012). Baumüller (2015) asserted that the use of mobile applications for agriculture has the 

potential to reach and assist rural smallholders. He went on to confirm that the agricultural sector of 

most developing countries is characterised by a greater number of smallholders who are often 

subsistence farmers with obsolete technology and low productivity. A review on the use of mobile 

applications in developing countries by Hatt, Wills, and Harris (2013) showed that mobile apps had 

improved health-related services in Asia, while in Africa, mobile money applications have improved 

financial transactions. According to the World Bank (2017), opportunities abound for agriculture to be 

enhanced through ICT, by improving market access and value chains, providing information on disease 

and climate, and facilitating extension service delivery, providing a better market link and distribution 

channels, as well as access to financial services which include payments, insurance and credits. 

Qiang et al. (2012) carried out a study, where they investigated the impact of 92 mobile applications 

for agriculture and rural development in Africa, Asia, Latin America and the Caribbean (developing 

countries). They found that most agricultural mobile applications focused more on providing market 

information, facilitating market links, improving supply chain integration and increasing access to 

extension services. Among the uses served by the various agricultural apps, valuable information was 

rated the most important, because of the high level of information asymmetry affecting the rural 

markets in developing countries (Aker, 2010; Brown, Zelenska, & Mobarak, 2013; Qiang et al., 2012; 

World Bank, 2017). The mobile applications that improved agricultural supply chain integration 

facilitated other social and economic benefits including value addition, job creation, reduction in 

product losses and strengthening of the global competitiveness of developing countries. Figure 1.1 

shows the results generated from the various agricultural applications studied by Qiang et al. (2012). 
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Figure 1.1 Results generated by mobile applications for agricultural and rural development 
source: (Qiang et al., 2012, p. 17) 

Results generated by Qiang et al. (2012) showed that use of mobile applications helps smallholders 

achieve higher incomes, with lower transaction and distribution costs on output sales and input 

supplies. Both producers and consumers enjoyed improved traceability. Other stakeholders such as 

financial institutions had new opportunities to explore.  

In Sub-Saharan Africa, Kenya has been recognised as the pacesetter in the development of agricultural 

mobile apps (Baumüller, 2015). This is evident in the number of mobile apps being used by Kenyan 

farmers and the extensive research that has been carried out on the impact and adoption of these 

mobile apps (Baumüller, 2013; Kante, Oboko, & Chepken, 2016; Kirui, Okello, Nyikal, & Njiraini, 2013; 
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Wyche & Steinfield, 2016). The findings showed that Kenyan farmers increased their farm productivity 

and income by using such mobile apps as Virtual City AgriManager, M-Pesa, KACE (Kenyan Agricultural 

Commodity Exchange), DrumNet and KilimoSalama. Brown et al. (2013, p. 20) reported that M-Pesa “is 

the most widely adopted mobile financial service around the world with over 14 million users by early 

2011.” This represents over 70 percent of Kenya’s adult population. However, Gichamba (2015, p. 4) 

noted that most Kenyan farmers that benefited from these mobile apps were farmers in suburban 

regions and agriculture intensive areas.  Similarly, farmers from Uganda witnessed a positive impact on 

their farming productivity by using mobile apps like Grameen (weather application), Esoko, Google 

Trader, WeFarm, Infotrade, Foodnet and Farmgain(Qiang et al., 2012). Evidently,Martin and Abbott 

(2011) found in their study on the adoption of mobile phone use in Uganda that 87 percent of the 

farmers used mobile apps for coordination of inputs and 70 percent used them for accessing market 

information. These services were considered the most important for Ugandan farmers. 

Other notable Sub-Saharan African countries witnessing improvement in their agricultural sector 

through the adoption of mobile apps include Ghana, Tanzania, Botswana and South Africa. Esoko 

mobile app and Cocoa Link reduced asymmetric information faced by Ghanaian farmers (Aker et al., 

2016). Modisar mobile app improved livestock production in Botswana (Chukwunonso & Tukur, 2012). 

M-Kilimo helped Tanzanian farmers receive extension services and market information that ultimately 

increased their productivity and income (Temu, Henjewele, & Swai, 2016). 

Some of the agricultural mobile apps charge subscribers (farmers) for using the services provided 

through the mobile apps (Qiang et al., 2012). While some of the mobile apps provide services that are 

subsidised, some others are completely free of charge, because the services have been paid for or 

subsidised by either government, donors, private companies, commercial banks or trust funds. The 

services or content of the mobile apps can either be provided by the government, extension workers, 

media, or specialised commercial units for mobile money apps, and finally through crowdsourcing 

where the farmers can contribute all the useful information at their disposal. Crowdsourcing is typical 

of such social media apps as Twitter, WhatsApp and Telegram. 
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Mobile applications have also created business opportunities for companies with an interest in 

improving agricultural productivity in developing countries (Baumüller, 2015). In India, Nokia and 

Reuters Thomson are providing information services to farmers (Saravanan & Bhattacharjee, 2014). In 

Uganda, Google is connecting producers to consumers through an internet-based platform 

(Ssekibuule, Quinn, & Leyton-Brown, 2013). In Ghana, a German software company “System 

Application Products” (SAP), is overseeing supply chain management systems for smallholders 

(Baumüller, 2015). In Tanzania, Vodafone Group, US Agency for International Development (USAID) 

and TechnoServe have partnered to boost agricultural productivity and incomes of farmers in Tanzania 

through the use of mobile technology (Vodafone Group, 2014).   

These studies highlight the potential of mobile phone apps to improve agricultural productivity and 

therefore the need to understand more about the use of mobile phone application technologies by 

farmers in developing countries. 

Looking at the impact assessment of the use of mobile apps for agriculture in developing countries, a 

good number of studies have been conducted on assessing the impact of mobile phones in developing 

countries (Aker & Mbiti, 2010; Chhachhar & Hassan, 2013; Martin & Abbott, 2011), with just a few 

having focused on agricultural mobile applications’ adoption and impact. 

1.4 Adoption of Mobile Applications by Farmers in Nigeria 

The mobile phone industry in Nigeria has played a significant role in the socio-economic development 

of the country by creating a platform for innovation, digital inclusion, and access to information 

exchange, finance, markets and governance to millions of citizens who have been excluded from these 

services (Brown et al., 2013; GSMA, 2016; Ogunniyi & Ojebuyi, 2016). Unfortunately, most farmers 

have not fully exploited these benefits because of lack of uptake in the use of mobile application 

technology (Chhachhar, Chen, & Jin, 2016). Mobile phone technology is a crucial factor that can 

contribute to poverty reduction and economic development through its application in agriculture 

(Baumüller, 2012). The level of internet usage in Nigerian has been increasing and according to the 

Pew Research Center (2016, p. 15), “in 2014, 38 percent of Nigerian internet users said they access the 
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internet several times a day. In 2015, the number increased to 58 percent.” The number of 

smartphone users in Nigeria is estimated to reach 23.3 million by 2019  from 11 million in 2014 

(Statista, 2018). Despite this significant increase in smartphone and internet usage, there is still a 

prevalent digital divide in developing countries where social and economic inequalities still affect the 

access, use and impact of ICTs (Ohemeng & Ofosu-Adarkwa, 2014). 

In Nigeria, the number of mobile apps that could aid agricultural productivity is increasing, and there 

are some that are still at their development stage with the web version already in existence and 

running. Notable mobile apps for agriculture in Nigeria include apps such as GES E-wallet, which stands 

for Growth Enhancement Support Electronic wallet. It was created by the Ministry of Agricultural and 

Rural Development in Nigeria to provide soft loans to farmers, track seed and fertiliser disbursement 

and educate farmers on farming methods that will improve their output (Uwalaka, 2017). Agrikore is 

another mobile app that connects farmers, agro-dealers, commodity traders and insurers under a 

platform that ensures transparency and honesty among the actors in the system. Verdant mobile app 

offers market information and general agricultural guidance and Agrodata is dedicated to providing 

agricultural information and research data. Hello Tractor app helps farmers access tractors and other 

farming tools. Probityfarms is used for farm management as well as to connect farmers to market and 

Compare-the-market is designed to compare the price of food crops and livestock in Nigeria on a daily 

basis. Cellulant app works in partnership with the federal government of Nigeria to help farmers 

redeem subsidised seed and fertiliser vouchers from designated retail outlets. Farmers use WhatsApp 

and Telegram to create informal groups where information and ideas are exchanged. Various Nigerian 

mobile banking apps are designed to ease payments and other financial transactions on-the-go. 

Although there are a significant number of mobile apps that can help farmers, the use of these is low 

especially by small farmers. 

1.5 Research Problem 

Agriculture has been identified as the main source of livelihood for most Nigerians (FAO, 2017), where 

70 percent of the population engages in agriculture, and they are mainly smallholders who produce on 
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a small scale. These smallholders produce over 80 percent of the countries’ entire agricultural output 

which is not enough to feed the growing population of Nigeria, leading to over-dependence on 

imported food (Nwajiuba, 2012). The main challenges faced by these smallholders are access to 

agricultural information, access to market and access to financial services (Baumüller, 2012; Nwajiuba, 

2012). Studies have proven that the use of mobile application in agriculture can help smallholders 

access  agricultural information and financial services, improve access to markets and enhance visibility 

for supply chain efficiency (Aker & Mbiti, 2010; Baumüller, 2015; Qiang et al., 2012; Vodafone Group 

and Accenture, 2011) 

According to Lim et al. (2014), there has been little research carried out on the behaviours of mobile 

app users and their mobile devices. They found in their study that lack of user feedback and inability to 

understand app users’ behaviour caused many mobile apps to fail as app users seldom give user 

feedback or reviews irrespective of the level of satisfaction derived (McIlroy, Shang, Ali, & Hassan, 

2017). Lim et al. (2014) went ahead to reveal that app developers lack important demographic 

information about users such as their age, gender, educational level and income level. This makes it 

difficult to understand the usage pattern of these apps. 

Ogunniyi and Ojebuyi (2016), conducted a study on the use of mobile phones for agribusiness by 

farmers in Southwest Nigeria, where they found that 76 percent of farmers mostly use mobile phone 

radio and 83 percent use their phone just for calls. However, the study did not take into consideration 

the use of agricultural mobile apps by farms as they only focused on such utility tools as SMS, calls, 

calendar, alarm, radio etc. that have been displaced by a vast range of more advanced technological 

options (Richard, 2015). The factors that affect the use of agricultural mobile apps were overlooked in 

their study. 

A study carried out by Asa and Uwem (2017) in South-south Nigeria revealed that 90 percent of the 

rural farmers had mobile phones and 98 percent had access to mobile phones, but the study failed to 

capture the type of phones that the farmers use and the operating system installed on such mobile 

phones. Similarly, Jaji, Abanigbe, and Abass (2017) in their study carried out in South-west Nigeria 



23 
 

revealed a 98 percent mobile phone ownership and usage, mostly for accessing information. However, 

their study also did not clearly capture how this information was being accessed. There is the need to 

understand the kind of phone and mobile apps used by farmers and the factors that influence farmers’ 

willingness to use mobile apps.  

Chukwunonso and Tukur (2012) in their study on the adoption of ICT in agriculture in Nigeria 

discovered that ICT cost, lack of access and awareness, lack of end-user information exchange and 

trust were among the factors that affected ICT adoption. Their study looked at ICT from a broader 

point of view. This included computer acquisition, software installations and internet access, which the 

farmers considered to be expensive. Smartphones are less expensive, and mobile apps are easier to 

access from app stores. Studies have shown that adoption of mobile apps by consumers is mostly 

influenced by ease of use, trust, performance expectancy, cost and social influence (Chukwunonso & 

Tukur, 2012; Malik, Suresh, & Sharma, 2017; Shaikh & Karjaluoto, 2015). On the other hand, Xu, Frey, 

Fleisch, and Ilic (2016) and Lane and Manner (2012) discovered in their study that mobile app adoption 

is influenced by the user's personality traits and not about the perceived benefits or costs of the app. 

They discovered that extroverted individuals preferred gaming, entertainment and social media mobile 

apps. To them, productivity apps were less important, while conscientious individuals would rather go 

for productivity apps and information apps. Unal, Temizel, and Eren (2017) study on mobile apps 

adoption shows that gender influences the choice of apps downloaded by individuals. These findings 

show the need for a better understanding of how farmers perceive the use of mobile apps. 

Most of the studies on the use of mobile phones in agriculture in Nigeria have approached the concept 

from a generalised point of view (Aker, 2010; Asa & Uwem, 2017; Chhachhar et al., 2016; Ogunniyi & 

Ojebuyi, 2016). There has been no distinction between a mobile phone and a smartphone, between 

utility tools/apps and productive mobile apps, or between information mobile apps and social media 

mobile apps. They have all been categorised as “the use of mobile phone in agriculture”. In essence, 

there are clearly defined differences between these terminologies. Most agricultural mobile apps fall 

under the category of productivity mobile apps, information mobile apps and social media mobile 

apps. These three categories of mobile apps have been designed to function only on a smartphone. 
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Furthermore, existing literature on the use of mobile phones in Nigeria has not captured farmers’ 

perceived interest and willingness to use mobile apps. There is also the need to bridge the information 

gap between agricultural app developers and app users. Quantitative analysis will help to provide the 

farmers’ demographic and socioeconomic characteristics and how they affect farmers’ use of 

smartphones and mobile apps. 

1.6 Research Objectives 

So far, the findings from earlier studies on the use of mobile applications by farmers in Nigeria are 

insufficient to conclude that farmers are using mobile applications and that they have improved their 

productivity. To help address this gap, this research is aimed at providing a critical understanding of 

the current state of mobile apps use in the Nigerian agricultural sector by examining the factors that 

affect the adoption of mobile applications. It also seeks to contribute to mobile apps use literature by 

exploring and examining the current level of use of mobile apps for agriculture in Abia State and the 

factors that affect the uptake of this technology. To successfully achieve this fit, this study will seek to 

provide answers to the following research questions: 

I. What are the factors that influence the adoption of mobile apps by farmers? 

II. Why are some farmers not adopting mobile apps? 

Answers to these questions are required to determine the factors that influence the adoption of 

mobile apps by farmers in Abia state, Nigeria. 

The specific objectives are to: 

I. Investigate the types of phones and the operating systems on the phones used by farmers; 

II. Identify the current mobile applications being used by farmers and their uses; 

III. Identify the factors that distinguish farmers who use mobile apps apart from those who do not 

use them; 

IV. Examine the interest and willingness of farmers to use mobile apps in their daily farming 

activities; and 
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V. Determine the factors that influence the adoption of mobile apps. 
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CHAPTER TWO 

Literature Review 

2.1 Theories of Technology Adoption 

Mobile application development in the area of mobile communication technology has advanced 

considerably in the last decade with much improvement in the services and functions obtainable in 

these mobile applications (Costopoulou et al., 2016; Qiang et al., 2012). The agricultural sector, just 

as other sectors including finance, education, and entertainment, has witnessed the development of 

mobile apps to aid farmers in their daily farming activities (Suarez & Suarez, 2013). But the main 

challenge faced by developers of these apps is to get farmers to adopt and use these applications 

developed for them (Richard, 2015). To understand and solve this problem of adopting new 

technology, researchers have developed theories and models that try to explain the rationale behind 

adopting or rejecting a new technology which has implications for both the developer and the 

intended users of this technology (Al-Jabri & Sohail, 2012; Lai, 2017; Malik et al., 2017). Some of the 

empirical theories are: Theory of Diffusion of Innovation (DIT) (Rogers, 2010), Theory of Reasoned 

Action (TRA) (Fishbein & Ajzen, 1975), Theory of Planned Behaviour (TPB) (Ajzen, 1991), Technology 

Acceptance Model (TAM) (Davis, 1989; Sharma & Mishra, 2014), Technology Acceptance Model 

(TAM2) (Venkatesh & Davis, 2000) and Unified Theory of Acceptance and Use of Technology (UTAUT) 

(Venkatesh, Morris, Davis, & Davis, 2003). See Table 2.1 for empirical studies. 

2.1.1 Diffusion of Innovation Theory (DIT)  

Diffusion of Innovation Theory  (DIT) was developed by Rogers in 1960 (Sharma & Mishra, 2014). 

According to Lai (2017, p. 22), “Rogers proposed that diffusion of innovation theory was to establish 

a foundation for researching innovation acceptance and adoption”. Rogers (1995) reviewed over 508 

diffusion studies before establishing Diffusion of Innovation Theory for the adoption of innovations 

among individuals and organisations. Rogers went ahead to explain the importance of the process 

and channel through which an innovation is communicated over time among the members of a 
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social system. This process and channels were what he referred to as “diffusion”. Lai (2017) 

described this process of communicating innovation to include understanding, implementation, 

persuasion, decision and confirmation, which will lead to the development of Rogers (1995) S-

shaped adoption curve of innovators, early adopters, early majority and laggards, as can be seen in 

Figure 2.1. The „S‟ shaped curve represents the cumulative rate of adoption (or diffusion curve). The 

bell curve depicts the number of new adopters along the same timeline. In an attempt to understand 

factors that influence adoption of ICT tools, which include mobile phone applications, DIT seem to be 

the most used theory (see Table 2.1) (Al-Jabri & Sohail, 2012; Genius, Koundouri, Nauges, & 

Tzouvelekas, 2013; Martin & Abbott, 2011). According to Al-Jabri and Sohail (2012), DIT is a theory 

that attempts to analyse how, why and at what rate a new technology and concept spread. 

 
Figure 2.1 Innovation adoption curve 
Source: (Briscoe, Trewhitt, & Hutto, 2011) 

2.1.2 Theory of Reasoned Action (TRA) 

TRA was developed by Fishbein and Ajzen (1975), and it is one of the oldest and most popular 

theories (Lai, 2017). According to Malik et al. (2017, p. 107), in TRA, “intention determines 

behaviours and attitudes influence this intention and in turn behaviour” (See Fig. 2.2). The theory 

defines the links between intentions, beliefs, norms, attitude and behaviours of persons. Fishbein 

and Ajzen (1975) defined attitude as a person’s positive or negative feeling about carrying out a 

specific action and defined “belief” as a link between an object and some attribute and “behaviour” 

as a result of intention. A key factor in TRA is a person’s subjective norms which determine how they 
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perceive their community’s attitude to a certain behaviour or what others will think of a certain 

behaviour (Lai, 2017) (e.g. “My fellow farmers are using mobile money app and it is prestigious to 

have one”). 

