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PREFACE

Over the last decade there has been a
remarkable increase in the use of systems modelling
for research in farm management. This has been
accompanied by substantial progress in the develop-
ment of model building techniques for farming systems.
Progress has been less rapid, however, in the
development of procedures for testing the validity
of bioeconomic models and for using them to explore
the response of systems to factors under the control
of management, This publication is concerned with
the latter problem area. Various procedures for
designing simulation experiments to determine optimal
factor levels are discussed and compared.

Dr Harrison, lecturer in economics in the
Department of External Studies, University of Queensland,
has prepared this Report during a sabbatical period in
the Department of Farm Management & Rural Valuation
at Lincoln College.

The material presented is based on a series
of lectures given by Dr Harrison to graduate students
as part of a course in agricultural systems. Subsequent
to offering these lectures a package of computer programs
for optimization purposes was developed. These
programs are in the form of FORTRAN subroutines
which have been designed for ease of coupling to agri-
cultural systems models. Listings of the programs
and output for test functions are provided as appendices.

J. B. Dent
Director



ACKNOWLEDGEMENTS

The author expresses gratitude to
Michael Alemson, Malcolm Blackie, Barry Dent,
Gary Fick, Roger Gale, and John Longworth for

comments on earlier drafts of this Report.



CHAPTER 1

INTRODUCTION

There has been a rapid expansion in the application of
the systems approach to farm management research problems
in the last 15 years. Consequently there has been an increasing
awareness of the need for efficient procedures for implementing
systems models so that information about the real farming systems
they represent can be derived, Progress has also been made in
the development of experimental design procedures for identifying
levels of variables which optimize the performance of systems.
These design procedures, which are based on mathematical
methods of numerical optimization, have not been widely exploited
by agricultural systems researchers. Rather the tendency has
been to conduct simulation experiments with traditional designs
such as factorials and response surface designs. This report
explains various optimum-seeking design procedures for simulation
experiments with agricultural systems models. The practical

aspects of implementing these procedures are also discussed.

The current chapter begins with a brief overview of systems
research philosophy and methodology. The experimentation stage
of the systems approach is then examined in some detail and
differences between simulation experiments and the more traditional
experiments conducted on real agricultural systems are discussed.
Finally, a perspective for viewing farm-management oriented

simulation is provided.

Chapter 2 reviews traditional designs for agricultural
experiments with particular emphasis on factorials and central
composite designs. Chapter 3 outlines methods of optimization
with respect to a single controllable factor while Chapter 4 introduces

"hill-climbing'' or multi variate search with reference to the

1.



method of steepest ascent. More efficient design procedures
including the simplex method, alternating variable search,
conjugate directions and random-search-with-learning are
explained in Chapter 5. Chapter 6 examines related issues

such as dealing with uncertainty in stochastic models and hahdling
resource constra-ints. In addition, the application of search
procedures to parameter estimation during the construction of

the model is outlined. Suggestions are made concerning the

choice of experimental design for particular modelling situations.

The general layout of five computer subroutines for
optimum-=seeking experimental designs which have been developed
at Lincoln College is explained in Appendix I, and the subroutines
themselves are provided as FORTRAN listings in Appendices II
through to VI.

1.1 The Systems Approach

The term 'system' is used here in the context presented
by Shannon: 'a group of objects united by some form of interaction
or independence to perform a specified function' [Shannon, 1975:15] .
In essence the 'systems approach' involves construction of a model
of the particular objects of interest and their interrelationships,
and manipulation of this model to gain a knowledge of how the real
system would behave under a range of operating conditions and
environments. Extensive development of techniques for the
investigation of organized systems (henceforth referred to as
systems research techniques) has taken place in engineering,
aeronautics, meteorology, management science, agriculture,
ecology and other disciplines. Within agric.ulture, many farm
economists, agronomists, agrostologists, animal nutritionists
and entomologists have come to embrace this approach. Agricultural
systems which have been modelled include entire regions, industries,

farms, pastures and crop enterprises, groups of animals and



individual animals, soil water profiles over time, plant-disease
systems and many others. The form of model most frequently
employed is an abstract representation of the behaviour of the
system over time, expressed in symbolic language and programmed
to a computer. The rationale for building such models is that the
extent of manipulation which can be carried out on the system itself
(real system) is severely limited. If experiments are conducted
with a computer model there is the possibility of saving both cost
and time; the real system (if it exists) is not altered or harmed

by the experiments; and, of course, experiments can be performed

on models of systems which are not yet in existence.

Most systems of interest are so complex that it is
impossible to understand them completely. 'The model, therefore,
does not contain every detail of the system it is designed to mimic,
but only those of importance to the particular application for which

it is to be used.

Any application of systems research proceeds through a
number of more or less clearly defined stages. Various classi-
fications of these research steps have been advanced; the following
list is an adaption of that by Anderson [1974], and is explained

more fully therein:

1. Formulation of the problem;
. Analysis of the system:;

. Synthesis of the model;

2
3
4. Programming the model to a computer;
5. Testing the model;

6. Implementation of the model; and

7. Interpretation of the results and reporting to

the relevant authority.

These steps are performed in the sequence in which they

are listed, although there may be some cycling between them.



For instance, validation tests (step 5) may reveal a need for
refinement to model structure (step 3) which would be followed

by further testing (step 5).

There has been a tendency in agricultural systems studies
for most of the researcher's time to be devoted to model
construction (Steés 2 to 4), with inadequate attention being given
to testing (step 5) and experimentation with the model (step 6).
This imbalance of research effort has been attributed to the
exhaustive demands of constructing models and getting them
to operate on the computer [Wright, 1971 1. Increasing attention
is now being paid to validation tests.l On the other hand, although
highly efficient designs have recently become available for simulation
experiments, their rate of adoption by agricultural systems

researchers has been slow,

1.2 The Fxperimentation Phase

As already indicated, construction and validation of a
model is only a part of the systems research effort. Once a
satisfactory model is available the researcher can set about to
answer some of the questions originally posed. Careful planning
prior to the execution of these experiments is essential if the

potential usefulness of the model is to be fully realised.

Before examining the special features of computer
simulation experiments it is necessary to consider briefly
agricultural experimentation in general. Regardless of whether
an experiment is carried out in the field, glasshouse, laboratory
or on a computer model, there will be certain variables which we
wish to adjust, or set at a number of levels, and these are known

as experimental factors. The factors may be qualitative, such as

For example, see Hermann [1967], Mihram [1972] and Harrison
and Fick [1978 1.



crop variety, strain of animél, spray versus no-spray decisions.
They may be quantitative and measurable in whole units bonly

(e.g. number of cultivations throughout the crop g-’rowing season)
or they may be quantitativé and adjustable on a continuous scale
(e.g. fertilizer application rates, animal feeding levels). Often
we wish to vary rﬁore than oné factor at a time, and a single
combination of levels of all factors is known as a treatment.

For example, nitrogen and phosphorus application rates of 30

and 10 kg per ha respectively would constitute a treatment,

30 and 20 kg would be another, 40 and 30 kg vyet another. An
experiment consists of the evaluation of two or more treatments
in terms of some measure of response. For example, the response
variable in a crop fertilizer trial is usually crop yield, expressed

on a per hectare basis,

In a field experiment such as a fertilizer trial a small
plot of land is allocated to each treatment. Plots for the various
treatments may be laid out in a completely randomized fashion or
perhaps randomized within blocks or groupings of treatments,
An attempt is made when carrying out the experiment to control
as fully as possible those factors which are not being purposefully
adjusted. Thus soil type, slope, seed quality etc. are made as
uniform as possible, pest and disease incidence is strictly limited,
each plot is given the same number of cultivations, and so on.
But even under the best of management the response from a given
treatment will depend not only on the levels of the experimental
factors but also on other factors beyond the control of the experimenter,
In other words, if the same treatment is applied to two or more plots
then different responses will be obtained from each. For this reason

it is usual to include a number of repetitions or replicates of each

treatment, and to average the response over these replicates when

determining the effects of the factors,

The choice of expérimental design, and subsequent analysis

of the response observations, will depend on the purpose for carrying



out the experiment, Generally, agricultural experiments fall

"ves/nc' experiments,
y P

into two broad classes: (a) ''where next'' or
and (b) "how much' experiments [Dillon, 1966:64]. Those in the former
group are designed to explore certain points on the response pattern

or surface; the latter seek to determine the combination of factor

levels which is consistent with optimal response (e.g. maximal

‘yield or most profitable yield). On the above basis, Hunter and

Naylor [1970] distinguish between exploratory and optimization

experiments. This report is concerned primarily with the latter

class.

A wide variety of experimental designs are used for
‘agricultural experiments, including complete and incomplete factorials,
response surface designs, incomplete block designs, lattice and
latin squares and many others. These designs are explained in

a number of standard reference works,

Field experiments normally take considerable time to
carry out, even though the treatments are managed and evaluated
simultaneously (i.e., each plot is planted on or about the same day,
cultural operations are carried out at the same times, and the plots
are harvested together). Time and resource limitations usually
restrict the experimenter to examine responses with respect to at
most two or three factors, particularly with experiments involving

crops, pastures or large animals.

2 .
See, for example, Cochran and Cox [1957 ], Dillon [1977 ], Heady
and Dillon [1961], Johnson and Leone [1964 ], Mendenhall [{1968],
Myers [1971 ] and Snedecor and Cochran [1967].



Since the expei‘iment‘is carried out at a given location,
in a given season, the results are only strictly applicable to
that Lparticular enviroﬁment, and great caution must be exercised
in drawing implications for other sites and seasons., Of courée,
the experiment may be repeated in space or time, but only at a
substantial increase in research costs. These problems associated
with field experiments also apply to glasshouse and laboratory
experiments, though perhaps to a lesser extent in that the cost

of materials and time span may not be as great.

1.3 Computer Simulation Fxperiments

Following this briéf review of agricultural experimentation
in general, we may now examine more closely experiments carried
out with a computer model rather than with the real system.

These are referred to as simulation (or simular) experiments.
Since this is indeed a form of experimentation, the vast literature
on-design layouts is entirely relevant, and in fact traditional designs
such as factorials are normally employed. However, those fail

to take advantage of the special features of simulation experiments
with regard to the determination of optimal factor levels; these

special features are:

(i) substantially lower cost per treatment;
(ii) compression of time; and

(iii) control over experimental variability.

Typically, the lion's share of the cost in a systems study is
incurred in developing and perhaps testing the model. The cost of
evaluating each treatment is usually small hence experiments with

numbers of treatments running into the hundreds, become possible.

Since the digital computer is a sequential processor,
treatments must be evaluated sequentially rather than simultaneously
as in the case of experiments on a real system. This presents no

serious problems because simulation of performance under each



treatment takes so little time. In fact, sequential experimentation
has a major advantage in that it allows the experimenter to know
the outcome under each treatment before deciding on the factor
levels of the next treatment and to take advantage of information
generated early in the experiment to guide its later stages.

Wasted treatments are therefore eliminated and the investigation

is concentrated on promising regions of the experimental factors

or controllable variables. The result is that designs can be
employed which will locate optimal factor combinations with a
fraction of the number of treatments that would be needed in real

experiments to determine optima with the same degree of precision.

Agricultural systems typically operate in a highly uncertain
environment, Climatic and biological uncertainty are incorporated
in systems models by generating random values of weather variables
and by including random components in relationships describing
plant and animal performance. As well, uncertainty in the economic
environment can be built into the model by way of random price and
cost variables, In multi-period (as distinct from static) models,
sequences of these stochastic variables are generated for each -
encounter with the model, i.e., for each replicate of each treatment,
Control over experimental variability lies in the method by which
computer routines for generating these environmental variables or
sequences of variables are initialized or seeded. In particular,
use of identical seeds for corresponding replicates under alternative
treatments leads to reproduction of identical sequences of values
of the uncertain variables. This procedure eliminates response
differences between treatments due to the re‘plicate effect, and
hence allows differences between treatments to be detected with a

smaller sample size (fewer environmental sequences or replicates).

The combined effect of the above features - ability to
include more treatments, rore effective use of treatments, and
minimal replication even when many uncertain environmental

variables are included - is to allow larger experiments to be carried



out taking account of temporal and spatial factors. The advantage

is most marked when the objective is to determine levels of several
factors (say four or more) which are simultaneously optimal.

However, this advantage can only be realized fully if one of a

group of design procedures known as 'optimum-seeking' or 'hill-
climbing' designs is used. Development of optimum-seeking
experimental designs has taken place in disciplines such as mathematics
and engineering. Agricultural scientists and systems researchers

are not generally familiar with these designs and as yet relatively

few applications have been made in bioeconomic systems research.

A number of such designs are presented in Chapters 3 to 5.

1.4 Terminology of Systemns Research

At this stage it is necessary to introduce a symbolic
framework for viewing the experimental design problem. Just as
the systems model is made up of a nymber of algebraic expressions,
so is it useful to represent the response/factor relationship in

s ymbolic form:

Z = f(X,Y)
where Z is the response variable;
X is a vector of factors the levels of which are
adjusted during the experiment; and

Y is a vector of non-controllable or environmental factors.

For example, in a fertilizer trial Z would represent yield, X could
contain elements ) (amount of nitrogen) and %, (amount of phosphorus)
while Y would include factors such as rainfall, temperature, initial

soil fertility, insect damage and so on.

The letter 'f' represents the relationship between response
and the causal factors, i.e., it represents the systems model. From
the point of view of experimentation the model is simply a procedure
for predicting or estimating the response of the real system to any

combination of factor levels under any environment. If the model is
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deterministic then only one performance prediction is needed for
each treatment. On the other hand, a number of replicates will
be needed in the case of a stochastic model. The sequential
nature of a simulation experiment is illustrated by Figure 1.1,
In this diagram a performance prediction (or encounter with the

model) takes plaée for each replicate of each treatment.

