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PREFACE 

Over the las t decade there has been a 
remarkable increase in the use of systems modelling 
for research in farm management. This has been 
accompanied by substantial progress in the develop­
mentof model building techniques for farming systems. 
Progress has been less rapid, however, in the 
development of procedures for testing the validity 
of bioeconomic models and for using them to explore 
the response of systems to factors under the control 
of management. This publication is concerned with 
the latter problem area. Various procedures for 
designing simulation experiments to determine optimal 
factor levels are discussed and compared. 

Dr Harrison, lecturer in economics in the 
Department of External Studies, University of Queensland, 
has prepared this Report during a sabbatical period tn 
the Department of Farm Management & Rural Valuation 
at Lincoln College. 

The material presented is based on a series 
of lectures given by Dr Harrison to graduate students 
as part of a c::ourse in agricultural systems. Subsequent 
to offering these lec tures a package of computer programs 
for optimization purposes was developed. These 
programs are in the form of FOR TRAN subroutines 
whic h have been designed for ease of coupling to agri­
cultural systems models. Listings of the programs 
and output for tes t func tions are provided as appendices. 

J. B. Dent 
Direc tor 
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CHAPTER 1 

INTRODUCTION 

There has been a rapid expansion in the application of 

the systems approach to farm management research problems 

in the last 15 years. Consequently there has been an increasing 

awareness of the need for efficient procedures for implementing 

systems models so that information about the real farming systems 

they represent can be derived. Progress has also been made in 

the development of experimental design procedures for identifying 

levels of variables which optimize the performance of systems. 

These design procedures, which are based on mathematical 

methods of numerical optimization, have not been widely exploi ted 

by agricultural systems researchers. Rather the tendency has 

been to conduct simulation experiments with tradition9-l designs 

such as factorials and response surface designs. This report 

explains various optimum- seeking design procedures for simulation 

experiments with agricultural s ys tems models. The prac tical 

aspects of implementing these procedures are also discussed. 

The current chapter begins with a brief overview of systems 

research philosophy and methodology. The experimentation stage 

of the sys tems approach is then examined in some detail and 

differences between simulation experiments and the more traditional 

experiments conducted on real agricultural systems are discussed. 

Finally, a perspective for viewing farm-management oriented 

simulation is provided. 

Chapter 2 reviews traditional designs for agricultural 

experiments wi th particular emphasis on fac torials and central 

composi te designs. Chapter 3 outlines methods of optimization 

with respect to a single controllable factor while Chapter 4 introduces 

"hill-climbing" or multi variate search with reference to the 

1. 
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method of steepest ascent. More efficient design procedures 

including the simplex method, alternating variable search, 

conjugate directions and random-search-with-learning are 

explained in Chapter 5. Chapter 6 examines related issues 

such as dealing with uncertainty in stochastic models and handling 

resource constraints. In addition, the application of search 

procedures to parameter estimation during the construction of 

the model is outlined. Suggestions are made concerning the 

choice of experimental design for particular modelling situations. 

The general layout of five computer subroutines for 

optimum-seeking experimental designs which have been developed 

at Lincoln College is explained in Appendix I, and the subroutines 

themselves are provided as FORTRAN listings in Appendices II 

through to VI. 

1.1 The Systems Approach 

The term 'sys tern' is used here in the context presented 

by Shannon: 'a group of objects united by some form of interaction 

or independence to perform a specified function' [Shannon, 1975:15] • 

In essence the 'systems approach' involves construction of a model 

of the particular objects of interest and their interrelationships, 

and manipulation of this model to gain a knowledge of how the real 

system would behave under a range of operating conditions and 

environments. Extensive development of techniques for the 

investigation of organized systems (henceforth referred to as 

systems research techniques) has taken place in engineering, 

aeronautics, meteorology, management science, agriculture, 

ecology and other disciplines. Within agriculture, many farm 

economists, agronomists, agrostologists, animal nutritionists 

and entomologists have come to embrace this approach. Agricultural 

sys terns which have been modelled include entire regions, industries, 

farms, pastures and crop enterprises, groups of animals and 



individual animals, soil water profiles over time, plant-disease 

systems and many others. The form of model most frequently 

employed is an abstract representation of the behaviour of the 

3. 

s ys tern ave r time, expr e s s ed in s ym boli c languag e and pro g r amm ed 

to a computer. The rationale for building such models is that the 

extent of manipulation which can be carried out on the system itself 

(real system) is severely limited. 1£ experiments are conducted 

with a computer model there is the possibility of saving both cost 

and time; the real system (if it exists) is not altered or harmed 

by the experiments; and, of course, experiments can be performed 

on models of systems which are not yet in existence. 

Most systems of interest are so complex that it is 

impossible to understand them completely. The model, therefore, 

does not contain every detail of the system it is designed to mimic, 

but only those of importance to the particular application for which 

it is to be used. 

Any application of systems research proceeds through a 

number of more or less clearly defined stages. Various classi-

fications of these research steps have been advanced; the following 

list is an adaption of that by Anderson [1974], and is explained 

more fully therein: 

1. Formulation of the problem; 

2. Analysis of the system; 

3. Synthesis of the model; 

4. Programming the model to a computer; 

5. Testing the model; 

6. Implementation of the model; and 

7. Interpretation of the results and reporting to 

the relevant authori ty. 

These steps are performed In the sequence in which they 

are listed, although there may be some cycling between them. 
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For instance, validation tests (step 5) may reveal a need for 

refinement to model structure (s tep 3) which would be followed 

by further testing (step 5). 

There has been a tendency in agricultural systems studies 

for most of the researcher's time to be devoted to model 

construction (steps 2 to 4), with inadequate attention being given 

to testing (step 5) and experimentation with the model (step 6). 

This imbalance of research effort has been attributed to the 

exhaustive demands of constructing models and getting them 

to operate on the computer [Wright, 1971 ]. Increasing attention 
1 

is now being paid to validation tests. On the other hand, although 

highly efficient designs have recently become available for simulation 

experiments, their rate of adoption by agricultural systems 

researchers has been slow. 

1.2 The Fxperimentation Phase 

As alread y indicated, cons truc tion and validation of a 

model is only a part of the systems research effort. Once a 

satisfactory model is available the researcher can set about to 

answer some of the questions originally posed. Careful planning 

prior to the execution of these experiments is essential if the 

potential usefulnes s of the model is to be fully realised. 

Before examining the special features of computer 

simulation experiments it is necessary to consider briefly 

agricultural experimentation in general. Regardles s of whether 

an experiment is carried out in the field, glasshouse, laboratory 

or on a computer model, there will be certain variables which we 

wish to adjust, or set at a number of levels, and these are known 

as experimental factors. The factors may be qualitative, such as 

1 
For example, see Hermann [1967], Mihram [1972] and Harrison 
and Fick [1978 ]. 



crop variety, strain of animal, spray versus no-spray decisions. 

They may be quantitative and measurable in whole units only 

(e. g. number of cultivations throughout the crop growing season) 

or they may be quantitative and adjustable on a continuous scale 

(e.g. fertilizer application rates, animal feeding levels). Often 

we wish to vary more than one factor at a time, and a single 

combination of levels of all fac tors is known as a treatment. 

For example, nitrogen and phosphorus application rates of 30 

and 10 kg per ha respec tively would cons ti tute a treatment, 

30 and 20 kg would be another, 40 and 30 kg yet another. An 

experiment consists of the evaluation of two or more treatments 

in terms of some measure of response. For example, the response 

variable in a crop fertilizer trial is usually crop yield, expressed 

on a per hectare basis. 

In a field experiment such as a fertilizer trial a small 

plot of land is allocated to each treatment. Plots for -the various 

treatments may be laid out in a completely randomized fashion or 

perhaps randomized within blocks or groupings of treatments. 

An attempt is made when carrying out the experiment to control 

as fully as possible those factors which are not being purposefully 

adjusted. Thus soil type, slope, seed quality etc. are made as 

uniform as possible, pest and disease incidence is strictly limited, 

each plot is given the same number of cultivations, and so on. 

But even under the best of management the response from a given 

treatment will depend not only on the levels of the experimental 

5. 

factors but also on other factors beyond the control of the experimenter. 

In other words, if the same treatment is applied to two or more plots 

then different responses will be obtained froni each. For this reason 

it is usual to include a number of repetitions or replicates of each 

treatment, and to average the response over these replicates when 

determining the effec ts of the fac tors. 

The choice of experimental design, and subsequent analysis 

of the response observations, will depend on the purpose for carrying 
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out the experiment. Generally, agricultural experiments fall 

into two broad classes: (a) Ifw here next lf or Ifyes/-nolf experiments, 

and (b) Ifhow much lf experiments [Dillon, 1966:64]. Those in the former 

group are designe::l to explore certain points on the response pattern 

or surface; the latter seek to determine the combination of factor 

levels which is consistent with optimal response (e. g. maximal 

yield or mas t profi table yield). On the above basis, Hunter and 

Naylor [1970] distinguish between exploratory and optimization 

experiments. This report is concerned primarily with the latter 

class. 

A wide variety of experimental designs are used for· 

agricultural experiments, including complete and incomplete fac torials, 

response surface designs, incomplete block designs, lattice and 

latin squares and many others. These designs are explained in 
2 

a number of standard reference works. 

Field experiments normally take considerable'time to 

carry out, even though the treatments are managed and evaluated 

simultaneously (i. e., each plot is planted on or about the same day, 

cultural operations are carried out at the same times, and the plots 

are harvested together). Time and resource limitations usually 

restrict the experimenter to examine responses with respect to at 

rna st two or three fac tors, particularly wi th experiments involving 

crops, pastures or large animals. 

2 . 
See, for example, Cochran and Cox [1957], DIllon [1977], Heady 
a'1.d Dillon [1961] , Johnson and Leone [1964], Mendenhall [1968] , 
Myers [1971] and Snedecor and Cochran [1967]. 



Since the ex:periment is carried out at a given location, 

in a given season, the results are only strictly applicable to 

that particular environment, and great caution must be exercised 

in drawing implications for other sites and seasons. Of course, 

the experiment may be repeated in space or time, but only at a 

substantial increase in research costs. These problems associated 

with field experiments also apply to glasshouse and laboratory 

experiments, though perhaps to a lesser extent in that the cost 

of materials and time span may not be as great. 

1.3 Computer Simulation Fxperiments 

Following this brief review of agricultural experimentation 

in general, we may now examine more closely experiments carried 

out with a computer model rather than with the real system. 

These are referred to as simulation (or simular) experiments. 

Since this is indeed a form of experimentation, the vast literature 

on design layouts is entirely relevant, and in fact traditional designs 

such as factorials are normally employed. However, those fail 

to take advantage of the special features of simulation experiments 

with regard to the determination of optimal factor levels; these 

special features are: 

(i) substantially lower cost per treatment; 

(ii) compression of time; and 

(iii) control over experimental variability. 

Typically, the lionls share of the cost in a systems study is 

incurred in developing and perhaps testing the model. The cost of 

evaluating each treatment is usually small hence experiments with 

numbers of treatments running into the hundreds, become possible. 

7. 

Since the digital computer is a sequential processor, 

treatments must be evaluated sequentially rather than simultaneously 

as in the case of experiments on a real system. This presents no 

serious problems because simulation of performance under each 
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treatment takes so little time. In fact, sequential experimentation 

has a major advantage in that it allows the experimenter to know 

the outcome under each treatment before deciding on the factor 

levels of the next treatment and to take advantage of information 

generated early in the experiment to guide its later stages. 

Wasted treatments are therefore eliminated and the investigation 

is concentrated on promising regions of the experimental factors 

or controllable variables. The result is that designs can be 

employed which will locate optimal factor combinations with a 

fraction of the number of treatments that would be needed in real 

experiments to determine optima wi th the same degree of precision. 

Agricultural systems typically operate in a highly uncertain 

environment. Climatic and biological uncertainty are incorporated 

in systems models by generating random values of weather variables 

and by including random components in relationships describing 

plant and animal performance. As well, uncertainty ,in the economic 

environment can be built into the model by wa y of random pric e and 

cost variables. In multi-period (as distinct from static) models, 

sequences of these stochastic variables are generated for each 

encounter with the model, i. e., for each replicate of each treatment. 

Control over experimental variability lies in the method by which 

computer routines for generating these environmental variables or 

sequences of variables are initialized or seeded. In particular, 

use of identical seeds for corresponding replicates under alternative 

treatments leads to reproduction of identical sequences of values 

of the uncertain variables. This procedure eliminates response 

differences between treatments due to the replicate effect, and 

hence allows differences between treatments to be detected with a 

smaller sample size (fewer environmental sequences or replicates). 

The combined effect of the above features - ability to 

include more treatments, more effective use of treatments, and 

minimal replication even when many uncertain environmental 

variables are included - is to allow larger experiments to be carried 



out taking account of temporal and spatial factors. The ad vantage 

is most marked when the objective is to determine levels of several 

factors (say four or more) which are simultaneously optimal. 

However, this advantage can only be realized fully if one of a 

group of design procedures known as 'optimum-seeking' or 'hill-

climbing' designs is used. Development of optimum- seeking 

9. 

experimental designs has taken place in disciplines such as mathematics 

and engineering. Agricultural scientists and systems researcher s 

are not generally familiar with these designs and as yet relatively 

few applications have been made in bioeconomic sys terns re search. 

A number of such designs are presented in Chapters 3 to 5. 

1.4 Terminology of Sys terns Re search 

At this stage it is necessary to introduce a symbolic 

framework for viewing the experimental design problem. Jus t as 

the sys terns model is made up <;>f(;\."J1J,.pnber of algebra~c expres sions, 

so is it useful to represent the response/factor relationship in 

symbolic form: 

where 

Z = f(X, Y) 

Z is the response variable; 

X is a vector of factors the levels of which are 

adj us ted during the experiment; and 

Y is a vector of non-controllable or environmental factors. 

For example, in a fertilizer trial Z would represent yield, X could 

contain elements xl (amount of ni tr,ogen) and ~ (amount of phos phorus) 

while Y would include factors such as rainfall, temperature, initial 

soil fertility, insect damage and so on. 

The letter 'f' represents the relationship between response 

and the causal factors, i. e., it represents the systems model. From 

the point of view of experimentation the model is simply a procedure 

for predicting or estimating the response of the real system to any 

combination of fac tor levels under any environment. If the model is 



10. 

deterministic then only one performance prediction is needed Jor 

each treatment. On the other hand, a number of replicates will 

be needed in the case of a stochastic model. The seq uen tial 

nature of a simulation experiment is illustrated by Figure 1.1. 

In this diagram a performance prediction (or encounter with the 

model) takes place for each replicate of each treatment. 

The placement of each successive treatment in an optimum­

seeking design is controlled by a set of rules which operates on the 

responses from previous treatments. These rules are normally 

written into a subroutine which is called upon after each treatment 

has been evaluated. In contrast, if a traditional experimental 

design is used for an experiment with a simulation model on a 

computer then this design can be fully specified in advance. It can 

be incorporated as either input data or written into the main program 

of the s ys tems model. 

1. 5 Management Oriented Simulation 

So far the discussion on simulation experiments has been 

intentionally general. In this section attention will be focused on 

a major application of optimum - seeking experiments, viz. manage­

ment- oriented research aimed at improving the efficienc y of resource 

alloca tion on individual farms. Farm management research is often 

described as conditional normative in outlook, meaning that 

prescriptions are sought as to what the farmer ought to do, 

conditional upon him holding certain assumed goals. It is 

appropriate, therefore, to review briefly the nature of management 

decisions and the goals of farm operators which the decisions seek 

to achieve. The relevant goals or objectives will depend on the 

level of agg rega tion of the s ys tem being modelled. Suppose initially 

that this is a whole farm business. Management policies of the 

farm-firm may be classed as structural, strategic or tactical 

depending on the circumstances under which decisions are made 

and on the frequency of the decisions [Chudleigh,1971 ]. Structural 
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policies concern the long- run organization of the farm busines s 

(e. g., whether to raise sheep or cattle, to grow generalist or 

specialist crops, or to border dyke or spray irrigate). Strategic 

policies are also long-term but are subject to annual revision 

(e. g., crop rotations, land development and machinery replacement 

strategies). Tac tical policies are short- term and concern the 

response to a particular environmental situation (e. g., whether to 

purchase feed or sell stock during drought, when to use chemicals 

on insect pests). Systems models may be used to generate 

information which assists decision making at each of these three 

levels. 

The decisions made by a farmer at each of the above policy 

levels will depend on his short-run and long-run goals. In the 

short term (typically represented by annual models) the literature 

suggests a dominant goal of profit maximization or maximization 

of utility as a function of income level and income variance. In 

the long term it is appropriate to replace the flow concept of annual 

income wi th a stock concept of wealth. Here the literature frequently 

suggests the objective of maximization of future net worth (or its 

present equivalent) subject to 'constraint goals' such as avoidance 

of financial collapse and adequate annual consumption expenditure. 

If the system under study is only a part of the farm business 

then a different type of objective may be more suitable. For example, 

when modelling machinery renewal or pest control it may be reasonable 

to assume constant income and to seek management policies which 

minimize cost levels. 

In studying an agricultural system the researcher should 

decide whether or not he is interested in identifying optimal manage­

ment policies. Many systems research studies are positive in 

orientation. That is, they are exploratory in nature and designed 

to increase understanding of the operation of the system rather than 
</ 

to produce prescriptions or recommendations for management. In 

other cases the number of controllable or management variables is 



so great that optimization may not be possible anyway, or may 

be unacceptably expensive in terms of computing time. 

13. 

A fundamental question is whethpr farmers are optimizers 

or whether merely 'satisficers' aiming for satisfactory levels of 

profits provided other objectives are achieved [Simon, 1957]. 

And even if the farmer is a profit maximizer, it may be sufficient 

for the adviser to demonstrate how he can improve (rather than 

optimize) performance, and relatively simple experimental designs 

will be adequate for this purpose. Further, the farmer may 

already have management changes in mind and the adviser by 

demonstrating that these particular changes will be profitable, 

provides us eful decision support to the farmer. 

The decision to seek or not to seek optimal management 

policies, therefore, is not automatic, and must be considered in 
,~"k. 

relation to the particul~ problem under study. In the past the 

absence of attempts to identify optimal management policies in 

sys terns s tudie;; has probably stemmed more from the lack of 

knowledge about suitable experimental designs rather than from a 

definite decision not to seek optimal policies. Certainly, the 

mathematics behind some of the optimum- seeking design procedures 

is not simple and many of the books on numerical search techniques 

make extensive use of matrix algebra and symbolic notation. This 

Report attempts to overcome the above problems by presenting the 

essential features of optimization procedures in simple language 

with a minimum of mathematics and using extensive examples and 

diagrams. 

While the terminology introduced earlier is again applicable 

to management- oriented simulation, it is more convenient to introduce 

some new terminology. In particular, the experimental fac tors are 

now called decision or policy variables, and the factors beyond the 

control of the experimenter are called non-controllable exogenous 

variables or's tates of nature'. Each treatment is a management 

policy or strategy. The concept of a res ponse is replaced by a 
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criterion of business performance or manager's utility. The 

aim of a simulation experiment is to determine the management 

policy which will optimize the performance criterion. Symbolic 

representation of the farm management problem to be solved by 

simular experimentation may be expanded to: 

optimize Z = g(P) 

where P = f(X, Y, S, A) 

Z is the multidimensional objec tive or utility function of 

managemen t; 

X is a vector of policy variables (X ~ 0); 

Y is a vector of non-controllable or environmental variables; 

S is a vector of initial resource supplies constraining 

resource use; and 
. 3 

A is a vector of the system's parameters. 

The above discussion may be illustrated with reference to 

a farm enterpdse planning example. Suppose an irrigation farmer 

with limited water supplies wishes to determine the most suitable 
4 

combination of areas of irrigated wheat and lucerne to grow. 

(The balance of his land may be sown to dryland pasture.) The 

relation to be investigated may be summarized as; 

Profit = f (area of wheat, area of lucerne, 
rainfall, prices) 

The model represented by f may be simply a small number 

of accounting identities for determining the financial effects of varying 

3 For further details of this kind of formulation see Anderson [1974] , 
Emshoff and Sisson [1970] and Harrison and Longworth [1977] . 

4 
Of course, modelling and simulation is only one of a number of 
management research techniques which could be addressed to this 
problem. In fact, there is available a continuum of approaches 
varying from quick low- cos t expedients (budgeting) through 
mathema tical and dynamic prog ramming to the relatively slow and 
expensive systems approach. These alternative methodologies are 
reviewed and compared .by Harrison [1976, Ch.3]. 
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the areas of the two crops under irrigation. Alternatively, it may 

be a highly complex systems model which takes account of available 

soil moisture, light interception of plants, photosynthetic activity, 

starch accumulation, dry matter production, labour demands, cash 

flows and so on. In any case, from the farm planning point of view 

the model is simply a procedure for predicting the level of profit 

for any given management policy or crop area combination under 

any given bioeconomic environment. This procedure is repeated 

for each treatment during the simulation experiment. For example, 

irrigating 40 ha of wheat and 10 ha of lucerne would be one treatment; 

irrigating 20 ha of each would be another. If the model is deterministic 

then each treatment is evaluated once only but in the case of a 

stochastic model it is necessary to replicate each treatment a number 

of times. 

Procedures for determining the sequence of management 

policies or treatments which must be evaluated in the ~imulation 

experiment so as to locate the most profitable levels of policy or 

decision variables at a reasonable computing cost are expounded in 

subsequent chapters. Initially, management problems will be 

considered in which there is only one policy variable (univariate optimization) 

then this will be extended to the case of two variables (as above) and 

finally to the general or n-variable case. Traditional or simultaneous 

designs will be discussed first, then the more efficient but more 

complex sequential designs. 

While the above farm planning problem will be used to 

illustrate the design procedures, the methods are quite general and 

could equally well be applied to other biological or bioeconomic systems. 
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1.6 Summary 

This chapter has viewed the s ys terns approach to agri­

cultural research in terms 6f a number of more or less clearly 

defined stages. It was shown that important among these is 

experimentation with the model to derive information about the 

real system it represents. Any experiment, real or simular, 

involves evaluation of response from two or more treatments in 

which experimental factors are set at different combinations of 

levels. As indicated, variability in response due to factors 

outside the control of the experimenter usually leads to replication 

of treatments. The special nature of simulation experiments with 

regard to cost, time and control over variability allows use of 

hill-climbing designs to locate optimal levels of a relatively 

large number of experimental factors. These designs are 

particularly useful in farm management research where the aim 

is to determine management policies which will best achieve the 

objectives of the farmer. 