 
Figure 2.2 Theory of Reasoned Action (TRA) 
Source: (Fishbein & Ajzen, 1975) 

2.1.3 Theory of Planned Behaviour (TPB) 

TPB was developed by Ajzen (1991). The theory argues that the performance of a person’s behaviour 

of interest is influenced by their behavioural, normative and control beliefs. This leads them to carry 

out a certain behaviour (Malik et al., 2017; Sharma & Mishra, 2014). As can be seen in Figure 3, 

attitude, just as in TRA is believed to have a positive or negative influence in one’s life. Subjective 

norms mean that people act in a certain way because of what other people think or say. The last 

factor is perceived behavioural control which is the control people perceive may limit their 

behaviour (Lai, 2017) (e.g. “Am I eligible to apply for mobile money apps and what are the 

requirements?”). The theory predicts that attitude, favourable social norms and high levels of 

perceived behavioural control are the best predictors for forming a behavioural intention, which in 

turn leads to certain behaviour or act (see Figure 2.3) 
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Figure 2.3 Theory of Planned Behaviour (TPB) 
Source: (Ajzen, 1991) 

2.1.4 Technology Acceptance Model (TAM) 

TAM was developed by Davis (1986) for his doctoral proposal, and it was developed specifically for 

the analysis of users’ acceptance of Information Communication Technologies (ICTs) (Lai, 2017). 

Davis (1989) used this model to test two specific beliefs which are Perceived Usefulness and 

Perceived Ease of Use. He was of the opinion that Perceived Usefulness is a potential user’s 

subjective likelihood that makes them believe that using a particular technology or mobile app will 

improve their action while Perceived Ease of Use is the degree to which the potential user expects 

the technology to be easy or effortless to use (see Figure 2.4). Davis (1989) contends that a person’s 

belief in a technology may be influenced by other external factors or variables. King and He (2006) 

used the TAM model for analysis and found it very useful and applicable in other areas of study, 

while Benbasat and Barki (2007) criticised the TAM model, citing that it has a lot of limitations when 

applied in a rapid-changing IT environment. 
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Figure 2.4 Technology Acceptance Model (TAM) 
Source: (Davis, 1989) 

2.1.5 Extended Technology Acceptance Model (TAM2) 

Technology Acceptance Model (TAM 2) was developed by Venkatesh and Davis (2000). It is a 

modification of TAM. Their study provided more key determinants that could influence a user’s 

perceived usefulness and intention to use in their extended TAM model. According to Sharma and 

Mishra (2014), the key determining factors included are social influence processes (which involve 

image, voluntariness and subjective norm) and cognitive instrumental processes (which include 

perceived ease of use, output quality, job relevance and result demonstrability), as can be seen in 

Figure 2.5. 

 
Figure 2.5 Extended Technology Acceptance Model (TAM2) 
Source: (Venkatesh & Davis, 2000) 
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2.1.6 Unified Theory of Acceptance and Use of Technology (UTAUT) 

UTAUT was developed by Venkatesh et al. (2003) after studying and reviewing the previous 

technology adoption models and their constructs. They aimed to come up with a comprehensive 

model that could be applied to a broad area of applications. The model proposed four key constructs 

which predict users’ behavioural intention. The key constructs are “Performance Expectancy, Effort 

Expectancy, Social Influence and Facilitating Conditions”, as can be seen in Figure 2.6. These four 

proposed key constructs were theorised after testing the constructs used in the previous models, 

and they were found to be the most significant factors that affect the intention to use information 

technology. The first construct in UTAUT (Performance Expectancy) is derived from five similar 

constructs from previous models which are Perceived Usefulness, Relative Advantage, Extrinsic 

Motivation, Job-Fit and Outcome Expectations, while Perceived Ease of Use and Complexity make up 

Effort Expectancy.Venkatesh et al. (2003) found Social Influence was not significant in voluntary 

contexts.  

According to Sharma and Mishra (2014), previous theories on technology adoption explained just 30-

40 percent variance in adoption behaviour while UTAUT explained 70 percent of the variance, 

making it the superior model. However, Van Raaij and Schepers (2008) and Casey and Wilson-Evered 

(2012) criticised UTAUT on the basis of being too complex, not being parsimonious in its approach 

and unable to justify individual behaviours. Williams, Rana, Dwivedi, and Lal (2011) reviewed 450 

articles that cited UTAUT, and they found that only a small number of these articles used UTAUT 

constructs in their study; instead, they used it in developing their theory.  
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Figure 2.6 Unified Theory of Acceptance and Use Theory (UTAUT) 
Source: (Venkatesh et al., 2003) 

Table 2.1 Theories used in ICT adoption studies and their findings 

Author Topic Theory/Mode
l 

Dependent 
variables 

Independent 
variables 

Findings 

Malik et al. 
(2017) 

Factors 
influencing 
consumers’ 
attitudes 
towards 
adoption and 
continuous 
use of mobile 
applications: 
a conceptual 
model 

Adoption and 
continuous 
use model 

Satisfaction 
and Habit as 
mediating 
variables 

Performance 
Expectancy, 
Ease of Use, 
Social 
Influence, 
Enjoyment, 
Incentive, 
Facilitating 
Condition, 
Aesthetics, 
Trust 

Satisfaction is 
the most 
important 
predictor of 
intention to 
repurchase an 
app. 
Perception 
after adoption 
leads to 
continued 
use, and Habit 
is a crucial 
determinant 
that leads to 
continued 
usage of an 
information 
system (IS). 
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Gichamba 
(2015) 

The Extent of 
ICT Adoption 
by ACP 
Farmers: 
mAgriculture 
Adoption in 
Kenya 

Revenue 
Model 

 Cost, Network 
Availability, 
Language 
Barrier, 
Privacy, Risk-
Averse 

Most farmers 
were sceptical 
and wanted 
to see that 
applications 
were working 
before they 
would adopt 
them. 
Cost, Network 
Availability 
and Language 
Barrier were 
the 
predominant 
challenges 
that hindered 
adoption. 

Lin (2011) An empirical 
investigation 
of mobile 
banking 
adoption: 
The effect of 
innovation 
attributes 
and 
knowledge-
based trust 

Innovation 
Diffusion 
Theory and 
Knowledge-
Based 
Trust Model 

Attitude and 
Behavioural 
Intention of 
adopting 

Perceived 
Relative 
Advantage, 
Ease of Use, 
Compatibility, 
Perceived 
Competence, 
Benevolence 
and Integrity 

Perceived 
Relative 
Advantage, 
Ease of Use, 
Compatibility, 
Competence 
and Integrity 
significantly 
influence 
Attitude, 
which in turn 
lead to 
Behavioural 
Intention to 
adopt (or 
continue-to-
use) mobile 
banking 

Al-Jabri and 
Sohail (2012) 

Mobile 
banking 
adoption: 
Application of 
diffusion of 
innovation 
theory 

Diffusion of 
Innovation 
Theory 

Mobile 
banking 
adoption 

Relative 
Advantage, 
Complexity, 
Compatibility, 
Observability, 
Trialability, 
Perceived Risk 

Observability, 
Relative 
Advantage 
and 
Compatibility 
affected 
adoption 
positively. 
Perceived Risk 
affected 
adoption 
negatively, 
while 
Complexity 
and 
Trialability 
had no 
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significant 
effect on 
adoption. 

Fathema 
(2013) 

A Structural 
Equation 
Modelling of 
an Extended 
Technology 
Acceptance 
Model for 
faculty 
acceptance of 
Learning 
Management 
Systems 
(LMSs) 

Extended 
Technology 
Acceptance 
Model 
(TAM2) 

Behavioural 
Intention to 
Use and Actual 
Usage 

System 
Quality, 
Perceived Self-
Efficacy, 
Facilitating 
Conditions, 
Perceived 
Usefulness, 
Perceived Ease 
of Use, 
Attitudes 
Towards Using, 
Behavioural 
Intention to 
Use 

The study 
result showed 
that System 
Quality, 
Perceived 
Self-efficacy 
and 
Facilitating 
Conditions 
had a 
significant 
effect 
towards the 
use of canvas. 
The study 
proposed 13 
hypotheses of 
which 11 
were 
supported by 
the results. 

Chan et al. 
(2011) 

Modelling 
Citizen 
Satisfaction 
with 
Mandatory 
Adoption of 
an E-
Government 
Technology 

UnifiedTheory 
of Acceptance 
and Use of 
Technology 
(UTAUT) 

Satisfaction Awareness, 
Compatibility, 
Self-Efficacy, 
Flexibility, 
Avoidance of 
Personal 
Contact, Trust, 
Convenience, 
and Assistance. 
Mediating 
variables 
(Performance 
Expectancy, 
Effort 
Expectancy, 
Social 
Influence, and 
Facilitating 
Conditions) 

Performance 
Expectancy, 
Effort 
Expectancy 
and 
Facilitating 
Conditions 
were found to 
have a strong 
impact on 
Satisfaction 
while Social 
Influence was 
not significant 
in 
determining 
Satisfaction. 

Zaremohzzabie
h et al. (2015) 

A test of the 
technology 
acceptance 
model for 
understandin
g the ICT 
adoption 
behaviour of 
rural young 
entrepreneur 

Technology 
Acceptance 
Model (TAM) 

Entrepreneuri
al intention. 

Perceived ease 
of use, 
perceived 
usefulness, 
and 
behavioural 
intention. 
Attitude as a 
mediator 

Perceived 
Usefulness 
impacted the 
adoption of 
ICT 
significantly 
rather than 
Perceived 
Usefulness. 
Improving job 
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performance 
was of more 
importance to 
the rural 
entrepreneurs
. 

Abdekhoda, 
Dehnad, 
Mirsaeed, and 
Gavgani (2016) 

Factors 
influencing 
the adoption 
of E-learning 
in Tabriz 
University 
of Medical 
Sciences 

UnifiedTheory 
of Acceptance 
and Use of 
Technology 
(UTAUT) 

Usage Performance 
Expectancy, 
Effort 
Expectancy, 
Social 
Influence, and 
Fascinating 
Condition. 
Behaviour 
Intention as a 
mediating 
variable 

Social 
Influence, 
Effort 
Expectancy 
and 
Performance 
Expectancy 
affected the 
faculty 
members’ 
behaviour 
towards 
adopting e-
learning while 
Facilitating 
Condition had 
no effect on 
it. 

Hsu, Lu, and 
Hsu (2007) 

Adoption of 
the mobile 
Internet: An 
empirical 
study of 
multimedia 
message 
service 
(MMS) 

Innovation 
Diffusion 
Theory (IDT) 

Intention to 
adopt MMS 

Relative 
Advantage, 
Perceived Ease 
of Use, 
Compatibility, 
Trialability, 
Image, 
Visibility, 
Result 
Demonstrabilit
y and 
Voluntariness 

Perceived 
Ease of Use 
changed at 
various stages 
of innovation 
diffusion. 
They also 
found a 
significant 
difference 
between 
potential 
adopters and 
users. 

Source: Author’s work 

2.2 Proposed Extended Technology Adoption Model TAM2 for the Adoption of Mobile 

Applications by Farmers 

TAM, which was first introduced by Davis in 1989  has been used in many studies to successfully 

analyse and interpret the adoption of various Information Communication Technologies (ICT) in 

different work environments (Kripanont, 2007; Tarhini, 2013). Perceived Usefulness (PU) and 

Perceived Ease of Use (PEOU) were the two main factors used in TAM to explain the acceptance or 
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rejection of information technology by a person. PU is said to influence adoption if a user believes that 

using a technology will enhance or improve their job performance, while PEOU is said to influence 

adoption if a user believes that a technology would be easy to use. The original TAM model was 

extended in an effort to apply TAM beyond the workplace environment and into other diverse 

environments such as entertainment e.g. mobile games (Chen, Rong, Ma, Qu, & Xiong, 2017), 

consumer services e.g. mobile commerce (Wu & Wang, 2005) and mobile internet (Kim, Chan, & 

Gupta, 2007). The first major extension was carried out by Venkatesh and Davis (2000) who tested four 

different systems in four organisations. They referred to the extended TAM model as TAM2. The major 

difference between TAM and TAM2 is the inclusion of social influence processes and cognitive 

instrumental processes which they found to significantly affect user acceptance. 

According to Venkatesh (2000), the application of TAM outside workplace environments has always 

encountered problems because the main TAM constructs do not adequately demonstrate how well a 

technology meets the needs of the work environment and its tasks. Similarly, Bagozzi (2007) 

contended that TAM overlooks important aspects of technology adoption such as groups’ social and 

cultural aspects. In support of the first major extension of TAM made by Venkatesh and Davis (2000), 

many researchers have emphasised the need to add more variables to TAM for the purpose of 

establishing a stronger model (Legris, Ingham, & Collerette, 2003; Wu & Wang, 2005). As a result of 

this argument, many studies have come up with various extended versions of TAM to suit the work 

environment and the nature of the technology being studied. These studies build upon the original 

TAM and TAM2 and modify it by adding or removing constructs to better explain the adoption of a 

technology in a given setting. e.g. (Chen et al., 2017; Hakkak, Vahdati, & Biranvand, 2013; Park & Kim, 

2014; Venkatesh & Davis, 2000; Wentzel, Diatha, & Yadavalli, 2013). 

2.2.1 Theoretical Model 

This study is on mobile applications which are an aspect of Information Communication Technology 

(ICT), with a focus on what influences their adoption by Nigerian farmers. The workplace environment 

in an agricultural setting is quite different from the organisational setting in which TAM and its 
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extended version were first applied by Davis (1989) and Venkatesh and Davis (2000) respectively. The 

reason for adopting the extended TAM is its ability to successfully explain and predict the adoption of 

information technologies. Rather than sticking to the original TAM or TAM2 constructs, this study will 

modify TAM by adding additional constructs that best describe farmers and their farming activities and 

environment. The three main factors considered in formulating these constructs are farmers’ 

socioeconomic characteristics, their biophysical environment and the nature of their farming 

operations. These three factors were first examined by Baumüller (2012) in his study on the facilitation 

of agricultural technology adoption among poor farmers. Although TAM has been modified to suit the 

study setting, the modification is based on the original extended TAM.   

Five main original extended TAM constructs were retained in the study model (Perceived Usefulness, 

Perceived Ease of Use, Intention to Use, Actual Usage and Social Influence), while six additional 

constructs were added to modify the original extended TAM to suit the study setting. The six added 

constructs are Performance Expectancy, Perceived Risk, Perceived Cost, Satisfaction/Experience, 

Compatibility and Information/Awareness as shown in Figure 2.7. These constructs were carefully 

selected from reviewed literature on mobile applications and farmer technology adoption studies.  

2.2.1.1 Perceived Usefulness (PU) 

PU is one of the two main TAM constructs introduced by Davis (1989) to determine a user’s 

acceptance or rejection of information technology. Davis (p.26) defined it as “the degree to which an 

individual believes that using a particular system would enhance his or her job performance.” In the 

context of farmers’ acceptance of mobile applications, PU is defined as the relative advantage a farmer 

expects to gain from using a mobile app. Apart from Davis (1989) and Venkatesh and Davis (2000), 

many other studies on ICT use have proved that PU has a significant positive impact on a user’s 

behavioural intention to use an IT or a system (Kesharwani & Singh, 2012; Park & Kim, 2014; Wentzel 

et al., 2013). This study hypothesises that PU has a direct positive impact on a farmer’s Intention to use 

mobile applications.  
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2.2.1.2 Perceived Ease of Use (PEOU) 

PEOU is the second main TAM construct introduced by Davis (1989) to determine a user’s acceptance 

or rejection of information technology. Davis (p.26) defined it as “the degree to which an individual 

believes that using a particular system would be free of physical and mental effort." In the context of 

farmers’ acceptance of mobile applications, PEOU is defined as a farmer’s assessment of how effortless 

it is to use a mobile app. Davis noted that PEOU can influence PU because a person who perceives a 

technology as easy to use would be more likely to perceive it as useful. Most smartphones come with a 

user-friendly interface. However, Aker et al. (2016) noted that despite the user-friendly interface on 

most smartphones, farmers with low literacy levels still find it difficult to use a mobile app which can 

influence their adoption decision. Another factor influencing ease of use is the language barrier. Kaur 

and Dhindsa (2018) noted that farmers who cannot understand the English language found it difficult 

to use mobile applications. This study hypothesises that first, PEOU has a direct effect on the PU of 

mobile apps and secondly PEOU also has a positive significant effect on a farmer’s Intention to use 

mobile applications.  

2.2.1.3 Intention to Use (ITU) 

ITU is one of the constructs in Venkatesh’s extended TAM which was originally introduced by Fishbein 

and Ajzen (1975) in their Theory of Reasoned Action (TRA). Prior to the extension of TAM, Davis (1989) 

in the original TAM theorised that a for potential user’s behavioural ITU a particular technology is 

hypothesised to be a major determining factor in whether or not he actually uses it. The theory also 

has it that a person’s behavioural intention to use a given technology is influenced by two beliefs: PU 

and PEOU. In the study context, a farmer’s behavioural ITU mobile apps would be a major determinant 

of whether he eventually uses them. This study hypothesises that ITU has a significant positive effect 

on the Actual Usage of mobile apps. 

2.2.1.4 Social Influence (SI) 

SI is a widely recognised factor that influences a person’s technology acceptance behaviour. It was a 

factor used in Fishbein and Ajzen (1975) Theory of Reasoned Action to explain subjective norms. 
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Fishbein and Ajzen (p.302) defined SI as a “person’s perception that most people who are important to 

him think he should or should not perform the behaviour in question.” In Venkatesh and Davis (2000) 

extended TAM, SI was used as a key determinant of TAM’s PU and ITU constructs. Unlike Fishbein and 

Ajzen, Venkatesh and Davis used Subjective Norm as one of the factors in explaining the SI process. 