The placement of each successive treatment in an optimum-
seeking design is controlled by a set of rules which operates on the
responses from previousr treatments, These rules are norrr‘).ally
written into a subroutine which is called upon after each treatment
has been evaluated. In contrast, if a traditional experimental
design is used for an experiment with a simulation model on a
computer then this design can be fully specified in advance. It can
be incorporated as either input data or written into the main program

of the systems model,

1.5 Management Oriented Simulation

So far the discussion on simulation experiments has been
intentionally general. In this section attention will be focused on
a major application of optimum-seeking experiments, viz. manage-
ment-oriented research aimed at improving the efficiency of resource »
allocation on individual farms. Farm management research. is often
described as conditional normative in outlook, meaning that
prescriptions are sought as to what the farmer ought to do,
conditional upon him holding certain assumed goals. It is
appropriate, therefore, to review briefly the nature of management
decisions and the goals of farm operators which the decisions seek
to achieve, The relevant goals or objectiVe's will depend on the
level of aggregation of the system being modelled. Suppose initially
that this is a whole farm bdsiness. Management policies of the
farm-firm may be classed as structural, strategic or tactical
depending on the circumstances under which decisions are made

and on the frequency of the decisions [Chudleigh19711. ~ Structural
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FIGURE 1.1

Flowchart of Sequential Experimentation with a Computer Model



policies concern the long-run organization of the farm business
(e.g., whether to raise sheep or cattle, to grow generalist or
specialist crops, or to border dyke or spray irri‘gaté). Strategic
policies are also long-term but are subject to annual revision

(e.g., crop rotations, land development and machinery replacement.
strategies). Tactical policies are short-term and concern the
response to a particular environmental situation (e.g., whether to
purchase feed or sell stock during drought, when to use chemicals
on insect pests). Systems models may be used to generate
information which assists decision making at each of these three

levels,

The decisions made by a farmer at each of the above policy
levels will depend on his short-run and long-run goals. In the
short term (typically represented by annual models) the literature
suggests a dominant goal of profit maximization or maximization
of utility as a function of income level and income variance, In
the long term it is appropriate to replace the flow concept of annual
income with a stock concept of wealth., Here the literature frequently
suggests the objective of maximization of future net worth (or its
present equivalent) subject to 'constraint goals' such as avoidance

of financial collapse and adequate annual consumption expenditure.

If the system under study is only a part of the farm business
then a different type of objective may be more suitable., For example,
when modelling machinery renewal or pest control it may be reasonable
to assume constant income and to seek management policies which

minimize cost levels,.

In studying an agricultural system the researcher should
decide whether or not he is interested in identifying optimal manage-
ment policies. Many systems research studies are positive in
orientation. That is, they are exploratory in nature and designed
to increase understanding of the operation of the system rath{/er than
to produce prescriptions or recommendations for management. In

other cases the number of controllable or management variables is
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so great that optimization may not be possible anyway, or may

be unacceptably expensive in terms of computing time.

A fundamental question is whether farmers are optimizers
or whether merely 'satisficers' aiming for satisfactory levels of
profits provided other objectives are achieved [Simon, 1957].

And even if the farmer is a profit maximizer, it may be sufficient
for the adviser to demonstrate how he can improve (rather than
optimize) performance, and relatively simple experimental designs
will be adequate for this purpose. Further, the farmer may
already have management changes in mind and the adviser by
demonstrating that these particular changes will be profitable,

provides useful decision support to the farmer.

The decision to seek or not to seek optimal management
policies, therefore, is not automatic, and must be considered in
relation to the particulg?ﬁé'problem under study. In the past the
absence of attempts to identify optimal management policies in
systems studies has probably stemmed more from the lack of
knowledge about suitable experimental designs rather than from a
definite decision not to seek optimal policies. Certainly, the
mathematics behind some of the optimum-seeking design procedures
is not simple and many of the books on numerical search techniques
make extensive use of matrix algebra and symbolic notation. This
Report attempts to overcome the above problems by presenting the
essential features of optimization procedures in simple language
with a minimum of mathematics and using extensive examples and

diagrams.

While the terminology introduced earlier is again applicable
to management-oriented simulation, it is more convenient to introduce
some new terminology. In particular, the experimental factors are
now called decision or policy variables, and the factors beyond the
control of the experimenter are called non-controllable exogenous
variables or 'states of nature'. Fach treatment is a management

policy or strategy. The concept of a response is replaced by a
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criterion of business performance or manaiger's utility. The

aim of a simulation experiment is to determine the management
policy which will optimize the performance criterion. Symbolic
representation of the farm management problem to be solved by

simular experimentation may be expanded to:
optimize Z = g(P)

where P = f(X,Y,S, A)
Z 1is the multidimensional objective or utility function of
management;
X is a vector of policy variables (X; 0);
is a vector of non-controllable or environmental variables;
S is a vector of initial resource supplies constraining
resource use; and

A is a vector of the system's parameters.

The above discussion may be iliustrated with reference to
a farm enterprise planning example. Suppose an irrigation farmer
with limited water supplies wishes to determine the most suitable
combination of areas of irrigated wheat and lucerne to grow.‘
(The balance of his land may be sown to dryland pasture.) The
relation to be investigated may be summarized as:

Profit = f (area of wheat, area of lucerne,
rainfall, prices)

The model represented by f may be simply a small number

of accounting identities for determining the financial effects of varying

For further details of this kind of formulation see Anderson [1974] ,
Emshoff and Sisson [1970] and Harrison and Longworth [1977].

Of course, modelling and simulation is only one of a number of
management research techniques which could be addressed to this
problem. In fact, there is available a continuum of approaches
varying from quick low-cost expedients (budgeting) through
mathematical and dynamic programming to the relatively slow and
expensive systems approach. These alternative methodologies are
reviewed and compared by Harrison [1 9'76, Ch.31]. '
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the areas of the two crops under irrigation. Alternatively, it may

be a highly complex systems model which takes account of available
soil moisture, light interception of plants, photosynthetic activity,
starch accumulation, dry matter production, labour demands, cash
flows and so on. In any case, from the farm planning point of view
the model is simpiy a proctedure for predicting the level of profit

for any given management pdlicy or crop area combination under

any given bioeconomic environment. This procedure is repeated

for each treatment during the simulation experiment. For example,
“irrigating 40 ha of wheat and 10 ha of lucerne would be one treatment;
irrigating 20 ha of each would be another, If the model is deterministic
then each treatment is evaluated once only but in the case of a
stochastic model it is necessary to replicate each treatment a number

of times,

Procedures for determining the sequence of management
policies or treatments which must be evaluated in the simulation
experiment so as to locate the most profitable levels of policy or
decision variables at a reasonable computing cost are expounded in
subsequent chapters. Initially, management problems will be
considered in which there is only one policy variable (univariate optimization)
then this will be extended to the case of two variables (as above) and
finally to the general or n-variable case. Traditional or simultaneous
designs will be discussed first, then the more efficient but more

complex sequential designs.

While the above farm planning problem will be used to
illustrate the design procedures, the methods are quite general and

could equally well be applied to other biological or bioceconomic systems.
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1.6 Summary

This chapter has viewed th.e systems appﬁroach to agri-
cultural research in terms of a number of more or less clearly
defined stages. It was shown that important among these is
experimentation with the model to derive information about the
real system it represents. Any experiment, real or simular,
involves evaluation of response from two or more treatments in
which experimental factors are set at different combinations of
levels, As indicated, variability in response due to factors
outside the control of the experimenter usually leads to replication
of treatments. The special nature of simulation experiments with
regard to cost, time and control over variability allows use of
hill-climbing designs to locate optimal levels of a relatively
large number of experimental factors. These designs are
particularly useful in farm management research where the aim
is to determine management policies which will best achieve-the

objectives of the farmer.



CHAPTER 2

TRADITIONAL EXPERIMENTAL DESIGNS

Traditional experimental designs, sometimes referred to
as tabulation methods, require that all treatments be specified or
listed prior to the commencement of the experiment. The treatments
are chosen simultaneously, even though they may be evaluated one at
a time (as in computer simulation experiments). While these designs
fail to take advantage of the special features of experiments with
computer models as outlined in Chapter 1, they are simpler to use
than optimum-seeking sequential designs and are adequate for
optimization purposes when the number of factors is not large.
Also, they are sometimes used in conjunction with 'hill-climbing'
designs, both for exploratory experimentation and for the closing

stages of the search.

In this chapter the design and analysis of simulation experi-
ments using traditional or tabulation methods will be reviewed for the
single variable, bivariate and multivariate cases in turn. The
discussion will be limited to three of the most widely used designs,

viz, the full factorial, fractional factorial and central composite

design.

To make the discussion more meaningful it will be assumed
that a systems model of a Canterbury (N.Z.) irrigation farm has been
developed and has satisfied tests of validity. This model is to be
used to determine areas of the various crops and pastures which the
farmer should grow if his objective is to maximize net income. The
following discussion will consider the alternative situations in which
the model is deterministic and in which it is stochastic. (In the latter
case amount of rainfall each week, crop yields and product prices are

allowed to vary randomly between years.)

17.
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2.1 Single Factor Experiments

The simplest case of an optimiéation experiment is to
evaluate performance under just two alternative treatments or
policies, The one with the highest net income would be chosen
as optimal. Thus if irrigated wheat areas of 40 and 60 ha result
in incomes of $22,000 and $25,000 (with areas of all other crops
and pastures held fixed), then the latter level is to be recommended.
If the model is stochastic then each treatment could be replicated
say 10 times and mean net income compared using the student t

test. We may then choose the policy with the greatest mean

income or, alternatively, apply the more stringent criterion that
mean income must differ significantly by at least some minimum
amount of economic substance (say $1,000) before a choice is made.
If identical starting numbers or seeds are U.ised, in the generation of
environmental sequences for corresponding replicates of the two
treatments then a test on differences in incomes between paired
replicates is appropriate. > This blocking procedure for comparing
treatments under the same environmental conditions allows signi-
ficant response differences to be detected with fewer replicates than

that required under independent seeding.

Often it is desirable to include several levels of the experi-
mental factor, e.g. wheat areas of zero, 50, 100 and 150 ha. If the
model is deterministic only one feplicate of each of these tr‘eatm,ents
is evaluated and the level resulting in greatest income is chosen as
optimal. For a stochastic model the t test is replaced by one way

analysis of variance (ANOVA) and mean incomes for each treatment

compared on the basis of least significant difference. One or more

treatments may then be found superior to others. It should be noted,

however, that the ANOVA technique assumes independence of replicates

‘These t tests are described in most introductory statistics tests,
e.g. Mendenhall and Reinmuth [1978: 288, 296].



19.

between treatments and is not valid when' the random number
generators are identically seeded. In fact, there is then no
unexplained variation to be partitioned, any observed differences

between mean incomes being due solely to treatments [Chudleigh, 1971: 239 ].

An alternative form of analysis is regression or curve
fitting., This may be used regardless of whether the model is
deterministic or stochastic (either independently or identically seeded)
and provides more information than ANOVA by interpolation between
factor levels. As a result, the wheat area corfesponding to maximum
income can be located with greater precision. Under this approach,
an-equation describing the response relationship is obtained by
regressing predicted incomes (individual values or treatment means)
on wheat area using an ordinary least squares regression package.

The form of function most often adopted is the second-order polynomial

Z:m0+m1x+m2x

where Z is income, x is wheat area and the coefficients m, and m,

1
define the position and shape of the curve, A stationary point on this
dZ “m
curve occurs where the derivative — —is zero (i.e. where x = 1 and

dx ZInZ

this is the income maximizing level provided the second derivative (Zmz)

is negative. The above are known as the necessary and sufficient

conditions for a maximum and will be extended later to multivariate

cases.

2.2 The Factorial Design in Two Variables

Where there are two experimental factors or policy variables
of interest, appropriate levels of each may be combined in a complete
grid or full factorial design. ._.,m,'Fhe crosses in Table 2.1 represent the
16 factor combinations or treatments arising when areas of wheat and
lucerne under irrigation can each take four levels. (The balance of
the land may be sown to pastures.) Analyzskis 'options include two-way

analysis of variance and least squares regression. A stochastic model
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and independent seeding are again necessary for ANOVA to be
applicable. A second-order polynomial function derived by
regression analysis would include curvature terms for both factors

plus a measure of interaction between them (an x. x_ term) as

1.2
follows:
Z = + + + 2 2 x
T Mg T X T My X, TIgE) T My, TmgE
TABLE 2.1
Full Factorial Design with Two Policy Variables
Each at Four Levels '
. Area of wheat (ha)
] 0 50 100 150
o
g0 x X x x
© .
g 20 x x x x
—i
3 40 X X X X
8 60 b'e be bYe x
(%
<

A stationary point.on this response surface is found by solving the

simultaneous equations which result when the partial derivatives of

Z with respect to x. and x, are set to zero, i.e.

1
37
£s _ n
‘3Xl m, Zm3xl ijnE_)x2 - and
07 _
a—XZ = rn2 + 21rn4tx2 + 1rn5x1
so 2m3xl +m5X2 = -ml and
mSXl +2m4x2 = —mz
2Zm,.m_ - m_m
B 1 4 2 5
whence ) = > )
mg m3m4
2 -
L Mpms T mymg
2 2
mg - Amgm,
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The sufficient condition for a maximum is defined in terms of the |

first and second partial derivatives, i.e. S R

s

g"z" <o, _éb__Z__ < 0 and
*1 *2

2

o°z 3%z > < 2%z )2
axf aXZ Bxl axz

2
. If th
3< 0, m4<0andm3m4)m5 these

conditions are not met then a minimum or saddle point has been

which simplifies to m

located, indicating that income is highest at some other treatment,

perhaps one on the boundary of the experimental region.

The fitting of response surfaces and location of stationary
points has an important role in finishing off optimization experiments

and will be reconsidered later in that context,

2.3 Designs for Three or More Factors

The full factorial design may be extended readily to cases
of three or more experimental factors, but at the expense of rapidly
increasing the size of the experiment. When there are k factors at
n levels with each treatment replicated m times a total of mnk encounters
with the model is needed, Thus if there are seven controllable factors
(a relatively small number for models of many bioeconomic systems)
and each is assi'gned four levels then it is necessary to evaluate 4
or 16,384 treatments, each of which may be replicated say 10 times.
While the cost of this experiment would‘vary wikth the size and complexity
of the systems model and cost of computer time, let us make some
reasonable assumptions in order to arrive at a cost estimate.
Supposing each response evaluation requires one second of processor
time, :fxt a cost of $100 per hour, the cost of the whole experiment will
be approximately $4, 500 (without allowing for printing and paper
charges, etc.). The full factorial design may, therefore, be

unmanageably large and unacceptably expensive. This example



illustrates that simulation experiments implemented on a computer -
like real experiments with plants, animals or other physical media -
are not costless, and that their designs are constrained by the

research budget,

One means of reducing cost is to use a fractional (incomplete,
partial) factorial in which some combinations of factor 1évels are
omitted. This enables us to fit a second-order polynomial function
to the simulation output from evaluation of far fewer treatments
than needed in the full factorial. The analysis of response is less
complete than that possible with a full factorial design since inter-
action effects of higher than second order are confounded with main
factor effects., A fractional factorial requiring only one sixteenth
of the number of treatments of the full factorial where seven factors
are to be investigated is presented by Hunter and Naylor [1969: 46] .