CHAPTER 2 

TRADITIONAL EXPERIMENTAL DESIGNS 

Traditional experimental designs, sometimes referred to 

as tabulation methods, require that all treatments be specified or 

lis ted prior to the commencement of the experiment. The treatments 

are chosen simultaneously, even though they may be evaluated one at 

a time (as in computer simulation experiments). While these designs 

fail to take advantage of the special features of experiments wi th 

computer models as outlined in Chapter I, they are simpler to use 

than optimum- seeking sequential designs and are adequate for 

optimization purposes when the number of factors is not large. 

Also, they are some times used in conjunction with 'hill- climbing' 

designs, both for exploratory experimentation and for 'the closing 

$tages of the search. 

In this chapter the design and analysis of simulation experi­

ments using tradi tional or tabulation methods will be reviewed for the 

single variable, bivariate and multivariate cases in turn. The 

discussion will be limited to three of the most widely used designs, 

viz. the full fac torial, £rac tional fac torial and central composi te 

design. 

To make the discussion more meaningful it will be assumed 

that a systems model of a Canterbury (N. Z. ) irrigation farm has been 

developed and has satisfied tests of validity. This model is to be 

used to determine areas of the various crops and pastures which the 

farmer should grow if his objective is to maximize net income. The 

following discussion will consider the alternative situations in which 

the model is deterministic and in which it is stochastic. (In the latter 

case amount of rainfall each week, crop yields and produc t prices are 

allowed to vary randomly between years. ) 

17. 
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2.1 Single Factor Experiments 

The simplest case of an optimization experiment is to 

evaluate performance under just two alternative treatments or 

policies. The one with the highest net income would be chosen 

as optimal. Thus if irrigated wheat areas of 40 and 60 ha result 

in incomes of $22,000 and $25,000 (with areas' of all other crops 

and pastures held fixed), then the latter level is to be recommended. 

If the model is stochastic then each treatment could be replicated 

say 10 times and mean net income compared using the student t 

test. We may then choose the policy with the greatest mean 

income or, alternatively, apply the more stringent criterion that 

mean income must differ significantly by at least some minimum 

amount of economic substance (say $1,000) before a choice is made. 

If identical starting numbers or seeds are used in the generation of 

environmental sequences for corresponding replicates of the two 

treatments then a test on differences in incomes betwee'n paired 

replicates is appropriate. 5 This blocking procedure for comparing 

treatments under the same environmental conditions allows signi-

ficant response differences to be detected with fewer replicates than 

that required under independent seeding. 

Often it is desirable to include several levels of the experi-

mental factor, e.g. wheat areas of zero, 50, 100 and 150 ha. If the 

model is deterministic only one replicate of each of these treatments 

is evaluated and the level resulting in greatest income is chosen as 

optimal. For a stochastic model the t test is replaced by one way 

analysis of variance (ANOV A) and mean incomes for each treatment 

compared on the basis of least significant difference. One or more 

treatments may then be found superior to others. It should be noted, 

however, that the ANOVA technique as sumes independence of replicates 

5 
These t tests are described inmost introductory statistics tests, 
e. g. Mendenhall and Reinmuth [1978: 288, 296]. 
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between treatments and is not valid when'the random number 

generators are identically seeded. In fact, there is then no 

unexplained variation to be partitioned, any observed differences 

between mean incomes being due solely to treatments [Chudleigh, 1971: 239 J. 

An alternative form of analysis is regression or curve 

fi tting. This may be used regardless of wheth"r the model is 

determinis tic or stochas tic (ei ther independently or identically seeded) 

and provides more information than ANOV A by interpolation between 

fac to r levels. As a result, the wheat area corresponding to maximum 

income can be located wi th g rea te r preci sion. Under this approach, 

an equation describing the response relationship is obtained by 

regressing predicted incomes (individual values or treatment means) 

on wheat area using an ordinary least squares regression package. 

The form of function most often adopted is the second-order polynomial 

where Z is income, x is wheat area and the coefficients m
1 

and m
2 

define the position and shape of the curve. A stationary point on this 
dZ -m 

curve occurs where the derivative dx is zero (i. e. where x = __ 1 and 
2IDz 

this is the income maximizing. level provided the second derivative (2m
2

) 

is negative. The above are known as the necessary and sufficient 

conditions for a maximum and will be extended later to multivariate 

cases. 

2.2 The Factorial Design in Two Variables 

Where there are two experimental fac tors or polic y variables 

of interest, appropriate levels of each may be combined in a complete 

grid or full factorial design .. _,The crosses in Table 2.1 represent the 

16 factor combinations or treatments arising when areas of wheat and 

lucerne .under irrigation can each take four levels. (The balance of 

the land may be sown to pastures.) Analysis options include two-way 

analysis of variance and least squares regression. A stochastic model 
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and independent seeding are again necessary for ANOVA to be 

applicable. A second-order polynomial function derived by 

regression analysis would include curvature term's for both factors 

plus a measure of interaction between th'em (an xl x
2 

term) as 

follows: 

rd 
,..C 

Il) 

s:: 
~ 
Il) 

u 
:j 

....-l 

"'-i 
0 

rd 
Il) 

~ 

~ 

TABLE 2.1 

Full Fac torial Design wi th Two Folic y Variables 
Each at Four Levels 

Area of wheat (ha) 

o SO 100 ISO 

0 X X X X 

20 X X X X 

40 X X X X 

60 X X X X 

A stationary point on this response surface is found by solving the 

simultaneous equations which re sult when the partial deri va tives of 

Z with respect to xl and x
2 

are set to zero, i. e. 

so 2m3xl 

mSxl 

whence xl 

+ mSx2 = -m
l 

+ 2m
4

x
2 = -m

2 

= 

= 

2m
l

m
4 

- m
2

m
S 

2 
mS - 4m3m4 

2m m m m 2 3 - 1 S 

2 
mS - 4m m 

3 4 

and 

and 



The sufficient condi tion for a maximum is defined in terms of the 

first and second partial derivatives, i. e. 

o and 

2 
which simplifies to m3 ' 0, m 4 < 0 and m3m 4 ) mS' If these 

conditions are not met then a minimum or saddle. point has been 

located, indicating that income is highest at some other treatment, 

perhaps one on the boundary of the experimental region. 
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The fitting of response surfaces and location of stationary 

points has an important role in finishing off optimization experiments 

and will be reconsidered later in that context. 

2.3 Designs for Three or More Factors 

The full factorial design may be extended readily to cases 

of three or more experimental factors, but at the expense of rapidly 

increasing the size of the experiment. When there are k factors at 
k 

n levels with each treatment replicated m times a total of mn encounters 

wi th the model is needed. Thus if there are seven controllable factors 

(a relatively small number for models of many bioeconomic systems) 
7 

and each is assigned four levels then it is necessary to evaluate 4 

or 16,384 treatments, each of which may be replicated say 10 times. 

While the cos t of this experiment would vary wi th the size and complexi ty 

of the systems model and cost of computer time, let us make some 

reasonable as sumptions in order to ar ri ve at a cos t es tima te. 

Supposing each response evaluation requires one second of processor 

time, at a cost of $100 per hour, the cost of the whole experiment will 

be approximately $4, SOO (without allowing for printing and paper 

charges, etc.). The full factorial design may, therefore, be 

unmanageably large and unacceptably expensive. This example 
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illustrates that simulation experiments implemented on a computer -

like real experiments wi th plants, animals or other physical media -

are not costless, and that their designs are constrained by the 

research budget. 

One means of reducing cost is to use a fractional (incomplete, 

partial) fac torial in which some combinations of fac tor levels are 

omi tted. This enables us to fit a second-order polynomial function 

to the simulation output from evaluation of far fewer treatments 

than needed in the full fac torial. The analysis of response is less 

complete than that possible with a full factorial design since inter­

ac tion effec ts of higher than second order are confounded wi th main 

factor effec ts. A fractional factorial requiring only one sixteenth 

of the number of treatments of the full factorial where seven factors 

are to be investigated is presented by Hunter and Naylor [1969: 46] . 

The main use of fractional factorials (of which the Latin square is a 

special case) is for screening of factors or identification of those 

variables having greatest effect on response. 

A further improvement over the frac tional fac torial, 

especially when there are three or more experimental factors of 

interest, is to be achieved through use of response surface method-

ology (RSM). In essence, RSM consists of a group of designs developed 

specifically for generating data with which to estimate an equation to 

the response surface [Box, 1954; Burdick and Naylor, 1968; 

Dillon, 1977]. The usual form of equation is again the second-
2 

order polynomial, including linear (x.), quadratic (x.) and interaction 
1 1 

(x.x.) terms. Particularly efficient among the response surface 
1 J 

designs is the central composi te design which, because of its extensive 

use in bioeconomic simulation studies, will now be discussed in some 

detail. 
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2.4 Central Composite Designs 

A typical central composite design for k experimental 

factors consists of the full factorial design with only two levels of 

each fac tor (2 k design points) augmented by 2k outside or's tar' 

points or treatment$ plus a treatment at the centre of the design. 

Returning to our farm planning example, suppose areas of irrigated 

wheat and lucerne are set at 40 and 60 ha, and 20 and 30 ha, respectively. 

For convenience we may code these factor levels using the transformations 

area of wheat - 50 
xl = and 

10 

area of lucerne - 25 
x

2 = 5 

The levels of the two variables now take values of +l and -Ion the new 
2 

coded scale and the 2 full factorial design would consist of the first 

four treatments in Table 2.2. A central composite design is formed 

by adding treatments 5 to 8 outside each face of the 'square' inscribed 

by treatments 1 to 4, plus treatment 9 at the centre point. The 

complete design is illustrated in Figure 2.1. 

TABLE 2.2 

Central Composite Design in Two Factors 

Treatment No. xl x
2 

1 1 1) 
2 1 -1) 22 
3 -1 1) 

factorial 

4 -1 -1) 
5 C(, o ) 
6 -rL o ) star 

7 0 ~) 
points 

8 0 -~) 

9 0 0 c entre point 
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FIGURE 2.1 

Illustration of Central Composite 
Design in Two Factors 

«x2 
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points (treatments) 
o in 2k fac to rial 

design 

o s tar points 

e centre point 

Although there are only nine treatments in this design 
2 

(as against 16 in the 4 factorial presented earlier), each of the factors 

is set at five different levels, viz. - oc, -1, 0, 1 and oC. A typical 

central composite design in three factors would consist of the 15 

treatments as in Table 2.3, and Figure 2.2. 

TABLE 2.3 

Central Composite Design in Three Factors 

Treatment No. xl x
2 x3 

1 1 1 1 
2 1 1 -1 
3 1 -1 1 
4 1 -1 -1 
5 -1 1 1 
6 -1 1 -1 
7 -1 -1 1 
8 -1 -1 -1 
9 cJ:.. 0 0 

10 -(J:. 0 0 
11 0 tJ:.. 0 
12 0 -fJ: 0 
13 0 0 0(., 

14 0 0 -~ 
15 0 0 0 
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The value of oC or the distance of the star points from the 

design centre is chosen to give a compromise between precisio:r_ and 

bias, both of which increase as oC. is increased. Usually a value is 

adopted which will make the design either orthogonal or rotatable. 

The orthogonal design has been found useful for fitting a performance 

function to simulation output which enables response to be predicted 

for different budgetary assumptions (factor levels) without having to 

rerun the model [McLintock, 1972] . Each parameter in the equation 

of the response surface is estimated independently of all other parameters, 

facilitating the fitting of the equation and subsequent partitioning of 

variance according to its possible causes. The total numbers of 

treatments and appropriate IX. values for the orthogonal designs with 

2 to 8 factors are listed in Table 2.4 (from McLintock, p. 81). 

Rotatable designs have been developed specifically for fitting 

second and higher order polynomials to response data [Hunter and 

Naylor, 1969: 48] and the rotatable central composite is perhaps the 

most useful of all simultaneous designs for agricultural simulation 

work. When fitting a response surface the precision is greatest 

(i. e. standard error of estimate smallest) at the centre of the design. 

TABLE 2.4 

Treatment Numbers and c(. Values for 
Orthogonal Central Composi te Design 

Number of Number of Value of r 0(; I to make 

factors treatments design orthogonal 

2 9 1. 00 
3 15 1.215 
4 25 1.414 
5 43 1.547 
6 77 1. 761 
7 143 1. 910 
8 273 2.045 
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FIGURE 2.2 

Illustration of Central Composite Design in Three Factors 
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In a rotatable design the standard error of estimate is the same for 

all points that are the same distance from the centre, regardless of 

their direc tion from the centre. This equal-precision property is 

desirable when little is known about the shape of the response surface 

on the borders of the design region. The centre treatment is sometimes 

replicated a number of times to provide a measure of variabili ty of 

response. The number of design points (including replicates of 

the centre point) and values of 0( for rotatable designs in 2 to 6 factors 

are as follows (from Cochran and Cox, 1957: 347). 



Number of 
fac tor s 

2 

3 

4 

5 

6 

TABLE 2.5 

Number of Design Points and ,.(. Values 
for a Rotatable Central Composite Design 

Number of points in 
Total 

k 
2 Factorial Star Centre 

poin ts 

4 4 5 13 

8 6 6 20 

16 8 7 31 

16 10 6 32 

32 12 9 53 

Value of 
oC. 

1.414 

1.682 

2.000 

2.000 

2.378 

In this table the designs in five and six factors employ only 

27. 

one half of the full factorial design. Lists of treatments to be included 

in these cases are provided by Cochran and Cox [1957: 371, 372] . 

While the treatments of the above designs may be completely 

randomized (i. e. different environmental sequences used for each), 

the precision of the experiment is increased if treatments are divided 

into two or three groups or incomplete blocks [Cochran and Cox, 

1957: 353] These blocks may correspond to different simulated 

climatic sequences [Johnston, 1973: 170; Hughes, 1973: 89 L 

The same seeds are used to generate stochastic environments within 

blocks but different seeds are used between blocks. The block or 

climate effects are then incorporated in the response function by 

means of dummy or 0-1 variables. 
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2.5 Summary 

Some of the more common tradi tional designs for experiments 

with systems models have been outlined in this chapter. The 

simples t of these is the full fac torial. When more than about three 

factors are present use of a fractional factorial may be preferable. 

Still greater efficiency in locating optima is possible through response 

surface methodology, and especially by the use of a central composite 

design. Here a two-level full factorial (or fractional factorial if the 

number of factors is large) is augmented by star and centre treatments. 

The central composite design may be divided into incomplete blocks 

to test the effect of different simular environments on treatments 

(management policies). While the designs presented here indicate 

that a good deal of progress can be made with traditional or tabulation 

methods, the cost of the experiment becomes rather large for more 

than about six factors, and use of optimum-seeking sequential designs 

(introduced in the next chapter) is to be preferred. 



CHAPTER 3 

UNIV ARIA TE SEARCH 

The determination of an optimal value for a single controllable 

factor within a systems model is generally a simple matter. However, 

a well designed univariate search routine may be most useful to the 

systems researcher for two reasons. Firstly, one may wish to locate 

optima wi th high precision yet prior knowledge of the optimal region 

may be inadequate to place treatments sufficiently close together when 

using a pre- specified design layout. Secondly, and more importantly, 

many multivariate search methods proceed by way of a series of 

unidirec tional searches. Sometimes these directions are parallel to 

the factor level axes while in other cases two or more factors are 

adjusted in a fixed ratio to each other. Since the number of 

unidirec tional searches in a single multi variate optimum - seeking 

experiment may run into the hundreds, it is essential to employ an 

efficient unidirec tional optimiza tion proc edure. 

The discussion of univariate search methods at this stage 

also provides a useful background to later chapters by illustrating 

a number of concepts common to all numerical optimization techniques. 

While a large number of univariate search techniques have 

been devised (for example, see Wilde, 1965) only two will be discussed 

here, viz. a naive interval narrowing procedure and the highly 

efficient Powell method. In each case it will be assumed that the 

variable is quantitative and can take a continuous range of values. 

29. 
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3.1 Interval Narrowing 

In this section a method to find the approximate optimal 

level of a single controllable fac tor by prog res si vely narrowing 

the interval of search will be developed along intuitive lines. 

Although interval nar rowing is not an efficient search procedure 

the example is convenient for illustrating some concepts and problems 

of adapting a numerical optimization procedure to the design of 

simulation experiments. 

Recalling our farm planning model, suppose the experimenter 

wishes to determine the most profitable area of just one crop, viz. 

irrigated wheat. Assume that the response curve relating net farm 

income to wheat area is 'well behaved' or convex upwards in the 

range zero to 150 ha and the true but unknown optimum is 86. 7 ha. 

The experiment is commenced wi th an ini tial gues s of the optimal 

level; say this is 40 ha. Evaluation of this treatment with the 

systems model reveals a net income of $22, 000. Further treatments 

are located at intervals of 20 ha. Since the response to each treatment 

is known before the next treatment is placed, the number of steps will 

be kept to a minimum. Suppose predicted income levels are $25,000 

at 60 ha, $26,000 at 80 ha and $25, SOO at 100 ha. The interval 

containing the optimum is now narrowed to 60 to 100 ha and areas 

outside this range are excluded from further consideration. This 

completes the first iteration of the search. In order to make further 

progress, let us now reduce the step size by a factor of 5 (i. e. to 4 hal 

and commence a second iteration from our current best treatment of 

80 ha. Treatments would now be placed at 84 ha, 88 ha and 92 ha 

(at which point income declines indicating that the optimum has again 

been overshot). The range of interest has now been narrowed to 

84 to 92 ha. Step size is further reduced to 4/5 or 0.8 ha. A treatment 

at 88.8 ha reveals a decline in income relative to the previous best 

treatment, so backward stepping takes place, with treatments at 87.2 ha, 

86.4 ha and 85.6 ha. The complete sequence of treatments for three 

search iterations is listed in Table 3.1. 
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TABLE 3.1 

Experimental Design for Uni variate Search by Inverval Nar rowing 

Whea t area (ha) 

Treatment number 
1 2 3 4 

Iteration 1 40 60 80 100 

number 2 84 88 92 

3 88.8 87.2 86.4 85.6 

After 11 treatments the interval containing the optimum 

has been narrowed to 85.6 to 87.2 ha. At this stage the experimenter 

may decide upon the optimum by (i) accepting the best treatment 

evaluated (86.4 hal; (ii) interpolating between the closest factor 

levels; or (iii) carrying out a further search iteration. 

The above account illustrates a number of typical features 

of optimum- seeking experimental designs. An ini tial g ue s s of the 

optimal factor level is made, and improved values are obtained 

through a series of search iterations. Convergence to the optimum 

is at first rapid but then becomes increasingly slower. The total 

number of treatments needed depends on the closeness of the initial 

guess to the optimum and on the settings of the search parameters 

(here, initial step size and reduction to step size between iterations). 

The termination rule involves a compromise between the precision 

with which the optimum is estimated and the cost of evaluating 

additional treatments. All of the above characteristics are common 

to most optimum - seeking designs. 

3.2 Powell's Method 

A highly efficient univariate search method has been devised 

by Powell [1964] to find the level of a variable corresponding to a 

minimum func tion (or res ponse) value. Essentially, the method 

involves placing treatments at three levels of the variable factor 
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(a, b and c), regressing a quadratic function through the predicted 

response values (Z , Zb and Z ) and locating the stationary point 
a c . 

on the fitted equation. Special features are included to ensure that 

the stationary point is a minimum and for taking advantage of the fact 

that a quadratic equation will fit three points exactly. Also, a limit 

is placed on the extent of adjustment from the initial factor level 

towards the estimated minimum. 

For convenience, a, band c are defined as differences from 

the initial guess of the optimal x value. Treatments are firs t evalua ted 

at x (where a = 0) and at b = x + Llx where ~x is a forward step in the 

level of the fac tor. The position of the third treatment depends on 

whether the response is found to be increasing or decreasing, i. e. 

if Zb < Za place c at x + 2 .dX, and 

if Zb ) Za place c at x - Llx, 

as illustrated in cases (i) and (ii) of Figure 2.1. The quadratic 

passing through Za' Zb and Zc will have a stationary point at 

where d 

x = x + d 

1 = "2 
(b - c) Z a + (c - a) + Zb + (a - b) Z c 

and thi s will be a minimum value if 

(b-c) Z + (c-a) Z + (a-b) Z 
abc 

(a-b) (b-c) (c-a) 
<. 0 

Note that the equation of the quadratic function need not be calculated 

expli ci tl y. 



FIGURE 3.1 

Treatment Placements in Powell's Univariate 
Minimization Method 
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For the farITl planning exaITlple, suppose wheat areas of 40, 60 and 

80 ha are found to give incoITles of $22; 000, $25,000 and $26,000 

respectively. Here x = 40, and on negating the Z values to 

facili ta te ITlaxiITliza tion, 

(20
2 

- 40
2

) (-22000) + (40
2

) (-25000) + (_20
2

) (-26000) 
1 

d = "2 
(20 - 40) 

= 40 ha, and 

(-22000) + (40) 

x = 40 ha + 40 ha = 80 ha. 

(-25000) + (-20) (-26000) 
ha 

The optiITlal level will at tiITles fall outside the range of 

treatITlents evaluated, as in case (iii) of Figure 3.1. Such extrapolation 

can be hazardous, particularly when the pattern of response is 

irregular as is likely with a stochastic ITlodel. This is illustrated 

in case (iv) where the three perforITlance values are alITlost collinear 

(in a straight line) and d lies far to the right of c. To avoid running 

"off the edge" of the response curve or surface, the Powell ITlethod 

restricts the size of d to a ITlaxiITluITl adjustITlent paraITleter q. 

When the sufficiency condition is not satisfied the stationary 

point is a ITlaxiITluITl and continued stepping is necessary. This is 

illustrated in case (v) where band care renaITled as a and b, and 

a new treatITlent c is placed at x + 3 __ \x. In this case 'a' is no longer 

zero (which is the reason why the 'a' terITl is retained in the above 

forITl ulae). 

The estiITlate of the optiITluITl obtained by this ITlethod ITlay not 

be very precise, particularly if ~x is large and the response curve is 

not quadratic in shape. This could be overCOITle by repeating or 

iterating the procedure cOITlITlencing with x at the new optiITluITl and 

using a reduced step size. It is to be noted, however, that the Powell 

ITlethod is designed for ITlultivariate optiITlization where pursuit of 

high accuracy during individual searches is not warranted. 



On the other hand, Powell's method is highly efficient, 

locating the minimum with only two treatments in.addition to the 

initial guess when the response curve is concave upwards. 

Further, by retaining curvature information (the second derivative) 

from the first iteration, minimization in subsequent iterations can 

be achieved wi th only one new treatment. This further refinement 

will not be elaborated since experience suggests it is not very 

successful for experiments with models of agricultural systems. 