Subsequent studies on technology adoption (Al-Gahtani, 2016; Hakkak et al., 2013; Taylor & Todd, 

1995) have used Subjective Norm and Social Influence interchangeably to explain the impact of other 

people’s views and opinions on the adoption of information technology. Kesharwani and Singh (2012) 

argued that interchanging Social Influence and Subjective Norm has led to mixed results and the effect 

on technology adoption has been inconsistent. In most farming communities, especially in developing 

countries, social interactions exist within the farmers and would be necessary to see the impact on 

their PU of mobile applications and their ITU mobile apps. According to Hakkak et al. (2013), such an 

impact could be favourable or unfavourable. This study, therefore, hypothesises that SI has a 

significant positive impact on the PU of mobile applications. 

2.2.1.5 Performance Expectancy (PE) 

The PE construct was introduced by Venkatesh et al. (2003) in their Unified Theory of Acceptance and 

Use of Technology (UTAUT). They described it as the degree to which any technology can improve the 

productivity of a user or will assist the user to achieve gains in job performance. Consumers tend to 

adopt and use applications that they perceive would improve their productivity based on their 

knowledge of the content of the app. In Malik et al. (2017), PE was found to have a significant effect on 

adoption, especially on male consumers while Chan et al. (2011) reported that PE leads to continued 

use when satisfaction is derived from initial use. This study hypothesises that PE has a significant and 

positive impact on the PU of mobile applications. 

2.2.1.6 Perceived Risk (PR) 

PR is one of the external variables included in the study’s extended TAM. It has been in use as early as 

the 1960s to explain consumers’ attitudes towards decision making (Bauer & Cox, 1967). They defined 

PR with regard to the insecurity and unfavourable outcomes associated with consumers’ expectations. 
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Internet applications are associated with diverse kinds of risk and as a result, consumers are careful 

when indulging in such. PR has been mostly used in internet and mobile banking transaction adoption 

study because of the security concerns associated with such transactions (Al-Jabri & Sohail, 2012; 

Kesharwani & Singh, 2012; Wentzel et al., 2013). Most of these studies found PR to negatively 

influence users’ behavioural intention to use such services. The present study takes into consideration 

all mobile applications that could be used by farmers, including mobile banking apps, hence the 

inclusion of PR in the study model. This study hypothesises that PR has a significant and negative 

impact on the PU of mobile applications.  

2.2.1.7 Perceived Cost (PC) 

PC is another important addition to the study to extend TAM. Some mobile applications come with a 

monetary price which must be paid by a user before downloading the app from an app store. Adoption 

is affected when there is a price attached to the mobile application. Wu and Wang (2005) maintained 

that the cost-benefit pattern is important to both PU and PEOU in TAM. When there is an excessive 

cost involved in using an application, such as subscription fees or high internet charges, the adoption 

rate of such an app is usually low (Qiang et al., 2012). According to Brown et al. (2013), most 

smallholders are price sensitive so any little change in service fee can drastically affect the adoption 

rate. Studies have found PC to negatively influence ITU and AU of internet applications (Kim et al., 

2007; Wu & Wang, 2005). This study hypothesises that PC has a significant and negative impact on the 

PU of mobile applications.  

2.2.1.8 Satisfaction/Experience (SE) 

SE is the level of satisfaction a potential app user derived from previous apps usage experience. This 

construct proposes that a farmer who derived satisfaction from previous mobile applications usage 

experience will tend to adopt new technology, contrary to a dissatisfied user. Wang, Yu, Yang, Miao, 

and Ye (2017) found prior experience to be significant in the adoption of electric cars as customers 

who had the opportunity to use an electric car were more willing to buy one. Similarly, Kisanga and 
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Ireson (2015) identified experience as having a high impact on the adoption of e-learning. This study 

hypothesises that SE has a significant impact on the PU of mobile applications. 

2.2.1.9 Compatibility (COM) 

COM is one of the five innovative characteristics introduced by Rogers (1995) in his theory of Diffusion 

of Innovation. According to Wu and Wang (2005, p. 721), “COM is the degree which an innovation is 

perceived to be consistent with a potential users’ existing values, previous experiences and needs.” In 

the context of farming mobile applications, COM is examined on the basis of farming style, type of 

phones and the operating system on a phone used by a farmer. These three attributes have to be 

compatible for him to use mobile apps in his farming activities. Wu and Wang (2005) and Chan et al. 

(2011) in their studies found COM to positively influence PU of information technology. In this study, it 

is hypothesised that COM has a significant impact on the PU of mobile applications. 

2.2.1.10 Information/Awareness (IA) 

IA is a very important construct included in the study’s extended TAM. A few researchers have 

included this construct in their technology adoption studies, (e.g. Al-Somali, Gholami, and Clegg (2009) 

and Hakkak et al. (2013) on online banking adoption, Chan et al. (2011) on the adoption of e-

government technology and Costopoulou et al. (2016) on the use of mobile application by farmers). 

They all found IA to have a significant impact on a person’s attitude towards the use of these 

technologies. IA is regarded as the prerequisite for the adoption of any technology and in the study 

context, a farmer has to be aware of the existence of an application before he can decide to use it. 

Such information could be from fellow farmers, media outlets or extension agents. Farmers also seek 

information regarding the suitability of an app and the potential risks associated with the use of such 

an app (Baumüller, 2012). According to Aker (2011), asymmetric and costly information is a major issue 

in the adoption of new technology. Costopoulou et al. (2016) found that 95 percent of Greek farmers 

did not use mobile agricultural apps because they were not aware of their availability. Therefore, IA is 

hypothesised to have a significant positive impact on the PEOU of mobile apps and a significant 

positive impact on the AU of mobile apps. 
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Figure 2.7 Research Model 
Source: Author’s work 
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CHAPTER THREE 

Methodology 

3.1 Introduction 

This section describes the study’s analytical framework, the study area, the method used for data 

collection and the type of data collected for the study, and from whom data were collected. The study 

proposes a conceptual model for the adoption of three types of mobile applications which are 

productivity mobile apps, information/news mobile apps and social media mobile apps. This model 

builds on the extended Technology Adoption Model (TAM2) developed by Venkatesh and Davis (2000) 

which has a high explanatory power (R2)1 that enables the strength of the relationship between the 

dependent and independent variables to be successfully measured (Eisenhauer, 2009). The study 

proposes PU and PEOU as the mediating variables which explain the relationship between the 

independent and dependent variables. 

3.2 Research Model and Hypotheses 

This study adopts Venkatesh and Davis (2000) extended Technology Adoption Model (TAM2) because 

it has the ability to successfully explain and predict the adoption of information technologies and also 

it allows the inclusion of external variables which studies (Fathema, 2013; Tarhini, Hone, & Liu, 2013) 

have shown to have a significant impact on technology adoption. Seven external variables included in 

this study are Performance Expectancy (PE), Social Influence (SI), Satisfaction/Experience (SE), 

Perceived Risk (PR), Perceived Cost (PC), Compatibility (COM), and Information/Awareness (IA). This 

study examined how these external variables (constructs) affect the two important TAM constructs 

(Perceived Usefulness (PU) and Perceived Ease of Use (PEOU)) which in turn impact the dependent 

variables (Intention to Use (ITU) and Actual Usage/Adoption (AU)). 

                                                           
1
Explanatory Power (R

2
) measures the “strength of the relationship between the dependent and independent 

variables.”(Eisenhauer, 2009, p. 42). In the science field, statistical models are used for causal explanations and if 
a model possess a high R

2
, such a model is assumed to possess predictive power (Shmueli, 2010). 
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The study proposes the following hypotheses which were tested using the Structural Equation 

Modelling (SEM) technique (see Table 3.1).  

Table 3.1 Hypotheses formulation 

 Hypotheses 

H1 Perceived usefulness (PU) has a significant and positive impact on a farmer’s intention to use  
mobile applications. 

H2 Perceived ease of use (PEOU) has a significant and positive effect on the perceived  
usefulness of mobile applications. 

H3 Perceived ease of use (PEOU) has a significant and positive effect on a farmer’s intention to  
use mobile applications. 

H4  Intention to use (ITU) has a significant and positive effect on the actual usage of mobile apps. 

H5 Social influence (SI) has a significant and positive impact on the perceived usefulness of  
mobile applications. 

H6 Performance expectancy (PE) has a significant and positive impact on the  
perceived usefulness of mobile applications. 

H7 Perceived risk (PR) has a significant and negative impact on the perceived usefulness of  
mobile applications.  

H8 Perceived cost (PC) has a significant and negative impact on the perceived usefulness of  
mobile applications.  

H9 Satisfaction/experience (SE) has a significant and positive impact on the perceived usefulness  
of mobile applications. 

H10 Compatibility (COM) has a significant impact on the perceived usefulness of mobile  
applications. 

H11 Information/awareness (IA) has a significant and positive impact on the perceived ease of use  
of mobile applications. 

H12 Information/awareness (IA) has a significant and positive impact on the actual usage of  
mobile apps. 

Source: Author’s work 

 

3.2.1 Data Analysis 

Data was analysed and presented in two parts. The first part is assigned to descriptive analysis while 

the second part is assigned to Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA) 

and Structural Equation Modelling (SEM). Descriptive statistics were used to clearly and simply 

summarise the demographic information of the farmers in the study area using tables, figures, charts 

and graphs. This helped to achieve the first three objectives of this study, while SEM was used to 

analyse and present the causal relationships among the constructs in the proposed model. A two-step 

procedure to SEM was used. The first process was to conduct EFA and CFA, which helped to develop 

the measurement model and also to measure the validity of the construct instruments used in the 

study. The second process was to analyse the causal relationships among the constructs in the 
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proposed model using SEM. This two-step procedure was proposed by Anderson and Gerbing (1988) 

and supported by Al-Jabri and Sohail (2012), Fathema (2013) and Zaremohzzabieh et al. (2015). To 

carry out EFA, CFA and SEM, Analysis of Moment Structure (AMOS) software and Statistical Package for 

the Social Science (SPSS) software were used. SEM has been chosen for this study because it can 

simultaneously analyse paths in the model and also test the goodness of fit of the model. The 

structural components of the proposed model were evaluated with SEM, using AMOS graphics. 

In conducting SEM, a five step process as suggested by Lomax and Schumacker (2012) was followed: 

I. Model specification 

II. Model identification 

III. Data preparation and screening 

IV. Estimation of the model and 

V. Model re-specification. 

However, before conducting EFA, CFA and SEM, univariate and multivariate normality of data were 

tested to ensure that data generated for the study were normally distributed. Skewness and kurtosis 

were used to examine the univariate normality of data. A normality test was carried out because of the 

assumption that multivariate normally distributed data will facilitate a good result in SEM analysis 

(Kline, 2015). Otherwise, failure to conduct a normality test can lead to problems in the SEM analysis. 

According to West, Finch, and Curran (1995), the higher the level of non-normality of data, the higher 

the magnitude of problems being detected in SEM analysis. 

3.3 Data Collection 

To answer the research questions and achieve the objectives of this study, primary data were used 

because it enabled the researcher to collect data for the specific aim of the study (Saunders, Lewis, & 

Thornhill, 2009). Data were obtained from farmers in the study area (Abia State) using a structured 

questionnaire. A copy of the questionnaire is included in Appendix A. After evaluating different 

methods of data collection in addition to this study’s research objectives and research methodology, a 

structured questionnaire was deemed appropriate, because it covers the required types of data 
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variables, which are farmers’ demographics, attitude and behaviours (Dillman, Smyth, & Christian, 

2016). The succeeding subsections describe the study area, development of the survey instrument and 

the sampling procedures. 

3.3.1 Study area 

The research was conducted in Abia State, Nigeria which is located in the South-Eastern agro-

ecological zones of Nigeria, with an estimated population of 3,727,300 and a total land area of about 

5,834km2 with a population density of 573.2 inhabitants/km² (Citypopulation, 2016). The state has 

predominantly low land rain forest vegetation and records a heavy annual rainfall of about 2400mm 

between April and October (referred to as the ‘rainy season’). It is an agricultural hub in the south-

east/south-south region of Nigeria and cassava, rice, and yams are the major crops grown in the state. 

Other crops include vegetables, maize, plantain, bananas etc. The main cash crops produced in the 

state include cocoa, cashews, oil palm, rubber and kola nuts. Other agricultural activities include 

poultry and rabbit keeping, sheep and goat rearing, pig farming and off-farm processing activities (FOS, 

1999; Okezie, Sulaiman, & Nwosu, 2012). The state has three agricultural zones namely, Umuahia, Aba 

and Ohafia Zones as in seen in Figure 3.1. 



47 
 

 
Figure 3.1 Abia State agricultural zones 
Source:(Atoyebi, 2017) 
 

3.3.2 Development of the Survey Instrument 

With reference to the reviewed literature, a set of survey instrument was designed specifically for this 

study. The survey instrument comprises two parts: the first part captures demographic characteristics 

of the farmers while the second part captures the measured variables on eleven constructs which are 

presumed to have significant effects on the adoption of mobile applications by farmers. The eleven 

constructs are Social Influence (SI), Perceived Risk (PR), Perceived Cost (PC), Satisfaction/Experience 

(SE), Information/Awareness (IA), Compatibility (COM), Performance Expectancy (PE), Perceived Ease 

of Use (PEOU), Perceived Usefulness (PU), Intention to Use (ITU) and Actual Usage (AU). The 

measurement items were randomised to circumvent potential order bias. 

The measurement variables on the 11 constructs were adopted from previous studies on the adoption 

of mobile applications (e.g. Malik et al. (2017), Lin (2011), Sharma and Mishra (2014), Al-Jabri and 

Sohail (2012)) and modified to suit this study. After designing the questionnaire, a pilot study was 

conducted on 10 randomly selected smartphone owners who either were farmers or had an interest in 
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farming and two lecturers from the Faculty of Agribusiness and Commerce at Lincoln University, New 

Zealand. This helped to ascertain the reliability, validity and clarity of the questionnaire. The responses 

and comments obtained that were used to improve the questionnaire were necessary for clarity in 

meaning. 

3.3.3 Sample and Procedure 

Probability and non-probability sampling techniques were used to statistically estimate the 

characteristics of the farmers as well as determine the factors that influence the adoption of mobile 

phone from the study area.  

A total of 261 farmers were interviewed in the three agricultural zones in Abia state (Umuahia zone, 

Aba zone, and Ohafia zone) using a structured questionnaire, out of which 245 were valid and useful, 

and 16 were rejected because they had incomplete answers. A combination of online surveys and 

paper questionnaires were used with the help of two research assistants whose duties were to assist 

the farmers where and when necessary in completing the questionnaires. The online survey was 

designed using Qualtrics and administered using an Android device with the guidance of the 

researcher and two research assistants. 

A stratified random sampling technique was used in this study as farmers in the study area were 

stratified into three agricultural zones (strata). Within each stratum, convenience sampling technique 

was used to sample farmers based on their attendance to extension meeting. Convenience sampling 

was used due to the unavailability of sampling frame within each stratum. An average of 82 farmers 

who were representative of the study area was surveyed (See Table 3.2). The same fundamental 

questions were administered to the farmers. The sample farmers in the study area included both 

livestock farmers, food crop farmers, poultry farmers and fish farmers (See Table 4.5 in Chapter 4). The 

questionnaire focus was on three classes of mobile application which are Information/news mobile 

apps, productivity mobile apps and social media mobile apps. 
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Table 3.2 Respondents from three agricultural zones in Abia 

Agri Zones No of respondents Percentage 

Umuahia 90 37 

Aba  85 34 

Ohafia 70 29 

Total 245 100 

Average 82  

Source: Author’s work 
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CHAPTER FOUR 

Data Analysis - Descriptive Statistics 

4.1 Introduction 

This chapter presents the descriptive statistics and discussion with regard to data generated from the 

study area and the relevant literature review. The analysis provides simple summaries of the farmers’ 

demographics, type of farm activities engaged in, smartphone ownership, the operating systems used 

and mobile applications used. The computed statistics combine the data from 245 farmers gathered 

from the three agricultural zones in the study area. However, at the end of this chapter, variations 

from the three zones will be presented. The first sets of distribution characteristics presented in Table 

4.1 are the central tendency, measures of dispersion and standard errors of the mean. The central 

tendencies shown are mean, median and mode of the distribution. The measures of dispersion 

examined are variance and standard deviation, while the standard errors of the mean include 

measures of the amount of error to be expected because the sample mean represents the mean of 

repeated samples (Urdan, 2011). The inclusion of a standard deviation in the descriptive statistics is 

considered appropriate and supported by Dassanayake (2013, p. 20) because the mean has been 

calculated as a measure of the central tendency. 
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Table 4.1 Descriptive statistics 

  

N 

Mean 
Std. Error 
of Mean Median Mode 

Std. 
Deviation Variance Valid Missing 

Gender 245 0 1.50 0.032 2.00 2 0.50 0.25 

Age 245 0 2.78 0.044 3.00 3 0.69 0.48 

Marital 
Status 245 0 2.03 0.039 2.00 2 0.61 0.38 

Education 
Level 245 0 3.29 0.051 3.00 4 0.81 0.65 

Family Size 245 0 2.50 0.049 3.00 3 0.77 0.59 

Farm Size 240 5  0.70 0.109  0.34  0.13  1.71  2.93 

Years of 
experience 244 1 13.34 0.710 10.00 10 11.09 122.97 

Type of 
Farming 245 0 1.72 0.064 1.00 1 1.00 1.01 

Percentage 
Consumed 245 0 2.36 0.068 2.00 2 1.07 1.14 

Farm 
Meeting 245 0 2.66 0.080 3.00 3 1.25 1.57 

Smart Phone 
ownership 245 0 1.31 0.030 1.00 1 0.47 0.22 

Operating 
System 245 0 0.95 0.064 1.00 1 1.01 1.01 

Use Apps for 
Farm 245 0 0.81 0.040 1.00 1 0.63 0.40 

Source: Author’s fieldwork (2018)  

Table 4.1 above provides an overview of the data generated for this study. The results presented are 

mostly in their SPSS coded state which will be further analysed and interpreted for clearer 

understanding. As can be seen from the table above, there are a few missing data from this survey and 

the reason is that most of the data were collected using an online technique. The questions had forced 

responses, which means that a respondent cannot move to the next question if an answer has not 

been provided to the preceding question. However, in the case of farm size where there were five 

missing data, answers were provided, but the farmers did not specify if the size was in plot, acre or 

hectare. As a result, the answers were considered invalid. The measures used for the demographic 

data were either nominal or scale. For instance, the age of the farmers, family size and the percentage 

of produce consumed were all answered in scale while the rest were nominal where the farmers had 

to provide a specific answer. To analyse these data using SPSS the answers were coded. For instance, 

gender had two options, male or female. These two options were coded “1” for male and “2” for 
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female. Age had four scale options, 18-25 years, 26-40 years, 41-60 years and over 61 years. The 

reason for using such scales was to protect the respondent’s anonymity and also to avoid the problem 

of non-response error (Saunders et al., 2009). The answers generated were coded in SPSS 1 to 4, 

respectively. 