The main use of fractional factorials (of which the Latin square is a

special case) is for screening of factors or identification of those

variables having greatest effect on response,

A further improvement over the‘fractional factorial,
especially when there are three or more experimental factors of
interest, is to be achieved through use of response surface method-
ology (RSM). In essence, RSM consists of a group of designs developed
specifically for generating data with which to estimate an equation to
the response surface [Box, 1954; Burdick and Naylor, 1968;

Dillon, 1977]. The usual form of equation is again thé second-

order polynomial, includihg linear (Xi)’ quadrati‘c (xiz) and ivnteraction
(xixj) terms. Particularly efficient among the response surface
designs is the central composite design which, because of its extensive
use in bioeconomic simulation studies, Wiil now be discussed in some

detail.
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2.4 Central Composite Designs

A typical central composite design for k e%perimental
factors consists of the full factorial design with only two levels of
each factor (Zk design points) augmented by 2k outside or 'star'
points or treatments plus a treatment at the centre of the design.
Returning to our farm planning example, suppose areas of irrigated
wheat and lucerne are set at 40 and 60 ha, and 20 and 30 ha, respectively.

For convenience we may code these factor levels using the transformations

_ area of wheat - 50 and
R 10

area of lucerne - 25
2 5

The levels of the two variables now take values of +1 and -1 on the new
coded scale and the 22 full factorial design would consist of the first
four freatments in Table 2.2. A central composite design is formed
by adding treatments 5 to 8 outside each face of the 'square' inscribed
by treatments 1 to 4, plus treatment 9 at the centre point. The

complete design is illustrated in Figure 2.1.

TABLE 2.2

Central Composite Design in Two Factors

Treatment No. X x

1 2
1 1 1)
2 1 -1) ,2

Z .

3 -1 1) factorial
4 -1 -1)
5 *x 0) star
6 ~oC 0)°® .
7 0 <) points
8 0 -oC)
9 0 0 centre point
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FIGURE 2.1

IMlustration of Central Composite
Design in Two Factors

X
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a ! I

points (treatments)
0O in 2k factorial
design
O star points

@ centre point

Although there are only nine treatments in this design

2
(as against 16 in the 4  factorial presented earlier), each of the factors

is set at five different levels, viz.

_d’

-1, 0, 1 and o€,

A typical

central composite design in three factors would consist of the 15

treatments as in Table 2.3,

Central Composite Design in Three Factors

and Figure 2.2,

TABLE 2.3

Treatment No.

X

1 2 3

1 1 1 1
2 1 1 -1
3 1 -1 1
4 1 -1 -1
5 -1 1 1
6 -1 1 -1
7 -1 -1 1
8 -1 -1 -1
9 L 0 0
10 -C 0 0
11 0 < 0
12 0 -« 0
13 0 0 o
14 0 0 -
15 0 0 0
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The value of &€ or the distance of the star points from the
design centre is chosen to give a compromise between precisior and
bias, both of which increase as K is increased. Usually a value is

adopted which will make the design either orthogonal or rotatable.

The orthogonal design has been found useful for fitting a performance

function to simulati'on output which enables response to be predicted

for different budgetary assumptions (factor levels) without having to

rerun the model [ McLintock, 1972] . Fach parameter in the equation

of the response surface is estimated independently of all other parameters,
facilitating the fitting of the equation and subsequent partitioning of
variance according to its possible causes. The total numbers of
treatments and appropriate o€ values for the orthogonal designs with

2 to 8 factors are listed in Table 2.4 (from McLintock, p. 81).

Rotatable designs have been developed specifically for fitting
second and higher order polynomials to response data [Hunter and
Naylor, 1969: 48] and the rotatable central composite is perhaps the
most useful of all simultaneous designs for agricultural simulation
work. When fitting a response surface the precision is greatest

(i.e. standard error of estimate smallest) at the centre of the design.

TABLE 2.4

Treatment Numbers and « Values for
Orthogonal Central Composite Design

Number of Number of Value of '€ ' to make
factors treatments design orthogonal

2 9 1.00

3 15 1.215
4 25 1.414
5 43 1.547
6 77 1.761
7 143 1.910
8 273 2.045
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FIGURE 2.2

Illustration of Central Composite Design in Three Factors

O points in 23 factorial
O star points

@ centre point

In a rotatable design the standard error of estimate is the same for

all points that are the same distance from the centre, regardless of
their direction from the centre. This equal-precision property is
desirable when little is known about the shape of the response surface

on the borders of the design region. The centre treatment is sometimes
replicated a number of times to provide a measure of variability of
response. The number of design points (including replicates of

the centre point) and values of &K for rotatable designs in 2 to 6 factors

are as follows (from Cochran and Cox, 1957: 347).
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TABLE 2.5

Number of Design Points and « Values
for a Rotatable Central Composite Design

Number of points in

Number of ) Total Value of
factors Zk Factorial Star Centre points x
2 4 4 5 13 1.414
3 8 6 6 20 1.682
4 16 8 7 31 2,000
5 16 10 6 32 2,000
6 32 12 9 53 2.378

In this table the designs in five and six factors employ ohly
one half of the full factorial design. Lists of treatments to be included

in these cases are provided by Cochran and Cox [1957: 371, 372].

While the treatments of the above designs may be completely
randomized (i.e. different environmental sequences used for each),
the precision of the experiment is increased if treatments are divided

into two or three groups or incomplete blocks [Cochran and Cox,

1957: 353] . These blocks may correspond to different simulated
climatic sequences [Johnston, 1973: 170; Hughes, 1973: 89 1.

The same seeds are used to generate stochastic environments within
blocks but different seeds are used between blocks. The block or
climate effects are then incorporated in the response function by

means of dummy or 0-1 variables.
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2.5 Summary

Some of the more common traditional designs for experiments
with systems models have been outlined in this chapter. The
simplest of these is the full factorial. When more than about three
factors are present use of a fractional factorial may be preferable.
Still greater efficiency in locating optima is possible through response
surface methodology, and especially by the use of a central composite
design. Here a two-level full factorial (or fractional factorial if the
number of factors is large) is augmented by star and centre treatments.
The central composite design may be divided into incomplete blocks
to test the effect of different simular environments on treatments
(management policies). While the designs presented here indicate
that a good deal of progress can be made with traditional or tabulation
methods, the cost of the experiment becomes rather large for more
than about six factors, and use of optimum-seeking sequential designs

(introduced in the next chapter) is to be preferred.



CHAPTER 3

UNIVARIATE SEARCH

The determination of an optimal value for a single controllable
factor within a systems model is generally a simple matter. However,
a well designed univariate search routine may be most useful to the
systems researcher for two reasons. Firstly, one may wish to locéte
optima with high precision yet prior knowledge of the optimal region
may be inadequate to place treatments sﬁfficiently close together when
using a pre-specified design layout. Secondly, and more importantly,
many multivariate search methods proceed by way of a series of
unidirectional searches. Sometimes these directions are parallel to
the factor level axes while in other cases two or more factors are
adjusted in a fixed ratio to each other. Since the number of
unidirectional searches in a single multivariate optimum-seeking
experiment may run into the hundreds, it is essential to employ an

efficient unidirectional optimization procedure.

The discussion of univariate search methods at this stage
also provides a useful background to later chapters by illustrating

a number of concepts common to all numerical optimization techniques.

While a large number of univariate search techniques have
been devised (for example, see Wilde, 1965) only two will be discussed
here, viz. a naive interval narrowing procedure and the highly
efficient Powell method., In each case it will be assumed that the

variable is quantitative and can take a continuous range of values,

29.
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3.1 Interval Narrowing

In this section a method to find the»approximate optimal
level of a single controllable factor by progres siveiy narrowing
the interval of search will be developed along intuitive lines.
Although interval narrowing is not an efficient search procedure
the example is convenient for illustrating some concepts and problems
of adapting a numerical optimization procedure to the design of

simulation experiments.

Recalling our farm planning model, suppose the experimenter
wishes to determine the most profitable area of just one crop, viz,
irrigated wheat., Assume that the response curve relating net farm
income to wheat area is 'well behaved' or convex upwards in the
range zero to 150 ha and the true but unknown optimum is 86.7 ha.

The experiment is commenced with an initial guess of the optimal

level; say this is 40 ha. Evaluation of this treatment with the

systems model reveals a net income of $22,000. Further treatments
are located at intervals of 20 ha. Since the response to each treatment
is known before the next treatment is placed, the number of steps will

be kept to a minimum. Suppose predicted income levels are $25, 000

at 60 ha, $26,000 at 80 ha and $25, 500 at 100 ha. The interval
containing the optimum is now narrowed to 60 to 100 ha and areas

outside this range are excluded from further consideration. This
completes the first iteration of the search. = In order to make further
progress, let us now reduce the step size by a factor of 5 {(i.e. to 4 ha)
and commence a second iteration from our current best treatment of

80 ha. Treatments would now be plaéed at 84 ha, 88 ha and 92 ha

(at which point income declines indicating that the optimum has again
been overshot). The range of interest has now been narrowed to

84 to 92 ha. Step size is further reduced to 4/5 or 0.8 ha. A treatment
at 88.8 ha reveals a decline in income relative to the previous best
treatment, so backward stepping takes place, with treatments at 87.2 ha,
86.4 ha and 85.6 ha. The complete sequence of treatments for three

search iterations is listed in Table 3.1.
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TABLE 3,1

Experimental Design for Univariate Search by Inverval Narrowing

Wheat area (ha)

Treatment number

1 2 3 4
Iteration 1 40 60 80 100
number 2 84 88 92
3 88.8 87.2 86.4 85,6

After 11 treatments the interval containing the optimum
has been narrowed to 85.6 to 87.2 ha. At this stage the experimenter
may decide upon the optimum by (i) accepting the best treatment
evaluated (86.4 ha); (ii) interpolating between the closest factor

levels; or (iii) carrying out a further search iteration.

The above account illustrates a number of typical features
of optimum-seeking experimental designs. An initial guess of the
optimal factor level is made, and improved values are obtained
through a series of search iterations. Convergence to the optimum
is at first rapid but then becomes increasingly slowér. The total
number of treatments neededv depends on the closeness of the initial
guess to the optimum and on the settings of the search parameters
(here, initial step size and reduction to step size between iterations).
The termination rule involves a compromise between the precision
with which the optimum is estimated and the cost of evaluating
additional treatments. All of the above éharacteristics are common

to most optimum-seeking designs,

3.2 Powell's Method

A highly efficient univariate search method has been devised
by Powell [1964] to find the level of a variable corresponding to a
minimum function (or response) value. Essentially, the method

involves placing treatments at three levels of the variable factor
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(a, band c), regressing a quadratic function through the predicted

response values (Za’ Z. and ZC) and locating the stationary point

b .
on the fitted equation. Special features are included to ensure that

the stationary point is a minimum and for takihg advantage of the fact
that a quadratic equation will fit three points exactly. Also, a limit

is placed on the extent of adjustment from the initial factor level

towards the estimated minimum.

For convenience, a, b and ¢ are defined as differences from
the initial guess of the optimal x value. Treatments are first evaluated
at x (where a = 0) and atb = x + Ax where Ax is a forward step in the -
level of the factor, The position of the third treatment depends on

whether the response is found to be increasing or decreasing, i.e.

if Zb< Za place c at x + 2 4%, and

i > Z -
if Zb YN place c at x Ax,
as illustrated in cases (i) and (ii) of Figure 2,1. The quadratic

passing through Za’ Zb and ZC‘ will have a stationary point at

x*:x-l-d
2 2
(b -c¢c ) Z +(c2-a2)Z +(a2-b2)Z
1 a b c
where d = 3
(b-c¢c) Z + (c-a)+Z, +(a-b) Z
a b c

and this will be a minimum value if

(b-c) Z + (c-a) Z, + (a-b) Z
a b c

(a-b) (b-c) (c-a)

N
o

Note that the equation of the quadratic function need not be calculated

explicitly.



FIGURE 3.1

‘Treatment Placements in Powell's Univariate
Minimization Method
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For the farm planning example, suppose wheat areas of 40, 60 and
80 ha are found to give incomes of $22,; 000, $25, 000 and $26, 000
respectively. Here x = 40, and on negating the Z values to
facilitate maximization,

(202 - 402) (-22000) + (402) (-25000) + (-202) (-26000)

d=2 _ ha
(20 - 40) (-22000) + (40) (-25000) + (-20) (-26000)
= 40 ha, and

N A2,
t

40 ha + 40 ha = 80 ha.

The optimal level will at times fall outside the range of

treatments evaluated, as in case (iii) of Figure 3.1. Such extrapolation

- can be hazardous, particularly when the pattern of response is

irregular as is likely with a stochastic model., This is illustrated
in case (iv) where the three performance values are almost collinear
(in a straight line) and d lies far to the right of c. To avoid running
"off the edge'' of the response curve or surface, the Powell method

restricts the size of d to a maximum adjustment parameter q.

When the sufficiency condition is not satisfied the stationary
point is a maximum and continued stepping is necessary. This is
illustrated in case (v) where b and c are renamed as a and b, and

a new treatment c is placed at x + 3 _ix. In this case 'a'is no longer

zero (which is the reason why the 'a' term is retained in the above

formulae).

The estimate of the optimum obtained by this method may not .
be very precise, particularly if _\x is large and the response curve is

not quadratic in shape. This could be overcome by repeating or

. iterating the procedure commencing with x at the new optimum and

using a reduced step size. Itis to be noted, however, that the Powell
method is designed for multivariate optimization where pursuit of

high accuracy during individual searches is not warranted.
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On the other hand, Powell's method is highly efficient,
locating the minimum with only two treatments in addition to the
initial guess when the response curve is concave upwards.

Further, by retaining curvature information (the second derivative)
from the first iteration, minimization in subsequent iterations can

be achieved with only one new treatment. This further refinement
will not be elaborated since experience suggests it is not very

successful for experiments with models of agricultural systems.

Appendix II presents a computer subroutine for univariate
minimization using a quadratic interpolation procedure similar to
that of Powell. This subroutine is linked to a main program,
containing a simple test function, The FORTRAN listing of the
main program and subroutine are provided, along with the computer

output for the test function.






CHAPTER 4

STEEPEST ASCENT

The application of numerical optimization procedures to
the design of simulation experiments aimed at locating levels
of two or more factors which are simultaneously optimal is introduced
in this chapter. It is illuminating to compare this application of
search methods over a response surface with the physical analogy
of mountain climbing. In many ways computer 'hill-climbing’ is
just as difficult and demanding as climbing real mountains. While
not dangerous in a physical sense, it is fraught with frustrations
and'hazards with respect to failure to make progress and false
summits, particularly when the response surface is multimodal
(c.f. a mountain range). 6 Even when the surface is unimodal,
convergence to the optimum may be difficult to achieve if the slopes
are not regular and differ markedly with respect to factor axes, and

if strong response interaction exists between the various factors.