Appendix II presents a computer subroutine for univariate 

minimization using a quadratic interpolation procedure similar to 

that of Powell. This subroutine is linked to a main program, 

containing a simple test function. The FORTRAN listing of the 

main program and subroutine are provided, along with the computer 

output for the test function. 
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CHAPTER 4 

STEEPEST ASCENT 

The application of numerical optimization procedures to 

the design of simulation experiments aimed at locating levels 

of two or more factors which are simultaneously optimal is introduced 

in this c ha p te r • It is illuminating to compare this application of 

search methods over a response surface with the physical analogy 

of mountain climbing. In many ways computer Ihill-climbing l is 

just as difficult and demanding as climbing real mountains. While 

not dangerous in a physical sense, it is fraught with frustrations 

and hazards with respect to failure to make progress and false 

summits. particularly when the response surface is multimodal 
6 

(c. £. a mountain range). Even when the surface is unimodal, 

convergence to the optimum may be difficult to achieve if the slopes 

are not regular and differ markedly with respect to factor axes, and 

if strong response interaction exists between the various factors. 

One of the oldes t hill- climbing procedures, and probably 

the easiest to understand, is the method of steepest ascent. Steepest 

ascent (or steepest descent) has probably been used more frequently 

than any other optimum-seeking design {and has even found application 

in agricultural s ys terns research [Zusman and Amiad, 1965; Toft, 1970], 

but is not very efficient and fails to converge on optimal values in 

6 
Often the term "hypersurface" is used to represent a surface in more 
then two dimensions. An excellent introduction to the geometry of 
response surfaces and to simple hill-climbing methods, interspersed 
with appropriate excerpts from "F xcelsior II by Nietzsche, is to be 
found in the books by Wilde [1964, 1967]. 
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many situations. However, a discussion of steepest ascent is 

useful for illustrating many of the concepts involved in computer 

hill-climbing, and the basic procedure may be modified to make it 

reasonably effective. In this chapter the basic steepest ascent 

method will be explained and then refinements to the procedure will 

be outlined. Following Wilde, the search will be discussed lD 

three stages, viz. opening gambit; mid-game tac tic s; and 

end-game tactics. The third of these stages is included in the 

refined version only. The discussion is limited initially to the two 

variable cases for simplicity of exposition and to allow diagrammatic 

representation. However, the algebra of the multivariate general-

ization is presented at the end of each section. 

4.1 Basic Steepest Ascent 

As with univariate search the opening gambit involves 

nomina ting an ini tial combination of fac tor levels (or management 

pollcy) which is feasible though perhaps not very desirable, then 

improving on this policy in an iterative fashion. His, however, 

quite important to use prior knowledge to choose a good initial treatment. 

If the real system which has been modelled is in existence then the 

current management policy usually provides a suitable first treatment. 

If little is known about the nature of the response surface or the system 

is not yet in existence, then an exploratory experiment using a fixed 

design such as an incomplete factorial may be carried out to determine 

a suitable search base. 

Let us designate the initial factor levels or decision vector as 

= 

The systems model is used to evaluate this treatment and predicts a 

response of Z . 
o 

The decision space, unknown response surface and 

ini tial treatment are illustrated in Figure 4.1. Response is depicted 

by both a surface diagram in three dimensions and a contour map in 

two dimensions. The latter type of diagram, where the axes represent 
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Diagrammatic Representation of The Experimental Region and Response 
Surface for Two Variable Factors 
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factor levels and where factor combinations resulting in equal 

responses are linked by continuous curves, will be used in subsequent 

illus tra tions. 

To take up the farm planning example, suppose the ini hal 

guess (or current plan) is to grow 60 ha of wheat and ZO ha of lucerne. 

Evaluation of this policy (treatment) with the systems model leads to 

a predicted net income of $ZO, 000, i. e. 

X
o = (60 , ZO) and z = ZOOOO. 

o 

Mid-game tactics consisting of linear searches over the response 

surface are now ini tiated. Firs t, the equation to the plane touching 
o . 

the response surface (called the tangent plane) at X must be estImated. 

The direction of greatest steepness on this planar approximation to the 

(unknown) response surface indicates the most direct path to the optimal 

polic y. By placing a sequence of treatments in this direction it should 

be possible to make rapid improvement in the response criterion, c. £. 

a mow1.tain climber taking the shortest but most sheer route to the 

summit. When continued stepping in this ascent direction fails to 

make further improvement in the criterion, a new steepest ascent 

direction is established and another sequence of treatments evaluated. 

These iterations are continued until no further progress is possible. 

The tangent plane is defined by the equation 

where .L1 Z is the change in res ponse resulting from small changes 

L1xl and L1x
Z 

in factors xl and X z respectively. The parameters 

m
l 

and m
Z 

are slopes of the plane wi th res pec t to each fac tor axis 

and are found by evaluating treatments in which xl and X z are forward 

differenced in turn, i. e. 



and then calculating 

= 

z - Z 
1 0 

and 

Z - Z 
l 0 

=----

where Zl and Zl are the respective response values. 

The direction of steepest ascent is defined in terms of the 

slope coefficients m
l 

and m
l

. Specifically, it is that direction in 

the xl - xl plane such that changes are made to each factor in 
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proportion to the slope with respect to that factor. If m
l 

is greater 

than m
l 

then each new treatment will involve a large increase in xl 

relative to that for xl. On the other hand if m
l 

is the larger then the 

greatest adjustment will be made to xl. It is to be noted that both 

factors are adjusted simultaneously when placing treatments during 

the linear search. 

Although the ascent direc tion is readily defined (as above), 

the selection of actual step sizes presents a problem. We could, 

for example, make changes in xl and xl of SXl and oX
l 

where these 

simultaneous increments are defined by 

= L and = L 

and L is a parameter which has been introduced to govern the step 

length or distance between successive treatments. This would be 

satisfactory if m
l 

and m
l 

both had the same sign, but if one were 

posi ti ve and the other negative then step length would be unpredic table, 

and in the extreme case where m
l 

+ m
l 

= 0 an infinitely large step would 

be taken. The problem is overcome by squaring the slope coefficients 

then taking the square root of the sum of their squares, i. e. 
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= and = 
m

2 ------=----- L . ,..--_____ L 

Im~ 

Suppose that in the farm planning example xl and x
2 

are 

each one hectare, Zl = $21,500 and Z2 = $20,500 and L = 20 haD Then 

21500 - 20000 20500 - 20000 
m

1 = = 1. 5, m
2 = = 0.5, 

1 1 

Jm~ 2 
1. 58, + m

2 = 

SXl = L...L 20 = 19.0 and gX
2 = ~20 = 6.3. 

1. 58 1.58 

Succes si ve treatments would be placed at 

Xl = (60+19, 20 + 6.3) 

X
2 = (60 + 38, 20 + 12.7) 

X3 = (60+57, 20 + 19) 

and so on. 

Steps would be continued in this search direction while ever Z continued 

to improve. The first step for which Z declines is discarded and the 

previous treatment, which is the optimum for this iteration, is used as a 

new search base. The equation to the tangent plane is estimated at this 

improved position on the response surface and successive treatments in a 

new direction of steepest ascent are evaluated. Search iterations are 

carried out until no improvement in the performance criterion is achieved 

on the first step in a new ascent direction. The step size parameter is 

then reduced (e. g. L may be reduced from 20 to 4) and more closely 

spaced treatments in the currently defined search direction are evaluated. 

Note that no advantage would be gained by reducing Llx
1 

. and L1X
2 

and 

re-establishing the equation to the tangent plane, since these forward 

differences are set initially at the smallest meaningful change in the 

level of each fac tor. The reduced step size may allow further iterations 

to be carried out, and further reductions may be made to step size when 



FIGURE 4.2 

Sequence of Treatments Under Steepest Ascent Design 
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the search again fails to progress. Eventually, no improvement 

in the performance criterion is possible with the smallest meaningful 

step size, and mid-game tactics (and basic steepest ascent) have 

been completed. A typical pattern of the experimental layout is 

provided in Figure .4.2. 

The above procedure may be extended readily to the general 

or n-factor case. Here n slope coefficients must be estimated as 

m. 
1 

= 
z Z 

i 0 

..d. x. 
1 

and the adjustment to each variable factor when stepping in the direction 

of steepest ascent is given by 

m. 

ax. 1 
L = . 

1 

J 
2 n 

1: m. 
j =1 J 

A FORTRAN program for the general case and computer 

printout of the ascent steps for a test function in three variables are 

presented as Appendix III. 

4.2 A Refined Version of Steepes t Ascent 

The basic steepest ascent procedure has a number of weaknesses 

from a theoretical and practical viewpoint. When the contours of the 

response surface are approximately circular, indicating little or no 

interaction between variables, very rapid progress will be made towards 

the optimum. But if these contours are in any way irregular, then 

the direction of steepest ascent quickly changes as treatments are placed 

further away from the search base, and the search may progress slowly 

along a zig-zag path. These two cases are illustrated in Figure 4.3. 



FIGURE 4.3 

Steepest Ascent Paths for High and Low Interaction Between Factors 
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Another deficienc y of the basic procedure is the fixed step 

size which means tha't the optimum in any 'ascent direction is always under-

reached or overshot. (This maybe likened to a golfer approaching 

a hole but repeatedly hitting his chip shots a fixed distance and passing 

backwards and forwards over the top of the green. ) Reduc tion in 

step size (changing to a more angled or higher iron) in concluding 

iterations partially overcomes this problem, but a superior approach 

is to optimize on each ascent. That is, during each ascent in a 

fixed direction, the highes t point on the ridge (as opposed to the higher 

of the steps before and after the crest) is located and used as the new 

search base. This may be achi<cved using a univariate search method 

such as that of Powell. Note that while two policy variables 

(Xl and x
2

) are being adjusted at each step, the optimization is carried 

out with respect to step length and this is a single variable. 

At this stage it is necessary to introduce the concept of a 

search direction vector. 7 This is a vector containing elements 

which indicate the relative rates at which each variable is to be 

adjusted in the ascent direction. For example, the adjustments 

in the first iteration above were 

u = [19 6.3] 

and steps were placed at 

and so on, 

or in general at X
O + bU. Here U is the search direc tion vec tor, and 

the fixed step size is a consequence of b being incremented by 

one-unit values. The search is linear because fixing U throughout 

the iteration fixes the direction of steps in the Xl - x
2 

plane. 

7 
The remainder of this chapter draws increasingly on matrix- vec tor 
notation. An elementary introduction to the mathematical concepts 
used here is to be found in Yamane [1968 ]. 



The basic steepest ascent procedure may be refined by 

carrying out linear optimizations during each iteration, i. e. by 

finding the value of Q for which Z is a maximum. Commencing 
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each iteration on the crest of the ridge allows more rapid convergence 

towards the optimum, eliminating zig- zagging provided the ridge is 

approximately linear. 

Another refinement to steepest ascent is to carry out a 

non-linear local exploration of the response surface in the vicinity 

of the best treatment located by the linear searches; this is what 

Wilde refers to as end-game tactics, A quadratic function can be 

fitted around the final search base at the cost of a small number of 

additional treatments. Greater precision in estimates of the optimal 

factor levels can then be obtained using differential calculus. More 

importantly, information about the shape of the response surface in 

the vicinity of the optimum is obtained. This may reveal that the 

stationary point is a saddle point rather than a maximum as required. 

Also, the variation in the response criterion when small changes are 

made to levels of each of the policy variables is readily ascertained, 

shedding light on the sensitivity of performance to policy changes. 

The procedure for non-linear local explora tion will now be outlined. 

Following Wilde (and using a slightly different notation to 

that of Chapter Z), the res ponse surface is represented by the Taylor 

series for a function of two variables with terms of higher than second 

order neglec ted, i. e • 

..jZ 

Here the performance and polic y variables are expres sed in difference 

form, m
l 

and m
Z 

are the slopes with respect >to each co-ordinate axis, 

mIl and m
ZZ 

are the curvature terms and m
lZ 

measures interaction 

between Xl and xz' To estimate these coefficients, the triangular 

experimental design used to determine the final tangent plane is 

augmented by three further treatments; two of these consist of 

backward differencing the variables in turn (to give a crucifix pattern) 
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while in the third they are forward differenced simultaneously. 

The resulting search pattern, with distances between treatments 

exaggerated, is illus trated in Figure 4.4. 

+ -
Let Z. and Z. represent the response criterion when 

1 1 

variable i is forward and backward differenced res pec ti vely, and 
++ 

Z be response when both are forward differenced simultaneously, 

To find m
l

, note that when...lX2 = 0, 

(1) and 

= m'" x + 1 m (A x )2 - l.LO. I "2 11 "'" 1 (2 ) 

Subtrac ting (2) from (1): 

hence = 

and similarly 
+ -

Z2 - Z2 
m

2 = 2 Llx
2 

To find mIl' sum (1) and (2): 

Z+ - 2 
1 + ZI - 2 Z = mIl (.6 xl ) 

0 

+ -
ZI + ZI - 2 Z 

hence 
0 

mIl = (Llx
I 

)2 

and similarly 
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Having obtained m
l

, mZ" mIl and mz,z,' the remaining coefficient 

mIZ, may be calculat~d from the Taylor series as 

i. e. , 

= 

= .6.2 - m Llx -
I I 

The adjustments in xl and Xz, necessary to maximize ..12 

(and hence 2) are now obtained as follows: 

aLl2 
=m + ..d + L:l. 0 and 

O~xI I mIl xI' mlZ, Xz, = 

aLl 2 
+ mz,z,.dxz, + mlZ,Axl 

0 =m = a LlXz, z, 

and 

= -m Z, 

These two equations may be solved for xl and Xz, in the manner described 

in Chapter z,. Alternatively (and more conveniently when one wishes to 

generalize the procedure for n variables and program it on a computer) 

the solution may be expressed in matrix vector notation. 

policy is represented by the column vector 

Here each 
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rather than the co-ordinate pair (xl' x2 )· The forward differences 

form another column vec tor 

[ ~xl 
U = 

,Ax
2 

as do the slopes of the response surface 

m
l 

g = ( called the Jacobian gradient vec tor). 

The curvature and interaction terms may be written as a matrix: 

H = 

this is called the matrix of the quadratic form or the Hes sian matrix. 

In matrix-vector notation the Taylor series becomes 

.d Z = glU + iUIHU 

where g' and U' are the row vector transposes of g and U respectively. 

The simultaneous equations resulting from setting the partial derivatives 

to zero become , 

H U = -g 

and the sqlution is 

U* = 
-1 

-H g 

-1 
and H is the inverse of the Hessian matrix. 
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The stationary point on the response surface x':' is.then fbundas 

This will be a maximum provided 

< o and > 0 

where IHI is the Hessian determinant and is given by 

Once the coefficients of the Taylor series have been estimated it is 

a simple matter to predict the sensitivity of performance to policy 

changes. For example, if x
2 

were fixed (LlX
2 

= 0) and xl increased 

by ..d. xl units then 

..6Z = 

and the elasticity of response with respect to the factor Xl could be 

obtained as 

L1 Z/L1x
l 

Z':' / Xl ':' 

where Z':' and Xl ~, are optimal levels. 

The refinements of linear optimizations and non-linear local 

exploration are readily extended to the n-variable case. Here the 

Taylor series approximating the response hypersurface becomes 

n n n n 

L\Z = I 
i=l 

A + 1.. m."""x. z 
1 1 L 

i=l 
+ [ [ m .. .6x . .dx. 

. 1J ·1 J 
i=l i;tj j =1 

The coefficients of this relationship are obtained in the same manner as 

above (but replacing 1 and 2 by i and j for all combinations of i and j). 



The stationary point on the response hypersurface is again at 

X'~ = 

where U>!' = 

and g = 

X + U i;, 

-1 
-H g 

m 
n 

Sx 
n 

.J 

H= 

mn1 mn2 m 
nn 
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The test ensuring that X':' is a maximum (rather than a minimum or 

saddle point) is now more difficult and relies on advanced mathematics. 8 

A FORTRAN listing for the refined steepest ascent method 

together with computer output of the design points for a test function in 

three variables is provided as Appendix IV. 

8 For the more mathematically inclined, X':' is a maximum if H is 
negative definite which is the case if the principal minors of H 
alternate in sign, commencing with a negative. In the computer 
program of Appendix IV the principal minors are obtained as the 
successive products of pivotal elements during Gaussian reduction 
of the Hessian matrix. 
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4.3 Summary 

Multivariate search has been introduced by reference to 

the method of steepest ascent. While the basic steepest ascent 

procedure is relatively inefficient, modifications have been 

outlined which make the method adequate for a range of design 

problems. An understanding of these modifications requires 

ad vanced knowledge of matrix algebra. The discussion of s teepes t 

ascent, along wi th its mountain climbing analogy, has provided a 

background for the examination of more modern and more efficient 

optimum-seeking designs. 



CHAPTER 5 

DIRECT SEARCH METHODS 

Direct search differs from gradient search methods such 

as steepest ascent in that the search directions are not based on 

estimated partial derivatives or slopes of the response surface. 

While a large number of direc t search methods have been devised, 

only four will be considered in this chapter. Firs t, brief descriptions 

of the simplex method and the alternating variable method will be 

provided. These are both conceptually simple, though not particularly 

effective, and the latter provides useful background to the method of 

conjugate directions. The major part of the chapter will be devoted 

to conjugate directions and random search, two procedures which 

appear to have great potential for designing experiments with models 

of agricultural systems. 

5.1 The Simplex Method 

This optimization procedure, not to be confused with the 

simplex method of linear programming, derives its name from the 

fact that a moving simplex is used during the search. A simplex in an 

n-dimensional space is a figure having plane sides and n + 1 vertices, 

e. g. a triangle in the xl - X z plane. The simplex method has been 

used for optimization of economic s ys terns by Meier [1967,1969 ]. 

As an example, consider the initial triangle with equally 

spaced treatments, E:., band.£. at the three vertices in Figure 5.1. 

This triangle can be moved uphill by reflection or flipping over in a 

direc tion opposi te the lowes t vertex. Thus if "valuation of these 

treatments with the systems model reveals that Z is lower than both 
a 

Zb and Z c then treatment a will be discarded and a new simplex 

formed by placing treatment d equidistant from..Q and.£. on the opposite 

55. 
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FIGURE 5.1 

OL-____________________________________________________ ~ 

Sequence of Treatments for Simplex Design 
Method in Two Fac tors 

1 
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side of the b - .£. face. This new treatment is now evaluated. 

Supposing it is found that Zb is less than both Z c c.tnd Z d' the 

next treatment will be placed at~. The simplex is moved up 

the response surface in this manner until treatment k in the vicinity 

of the s ummi t has been evaluated. At this stage further search 

invol ves revolution of the triangle about the region of optimali ty, and 

the search is concluded after one such revolution. 

Modifications to the basic procedure such as changing the 

size or shape of the simplex during the' experiment have been found 

to increase efficiency and precision. A study by Box [1966] has 

indicated that the simplex method is not very satisfactory when there 

are more than three experimental factors, although more recently 

Galbrai th [1978 ] has sugges ted use of this design procedure for up 

to eight factors. 

5. 2 Alternating Variable Search 

The alternating variable method consis ts of car rying out 

linear optimizations wi th respect to each variable in turn, the 

sequence of linear optimization being repeated on each iteration of 

the search. The sequence of treatments for an experiment with two 

controllable factors takes the form of a contrac ting staircase as in 

Figure 5.2., 

To define alternating variable search more precisely, let 

x = the polic y vector; and 

x
2 

1 

U = = [] the direction 

0 

vectors for searches parallel to the co-ordinate axes. 

iteration involves treatments placed so as to 

Each search 
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FIGURE 5.2 

Ascent Path in Alternating Variable Search 
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(i) find PI to maximize f(X
O 

+ (31 U 1 ) and move to Xl = X + ~ 1 U l ; and 
0 

(ii) find fl2 to maximize f(X
l 

+ ;B2 U
2

) and· move to X
2 = Xl + (12 U2 

as 

the new search base XO. 

The linear optimizations may be carried out using any univariate search 

technique, the Powell method outlined in Chapter 3 being particularly 

attractive because of the low number of treatments required. 

Although intuitively appealing in its simplicity, alternating 

variable search is not to be recommended because of slow progress 

or outright failure when a moderate or high degree of interac tion 

exis ts between variables. Here the search is liable to become 'hung-up' 

on a sharp ridge which may be well below the response summit, as 

illustrated in Figure 5.3. 

5,3 The Method of Conjugate Directions 

This is a numerical procedure for finding the minimum of a 

func tion of n variables. In its current form, attributed to Powell [1964 ], 

it is highly efficient (requires few treatments) and is quite robust, working 

well on a variety of problems where other methods would fail. Use of 

conjugate directions search in connection with models of economic 

systems has been advoca ted by Emshoff and Sis son [1970] and the method 

has been applied to design of simulation experiments with a farm planning 

model by Harrison and Longworth [1977] . The Powell procedure is not 

intended for problems wi th fewer than three variables, and the following 

discussion will relate to the general or n -variable case, precluding 

diagrammatic representation. 

The definition of conjugate search dir.ection vectors rests on 

matrix- vec tor algebra similar to that introduced in Chapter 4. A 

quadratic form or quadratic function in n variables may be written as 
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o 

FIGURE 5.3 

Failure of Alternating Variable Method Due to High 

Interaction Between Fac tors 
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where 

= mO + m l Xl + m 2x 2 

+ ± (mIl Xl 
2 . 2 

+ m
22

x
2 

+ 2m12 Xl x 2 + 2m13 x l x3 

= m + glX+ ±X'HX o . 

X = 

Xl 

x
2 

X 
n 

+ 

+ 

+ 

g = 

m
l 

m
2 

m 
n 

+ m X 
n m 

+m X 
nn n 

2 

+ 2m 1m X IX) n- n n- n 

the Jacobian 

gradient vector; 

XI and gl are the transposes of X and g respectively; and 

m
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m
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m
21 

m
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H = , the Hes sian 

matrix. 

(ini tially 

Now if U
l 

1 

o 
o 

o 

m 
nl 

to U 
n 

mn2 

are the 

U
2 = 

m 
nn 

search direction vectors 

0 0 
1 0 
0 

, ••• U 
n 

= ) , 

0 
0 1 

then any pair 

the rna trix H if 

U. and U. are said to be conjugate with respect to 
1 J 

U·'HU = 0 
1 j fo r i f. j. 

The minimum of a quadratic form can be obtained by optimizing just 

once in each of the mutually conjugate direc tions. This property, 

known as quadratic convergence, means that the method of conjugate 
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direc tions will locate the exac t minimum of a quadratic form, and 

with a relatively small number of treatments. Since many response 

surfaces can be approximated closely by a quadratic form in the 

region of the optimum, the method is well suited to a variety of 

problems. 