The results from Table 4.1 were generated using these SPSS codes. They were carried out to have an 

overall statistical measure of the data generated for this study, and to ensure that the data were 

interpreted appropriately and that seeming relationships shown were significant and not occurrences 

that happened by chance (Hill, Griffiths, Lim, & Lim, 2008; Urdan, 2011). 

The following sub-sections will discuss in detail the demographic characteristics and farm enterprises 

of the farmers and their mobile technology preferences. 

4.2 Demographic Characteristics 

4.2.1 Gender and Age 

Out of the 245 valid responses, 49.8 percent of them reported their gender as male while 50.2 percent 

reported being female. The farming population in the study area seemed to be balanced between both 

genders. Over 52 percent of the respondents fell into the age bracket of 41-60 years, which indicates 

that a higher number of mature adults make up the farming population. This was closely followed by 

26-40 years at 32 percent, 13.9 percent of the farmers were over 61 years, while 1.6 percentwere of 

ayounger age of 18-25 years (Table 4.2)  

Table 4.2 Gender and age of farmers in Abia State 

 Variable Description Frequency Percent (%) 

Gender Male 122 49 

Female 123 51 

Total 245 100 

    
Age 18 – 25 4 2 

26 – 40 79 32 

41 – 60 128 52 

over 61 34 14 

Total 245 100 
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4.2.2 Marital Status and Family Size 

Over 66 percent of the respondents were reported to be married, 16 percent were single, while 17 

percent were widowed. Only three farmers were reported as being divorced which makes up 1.2 

percent of the respondents.  Family sizes of 3-5 and 6-8 persons had the highest share of the family 

sizes at 40 percent and 42 percent respectively. Families with 1-2 persons were nine percent while 

families with more than eight persons were eight percent (Table 4.3). 

Table 4.3 Marital status and family size 

Variable Description Frequency Percent (%) 

Marital status Single 39 16 

Married 162 66 

Widowed 41 17 

Divorced 3 1 

Total 245 100 

    

Family size 1 – 2 22 9 

3 – 5 99 40 

6 – 8 104 43 

More than 8 20 8 

Total 245 100 

 

4.2.3 Educational Level 

The study revealed that 114 (47 percent) out of 245 respondents had acquired or were in the process 

of acquiring tertiary education. This indicates a high literacy level among the farmers in the study area. 

Correspondingly, 99 respondents (40 percent) had acquired education up to secondary level, 21 (9 

percent) up to primary level, and 11 farmers (5 percent) were reported to have no formal education 

(Table 4.4). 

Table 4.4 Educational levels of farmers 

Variable  Description Frequency  Percent (%) 

Educational level No formal education 11 5 

Primary 21 9 

Secondary 99 40 

Tertiary 114 46 

Total 245 100 
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4.3 Farm Enterprise 

4.3.1 Farm Size, Farm Type and Years of Experience 

The results from the survey show that over 96 percent of the farmers from the study area were 

smallholders who owned or cultivated farmland of less than five hectares as seen in Table 4.5. Of all 

farmers, 76 percent (185 farmers) cultivated farmland of less than 1 hectare, while 21 percent (53 

farmers) cultivated farmland of between one and five hectares. This is representative of FAO statistics 

on smallholders’ average farm size in Nigeria, which is 0.53 hectares (FAO, 2018). Only two farmers 

reported that their farm size was above five hectares (15 and 20 hectares). They only make up less 

than one percent of the sampled population. Four major types of farming stood out from the survey: 

crop farming, livestock farming, poultry farming and fish farming. Some farmers reported having more 

than one farming enterprise but were asked to choose the main one. The 245 sampled farmers 

reported one among the listed four farm types as their main farming enterprise and 61 percent of the 

farmers were crop farmers, 11 percent were livestock farmers, 20 percent were poultry farmers and 

six percent were fish farmers. Regarding their level of experience, over 58 percent of the farmers had 

less than 10 years of experience. Six percent reported having over 30 years of experience, while two 

percent had over 41 years of experience as shown in Table 4.5 

Table 4.5 Farm size, farm type and years of experience 

Variable Description Frequency Percent (%) 

Farm size 

less than 1 hectare 185 75 

1- 5 hectares 53 22 

More than 5 hectares 2 1 

Missing 5 2 

Total 245 100 

    
  

Farm type 

Crop farming 150 61 

Livestock 29 12 

Poultry 50 20 

Fishery 16 7 

Total 245 100 

    
  

Years of experience 

1-10 144 59 

11-20 52 21 

21-30 27 11 

31-40 15 6 

41 and above 6 2 

Missing 1 0.4 
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Total 245 100 

 

4.3.2 Extension Meeting Attendance and Level of Produce Consumed 

Based on how data was collected for this study, it was expected that most of the farmers would report 

having attended an extension meeting because they were surveyed during this meeting. As seen in 

Table 4.6, 89 percent of the farmers do attend extension meetings, though at varying degrees. But 31 

percent reported that they attend the meetings sometimes. However, 11 percent that reported 

“Never” to meeting attendance were randomly selected and surveyed individually from the study area. 

Regarding the farmers’ level of commercialisation, they were asked the amount of their produce that 

they consume themselves, in order to ascertain that they were not all subsistence farmers. Less than 

three percent reported that they consume 81 to 100 percent of their entire produce. Although studies 

(Baiphethi & Jacobs, 2009; Sibhatu & Qaim, 2017) have shown that subsistence farmers do contribute 

to food security and economic growth in developing countries, this makes the 2.4 percent of farmers 

who reported that they consume 81 to 100 percent of their produce an important group in the 

sampled population. Over 50 percent of the farmers combined consume less than 25 percent of their 

produce, which indicates a high level of commercialisation as the remaining 75 percent were sold in 

the market (Table 4.6). 

Table 4.6 Extension meeting and level of produce consumed 

 Variable Description Frequency Percent (%) 

Farm meeting Always 53 22 

Most of the time 61 25 

Sometimes 76 31 

Rarely 27 11 

Never 28 11 

Total 245 100 

    

Amount of produce 
consumed 

less than 10% 61 25 

11 - 25% 80 33 

26 - 50% 66 27 

51 - 80% 32 13 

81 - 100% 6 2 

Total 245 100 
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4.4 Mobile Technology Preferences 

4.4.1 Smartphone Ownership, Operating System and Mobile App Use for Farm Activities 

Over 68 percent of the farmers reported “Yes” to smartphone ownership. The remaining 32 percent 

had low-end mobile phones. Those 168 farmers who use smartphones went on to reveal the operating 

systems on their smartphone. This is very important to note, as it determines the kind of mobile 

application that could be installed on such smartphones (Divya & Kumar, 2016). The Android operating 

system appeared to be the most used mobile operating system with 83 percent of the smartphone 

users affirming its usage (Table 4.7). Ten percent use the Blackberry operating system while four 

percent use iOS. Windows appeared to be the least used with a three percent share as shown in Figure 

4.1. The bottom half of Table 4.7 shows the number of farmers who use mobile apps for their farm 

activities. 138 farmers (82 percent) confirmed that they use mobile applications for their farm activities 

while 30 farmers (18 percent) have a smartphone but use it for other purposes. To sum up, out of 245 

farmers surveyed, 168 have a smartphone and 138 use their smartphones for farm activities. The next 

section reveals the apps they use and the level of use 

Table 4.7 Smartphone ownership, operating system and apps usage 

 Variable Description Frequency Percent (%) 

Smartphone Ownership Yes 168 69 

No 77 31 

Total 245 100 

   

Operating system used Android 140 83 

iOS 7 4 

Windows 5 3 

Blackberry 16 10 

Total 168 100 

    

Mobile app use for farm 
activities  
  

Yes 138 82 

No 30 17 

Total 168 100 

 



57 

 
Figure 4.1 Mobile operating systems used by farmers in Abia state. (%) 

 
4.4.2 Mobile Applications Used by Farmers. 

Table 4.8 presents the summary of all mobile applications used by farmers in Abia State. A total of 12 

mobile applications were reported. For each mobile app, the number of users and the usage level 

differed among farmers. As shown in Figure 4.2, WhatsApp emerged as the most used mobile app 

followed closely by a mobile banking app and compare-the-market with 125, 111 and 77 users 

respectively. The three distinct classifications of mobile apps made the top of the list on most used 

mobile apps: WhatsApp for a social media app, Mobile Banking App for a productivity mobile app and 

Compare-the-market for an information mobile app. Hello Tractor and Instagram were the least used 

by the farmers (Figure 4.2). 

Table 4.8 Mobile apps used by farmers in Abia State 
Nos Mobile Applications No of Users 

1 Probity Farm 37 
2 Compare-the-Market 77 
3 FarmCrowdy 11 
4 Hello Tractor 6 
5 AgroData 56 
6 WhatsApp 125 
7 Telegram 38 
8 Cellulant 7 
9 GES E-Wallet 45 
10 Mobile banking App 111 
11 Facebook 11 
12 Instagram 1 

83.3 

4.2 
3 

9.5 

Operating systems used by farmers in Abia State (%) 

Android

IOS

Windows

Blackberry
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Figure 4.2 Mobile apps used by farmers in Abia State. 

 

4.4.3 Mobile Application Level of Usage 

Table 4.9 and Figure 4.3 provide the summary statistics for the level of usage of the mobile 

applications used by farmers in Abia state. WhatsApp has the highest number of frequent users (97 

users). Mobile Banking Apps followed closely with 72 frequent users, while Cellulant, Hello Tractor and 

Instagram have the least number of frequent users (Figure 4.3). Some of the applications listed by the 

farmers can be used for other purposes. However, for the purpose of this study, farmers were asked to 

include such an application only if they use it for their farming business. Examples of such applications 

include WhatsApp, Mobile Banking Apps, Telegram, Facebook, and Instagram. 

Table 4.9 Mobile applications level of usage 

Mobile Apps 

Level of Usage 

Always Most of the time Sometimes Rarely Total 

WhatsApp 48 49 28 
 

125 

Mobile Banking App 32 40 38 1 111 

Compare-the-market 17 38 21 1 77 

AgroData 13 30 13 
 

56 

GES E-Wallet 7 12 26 
 

45 

Telegram 10 13 15 
 

38 

Probity Farm 4 15 17 1 37 

FarmCrowdy 2 3 5 1 11 

Facebook 5 1 5 
 

11 

Cellulant 
 

1 6 
 

7 
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Instagram 
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1 

 
 
 

 
Figure 4.3 Mobile apps level of usage 

 
4.5. Relationships between Demographic Variables, Smartphone Ownership and Usage 

for Farming Activities. 

4.5.1 Gender 

Figure 4.4 depicts the level of smartphone ownership and usage, according to gender. Despite the 

small difference, male farmers appear to own more smartphones and also use mobile apps in their 

farming activities more than the female ones. As referred to previously in Table 4.2, female farmers 

outnumber the male farmers in the study area, with 51 percent against 49 percent, but the male 

farmers own and use more apps than the female farmers. This result is consistent with a study by 

Rachel (2016),  which showed that Kenyan women were less likely to use their smartphones for a 
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variety of tasks than the men. Similarly, Evans, Hopper, Knezek, and Jones (2013) found in their study 

that gender was a significant predictive variable in smartphone usage. 

 

 
Figure 4.4 Gender, smartphone ownership and usage 

4.5.2. Age 

Figure 4.5 shows the effect of age on smartphone ownership and usage. Age was grouped into four 

categories (see Table 4.2). The second and the third groups (26-40 and 41-60 years) owned the most 

smartphones and used mobile apps for their farming activities. According to Dimock (2018), both 

groups fall under the generation known as “Millennials or Gen Y” and “Generation X”. Similar research 

on smartphone ownership and usage by Poushter (2016) and Jiang (2018), found that more than nine-

in-ten Millennials owned and used smartphone applications in both advanced economies and 

emerging and developing nations. This study confirmed their findings. Six out of every seven 

Millennials had a smartphone and three out of every four smartphone owners used mobile 

applications in their farming activities (See Figure 4.5). 
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Figure 4.5 Age, smartphone ownership and usage 

 
4.5.3 Educational Level 

Education had the greatest impact amongst the demographic variables (Figure 4.6). It appeared that 

the higher a person’s level of education, the higher the likelihood they owned and used mobile apps 

for their farm activities. More than 90 percent of those with no formal education and primary 

education had no smartphone, while over 90 percent of those with tertiary education owned a 

smartphone. Eighty-five percent of those who own smartphones used mobile apps for their farm 

activities (Figure 4.6). This is in line with findings by Poushter (2016, p. 19) on smartphone ownership 

and internet usage, where he found that “those with more education are more likely to own a 

smartphone and use the internet than those with less education”. 
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Figure 4.6 Education, smartphone ownership and usage 

 
4.6 Farmers’ Interest in and Willingness to Use Mobile Applications 

The interest and willingness of farmers to use mobile phone applications in their daily farming 

activities were assessed using some of their responses from the survey. Descriptive statistics were 

used to analyse their response to these questions. A total of seven questions asked under the 

constructs: Perceived Usefulness (PU) and Intention to Use (ITU). PU and ITU mobile applications, 

helped to achieve this purpose. 

4.6.1 Perceived Usefulness (PU) 

As seen in Table 4.10, four questions were asked regarding how farmers perceived the usefulness of 

mobile applications. Over 70 percent positive responses were recorded in each of the four questions. 

This is an indication that farmers perceived mobile applications to be useful. After having ascertained 

their perception, the next few questions on the constructs, ITU and Social Influence (SI), will help 

validate their interest in and willingness to use mobile applications. 
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Table 4.10 Farmers’ responses to questions regarding how they perceive mobile apps 

Question Response Frequency Percent (%) 

“Using mobile applications can 
improve my productivity.” 

Strongly agree 18 7 

Agree 87 36 

Somewhat agree 91 37 

Somewhat disagree 21 9 

Disagree 15 6 

Strongly disagree 13 5 

Total 245 100 

    

“Using mobile applications can 
improve my income.” 

Strongly agree 16 7 

Agree 79 32 

Somewhat agree 88 36 

Somewhat disagree 38 16 

Disagree 17 7 

Strongly disagree 7 3 

Total 245 100 

    

“Using mobile applications can 
help me make and receive 
payments faster (farm business).” 

Strongly agree 28 11 

Agree 100 41 

Somewhat agree 67 27 

Somewhat disagree 21 9 

Disagree 15 6 

Strongly disagree 14 6 

Total 245 100 

    

“Using mobile applications will 
help me locate markets and sell 
my produce.” 

Strongly agree 30 12 

Agree 81 33 

Somewhat agree 69 28 

Somewhat disagree 31 13 

Disagree 21 9 

Strongly disagree 13 5 

Total 168 100 

 

4.6.2 Intention to Use (ITU) 

Three questions captured farmers’ intention to use mobile apps as seen in Table 4.11. Similarly, to 

farmers’ PU of mobile apps, their responses to questions on their intention to use mobile apps were 

over 70 percent positive in all questions. This shows a high indication of interest and willingness to use 

mobile applications.  
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Table 4.11 Farmers’ responses to questions regarding their intention to use mobile apps 

Question Response Frequency Percent (%) 

“Given that I have access to mobile 
apps, I predict that I will use 
agricultural mobile apps in the 
future.” 

Strongly agree 39 16 

Agree 102 42 

Somewhat agree 68 28 

Somewhat disagree 19 8 

Disagree 8 3 

Strongly disagree 9 3 

Total 245 100 

    

“I am very enthusiastic about 
agricultural mobile applications.” 

Strongly agree 17 7 

Agree 78 32 

Somewhat agree 62 25 

Somewhat disagree 44 18 

Disagree 26 11 

Strongly disagree 18 7 

Total 245 100 

    

“I encourage other farmers to use 
mobile applications.” 

Strongly agree 44 18 

Agree 84 34 

Somewhat agree 70 29 

Somewhat disagree 26 11 

Disagree 15 6 

Strongly disagree 6 2 

Total 245 100 

 

4.6.3 Social Influence (SI) 

Three questions were asked to determine the impact of SI on farmers’ willingness to use mobile 

applications. Unlike the responses from PU and ITU constructs, where over 70 percent positive 

responses were recorded, only over 50 percent positive responses were recorded in all the questions 

capturing the impact of SI (Table 4.12). Although SI may not have a dominant impact on farmers’ 

willingness and interest to use mobile apps, an over 50 percent positive response is an indication that 

farmers are willing to use mobile applications. The impact of SI on actual usage of mobile apps will be 

explored in the next chapter using Structural Equation Modelling (SEM).  

 

 

 



65 
 

Table 4.12 Farmers’ responses to questions about Social Influence. 