One of the oldest hill-climbing procedures, and probabiy

the easiest to understand, is the method of steepest ascent. Steepest

ascent (or steepest descent) has probably been used more frequently
than any other optimum-seeking desigh (and has even found application
in agricultural systems research [Zusman and Amiad, 1965; Toft, 1970 ],

but is not very efficient and fails to converge on optimal values in

Often the term "hypersurface' is used to represent a surface in more

then two dimensions. An excellent introduction to the geometry of
response surfaces and to simple hill-climbing methods, interspersed
with appropriate excerpts from '"F xcelsior' by Nietzsche, is to be
found in the books by Wilde [1964, 1967].

37.
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many situations. However, a discussion of steepest ascent is
useful for illustrating many of the concepts involved in computer
hill- climbing, and the basic procedure may be modified to make it
reasonably effective, In this chapter the basic steepest ascent
method will be explained and then refinements to the procedure will
be outlined., Following Wilde, the search will be discussed in

three stages, viz. opening gambit; mid-game tactics; and

end-game tactics, The third of these stages is included in the

refined version only. The discussion is limited initially to the two
variable cases for simplicity of exposition and to allow diagrammatic
representation, However, the algebra of the multivariate general-

ization is presented at the end of each section.

4,1 DBasic Steepest Ascent

As with univariate search the opening gambit involves
nominating an initial combination of factor levels (or managemen.t
policy) which is feasibl.e though perhaps not very desirable, then
improving on this policy in an iterative fashion. It is, however,
quite important to use prior knowledge to choose a good initial treatment,
If the real system which has been modelled is in existence then the
current management policy usually provides a suitable first treatment.
If little is known about the nature of the response surface or the system
is not yet in existence, then an exploratory experiment using a fixed
design such as an incomplete factorial may be carried out to determine

a suitable search base.

Let us designate the initial factor levels or decision vector as

The systems model is used to evaluate this treatment and predicts a
response of ZO. The decision space, unknown response surface and
initial treatment are illustrated in Figure 4.1. Response is depicted

by both a surface diagram in three dimensions and a contour map in

‘two dimensions, The latter type of diagram, where the axes represent
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FIGURE 4,1

Diagrammatic Representation of The Experimental Region and Response
Surface for Two Variable Factors
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factor levels and where factor combinations resulting in equal
responses are linked by continuous curves, will be used in subsequent

illustrations,

To take up the farm planning example, suppose the initial
guess (or current plan) is to grow 60 ha of wheat and 20 ha of lucerne.
Evaluation of this policy (treatment) with the systems model leads to

a predicted net income of $20, 000, i.e.

x° = (60, 20) and Z_ =20000.
Mid-game tactics consisting of linear searches over the response
surface are now initiated. First, the equation to the plane touching

the response surface (called the tangent plane) at X% must be estimated.

The direction of greatest steepness on this planar approximation to the
(unknown) response surface indicates the most direct path to the optimal
policy., By placing a sequence of freatments in this direction it should
be possible to make rapid improvement in the response criterion, c.f.
a mountain climber taking the shortest but most sheer route to the
summit. When continued stepping in this ascent direction fails to
make further improvement in the criterion, a new steepest ascent
direction is established and another sequence of freatments evaluated.

These iterations are continued until no further progress is possible.

The tangent plane is defined by the equation
A7 =
ml Axl + rn2 sz

where A4Z is the change in response resulting from small changes

Axl and sz in factors X and %, respectively., The parameters

m, and m, are slopes of the plane with respect to each factor axis

and are found by evaluating treatments in which X and X, are forward

differenced in turn, i.e.
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1 o
2 o) o)
and then calculating
- Z Z. - Z
Zl o) 2 o)
m, = and m, =
1 2
Axl AXZ

where Zl and Z2 are the respective response values.

The direction of steepest ascent is defined in terms of the

slope coefficients m, and m, . Specifically, it is that direction in

the X T X, plane such that changes are made to each factor in

proportion to the slope with respect to that factor. If my is greater

than m, then each new treatment will involve a large increase in X,

relative to that for Xy On the other hand if m, is the larger then the

greatest adjustment will be made to x It is to be noted that both

2"
factors are adjusted simultaneously when placing treatments during

the linear search,

Although the ascent direction is readily defined (as above),
the selection of actual step sizes presents a problem. We could,
for example, make changes in x, and x, of §x. and sz where these

1 2 1
simultaneous increments are defined by

§x, = L and §x, = —— L
1 ml + rn2 2 rnl + rnZ

and L is a parameter which has been introduced to govern the step

length or distance between successive treatments. This would be

satisfactory if m, and m, both had the same sign, but if one were

positive and the other negative then step length would be unpredictable,
and in the extreme case where m, + m, = 0 an infinitely large step would
be taken. The problem is overcome by squaring the slope coefficients

then taking the square root of the sum of their squares, i.e.
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dx, = —————— L and SxZ:"‘—‘—'_—L

2 2 2
ml+m ‘ ml +.m2

Suppose that in the farm planning example x, and x, are

each one hectare, AZl = $21,500 and Z2 = $20, 500 andlL =20 fl'a. Then
S 21500; 20000 - 1.5, m, = 20500;20000 - 0.5,
m, + mg = 1.58,
le = %—*:2‘8'20 = 19,0 and sz = %—Z—gzo = 6.3

Successive treatments would be placed at

o
"

(60 +19, 20 +6.3)

1
X, = (60 +38, 20 +12.7)
X, = (60457, 20 +19)

and so on.,

Steps would be continued in this search direction while ever Z continued
to improve, The first step for which Z declines is discarded and the
previous treatment, which is the optimum for this iteration, is used as a
new search base, The equation to the tangent plane is estimated at this
improved position on the response surface and successive treatments in a
new direction of steepest ascent are evaluated. Search iterations are
carried out until no improvement in the performance criterion is achieved
on the first step in a new ascent direction. The step size parameter is
then reduced (e.g. L may be reduced from 20 to 4) and more closely
spaced treatments in the currently defined search direction are evaluated.

Note that no advantage would be gained by reducing Ax, and 4x, and

1 2
re-establishing the equation to the tangent plane, since these forward
differences are set initially at the smallest meaningful change in the

level of each factor. The reduced step size may allow further iterations

to be carried out, and further reductions may be made to step size when



FIGURE 4.2

Sequence of Treatments Under Steepest Ascent Design
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the search again fails to progress. FKEventually, no improvement
in the performance criterion is possible with the smallest meaningful
step size, and mid-game tactics (and basic steepest ascent) have
been completed. A typical pattern of the experimental layout is

provided in Figure 4,2,

The above procedure may be extended readily fo the general

or n-factor case. Here n slope coefficients must be estimated as

and the adjustment to each variable factor when stepping in the direction

of steepest ascent is given by

A FORTRAN program for the general case and computer
printout of the ascent steps for-a test function in three variables are

presented as Appendix III.

4.2 A Refined Version of Steepest Ascent

The basic steepest ascent procedure has a number of weaknesses
from a theoretical and practical viewpoint. When the contours of the
response surface are approximately circular, indicating little or no
interaction between variables, very rapid progress will be made towards
the optimum. But if these contours are in any way irregular, then
the direction of steepest ascent quickly changes as treatments are placed
further away from the search base, and the search may progress slowly

along a zig-zag path. These two cases are illustrated in Figure 4.3.



FIGURE 4.3

Steepest Ascent Paths for High and Low Interaction Between Factors

Low interaction between factors High interaction between factors
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Another deficiency of the basic procedure is the fixgd step
size which meaﬁs that the optimum in any ascent direction is always under-
reached or overshot. (This may be likened to a golfer approaching
a hole but repeatedly hitting his chip shots a fixed distance and passing
backwards and forwards over the top of the green.) Reduction in
step size (changing to a more angled or higher iron) in concluding
iterations partially overcomes this problem, but a superior approach
is to optimize on each ascent, That is, during each ascent in a
fixed direction, the highest point on the ridge (as opposed to the higher
of the steps before and after the crest) is located and used as the new
search base, This may be achieved using a univariate search method
such as that of Powell. Note that while two policy variables
(x, and x

1 2
out with respect to step length and this is a single variable.

) are being adjusted at each step, the optimization is carried

At this stage it is necessary to introduce the concept of a

search direction vector. 7 This is a vector containing elements
which indicate the relative rates at which each variable is to be
adjusted in the ascent direction. For example, the adjustments

in the first iteration above were

U =119 6.3]

and steps were placed at
x° +U, X°+2U, X°+3U  and so on,

or in general at X° + bU. Here U is the search direction vector, and
the fixed step size is a consequence of b being incremented by

one-unit values. The search is linear because fixing U throughout

the iteration fixes the direction of steps in the X T %, plane.

The remainder of this chapter draws increasingly on matrix-vector
notation. An elementary introduction to the mathematical concepts
used here is to be found in Yamane [1968 ].
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The basic steepest ascent procedure may be refined by
carrying out linear optimizations during each iteration, i.. e. by
finding the value of b for which Z is a maximum.‘ Commencing
each iteration on the crest of the ridge allows more rapid convergence
towards the optimum, eliminating zig-zagging provided the ridge is

approximately linear.

Another refinement to steepest ascent is to carry outa
non-linear local exploration of the response surface in the vicinity
of the best treatment located by the linear searches; this is what
Wilde refers to as end-game tactics. A quadratic function can be
fitted around the final search base at the cost of a small number of
additional treatments. Greater precision in estimates of the optimal
factor levels can then be obtained using differential calculus. More
importantly, information about the shape of the response surface in
the vicinity of the optimum is obtained. This may reveal that the
stationary point is-a saddle point rather than a maximum as required.
Also, the variation in the response criterion when small changes are
made to levels of each of the policy variables is readily ascertained,
shedding light on the sensitivity of performance to policy changes.

The procedure for non-linear local exploration will now be outlined.

Following Wilde (and using a slightly different notation to
that of Chapter 2), the response surface is represented by the Taylor
series for a function of two variables with terms of higher than second

order neglected, i,e.

2 2
+ 3(m (Ax. ) +2m. _A4Ax Ax +m22 (sz) )

Z -
4 m; 4ax) tm, 4ax 11 1 1284%,4%

1 1 2 2
Here the performance and policy variables are expressed in difference

form, m, and m_ are the slopes with respect 'to each co-ordinate axis,

1 2
mll and mZZ are the curvature terms and le measures interaction
between X and X5 To estimate these coefficients, the triangular

experimental design used to determine the final tangent plane is
augmented by three further treatments; two of these consist of

backward differencing the variables in turn (to give a crucifix pattern)
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while in the third they are forward differenced simultaneously,

The resulting search pattern, with distances between treatments

exaggerated, is illustrated in Figure 4, 4.

+ -
Let Z. and Zi represent the response criterion when
i

variable i is forward and backward differenced respectively, and

++
Z  be response when both are forward differenced simultaneously.
To find m,, note that when _’\XZ = 0,
+ + 1 2
= -~ = + =
AZl Zl ZO mlA X, Zmll(‘dxl) (1) and
AZ] = Z -Z =m (-ax)tim, (-ax )
| o T lrAx ) Tamy,max
= m oax +im  (ax ) 2)
T oompax) Tomy,lax
Subtracting (2) from (1):
A A
] 1 m;4x
z' . z”
1 1
hence m =
1 ZAxl
and similarly
Z+ - Z
2 2
m =
2
2 AxZ
To find my sum (1) and (2):
+ - 2
Z - =
p 2y -2z, = my) (ax)
z¥ iz 22
hence m = 1 1 =
11 (Axl )2
and similarly a
+ -
zZ. - 7Z - Z
m B 2 2 2 o
22 -

(AXZ)Z
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FIGURE 4.4

Pattern of Treatments for Non-Linear Local Exploration

Both variables
forward differenced
simultaneously
Variables forward /
differenced 44

® (x, + Ax,,x. +Ax.)

+
Z
Zl
® ®
(xl-Ax x +Axl’X2)
. Z -

Variables 2 Search base
backward \ ®
differenced (XI,XZ‘AXZ)
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Having obtained m,, m,, m . and m the remaining coefficient

1’772 11 22’

m,, may be calculated from the Taylor series as 4

= Z - - -1
m), A¥X A%, AZ - myAx) - omyax, - emy(Ax)

The adjustments in X and x, necessary to maximize AZ

{(and hence Z) are now obtained as follows:

dAZ
= + 4+ =

bel ml ml lAXl lesz 0 and
947z _
OAXZ = mz + mZZAXZ + mlexl =0

mllAXl + leAXZ = —m1 and

+ = -
My paX) TMmyax, "y

These two equations may be solved for X, and X, in the manner described
in Chapter 2. Alternatively (and more conveniently when one wishes to
generalize the procedure for n variables and program it on a computer)

the solution may be expressed in matrix vector notation, Here each

policy is represented by the column vector
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rather than the co-ordinate pair (xl, XZ)' The forward differences
form another column vector

~A xl

as do the slopes of the response surface

my

(called the Jacobian gradient vector).

[¢1¢]
Il

The curvature and interaction terms may be written as a matrix:

H ;

11

this is called the matrix of the quadratic form or the Hessian matrix.

In matrix-vector notation the Taylor series becomes
47 = g'U+3iuHU

where g' and U' are the row vector transposes of g and U respectively.
The simultaneous equations resulting from setting the partial derivatives

to zero become
HU-= -g

and the solution is
ux = -H g

le

' -1
where U = and H is the inverse of the Hessian matrix,.

8x2
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The stationary point on the résponsé sﬁrfa‘c.e X* is. then found as

X% = X+ Ux,

This will be a maximum provided

m, < 0 and || >0

where IH| is the Hessian determinant and is given by

2

M2

H - 1122 T
Once the coefficients of the Taylor:series have been estimated it is -
a simple matter to predict the sehsitivity of performance to policy

changes, For example, if x, were fixed (sz = 0) and X, increased

2
by‘dxl units then

2
AZ = mlel +%m11(AXl)

and the elasticity of response with respect to the factor X could be

obtained as
A Z/ékxl

1 V& /xl sk

where Z% and X, * are optimal levels,

The refinements of linear optimizations and non-linear local
exploration are readily extended to the n-variable case, Here the

Taylor series approximating the response hypersurface becomes

‘ n n 5 n n -
A4z = Z m ax, + 2 Z ’ mii(AXi) + Z ) _frniJ.Ax_iij
i=1 i=1 i=1 i#j j=1

The coefficients of this relationship are obtained in the same manner as

above (but replacing 1 and 2 by i and j for all combinations of i and j).
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The stationary point on the response hypersurface is again at

Xk = X + Uk
-1
where U* = -H g
— —— r —
™y | My My o0 Mg
m, m,, My, ... M,
and g = . ; H =
my ' mnl e L Innn
- =t — ~
S’xl
EXZ
and U*=
§x
| 4

The test ensuring that X* is a maximum (rather than a minimum or

saddle point) is now more difficult and relies on advanced mathematics.