The search begins by choosing an ini tial vee tor X then 

locating improved vectors in an iterative fashion where each iteration 

consists of a series of linear optimizations. The directions of these 

linear searches are U
l

, U
2

, ..• Un (as indicated above) so that the 

first iteration of the search is identical to that of the alternating 

variable method. At the end of each iteration, and subject to a test 

criterion being fulfilled, one of the original search directions is 

deleted and a new direction inserted in its place. This new search 

direction involves sirpultaneous adjustments in the levels of all 

variables. If the response hypersurface is quadratic in form, the 

new search directions will be pairwise mutually conjugate. 

Earlier versions of the method of conjugate directions 

introduced new direction vectors at every iteration. Powell noted 

that the search directions rna y become linearly dependent, leading 

to failure of the search, and only allowed direction vectors to be 

replaced when not likely to reduce search efficiency. 

One iteration of the Powell method consists of the following 

steps: 

1. Fori=l, 2, .•• nfindll. to minimize f(X. 1 + ~.U.) 
1 1- r 1 1 

2. 

3. 

4. 

and define Xi = X
i

_
1 

+ P'iUi. 

Find the integer m, 1 ~ m'::::; n, such that f(X )-f(X) 
m-l m 

is a maximum and define .Ll = f (X ). 
m 

Define fl = f(X
O

) and f2 = f(X
n

), and obtain f3 = 

If f3 > fl and/or 

(f1 - 2£2 + f3) (f
1 

f(2X 
n 

- X ) o . 
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retain the search directions of this iteration and use X 
n 

(or 2X - X if this results in a smaller function value)9 
n 0 

as the next XO. Otherwise, 

Set U = X - X and find p such that f(X + flU) is a 
nOn 

minimum and use X +..AU as the new X • 
n 0 

Also, replace 

U by U in the matrix of search directions, i. e. set 
m 

(U1 ' ••• Urn-I' Urn+!' Un' U)to (U1 ' lIZ' ..• Un) 

for the next iteration. 
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Estimation of the;S coefficient in each linear optimization 

uses the Powell method of univariate search as outlined in Chapter 3. 10 

Step sizes for placement of treatments to fit the quadratic and for 

restricting the size of,,$ to avert overstepping are based on the largest 

element (positive or negative) in the current direction vector. 

9 
This modification to the Powell procedure is suggested by 
Box et al. [1969] • 

10 
. Powell [1964] suggests calculation of the second partial derivative 

for each search direction the first time that direction is used. 
These second derivatives are employed in subsequent linear optimizations 
so that only one additional treatment is required to predict the 
mlmmum. In an application to farm planning [Harrison, 1976], changes 
in slopes of the response hypersurface due to non-quadratic curvature 
and stochastic fluctuations led to large differences in curvature in the 
same search directions on different iterations and repeated use of 
initial estimates of second derivatives was found to impair search 
efficiency. 
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Various rules may be applied for terminating the search. Powell 

uses a very safe criterion, based on the level of precision of each 

variable, but this is rather expensive in terms of number of 

treatment evaluations. 

A FORTRAN program for minimization by the method 

of conjugate directions is provided in Appendix V, together with 

computer output for a tes t func tion in three variables and brief 

notes on the program. The stopping rule built into this procedure 

is that the response does not improve (i. e. decrease) during the 

last iteration, or the limit imposed on number of treatments has 

been reached, whichever occurs first. It is to be recalled that 

minimization procedures may be adapted for maximization merely 

by negating the response criterion, i. e., giving it a minus sign. 

5.4 Random Search 

The method of random search consists basically of specifying 

a range of values which each variable may take, and sampling a value 

of each variable at random from the respective ranges to form each 

treatment. A pre- specified number of treatments are evaluated and 

the results are sorted to pick out the treatment with the optimal 

(highest) response value. The procedure is similar to that used for 

selecting farm plans in Monte Carlo programming. 

A review of the many books on numerical optimization reveals 

li ttle information on random search. Fletcher [1965] and Box et al. [ 1969 ] 

summarily dismiss the method as inefficient, and mathematicians in 

general appear to have a dis tinc t leaning towards non- probabilis tic 

methods. 

The reason for this lack of interes t may be illus trated by 

an example. Suppose there are two policy variables - the areas of 

wheat and lucerne - and optimal levels can be assumed to be in the 

ranges of zero to 150 ha and zero to 50 ha respectively. Let us split 

up each range into 10 sub-intervals of equal width, dividing the 

experimental region into a grid as in Figure 5.4. Each of the rectangles 
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FIGURE 5.4 

Experimental Region for Two Factors Divided into 
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in this figure may be designated as A" where the subscripts i and j 
. 1J. 

refer to area sub-intervals for wheat and lucerne respectively. 

For example, A37 represents 30 to 45 ha of wheat and 30 to 35 ha 

of lucerne. The optimal levels of xl and x
2 

will lie in one of the 

100 rectangles, and it will be assumed that optimization consists 

of selecting the correct rectangle. 

Let us now compare the efficiency of (i) tabulation with the 

full 1 Oxl a factorial design placing one treatment in each rectangle 

and (ii) random search also with 100 treatments. Since the factorial 

design fully explores the experimental region the optimal policy will 

be located with certainty. On the other hand. in random search 

each individual rectangle (s uch as A
37

) has a probabili ty of • 01 or 

being chosen, and a probabilIty of .99 of not being chosen, in each 

selection of a treatment. In 100 treatments the probability that an 

individual rec tangle will not be selected is (.99)100. Thus the 

probability that the optimal factor combination will be selec ted is 
100 

1 - (.99) or .63. If the number of treatments were reduced to 

50 then there would only be about four chances in 10 of the optimal 

policy being located. 

Another way of measuring search efficiency is to calculate 

the number of treatments needed to place at leas t one treatment in a 

sub-region of given size within the experimental region, at a specified 

probability level. These numbers have been tabulated by Boehlje [1973 ] 

and are surprisingly large for even a subs tantial frac tion of the overall 

xl - ~ region. For example, 44 treatments are required to place 

at least one treatment in a sub-region of one tenth of the experimental 

region (equivalent to about one third of the range for each factor) with 

a probabili ty of • 99. 

The above discus sion reveals that random search is mos t 

inefficient, even by comparison wi th full fac torial designs. However, 

by modifying the procedure to include learning and extension 

(explained presently) a surprising increase in efficiency can be achieved. 

Also, random search has a number of advantages over non-random 



optimum seeking designs for management oriented s ys tems studies: 

(i) it is conceptually simple, not relying on difficult 

mathematics and is an easy program for a computer; 

(ii) integer fq.ctor levels or policy variables such as purchase 

of items of farm equipment can be handled without 

(iii) 

difficulty; 

11 
policy variables may be made mutually exclusive, 

complementary or conditionally 'complementary; 

(iv) no matter how many policy variables are included, a 

solution is obtained (whereas other methods may make 

no progress) and this solution is usually at least 

reasonable; and 

(v) random search cope s wi th non- convex (including multi­

modal) response hypersurfaces more successfully than 

alternative search procedures. 

These considerations suggest that random search is 
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greatly underrated as an experimental design procedure. The most 

important single development for enhancing its usefulnes s is the 

inclusion of learning mechanisms. 

Random search with learning. The efficiency of random 
12 

search is increased substantially by heuristic learning, whereby the 

probabilities of selecting particular factor levels are adjusted during 

the experiment. Those levels which are found to produce high 

response early in the search have their probabilities adjusted upwards, 

concentrating the later part of the search on promising areas of the 

experimental region. 

11 
1£ two or more of the policy variables form a mutually exclusive 
subset then only one variable from this subset can take a non-zero value. 

12 
Defined as learning by experience. 
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Various forrns of probability adjustment may be used. 

It is necessary to define discrete values of each variable, and 

these may take the form of either integer values or midpoints 

of a number of classes or ranges. Initially equal probability 

weights are attached t.o each discrete value, i. e. sampling is 

carried out from uniform probability distributions. The adjustment 

of probabili ties is facili ta ted by selec ting weigh t coefficients 

for each discrete value which can never become negative and 

which are asymptotic to zero; for example, 'an expression of the 
v 

form a where ~ is a positive constant and where 'y'may be adjusted 

upwards or downwards. 
13 

Random search wi th learning has been used in conjunc tion 

wi th sys tems models to determine optimal long- run plans for 

hog/corn farms in Indiana. The method originates from a 
dissertation by Lee [1971] and is described briefly in published 

reports [Eisgruber and Lee, 1971; Boehlje, 1973; Furtan and Lee 1975]. 

The procedure outlined here is based on Boehlje [1973] but with 

simplifying changes to the notation. 

Suppose there are two decision variables x., i = 1,2, 
1 

and each can take a number of mutually exclusive discrete values 

x .. , j = 1 to n.. Ini tially, for each polic y variable, a choice 
1J 1 

distribution w .. is defined as 
1J 

W .. 
1J 

where e .. is the learning parameter, and is initialized at a specified 
1J 

integer number (e. g. 3) for each value of the variable, i. e. for i = 1 

to 2 and j = 1 to n .. 
1 

This defines a uniform distribution for each 

variable, the probabilities being 

13 v v 
Here a > 0 for all v and a ~ 0 as v -;. - C)O. 
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A uniform pseudorandom number m in the range 0 to 1 is then 

generated and is used to locate the s alternative value of xl where 

a random value of Xz.being obtained in the same manner. 

The search proceeds in three stages. The firs t or 

ini tialization phase involves repeated sampling from these uniform 

distributions, the level of response being evaluated for each X set. 

The highes t criterion value in the ini tialization phase is taken as a 

base performance or norm Zo against which to compare alternative 

policies in the learning phase. Throughout the learning phase the 
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weights and hence probabili ties of different fac tor levels are adjusted 

according to the formula 

where L'>,e" 
1J, 

1 

= 

= 

e, , 
1J, 

Z 1 

+ .6e" 
1J, 

1 

X ) - Zo 
ZjZ 

k 
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and where f(x
l

. , x
2

. ) is performance under a particular treatment 
Jl J2 . 

and k is a parameter· governing rate of learning. . For example, 

suppose 20 = $20,000, k is set at 5000, and the first random selection 

of fac tor levels during the learning phase yields jl =3 and j2 =7. 

Fvaluation of this treatment (x
13

' x
27 

or grid square A
37

) reveals a 

farm net income of $22,000. By the above formula 

22000 - 20000 
.~e13 and .de27 = 5000 = .4 

and hence 

d _23+.4 
an w 2 7 -, 

New probability distributions are obtained for each factor 

in which one weight is adjusted as above and all other weights remain 

unaltered. The effect of these calculations would be to increase 

slightly the probability associated with the third wheat area and 

seventh lucerne area with corresponding reductions to remaining 

probabilities. The weights and probabilities for each value of 

each fac tor are recomputed before the next treatment is selec ted. 

The learning phase is continued for a fixed number of 

treatments, producing distributions for each variable which may 

be quite non-uniform and skewed. The rate of learning or value of 

k is a critical consideration, and must be chosen to suit the particular 

problem. If the adjustment of probabilities is too slow, then the 

search will be inefficient and unduly costly. On the other hand, rapid 

adjustment may lock the search into a local optimum rather than 

seeking out a global optimum; i. e. too fast learning means jumping 

to conclusions. 

In the final sampling stage the probability distributions are 

locked in and a set number of treatments are evaluated. The treatment 

resulting in the highest criterion value is selected as the optimal policy. 

The number of treatments in each of the three stages also 

has an important bearing on efficiency of the search. These numbers, 



and the learning rate parameter, can only be decided after carrying 

out trial searches with the systems modeL 
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A FORTRAN program for random search with learning 

together with output from a test problem are provided as Appendix VI. 

Extension or hill-climbing. This is a further modification 

to random search which concentrates treatments in promising areas 

of the experimental region. The extension procedure was developed 

originally for use in Monte Carlo programming, e. g. see 

Carlsson et al. [1969]. Basically, i tinvolves sys tematically 

forming new treatments from those selected at random by increasing 

the level of each fac tor or polic y variable in the direc tion of the 

cons traint boundarie s. The variables are adjusted by fixed increments 

at each step, and the sequence of new treatments is terminated when 

either the supply of a resource is exhausted or the response criterion 

decreases. This modification is useful for resource allocation 

problems where a solution in the interior of the experimental region 

or decision space is clearly inferior to a solution on the boundary 

of the cons traint set. 

The concept of extension or hill-climbing is illustrated 

wi th respec t to a two factor experiment in Figure 5.5. Treatment £l:. 

represents a randomly selected pair of values for xl and x
2

• Another 

random number is obtained to indicate the ratios by which the variables 

will be adjusted; for example, if the number is .33 then xl and x
2 

will be incremented in the ratio I :2, successive treatments being 

placed at b, ~, Q and~. Treatment.i is then selected at random, 

and another random adjus tment fae tor is obtained leading to treatments 

.s. to j. The extension procedure has not been included in the computer 

prog ram of Appendix VI. 



72. 

o 

FIGURE 5.5 

Hill- Climbing or Extension .with Random Search 
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5.5 Summary 

Some of the more useful design procedures for optimization 

experiments with agricultural systems models have been introduced 

in this chapter. Included are the highly efficient and robust method 

of conjugate directions and the method of random- search-with­

learning which has important advantages for some farm management 

applica tions. The problem of constraining treatments according to 

resource supplies has been briefly alluded to, and this and other 

aspects of the practical application of optimum-seeking designs 

will be discussed in the next and final chapter. 





CHAPTER 6 

RELATED ISSUES AND CONCLUDING COMMENTS 

The problems of applying optimum- seeking designs to 

situations of multi-modal response surfaces, stochastic variation 

in response and resource constraints on factor levels are examined 

in this chapter. Also, the use of numerical optimization routines 

for tuning or parameter estimation during model cons truction is 

discussed briefly. The chapter concludes with comments on the 

choice of design procedure and suggestions for further reading. 

6.1 Multi-modal Response Surfaces 

The discus sion of search procedures has been confined 

mainly to response surfaces (or hypersurfaces) with unique optima. 

However, in prac tice several optima often will exis t. Figure 6.1 

depicts a response surface with two optimal regions, A and B. 

B has the higher response value and is therefore the global optimum, 

while A is a local optimum. A hill-climbing search, if effective, 

would converge to one of these regions, the peak located depending 

on the slope of the surface in the vicinity of the initial treatment. 

If the initial guess was point.a then local optimum A would be located; 

whereas, a search originating from b would terminate on the true 

optimum .B... As previously noted, random search is to some extent 

capable of discerning between local and global optima provided the 

rate of learning is not too great. 

An experimental region in two or more factors may contain 
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a large number of local optima, but of course only one global optimum. 

In general it cannot be guaranteed that the initial guess will be 

sufficiently good that the search will converge towards this global optimum; 
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hence it is advisable to carry out a number of optimum- seeking 

experiments using different ini tial treatments, at leas t during 

familiariza tion wi th a s ys terns model. 1£ these searches terminate 

on dissimilar policies then either the response surface is not 

'well- behaved' or the optimization procedure has not functioned 

satisfactorily, and either case warrants further investigation. 

6.2 Stochas tic Variation and Extent of Replication 

1£ the systems model is stochastic then evaluation of only 

one replicate for each treatment would lead to an erratic search, 
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the contours of the response surface being blurred by random variation 

in performance. This problem may be overcome by evaluating a 

number of replicates for each treatment. 1£ a cri terion based on 

the outcome over all replicates - such as mean net income - is 
14 

adopted, then response values will be less affected by random influences. 

The appropriate sample size in terms of number of replicates 

is rather difficult to determine. Some guidance may be obtained 

from classical statistical theory which holds that the sample size 

required to estimate a population mean with an error of not more than 

E at the 100 (1 - DC ) per cent confidence level is given by the smalles t n 

satisfying 

E 

where z C£/2 is the standard normal variate (tabulated in most 

s tatis tic s textbooks). Here s is the estimated standard deviation 

of the performance criterion, which may be obtained by evaluating 

a small number of replicates (say 20) of a representative treatment. 

14 
Variance of mean response is smaller than that of individual replicates 
by the factor of square root of number of replicates i. e. 

Var (2) = Var (Z)/Jn. 
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In practice this approach is usually of limi ted value because the 

number of replicates is restricted by availability of computing 

funds. In any case the objective of the experiments is normally 

the ranking of alternative treatments or management policies rather 

than precise estimation of response, and this may reduce the extent 

of replication required. Also the classical approach does not take 

account of variance reduction through blocking of replicates for 

each treatment. As a general rule it is suggested that the number 

of replicates for optimum-seeking experiments need not be more 

than 30, and that as few as 5 or 10 will sometimes be adequate. 

Fven these numbers exceed the extent of replication normally 

regarded as acceptable in real agricultural experiments. 

6.3 Dealing with Constraints 

The values faken by polic y variables frequently will be 

res tric ted by non- negativi ty and resource cons traints. 

constraints take the form 

x. ~ ° J 
for j = 1 to n. 

Non-negativity 

For example, it is not possible to grow a negative area of irrigated 

wheat or lucerne. With the exception of random search (where ranges 

are placed on fac tor levels) the procedures out lined earlier may converge 

on policies for which some of the x. are negative, even though such 
J 

policies are absurd and can cause the s ys tems model to behave 

unpredictably. In models of systems at a high level of aggregation, 

such as the farm-firm, levels of policy variables may also be 

constrained by limited supplies of land, labour and capital, and 

through crop rotation and other husbandry considerations. Such 

constraints are less direct, and tend to act on the variable factors 

collectively rather than individually. For example, if the combined 

area of wheat and lucerne under irrigation is limited by water availability 

then an increase in the area of lucerne necessitates a reduction in the 

area of wheat. This introduces negative interaction between factors 

(the response contours being ellipsodial with principal axes running 

downwards and to the right) and may render 'hill- climbing' more difficult. 



Non- negativi ty and resource cons traints may be taken into 

account through use of ,constrained optimiza,tion techniques (such as 

linear programming) but these may place unacceptable rigidity on 

the structure of the model. Quite often optimum- seeking designs 

may be used in conjunction with the systems approach if relatively 

minor modifications' are made to the model. One such modification 

is the barrier penalty function or penalty charge on infeasible factor 

levels. For example, if the x. are to take only non-negative values 
J 

than the response criterion may be altered from Z to Z-P where 

h 

P = I. 
j=l 

2 
k. (min(O, x.)) 

J J 
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and the k. are positive 
J 

penalty func tion coefficients. H f re, if any x. 
J 

the magni tude of is negative then an artificial 
. 2 

cost of k.x. is incurred, 
J J 

which depends on the setting of k .• 
J 

Small values (of the order of 0.1 ) 

are desirable as this prevents creation of steep valleys at the edge of 

the response hypersurface and distortion of the search away from 

near-zero factor levels. 

A similar device may be used for constraining upper levels 

of fac tors of policy variables to take account of limi ted resource 

supplies, e.g. see Harrison [1976: 205]. A complication which arises 

with stochastic multi-period models is that constraint boundaries may 

vary over time, e. g. when cash receipts and hence finance for expenditure 

in later years depends on wheat prices in early years. In this case 

feasible (and optimal) policies may differ between replicates, and the 

magnitudes of penalty function coefficients will determine whether a 

consis tently feasible policy or an opportunis tic and more profit able 

(though sometimes infeasible) policy is selected., 

6.4 Parameter Identification or Model Tuning 

Numerical search methods have an important appli cation, 

quite apart from design of simulation experiments, for es timating 

parameters of functional relationships during construction of systems models. 
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While statistical inference techniques such as regression analysis 

are to be preferred fo'r establishing relatiO'nships because they 

provide measures of precision as well as estimates of parameter 

values, the complexity of the hypothesized relationship may preclude 

use of statistical analysis. Numerical search then provides a 

systematic alternative to trial and error for fine-tuning of the model. 

Suppose the researcher has historical records of output V 

and of a number of causal variables Y for some particular relationship 

or submodel, and hypothesizes a complex relationship between them. 

Output is then a function of the set of parameters in the relationship, 

represented by the vector A, i. e. V = f(A). A search over the region 

of possible parameter values is carried out wi th an optimum- seeking 

method to minimize the sum.of squares of prediction errors, 

[(V - f(A))2. Each treatment of the search is a different parameter 

set A, and the submodel is used to evaluate the response cri terion V. 

For example, when constructing the farm planning model we may have 

measurements of available soil moisture and of rainfall, irrigation, 

temperature and winds peed. A s ubmodel relating soil mois ture to 

rainfall and other environmental variables is hypothesized, and 

parameter values for this relationship which best explain observed 

soil mois ture are es timated by numerical optimization. Further 

discussion of parameter estimation by numerical search procedures 

is provided by Emshoff and Sisson [1970], while applications in 

agricultural modelling are discussed by Stol [1975] , Harrison [1976] , 

Highland et al. [1976] and Galbrai th [1978] • 

6.5 Choice of Search Method 

The choice of a suitable experimental design for determining 

optimal factor levels (or optimal parameter values) is not clear-cut, 

and will depend on the nature of the systems model, number and type 

of controllable factors and availability of computer packages for 

optimization. For experiments involving three or less factors it is 
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probable that a simultaneous design or tabulation method such as the 

full factorial or centr.al composite design ,:"ill be adequate. Where 

optimal policies' are sought with respect to a larger number of factors, 

cost considerations may dictate use of an optimum-seeking design. 

Comparisons between numerical optimization methods may be made 

in terms of the number of function evaluations or treatments needed 

to find the optimum of a given tes t problem. It mus t be recognized 

that results of such comparisons are not independent of the test problem 
\ 

selected or of settings on the search parameters. A comparative 

study by Fletcher [1965] indicated that tabulation methods, random 

search (without learning) and the alternating variable method are very 

inefficient, and that conjugate directions is one of the most efficient 

procedures. 

Selection of an appropriate design procedure can also be 

guided by an examination of the characteristics of the optimization 

problem, and on this basis the British Atomic Energy Research 

Establishment (A. E. R. E.) had devised a sequential elimination 

procedure or key to choice of method [Hooper, 1973]. 

A number of comments may be made concerning choice 

between the five methods for which computer programs are provided 
15 

in thi s Repor t. 

Method 1 : Univariate Optimization: 

This is a relatively precise and efficient method of univariate 

search. It has been found useful at Lincoln College for es tima ting 

depreciation rates to explain current market values on different clas ses 

of farm machinery [Davey, 1977] and for determining the internal rate 

of return in project evaluation [Gale and Harrison, 1977 ]. 

seven to ten treatments are required to locate the optimum. 