Question Response Frequency Percent (%) 

“I am more likely to use agricultural mobile 
apps because other farmers are using 
them” 

Strongly agree 9 4 

Agree 63 26 

Somewhat agree 67 27 

Somewhat 
disagree 

49 20 

Disagree 30 12 

Strongly disagree 27 11 

Total 245 100 

    

“I am more likely to use mobile apps 
because people who are important to me 
think I should use them” 

Strongly agree 10 4 

Agree 66 27 

Somewhat agree 49 20 

Somewhat 
disagree 

44 18 

Disagree 47 19 

Strongly disagree 29 11 

Total 245 100 

    

“I am more likely to use mobile apps 
because the extension officer recommended 
mobile apps to all farmers” 

Strongly agree 6 2 

Agree 67 27 

Somewhat agree 77 34 

Somewhat 
disagree 

42 17 

Disagree 37 15 

Strongly disagree 16 7 

Total 245 100 

 

4.7 Summary 

The descriptive statistics results presented in this chapter addressed research questions one, two, 

three and four. Descriptive statistics were used to clearly and simply summarize the demographic 

information of the farmers in the study area such as age, gender, educational level and farm enterprise. 

In addition to the farmers’ demographic information, the analysis revealed the type of phones and 

operating system on the phones used by farmers, the applications being used by farmers in the study 

area, the factors that distinguish farmers that use mobile applications from those that do not use 

mobile apps and the level of interest in and willingness of the farmers to use mobile applications in 

their daily farming activities. 
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Unlike previous studies on the use of mobile phone by farmers (Asa & Uwem, 2017; Ogunniyi & 

Ojebuyi, 2016), this study differentiated between the phones used by farmers in the study area, where 

69 percent of the farmers use smartphones while 31 percent use low-end mobile phones. Age and 

level of education were found to be distinguishing characteristics on the type of phone used by 

farmers and their usage of mobile applications in their farm activities. The Millennials and Generation 

X mostly used smartphones and mobile applications in their farming activities when compared to other 

generations. As the educational level of the farmers increased, the higher the chances of their using 

smartphones and mobile apps. 

The farmers were using four main operating systems. The Android operating system was the most 

used with 83 percent of the farmers making use of it. Twelve mobile applications were discovered to 

be in use in the study area. WhatsApp, Mobile Banking App and AgroData were the most used mobile 

applications by the farmers. The next chapter will analyse and discuss the factors that affect their use 

of mobile applications in their farming activities. 
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CHAPTER FIVE 

Data Analysis: Exploratory Factor Analysis (EFA), Confirmatory Factor 

Analysis (CFA) and Structural Equation Modelling (SEM) 

5.1 Introduction 

This chapter presents the empirical analysis on factors that influence the adoption of mobile phone 

applications by farmers in the study area using Structural Equation Modelling (SEM). SEM was used to 

analyse and present the causal relationships among the constructs in the proposed model (Extended 

Technology Acceptance Model (TAM2)). A two-step procedure to SEM was used. The first process was 

to conduct Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA), which helped to 

develop the measurement model. It also helped to measure the validity of the construct instruments 

used in the study. The second process was to analyse the causal relationships among the constructs in 

the proposed model using SEM.  

5.2 Data Screening and Normality test 

Before conducting CFA and SEM, case and variable screening were carried out to ensure that there was 

no missing data, and that the respondents were well engaged while taking the survey. However, no 

missing data were recorded in SEM measurement variables because the survey software used in the 

data collection prevented incomplete responses. Exceptionally, the last part of the questionnaire had 

two constructs with seven measurement variables that were meant for farmers who used mobile 

applications only. Farmers that did not use mobile apps were made to ignore these questions because 

the questions did not apply to them and so they were coded in SPSS as Zero (0) which represented 

“not applicable” rather than missing data. 

The normality test showed a relatively small variation from a normal distribution. The skewness of data 

ranged from -0.02 to 1.41, while kurtosis of the data ranged from -0.045 to 2.0 (Table 5.1). Fabrigar, 

Wegener, MacCallum, and Strahan (1999) criterion suggests that skewness and kurtosis should not be 

greater than two and seven respectively. Whereas Kline (2015) maintained that a skewness index 
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greater than three is considered extremely skewed and a kurtosis index greater than 10 suggests a 

problem.   Both skewness and kurtosis did not exceed three and 10 (Table 5.1). Based on Kline (2015) 

and Fabrigar et al. (1999) threshold level, the data were considered to be univariately normally 

distributed. 

Table 5.1 Normality of data assessment 

  

N Valid Missing Skewness 
Std. Error of 
Skewness Kurtosis 

Std. Error of 
Kurtosis   

InfoAware_1 245 0 0.383 0.156 -1.072 0.31 

InfoAware_2 245 0 0.776 0.156 -0.15 0.31 

InfoAware_3 245 0 0.516 0.156 -0.455 0.31 

InfoAware_4 245 0 0.893 0.156 0.235 0.31 

Compat_1 245 0 0.577 0.156 -0.983 0.31 

Compat_2 245 0 0.295 0.156 -1.023 0.31 

Compat_3 245 0 0.531 0.156 -0.732 0.31 

InterConn_1 245 0 0.643 0.156 -0.762 0.31 

InterConn_2 245 0 0.264 0.156 -1.103 0.31 

InterConn_3 245 0 -0.404 0.156 -1.114 0.31 

PriCost_1 245 0 0.652 0.156 -0.606 0.31 

PriCost_2 245 0 0.254 0.156 -1.031 0.31 

PriCost_3 245 0 -0.188 0.156 -0.742 0.31 

PriCost_4 245 0 0.698 0.156 -0.47 0.31 

SocInflu_1 245 0 0.387 0.156 -0.781 0.31 

SocInflu_2 245 0 0.169 0.156 -1.14 0.31 

SocInflu_3 245 0 0.467 0.156 -0.671 0.31 

RiskAver_1 245 0 0.115 0.156 -0.943 0.31 

RiskAver_2 245 0 -0.02 0.156 -0.701 0.31 

RiskAver_3 245 0 -0.154 0.156 -0.749 0.31 

RiskAver_4 245 0 0.305 0.156 -0.379 0.31 

PerfExp_1 245 0 0.695 0.156 -0.045 0.31 

PerfExp_2 245 0 1.406 0.156 2.004 0.31 

PerfExp_3 245 0 0.532 0.156 -0.144 0.31 

PerfExp_4 245 0 0.507 0.156 -0.584 0.31 

PercEOUse_1 245 0 0.599 0.156 -0.69 0.31 

PercEOUse_2 245 0 0.647 0.156 0.08 0.31 

PercEOUse_3 245 0 0.59 0.156 0.011 0.31 

PercEOUse_4 245 0 0.436 0.156 -0.428 0.31 

PercUsfness_1 245 0 0.961 0.156 0.722 0.31 

PercUsfness_2 245 0 0.646 0.156 0.248 0.31 

PercUsfness_3 245 0 0.993 0.156 0.518 0.31 

PercUsfness_4 245 0 0.676 0.156 -0.156 0.31 

IntenToUse_1 245 0 1.09 0.156 1.324 0.31 

IntenToUse_2 245 0 0.517 0.156 -0.558 0.31 

IntenToUse_3 245 0 0.737 0.156 0.229 0.31 

ActualUsage_1 245 0 1.16 0.156 1.32 0.31 

ActualUsage_2 245 0 0.748 0.156 0.028 0.31 

ActualUsage_3 245 0 0.678 0.156 -0.457 0.31 



69 
 

ActualUsage_4 245 0 0.721 0.156 -0.53 0.31 

SatisExp_1 245 0 0.172 0.156 -1.689 0.31 

SatisExp_2 245 0 0.814 0.156 0.33 0.31 

SatisExp_3 245 0 0.42 0.156 -1.197 0.31 

 

5.3 Exploratory Factor Analysis (EFA) 

EFA is a statistical method that tries to uncover complex patterns by exploring the dataset and testing 

predictions (Yong & Pearce, 2013). EFA was carried out to define the underlying structure among the 

variables in the measurement model. It helped to identify the correlation patterns among the 

measurement variables and to reduce them to latent factors based on the underlying structure of the 

data (Yong & Pearce, 2013). The EFA analysis was carried out using IBM® SPSS® software using 

Principal Component Analysis (PCA) with an Oblique rotation method. In conducting EFA, only the 

reflective latent factors (Multi-indicator variables) that measure the constructs were included in the 

EFA (Hair, Black, Babin, & Anderson, 2010). The measurement variables were allowed to freely load 

onto the latent constructs and cross load onto multiple constructs based on how they correlate with 

each other. In the course of factor extraction on SPSS, Principal Components Method was used 

because, first, it has the ability to produce unique factor scores as well as avoid the problem of 

indeterminacy2 (DiStefano, Zhu, & Mindrila, 2009; Grice, 2001; Hair et al., 2010); secondly, PCA takes 

into consideration the total variance and it also derives factors that contain small portions of unique 

variance (Hair et al., 2010, p. 107). To improve the interpretability of factors, Promax, an oblique 

rotation technique was applied because it allowed the factors that were created to be correlated 

(Urdan, 2011). According to Williams, Onsman, and Brown (2010, p. 9), the freedom to allow 

measurement items to correlate freely through oblique rotation produces more accurate results for 

researches involving human behaviours. Promax raises the loadings to a power of four, thereby 

producing superior correlations among the factors (Yong & Pearce, 2013, p. 84). 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett's test of sphericity were 

added in the factor analysis to ensure that the extracted factors were appropriate and reliable (Field, 

                                                           
2
 The problem of indeterminacy arises when the parameters under a common factor model are not distinctively 

defined because of the researcher’s choice of commonality estimates. 
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2005). The KMO measure of sampling adequacy gave a result of 0.914 with Bartlett’s test of sphericity 

highly significant at (p ˂ 0.001) (Table 5.2). This indicates that factor analysis is appropriate (Field, 

2005). According to Kaiser (1974), a sampling adequacy result close to one or greater than 0.9 is 

superb and it indicates that the patterns of correlations are relatively compact which shows that the 

factor analysis should yield reliable factors. 

Table 5.2 KMO and Barlett’s test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.914 

Bartlett's Test of Sphericity Approx. Chi-Square 7010.369 

Df 465 

Sig. 0.000 

 
In factor extraction, SPSS identified 43 linear components within the data set. Eight of these 

components had eigenvalues greater than one, which explained a relatively large amount of variance 

(Hair et al., 2010; Kaiser, 1974). The total variance explained for the eight factors stood at 66.3 

percent, which was above the 60 percent threshold considered as satisfactory by Hair et al. (2010). 

As stated earlier, the measurement variables were allowed to freely load onto the latent constructs 

and cross-load into multiple constructs to reduce measurement error (Hair et al., 2010). Hair et al. 

(p.94) noted that in factor analysis, researchers should accept what the data present and not to set any 

prior constraints on the estimation of components to be extracted. Specifically, EFA explores the data 

set and provides the researcher with information about the number of factors that are needed to best 

represent the data. In other words, EFA is actually conducted without knowing the number of factors 

that really existed in a data set or which variable belongs with which constructs. This was evidenced in 

the pattern matrix where Intention to Use (ITU) and Perceived Ease of Use (PEOU) cross-loaded on one 

factor, explaining users’ positive attitude towards mobile phone applications. Performance Expectancy 

(PE) and Perceived Usefulness (PU) cross-loaded as one factor explaining users’ perception towards the 

usefulness of mobile applications, while Satisfaction/Experience (SE) cross-loaded with Actual Usage 

(AU) as one factor explaining users’ experience with mobile phone applications. The questions defining 

these constructs were understood and interpreted similarly by the correspondents. This led to the high 

correlation of these constructs in EFA, making it difficult to separate them into distinct factors, and as a 

result, they were specified as three rather than six factors (Hair et al., 2010).  
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However, there were still minor issues of discriminant validity, which were resolved by eliminating 

measurement variables that loaded on multiple constructs. Williams et al. (2010) contend that 

measurement items that loaded on several factors do not conceptually fit the proposed logical factor 

structure and therefore should be discarded. This led to the removal of the Compatibility (COM) 

construct because the measurement items could not load on a single factor. The several factors the 

COM indicators loaded onto were not conceptually fit to be interpreted by these COM indicators. This 

brought down the extracted factors to seven with a satisfactory 77.23 percent of total variance 

explained, as seen in Table 5.3. To further strengthen the validity of the constructs, measurement 

variables with factor loading3 less than 0.50 were deleted as suggested by Hair et al. (2010) (Table 5.4). 

All the factors had at least three variables with Intention to Use having five loadings while Perceived 

Usefulness and Actual Usage had six and seven variables loading onto each respectively. According to 

Tabachnick and Fidell (2007), for a construct to be labelled a factor in EFA, it should have at least three 

variables. They went on to say that this can be altered depending on the design of the study but 

suggest interpreting such with caution. In a situation where there are two variables factor, Yong and 

Pearce (2013, p. 80) asserted that the variables have to be highly correlated with each other and fairly 

uncorrelated with other variables with an r ˃ .70. Considering the issue of cross-loading experienced in 

the EFA, Hair et al. (2010, p. 119) recommends that the factor model should be re-specified if the 

cross-loaded items cannot be deleted as a result of its importance to the study’s objective. They 

further advised that the re-specification of the model should be done with respect to the conceptual 

foundation underlying the study. Figure 5.2 shows the re-specified model and Table 5.7 shows their 

corresponding hypotheses. 

 
 
 
 
 
 
 

                                                           
3
Factor loading is a measure of how much the variables contribute to the factor. A high factor score indicates that 

the scopes of the factor are well interpreted by the variables (Yong & Pearce, 2013) 
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Table 5.3 Total variance explained 

Factor 
number 

Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

1 12.25 39.51 39.51 
2 3.16 10.18 49.69 
3 3.11 10.02 59.71 
4 1.94 6.26 65.97 
5 1.27 4.09 70.06 
6 1.21 3.89 73.95 
7 1.02 3.28 77.23 

Extraction Method: Principal Component Analysis 
 
To evaluate the internal consistency of the measurement model, a reliability test was estimated on the 

extracted variables as a whole and on the variable sub-set that make up the extracted factors. The 

Cronbach’s alpha for the overall reliability showed 0.93 as seen in Table 5.5. The composite reliability 

for all the constructs (extracted factors) showed a satisfactory result ranging from 0.97 to 0.72, as seen 

in Table 5.6. Both the measurement scale and the individual constructs had a Cronbach’s alpha greater 

than the generally agreed limit of 0.70 (Hair et al., 2010, p. 125). Hair et al. emphasised paying 

attention to the number of items in a scale, as a higher number of items in a scale with the same 

degree of inter-correlation will increase the reliability value. However, the extracted factors with the 

least number of variables (three items) as suggested by Tabachnick and Fidell (2007) gave a reliability 

score above 0.721, as seen in Table 5. 6. This indicates a good level of internal consistency in the 

variable set.   
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Table 5.4 Pattern matrix 

Pattern Matrix 

  
Variables 

Component 

1 2 3 4 5 6 7 

AU_2 0.95             

SE_2 0.94             

AU_1 0.91             

AU_3 0.91             

AU_4 0.90             

SE_3 0.89             

SE_1 0.88       

PU_1   0.97           

PE_1   0.95           

PE_2   0.77           

PU_2   0.75           

PE_4   0.74           

PE_3   0.72           

PEOU_3     0.96         

ITU_2     0.85         

PEOU_2     0.61         

ITU_1     0.60         

PEOU_4     0.54         

IA_2       0.93       

IA_4       0.90       

IA_3       0.88       

IA_1       0.67       

PR_4         0.86     

PR_2         0.84     

PR_3         0.84     

SI_2           0.82   

SI_3           0.80   

SI_1           0.66   

PC_1             0.84 

PC_4             0.80 

PC_2             0.70 

Extraction Method: Principal Component Analysis   
Rotation Method: Promax with Kaiser Normalization   
Rotation converged in seven iterations. 
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Figure 5.1 Research model based on pattern matrix 

Table 5.5 Reliability of total questions 

Reliability Statistics 

Cronbach's Alpha Cronbach's Alpha Based on Standardized Items N of Items 

0.936 0.93 31 
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Table 5.6 Extracted factors, measurement variables and their Cronbach’s Alpha 

Constructs and Measures Factor Loading Cronbach's Alpha Composite reliability (CR) 

1. Actual Usage       
AU_2 0.95 

0.97 0.97 

SE_2 0.94 

AU_1 0.91 

AU_3 0.91 

AU_4 0.90 

SE_3 0.89 

SE_1 0.88 

2. Perceived Usefulness       
PU_1 0.97 

0.92 0.92 

PE_1 0.95 

PE_2 0.77 

PU_2 0.75 

PE_4 0.74 

PE_3 0.72 

3. Intention to Use       
PEOU_3 0.96 

0.87 0.87 

ITU_2 0.85 

PEOU_2 0.61 

ITU_1 0.60 

PEOU_4 0.54 

4. Information/Awareness       

IA_2 0.93 

0.92 0.92 
IA_4 0.90 

IA_3 0.88 

IA_1 0.67 

5. Perceived Risk       
RA_4 0.86 

0.82 0.82 RA_2 0.84 

RA_3 0.84 

6. Social Influence       

SI_2 0.82 

0.73 0.73 SI_3 0.80 

SI_1 0.66 

7. Perceived Cost       
PC_1 0.84 

0.72 0.72 PC_4 0.80 

PC_2 0.70 

Extraction Method: Principal Component Analysis.   
Rotation Method: Promax with Kaiser Normalization.   
Rotation converged in seven iterations. 
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Figure 5.2 Re-specified research model 

 
Table 5.7 Re-specified hypotheses 

 Hypotheses 

H1 SI has a significant and positive impact on the perceived usefulness of mobile applications. 

H2 PR has a significant and negative impact on the perceived usefulness of mobile applications. 

H3 PC has a significant and negative impact on the perceived usefulness of mobile applications. 

H4 IA has a significant and positive impact on farmers’ intention to use mobile applications 

H5 IA has a significant and positive impact on the actual usage of mobile apps 

H6 PU has a significant and positive impact on farmers’ intention to use mobile applications. 