A FORTRAN listing for the refined steepest ascent method
together with computer output of the design points for a test function in

three variables is provided as Appendix IV.

8

For the more mathematically inclined, X* is a maximum if H is
negative definite which is the case if the principal minors of H
alternate in sign, commencing with a negative. In the computer
program of Appendix IV the principal minors are obtained as the
successive products of pivotal elements during Gaussian reduction
of the Hessian matrix.,
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4.3 Summary

Multivariate search has been introduced by reference to
the method of steepest ascent. While the basic steepest ascent
procedure is relatively inefficient, modifications have been |
outlined which make the method adequate for a range of design
problems. An understanding of these modifications requires
advanced knowledge of matrix algebra. The discussion of steepest
ascent, along with its mountain climbing analogy, has provided a

background for the examination of more modern and more efficient

optimum-seeking designs.



CHAPTER 5

DIRECT SFARCH METHODS

Direct search differs from gradient search methods such

as steepest ascent in that the search directions are not based on
estimated partial derivatives or slopes of the response surface.

While a large number of direct search methods have been devised,
only four will be considered in this chapter. First, brief descriptions

of the simplex method and the alternating variable method will be

provided. These are both conceptually simple, though not particularly
effective, and the latter provides useful background to the method of
conjugate directions. The major part of the chapter will be devoted

to conjugate directions and random search, two procedures which

appear to have great potential for designing experiments with models

of agricultural systems.

5.1 The Simplex Method

This optimization procedure, not to be confused with the
simplex method of linear programming, derives its name from the
fact that a moving simplex is used during the search. A simplex in an
n-dimensional space is a figure having plane sides and n + 1 vertices,

e.g. a triangle in the x_ - x, plane. The simplex method has been

used for optimization o; economic systems by Meier [1967,19691].

As an example, consider the initial triangle with equally
spaced treatments, a, b and ¢ at the three vertices in Figure 5.1,
This triangle can be moved uphill by reflection or flipping over in a
direction opposite the lowest vertex. Thus if ~valuation of these
treatments with the systems model reveals that Za is lower than both
Z, and ZC then treatment a will be discarded and a new simplex

b
formed by placing treatment d equidistant from b and ¢ on the opposite

55.
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FIGURE 5,1

RV

Sequence of Treatments for Simplex Design
Method in Two Factors
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side of the b - ¢ face. This new treatment is now evaluated.
Supposing it is fou.nd'that Zb is less than Both ZC and Zd’ the

next treatment will be placed at e. The simplex is moved up

the response surface in this manner until treatment k in the vicinity
of the summit has been evaluated. At this stage further search
involves revolution of the triangle about the region of optimality, and

the search is concluded after one such revolution,

Modifications to the basic procedure such as changing the
size or shape of the simplex during the experiment have been found
to increase efficiency and precision. A study by Box [1966] has
indicated that the simplex method is not very satisfactory when there
are more than three experimental factors, although more recently
Galbraith [1978 1has sugges'ted use of this design procedure for up

to eight factors,

5.2 Alternating Variable Search

The alternating variable method consists of carrying out
linear optimizations with respect to each variable in turn, the
sequence of linear optimization being repeated on each iteration of
the search. The sequence of treatments for an experiment with two
controllable factors takes the form of a contracting staircase as in

Figure 5.2,.

To define alternating variable search more precisely, let

— e

*1
X = the policy vector; and
- XZ_
(1 ] 0
U = and UZ = the direction
0 1

vectors for searches parallel to the co-ordinate axes. Each search

iteration involves treatments placed so as to
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2/

FIGURE 5.2

Ascent Path in Alternating Variable Search

eV
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(i) find ,81 to maximize £f(X_ +8.,U, ) and move to X

X .
o F171 1 A

i

(ii) find /32 to maximize f(Xl +/32U2) and move tg X2 1 ﬁz , as
the new search base XO.

The linear optimizations may be carried out using any univari.ate search
technique, the Powell method outlined in Chapter 3 being particularly

attractive because of the low number of treatments required,

Although intuitively appealing in its simplicity, alternating
variable search is not to be recommended because of slow progress
or outright failure when a moderate or high degree of interaction
exists between variables, Here the search is liable to become 'hung-up'
on a sharp ridge which may be well below the response summit, as

illustrated in Figure 5. 3.

5.3 The Method of Conjugate Directions

This is a numerical procedure for finding the minimum of a
function of n variables. In its current form, attributed to Powell [1964 ],
it is highly efficient (requires few treatments) and is quite robust, working
well on a variety of problems where other methods would fail, Use of
conjugate directions search in connection with models of economic
systems has been advocated by Emshoff and Sisson [1970 ]and the method
has been applied to design of simulation experiments with a farm planning
model by Harrison and Longworth [1977]. The Powell procedure is not
intended for problems with fewer than three variables, and the following
discussion will relate to the general or n-variable case, precluding

diagrammatic representation.

The definition of conjugate search direction vectors rests on
matrix-vector algebra similar to that introduced in Chapter 4. A

quadratic form or quadratic function in n variables may be written as
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FIGURE 5.3

Failure of Alternating Variable Method Due to High

Interaction Between Factors
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= + . . +
VA m._ + m, x, + m, x, mnxm |
+1m, x% 4, x> + tm %2
Tz M F T % - nn’ n
X e e 1
Tamy, X %, tam ax X, 2m M X 1%
=m +g'X+ 3X'HX
0 ,
B Ny — -
*1 |
where X = *2 ; g = ) the Jacobian
gradient vector;
b'd m
X' and g' are the transposes of X and g respectively; and
m m m, |
11 12 : ln
M1 ™22 Mon
H = , the Hessian
_mnl ng mnnd
matrix. Now if U1 to Un are the search direction vectors
(initially 1T o] o]
0 1 0
0
Ul = . s UZ = > . .Un = . ) ’
. . 0
B 0| | 0_ | 1]

then any pair Ui and Uj are said to be conjugate with respect to

the matrix H if

Ui|HUj =0 for i # j.

The minimum of a quadratic form can be obtained by optimizing just
once in each of the mutually conjugate directions. This property,

known as quadratic convergence, means that the method of conjugate
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directions will locate the exact minimum of a quadratic fo‘rm, and
with a relatively small number of treatments. Since many response
surfaces can be approximated closely by a quadratié form in the
region of the optimum, the method is well suited to a variety of

problems,

The search begins by choosing an initial vector X then
locating improved vectors in an iterative fashion where each iteration
consists of a series of linear optimizations. The directions of these
linear searches are Ul’ UZ’ o o s Un (as indicated above) so that the
first iteration of the search is identical to that of the alternating
variable method. At the end of each iteration, and subject to a test
criterion being fulfilled, one of the original search directions is
deleted and a new direction inserted in its place. This new search
direction involves simultaneous adjustments in the levels of all

variables. If the response hypersurface is quadratic in form, the

new search directions will be pairwise mutually conjugate.

Farlier versions of the method of conjugate directions
introduced new direction vectors at every iteration. Powell noted
that the search directions may become linearly dependent, leading
to failure of the search, and only allowed direction vectors to be

replaced when not likely to reduce search efficiency.

One iteration of the Powell method consists of the following

steps:

l. Fori=1 2 s 0 e i ini 1 X +
1 s » n find ,g fo minimize f( -1 /g .U)
fine X =X + U °
and de . -1 ﬂ .

2. Find the integer m, 1 € m X n, such that f(X )-f(X )
. m-1 m

is a maximum and define A = f(Xm).

3. Define f, = f(X ) and f. = f(X ), and obtain f. = f2X - X ).
1 0 2 n 3 n 0

4, If f3 > fl and/or
2 2

(], =26, +£) (f - £, - &) = %A(fl - £,



63.

retain the search directions of this iteration and use Xn

(or ZXn - XO if this results in a smaller function value)

as the next XO. Otherwise,
5, Set U=X - X _ and find 8 such that f(X + ,,BU) is a
n 0 : n '
minimum and use Xn + 48U as the new XO. Also, replace

Um by U in the matrix of search directions, i.e. set

U )

(U . U U ... U, Ulto (U, U,, ...
n 1 2 n

17 ° m-1" "m+l’
for the next iteration.
Fstimation of the /6 coefficient in each linear optimization

uses the Powell method of univariate search as outlined in Chapter 3.
Step sizes for placement of treatments to fit the quadratic and for
restricting the size of & to avert overstepping are based on the largest

element (positive or negative) in the current direction vector.

This modification to the Powell procedure is suggested by
Box et al. [1969] .
10 : . o
Powell [1964] suggests calculation of the second partial derivative
for each search direction the first time that direction is used.
These second derivatives are employed in subsequent linear optimizations
so that only one additional treatment is required to predict the
minimum. In an application to farm planning [Harrison, 1976 ], changes
in slopes of the response hypersurface due to non-quadratic curvature
and stochastic fluctuations led to large differences in curvature in the
same search directions on different iterations and repeated use of
initial estimates of second derivatives was found to impair search
efficiency.
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Various rules may be applied for terminating the search. Powell
uses a very safe criterion, based on the level of precision of each
variable, but this is rather expensive in terms of number of

treatment evaluations.

A FORTRAN program for minimization by the method
of conjugate directions is provided in Appendix V, together with
computer output for a test function in three variables and brief
notes on the program. The stopping rule built into this procedure
is that the response does not improve (i.e. decrease) during the
last iteration, or the limit imposed on number of treatments has
been reached, whichever occurs first. It is to be recalled that
minimization procedures may be adapted for maximization merely

by negating the response criterion, i.e., giving it a minus sign.

5.4 Random Search

The method of random search consists basically of specifying
a range of values which each variable may take, and sampling a value
of each variable at random from the respective ranges to form each
treatment. A pre-specified number of treatments are evaluated and
the results are sorted to pick out the treatment with the optimal
(highest) response value. The procedure is similar to that used for

selecting farm plans in Monte Carlo programming.

A review of the many books on numerical optimization reveals

little information on random search, Fletcher [1965] and Box et al.[ 1969 ].

summarily dismiss the method as inefficient, and mathematicians in
general appear to have a distinct leaning towards non-probabilistic

methods.

The reason for this lack of interest fnay be illustrated by
an example. Suppose there are two policy variables - the areas of
wheat and lucerne - and optimal levels can be assumed to be in the
ranges of zero to 150 ha and zero to 50 ha respectively. Let us split
up each range into 10 sub-intervals of equal width, dividing the

experimental region into a grid as in Figure 5.4, - Each of the rectangles
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in this figure may be designated as A,, where the subscripts i and j
. 1 . :
refer to area sub-intervals for wheat and lucerne respectively.

For example, A, _ represents 30 to 45 ha of wheat and 30 to 35 ha

37

of lucerne. The optimal levels of x) and X, will lie in one of the
100 rectangles, and it will be assumed that optimization consists

of selecting the correct rectangle.

Let us now compare the efficiency of (i) tabulation with the
full 10x10 factorial design placing one treatment in each rectangle
and (ii) random search also with 100 treatments. Since the factorial
design fully explores the experimental region the optimal policy will
be located with certainty., On the other hand, in random search

each individual rectangle (such as A_.) has a probability of .0l or

being chosen, and a probability of . 935 of not being chosen, in each
selection of a treatment. In 100 treatments the probability that an
individual rectangle will not be selected is (. 99)100. Thus the
probability that the optimal factor combination will be selected is

1 - (. 99)100 or .63, If the number of treatments were reduced to
50 then there would only be about four chances in 10 of the optimal

policy being located.

Another way of measuring search efficiency is to calculate
the number of treatments needed to place at least one treatment in a
sub-region of given size within the experimental region, at a specified
probability level. These numbers have been tabulated by Boehlje [1973 ]
and are surprisingly large for even a substantial fraction of the overall
X 7%, region. For example, 44 treatments are required to place
at least one treatment in a sub-region of one tenth of the experimental
region (equivalent to about one third of the range for each factor) with

a probability of . 99.

The above discussion reveals that random search is most
inefficient, even by comparison with full factorial designs. However,
by modifying the procedure to include learning and extension
(explained presently) a surprising increase in efficiency can be achieved.

Also, random search has a number of advantages over non-random
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optimum seeking designs for management oriented systems studies:

(i) it is conceptually simple, not relying on difficult

mathematics and is an easy program for a computer;

(i) integer factor levels or policy variables such as purchase
of items of farm equipment can be handled without
difficulty;

' 11
(iii) policy variables may be made mutually exclusive,

complementary or conditionally complementary;

(iv) no matter how many policy variables are included, a
solution is obtained (whereas other methods may make
no progress) and this solution is usually at least

reasonable; and

(v) random search copes with non-convex (including multi-
modal) response hypersurfaces more successfully than

alternative search procedures,

These considerations suggest that random search is
greatly underrated as .an experimental design procedure. The most
important single development for enhancing its usefulness is the

inclusion of learning mechanisms.

Random search with learning. The efficiency of random

12
search is increased substantially by heuristic learning, whereby the

probabilities of selecting particular factor levels are adjusted during
the experiment. Those levels which are found to produce high
response early in the search have their probabilities adjusted upwards,
concentrating the later part of the search on promising areas of the

experimental region,

11
If two or more of the policy variables form a mutually exclusive

subset then only one variable from this subset can take a non-zero value,.

12
Defined as learning by experience.
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Various forms of probability adjustment may be used.
It is necessary to define discrete values of each variable, and
these may take the form of either integer values 6r midpoints
of a number of classes or ranges. Initially equal probability
weights are attached to each discrete value, i.e. sampling is
carried out from ﬁniform probability distributions. The adjustment

of probabilities is facilitated by selecting weight coefficients

for each discrete value which can never become negative and
which are asymptotic to zero; for example, '‘an expression of the

v . s .
form a where a is a positive constant and where v may be adjusted

13
upwards or downwards.

Random search with learning has been used in conjunction
with systems models to determine optimal long-run plans for
hog/corn farms in Indiana. The method originates from a
dissertation by Lee [1971] and is described briefly in published
reports [Eisgruber and Lee, 1971; Boehlje, 1973; Furtan and Lee 1975].
The procedure outlined here is based on Boehlje [1973] but with

simplifying changes to the notation.