Typically, 

15 
Other sources of computer programs for numerical optimization 
include the A. E. R.E. subroutine library (available to outside users 
for a modest charge [Hooper, 1973 ] ) and the FORTRAN listings 
published by Keuster and Mize [1973 ] • 
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Method 2 : Basic Steepest Ascent: 

The steepest ascent procedure for multivariate optimization 

is very simple and may locate acceptable near-optimal combinations 

of factor levels for a small number of non-interacting factors.. The 

number of treatme1;1ts required is relatively low. 

Method 3 : Refined Steepest Ascent: 

Steepest ascent with linear optimization and non-linear 

local exploration is more precise than method 2, and generates 

additional information on the shape of the response surface in the 

region of the optimum. A problem which sometimes arises is that 

the stationary point located by non-linear exploration is not a maximum; 

this is mos t likely to occur 1£ mid - game tac tic s do not converge 

sufficiently close to the optimal policy. 16 A moderately large number 
17 

of treatments may be required wi th this method. 

Method 4 : Conjugate Directions: 

The method of conjugate directions is efficient, robust and 

(like 3) quadratically convergent. It will not terminate on a saddle 

point but occasionally fails to introduce new search directions, thus 

deteriorating to an alternating variable search. The number of 

treatments is approximately the same as for method 3. 

16 
The stationary point is a saddle point (or minimum) if the Hessian 
matrix is not negative definite, and this is indicated in the printout 
from the program. 

17 
. The number of treatments will be approximately (n+3}i for linear 

optimizations plus n(l +n; 1 ) for non-linear local exploration, where n 

is the number of variables and i is the number of iterations of 
mid-game tactics. 



Method 5 : Random Search wi th Learning: 

Work at Purdue University suggests that random search 

with learning is a much under- rated procedure. The reduction in 

number of treatments because optimization experiments do not have 

to be carried out from different starting points may make this the 

most suitable method for problems involving irregularly shaped 

response surfaces. Random search also has the capacity to handle 

a large number of experimental variables though the reliabili ty of 
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estimated optima in such cases is difficult to ascertain. The number 

of treatments in each of the three phases of the search is set by the 

user, and requires trade-off between precision and cost. 

Of the search procedures not considered in this Report, the 

most important are the Quasi-Newton Methods [Broyden, 1972J. 

These are non-linear gradient methods of minimization, utilizing 

continually updated posi tive defini te approximations to the Hes sian 

matrix, and can only be explained wi th rather advanced mathematics. 

Quasi-Newton methods are highly efficient when they work (more so 

than any of the methods outlined in this Report), but they are subject 

to failure in certain applications. 

The possibility also exists of using a combination of procedures 

within a single optimization experiment, switching from one to the other 

during the search. In this way, procedures with rapid convergence 

near the optimum, such as the Quasi-Newton methods, may be used 

for finishing off the search. Also, the combination of factor levels 

indicated as optimal from one simulation experiment may be used as 

the initial treatment for a further search, perhaps using a different 

method. 

Some authors suggest that numerical optimization can be 

successful with respect to as many as 100 variables. However, one 

should be cautious about the reliability and cost of optimum- seeking 

designs for simulation experiments with large complex agricultural 

systems models containing more than about 10 to 15 policy variables. 
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6.6 Suggested Reading 

A large number of books and articles dealing with numerical 

optimization are listed in the bibliography following this chapter. 

Highly recommended reading at an introductory level are the monograph 

of Box et al. [1969] and books by Adby and Dems ter [1974 ], Brent [1973] 

and Wilde [1964]. The more mathematically inclined may find Otega 

and Rheinboldt [1970] and Daniel [1971] and Polak [1971] of interest. 

Between these two extremes and giving a comprehensive coverage 

of the procedures are the works of Beveridge and Schecter [1970], 

Cooper and Steinberg [1970] , Jacoby, Kowalik and Pizzo [1972] , 

Walsh [1975] and many others. The above literature is orientated 

towards solving problems in mathematics and engineering. Although 

the procedures are readily iransferable to design of simulation 

experiments, relativ~ly little has been written in this context. The 

books of Naylor et al. [1966, 1968, 1971] discuss experiments with 

economic systems models but in the main limit attention to traditional 

designs. The survey article by Boehlje [1973] discusses agricultural 

applications wi th particular emphasis on random search. 
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APPENDIX I 

INTRODUC TION TO THE COMPUTER PROGRAMS 

The five computer programs for optimum- seeking experimental 

designs are presented in Appendix II through to VI. These programs 

are written in FORTRAN for a Burroughs B6700 computer but are 

designed for ease of adaption to other makes of machine. The 

operating s ys tern under which the prog rams were developed has 

unusual features with respect to line spacing control and loss of 

constants (but not arrays) in subroutines on return to the main program, 

and these are overcome by adding dummy WRITE statements and 

COMMON statements respectively. Each optimization procedure has 

been programmed as 

(i) a main program containing a test function which is to 

be optimized and a subroutine call s ta tement. In 

agricultural systems applications the systems model 

would replace the test function. 

(ii) a subroutine which generates a new set of factor levels 

(i. e. a new treatment) every time it is called. 

The programs are currently designed to allow a maximum of 

10 experimental factors, although this limit can be relaxed by revising 

the DIMENSION statements. The initial guess or first treatment is 

specified in a DATA statement in the main program, as is an upper 

limit on the number of treatments to avoid excessive use of computer 

time. 

The FORTRAN subroutines for each of the five optimization 

procedures follow the same general layout, and this is illustrated in 

Figure 1-1 for the method of steepest ascent. The subroutine ini tially 

reserves space for arrays (in a DIMENSION statement), specifies 

search parameters (as DATA), makes type declarations (INTEGER and REAL) 
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and indicates which constants and arrays are common to the main 

program and subroutine (or are to be retained in the subroutine 

between successive calls), The first time the subroutine is entered 

a number of initial conditions are established. At the hear t of the 

layout in Figure I-I is a branching (GO TO) statement conferring 

control to different segments of the subroutine depending on the value 

of a test criterion, ITEST. Each segmf'nt carries out a specific 

part of the search and ends with a RETURN to the main program 

where the treatments are evaluated. Branching to a given segment 

is repeated for a number of treatments, until that particular phase 

of the search iteration is completed, e. g. control returns to the 

segment placing treatments in the direction of steepest ascent until 

response falls relative to the previous treatment. 
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FIGURE I-I 

Layout of the Steepest Ascent Subroutine 

Type statements (REAL and INTEGER), DIMENSION, COMMON, DATA. 

IF (ITREAT. GT.l) GO TO 2 

• Initial conditions 

2 GO TO (30, 40, 50), ITEST 

30 

40 

50 

Es tablish slopes of the tangent hyperplane 

ITEST = 1 

RETURN 

Step in the direction of steepest ascent 

ITEST = 2 

RETURN . . . . . 
Take a step backwards, or reduce step size 

ITEST = 3 

RETURN 

Terminate search 

RETURN 

END 
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None of the programs contain READ statements, all 

information for the search being defined in the DATA statements. 

The interpretation of these data is explained in the following appendices. 

Output of res ults is forma ted wi th row ra ther than column headings 

to avoid confusion with any other information from the experiment 

which the user may wish to have printed. 

The test functions (surrogates for the systems model) are 

simple polynomials with known optima. 

minimization (Appendix II) is 

The function for univariate 

4 
Z = x + 3 

which has a minimum value of Z = 3 at x = o. The func tion for 

multivariate search is 

222 
Z = (Xl - 2x

2
) + (x

2 
- 2x

3
") + (3x

I 
- 2x

3
) - 2xI + x

2 
- 3x3 + 10 

which has a minimum of Z = 9.2813 at x = r: ~:!: J 
l .3281 

To facili tate maximization the sign of Z is changed from posi ti ve to 

negative when using the methods of steepest ascent (Appendix III and IV) 

and random search wi th learning (Appendix VI). 

The five subroutines are designed for coupling to the program 

of systems model with little or no reprogramming. However, the 

initial factor levels and search parameters as defined in DATA statements 

would need to be adjusted on a tria1-and-error basis to determine 

settings most appropriate to the particular application. 



APPENDIX II 

UNIVARIATE SEARCH 

This program minimizes a Ifunction l in one variable by 

repeated quadratic interpolation. Each interpolation follows the 

Powell method outlined in Chapter 3. However, stepping is 

continued until three treatments a, 12. and.£. bracket the value of X for 

which Z is a minimum, removing the need for the sufficiency tes t on 

the stationary point and for limiting the extent of adjustment in the 

direc tion of the minimum. 

The parameters in the listing of this program have the 

following meanings: 

Main program 

TMAX = maximum number of treatments before 

the search mus t terminate (here 15). 

X = ini tial factor level (her e 10. 0). 

Subroutine 

D 

NRED 

SRED 

= initial step size (here 3.0) 

= number of reductions on step size (here 1), 

= extent of reduction in step size. (Here SRED = 6 so L 

is reduced to 3/6 or 0.5 for the second quadratic 

in te rpola tio n). 

The lis tings of the main program and subroutine and the search 

output follow. In this case six treatments are needed before the 

minimum is bracketed, and the first iteration is completed with a 

quadratic interpolation leading to treatment no. 7. The search terminates 

after 10 treatments with X = -.0556 and Z equal to the target value of 

3.0 correct to at least four decimal places. 
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U6700 FOR T R A tJ COM P I L A T lOtI 

TUESDAY. 05/16/78 06: 58 Pt1 

U l'~ I V 
:: :: :: =: 

FILE 5;;:F!LE5~UrJIT;;:READER 

FILE 6;;:FILE6.lHIIT:.:PRIIlTER 

I NTE GER Tr\/\X 
C at it 10; j X 0 ~ A t [3 ~ c ~ Z A ~ Z D ~ Z C 9 I T EST , I n I 0 S T E P 
D A HI, lr J / S I ;J III / 6 / ~ X /1 0 " I 9 n1A X /1 5/ 
ITREAT :::: 0 , 
ITREAT = (TREAT + 1 
Z ;;: XJ:':cl~ + 3. 
CALL C)PTj(!TREAT~nlAX~X~Z) 
IF (ITREAT.LT.TMAX) GO TO 1 
STOP 
END 



SUUROUTINE OPT1(ITREAT,TMAX,X,Z) 
REAL NUM 
HJTEGER ittAX 
COMt1otJ XO,A,B,C,ZA,ZU,ZC, ITEST, ITtI,STEP 
DATA 10/6/. 0/3.1, tlRED/l/. SREO/6.1 
IF (ITREAT .EQ.l) \JRITE (10,8) 
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8 FORt'1AT (lX,'InITIAl ESTIMATE'/) 
WRITE (10,10) ITREAT,X,Z 

10 FORt1AT (3X. 'TREATt1EtlT tlO',I3,7X,'X ::',F12.4,7X,'Z ::',F12.4/) 
IF (iTREAT.GT.l) GO TO 18 
ITEST :: 0 
ITN :: 0 

18 Go TO (20,30,40), ITEST 
I TN :: I TIl + 1 
WR I TE (I (), 12) I TN . / .,' ...... 4'>" 

12 FORt'1AT (lX,' ITERATION tJUt1BER' ,12/) 
XO ::: X 

c 

A ::: 0 0 

ZA ::: Z 
B ::: D 
X ::: X + B 
ITEST ::: 1 
RE TURtJ 

~O IF (Z.GT.ZA) GO TO 22 
STEP ::: D 
ZB ::: Z 
GO TO 24 

22 STEP:: O. - D 
TEMP ::: U 
B ::: A 
A ::: TEt1P 
ZB ::: ZA 
ZA ::: Z 

24 ITEST::: 2 

e 

C :: B + STEP 
X :: XO + C 
RETURN 

30 ZC:: Z 
IF (Ze.lT.ZB) GO TO 32 

e ~1I N H1Utt URACKEiEO BY A ANO e .. CALCULATE OPT It1Al STEP SIZE 
NUt1 :: (B~'( fl- C~'(C ) ~': ZA + (e~'(c -A ~': A) ":Z B + (A ~~A .. B ~'(B ) ,'( ze 
DEN:: 2. * «B-C)*ZA + (C-A)*ZB + (A-B)*ZC) 

C 

BETA ::: ~JU~l I DEN . 
X ::: XO + BETA 
D ::: D / SREO 
NRED ::: NRF.D .. 1 
ITEST = 0 
IF (NRED.lToO) ITEST ::: 3 
RETURtJ 

C MINIMUtt NOT BRACKETED. TAKE A FURTHER STEP 
32 A ::: B 

ZA = ZS 
B ::: C 
ZB ::: ze 

e 

C ::: B + STEP 
X = XO + C 
RETURN 

40 I TREAT = TrtAX 
RETURN 
J:"Mn 
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INITIAL ESTIMATE 

TREA H1ErH NO Z~, 10003 $ 0-000 

X r.-" z ~ 28564.0000 

j~COOO 

259.0000 

z _. 

z ,~', 19,0000 

T R,E./.\ Tf"iE [·JT r-·jO 3,,0008 

0,,(-;667 3," 1975 

z - 3 .. 0000 



APPENDIX III 

BASIC STEEPEST ASCENT 

This program follows the procedure outlined in Chapter 4. 

The parameters as listed in the DATA statements have the following 

interpreta tions: 

Main program 

X = initial treatment, i. e. initial levelS[O:. ~Je 

three experimental fac tors, here _ 8 0 

10:0 

TMAX = maximum number of treatments before the 

search must terminate (here 40). 

Subroutine 

NVAR = number of factors (here 3), 

S(l), S(2), S(3) = size of forward differences for variables 1 to 3, 

here all 0.1. 

L = step size parameter (here 2.0). 

NRED 

SRED 

= 
= 

number of reductions in step size during the search (here 1). 

extent of reduction in step size. (Here L is divided by 5. ) 

The experiment wi th the tes t function proceeds through three 

iterations, terminating because no further progress is possible, even 

with a reduced step size, on the 24th treatment. (The jump in treatment 

numbering from 23 to 40 is associated with the stopping procedure. ) 

Final factor levels are all within 0.7 of the optimal values as indicated 

in Appendix I, although the response level of -18.49 is some distance 

from the maximum of -10. 
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B £) 7 00 FoR T RAN C a t1 P I L A T 1 a tl t1 ARK 2 0 9. 1 90 

TUESDAY, 05/16/78 07:29 PM 

S T A S 
= = :: = 

FILE 5=F I LE5, lJrJI T=READER 

FILE 6=FILE6.U~JlT=PRItHER 

1 

INTEGER n1AX 
DIMEtJSlotl X(10) 
COMt10N x . 

1 .IVAR~ITEST.lSTEP.ZL,DEN,ITN 
. DATA HI/5/, 10/6/ 

DATA X(1)/5./,X(2)/-8./,X(3)/10./,Tt1AX/40/ 
ITREAT = 0 
ITREAT = ITREAT + 1 
Z = (X(1)-2.*X(2»**2 + (X(2)-3.*X(3»**2 + 

1 - 2.*X(1) + X(2) - 3.*X(3) + 10. 
Z :: -z 
CALL OPT2 ( I TREAT, Tt1AX II Z) 
IF (ITREAT.LT.Tt1AX) GO To 1 
STOP 
END 

(3.*X(1)-2 o *X(3»**2 



c 
c 

4 

6 

9 

2 

C 

13 

22 

12 

c 
C 
30 

32 

38 
C 

34 

1l~ 
36 

15 

35 

SUDROUT !t!E TO ~1AX HlI t\ FU~IC T IrllJ OF Si~ \,'~:r~AL V!\fH AOlES US UIG THE 
METHOD OF STEEPEST ASCENT 

SUBROUT ItlE OPT2 (I TRE ~ 
I tHEGER TtiAX 
REAL n@L 
DIM E t'J S I () N X ( 1 0 ) § S ( ! 0 ) & ~H 1 0 ) 'i D ( 1 0 ) 
Cm1~iON X 
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1 ,IVAR~ITEST~IS P~ZL$DEi'j~rnl . 
DATA t J V j\ R! 3/ @ S ( 1 ) I " 1 I ~S ( 2 ) I " 1 I $ S U ) / e 1 / b L 12 .. / , ~ J RED 11/ , S REO 1 5 .. I • 

1 10/6/ 
IF (ITREAT.EQ 1) I (10.4) 
fORt1AT (lX b ~ HHTIAL ESTU1ATE i /) 

WRITE (rD~6) ElJ.T~Z O~(J)~,J::l@~JVt\R) 
FORt1AT OX ~ A lENT ;~13>j4X@~Z ::19fl0,,4,L~X~'X VALUES:',6Fl0 .. 41 

1 3X~4Fl0" ) 
IF UTREAT" @I) 
ITEST :::: 0 
IVAR :::: 0 
ITN ;;;; I 
WR I TE (I 0 ~ 9) ! 
FORt1AT (/1 X $ % X 
Zl :::: Z 

lInN 

GO TO (30.. I ST 
IF (IVAR.EQoO) GO TO 22 

DER I VE EQU,L\ T I 
M ( IV t\R) :: (Z ~ Z 
X{IVAR) :: XO 
\JR I ( I [) § 13 
FORt1AT (3X(P! 

1 8 X" ~ S U}P E ~~ 
I VAR ::::! '10 ~ 

2 

PERPLANE 
\ ; 

SOV ) 
sr ;:;: 1 

OETERriIrlE DI CTlOi\j 
tiC NVAR) ;;: (Z - Z L ) S < 
\JR ITt (1 ') ~ 3 '\ 'I ",' ; , " « 
' -. "!l.ll§,, ) ~ LL~rl', 

X(iNAR) ;~ XC 
SSQ :: 1'1 ( 1) 
DO 32 I ~~! 
SSQ ::: SSQ + r1( I 
DEN ::: SQFrr( SSn) 
ISTEP ::: 0 

'\ ,J 

I V ) ~ X ( IV J\R ) 
r 3 8 i F () R ~J A R DOl F FER ENe E 0 B V'. F 9 .. 4 g' TO'. 

) 

) 

STEP HI S E ST /\SCEJn ox CTI[)N 
Do 34 1, W\R= 1 IJV 
D (I VAR) :: n (I v ) i [) EN"'; L 
\-JR ! T E (I () ~ H}) ( D CJ ) & .J:.: 9 ~ I V A R ) 
FORHAT (3 X @ J\O,JUS E~nS x VALUE S: ' ~ SF9" 4) 
ISTEP :: IS P + ] 
\~R I TE (I 0 ~ I SIS P 
FORf1A T (3 X $ @ E P ~lD ij ~ ! 3) 
Do 35 IVl\R~.::l o~j 
X ( I VAR) ::: X ( I 
ZL :: Z 
ITEST :: 2 
RE TURtJ 

+ 0(1 ) 
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ConTINUE 
IF (Z.GT.lL) GO To 36 
ISTEP = ISTEP - 1 
\JR I T E (I () , 1 6 ) 1ST E P 
FOR~1AT (3X,IX VALUES :~T STEP;1[/.~lX,ITl\KEN AS tIE\J SEARCH BASE') 

FUtlCT I ON ~ALlJE OECREAS !tV.l. STE P ~),i<K\JAROS 

Z = ZL 
DO 42 IVt~R=l ,tIVAR 
X{IVAR) = X(IVAR) - D(IVAR) 
IF (ISTEP o GT.l) GO To 44 

FUtJCTION HAS DECREASED (JtI FIRST STEP 
IF (NREDoGT.O) GO To 46 
!TREAT = Tt1f\X - 1 
ITEST = 3 
RETURN 

REDUCE STEP SIZE 
L = L I SRED 
tIRED = tIRED .. 
\~RITE (10,19) L 
FORt'1AT (3X, 'STEP SIlE PARM1ETER REDUCED TO' ,Fl0 0 4) 
GO TO 38 

~ IVAR = 1 
I Tt~ = I It! + 1 
\JRITE (In 9) I Ttl 
X(IVARJ ='XCIVAR) + S(IVAR) 
WRITE (IO.12) IVAR,S(IVAR),X(IVAR) 
ITEST = 0 
RETURN 

) ITREAT = TtlAX 
RETURN 
END 



InITIAL ESTIrlATf. . 