H7 ITU has a significant and positive effect on the actual usage of mobile apps 

 
 

5.4 Confirmatory Factor Analysis (CFA) 

CFA was used to validate the factorial validity of the model derived from EFA. It helped to ensure that 

the measured variables represent the constructs in the model (Fathema, 2013; Hair et al., 2010). The 

CFA analysis was carried out using IBM® AMOS® software version 25. In conducting the CFA, the 31 

measurement items extracted from EFA were allowed to load only on their specific factors thereby 

generating a CFA model. The model presented the covariance between the latent factors. This enabled 

the testing of goodness-of-fit of the factors in the measurement model. It also facilitated the 

calculation of convergent validity, discriminant validity and composite reliability score. From the CFA 

model, a correlation assessment was carried out between the measurement items on each construct 

to ascertain that none of the items had a factor loading below 0.50. As suggested by Hair et al. (2010), 
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measurement items in the CFA model that are below 0.50 should be considered for deletion to 

improve the validity of the constructs. The items in the model showed a strong correlation as they 

were all above 0.50 as seen in Figure 5.3. 

Based on the outcome of EFA shown in Table 5.4, the revised model of seven factors (constructs) with 

31 measurement items (variables) is presented below in Figure 5.3. 

 
Figure 5.3 Seven factor CFA model with standardized estimates 
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The measurement model (Figure 5.3) depicts how the constructs and measurement items relate to 

each other. The constructs are represented in oval shapes while the measurement items are 

represented in rectangular shapes. The seven constructs are allowed to correlate with each other 

while the measured items are allowed to load only on the construct they measure. The error terms (e) 

are allowed to relate to one measured item each. The causal relationship between a construct and 

measurement items is represented by a one-headed arrow, while the covariance between the 

constructs is represented by two-headed arrows. The error terms are correlated to each other within 

the set of measurement items, interpreting a construct, because the result of the modification indices 

from CFA suggests that they share the same conceptual basis, and empirically, they tend to move 

together. In essence, there is a strong similarity between the measurement items (Hair et al., 2010, p. 

718). This further helped to strengthen the model fit of the measurement model.  

5.4.1 Testing of Measurement Model Validity 

The measurement model was tested for model fit and validity measures, such as construct validity, 

construct reliability, convergent validity, and discriminant validity. These tests helped to prove that the 

measurement model is satisfactorily adequate for subsequent Structural Equation Modelling. To 

successfully assess a measurement model, Hair et al. (2010) suggest three key measures: the first is to 

examine the CFA model to ensure that the least loading should not be less than 0.5, and if any loading 

is less than 0.5, it should be considered for deletion. Secondly, the statistical significance of each 

estimated coefficient should be assessed, and non-significant estimates suggest that an item should be 

dropped. Finally, the model fit should be assessed using an acceptable goodness-of-fit index. 

A number of fit indexes have been recommended by researchers with reasons for such 

recommendation as seen in Table 5.8. The study will adopt the most suited fit index given the 

proposed research model. 
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Table 5.8 Selected fit indices and general rule for acceptable fit 

Fit Index Measure Description General rule for acceptable fit 

Chi-Square ꭕ2 Assess overall fit and the 
discrepancy between the 
sample and fitted covariance 
matrices. NB; it is sensitive 
to sample size 

P-values ≥ 0.05 (Parry, 2018) 
P-values: significant p-value expected 
(Hair et al., 2010)4* 
p-values: 0.05 - 1.00 (Good Fit); 0.01 - 
0.05 (acceptable fit) (Schermelleh-Engel, 
Moosbrugger, & Müller, 2003) 

Relative Chi-
square 

ꭕ2 / df Relative Chi-square is the 
ratio of chi-square to degree 
of freedom 

ꭕ2/df ≤ 2 or 3  
ꭕ2/df 0 – 2 (good fit); 2 – 3 (acceptable 
fit) (Schermelleh-Engel et al., 2003) 
 

(Adjusted) 
Goodness of 
Fit 

(A)GFI GFI is the proportion of 
variance accounted for by 
the estimated population 
covariance. Analogous to R2. 
AGFI favours parsimony. 

GFI ≥ 0.95 (Hoelter, 1983) 
GFI ˃ 0.90 (good fit) (Crockett, 2012) 
AGFI ˃ 0.90 (good fit) (Crockett, 2012) 

Comparative 
Fit Index 

CFI Compares the fit of a target 
model to the fit of an 
independent, or null model 

CFI ≥ 0.90 (Parry, 2018) 
CFI ˃ 0.92 (Hair et al., 2010)4* 
CFI 0.97 - 1.00 (Good Fit); 0.95 - 0.97 
(Acceptable Fit) (Schermelleh-Engel et 
al., 2003) 

Root Mean 
Square Error of 
Approximation 

RMSEA A parsimony-adjusted index. 
Value closer to 0 represents 
a good fit 

RMSEA˂ 0.08 with CFI above 0.92 (Hair 
et al., 2010)* 
RMSEA 0 - 0.05 (good fit); 0.05 - 0.08 
(acceptable fit) (Schermelleh-Engel et 
al., 2003) 

Standardized 
Root Mean 
Square 
Residual 

SRMR The square root of the 
difference between the 
residuals of the sample 
covariance matrix and the 
hypothesized model. 

SRMR < 0.08 with CFI above 0.92 (Hair 
et al., 2010)4* 
SRMR 0 - 0.05 (good fit); 0.05 - 0.08 
(acceptable fit) (Schermelleh-Engel et 
al., 2003) 

p of Close Fit PCLOSE P Close is a p-value for 
testing the null hypothesis 
that the population RMSEA 
is no greater than 0.05 

P-close ˃ 0.05 (good fit) (Kenny, 2015) 

Adapted from (Hair et al., 2010; Schermelleh-Engel et al., 2003) 
 

5.4.2 Construct Validity and Construct Reliability 

Construct validity is the extent to which constructs are accurately represented by the measurement 

items designed to measure them (Hair et al., 2010), while construct reliability refers to the consistency 

and stability of the measurement of the construct. The two tests are closely related to each other but 

                                                           
4 *Hair et al. (2010, p. 672) provided guidelines for using different fit indices to demonstrate goodness-
of-fit based on model situations (number of the sample size and number of observed variables). The 
cited guidelines are based on the study’s model situation (Sample size ˂ 250 and observed variable ≥ 
30). 
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play separate roles (Tarhini et al., 2013). Holmes-Smith (2011) emphasised that a factor may be 

consistent (high reliability) but not accurate (valid), and a factor may be accurate (valid) but not 

consistent (reliable). In this research, constructs reliability was measured using Cronbach’s Alpha with 

results shown in Table 5.6. Where there are validity issues, Farrell and Rudd (2009) suggest testing for 

convergent validity and discriminant validity to establish the validity measure. However, Hair et al. 

(2010, p. 709) revealed that both validity and reliability can be measured using: “Composite Reliability 

(CR), Average Variance Extracted (AVE) and Maximum Shared Square Variance (MSV).”  

5.4.3 Convergent Validity 

Convergent validity is “the extent to which measurement items explaining a construct converge or 

share a high proportion of variance in common” (Hair et al., 2010, p. 689). This can be estimated 

through factor loadings from CFA or AVE from CFA. A factor with high loadings indicates that the items 

converged on such factor are explaining the desired construct (Farrell & Rudd, 2009). As a rule of 

thumb, Hair et al. (2010) suggest that the standardised loading estimates should not be less than 0.5. 

Preferably, loading estimates of 0.7 or higher are the most appropriate. The AVE is a summary 

indicator of convergence. Farrell and Rudd (2009, p. 3) defined AVE as “the amount of variance in 

observed variables that a latent construct is able to explain”. According to Fornell and Larcker (1981), 

AVE is calculated as the mean-variance extracted for the items loading on a construct. It is calculated 

using standardized loadings with the formula:  AVE =  
∑     
   

 
 

As shown in the formula above, L represents the standardized factor loading and i is the number of 

items. Similarly to standardised loading estimates, Hair et al. (2010) suggest that an AVE of less than 

0.5 indicates that there is more error in the items than explained by the latent factor structure 

imposed on the measure.   

5.4.4 Discriminant Validity 

Discriminant validity is a measure of how a construct differs from other constructs within the 

conceptual framework (Farrell & Rudd, 2009). It is also known as divergent validity. According to Hair 

et al. (2010), the higher the discriminant validity, the stronger the evidence that a construct is uniquely 
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different from other constructs. To ascertain the level of discriminant validity in this study, the AVE of 

the construct was compared with the square of the correlation estimate between the constructs 

(Fornell & Larcker, 1981). Farrell (2010) and Anderson and Gerbing (1988) suggest examining the 

modification indices and item cross-loadings, using CFA outputs to calculate AVE, and comparing it to 

shared variance estimates. The AVE is expected to be greater than the squared correlation estimate to 

support good evidence of discriminant validity (Farrell & Rudd, 2009; Hair et al., 2010).  

5.4.5 Model Fit for the Measurement Model 

As emphasised earlier by Hair et al. (2010), the model situations (sample size, number of extracted 

factors and the number of measurement items) of the overall model have an impact in determining 

the model’s fit. The model for this study was made up of a 245 sample size with seven latent factors 

and 31 measurement items (variables). Based on the listed model characteristics, Hair et al. (2010, p. 

672) maintained that ꭕ2 should give a significant p-value, CFI should be above 0.92, SRMR should be 

less than 0.90 (with CFI above 0.92) and RMSEA value should be less than 0.08 (with CFI above 0.92). 

Based on Hair et al. (2010) the result of the CFA model fit as shown in Table 5.9 gave a good model fit. 

The model fit was within the threshold values recommended by Schermelleh-Engel et al. (2003) and 

Hair et al. (2010) except for GFI, which was slightly below the commended threshold of 0.90 as against 

0.80 shown in Table 5.9. 

The result from the measurement statistics as seen in Table 5.10 showed that all variance extracted 

are above 0.60 where the cut-off value is 0.5. Furthermore, the factor loadings for all composite 

reliability were all above 0.7, which is a good indication of convergent validity. However, the AVE had 

two loadings below the recommended 0.5 threshold, which indicates validity concerns (Table 5.11). 

These two constructs, “Social Influence (SI) and Perceived Cost (PC)” had three measurement items 

each with their least standardized estimates as 0.55. To resolve the validity concern and improve the 

model fit, these two measurement items were deleted, and the validity concern issue was resolved by 

increasing the AVE to above 0.5 as shown in Table 5.12. However, these deleted items did not improve 

the CFA model fit significantly as shown in table 5.13. Therefore, these two deleted items were re-

added back to the CFA model to maintain the minimum of three measurement items for each factor as 
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recommended by Tabachnick and Fidell (2007), since they had an acceptable standardized estimate 

score above 0.5. Furthermore, Hair et al. (2010) iterated that the threshold rules were only guidelines 

and advised that more flexibility was acceptable, especially when carrying out an exploratory research. 

Summarily, Farrell and Rudd (2009) contend that model fit statistics should not be the only bases upon 

which a CFA will be assessed, rather close attention should be paid to factor loadings, and CFA should 

not be the only criterion to evaluate convergent and discriminant validity because it is not the most 

stringent test for discriminant validity. R2. 

Table 5.9 CFA Model fit criteria (before item deletion) 

Measure Measurement Model Threshold 

Chi-square/df (cmin/df) 2.43 ˂ 3 good 

CFI 0.92 ˃ 0.95 great; ˃ 0.9 traditional 

GFI 0.80 ˃ 0.90 good fit 

RMSEA 0.077 ˂ 0.05 good; 0.05 – 0.10 moderate 

PLCLOSE 0.99 ˃0.05 good 

 
 
Table 5.10 Measurement statistics (before item deletion) 

 
CR AVE SI AU PU IA ITU PR PC 

SI 0.73 0.48 0.69 
      AU 0.98 0.85 0.32 0.92 

     PU 0.92 0.66 0.51 0.56 0.81 
    IA 0.92 0.74 0.50 0.60 0.62 0.86 

   ITU 0.89 0.62 0.44 0.57 0.84 0.58 0.79 
  PR 0.82 0.60 0.23 -0.008 -0.07 -0.13 -0.02 0.77 

 PC 0.72 0.48 0.55 0.14 0.12 0.18 0.11 0.42 0.69 

*The diagonal entries express the variance extracted. The figures 
underneath the diagonal are the correlation between constructs  

 
 
Table 5.11 Validity concerns in the CFA model 

Construct Validity concerns 

Social Influence Convergent Validity: the AVE for SI is less than 0.50. 

Perceived cost Convergent Validity: the AVE for PC is less than 0.50. 

 
Table 5.12 Measurement statistics (after item deletion) 

 
CR AVE SI AU PU ITU IA RA PC 

SI 0.71 0.55 0.74 
      AU 0.98 0.85 0.37 0.92 

     PU 0.92 0.65 0.52 0.56 0.81 
    IA 0.92 0.74 0.53 0.60 0.62 0.86 

   ITU 0.89 0.62 0.43 0.57 0.84 0.58 0.79 
  PR 0.82 0.60 0.25 -0.01 -0.06 -0.13 -0.02 0.77 

 PC 0.71 0.57 0.60 0.12 0.13 0.19 0.11 0.40 0.75 
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Table 5.13 CFA Model fit criteria (after item deletion) 

Measure Measurement Model Threshold 

Chi-square/df (cmin/df) 2.46  ˂ 3 good 

CFI 0.93  ˃ 0.95 great; ˃ 0.9 traditional 

GFI 0.81 ˃ 0.90 good fit 

RMSEA 0.077 ˂ 0.05 good; 0.05 – 0.10 moderate 

PLCLOSE 0.99  ˃0.05 good 

 
 

5.5 Conclusion: Exploratory Factor Analysis and Confirmatory Factor Analysis 

The EFA result showed a good indication of uni-dimensionality within the model as the measured 

items within the constructs proved that they were explaining the underlying construct. The 

measurement variables were allowed to freely load onto the latent constructs and cross load onto 

multiple constructs based on how they correlate with each other. The EFA revealed that one factor 

COM has to be deleted from the preliminary measurement model because the items explaining them 

had low factor scores and they mostly cross-loaded on other latent constructs. The EFA also helped to 

identify strongly correlated measurement items as witnessed between ITU and PEOU which cross-

loaded as one factor, explaining users’ attitudes towards mobile phone applications while PU and PE 

cross-loaded as one factor, explaining users’ perceptions towards the usefulness of mobile 

applications. Lastly, SE cross-loaded with AU as one factor explaining users’ experience with mobile 

phone applications. At the end of EFA, seven factors were extracted, and all the factors had at least 

three variables explaining them. These extracted factors were tested for convergent and discriminant 

validity in CFA. 

CFA result helped to ascertain both discriminant and convergent validity. The model fit showed an 

acceptable threshold in the chosen assessment criteria except for GFI which was slightly below the 

recommended threshold. But based on other measurement criteria such as composite reliability, 

comparative fit index (CFI), Cronbach’s alpha, EFA factor loadings and standardised estimate scores, 

the model was considered to be acceptable to use in SEM. 
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5.6 Structural Equation Modelling (SEM) 

SEM is the process of representing a theoretical model with a set of structural equations through a 

visual diagram (Hair et al., 2010). SEM was used to conceptually represent the structural relationship 

between constructs in the research model. The structural relationships were empirically denoted by 

structural parameter estimates or path estimate. The SEM analysis was carried out using IBM® AMOS® 

software version 25. In conducting SEM, seven factors extracted during EFA were used to specify the 

structural model relationships which replaced the correlational relationships found in the CFA model 

(Hair et al., 2010). SEM helped to simultaneously examine the direct and indirect relationships 

between the constructs in the proposed model. It also helped to test the hypotheses formulated after 

EFA as well as test the model fit between the hypothesized structural model. The structural model, on 

the other hand, applied the structural theory by specifying which constructs are related to each other 

and the nature of each relationship (Hair et al., 2010).  

Below is the structural model for the adoption of mobile phone applications. The emphasis on the 

model is on the nature and magnitude of relationships between the constructs. 

 
Figure 5.4 Hypothesised structural model for the adoption of mobile phone applications 

 
Following the same measurement criteria used for the measurement model (Figure 5.3), the structural 

model gave a good model fit as seen in Table 5.14. The model fit was within the threshold values 

recommended by Schermelleh-Engel et al. (2003) and Hair et al. (2010, p. 55). 
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Table 5.14 Model fit criteria for the structural model 

Measure Measurement Model Threshold 

Chi-square/df (cmin/df) 1.82  ˂ 3 good 

CFI 0.99  ˃ 0.95 great; ˃ 0.9 traditional 

GFI 0.98 ˃ 0.90 good fit 

AGFI 0.94 > 0.80 good 

RMSEA 0.058 ˂ 0.05 good; 0.05 – 0.10 moderate 

PLCLOSE 0.34  ˃0.05 good 

 
Table 5.15 The estimation for regression weights of the hypothesized model 
regression weights: (Group number 1 – Default model) 

      Estimate S.E. C.R. P 
Standardised 
coefficients 

PU <--- SI 1.284 0.1 12.816 *** 0.803 

PU <--- PR -0.175 0.071 -2.46 0.014 -0.137 

PU <--- PC -0.394 0.09 -4.392 *** -0.304 

ITU <--- IA 0.053 0.029 1.813 0.07 0.069 

ITU <--- PU 0.767 0.035 22.182 *** 0.847 

AU <--- IA 0.796 0.117 6.781 *** 0.41 

AU <--- ITU 0.861 0.154 5.611 *** 0.34 

Significance levels: p˂0.01 *** 

The SEM results from the estimation for regression weights of the hypothesized Model in Table 5.15 

showed a significant relationship between the dependent and the independent variables in the 

research model. Having achieved a good model fit, the hypothesised relationships within the structural 

model were examined next. 