Suppose there are two decision variables X, i=1,2,
and each can take a number of mutually exclusive discrete values
Xij’ j=1to n.. Initially, for each policy variable, a choice
distribution Wij is defined as

w., = 2°1]
1
where eij is the learning parameter, and is initialized at a specified

integer number (e.g. 3) for each value of the variable, i.e. fori =1

to2 and j =1 to n.. This defines a uniform distribution for each

variable, the probabilities being

13
‘Here av> 0 for all v and av-a 0as v -00,
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. 1j
'S B 1 .
P(lJl) = n s Jl—ltonl,and
T ow
2 W
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A uniform pseudorandom number m in the range 0 to 1 is then

generated and is used to locate the s alternative value of X where

< S
L Pl )<m ¢ Y Pl
= 1 i =t !

a random value of xz‘being obtained in the same manner.

The search proceeds in three stages. The first or

initialization phase involves repeated sampling from these uniform

distributions, the level of response being evaluated for each X set.
The highest criterion value in the initialization phase is taken as a

base performance or norm 4, against which to compare alternative

0
policies in the learning phase. Throughout the learning phase the
weights and hence probabilities of different factor levels are adjusted

according to the formula




70.

and where f(xl, s XZ' ) is performance under a particular treatment

and k is a parameter governing rate of leérning. For example,

suppose Z_ = $20,000, k is set at 5000, and the first random selection

0
of factor levels during the learning phase yields jl=3 and j2=7.

F valuation of this treatment (x or grid square A3 ) reveals a

13 %27 7

farm net income of $22,000., By the above formula
22000 - 20000

.-Ael3 and Ae27 = 5000 = .4

and hence

3+.4 3+.4
w’3—2 andw2,7—2

New probability distributions are obtained for each factor
in which one weight is adjus-ted as above and all other weights remain
unaltered. The effect of these calculations would be to increase
slightly the probability associated with the third wheat area and
seventh lucerne area with corresponding reductions to remaining
probabilities. The weights and probabilities for each value of

each factor are recomputed before the next treatment is selected.

The learning phase is continued for a fixed number of
treatments, producing distributions for each variable which may

be quite non-uniform and skewed. The rate of learning or value of

"k is a critical consideration, and must be chosen to suit the particular

problem. If the adjustment of probabilities is too slow, then the
search will be inefficient and unduly costly., On the other hand, rapid
adjustment may lock the search into a local optimum rather than
seeking out a global optimum; i.e. too fast learning means jumping

to conclusions,

In the final sarnplingb stage the probability distributions are

locked in and a set number of treatments are evaluated. The treatment

resulting in the highest criterion value is selected as the optimabl policy.

The number of treatments in each of the three stages also

has an important bearing on efficiency of the search. These numbers,
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and the learning rate parameter, can only be decided after carrying

out frial searches with the systems model:

A FORTRAN program for random search with learning

together with output from a test problem are provided as Appendix VI,

Extension or hill-climbing. This is a further modification

to random search which concentrates treatments in promising areas
of the experimental region. The extension procedure was developed
originally for use in Monte Carlo programming, e.g. see

Carlsson et al. [1969]. Basically, itinvolves systematically
forming new treatments from those selected at random by increasing
the level of each factor or policy variable in the direction of the
constraint boundaries. The variables are adjusted by fixed increments
at each step, and the sequence of new treatments is terminated when
either the supply of a resource is exhausted or the response criterion
decreases. This modification is useful for resource allocation
problems where a solution in the interior of the experimental region
or decision space is clearly inferior to a solution on the boundary

of the constraint set,

The concept of extension or hill-climbing is illustrated
with respect to a two factor experiment in Figure 5.5, Treatmenta
represents a randomly selected pair of values for %) and Xy Another
random number is obtained to indicate the ratios by which the variables
will be adjusted; for example, if the number is .33 then xl and x2
will be incremented in the ratio 1:2, successive treatments being
placed atb, ¢, d and e. Treatmentf is then selected at random,
and another random adjustment factor is obtained leading to treatments

g toj. The extension procedure has not been included in the computer

program of Appendix VI.
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FIGURE 5.5

Hill- Climbing or Extension. with Random Search
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5.5 Summary

Some of the more useful design procedures for optimization
experiments with agricultural systems models have been introduced
in this chapter., Included are the highly efficient and robust method
of conjugate directions and the method of random-search-with-
learning which has important advantages for some farm management
applications., The problem of constraining treatments according to
resource supplies has been briefly alluded to, and this and other
aspects of the practical application of optimum-seeking designs

will be discussed in the next and final chapter.
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CHAPTER 6

RELATED ISSUES AND CONCLUDING COMMENTS

The problems of applying optimum-seeking designs to
situations of multi-modal response surfaces, stochastic variation
vin response and resource constraints on factor levels are examined
in this chapte'r. Also, the use of numerical optimization routines
for tuning or parameter estimation during model construction is
discussed briefly. The chapter concludes with comments on the

choice of design procedure and suggestions for further reading.

6.1 Multi-modal Response Surfaces

The discussion of search procedures has been confined
mainly to response surfaces (or hypersurfaces) with unique optima.
However, in practice several optima often will exist. Figure 6.1
depicts a response surface with two optimal regions, A and B.

B has the higher response value and is therefore the global optimum,
while A is a local optimum. A hill-climbing search, if effective,
would converge to one of these regions, the peak located depending
on the slope of the surface in the vicinity of the initial treatment.

If the initial guess was point a then local optimum A would be located;
whereas, a search originating from b would terminate on the true
optimum B, As previously noted, randofn search is to some extent
capable of discerning between local and global optima provided the

rate of learning is not too great.

An experimental region in two or more factors may contain
a large number of local optima, but of course only one global optimum.
In general it cannot be guaranteed that the initial guess will be

sufficiently good that the search will converge towards this global optimum;
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hence it is advisable to carry out a number of optimum-seeking
experiments using different initial treatments, at least during
familiarization with a systems model, If these searches terminate
on dissimilar policies then either the response surface is n'ot'
'well-behaved' or the optimization procedure has not functioned

satisfactorily, and either case warrants further investigation.

6.2 Stochastic Variation and Extent of Replication

If the systems model is stochasfic- then evaluation of only
one replicate for each treatment would lead to an erratic search,
the contours of the response surface being blurred by random variation
in performance, This problem may be overcome by evaluating a
number of replicates for eacﬁ treatment. If a criterion based on
the outcome over all replicates - such as mean net income - is

adopted, then response values will be less affected by random influences.

The appropriate sample size in terms of number of replicates
is rather difficult to determine. Some guidance may be obtained
from classiéal statistical theory which holds that the sample size
required to estimate a population mean with an error of not more than

E at the 100 (1 - € ) per cent confidence level is given by the smallest n

satisfying
z s2
/2
ny —
7 B
where =z /2 is the standard normal variate (tabulated in most

statistics textbooks). Here s is the estimated standard deviation
of the performance criterion, which may be obtained by evaluating

a small number of replicates (say 20) of a representative treatment.

Variance of mean response is smaller than that of individual rephcates
by the factor of square root of number of replicates i, e.

Var (Z) = Var (Z)/{n.
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In practice this approach is usually of limited value because the
number of replicates is restricted by availability of computing
funds. In any case tile objective of the ex’perimen,ts is normally
the ranking of alternative treatments or management policies rather
than precise estimation of response, and this may reduce the extent
of replication required. Also the classical approach does' not take
account of variance reduction through blocking of replicates for
each treatment. As a general rule it is suggested that the number
of replicates for optimum-seeking experiments need not be more
than 30, and that as few as 5 or 10 will sometimes be adequate.
Fven these numbers exceed the extent of feplication normally

regarded as acceptable in real agricultural experiments.

6.3 Dealing with Constraints

The values taken by policy variables frequently will be
restricted by non-negativity and resource constraints. Non-negativity

constraints take the form

xj)O for j =1 ton.

For example, it is not possible to grow a negative area of irrigated
wheat or lucerne, With the exception of random search (where ranges
are placed on factor levels) the procedures outlined earlier may converge
on policies for which some of the x,_ are negative, even though such
policies are absurd and can cause ghe systems model to behave
unpredictably. In models of systems at a high level of aggregation,

such as the farm-firm, levels of policy variables may also be
constrained by limited supplies of land, labour and capital, and

through crop rotation and other husbandry considerations., Such
constraints are less direct, and tend to act on the variable factors
collectively rather than individually., For example, if the combined
area of wheat and lucerne under irrigation is limited by water availability
then an increase in the area of lucerne necessitates a reduction in the
area of wheat. 'This introduces negative interaction between factors

(the response contours being ellipsodial with principal axes running

downwards and to the right) and may render 'hill-climbing' more difficult.
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Non-negativity and resource constraints may be taken into
account through use of constrained optimization techniques (such as
linear programming) but these may place unacceptable rigidity on
the structure of the model. Quite often optimum-seeking designs
may be used in conjunction with the systems approach if relativély
minor modifications are made to the model. One such modification

is the barrier penalty function or penalty charge on infeasible factor

levels, For example, if the x, are to take only non-negative values

than the response criterion may be altered from Z to Z-P where

T
M

k. (min(0, x))°
] ]

and the kj are positive penalty function czoefficients. Here, if any Xj
is negative then an artificial cost of ijj is incurred, the magnitude of
which depends on the setting of kj. Small values (of the order of 0.1)
are desirable as this prevents creation of steep valleys at the edge of
the response hypersurface and distortion of the search away from

near-zero factor levels.

A similar device may be used for constraining upper levels
of factors of policy variables to take account of limited resource
supplies, e.g. see Harrison [1976: 205]. A complication which arises
with stochastic multi- period models is that constraint boundaries may
vary over time, e.g. when cash receipts and hence finance for expenditure
in later years depends on wheat prices in early years, In this case
feasible (and optimal) policies may differ between replicates, and the
magnitudes of penalty function coefficients will determine whether a
consistently feasible policy or an opportunistic and more profitable

(though sometimes infeasible) policy is selected.

6.4 Parameter Identification or Model Tuning

Numerical search methods have an important application,
quite apart from design of simulation experiments, for estimating

parameters of functional relationships during construction of systems models.
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While statistical inference techniques such as regression ahalysis
are to be preferred for establishing relationships b'ecausé the-y
provide measures of precision as well as estimates of parameter
values, the complexity of the hypothesized relationship may preclude
use of statistical analysis. Numerical search then provides a

systematic alternafive to trial and error for fine-tuning of the model.

Suppose the researcher has historical records of output V
and of a number of causal variables Y for some particular relationship
or submodel, and hypothesizes a complex relationship between them.
Output is then a function of the set of parameters in the relationship,
represented by the vector A, i.e. V = f(A). A search over the region
of possible parameter values is carried out with an optimum-seeking
method to minimize the sum of squares of prediction errors,

Y(v - f(A))Z. Each treatment of the search is a different parameter
set A, and the submodél is used to evaluate the response criterion V,
For example, when constructing the farm planning model we may have
measurements of available soii moisture and of rainfall, irrigation,
temperature and windspeed., A submodel relating soil moisture to
rainfall and other environmental variables is hypothesized, and
parameter values for this relationship which best explain observed
soil moisture are estimated by numerical optimization. Further
discussion of parameter estimation by numerical search procedures
is provided by Emshoff and Sisson [1970 ], while applications in
agricultural modelling are discussed by Stol [1975], Harrison[1976],
Highland et al. [1976] and Galbraith [1978].

6.5 Choice of Search Method

The choice of a suitable experimental aesign for determining
optimal factor levels (or optimal parameter values) is not clear-cut,
and will depend on the nature of the systems model, number and type
of controllable factors and availability of computer packagés for

optimization. For experiments involving three or less factors it is
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probable that a simultaneous design or tabulation method such as the
full factorial or central composite design will be adequate. Where
optimal policies are sought with respect to a larger number of factqrs,
cost considerations may dictate use of an optimgm—seeking design,
Comparisons between numerical optimization methods may be made

in terms of the number of function evaluations or treatments needed

to find the optimum of a given test problem. It must be recognized

that results of such comparisor{s are not independent of the test problem
selected or of settings on the se;arch parameters., A comparative

study by Fletcher [1965] indicated that tabulation methods, random
search (without learning) and the alternating variable method are very
inefficient, and that conjugate directi‘ons is one of the most efficient

procedures,

Selection of an appr.opriate design procedure can also be
guided by an examination of the characteristics of the optimization
problem, and on this basis the British Atomic Energy Research
Establishment (A.E.R. E.) had devised a sequential elimination

procedure or key to choice of method [Hooper, 19731,

A number of comments may be made concerning choice
between the five methods for which computer programs are provided

1
in this Report. >
Method 1 : Univariate Optimization:

This is a relatively precise and efficient method of univariate
search. It has been found useful at Lincoln College for estimating
depreciation rates to explain current market values on different classes
of farm machinery [Davey, 1977] and for determining the internal rate
of return in project evaluation [Gale and Harrison, 1977 1. Typically,

seven to ten treatments are required to locate the optimum.

15 ,
Other sources of computer programs for numerical optimization

include the A.E.R.E. subroutine library (available to outside users
for a modest charge [Hooper, 1973 ] ) and the FORTRAN listings
published by Keuster and Mize [19731].
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17

Method 2 : Basic Steepest Ascent:

The steepest'ascent procedure for multivariate optimization
is very simple and may locate acceptable near-optimal combinations
of factor levels for a small number of non-interacting factors. The -

number of treatments required is relatively low,

Method 3 : Refined Steepest Ascent:

Steepest ascent with linear optimization and non-linear
local exploration is more precise than method 2, and generates
additional information on the shape of the response surface in the
region of the optimum. A problem which sometimes arises is that
the stationary point located by non-linear exploration is not a maximum;
this is most likely to occur if mid-game tactics do not converge
sufficiently close to the optimal policy. 16 A moderately large number

17
of treatments may be required with this method.

Method 4 : Conjugate Directions:

The method of conjugate directions is efficient, robust and
(like 3) quadratically convergent. It will not terminate on a saddle
point but occasionally fails to introduce new search directions, thus
deteriorating to an alternating variable search. The number of

treatments is approximately the same as for method 3.

16 ‘
The stationary point is a saddle point (or minimum) if the Hessian

matrix is not negative definite, and this is indicated in the printout
from the program.

The number of treatments will be approximately (n+3)i for linear

optimizations plus n(l +£2:'1') for non-linear local exploration, where n

is the number of variables and i'is the number of iterations of
mid-game tactics., ' ' '
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Method 5 : Random Search with Learning:

Work at Purdue University suggests that random search
with learning is a much under-rated procedure. The reduction in
number of treatments because optimization experiments do not have
to be carried out from different starting points may make this the
most suitable method for problems involving irregularly sﬁaped
response surfaces. Random search also has the capacity to handle
a large number of experimental variables though the reliability of
estimated optima in such cases is difficult to ascertain. The number
of treatments in each of the three phases of the search is set by the

user, and requires trade-off between precision and cost.