TREATMErlT flO Z =-1872.0000 X VALUES: 5.0000 -8.0000 10.0000 

ITERATlotl 110 1 

VARIABLE 1 FORI/ARD DIFFEREtlCED BY 0.1000 To 5.1000 
TRE!ITr1U:T rIO 2 Z =-1873.1000 X VALUES: 5.1000 -8.0000 10.0000 
CUR;:,EtJT Z VilLlJE = -1873.1000 !3ASE Z V/ILUE = -1872.0000 SLOPE = 
V;\Rlt.[JLE 2 rORl/ARO DIFrERE:JCED OY 0.1000 To -7.9000 
TREATrlErlT rIO 3 Z =-1856.1500 X VALUES: 5.0000 -7.9000 10.0000 
CURRE~T Z VALUE = -1356.1500 UASE Z VALUE = -1872.0000 SLOPE = 
VARIAOLE 3 FOP-liARD DIFFEREnCED!3Y 0.1000 To 10.1000 
TREtITnErlT tID 4 Z =-18%.6300 X VALUES: 5.0000 -8.0000 10.1000 
CURREtJT Z V[ILlIE = -18%.6300 UASE Z VALUE = -1372.0000 SLOPE = 
ADJUSnlEtJTS To X VALUES: -0.0751 1.0815 -1.6807 
STEP tlO I 
TREATnEIlT tJO 5 Z =-1339.8638 X VALUES: 4.9249 -6.9185 8.3193 
STEP fJO 2 
TREATnEtlT 110 6 Z = -912.4123 X VALUES: 4.8499 -5.8369 6.6387 
STEP no 3 
TREATtlEtlT flO 7 Z = -589.6455 X VALUES: 4.7748 -4.7554 4.9580 
STEP ~JO 4 
TREATtlEtlT tlO 8 Z = -371.5634 X VALUES: 4.6998 -3.6738 3.2774 
STEP lJO 5 
TREATrlErJT NO 9 Z = -258.1661 X VALUES: 4.6247 -2.5923 1.5967 
STEP llO 6 

TREATtlErlT tlO 10 Z = -249.4534 X VALUES: 4.5496 -1.5107 -0.0840 
STEP tJO 7 
TREATtlEtlT tlO 11 Z = -3 If5.4255 X VALUES: 4.4746 .0.4292 -1.7646 
X VALUES AT STEP 6 TAKErl AS tIE\.J SEARCH BASE 

ITERATION NO 2 

VARIABLE 1 FORWARD DIFFEREtiCED BY 
TREATtlEra NO 12 Z = -259.1578 
CURRENT Z VALUE = -259.1578 
VARIAi3LE 2 FORWARD DIFFEREtiCED 8Y 
TREATnEllT IHl 13 Z = -246.3232 
CURR::m Z VAl.UE = -2L~6.3232 
VARIABl.E 3 FOR\JARD DIFFEREnCED BY 
TREATt1EtlT llO 14 Z = -21.4.5120 
CURRENT Z VALUE = -244.5120 
ADJUSTrlEtlTS To X VALUES: -1.7129 
STEP NO 1 
TREATnEtlT NO 15 
STEP 1m 2 
TREATtlEllT flO 16 
STEP 11O 3 

Z = 
z = 

-82.7154 

-35.1333 

0.1000 TO 4.6496 
X VALUES: 4.6496 

BASE Z VALUE = 
0.1000 TO -1.4107 

X VALUES: 4.5496 
BASE Z VALUE = 

0.1000 To 0.0160 
X VALUES: 4.5496 

BASE Z VALUE = 
0.5525 0.8722 

X VALUES: 

X VALUES: 

TREAT!IEIJT tlO 17 Z = -106.7072 X VALUES: 
X VALUES AT STEP 2 TAKEII AS tlEII SEARCH BASE 

2.8367 

1.1239 

-0.5890 

I TERATIorJ 1m 3 

VARIABLE 1 FORl.JARD DIFFEREnCED BY 0.1000 To 1.2239 

-1.5107 -0.0840 
-249.4534 

-1.4107 ·0.0840 
-249.4534 

-1.5107 0.0160 
-249.4534 

-0.9582 

-0.4057 

0.1468 

0.7882 

1.6604 

2.5326 

SLOPE = 

SLOPE = 

SLOPE = 

TREATtlEtJT tlO 18 Z = -35.4508 X VALUES: 1.2239 -0.4057 1.6604 
CURRENT Z VAllIE = -35.4508 £lASE Z VALUE = -35.1333 SLOPE = 
VARIABLE 2 FORI/ARD DIFFEREtlCED BY 0.1000 To -0.3057 
TREATtIEtlT NO 19 Z = -33.4318 X VALUES: 1.1239 -0.3057 1.6604 
CURRENT Z VALUE = -33.4318 BASE Z VALUE = -35.1333 SLOPE = 
VARiABLE 3 FoRHARD DIFFEREtlCED BY 0.1000 To 1.7604 
TREATME1JT no 20 Z = -38.1753 X VALUES: 1.1239 -0.4057 1.7604 
CURf:.EilT Z VAllIE = -38.1753 BASE Z VALUE = -35.1333 SLOPE = 
ADJUSTrlEIJTS To X VALUES: -0.1814 0.9723 -1.7383 
STEP fJO I 

TREAH1EIJT tiD 21 Z = -18.4905 X VALUES: 0.9424 0.5666 -0.0779 
STEP 1m 2 

TREAn~EI:T NO 22 Z = -104.6484 X VALUES: 0.7610 1.5389 -1.8162 
X VALUES AT STEP 1 TAKEIJ AS tlEH SEARCH BASE 
STEP SIZE PAflt\llETER REDUCED To 0.4000 
ADJUSTrlEtHS To X VALUES: -0.0363 0.1945 -0.3477 
STEP 110 1 
TREATilE:JT tlO 23 Z = -27.4980 X VALUES: 0.9062 0.7611 -0.4255 
X VALUES AT STEP 0 TAKEfJ f,S tlE11 SEARCH GASE 
TREATI1Et!T NO 40 Z = -18.4905 X VALUES: 0.9424 0.5666 -0.0779 
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-11.0000 

158.5000 

-97.0433 

31.3020 

49.4146 

-3.1747 

17.0152 

-30.4195 





APPENDIX IV 

STEEPEST ASCENT (REFINED) 

This subroutine follows the procedure outlined in the 

final sec tion of Chapter 4. A series of linear optimizations are 

first carried out each following the Powell procedure but ensuring 

that the maximum is bracketed before taking a quadratic interpolation. 

The number of these linear optimizations is determined within the 

subroutine with reference to the maximum number of treatments 

allowed. No reductions are made to step size. When this phase 

of the search has been completed a non-linear local exploration is 

carried out. (Since the test function is a quadratic and the procedure 

is quadratically convergent, -the exact optimum has been located.) 

The parameters of the main program are as in Appendix III, 

as are NVAR, Sand L of the subroutine. 

In the experiment with the test function three iterations 

of linear search bring each of the factor levels to within one unit 

of the optimal value and the response criterion to -12.88. A small 

number of additional treatments are then evaluated, and a stationary 

point on the response hypersurface is located. A test applied to the 

Hessian matrix reveals that this stationary point is a maximum as 

required. 

105. 
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B6700 FOR T R A tJ C 0 t1 P I L A T lotI MAR K 209 .. 190 

TUESDAY. 05/16/78 

!LE 5:::FILE5gtHUT:::READER 

lLE 6:::FILE6~U~lIT:::PRItlTER 

INTEGER n1AX 
DH1EtJSICHl X( 10) 
Cm1MON X 

S A S R 
- - - -- - - -

07=31 PM· 

1 .lVAR.JVAR9ITEST9A~B~C~STEP.FA.FB.FCjDET.MAX.MIN.ISIGrJ,JSIGN,ITN 
2 @ Nl Ir~ ~ Zl 

DATA ItU5/~IO/61 
DATA X(i}/50/~X(2)/-8.,19X(3)/l0Q/llnlAX/601 
ATREAT ::: 0 
ITRE ::: IrREAT + 1 
Z::: X(1)-2.*X(2»**2 + (X(2)-3.,*X(3»**2 + (3 o *X(1)-2.*X(3»**2 

1 - 2.*X(1) + X(2) - 3®*X(3) + 10., 
Z :;;; ,~z 

CALL 0 3(ITREAT~n1AX~Z) 
IF (ITREt\T"LT"Tt1t~X) GO TO 1 
STOP 
END 
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C SUBROUTINE To ~1AXIMIZE A FUNCTIotJ OF SEVERAL VARIABLES BY THE t1ETHOD 
C OF STEEPEST ASCEtlT \JITH OPTHlIZATIONS ItJ ASCEtn DIRECTIOtJS ArID 
C NON-LItlEAR LOCAL EXPLORATIONS IN THE VICItJITY OF THE' MAXlt1U~1 

4 

5 

C 

SUBROLJTItIE OPT3(ITREAT.TMAX.Z) 
INTEGER n1AX 
REAL ~1. L , NUt\ 
o It1 ENS I or J X ( 1 0 ) t X B ( 1 0 ) • Z P L U S ( 1 0) ,~1 ( 1 0) • U ( 1 0) • H (.1 0 • 1 0) • 

1 E(10,10), 5(10) 
DOUBLE PRECISION 0(3) , 
DATA D/'t1AXIMlJt1'. 'tlINIMUM' ,'SADDLE POIUT'I 
COMt10N X 

1 , I VAR. JVAR. I TE ST • A" B, C, STE P , FA. FB. FC. DET , ~1AX ,MI N, I SIGN. JS I GN. I Ttl 
2 ,NLIN,ZL 

DATA NVARI 3/,S(1)/.l/,S(2)/.l/.S(3)/.l/.L/2 o /.IO/61 
IF (ITREAT.EQ.1) \JRITE (10,4) 
FORMAT (lX,'INITIAL ESTIMATE'/) 
WRITE (10.5) ITREAT,Z,(X(J).J=l,NVAR) 
FORt1AT (3X, 'TREATMEtJT tlO 8 ,I3,4X.·Z =' .F12.4,4X,'X VALUES:' ,6Fl0.4 

1 3X.4Fl0 o i+/) 
IF [ITREAT.GT.l) Go' TO 2 
ITEST = 0 
IVAR ::: 0 
ITN = 0 
NLItI ::: Tt1AX ... NVAR~':(2 ... (tJVAR-1)/2) - 6 

2 GO TO (30,40,50,22,30,70,80,90,100,140), ITEST 
22 IF (IVAR.GT.O) GO TO 26 

ITN ::: Inl ... 1 
IF OTEST.EU.O) WRITE (IO,3) ITN 

3 FORt1AT (/lX. e ITERATION tJO I • 12/) 
IF (lTEST"ECl .. 4) \JRITE 00,164) 

164 FORMAT (lHl,lX.'NON-LINEAR LOCAL EXPLORATION'/) 
C STORE CURREtlT SEARCH BASE XU 

DO 24 J=l,tJVAR 
24 XB(J) = X(J) 

A = O. 
FA = Z 
ZL = Z 
GO TO 28 

26 M(lVAR)::: (Z-FA) / S(IVAR) 
IF (ITEST.EQ.O) WRITE (10,7) Z,FA,M(IVAR) 

7 FORMAT (3X,'CURRENT Z =·,F15~4,8X,·BASE Z =',F15.4,8X,'SLOPE =', 
1 F12.4) 

X(IVAR) = X(IVAR) - S(IV4R) 
ZPLUS(1VAR) = Z 

28 IVAR = IVAR ... 1 
X(IVAR) = X(IVAR) ... S(IVAR) 
IF (IVAR.EQ.NVAR) ITEST = ITEST ... 1 

8 ~~~A~T(l~x?~vl~~~B~~~~~~~cx~~~e~~o DIFFERENCED BY ',F10.4
f

' TO', 
1 FlO.4) 

RETURN 
c 
C DETERtHtJE DIRECTION OF STEEPEST ASCENT 
30 M(NVAR)::: (Z-FA) I S(NVAR) 

ZPLUS(tNAR) = z 
IF (ITEST o EQ.1) HRITE (Io,7) Z,FA,t1(IVAR) 
X(NVAR) = X(NVAR) - S(NVAR) 
IF (ITEST.NE.5) GO TO 32 
ITEST =. 6 
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C 
C MAXIMUM NOT BRACKETED. TAKE A FURTHER STEP 
52 A = f3 

57 

13 

r v 

70 

FA = FB 
B = C 
FB = FC 
C = B + STEP 
DO 57 J=l.tNAR 
X(J) = XB[J) + C * U(J) 
\~R I T E (I 0, 1 3 ) 
FORt1AT (3X, 'THIRD OR LATER STEP') 
RETURN 

l'lOtl~'L ItJEAR LOCAL EXPLORATION 
IVAR = 1 
X(l) = X(l) = S(l) 
l1EST = 7 
WRITE (10 9 14) IVAR,S(IVAR)jX(IVAR) 
FORf1AT (3X@ RVARIAULE' & 13,' BACK\~ARD OIFFEREtJCED Bye ,Fl0.,4s' TO'. 

1 Fl0@4) 
RETURtl 

C G.Il"LCULATE LItlEAR MiD QUADRATIC TERnS OF TAYLOR SERIES FOR VBLE IVAR 
80 f'1(IVAR) = (ZPLUS(IVAR)-Z) / (2 .. ~·:S(IVAR» 

c 

C 

H(IVARrIVAR) = (ZPLUS(IVAR)+Z-2.* FA ) I (S(IVAR)*S(IVAR» 
X(IVAR) = X(IVAR) + S(IVAR) 
I v A.R = I V I\R + 1 
X(IVAR) = X(IVAR) - S(IVAR) 
IF (IVAR.EQoHVAR) ITEST = 8 
\~RlrE (IOl1iL~) IVARjlS(lVAR),X(IVAR) 
RETURN 

x (i'WAR) ;:: X(tlVAR) + S(tIVAR) 
fH il V Afn :: (Z P L U S ( t N A R ) - Z ) / ( 2 " ~': S ( tl V A R» • 
H{rWAR 9 tIVAR) = (ZPLUS(tNAR)+Z-2 .. ~'; FA ) / (S(tJVAR)~';S(tlVt\R») 

CALCUUHE H!TEFU\CT I em TE RI'IS OF TAYLOR SER I E S 
IVAR = <j 

JVAR ::: 2 
X(O ::: XCl) + S(O 
X(2) ::: X(2) + S(2) 
ITEST = 9 
WRITE (lOlllS) IVARIlJVAR 
FoRHAT (3X 9 'VARIABLE',I3,' Ar-JD',I3,· FoR\~ARD DIFFEREtICED

'
) 

RETURn 

100 H(IVAR~JVAR) = (Z- FA -t1(lVAR)~·:S(IVAR)-t-1(JVAR)'·:S(JVAR) .. H(IVAR, 
lIVAR)*S(IVAR)*S(IVAR)/2. - H(JVAR,JVAR)*S(JVAR)*S(JVAR)/2.) / 
2 (S(IVAR)*S(JVAR» 

X{JVAR) = X(JVAR) - S(JVAR) 
IF (JVARoEQ"tJVAR) GO To 102 
JVAR :: JVAR + 1 
X(JVAR) ::: X(JVAR) + S(JVAR) 
WRITE (IO e lS) IVAR,JVAR. 
RETURN 



C 
32 SSQ ::: tiC 1 )~"~1( i) 

DO 36 J:::2~[JVr\R 
36 S S Q ::: S S Q .... f 1( J ) ~': ~H J ) 

DIV ::: SQRT(SSQ) 
Do 38 J:::1~rNf\R 
U ( J) ::: t1( J) / D! V ~', L 

38 X(J)::: XU(J) + U(J) 
WRITE (10.10) (U(J)BJ:::l,NVAR) 

10 FOR~1AT (3X~wADJUSnlEtlTS TO X VALUES:',10F9.1.) 
B :;:: 1" 
ITEST :;:: 2 
\~R I TE (10. 9 ) 

109. 

9 FORt1AT (3X. ~FIRST STEP Itl DIRECTION OF STEEPEST ASCENT') 
RETURN 

c 
C 
40 
C 

C 
42 

DEFINE SECOND STEP IN ASCENT DIRECTION 
IF (Z.LT.FA) GO TO 42 

FUNCT lOt! H!CREAS I NG SO STEP FoRWARD 
FB ::: Z 
STEP;;; L" 
ITEST ;,: 3 
GO To 

FUNCTION DECREASING So STEP BACK\JARDS 
STE P :;: '~1 e' .'-

TEri? :::: B 
B ::: A 
A ::-; TEMP 
FB ::::: FA 
FA :::: Z 

44 C :::: B + STEP 
D 0 l~ 6 J:::: 1 ~ t 1 V!\ R 

46 X(J):::: XB(J) + C * U(J) 
\'JR 1 TE (10 $ 1 1 ) 

11 FORt1AT (3X. ~ SECmlD STEP') 
RETURN 

C 
C LOCATE t1AXH1Un OR CONTItHJE STEPPHIG 
50 FC:::: Z 

IF ( (}GT"FU) GO TO 52 
C MAXHHJM BRACKETED BY J),.8 AND C .. CALCULATE OPTIr1AL STEP SIZE 

tlUi'1 ::: (B';"B=(>C)~"FA + (C,;"C-N':A);':F8 + (A;':A-B;':B)~':FC 
DEN = 2. * (B-C)*FA + (C-A)*FB + (A-B)*FC) 
BETA :;:: ~lUi'l I DEN 
DO 60 J= 1 ~ 1 JV/\R 

60 X ( J) ::: X B en + BET i\ ;', U ( J) 
IVAR :::: 0 
ITEST = 0 
IF (Z"LT "ZL~OR. ITREAT .. GE"tJLlrJ) ITEST :: 4 
WRITE (10,12) UETA 

12 FORt'1AT (3X 9 'UNEAR OPTHlIZATlml; BETA ::t,F12.4) 
RE TURt,s 



11 0, 
C 
102 IVAR = !VAR + 1 

IF (IVARoEQ,.ll'lf,R) GO TO 110 
X(IVAR-l) = X(IVAR-l) - S(IVAR-l) 
J.VAR = IVAR + 1 
X(IVAR) = X(IVAR) + S(IVAR) 
X(JVAR) = X(JVAR) + S(JVAR) 
WRITE (10,15) IVAR,JVAR 
RETUR~J 

C CALCULATE ELEtlEt!TS OF HESSIAN t1ATRIX H BELO\J THE DIAGONAL 
110 DO 112 l:::l»IJVAR 

DO 112 J=l, rJVJ';R 
112 H(J,I) = H(I,J) 

WRITE 00,16) 
16 FORtlAT OX, 'JAC013IAtl GRADiEtlT VECTOR') 

HRITE OU,18) (n(J),J=l,tJVAR) 
\.JR IT E (!D ~ 1 7) 

17 FORt1AT OX. 'HESSIAt! t1ATRIX') 
DO l1Lf 1=1, f!VAR 

114 WRITE (10,18) (H(I.J),J=l,NVAR) 
18 FORtlAT OX,lOF12.4) 
C OBTAI!! THE WVERSE OF H (=E), AT THE SAt1E TItlE TESTIt!G FOR tJEGATIVE 
C DEF I Nl~ TE tJESS 

t1AX = 0 
MIN = 0 
ISIGtJ = 1 
DET = 10 
00 120 I=l.!NAR 
DO 120 J=l, !JVAR 
E(!~J):;:Oe 
IF OeEQoJ) E(I,J') = 1. 

120 CONTI NUE 
C FOR EACH RO\l 

DO 122 l=l,tNAR 
C DIVIDE THROUGH BY PIVOT ELEMENT 

Ply = HO,I) 
DEl =: [JET ,', PlV 
IF (DET.LT.O.) MIN:;: MIN + 
ISIGN = ISIGN * (-1) 
JSIGtJ :;: 1 
IF (DET.LT.O.) JSIGN :;: -1 
IF (JSIGtI.tlE.ISIGtJ) tlAX = t1AX + 1 
MIN:: MIN + JSIGN 
DO 124 J=l, tlVAR 
H(I,J) = H(I,J) I PIV 

124 E(lpJ) = E(I,J) I PIV 
C FOR EACH OTHER RO\J 

DO 126 K::l,tlVAR 
IF (K.EU.I) GO TO 126 
n:~1P ::: H(K,l) 

C FOR EACH CLEfiE~IT 
DO 128 J::l dlVAR 
H(K,J) :: H(K.J) - TEMP * H(I,J) 

128 E(K,J):: E(K,J) - TEMP * E(I.J) 
126 CutlT! tJlJE 
122 COtH I tlUE 
C CALCULATE REOUIRED ADJUSTtiEnTS Il,l X 

DO 130 !=l g 11VAR 
UO) ::: O. 
DO 132 J:::l,IIVAR 

132 U(I) = U(I) - E(I,J)";tI(J) 
130 CatlT! NUE 
C CALCULATE OPTltlAL X VALUES 

DO 134 J=l,rNAR 
134 X(J) = XU(J) + U(J) 

IF (~IAX.EQ.O) J ::: 1 
IF (~IHI.Eo.rlVAR) J :: 2 
IF (tlAX.tH:.O.AtlD.Mltl.tJE onVAR) J :;: 3 
\JR ITE (I (). 162) 0 (J) 

162 FORtlAT (/3:<~'THE STATll1tlARY POUlT IS A '.A12/) 
ITR[AT ::: T~iAX - 1 
lTEST = 10 

t 40 RETURtl 
END 



Ill. 
!tUTIAl ESTIMATE 

TREA ntE~1T NO Z::: ~ Hl72 .0000 X V/'II.UES: '5.0000 .. 13.0000 10.0000 

ITERATION NO 1 

VARIABLE' 1 FORlJI\RD DIFFEREtlCED UY' 0.1000 TO 5.1000 
TREATrlErIT ~J[) 2 Z:: -1<:373.1000 X VALUES: ,,5.1000 -8

0
,0000 10

0
0000 

CURRENT Z = -1873.1000 BASE Z = -1872.0000 SLOPE = -11.0000 
VARIABLE 2 FORI/ARD DIFFEREnCED BY 0.1000 To -7.9000 
TREI\TtlEtlT NO 3 z:: -1856.1500 X Vj\LUES: 5.0000 -7.9000 10.0000 
CURRENT Z = -1856 0 1500 BASE Z = -1872.0000 SLOPE = 158.5000 
VARIABLE 3 FORI/ARD DIFFEREtlCED BY 0.1000 TO 10

0
1000 

TREATtIEtlT tlO 4 Z:: -1896.6300 :< VALUES: 5.0000 -8.0000 10.1000 
CURRENT Z = -1896.6300 BASE Z = -1872.0000 SLOPE:: -246.3000 
ADJUSTtiEtlTS TO X VALUES: -0.0751 1.0815 -1.61307 
FIRST STEP In DIRECTION OF STEEPEST ASCErn 
TREAH1EtlT tlO 5 Z:: -1339.8638 X 'iJ.'\LUES: 4.9249 
SECOtlD STEP -6.9185 8.3193 

TREAT/iDIT tlO 6 z:: -912.!~123 X VALUES: 4.8499 
THIRD OR LATER STEP 
TREAn1EtJT NO 7 z:: "589.6455 X VALUES: 4,.7748 
THIRD OR LATER STEP 
TREATt1Etn NO 8 z;;; -37105634 X VALUES: 4.6998 
THIRD OR LATER STEP 
TREAH1ErIT flO 9 z:: -258.1661 X VALUES: 4.6247 
THIRD oR LATER STEP 
TREATtl0lT NO 10 Z:: -249.4534 X VALUES: 4,,5496 
THIRD OR LATER STEP 
TREATt1EtH NO 11 z:: -345.4255 X VALUES: 4.4746 
LINEAR OPTH1IZATIotl 9 BETA::: 5.5832 
TREA TltEm tJo 12 Z::: -2IfO. 36 t 6 X VALUE S: 4.5809 

-5.8369 6.6387 

-4.7554 4.9580 

-3.6738 3.2774 

-2.5923 1.5967 

-1.5107 .0.0840 

-0.4292 -1.7646 

-1.9615 0.6165 
ITERATION NO :2 

VARIABLE 1 FORiJARD DIFFEREtJCED BY 0
0

1000 TO '4.6809 
TREATtlEilT tiO 13 Z:::; -21}9 G 4683 X VALUES: 4.6809 
CURREtlT Z :::: -24964683 BASE Z :: -240.3616 
V.L\RIABLE 2 rom/AHD DIFFEREtlCED BY 0.1000 TO -1.8615 
TR£!~TflErH NO Uf Z::: -236.3 Lf79 X VALUES: 4.5809 
CURRENT Z = -236.3479 BASE Z ::: -240.3616 
VARIABLE 3 FnR\u\RD DIFFEREnCED BY 0.1000 To 0.7165 
TREATflErH NO 15 Z::: -23704742 X VALUES: 4.5809 
CURRENT Z ::: -23704742 BASE Z :: -240.3616 
ADJUSTt1EI'ITS To X VALUES; -1.7576 0.7747 0.5513 
FIRST STEP If! DIRECTIon OF STEEPEST ASCOIT 
TREATt-1EtlT NO 16 Z:: -86.3018 X VALUES: 
SECCHlD STEP 2.8233 

-1.9615 0.6165 
SLOPE :.: -91.0666 

-1.8615 0.6165 
SLOPE = 40.1374 

-1.9615 0.7165 
SLOPE ::: 28.8736 

-1.1868 1.1738 
THEATI1Ei'JT 1'i!] 17 Z:: 
THIRO oR LATER STEP 

-3703243 X VALUES: 1.0656 -0.4121 1.7310 
TREA TrlUlT NO 18 Z::: 
L.1 tlEM{ OPT! I'H LA TI on; BETA 
TREATMENT NO 19 Z::: 

-93.4293 X VALUES: 
::: 1.9661 
-37$2639 X VALUES: 

-0.6920 

1.1252 

0.3626' 2.2883 

-0.4384 1.7121 
ITERATION NO 3 

VARIAGLE 1 FOR~JARD DIFFEREtiCED BY 0.1000 To 1.2252 
TREAHtENT NO 20 z::: -3705352 X VALUES: 1.2252 
CURRENT Z ::: -3795352 BASE Z = -37

0 2639 , 
VARIABLE 2 FOR'v/ARD DIFFEREtlCED BY 0.1000 TO -0.3384 
TREATttErlT no 21 Z ::: -35e4981 X VALUES: 1.1252 
CURRENT Z ;;; -35.4981 BASE Z ;;; -37.2639 
VAfUt\8LE 3 F(JR\-IARD DIFFEREtlCED BY 0.1000 TO 1.8121 
TREATrlEtJT tJ(J 22 Z::: -40.4582 X VALUES: 1.1252 
CURRErH Z ::: ~40.45U2 BASE Z ::: -3702639 
AOJUSH1ENTS TO X VALUES: -0.1482 O.96Lt9 -1071+56 
FIRST STEP Itl DIRECTlotJ OF STEEPEST ASCEtlT 
TREA TtlEtJT tJ() 23 Z = -18.0583 X VALUES: 0.9770 
SECmm STEP 

-0 04384 1.7121 
SLOPE:: -2.712; 

-0.3384 1.7121 
SLOPE = 17.6571 

-0.4384 1.8121 
SLOPE = -31.943: 

0.5265 -0.0334 
TREAnlE~n tlO 2!~ z::: -102.9697 X VALUES: 0.8288 
LINEAR OPTInIZATlotH ur.:rA :: 0.6845 
TRtATlIEtlT NO 25 l = -12.8752 X VALUES: 1.0238 

1 .4914 - t .7790 

0.2221 0.5174 



112. 