5.6.1 Hypotheses Results Testing 

From the final model shown in Figure 5.4, the seven proposed hypotheses in the structural model were 

supported (Table 5.16). The final model comprised seven variables which are: (Information/Awareness 

(IA), Perceived Cost (PC), Perceived Risk (PR), Perceived Usefulness (PU), Social Influence (SI), Intension 

to Use (ITU) and Actual Usage (AU). 
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Figure 5.5 Empirical results of the structural model for factors affecting the adoption of mobile 
applications 

The results in Figure 5.5 showed that SI had a significant positive effect on the perceived usefulness 

(PU) of mobile applications (β = 0.80, p < .01) supporting hypothesis H1. This indicates that the more 

people who are important to a farmer use mobile apps or think a farmer should use mobile apps, the 

more likely it is that he will perceive mobile apps to be useful which can eventually lead to adoption. 

The SEM result further showed that PR had a significant negative effect on the perceived usefulness 

(PU) of mobile applications (β = - 0.14, p < .05), supporting hypothesis H2. This implies that risk-averse 

farmers would not perceive mobile applications to be useful because they consider them to be unsafe. 

Similarly, PC showed a significant negative effect on the perceived usefulness (PU) of mobile 

applications (β = - 0.30, p < .01), supporting hypothesis H3. This indicates that farmers who consider 

the cost of using mobile apps to be high would likely to have a negative perception of their usefulness. 

The study results also showed that IA has a significant positive effect on farmers’ intention to use (ITU) 

mobile applications (β = 0.07, p < .1) supporting hypothesis H4. This indicates that the more informed 

and aware the farmers are about the existence and uses of a mobile app, the higher their intention to 

use such mobile apps will be. IA also showed a significant positive impact on the actual usage (AU) of 

mobile applications (β = 0.41, p < .01), supporting hypothesis H5. This would be an outcome proceeding 

from a positive impact of IA which would lead to actual usage of mobile applications. The SEM result 

showed that PU of mobile applications has a significant positive impact on farmers’ intention to use 
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(ITU) mobile applications (β = 0.85, p < .01), while ITU had a significant positive impact on the actual 

usage (AU) of mobile applications (β = 0.34, p < .01). This supports hypotheses H6 and H7. It goes on to 

show that farmers who perceive mobile apps to be useful will develop a positive intention towards 

their usage. This positive intention to use will, in turn, lead to actual usage.  

The results of the squared multiple correlations (SMC) from the dataset showed that SI, PR, and PC 

accounted for 43 percent (R2 = 0.43) of the variance of PU of mobile application, with SI having the 

only significant positive effect. On the other hand, PU and IA explained 79 percent (R2 = 0.79) of the 

variance of farmers’ ITU mobile applications, while ITU and IA explained 46 percent (R2 = 46) of the 

variance of AU of mobile applications.  

 
Table 5.16 Standardised regression coefficient 

Hypotheses Path Support Regression weight 

H1: SI has a significant and positive impact on the 
perceived usefulness of mobile applications SI → PU Yes 0.80*** 

H2: PR has a significant and negative impact on 
the perceived usefulness of mobile applications. PR → PU Yes -0.14** 

H3: PC has a significant and negative impact on 
the perceived usefulness of mobile applications. PC → PU Yes -0.30*** 

H4: IA has a significant and positive impact on 
farmers’ intention to use mobile applications IA → ITU Yes 0.07* 

H5: IA has a significant and positive impact on the 
actual usage of mobile apps IA → AU Yes 0.41*** 

H6: PU has a significant and positive impact on a 
farmers’ intention to use mobile applications. PU → ITU Yes 0.85*** 

H7: ITU has a significant and positive effect on 
actual usage of mobile apps ITU → AU Yes 0.34*** 

Significance levels: p˂0.01 ***, p˂0.05 **, p˂0.1* 
 

Table 5.16 presents the summary of the hypotheses and the regression weight of all the path 

coefficients in the structural model. Four exogenous variables (SI, PR, PC and IA) and three endogenous 

variables (PU, ITU and AU) were tested in the overall model. Four of the exogenous variables were 

found to be significant determinants of the three endogenous variables. Though the structural model 

gave a good fit, Hair et al. (2010) warned that good fit alone is insufficient to support a proposed 

structural theory. He suggests that the individual parameter estimates should be considered to ensure 

that they are statistically significant in their predicted direction. According to Cohen (1988), 
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standardised regression weights less than 0.1 are considered small, those around 0.3 are considered 

medium while those greater than or equal to 0.5 are considered large. All seven paths in the structural 

model were significant and they support the hypothesized theory. Going by Cohen’s approval, the 

regression weights of the significant paths range from small to large (0.1 to 0.8). 

5.7 Conclusion: Structural Equation Modelling 

The fit indices for the structural model were in the acceptable level and as a result, there was no need 

for model refinement. Also, the result of the structural model showed that all seven direct 

hypothesised relationships were supported (Table 5.16). The structural model exhibited a strong 

explanatory power, which showed the extent to which the model explains variance in the data set. The 

exogenous variables SI, PR and PC accounted for 43 percent (R2 = 0.43) of the variance of perceived 

usefulness (PU) of mobile applications. PU and IA explained 79 percent (R2 = 0.79) of the variance of 

intention to use, while ITU and IA explained 46 percent (R2 = 0.46) of the variance of farmers’ actual 

usage (AU) of mobile applications. 
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CHAPTER SIX 

6.1 Discussion and Conclusions 

This study was aimed at providing a critical understanding of the current state of mobile apps use in 

the Nigerian agricultural sector by examining the types of phones used, the operating systems used, 

the mobile applications used and the factors that affect the adoption of mobile applications by 

farmers. To achieve this purpose, descriptive statistics were employed to understand the current state 

of mobile phone and application usage. Based on the extended Technology Adoption Model (TAM2) 

Structural Equation Modelling (SEM) was used to understand the factors that influence the adoption of 

mobile applications. The results from the study helped towards an understanding of the current state 

of mobile apps use and the factors that affect the adoption of mobile applications by farmers. 

Chapter Four presented a detailed analysis of results using descriptive statistics with the help of IBM® 

SPSS® Statistic 25 and Microsoft Office Excel 2016. The results showed the types of phones and the 

operating systems on the phones used by farmers, the current applications being used by the farmers, 

factors that distinguish farmers who use mobile applications from those who do not use mobile apps, 

and lastly, the level of interest and willingness of farmers to use mobile applications in their daily 

farming activities.  

The need to understand the type of phones used by farmers in this study was very important because 

it was a major determinant as to the possibility of using mobile applications. The study showed that 69 

percent of the farmers used smartphones while 31 percent used low-end mobile phones. This is a 

strong indication of widespread smartphone usage in Nigeria and other sub-Saharan African countries 

as found by Rachel (2016), Poushter (2016) and Poushter, Bishop, and Chwe (2018). The study further 

revealed the operating systems being used by the farmers and the Android operated system appeared 

to be the most used with 83 percent of the farmers using it. The least used operating systems were 

Windows and iOS which had a combined seven percent usage. These findings are in line with the 

findings by Adesina (2014), Costopoulou et al. (2016) and Lim et al. (2014).  
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Regarding the applications used by the farmers, the study identified 12 different mobile applications 

(Table 4.8). WhatsApp and mobile banking apps were the most used while Hello Tractor and Instagram 

were the least used mobile apps by the farmers for farming activities (Figure 4.2). 

The demographic variables of the farmers such as gender, age and educational level were assessed in 

comparison to smartphone ownership and usage for farm activities. Male farmers appeared to own 

and use mobile apps in their farming activities more than female farmers (Figure 4.4). This result is 

consistent with prior findings (Evans et al., 2013; Rachel, 2016). The Millennials and Generation X 

farmers owned most smartphones and used mobile applications for their farming activities. This result 

is in line with previous findings (Jiang, 2018; Poushter, 2016; Poushter et al., 2018). Farmers who were 

educated mostly owned smartphones and used mobile apps for their farm activities. This is evidenced 

in the study findings where over 90 percent of the farmers with either primary education or no formal 

education had no smartphone. In reverse, over 90 percent of the farmers with tertiary education 

owned a smartphone, while over 85 percent used mobile apps. This shows the level of impact 

education has on the use of smartphones and mobile apps. Previous studies support these findings 

(Aker, 2011; Coyle & Williams, 2016; Poushter, 2016; Rachel, 2016).  

The level of interest in and willingness of farmers to use mobile applications were assessed through 

the responses from some of the survey questions. The responses to these questions showed a high 

level of interest in mobile applications (Table 4.11).  

Chapter Five presented the results of factors that influence the adoption of mobile applications by 

farmers in Abia state. This was achieved using Structural Equation Modelling (SEM) with the help of 

IBM® AMOS® software version 25. Seven factors were extracted from Exploratory Factor Analysis 

(EFA). The extracted seven factors were Social Influence (SI), Perceived Cost (PC), Perceived Risk (PR), 

Perceived Usefulness (PU), Information/Awareness (SI), Intention to Use (ITU) and Actual Usage (AU). 

SEM was used to analyse the causal relationships among the seven factors (constructs) in the research 

model. The structural model provided a good fit. It also showed that seven of the direct hypothesised 

relationships in the research model were supported (Table 5.16). This shows that the study’s proposed 
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model represents the data adequately. The proposed model, extended TAM, showed a high predictive 

ability in explaining the factors that influence the adoption of mobile applications by farmers. 

Going by previous studies on technology adoption (Kim et al., 2007; Malik et al., 2017; Wu & Wang, 

2005), this study affirms the suitability of extended TAM in comprehending and explaining the mobile 

applications adoption behaviours of farmers. The results showed that the exogenous variable social 

influence (SI) had a significant positive impact on the perceived usefulness (PU) of mobile apps. This 

result is in line with Hakkak et al. (2013), Kesharwani and Singh (2012) and Lee, Kim, and Choi (2012). SI 

is the impact of the opinions, views and reviews of other people who are important to a user and 

which influence their decision regarding the adoption of mobile applications (Eckhardt, Laumer, & 

Weitzel, 2009; Malik et al., 2017). This result showed that farmers perceive mobile apps to be useful 

because people who are important to them are using them. These important people could be fellow 

farmers or an extension officer. The indirect effect of this positive relationship between SI and PU will 

result in a positive intention to use (ITU) mobile apps which can eventually lead to actual use or 

adoption of mobile apps. In contrast, some studies found that SI did not have a significant effect on the 

perceived usefulness of some ICT (Arenas Gaitán, Peral Peral, & Ramón Jerónimo, 2015; Venkatesh et 

al., 2003). These researchers argued that SI is only crucial in a compulsory situation and especially in 

the early stages of the experience when the opinions of the potential user are relatively unreliable. 

However, their study focus was not on farmers and farming mobile applications where such 

relationships have not been considerably examined. 

The study results further showed that perceived risk (PR) had a significant negative effect on farmers’ 

perceived usefulness (IU) of mobile applications. This result is consistent with Kesharwani and Singh 

(2012) and Wu and Wang (2005). PR in the study context referred to farmers’ attitude towards risk, 

which had been found to influence their perceptions of the usefulness of ICT, as they perceive it to 

expose their privacy which can lead to losses. The negatively perceived usefulness had an indirect 

negative impact on farmers’ intention to use mobile applications. This was because farmers who 

thought mobile apps were risky to use would consider them not to be useful, and therefore would 

have a negative intention towards their usage. 
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The study revealed that perceived cost (PC) had a significant negative impact on the perceived 

usefulness (PU) of mobile applications. PC in the study context referred to the cost a farmer paid to 

either get access to an application or subscribe to the services offered through an application. Similar 

studies on ICT adoption found PC to negatively affect intention to use (ITU) (Kim et al., 2007; Wu & 

Wang, 2005). Brown et al. (2013) reported that most smallholders are price sensitive, and they tend to 

react to small changes in service fees. In the case of mobile applications used by farmers in this study, 

most of them were free to download and do not require subscription fees to enjoy the services, but 

farmers had to pay for internet subscriptions before they could use the applications. The response 

from the farmers indicated that internet subscription cost was quite significant. A similar study on the 

adoption of mobile internet by Kim et al. (2007) revealed that perceived fees/cost have a significant 

negative effect on the adoption intention of users because having to pay a price at all prevents new 

customers from trying services they are not sure about. This further justifies the significant negative 

effect of PC on mobile apps adoption because most of the applications cannot work without the 

internet. And internet access requires a cost. 

The study results also showed that information/awareness (IA) had a significant positive impact on 

farmers’ intention to use (ITU) mobile apps and the actual usage (AU) of mobile apps. This result is in 

line with Aker (2011), Klotz, Saha, and Butler (1995) and Hakkak et al. (2013). IA in the study context 

referred to the knowledge a person had about the existence and uses of a mobile application, which 

led to the decision to use such application (Chan et al., 2011). Stiglitz (2000) reported that we live in a 

world of imperfect information. According to Aker (2011, p. 6), “information asymmetries are often an 

important constraint to technology adoption in developing countries.” This study found that most 

farmers were disadvantaged on the benefits of mobile applications because they had no prior 

knowledge of the existence of some the available agricultural mobile applications. This affected their 

behavioural intention to use mobile apps, which would ultimately lead to actual usage of mobile 

applications. If a farmer was informed about the existence of an app, chances were that the farmers 

might use such an application. The implication is that the higher the awareness of the existence and 
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usefulness of a mobile application, the higher the likelihood of a farmer installing and using such an 

application.   

The results also showed that perceived usefulness (PU) had a significant positive impact on farmers’ 

intention to use (ITU) mobile applications. PU in the study context referred to the degree to which a 

farmer believed that using a mobile app would enhance his/her farming activities. If a farmer found a 

mobile app to be useful in his/her farming business, then he/she was more likely to use it. This result is 

in accordance with previous studies e.g. (Hakkak et al., 2013; Kesharwani & Singh, 2012; Wu & Wang, 

2005) which all found PU to have a significant positive impact on ITU ICT. The highly significant level of 

this result suggests that farmers were more motivated to use mobile apps because of their usefulness. 

 Finally, the last hypothesised relationship in the proposed model between farmers’ intention to use 

(ITU) and actual usage (AU) of mobile apps showed that ITU had a directly significant positive effect on 

actual usage of mobile applications. This result is consistent with Abdekhoda et al. (2016), Arenas 

Gaitán et al. (2015),  Wu and Wang (2005) and Venkatesh et al. (2003), who all found a significant 

positive effect between behavioural intention to use and the actual usage/adoption of information 

communication technologies. The results indicate that if farmers have a strong intention to use mobile 

applications in their farming activities, then they are most likely to use them.  

The study, in general, explained the fundamental relationships between the proposed external 

variables and the original TAM variables. The results are in line with previous studies, and show that SI, 

PR, PC, IA, PU and ITU are all crucially significant variables in deciding the factors that affect the 

adoption of mobile applications by farmers in Abia State. The study demonstrates that extended TAM 

is a suitable model to explain the factors that influence mobile apps adoption. 

6.2 Theoretical Implications 

The main aim of this study was to provide a critical understanding of the current state of mobile apps 

use in the Abia State agricultural sector and the factors that affect the adoption of mobile applications 

by farmers. The study adopted an extended TAM framework in explaining the factors that influence 

the adoption behaviours of farmers towards mobile apps. The study contributes to mobile applications 

and ICT adoption literature in the following ways: 
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The literature review showed that limited research had been carried out on the adoption of mobile 

applications by farmers for agricultural purposes. This study provides an understanding of mobile apps 

adoption behaviour in agricultural settings. The extended TAM framework adopted for the study was 

modified by three external variables: Perceived Risk (PR), Perceived Cost (PC) and 

Information/Awareness (IA), with their effects examined on the original TAM variables: Perceived 

Usefulness (PU), Intention to Use (ITU) and Actual Usage (AU). These three external variables were 

found to be important predictors of the original TAM constructs in determining the factors that 

influence the adoption of mobile applications by farmers. Based on the study results, SI, PC, PU and IA 

had the most significant effect on farmers’ intentions to use mobile apps and the actual usage of 

mobile apps. SI had a positive direct effect on PU and a positive indirect effect on ITU and AU through 

PU. PR and PC had a negative direct effect on PU and a negative indirect effect on ITU and AU. IA had a 

weak direct effect on ITU and a very strong direct effect on actual usage. From the study results, SI, PC 

and IA play the most important direct role on PU and AU, while PU and ITU play the most important 

indirect role for SI, PR and PC in the extended TAM research model for the adoption of mobile 

applications by farmers.  

The study showed the level of importance of IA as a predictor of behavioural intention and actual 

usage in the context of mobile apps adoption. Most empirical studies on technology adoption using 

TAM have ignored this important variable, especially in an agricultural setting. This study, therefore, 

lays a good theoretical foundation for other research using extended TAM to examine the impact of IA 

on the adoption of the ICT being studied. 

This research also demonstrated the empirical applicability of extended TAM in studying technology 

acceptance in a developing country context such as Nigeria. As Tarhini et al. (2013) noted, TAM has not 

been widely applied in studying technology adoption in developing countries. Most TAM studies focus 

on developed countries e.g. (Davis, 1989; Kim et al., 2007). As a result, Teo, Luan, and Sing (2008) 

highlighted the importance of applying TAM in different cultural settings to eliminate the argument 

that Davis (1989) did not consider cultural differences when he developed TAM. This study, therefore, 
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shows evidence that TAM can be extended and applied in a cross-cultural context of developed and 

developing countries. 

Finally, the study results validated the explanatory power of extended TAM in analysing farmers’ 

mobile apps adoption behaviours for various mobile applications. 

6.3 Practical Implications 

This study examined the type of phones used by farmers, the operating system on the phones, the 

mobile applications being used by the farmers and the factors that influenced the adoption of mobile 

applications. The overall aim was to understand how best to support and encourage farmers to use 

mobile apps in their farming activities. The findings from the study revealed some crucial insights to be 

considered by app developers, policymakers, extension personnel and farmers alike for an effective 

use of mobile apps in improving farmers’ productivity. 

The study revealed that over 69 percent of the farmers use smartphones, which was a positive 

indication that the majority of the farmers stood a chance of benefiting from the services rendered 

through mobile applications. Out of this 69 percent that uses smartphones, 84 percent of them used 

the Android operating system. This shows that app developers should focus more on building apps that 

are compatible with the Android operating system, as they stand a higher chance of reaching most of 

the farming population.  