Of the search procedures not considered in this Report, the
most important are the Quasi-Newton Methods [Broyden, 19721,
These are non-linear gradie-nt methods of minimization, utilizing
continually updated positive definite approximations to the Hessian
matrix, and can only be explained with rather advanced mathematics.
Quasi-Newton methods are highly efficient when they work (more so
than any of the methods outlined in this Report), but they are subject

to failure in certain applications.

The possibility also exists of using a combination of procedures
within a single optimization experiment, switching from one to the other
during the search., In this way, procedures with rapid convergence
near the optimum, such as the Quasi-Newton methods, may be used
for finishing off the search. Also, the combination of factor levels
indicated as optimal from one simulation experiment may be used as
the initial treatment for a further search, perhaps using a different

method,

Some authors suggest that numerical 6ptimization can be
successful with respect to as many as 100 variables, However, one
should be cautious about the reliability and cost of optimum-seeking
designs for simulation experiments with large complex agricultural

systems models containing more than about 10 to 15 policy variables,
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6.6 Suggested Reading

A large num"ber of books and artiéles deaiing with numerical
optimization are listed in the bibliography following this chapter.
Highly recommended reading at an introductory level are the monograph
of Box et al. [1969.]and books by Adby and Demster [1974 ], Brent [1973]
and Wilde [1964]. The more mathematically inclined may find Otega
and Rheinboldt [1970]and Daniel [1971] and Polak [1971] of interest.
Between these two extremes and giving a comprehensive coverage
of the procedures are the works of Beveridge and Schecter [1970] s
Cooper and Steinberg [1970], Jacoby, Kowalik and Pizzo [1972] ,
Walsh [1975] and many others. The above literature is orientated
towards solving problems in mathematics and engineering. Although
the procedures are readily transferable to design of simulation
experiments, relatively little has been written in this context. The
books of Naylor et al. [1966, 1968, 1971] discuss experiments with
economic systems models but in the main limit attention to traditional
designs. The survey article by Boehlje [1973] discusses agricultural

applications with particular emphasis on random search.
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APPENDIX 1

INTRODUCTION TO THE COMPUTER PROGRAMS

The five computer programs for optimum-seeking experimental
designs are presented in Appendix II through to VI. @ These programs
are written in FORTRAN for a Burroughs B6700 computer but are
designed for ease of adaption to other makes of machine., The
operating system under which the programs were developed has
unusual features with respect to line spacing control and loss of
constants (but not arrays) in subroutines on return to the main program,
and these are overcome by adding dummy WRITE statements and
COMMON statements respectively. Fach optimization procedure has

been programmed as

(i) a main program containing a test function which is to
be optimized and a subroutine call statement, In
agricultural systems applications the systems model

would replace the test function.

(ii) a subroutine which generates a new set of factor levels

(i.e. a new treatment) every time it is called.

The programs are currently designed to allow a maximum of
10 experimental factors, although this limit can be relaxed by revising
the DIMENSION statements. The initial guess or first treatment is
specified in a DATA statement in the main program, as is an upper
limit on the number of treatments to avoid excessive use of computer

time.

The FORTRAN subroutines for each of the five optimization
procedures follow the same general layout, and this is illustrated in
Figure I-1 for the method of steepest ascent. The subroutine initially
reserves space for arrays (in a DIMENSION statement), specifies

search parameters (as DATA), makes type declarations (INTEGER and REAL)
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and indicates which constants and arrays are common to the main
program and subroutine (or are to be retained in the subroutine
between successive calls)., The first time the subroutine is entered
a number of initial conditions are established. At the heart of the
layout in Figure I-1 is a branching (GO TO) statement conf,erring
control to different segments of the subroutine depending on the value
of a test criterion, ITEST. Fach segment carries out a specific
part of the search and ends with a RETURN to the main program
where the treatments are evaluated. Branching to a given segment
is repeated for a number of treatments, until that particular phase
of the search iteration is completed, e.g. control returns to the
segment placing treatments in the direction of steepest ascent until

response falls relative to the previous treatment.
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FIGURE 1I-1

Layout of the Steepest Ascent Subroutine

Type statements (REAL and INTEGER), DIMENSION, COMMON, DATA.
IF ITREAT.GT.1) GO TO 2

. Initial conditions

GO TO (30, 40, 50), ITEST

. Establish-slopes of the tangent hyperplane

ITEST =1
RETURN

. Step in the direction of steepest ascent

ITEST = 2
RETURN

. Take a step backwards, or reduce step size

ITEST =3
RETURN

L ] L] L ] L] .

*

. Terminate search
L]

RETURN
END
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None of the programs contain READ statements, all

information for the search being defined in the DATA statements.

. The interpretation of these data is explained in the following appendices.

Output of results is formated with row rather than column headings
to avoid confusion with any other information from the experiment

which the user may wish to have printed.

The test functions (surrogates for the systems model) are
simple polynomials with known optima. The function for univariate
minimization (Appendix II) is

Z = x4+3

which has a minimum value of Z = 3 at x = 0, The function for

multivariate search is

2 2 2
= - - * - - + -
Z (xl sz) + (XZ 2x3) + (3xl 2x3) le XZ 3)6;3 +10
which has a minimum of Z = 9,2813 at x = 1_'3439
rhrinuin i ,2344
[ .3281

To facilitate maximization the sign of Z is changed from positive to
negative when using the methods of steepest ascent (Appendix IIi and IV)

and random search with learning (Appendix VI),

The five subroutines are designed for coupling to the program
of systems model with little or no reprogramming. However, the
initial factor levels and search parameters as defined in DATA statements
would need to be adjusted on a trial-and-error basis to determine

settings most appropriate to the particular application.



APPENDIX II

UNIVARIATE SEARCH

This program minimizes a 'function' in one variable By
repeated quadratic interpolation. Each interpolation follows the
Powell method outlined in Chapter 3. Howe\}er, stepping is

continued until three treatments a

-y

b and ¢ bracket the value of X for
which Z is a minimum, removing the need for the svufficiency test on
the stationary point and for limiting the éxtent of adjustment in the

direction of the minimum.

The parameters in the listing of this program have the

following meanings:

Main program

TMAX = maximum number of treatments before
the search must terminate (here 15).
X = initial factor level (here 10.0).
Subroutine
D = initial step size (here 3.0)
NRED = number of reductions on step size (here 1),
SRED = extent of reduction in step size, (Here SRED = 6 so L

is reduced to 3/6 or 0.5 for the second quadratic

interpolation),

The listings of the main program and subroutine and the search
output follow. In this case six treatments are needed before the
minimum is bracketed, and the first iterbation is completed with a
quadratic interpolation leading to treatment no. 7 The search terminates
after 10 treatments with X = -, 0556 and Z equal to the target value of

3.0 correct to at least four decimal places.
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86700 FORTRAUY COMPILATIONY M AR

TUESDAY, 05/16/78 06:58 PN

L1

B

Bl e
1 =g

FILE S=FILES UNIT=READER
FILE 6=FILES,UNIT=PRINTER

INTEGER THAY

2
CoMin: X0,A,B,C,ZA,ZB,2C,ITEST, ITH,STEP
DATA 11/ fiyzn/é s K 7% 0.7, TMAX/?B/
ITREAT = O
1 ITREAT = ITREAT + 1

CALL 0PT1(ITREAT,THAX,X,Z)
IF {ITREAT, LT ?1Ax} uo To 1

K

2@90]90



97.
SUBROUTINE OPT1(ITREAT,TMAX,X,Z)

REAL MUM
INTEGER THAX
coMon X0,A,B,C,ZA,ZB,ZC,I1TEST,ITN,STEP
DATA 10/6/. D/3. /, NRED/I/, SRED/6. /
IF (ITREAT.EQ.,1) WRITE (10,8)
8 FORMAT (1X,'INITIAL ESTIMATE'/)
WRITE (10, 10) ITREAT,X,Z
10 FORMAT (3X, 'TREATMENT NO® 3 I13,7X,'X =", F12,4,7X,'Z =',F12.4/)
IF (ITREAT GT.1) GO To 18 :
ITEST = 0
ITN = 0
18 GO To (20,30, 40), ITEST
ITN = ITH + 1
WRITE (10,12) ITN . e
12 ;gRMAT (IX.'ITERATION NUMBER' 12/)

ZA Z

22 STEP = 0, = D

24

30 e = Z
IF (ZC.LT.ZB) Go To 32

C MINIMUM BRACKETED BY A AND C. CALCULATE OPTIMAL STEP SIZE
NUM (B ‘B=CHC)*ZA + (C*C-A*A)¥ZB + (A*A=B¥B)*ZC

DEN = ((B=C)*ZA + (C=A)*ZB + (A=B)*ZC)
BETA = NUM / DEN

X = X0 + BETA

D =D/ SRED
NRED = NRED - 1
ITEST = O

IF (NRED.LT.0) ITEST = 3
RETURN

C
C MINIMUM NOT BRACKETED. TAKE A FURTHER STEP

32 A =28
ZA = 7B
B =C
B = 7ZC
C =B + STEP
X = X0 + C
RETURN

C

Lo ITREAT = THAX
‘ RETURN ‘
FNN
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APPENDIX III

BASIC STEEPEST ASCENT

This program follows the procedure outlined in Chapter 4.
The parameters as listed in the DATA statements have the following

interpretations:

Main program

X = initial treatment, i.e. initial levels of the
three experimental factors, here _gg
10.0
T™AX = maximum number of treatments before the
search must terminate (here 40).
Subroutine
NVAR = number of factors (here 3),

S(l), S(2), S(3) = size of forward differences for variables 1 to 3,
here all 0.1.

L = step size parameter (here 2.0).
NRED = number of reductions in step size during the search (here l).
SRED = extent of reduction in step size. (Here L is divided by 5.)

The experiment with the test function proceeds through three
iterations, terminating because no further progress is possible, even
with a reduced step size, on the 24th treatment. (The jump in treatment
numbering from 23 to 40 is associated with the stopping procedure.)
Final factor levels are all within 0.7 of the optimal values as indicated
in Appendix I, although the response level of -18.49 is some distance

from the maximum of -10.
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B67000 FORTRAMN COMPILATION MARK 2,9,190
TUESDAY, 05/16/78 07:29 PM
STAS
FILE S5=FILE5,UNIT=READER
FILE 6=FILE6,UNIT=PRINTER
INTEGER TMAX
DIMENSION X(10)
COMMON X
1 ,IVAR,ITEST,ISTEP,ZL, DEN, ITN
DATA IN/S/ 10/6/
DATA x(l)/5./,X(2)/-8./,X(3)/10./.TMAx/40/
ITREAT = O
1 ITREAT = ITREAT + 1
(x(t wX(2))*> 5 (2)=3.%X(3))*%2 + (3.%X(1)=2,%X(3))*"2
1 - 2,5 (1 ) + X(2) - 3 *X(3) + 10,

L = =7

CALL OPT2(ITREAT,TMAX,Z)

IF (ITREAT.LT.TMAX) GO TO 1
SToP

END
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C  SUBRQUTINE To MAXIMIZE A FUNCTION OF SEVERAL VARIABLES USING THE
~C METHOD OF STEEPEST ASCENT : :

SUBROUT Er? OPTZCLTREAT ,THAX, Z)
INTEGER THAY

REAL M,L

ODIMENSION X{10),5(10),m(103,0(10)
COMMON X

1 IVAR,ITEST, E%TKP-LLQPEHAZTN
DATA NVAR/3/,SU13/01705(257,17,5(3) /17,1727 NRED/1/ ,SRED/5. /,
1 10/6/
| IF (ITREAT.EQ.1) WRITE (10,L)
L FORMAT (1%, YIMITIAL ESTEMATE?/)
_ WRITE (In,6) FTREATY, Z,(x{J), =1 SsMVAR)
6 FORMAT (3X, 'TREATHENT NO®,13,4X,"Z =',F10.4,4X, 'X VALUES:®,6F 10,4/
1 3X,4F10.47) |
IF (ITREAT.GT.1) GO To 2

ITEST = ¢

IVAR = 0
ITN = 3§
' WRITE (10,93 (7 |
L9 FORMAT {/1 xg@zzg<z1£um MO, 12/)
ﬁ Z u
2 @% TG {30,L40,50), ITEST
IF (IVAR,EQ.O0} G0 To 22
C DERIVE EQUATION To TAMIGEMT HYPERPLANE
MOIVARY = (Z-2L) / S{IVAR)
XK{IVAR) = ¥(1vA SCIVAR)
; WRITE { i3y 2 1{IVAR)
13 FORM PCUR Z VALUE = 15,4, 8X,"BASE Z VALUE =',Fis5.b
' i 8#§“S& )
D 22 IVAR =

i

KOIVARY = w{Ivar) S{IVAR)
IF (EVAP EQ, NVAR] ST = 1
WRITE (ig,12) zzvagJizva&%Jx{EVAaﬁ
2 FORMAT (3¥ @@Vzﬁigﬁagﬁgagg FORWARD DIFFERENCED BY ', F9,.4,' TOY,
T Fi1o,.4)
RETURN
C  DETERMINE DIRECTION OF STEEPEST ASCENT
30 MINVARY = {(Z-71) / S{NVAR}
WRITE (10,130 Z2,72L,M(IVARY
X(QVAR} = X{MVAR) « S{NVAR)
SSG = MOt EM( 1)
DO 32 EVARxE@MVAP
. 32 SSQ = SSO + M{IVAR) M{IVAR)
- DEN = SORT(8S0)
33 ISTEP = @

C  STEP It STEEPEST ASCENT DIRECTION
Do 34 ﬁV&RmE@ AR
34 DCIVARY = MUIVARY / DEN #
: WRITE (10, ?%} (DCJd),d=1,MVAR)
14 FORMAT (}x TADJUSTHENTS TD X VALUES:',8F9.4)

36 ISTEP = I1STEP + 1
WRITE (In,185) ISTEP
15 FORMAT (3X,"STEP nn®,13)
DO 35 IVAR=1,NVAR
35 XCIVARY = X{IVAR) + D(IVAR)
. L = 7

ITEST = 2
RETURN
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COMNTINUE

IF (Z.GT.ZL) GO TO 36
[STEP = ISTEP = 1
WRITE (I10,16) ISTEP

FORMAT (3X,'X VALUES AT STEP?,i2,1X, TAKEN AS MNEW SEARCH BASE')