NON-LINEAR LOCAL EXPLORATION 

VARIABLE 1 FORHARD DIFFEREtJCED BY 0.1000 TO 1.1238 
TREA Tt1E NT tJO 26 Z = -14.1130 X VALUES: 1.1238 0 0 2221 0.5174 
VARIABLE 2 F()RHARD DIFFEREtJCED BY 0.1000 TO 0.3221 
TREATt1EI1T NO 27 Z = -1205273 X VALUES: 1.0238 0.3221 0.5174 
VARIABLE 3 F()R\JARD DIFFERENCED BY 0.1000 TO 0.617.4 
TREATt1ENT NO 2B Z = -12.6886 X VALUES: 1.0238 0.2221 0.6174 
TREATt1EtJT NO 29 Z = -12 08752 X VALUES: 1.0238 0.2221 0.5174 
VARIABLE 1 nACl~WARD DIFFERENCED BY 001000 TO 0.,9238 
TREA Tt1Etll NO 30 z = -11 0 8373 X VALUES: 0.9238 0.2221 0.5174 
VARIABLE 2 DACKWARD DIFFERENCED BY 0 .. 1000 TO 0.1221 
TREA Tt1EtlT NO 31 Z = -13.3230 X VALUES: 1.0238 0.1221 0.5174 
'VARIABLE 3 BACKWARD DIFFERENCED BY 0.1000 TO 0 0 4174 
TREATttEtll NO 32 Z = -13.3217 X VALUES: 1.0238 0 0 2221 0.4174 
VARIABLE 1 MID 2 FOR\/ARD D! FFEREtlCED 
TREATt1Etll tm 33 z = -13.7252 X VALUES: 101238 0.3221 0 05174 
VARIABLE 1 AND 3 FOR\/ARD DIFFEREtJCED 

0.6174 TREAn1ENT NO 3l~ Z = -13.8065 X VALUES: 101238 0.2221 
VARIABL·E 2 MID 3 FORWARD DIFFERENCED 

0.6174 TREAn1EtlT NO 35 z = -1202807 X VALUES: 1.0238 0 0 3221 
JACOB I AtJ GRAD I Etll VECTOR 

-11.3788 3.9789 3 .. 1658 
HESSIAN t1ATRIX 

-20.0000 4.0000 12.0000 
4.0000 -10.0000 600000 

12 0 0000 6.0000 -26.0000 

THE STATIONARY PO I tll IS A t1AX ItlUt1 

TREAn1ENT NO 60 z = -9.2813 X VALUES: 0.3438 0.2344 0.3281 



APPENDIX V 

CONJUGATE DIRECTIONS 

This program follows the conjugate directions method as 

outlined in Chapter 5. The parameters defined in DATA statements 

have the following interpretations. 

Main program 

As in Appendix III. 

Subroutine 

NV AR = number of experimental fac tor s (here 3), 

L(I), L(2), L(3) ::: step size parameters for variables 

1 to 3 (h ere e a e h 2. 0 ) . 

Q = maximum step size (here 12.0). 

DMIN = minimum improvement in response from a full 

search iteration for which the experiment is to be 

continued (here 1.0). 

MIT = maximum number of i tera tions before the search 

must terminate (here 4). 

This method, which is also quadratically convergent, locates 

the exact minimum of the test function (2 = 9.2813) and corresponding 

factor levels in three iterations or 47 treatments. 
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66700 FOR T RAN COM P I L A T ION MAR K 2.9.190 

TUESDAY, 05/16/78 

C D I R 
= = -= = 

04:57 PM 

FILE 5=FILE5,UIHT=READER 

FILE 6=FILE6,UNIT=PRIHTER 

, 
1 

INTEGER TMAX 
Dlt1EtJSION X(10) 
COMMON x 

1 .1,ITEST,M,DELTA,A.B,C,FA,FB,FC.fl,F2,F3,ZL,ZBASE,S,UMAX,ITN 
DATA IN/S/.IO/61 
DATA X(1)/5.I.X(2)/.8 6 /.X(3){10 o /,TMAX/601 
ITREAT = 0 
ITREAT = ITREAT + 1 
Z = (X(1)-2.*X(2»**2 + (X(2)-3.*X(3»**2 + (3.*X(I).2.*X(3»**2 

1 - 2.*X(I) + X(2) - 3.*X(3) + 10. 
CAL~ QPT4(ITREAT,TMAX e I) 
IF (ITREAT.LT"H'tAX) GO iO 1 
STOP 
END 
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C SUBROUT I m: 
C METHOD OF C 

X. HH ZE A Fut!CT I ON OF SEVERAL VARI ABLES US I NG THE 
DIRECTIONS 

SUBROUTINE ITREAT.TMAXeZ) 
INTEG X 
REAL L. . 
DIMENSI X(10).L(10)~W(10)9U(10~10)~XO(10)".XN(10).XB(10) 
COMMON X 

1 @I.ITEST.M.DEL .A.BIC@FAfFB~FC.Fl~F2.F3.ZL.ZBASEtS.UMAX,ITN 
OA'Lt). n l I~L /2,,/®L(2)/2.J'liL(3)/2.I.Q/12.I.IO/6/. 

1 , OM 1 ! G I 1"11 T 
IF OTREJ\T ",O\JRITE (0 11 3) 

:3 FORMAT (lX~W tHTIAL ESTH1ATE~/) 
WRITE (IO d 4} Z.(X'J)lJ=I~NVAR) 

4 FORMAT (3X.' T NO .lj~4X~qZ =i,F12.4.4X,0X VALUES:'p6FI2,,4/ 
1 3X~L}n2,> ) 

IF U A" TO 10 
C STORE I BASE 

D032J::;;~~ 

32 XO(J) = X J 
'C SET UP INI H DIRECTION VECTORS 

DO! 2' I::.; i} 

DO 12 
U(loJ) ;;:~ 
IF (I.EO (I.J) - 1. 

12 CONTIN 

10 
C 

I ;;; 
ITES! .~ () 
I TN :;. {} 

Go 
C BEGIN 
"20 1::;: 

IF ( 
IF ( 

5 
21 I 

WRITE , 
114 FORt1tH 

16 

Ii. .~:;; '" 
FA ;~ Z 
Ui'1,{U( ~; 
UM! N ;~~ 

00 "} 6 
IF (U ( 
IF Un 

I 
UnAX = 
S :; L(I 
B :::; S 

e 0 DB 80@SO), ITEST 
HHf11 Tlm~ 

liN + 1 
( I n ~ 5) I TN 

ION ~1O@~I2/) 

H IN 0 I RE CT I ON tlO·. 13) 

UnA~{ ::;: U ( I 6 J) 
WHN ::;: U (1 9 J) 

\1R I T E (! (1 ~ 1 1 6) S 
"6 F-ORMAT (~X I •• 1~§.4~ ,}",,<u,.~ 

C STORE EiRE 
DO 18 J::.; 1 $ 

18 XD(J) = X(J) 

SIZE PARAt1ETER SET AT' ,Fl0.4) 
FOR CURRENT LINEAR MINIMIZATION 

C SPECIFY FIRST TR TnE~lT of LHJEAR OPTIMIZATION 
19 00 14 ~J;d ~ 
14 X(J) = XB(J) + 0 * U(1 9 J) 

IF (1 [Q,,5) RETURtJ 
I' F (1 (' ,.,0 ,,\ - ( ,~ ~ 0 
JI, 0 l4 ! " i I be) ! 0 .. 
DELTA ::: 0", 
f1 = 1 
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C RECORD WHETHER It1PROVEMENT IS GREATER THAN IN PREVIOUS LINEAR OPTIMNS 
30 DIFF = ZL - Z 

IF (DIFFol.ToDELTA) GO TO 34 
DELTA = UIFF 
M = 1-1 

34 . ZL = Z 
ITEST = 

C 
50 

36 

120 

RETURN 

F2 = Z 
ITEST = ITEST + 1 
DO 36 J=l,tNAR 
X{J) = 2. * XN(J) ·"XO(J) 
DIFF = ZL - Z 
IF (DIFF.GT.DELTA) M = NVAR 
IF (DIFF.GToDELTA) DELTA = DIFF 
WRITE (10,120) 
FORMAT (3X,'DOUBLE ITERATION STEP') 
RETURN 

C 
C RETURN FRat1 EVALUATIOn of DOUBLE ITERATION STEP (X=2XU-XO) 
60 F3 = Z 

WRITE (10,118) Fl,F2.F3,t1,DELTA 
118 FORMAT (3X,'FI ='tF12~4,5X.'F2 =',Fl0 0 4,5X,'F3 =',Fl0.4~5X, 

1 1M =',I2,5X,'DEL A. =',Fl0.4) 
IF (F3.GE.Fl) GO To 38 . 
T1 = (Fl-2.*F2+F3) * (Fl-F2-DELTA)**2 
T2 = DELTA * (Fl-F3)**2 I 2. 
IF (Tl~GE.T2) GO To 38 

C INTRODUCE NEW SEARCH DIRECTION VECTOR 
DO 42 ~=t1tINAR-l 
00 44 J::l iltNAR 

44 U(K,J):: U(K+l,J) 
42 CONTINUE 

DO 46 J=l,tNAR 
46 U(NVAR J) = XN(J) - XO(J) 

WRITE tXO.124) (U(NVAR,J1,J=1,NVAR) 
124 FORt1AT OX,' NEW SEARCH DIRECTION VECTOR:' .10FlO.4) 

DO 47 J=l,NVAR 
47 X(J) = XN(J) 

Z = F2 
GO TO 21 

38 IF (F3.LT&F2) GO To 48 
C SET NEW ITERATION BASE AS XN 

DO 56 J=l,tNAR 
56 XO{J) = XN(J) 

GO To 54 
C SET NEW ITERATION BASE AS 2XN-XO 
48 DO 52 J=l,NVAR 
52 XO(J) = 2. * XN(J) - XO(J) 
C END OF ITERATION 
54 ZIT = AMItH (F2. F3) 

ZOIFF = ZUASE - ZIT 
IF (ZDIFF.LT.DMIN.ORoITNQEQ.MIT) GO To 58 
IF (ZIT.GT.ZBASE) GO To 58 
!TEST = 0 
1=0 
DO 55 J=l,NVAR 

55 X(J):: XO(J) 
Z = ZIT 
GO To 20 

C END OF OPTIMIZATION 
58 ITREAT = TMAX 

RETURN 



c 
C TAKE A SECmtO STEP 
70 FB:: Z 

ITEST :: ITEST t 
C :: 2. ~': S 
IF (FB.GT"FA) C :: O. - S 

76 00 78 J::l,NVAR 
78 X(J):: Xn(J) + C * U(I.J) 

RETURN 
C 
C THIRD OR LATER STEP IN LINEAR MIUIMIZATIotJ 
80 FC:: Z 

DEN:: 2. * «B-C)*FA + (C-A)*FB + (A-B)*FC) 
TEST:: DEN I «A-B)*(B-C)*(C-A» 
IF (TEST.LT.O.) GO TO 90 
IF (FB.GT.FA) GO TO 88 

C FUNCTION DECREASHJG. TAKE A FURTHER STEP FOR\JARDS 
A :: B 
FA :: FB 
B :: C 
FB :: FC 
C :: C + S 
GO TO 76 

C FUNCTION INCREASING. TAKE A STEP BACKWARDS 
88 B:: A 

FB :: FA 
A :: C 
fA :: FC 
C :: C .. S 
GO TO 76 

c 
C CALCULATE OPTIMAL STEP SIZE 
gO NUM:: (S*B-C*C)*FA + (C*C-A*A)*FB + (A*A-B*B)*FC 

BETA:: NUt1 I DEN 
PROD = BETA * UMAX 
IF (ABS(PRQD)eGT.Q) BETA:: BETA * ABS(Q/PROD) 

C PLACE tJEH 1REATt1EtJT AT OPTH1AL POSITION 
DO 94 J::l etNAR 
X(J) :: XB(J) + BETA * U(I,J) 
IF O .. EQ .. NVAR.AND e ITEST .. EQ,,2) XtJ(J) :: X(J) 

94 CaNT lf~UE 
WRITE (10,128) BETA 

128 FORMAT (3X, 'LItJEAR oPT1tlIZATIOtl; BETA ::' ,F12.4) 
IF (I e EQ.NVAR.AND.ITEST.EQ.6) GO To 96 
IF (I.LT.NVAR) ITEST :: 0 
IF (I.EQ.NVAR) ITEST = 3 
RETURN 

c 

11 7. 

C END OF ITERATION (INTRODUCED DIRECTION). SET NEW ITERATION BASE 
CAT X N + BET 1\ ~: U rI 
96 DO 98 J::l.NVAR 
98 XO(J):: X(J) 

ITE5T :: 0 
I :: 0 
RETURN 
END 
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INITIAL ESTIMATE 

TREATMENT NO z = 1872.0000 X VALUES: 5.0000 

ITERATION NO 1 

SEARCH IN DIRECTION NO 1 
STEP SIZE PARAMETER SET AT 2.0000 
TREATMENT NO 2 Z = 1932.0000 X VALUES: 7.0000 
TREATMENT NO 3 Z = 1892.0000 X VALUES: 3.0000 
LINEAR OPTXtH ZATION; BETA = -0.5000 
TREATMEtlT tlO l~ Z = 1869.5000 X VALUES: 4.5000 
SEARCH IN DIRECTION NO 2 
STEP SIZE PARAMETER SET AT 2.0000 
TREATMENT NO 5 Z = 1575.5000 X VALUES: 4.5000 
TREATMENT NO 6 Z = 1321.5000 X VALUES: 4.5000 
LINEAR OPTIr1IZATIotJl BETA = 12.0000 
TREATMENT NO 7 Z = 705.5000 X VALUES: 4.5000 
SEARCH IN DIRECTION NO 3 
STEP SIZE PARAr1ETER SET AT 2.0000 
TREATMENT NO 8 Z = 1115.5000 X VALUES: 4.5000 
TREATMEtlT tlO 9 Z = 399.5000 X VALUES: 4.5000 
LINEAR OPTIMIZATION; BETA = -6.8846 
TREATMENT NO 10 Z = 89.3269 X VALUES: 4.5000 
DOUBLE ITERATION STEP 
TREATt1EtH tlO 11 Z 1940.7692 X VALUES: 4.0000 
Fl = 1872.0000 F2 = 89.3269 F3 = 1940.7692 M 

ITERATION ~10 2 

SEARCH IN DIRECTION NO 1 

-8.0000 

-8.0000 
-B.OOOo 

-8.0000 

-6.0000 
-4.0000 

4.0000 

4.0000 
4.0000 

4.0000. 

10.0000 

10.0000 
10.0000 

10.0000 

10.0000 
10.0000 

10.0000 

12.0000 
8.0000 

3.1154 

16.0000 -3.7692 = 2 DELTA = 1164.0000 

STEP SIZE PARAtlETER SET AT 2.0000 
TREATMENT NO 12 Z:: 198.5577 X VALU~S: 6.5000 4.0000 3.1154 
TREATMENT NO 13 Z = 60.0962. X VALUES: 205000 4.0000 3.1154 
LINEAR OPTIMIZATION; BETA = -1.7308 
TREATMENT NO 14 Z = 59.3713 X VALUES: 2.7692 4.0000 3.1154 
SEARCH IN DIRECTIotl tlO 2 
STEP SIZE PARAMETER SET AT 2.0000 
TREATMENT tID 15 Z :: 101.8328 X VALUES: 2.7692 6.0000 3.1154 
TREATnENT tlO 16 Z = 56.9098 X VALUES: 2.7692 2.0000 3.1154. 
LINEAR OPTIIlIZATIOtH BETA = -1.1231 
TREATMENT NO 17 Z :: 53.0648 X VALUES: 2.7692 2.8769 3.1154 
SEARCH IN DIRECTION NO 3 
STEP 51 ZE PARAflETER SET AT 2.0000 
TREATHEtlT NO W Z = 160.0802 X VALUES: 2.7692 2.8769 5.1154 
TREATMENT NO 19 Z = 50.0494 X VALUES: 2.7692 2.8769 1.1154 
LINEAR OPTIMIZATION; BETA = -1.0580 
TREATMENT no 20 : = 38.5134 X VALUES: 2.7692 2.B769 2.0574 
DQUBLE ITERATION STEP 
TREATMENT NO 21 Z :: 15.5710 X VALUES: 1.0385 1.7538 0.9994 
Fl :: 89.3269 F2:: 38.5134 F3 = 15.5710 M = DELTA:: 29.9556 
NEW SEARCH DIRECTION VECToR: -1.7308 -1.1231 -1.0580 
SEARCH IN DIRECTION NO 3 
STEP SIZE PARMIETER SET AT 1.1556 
TREATMENT NO 22 Z :: 14.5071 X VALUES: 0.7692 1.5791 0.8348 
TREATMENT NO 23 Z - 27.7175 X VALUES: -1.2308 0.2814 -0.3877 LINEAR OPTIMIZATIONI BETA = 1.3232 
TREATMENT NO 24 Z = 14.1157 X VALUES: 0.4791 1.3909 0.6575 



ITERATION NO 3. 

SEARCH IN DIRECTION rIo 1 
STEP SIZE PAF~AtlETER SET AT 2.0000 
TREATflEtlT tlO 25 Z = 52.2107 X VALUES: 
TREATMEtlT flO 26 I = 16.0207 X VALUES: 
LINEAR OPTIt1I ZATIotl; BETA = .0.9047 
TREATi-1HJT flO 27 Z = 10.0228 X VALUES: 
SEARCH IN DIRECTION NO 2 
STEP SIZE PARAMETER SET AT 200000 
TREAlt1EtlT tlO 28 Z = 72 08798 X VALUES: 
TREATMEtlT NO 29 Z = 51.1659 X VALUES: 
LINEAR OPTItlIZATIotU BETA = -0.2088 
TREAlhEtJT tID 30 Z = 9.4561 X VALUES: 
SEARCH IN DIRECTION NO 3 
STEP SIZE P/~RM1ETER SET AT 1.1556 
TREAnlEtlT tlO 31 Z = 25.9314 X VALUES: 
TREA Tti£iJT flO 32 Z = 3.0.1975 X VALUES: 
UrlEAR OPTItlIZATlotJ: OETA ::: 0.0662 
TREAltlErJT NO 33 Z ::: 9.3950 X VALUES: 
DQUGU: lTER/~not! STEP 

0.4791· 
.0.4791, 

.0.4791 

0.4791 
.0.4791 

0.4791 

"'05209 
2.4791 

0.3645 
TRElHt'lEtH 1m 31j. Z = 
n - 14.1157 F2 = 

11.6044 
9.3950 

-0.1146 

X VALUES: 0.2499 
~;Evi SEARCH DIRECTION VECTOR: F3 ~ 11.6044 M 
SEARCH III 0 WECTlOtl tlO 3 

-0.9791 -0.2789 

STEP SIZE PARAtlETER SET AT 2.0426 
TRE;1."inEtlT tID 35 Z = 2102874 
TREtHi1Un NO 36 Z = 26 .. 4171 
Um:AR OrTltHZATlnN; BETA = 
TREA"(tlEiiT flO 37 Z = 

X VALUES: 
X VALUES: 

0.1812 
9.2813 X VALUES: 

SE/~HCH r t! DIR[CTIml tlO 1 
STEP Sf ZE PARAtlETER SET AT 2.0.00.0 
TREA!MENT NO 38 Z = 61.2813 X VALUES: TRt: f, "lLtlT i"J (} 39 Z ::: 61.2813 X VALUES: L i iLi4P. OP) ItlI Vl.T1 DtH UETA :: 0.0000 
THE/\ ilT t10 40 Z ::: 952813 X VALUES: SEtU~CH I i1 OiRECTIml NO 2 
STEP SIZE PAR.llJ1ETER SET AT 1.1556 
TREATtlEtJT i'lCl 41 Z = 27.8895 X VALUES: 
TREATtlEfJT WJ Lf2 Z = 27.8895 X VALUES: LINEAR OPT! t II Z/.\ II otJ; [lETA = 0.0000 
TREATtlEtlT tiD 43 Z = 992813 X VALUES: SEARCH 1 tl DIR[CTIotl tlO 3 
STEP SIZE PARMIETER SET AT 2.0426 
TREATtlEl1T tlO 44 Z = 23.7385 X VALUES: 
TREATtiEm tlO 45 Z = 23.7385 X VALUES: LINEAR OPT H1IZAilotH BETA = 0.0000 
TREATtlENT NO 46 Z = 9.2813 X VALUES: DOUBLE ITERATION STEP 
TREATMEtlT tlO 47 Z = 9.2813 X VALUES: Fl = 9.2813 F2 = 9 0 2813 F3 = 

0.1304 
0.5987 

0.3438 

0.3438 
.0.3438 

0.3438 

-1.6563 
2.3438 

0.3438 

0.1096 
0.5779 

0.3438 

0.3438 
902813 M 

119. 