The empirical result showed that SI, PU and IA had a positive influence on farmers’ intention to use 

mobile apps and the actual usage of mobile applications, while PR and PC had a negative direct impact 

on the perceived usefulness of mobile apps.  This negative direct impact of PR and PC results in a 

negative indirect effect on farmers’ intention to use mobile apps and the actual usage of mobile apps. 

PU contributed the most to ITU compared to IA. This shows that farmers who find mobile apps to be 

useful are more likely to adopt them in their farming activities. This result suggests that more effort 

should be put into educating the farmers on the usefulness of mobile apps. This can be done by the 

extension officers, and by so doing, farmers will develop more positive intentions to use mobile apps, 

which will lead to actual adoption. For the app developers, they should put more effort in putting 
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quality and useful contents in the apps that they develop for farmers. By doing so, more farmers will 

adopt such apps. 

Information awareness (IA) was one of the most important variables included in the research model. 

The empirical result showed that it had a positive impact on both ITU and AU, but a stronger impact on 

AU. The result suggests that lack of awareness of the availability of mobile apps and their uses is the 

reason most farmers are not using mobile apps. More awareness needs to be created, especially when 

a new mobile app has been developed. This can be done through various mass media and social media 

outlets and also through various centres where farmers have their extension meetings. This would help 

to increase the use of agricultural mobile apps by farmers. 

Perceived risk (PR) was one of the external variables that had a negative impact on the perceived 

usefulness (PU) of mobile applications. The study showed that farmers who were risk-averse towards 

ICT perceived mobile apps not to be useful and therefore had a negative intention to use mobile apps. 

Farmers in general need to be reassured of their safety when dealing with internet applications that 

involve exchanging of information (sometimes personal information). App developers and other 

stakeholders such as financial institutions, government agencies and extension officers need to 

incorporate significant actions to increase trust amongst the farmers. This would help reduce 

perceived risk as well as increase farmers perceived usefulness of mobile apps and their intention to 

use mobile apps. 

Perceived cost (PC) was the second external variable that had a negative impact on the perceived 

usefulness (PU) of mobile applications. With regard to agricultural mobile apps, most of them are free 

of charge to download and use. But the farmers noted that the cost of internet subscriptions (an 

enabling factor to use mobile apps) was high. Consequently, this had a negative effect on the 

perceived usefulness of mobile apps. Policy makers should work on reducing the high cost of internet 

subscriptions, or at the very least, subsidise the cost for farmers. This would encourage them to 

develop a positive intention towards the use of mobile apps. 

The study highlighted the importance of education among the farming population in the use of 

smartphones and mobile apps. The study showed that the majority of the farmers that used mobile 
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apps were the educated farmers (See Figure 4.6). This shows that training and educating farmers will 

have a more positive impact on the adoption of mobile apps. This would also have a positive impact on 

social influence because the greater the number of farmers using mobile apps, the higher the chances 

that other non-apps users who are close them will start using mobile apps. SI positively affects PU, 

which leads to a positive ITU. 

In conclusion, this study provides the views and opinions of farmers on the essential factors that affect 

their intention to use and actual usage of mobile apps to app developers. From the study, farmers can 

also know the factors that lead them to accept mobile applications. Finally, the study provided a model 

that enabled farmers, app developers, policy makers and extension officers to understand the factors 

influencing farmers’ intention to adopt and use mobile apps in their farming activities. 

6.4 Conclusion 

This research examined the current level of mobile apps use for agriculture in Abia State and the 

factors that affect the uptake of this technology. It uncovered the types of phones and the operating 

systems on the phones used by farmers and the current mobile applications being used by farmers. 

The study also revealed farmers’ level of interest and willingness to use mobile apps in their daily 

farming activities. 

Descriptive statistics were used to summarize the demographic information of the farmers in the study 

area using tables, figures, charts and graphs. This helped to achieve the first three objectives of this 

study, while SEM was used to analyse and present the causal relationships among the constructs in the 

proposed research model. An extended TAM framework was estimated to identify the factors that 

affected the adoption of mobile apps. The results prove that extended TAM is a good predictor of 

farmers’ adoption behaviour towards mobile applications.  

This study contributed extensively to farmers’ technology usage literature through its findings. It 

helped to bridge the information gap between agricultural app developers and farmers by revealing 

some important demographic information of farmers such as their age, gender, educational level, the 

type of farming carried out and most importantly, the factors that affected the adoption and 

continuing use of mobile apps.  
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6.5 Limitations of the Study 

This thesis encountered some limitations during the study process which impacted the overall 

outcome of the study. With regard to data collection, a convenience sampling technique was 

employed as it was very difficult to track down the farmers individually in their farms. As a result, they 

were collectively surveyed during their extension meetings in three different agricultural zones in the 

study location (Abia State). This meant that farmers who were not part of the group were likely to have 

been omitted from the survey. Although the 245 valid samples from the three zones were believed to 

be a good representation of the sampling population in the study area, the fact the study was 

conducted in one state in Nigeria limits the generalisability of the findings to the entire Nigerian 

farming population. 

Caution should also be applied when generalizing the result to other developing countries apart from 

Nigeria. Even though extended TAM suited the study data well, cultural country differences might 

affect the suitability of TAM for similar studies in other developing countries. 

Another limitation is that the study looked at the use of mobile apps from a generalised view without 

focusing on any agricultural mobile app in particular. A farmer’s perception of one mobile app might 

be different from another app. The study did not take into account the different perceptions of the 

various mobile apps available. 

The study employed a quantitative approach in data collection and its analysis. This was due to time 

and resources constraints. Although the questionnaires were designed based on theoretical grounds 

and reviewed technology adoption literature, the inclusion of a qualitative approach to the study 

would have given a more in-depth understanding of the factors the influenced the adoption of mobile 

apps by farmers in the study area.  

Finally, the study analysis revealed that some of the questions were interpreted differently by the 

farmers from their intended meaning. This was evidenced in the outcome of EFA where some 

measurement items cross-loaded on each other as one construct. However, EFA and CFA analysis 

helped to identify common themes and patterns in the measurement items (survey questions). This 

helped to reduce items to latent factors based on the underlying structure of the data. 
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6.6 Future Study Directions 

This thesis suggests some important future study directions as follows: 

The present study focused on a state in one region of Nigeria. A similar study can be replicated in 

another state or region to ascertain if a similar result will be obtained. This would further help to 

validate the study result on factors that influence the use of mobile apps by farmers across Nigeria. 

This study looked at mobile apps in general without focusing on any app in particular. However, the 

reason for adopting one app may be different from the reason for adopting another app. Therefore, it 

will be worthwhile to treat the applications individually to see what affects the adoption of each.  

Future studies can also look at the impact of the identified mobile apps used by farmers in this study. 

For instance, this study identified WhatsApp and Mobile Banking Apps as the most used mobile apps 

by the farmers but failed to look at the impact of using these apps in the farmers’ productivity. Future 

studies should look at the individual impact of these mobile apps in improving farmers’ productivity. 

Given the quantitative approach employed in this study for both data collection and analysis, future 

studies can explore a qualitative approach or both, to get a more in-depth knowledge of the factors 

that influence the adoption and continued use of mobile apps by farmers. 

The inclusion of information/awareness (IA) in the study’s extended TAM showed that IA is an 

important determinant in the adoption of mobile applications by farmers. This variable (IA) can be 

applied to other technology adoption studies than those of mobile applications for agriculture, such as 

different technologies in diverse fields. 

Finally, the study did not examine the statistical impact of demographic variables in the adoption of 

mobile applications. Therefore, future studies could investigate the impact of demographic variables 

on mobile apps adoption behaviour.
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Appendices 
Appendix A: Mobile Application Descriptions 

Mobile 
Application 

Country Category Description 

ProbityFarms Nigeria Productivity 
agricultural 
mobile apps 

Provides farmers with a farm management 
and accounting platform. 

Compare-
the-market 

Nigeria News/information 
agricultural 
mobile apps 

Helps farmers and their customers to compare 
the daily market prices of agricultural produce 

FarmCrowdy Nigeria News/information 
agricultural 
mobile apps 

Designed to connect investors who are 
interested in investing in any farming initiative 
of their choice by sponsoring farmers 

Hello Tractor Nigeria News/information 
agricultural 
mobile apps 

Connects farmers who are interested in hiring 
tractors or other modern farming equipment 
from potential owners 

AgroData Nigeria News/information 
agricultural 
mobile apps 

Designed to fill this gap by linking the farmers 
to agricultural research institutes where they 
can now easily get new knowledge that will 
improve their farming productivity. 

WhatsApp 
and 
Telegram 

Various 
countries 

Social media 
mobile apps 

Used for socialising, sharing ideas and 
receiving desired information from fellow 
farmers in the group. They are also used for 
extension services 

Cellulant Nigeria News/information 
agricultural 
mobile apps 

Designed as an e-wallet to help farmers 
redeem government subsidies on fertilisers 
and seeds. 

GES E-wallet Nigeria News/information 
agricultural 
mobile apps 

Provides soft loans to farmers, tracks seed and 
fertiliser disbursement and educates farmers 
on farming methods that will improve their 
output 

Mobile 
banking app 

Various 
Countries 

Productivity 
agricultural 
mobile apps 

Used for making payments. Saves time and 
reduces transaction cost 

MKisan India News/information 
agricultural 
mobile apps 

A government portal designed to provide 
farmers and other stakeholders with expert 
advice and information.  

Krishiville India News/information 
agricultural 
mobile apps 

Provides information on weather, commodity 
prices and agricultural news. 

F-tack Live Australia Productivity 
agricultural 
mobile apps 

Farm management app that allows the user to 
record and access information in real time 

Modisar app Botswana Productivity 
agricultural 
mobile apps 

Designed to help farmers manage their 
livestock by recording their stock, income and 
expenses 

Virtual City 
AgriManager 

Kenya 
 

Productivity 
agricultural 
mobile apps 

Designed to automate input purchasing 
transactions at a reduced cost and time 

KilimoSalama Kenya Productivity 
agricultural 
mobile apps 

Provides insurance services to farmers from 
losses caused by weather vagaries or natural 
disasters. 
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M-Pesa Kenya Productivity 
agricultural 
mobile apps 

Used for making payments, receiving 
payments and storing money easily. 

KACE 
(Kenyan 
Agricultural 
Commodity 
Exchange) 

Kenya News/information 
agricultural 
mobile apps 

Provides daily price information on farm 
output and also facilitates contract negotiation 
and produce transport  

DrumNet Kenya News/information 
agricultural 
mobile apps 

Provides farmers with information on price, 
market, weather. Also links producers, 
processing firms, input retailers and transport 
providers. 

Grameen 
(weather 
application) 

Uganda News/information 
agricultural 
mobile apps 

Provides information on weather forecasts 

Google 
Trader 

Uganda News/information 
agricultural 
mobile apps 

Links buyers and sellers as well as enabling 
them to display their goods 

WeFarm Uganda, 
Kenya, 
Tanzania  

Social media 
mobile apps 

Enables registered farmers to ask questions 
and receive answers to their questions  

Infotrade Uganda News/information 
agricultural 
mobile apps 

Collects market data on 46 commodities from 
20 districts, analyses the data and provides 
useful information to the farmers 

Foodnet and 
Farmgain 

Uganda News/information 
agricultural 
mobile apps 

Provides market information on prices and 
trade volumes  

Esoko Uganda, 
Ghana, 
Kenya 
Nigeria, 
Tanzania, 
Zambia, and 
Cote d’ 
Ivoire 

News/information 
agricultural 
mobile apps 

Provides updated price information to farmers 
on English and local dialects.  

Cocoa Link Ghana News/information 
agricultural 
mobile apps 

Provides farmers with information relating to 
weather, pests and diseases, farming practices 
and answers to questions in real-time 

M-kilimo Tanzania  News/information 
agricultural 
mobile apps 

Provides farmers with extension and market 
information services relating to new seeds or 
technology, pest and disease outbreaks, 
planting seasons and commodity prices 
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Appendix B: QUESTIONNAIRE 
My name is Victor Okoroji, and I am a student at Lincoln University, New Zealand. 

This questionnaire is being administered to obtain some information for research on the topic, 

“Farmers’ use of mobile phone applications in Abia State, Nigeria”. Taking your time to complete this 

questionnaire would be highly appreciated. The questionnaire will take less than 30 minutes to 

complete. Your information will be kept confidential, and your anonymity is guaranteed. Information 

obtained will be compiled and analysed at Lincoln University. This research is voluntary, and you can 

withdraw anytime. 

Please, if you have any questions, you can contact me on this number 08067686614 or email; 

victor.okoroji@lincolnuni.ac.nz 

Thank you, 

Victor Okoroji 

N.B. The term “Agricultural Mobile Application”, refers to any mobile application that you use for your 

farming activities, e.g. to receive information (price, weather or market updates), record your farm 

operations or make and receive payments for your farm inputs and outputs. 

 

Part 1. Demographic characteristics of the respondent 

1. Gender:           Male          Female 

2. Age Group:  18-25        26-40         41-60          over 61 

3. Marital Status:         Single         Married          Widowed           Divorced 

4. Educational Level: No Formal Education        Primary         Secondary          Tertiary                                                                     

5. Family Size:  …………………………………………….. 

6. Farm Size (In hectare, acre or plot):…………………………………………….. 

7. Years of Experience: …………………………………………….. 

8. Type of Farming:    Crop farming           Livestock              Poultry            Fishery 

Other, Please Specify ……………………. 

If more than one farming type, which is the main one? ……………………………………………………. 

9. What percentage (%) of your produce do you consume:  less than 10%       11-25%  

 26-50%  51-80%           80-100%  

10. How often do you attend extension meetings:     
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Part 2.  

11. I have a smartphone?          Yes           No 

12. Smartphone Operating System:         Android          IOS          Windows            Blackberry  

13. I use mobile applications for my farming activities?          Yes         No 

Mobile applications that I use (Please tick all that applies): 
 

Tick (√) Mobile App Level of Use 

  
 

Always 
1 

Most of 
the time 

2 

Sometimes 
3 

Rarely 
4 

Never 
5 

 ProbityFarms      

 Compare-the-
market 

     

 FarmCrowdy      

 Hello Tractor      

 AgroData      

 WhatsApp      

 Telegram      

 Cellulant      

 GES E-wallet      

 Mobile banking 
App 

     

Other, please specify 

       

       

       

       

       

 
 
 
Part 3A. Please tick one box for each question 

Construct Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

Information/Awareness (IA) (Chan 
et al., 2011) 

      

I know of many mobile applications 
that could be used for agriculture 

      

I know farmers are receiving useful 
information through mobile 
applications 

      

I know many farmers are actively 
using mobile apps to help them 
improve their farming business 

      

I know that mobile applications 
could be used for agricultural 
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purposes 

Compatibility (COM) (Chan et al., 
2011) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

Agricultural mobile apps are 
compatible with my smartphone 

      

Using agricultural mobile apps fit 
the way I like to manage my farm 

      

Mobile apps are suitable for the 
type of farming I do. 

      

Price/cost (PC) (Wu & Wang, 2005) Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

I think the cost of using mobile 
apps is too high 

      

I think the mobile apps registration 
fees are too high for me 

      

There are not enough benefits 
from using mobile apps to justify 
the cost 

      

Mobile apps require a lot of money 
for data subscription 

      

Social Influence (SI) (Abdekhoda et 
al., 2016) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

I am more likely to use agricultural 
mobile apps because other farmers 
are using them 

      

I am more likely to use mobile apps 
because people who are important 
to me think I should use them 

      

I am more likely to use mobile apps 
because the extension officer 
recommended mobile apps to all 
farmers 

      

Risk aversion (RA) (Wu & Wang, 
2005) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

I think mobile apps expose my 
confidential information 

      

I think mobile apps can give false 
information that can lead to loss of 
income 

      

I think mobile apps can give false 
information that can lead to loss of 
output 

      

Relying on information from 
mobile apps is risky 
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Performance expectancy (PE) 
(Chan et al., 2011) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

Using mobile apps makes farming 
activities easier 

      

Using mobile apps make it easier 
to access information 

      

Using mobile apps help to save 
time 

      

Using mobile apps help to make 
good decisions 

      

Perceived ease of use (PEOU) 
(Tarhini et al., 2013; Wu & Wang, 
2005) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

Learning to use mobile applications 
is easy for me 

      

Mobile apps are clear and easy to 
understand 

      

Mobile apps are simple and easy to 
interact with 

      

It is easy to get mobile apps to do 
what I want them to do 

      

Perceived Usefulness (PU) 
(Yahyapour, 2008) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

Using mobile applications can 
improve my productivity 

      

Using mobile applications can 
improve my income 

      

Using mobile applications can help 
me make and receive payments 
faster (farm business) 

      

Using mobile applications will help 
locate markets and sell my produce 

      

Intention to use (IU) (Wu & Wang, 
2005) 

Strongly 
agree 

Agree 
 

Neither 
agree 

nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

Given that I have access to mobile 
apps, I predict that I will use 
agricultural mobile apps 

      

I am very enthusiastic about 
agricultural mobile applications 

      

I encourage other farmers to use 
mobile applications 

      

If you answered NO (do not use mobile apps) to Question 13 above, please stop here. Thank You 

 

Satisfaction/Experience (SE) (Al-
Gahtani, 2016) 

Strongly 
agree 

Agree 
 

Neither 
agree 

Disagree Strongly 
disagree 

Don’t 
know 
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nor 
disagree 

I have used mobile apps before and 
didn’t find them useful 

      

Mobile apps don’t offer all they 
promise 

      

My experience with mobile apps has 
been very positive 

      

Actual Usage (AU) (Abdekhoda et al., 
2016) 

Strongly 
agree 

Agree 
 

Neither 
agree 
nor 
disagree 

Disagree Strongly 
disagree 

Don’t 
know 

I use mobile applications for my 
farming business very often 

      

Mobile apps have saved me time and 
cost 

      

Mobile apps give me market and price 
information 

      

Using mobile apps has helped me in 
making good farming decisions in the 
past 

      

 

 

 

 