3.3909 0.6575 
-0.6091 0.6575 

0.4862 0.6575 

0.4862 2.6575 
0.4862 -1.3425 

.0.4862 0.4487 

-0.8116 -0.7738 
1.7839 1.6713 

0.4118 0.3787 

-.0.5673 0.0998 
~ 1 DELTA = 4.0929 

-1.5882 -0.1910 
2.4118 0.9483 

0.2344 0.3281 

0.2344 2.3281 
0.2344 -1.6719 

0.2344 0.3281 

-1.0634 -0.8944 
1 .5322 1 .5507 

0.2344 0.3281 

-1.7656 -0.2415 
2.2344 0.8977 

0.2344 0.3281 

0.2344 0.3281 
~ 2 DELTA = 0.0000 





APPENDIX VI 

RANDOM SEARCH WITH LEARNING 

This subroutine follows the procedure outlined in Chapter 5. 
The layout is slightly different from that of the previous four sub­
routines due to the nature of random search. In particular, experi­
mental ranges are defined for the three factors and the number of 
equally spaced levels to be considered within these ranges is specifier), 
If the prograrn were to be used for discrete rather than continuolui 
factors then actual levels (rather than ranges) could be .-lefined as 
DATA in the main program. The parameters set out in DATA 
s ta ter.oents in the rnain program have the following in terpre La tions: 

NVAR = number of experimental factors (here 3). 

N := vector of number of levels to be included for each facior; 

here N -
[ 

4
57 . 

LO and HI -- vec tors defining the experimental regions for each factor; 

here LO = [~l~] 
.. -10 

and HI = meaning 

for example tbat X(l) is allocated five equally spaced levels over the 

CLJ .. rige to La 10 (i~e(l -10, -5,0,5 and 10). 

1'1S = 'lni tial nurnber or seed for the random nlllnber generator, 

here 524,287. 

K -- learning rate parameter (here 4000). 

NTl -- nUlnber of treatments in the ini tial sampling phase (here 5) • 

NT2 - nuiYl bel' of trea tments in the learning phase (here 20). 

NT3 -- number of treatments in the final sampling phase (here 1 5). 

No pararneters are defined in the subroutine. 

The greates t response level achieved during the ini tial sampling 
phase is Z = - 920, and thi s is used as the standard of comparison when 
reVISll1g probabilities in the learning phase. The adjusted probability 
distributions for the three factors are listed after each treatment. 
At the end of the learning phase (after the 25th treatment) these 
distributions are decidedly peaked around factor levels nearest zero. 
Res ponse values in the final sampling phase are generally high 
(near zero), a number of near- optimal treatments being generated. 
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122. B6700 FOR T R A t~ C 0 11 P I L A T I 0 tl 11 ARK 2.9.190 

TUESDAY, 05/16/78 07=50 PM 

R S \J L 
=: - - = 

FILE 5=FILE59lJHIT=READER 

FILE 6=FILE6,lJtJIT=PRItJTER 
C t1AIN PROGRAt1t1E TO TEST RAnDOM SEARCH ROUTINE 

REAL LO,K 
D Hi E tl S I or l X ( 109 1 0) 9 J ( 1 a ) , tiC 1 0 ) 9 L 0 ( 1 0) , H I ( 1 a ) 
Cot1t10N X, J t IH 1 & IH2 9 tlT3 @ I,IS & ZtWRt1, NVAR, 1-1, I TEST, K 
DATA HJ/5/ 9 Io/61 9 tlSI 52L,,287/,tJTll 5/,NT2/201,tH3/15/,K/4000.1 
DATA ltv A H /31 ~ r l( 1 ) 151 9 fI ( 2 ) 141 • t J( 3 ) 17 / , L 0 (1 ) / - 1 0 • / , L 0 ( 2 ) / - 5 0 / , L 0 (3 ) 

1 1=1O.19HI(1)/10.I,HI(2)/10./,HI(3)'~ ! 

DO 10 l=l,tlVAR 
S ::: (HI(I)-LO(I)) / (tJ(I)~l,,) 
DO 12 L=l,tl(I) 

12 X(I9L) = LOO) + (1.=1)":S 
1 0 conTI tHJE 

~nOT ::: tlT 1 + !lT2 + tJT3 
ITREAT ::: 0 
ITRlAT.= ITREAT + 1 
CALL OPT5(ITREAT,Z) 
Z = (X(1,J(1)-2.*X(2,J(2))**2 + (X(2,J(2»-3.*X(3,J(3»)**2 + 

1 (3.*X(1.J(1»-2.*X(3,J(3»)**2 2.*X(1,J(1» + X(2,J(2» --
2 3.*X(3,J(3») + 10. 

Z = -z 
IF (ITREAT.LE.IJTOT) GO To 1 
STOP 
\7ND 



c 
c 

3 

18 
4 

S 

c 

7 

8 

10 

c 
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SUBROUTInE TO FIrm THE t1AXItlUrl FOR A FUtlCTIOtJ ·oF SEVERAL VARIABLES 
US ItJG RAtHHHl SEARCH PLUS LEARIII HG 

SUGROlJTltlE OPT5(ITREAT,Z) 
REAL I~ 
01 f1Et IS I OIl X ( 10. 10) • tl ( 10) • S\I( 10) , E ( 10, 10) ,P (10, 10) , CP ( 10$ 1 1 )'9 

1 0 ( 1 O. 1 0 ) , J ( 1 0) • \1 ( 1 0 ~ 1 0 ) " 
DOUBLE PRECISIOtl F(2} 
Cor1r1O~1 x 9 J t rlTl • rlT2. tJT3, IJS. ZNORt1, NVAR. fl, ITEST, K 
DATA Io/()/ $F/'LJP\JARDS', 'DOHtHJARDS'./ 
IF (ITHE/I"f",GT.l) GO To 1 
\~R I TE (I () ~ 3 ) 
fORt1AT (lX,'DISCRETE X VALUESI/) 
DO 1 B I::; 1 ,r JV AR , 
~JR I T E (I (J , l~ ) I j {X ( I f L ) § L::: i ~ 11 ( I ) ) 
FORI1AT (3~<, 'VAfnAflLE ilO' s I3*6X~ 10F10,,2) 
\JR I T [ (I () , 5 ) 
FORtlAT (/l}(,'ItlITIAL SJ\flPLIrlG PHASE ' !) 
NT2 ::; tlT2 -I- tlrl 
tH3 :: NT 3 + tH2 
ZtJOR11 :.:-10000. 

S £: T UP I il I T I A L C HOI CEO I S TR I BUT lCm S 
DO 20 I=l.tNAR 
51! ( f 'I _. 0' 
'" \" ~ 1. J "".. ) 61 

DO 22 L~ldl(I) 
EOd.) ~:: 3" 
\ of ( I .' L) ::', ? 0 ,h': E ( I Q L ) 

(1):; SI/(!) 1· \/(I~L) 

L~LCU /~TE MW CUI1ULATE PRi)f3ABILITI;·" 
DO 24 1::1 j:1VAR 
CP(Igi) ::; 0" 
DO 26 L.=1 jtJ(l) 
p (1 ~ L) :-; \J{ I ,U / S\·/ ( I ) 
CP(I,L+l) :.: CP(I,L) + P(I,L) 
CorH I flUE 
~~R 1 TE (I (1 96) 
FORr1/-\T (/3X g 'ItllTIAL PROBABILITIES;/) 
00 28 1::::1 ~tNAR 
WR I TE (I () ~ 7) (P (I t L) , L= 1 , tJ (I » 
FoRnAT (1)(" 10FB.I~) 
~JR I TE (I [), u) 
FOR 1iA T (1 X, I ') 

ITEST :.: () 
GO To 50 
COtH I rlUE 
JTREAT :.: ITREAT - 1 
WRITE (10,10) JTREAT,Z,(X(I.J(I»,I=l,IJVAR) 
FORt1AT (3X,'TREATt1EtJT tlO',I3.5X.'Z =',F12.4,5X,'X VALUES:'~6FI2,,!ll 

1 lX,4F1204l) 

GOT (J (3 0 , 40 , 50 ), I T EST 
C UPDATE P[RF()Rt1MICE rlORn 

IF (ZtJOHt1&LT .. Z) ZtlORtl = Z 
IF (ITREAT.EQ.tJTt) ITEST = 1 
GO To 50 
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C 
30 IF (ZtlORt1oL T .Z) ZIlORt1 = Z 

WR ITE (Io. 11 ) 
11 FOR~1AT (/1 X, 'LEARtlltlG PHASE' n 

\~RITE (In, 12) ZtlORt1 
12 FORt1AT (/3X, 'PERFOR~1ANCE STAt,JOARD OR NOR!1 =' ,F12 0 4!) 

WRITE (10,8) 
ITEST = 2 
GO TO 50 

c 
C REVISE PROBABILITY OF VALUE J(I) OF EACH VARIABLE I 
40 ID = 1 

42 

44 

14 

46 

17 
C 

IF (Zol T .ZtJORn) ID = 2 
ADJT = (Z-ZIIORt1) / K 
00 42 1=1, fNAR 
D(I,J(I) = ADJT 
E(I,J(I» = E(I,J(I» + D(I,J(I» 
SW(I) = SW(I) - W(I,J(l» 
Wei J(I» = 2.**E(I.J(I» 
S\.I( f> = S\J( 1) + H(I, J (I» 
Do 44 l=l,tNAR 
CP (I, 1) = Oe 
DO 44 l=l,tJ(l) 
P(I,l) = W(I,l) / SW(I) 
CP(I,L+l) = CP(I,L) + P(I,L) 
WRITE (10,14) F(ID),(J(I),I=l,NVAR) 
FORMAT (3X,'PRnBABIlITIES REVISED ',A12,'FOR X{I,J{I», All I, J(I 

1) =',1012) , 
o0461=1,fWAR 
WRITE (10,7) (P(I,L),L=l,N(I» 
IF (ITREAT.LE.NT2) GO To 50 
ITEST = 3 
\~R ITE (Io. 17) 
FORt1AT (/lX, 'FINAL SAt1PLING PHASE'!) 

C SAI'1PLE A VALUE FRat1 EACH unIVARIATE DISTRIBUTION 
50 DO 64 l=l,NVAR 

R = RANDot1(IIS) 
DO 66 L=l,rJ(I) 

66 
64 

IF (R.GT.CP(I,L+1» GO TO 66 
J(I) = L 
Go To 64 
CONTINUE 
CONTINUE 
RETURN 
END 



DISCRETE X VALUES 125. 

VARIAElLE ~IO 1 -10.00 -5.00 0.00 5.00 10.00 
VARIAULE tlO 2 -5.00 0.00 5.00 10.00 
VARIAElLE flO 3 -10.00 -5.00 0.00- 5.00 10.00 15.00 20.00 

It! IT I AL SM1PLl tlG PHASE 

INITIAL PROElAB I LI TI E S 

0.2000 0.2000 0.2000 0.2000 0.2000 
0.2500 0.2500 0.2500 0.2500 
0.1429 0.1429 0.1429 0.11129 0.1429 0.1429 0.1429 

TREAT/lEnT NO 1 Z :: -6080.0000 X VALUES: -10.0000 -5.0000 15.0000 TREA H1EtlT tlO 2 Z :: -2510.0000 X VtILUES: 5.0000 5.0000 -10.0000 TREAT/1EtlT tlO 3 Z :: -4050.0000 X VALUES: -5.0000 0.0000 15.0000 
TREA nlE IlT flO Lf Z :: -1940.0000 X VALUES: -10.0000 10.0000 0.0000 TREATt1£tIT NO 5 Z :: -920.0000 X VALUES: 10.0000 5.0000 0.0000 

LEARNING PHASE 

PERFORMANCE STAtJDARD OR tlORtl :: -920.0000 

TREATMEtJT NO 6 z:: -2010.0000 X VALUES: -10.0000 -5.0000 
PROBA81LITIES REVISED DOWMARDS FoR X(I,J{I», ALL I, J(I) = 14 
0.1715 0.2071 0.2071 0.2071 0.2071 

5.0000 

0.2163 0.2612 0.2612 0.2612 
0.1465 0.1465 0.1465 0.1213 0.11.650. Jlf65 0.1465 
TREATtlEtlT flO 7 Z:: -1530.0000 X VAl.UES: -5.0000 5.0000 
PROBABILITIES ftEVrSED Dmm\JJ\RDS FOR X(I.J(I», ALL I, J(I) :: 2 3 1 
0.1751 0.1903 0.2115 0.2115 0.2115 
0.2221 0.2683 0.2414 0.2683 

-10.0000 

0.1337 O. Jlf86 0.1486 0.1231 o. tL,86 0.11.86 b.1486 
TREATrlEtJT NO 8 Z:: -720.0000 X VALUES: -5.0000 -5.0000 
PROBABILITIES REVISED UP\/ARDS FoR X(I.J(I», ALL I, J(I) :: 2 1 1 
0.1740 0.1957 0.2101 0.2101 0.2101 

-10.0000 

0.2281 0.2662 0.2395 0.2662 
0.1378 0.1479 0.1479 0.1225 0.1479 0.1479 0.1479 
TREATt1EtlT tiD 9 Z:: -980.0000 X VALUES: -5.0000 10.0000 
PROBABILITIES REVISED DOW~MRDS FoR X(I,J(I», ALL I. J(I) :: 2 4 3 
0.1743 0.1941 0.2105 0.2105 0.2105 
0.2288 0.2669 0.2401 0.2642 

0.0000 

0.1380 0.1482 0.1466 0.1227 0.1482 0.1482 0.1482 
TREATttE:JT NO 10 Z::: -62 l .0.0000 X VALUES: -5.0000 5.0000 
PROElABlLITlES m:VISEO OmMJARDS FOR X(I.J(I). ALL I, J(I) ::: 2 3 7 
0.1974 0.0874 0.2384 0.2384 0.2384 

20.0000 

0.2675 0.3121 0.1117 0.3088 
0.1515 0.1627 0.1610 0.1347 0.1627 0.1627 0.0647 
TREATt1EtJT tlO 11 Z::: -1980.0000 X V!\LUES: -10.0000 10.0000 
PROBABILITIES REVISED Do\-/t'JI-IARDS FOR X(I,J(I», ALL I, J(I):: 4 2 
0.1699 0.0904 0.2466 0.2466 0.2466 
0.2821 0.3291 0.1178 0.2710 

-5.0000 

0.1558 0.1392 0.1655 0.1385 0.1673 0.1673 0.0665 
TREATMENT NO 12 Z:: -530.0000 X VAl.UES: 0.0000 10.0000 
PROBABILITIES REVISED UPHARDS FOR X(I.J(I», ALL I, J(I) :: 3 4 4 
0.1670 0.08(39 0.2593 0.2J.2l. 0.242l, 
0.2768 0.3230 0.1156 0.2846 
0.1543 0.1379 0.1639 0.1467 0.1657 0.1657 0.0659 
TREAH1EtIT NO 13 Z::· -270.0000 X VALUES: -5.0000 0.0000 
PROBABILITIES REVISED UP\-JAROS FOR X(I,J(I), ALL I. J(I) :: 2 2 3 
0.1652 0.0984 0.2566 0.2399 0.2399 
0.2666 0.3481 0.1113 0.2741 
0.1513 0.1352 0.1800 0.1439 0.1625 0.1625 0.0646 
TREATMENT NO 14 Z::: -250.0000 X VALUES: 5.0000 0.0000 
PROBABILITIES REVISED UP\mROS FOR X(I.J(i», ALL I, J(l) :: 4 2 3 
0.1605 0.0956 0.2493 0.2617 0.2330 
0.2556 0.3749 0.1067 0 0 2628 
0.1481 0.1323 0.1977 0.1408 0.1590 0.1590 0.0632 
TREATtlEtlT tiD. 15 Z:: -250.0000 X VALUES: 5.0000 0.0000 
PROBAElIL!TIES REVISED UP\JARDS FOR X(I.JeI». ALL I. J(I) :: 4 2 '3 

5.0000 

0.0000 

0.0000 

0.0000 



146. 

0.1555 0.0~26 0.2415 0.2847 0.2257 
0.2443 0.4025 0.1020 0.2512 
0.1445 0.1291 0.2168 0.1374 0.1552 0.1552 0.0617 
TREATi-lEtlT NO 16 Z = -350.0000 X VALUES: 0.0000 0.0000 
PROBABILITIES REVISED UPIIARDS For~ X(I,J(I». ALL r. J(I) = 3 2 2 
0.1517 0.0~04 0.2600 0.2777 0.2202 
0.2345 0.4261~ 0.0979 0.21~11 
0.1426 0.1407 0.2139 0.1356 0.1531 0.1531 0 0 0609 
TREAntEl1T tiD 17 Z = -3720.0000 X VALUES: -10.0000 -5.0000 
PROBABILITIES REVISED DOHtll-lARDS FOR X(I,J(I», ALL I, J(I) = 1 5 
0.0992 0.0~6D 0.2761 0.2949 0.2338 
0.1587 0.4687 0.1076 0.2650 
0.1515 0.1495 0.2273 O.Jl~If1 0.1002 0.1627 0.0647 
TREATtIEln NO 18 Z = -320.0000 X VALUES: 0.0000 -5.0000 
PROBABILITIES REVISED U~MRDS FOR X(I.J(I», ALL I, J(I) = 3 1 2 
0.0963 0.0931 0.2974 0.2863 0.2270 
0.1731 0.4607 0 0 1058 0.2605 
0.1491 0.1632 0.2237 0.1418 0.0985 0.1601 0.0637 
TREATMENT NO 19 Z = -2140.0000 X VALUES: -5.0000 0.0000 
PROBABILITIES REVISED DOHtI\-/ARDS FOR X(I,J(I», ALL I,J(I) = 2 2 5 
0.0980 0.0767 0.3028 0.2914 0.2311 
0.1897 0.4088 0.1160 0 0 2856 
0.1520 0.1663 0.2279' 0.1l~45 0.OB13 0.1631 0.06l~9 
TREATMENT NO 20 Z = -250.0000 X VALUES: 5.0000 .0.0000 
PROBABILITIES REVISED UPHARDS . FOR X(I,J(I», ALL-I, J(I)'= 4 2 3 ' 
0.0946 0.0741 0.2923 0 0 3160 0.2230 
0.1806 0.4371 0.1104 0.2719 
0.1478 0.1617 0.2490 0.1406 0.0791 0.1587. 0

0
0631 

TREATtIEIIT tlO 21 Z = -3520.0000 X VALUES: 10.0000 0.0000 
PROBABILITIES REVISED UOUtl\IARDS FOR X(I,J(I), ALL I, J(I) = 5 2 1 
0.1029 0.0806 0.3180 0.3438 0.1547 
0.2146 0.3310 0.1312 0.3231 
0.0995 0.1709 0.2631 0.1485 0.0835 0.1677 0.0667 
TREATI1EtlT NO 22 Z = -650.0000 X VALUES: 5.0000 5.0000 
PROBABILITIES REVISED UP\MRDS FOR X(I,J(I».ALL I, J(I) = 4 3 5 
0.1013 0.0793 0.3129 0.3544 0.1522 
0.2133 0.3290 0.1366 0.3211 
0.0991 0.1702 0.2621 0.1479·0.0872 0.1670 0.0664 
TREATtlEtlT tiD 23 Z = -1980.0000 X VALUES: -10.0000 10.0000 
PROUABILITIES REVISED DOIltll.JARDS FOR X(I,J(I)), ALL I, J(I) = 4.2 
0.0857 0.0807 0.3183 0.3606 0.1548 
0.2255 0.3477 0.1444 0.2824 
0.1020 0.tL~58 0.2698 0.1523 0.0898 0.1719 0.0684 
TREAnlENT rm 2l. Z = -1310 0 0000 X V/\LUES: 10.0000 -5.0000 
PROBAUILITIES REVISED DmJtl\,IARDS FOR X(I.J(I), ALL I, J(I) = 5 1 3 
0.0866 0.0815 0.3215 0.3642 0.1461 . 
0.2139 0.3529 0.1466 0.2866 
0.1039 0.11~B4 0.2567 0.1550 0.0914 0.1750 0.0696 
TREATMEtlT tiD 25 Z = -10.0000 X VALUES: 0.0000 0.0000 
PROBABILITIES REVISED UPWARDS FOR X(I,J(I», ALL I, J(I) = 3 2 3 
0~0821 0.0773 0.3568 .0.3453 0.1385 
0.2017 0.3897 0.1383 0.2703 
0.0995 0.1422 0.2879 0.1485 0.0875 0.1677 0.0667 

FINAL SAt1PLIIlG PHASE 

TREATHEtlT ~IO 26 Z = -2230.0000 X VALUES: 5.0000 0.0000 TREA TIlEtlT NO 27 Z = -630.0000 X VALUES: 5.0000 10.0000 TREATMENT NO 28 Z = -530.0000 X VALUES: 0.0000 10.0000 TREATt'IENT NO 29 Z = -2340.0000 X VAlUES: 10.0000 10.0000 
TREATI1EIlT tiD 30 Z = -3090.0000 X VALUES: 5.0000 10.0000 TREATtlENT NO 31 Z = -270.0000 X VALUES: S.OOOO 10.0000 
TREA TtlEllT tlO 32 Z = -520.0000 X VALUES: 0.0000 10.0000 TREATtlEtn NO 33 Z = -1930.0000 X VALUES: 10.0000 0.0000 
TREATtlEllT rIo 3L. Z = -590.0000 X VALUES: 0.0000 -5.0000 TREATtIENT NO 35 Z = -2890.0000 X VALUES: 0.0000 0.0000 TREA Ttl E rlT tlO 36 Z = -10.0000 X VALUES: 0.0000 0.0000 TREATNENT NO 37 Z = -570.0000 X VALUES: 10.0000 10.0000 TREAmErH tlO 38 Z = -560.0000 X VALUES: 5.0000 10.0000 TREATtIE~lT tID 39 Z = -320.0000 X VALUES: 0.0000 0.0000 TREATMENT NO 40 Z = -250.0000 X VALUES: 5.0000 0.0000 

-5.0000 

10.0000 

-5.0000 

10.0000 

0.0000 

-10.0000 

10.0000 

-5.0000 

0.0000 

0.0000 

15.0000 
10.0000 
5.0000 

-5.0000 
-10.0000 

5.0000 
0.0000 

-5.0000 
5.0000 

15.0000 
0.0000 

10.0000 
0.0000. 
5.0000 
0.0000 
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