FUNCTION VALUE DECREASING, STEP 2aCKWARDS
Z = LL .
DO 42 IVAR=1,NVAR
X(IVAR) = X(IVAR) - D(IVAR)
IF (ISTEP.GT.1) GO TO Lk
FUNCTION HAS DECREASED o FIRST STEP
IF (NRED,GT.0) GO To L6
ITREAT = TMAX = |
ITEST = 3
RETURN

REDUCE STEP SIZE
) L =L / SRED
MRED = MRED = 1
WRITE (I0,19) L
EBRQéT (3X,'STEP SIZE PARAMETER REDULFD TO',F10.4)
IVAR = 1
ITN = ITH
WVRITE gll
X(IVAR) =
WRITE (IO,
ITEST = O
RETURN

+ 1
29) ITHN
”2IVAR) + S{IVAR)

12) IVAR,S{IVAR),X{(IVAR)

ITREAT = THAX
RETURN '
END



INITIAL ESTIMATE -

X VALUES:

TREATMENT HO 1 Z =-1872,0000 5.0000

ITERATION NO 1
VARIABLE 1 FORWARD DIFFERENCED BY 0,1000 To 5.1000
TREATHENT HO 2 Z =-1873,1000 X VALUES: 5,1000
CURRENT Z VALUE = -1873,1000 BASE Z VALUE =
VARIABLE 2 FORVARD DIFFERENCED BY - 0,1000 70  ~7.9000
TREATHENT O 3 Z =-1856,1500 X VALUES: 5.0000
CURRENT Z VALUE = -1856, 1500 BASE Z VALUE =
VARIABLE 3 FORWARD DIFFERENCED BY 0.1000 7o 10,1000
TREATHENT MO & Z --1&96 6300 X VALUES: 5,0000
CURRENT Z VALUE = 1895 .6300 BASE Z VALUE =
ADJUSTHENTS Ty X VALUES. -0,0751 1.0815 -1,6807
STEP NO 1
TREATHENT NO & Z =-1339,8638 X VALUES: 4,9249
STEP nNO 2 _
TREATMENT MO 6 Z = «912.4123 X VALUES: L,8499
STEP MO 3
TREATMENT nOo 7 Z = =589,6455 X VALUES: L, 7748
STEP NO &
TREATMENT MO 8 Z = -371.5634 X VALUES: L,6998
STEP HO 5
TREATHENT NO 9 Z = -258,1661 X VALUES: L,6247
STEP NO 6
TREATHMENT HO 10 Z = =249,4534 X VALUES: = 4,5496
STEP MO 7
TREATHMENT HO 11 I = =345,4255 X VALUES: L 746
X VALUES AT STEP 6 TAKEMN AS NEW SEARCH BASE

ITERATION ND 2
VARIABLE 1 FORWARD DIFFERENCED BY 0,1000 To L, 6496
TREATMENT NHO 12 Z = =259,1578 X VALUES: L, 6496
CURRENT Z VALUE = -259,1578 BASE Z VALUE =
VARIABLE 2 FORWARD DIFFERENCED BY 0,1000 T0  -1,4107
TREATHENT NO 13 Z = -246,3232 X VALUES: L,5496
CURRENT Z VALUE = -246,3232 BASE Z VALUE =
VARIABLE 3 FORWARD DIFFERENCED BY 0.1000 T0 0,0160
TREATHENT MO 14 Z = =244,5120 X VALUES: L ,5496
CURRENT Z VALUE = -24L.5120 BASE Z VALUE =
é?gusrnsngs To X VALUES: -1,7129 0.5525 0,8722
TREATMENT MO 15 I = =82.7154 X VALUES: 2.8367
STEP MO 2
TREATHMENT HO 16 Z = =35,1333 X VALUES: 1.,1239
STEP 1o 3
TREATHENT NO 17 Z = «106,7072 X VALUES: =0,5890
X VALUES AT STEP 2 TAKEN AS MEV SEARCH BASE

ITERATION HO 3
VARIABLE | FORWARD DIFFERENCED BY 0,1000 To 1.2239
TREATMENT MO 18 Z = =35,4508 X VALUES: 1.2239
CURRENT Z VALUE = -35,4508 BASE Z VALUE =
VARIABLE 2 FQRWARD DIFFEREHNCED BY 0,1000 To  -0,3057
TREATHENT NO 19 Z = -33,4318 X VALUES: 1.1239
CURRENT Z VALUE = =33, u318 BASE Z VALUE =
VARIABLE 3 FORWARD DIFFERENCED BY 0,1000 Tg 1,760k
TREATMENT NO 20 Z = -38,1753 X VALUES: 1,1239
CURRENT Z VALUE = -38.1753 BASE Z VALUE =
ADJUSTHENTS TO X VALUES: -0,1814 0,9723 -1,7383
STEP NO |
TREATMENT NO 21 I = -18,4905 X VALUES: 0,942k
STEP HO
TREATNE'T MO 22 Z = ~10L,6L8L X VALUES: 0.7610
X VALUES AT STEP 1 TAKEN AS NEW SEARCH BASE
STEP SIZE PARAMETER REDUCED To 0.4000
ADJUSTHENTS 70 X VALUES: -0.0363 0,1945 =0,3477
STEP 1o 1§
TREATHENT ho 23 Z = -27.4980 X VALUES: 0.9062
X YALUES AT STYEP O TAKEN AS NEV SEARCH BASE
TREATMENT nNo 40 Z = -18.4905 X VALUES: 0,9h424

-8.0000 10,0000
-8.0000 10,0000
-1872,0000
-7,9000  10.0000
-1872,0000
-8,0000  10.1000
-1372.0000
-6,9185 8.3193
-5.8369  6.6387
=4, 7554 L,9580
-3.6738 3.2774
-2,5923 1.5967
"105‘07 -000840
-0,4292  -1,7646
-1.5107  -0,0840
-249,4534
-1.4107  -0,0840
-249,4534
-1.5107 0.0160
-249,4534
-0,9582  0,7882
-0,4057 1.6604
0.1468  2,5326
-0.4057 1.6604
-35,1333
-0,3057 1.660k
-35,1333
-0.4057  1.7604
-35,1333
0.5666 -0,0779
1.5389 -1.8162
0.7611  <0.4255
0.5666 =0.0779

SLOPE

SLOPE

SLOPE

SLOPE

SLQOPE

SLOPE

SLOPE

SLOPE

SLOPE

"

1]

103,

-11,0000
158,5000

-246,3000

-97.0433
31,3020

L49.b1ke

-3.1747

17.0152

-30,4195






APPENDIX 1V

STEEPEST ASCENT (REFINED)

This subroutine follows the procedure outlined in the -

final section of Chapter 4. A series of linear optimizatioﬁs are

first carried out each following the Powell procedure but ensuring

that the maximum is bracketed before taking a quadratic interpolation.
The number of these linear optimizations is determined within the
subroutine with reference to the maximum number of treatments
allowed. No reductions are made to step size. When this phase

of the search has been completed a non-linear local exploration is
carried out. (Since the test function is a quadratic and the procedure

is quadratically convergent, -the exact optimum has been located.)

The parameters of the main program are as in Appendix III,

as are NVAR, S and L of the subroutine.

In the experiment with the test function three iterations
of linear search bring each of the factor levels to within one unit
of the optimal value and the response criterion to -12.88. A small
number of additional treatments are then evaluated, and a stationary
point on the response hypersurface is located. A test applied to the
Hessian matrix reveals that this stationary point is a maximum as

required.
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B6700 FORTRAN cComMP I LATION MARK 2,9.190

TUESDAY, 05/16/78 07:31 PM

it v
i >
it w
1 X

LE 5= FELES UHIT=READER
[LE  6=FILE6,UNIT=PRINTER

INTEGER TMAX
DIMENSION X(10)
COMMON X
1 ,IVAR,JVAR, ITEST,A,B,C,STEP,FA,FB,FC,DET,MAX,MIN, ISIGN,JSIGN,ITN
2 SNLINGZL

DATA 11/5/ n0/6/

DATA x(z)/ of s X(2)/=8,/, x(3)/10 /s THAX/ 60/

ITREAT =

ITREAT = §TREAT + 1

i = %X¢?} w2 %WK{2) )2 + {
i - ZK{?} + A{2) = 3.%K{

X(2) - 3 #X(3))%%2 + (3.%X(1)=2,%X(3))%*2
3) + 1

@

@

CALL OPT3(ITREAT,TMAX,Z)

IF (ITREAT.LT.THAX) GO To 1
STop

END
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SUBROUTINE TO MAXIMIZE A FUNCTION OF SEVERAL VARIABLES BY THE METHOD
OF STEEPEST ASCENT WITH OPTIMIZATIONS IN ASCENT DIRECTIONS AND
NON-LINEAR LOCAL EXPLORATIONS IN THE VICINITY OF THE MAXIMUM

SUBROUTINE OPT3(ITREAT,TMAX,Z)

INTEGER TMAX

REAL M,L,MNUM .

DIMENSION X(10),XB(10),ZPLUS(10),M(10),U(10),H(10,10),
1 E(10,10), s(10}

DOUBLE PRECISION D(3) -

DATA D/'MAXIMUM®, *MINIMUM®, 'SADDLE POINT'/

COMMON X '

1 »IVAR, JVAR, ITEST,A,B,C,STEP,FA,FB,FC,DET,MAX,MIN, ISIGN, JSIGN, ITH
2 ,NLIN,ZL

DATA NVAR/ 3/sSC1)/.1/7,5(2)/.1/,5(3)/.1/,L/2./,10/6/
- IF (ITREAT.EQ.1) WRITE (10,4 g o

FORMAT (1X,'INITIAL ESTIMATE'/) -

WRITE (10,5) ITREAT,Z,(X(J),J=1,NVAR)

FORMAT ' (3X, ' TREATMENT NO®,13,4X,°Z =t ,F12.4,4X, 'X VALUES:',6F10. 4
1 3X,4F10.4/)

IF (ITREAT.GT.1) GO To 2

ITEST = 0

IVAR = 0

ITHN = O
NLIMN = TMAX = NVAR%(2+(NVAR-1)/2) = 6

Go To (30,40,50,22,30,70,80,90,100,140), ITEST
IF (IVAR,GT.0) GO TO 26 '
ITN = ITN + 1
IF (ITEST.EQ,0) WRITE (10,3) ITN
FORMAT (/1X,'ITERATION NO',12/)

IF (ITEST.EQ.4) WRITE (lo,164) :
FORMAT (1H1,1X, 'NON=-LINEAR LOCAL EXPLORATION'/)

STORE CURRENT SEARCH BASE XB
DO 24 J=1,HVAR
XB(J) = X(J)

A =0,

FA = 2

L = 7

GO To 28

MUIVAR) = (Z=FA) / S(IVAR)

IF (ITEST.EQ.0) WRITE (10,7) Z,FA,M(IVAR
FORMAT (3X,'CURRENT Z =',F15.4,8X, 'BASE
1 Fi2.4)

X(IVAR) = X(IVAR) = S(IVAR)

ZPLUS(IVAR) = Z

IVAR = IVAR + 1 .

X(IVAR) = X(IVAR) + S(IVAR)

IF (IVAR,EQ.MNVAR) ITEST = ITEST + 1
WRITE (10,82 IVAR.S(IVAR)‘X(IVAR)

FORMAT (3X,'VARIABLE',13,' FORWARD DIFFERENCED BY ',F10.4,' To°',
1 Fi10.4)

RETURN

)
Z =',F15.h,8X.'SLOPE =,

DETERMINE DIRECTION OF STEEPEST ASCENT
M{NVAR) = (Z=-FA) / S(NVAR)
ZPLUS(NVAR) = Z
IF (ITEST.EQ.1) WRITE (I10,7) Z,FA,M(IVAR)
X(NVAR) = X(NVAR) = S(NVAR)

IF (ITEST.NE.5) GO To 32
ITEST = 6
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gz MAXIMUMBNOT BRACKETED., TAKE A FURTHER STEP
FA = FB
B =2¢
FB = FC

C =B + STEP
DO 57 J=1,HVAR
57 K{J) = XB(J) + C = U(J)
WRITE (ip,13)
13 FORMAT (3X,'THIRD OR LATER STEP')
RE TURN
MON-LINEAR L.OCAL EXPLORATION
IVAR = 1
K1Y = X(1) = S(1)
ITEST = 7
WRITE (I0,%4) IVAR,S(IVAR),X(IVAR)
E?g%BAZ){BxggVARIABLE°9139' BACKWARD DIFFERENGED BY',Fi0,.4,' To°,

RETURN

e
o

et
frens
ol

 CALCULATE LINEAR AND QUADRATIC TERMS OF TAYLOR SERIES FOR VBLE IVAR
O MOIVAR) = (ZPLUS(IVAR)=Z) / (2.*S(IVAR))
HéEVAR IVAR) = (zPLUSEIVAR)+Z»2.* FA ) / (SCIVARY®*S({IVAR)}
XCIVARY = X(IVARY + S{IVAR)

Q¢

IVAR = IVAR + 1

KCIVYAR) = X(IVAR) = S{IVAR)

IF {IVAR,EQ.NVAR) ITEST = 8

WRITE (10,14) IVAR,S(IVAR),X(IVAR)
RETURN

0 KONVAR) = X{MNVAR) + S(NVAR)

MOHVAR) = (ZPLUS{HVAR)=Z) / (2.%S({1IVAR))

HINVAR,NVAR) = (ZPLUS(NVAR)+Z=2.% FA ) / (SCHVAR)*S(HVARY)
. CALCULATE INTERACTION TERMS OF TAYLOR SERIES

x%%)

WRITE (10,15) IVAR,JVAR

VAR i
X(2)
=} FORMAT (3X, 'VARIABLE",I3,' AMD',I3,' FORWARD DIFFERENCED')

IR I | B

JVAR = 2
x(ag + Séi)
X62) + 5(2)
ITEST = 9
RETURM

00  H{IVAR,;JVAR) = (Z- FA -M{IVAR)*S(IVAR)=M(JVAR)*S(JVAR) = H(IVAR,
FIVAR)“S(IVAR)*S(IVAR) /2, = H(JVAR, JVAR)*S (JVAR)*S(JVAR)/2.) /
2 (SCIVARI®S(JVAR))
X(JVAR) = X(JVAR) = S(JVAR)
IF (JVARLEQ.NVAR) GO To 102
JVAR = JVAR + 1
X(JVARY = N(JVAR) + S({JVAR)

WRITE (I0,15) IVAR,JVAR.
RETURN
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SSQ = M{ty=M(1)

DO 36 J=2,1VAR

SSQ = S8Q + M{JY*M(J)

DIV = SQRT(S$SQ)

DO 38 J=1,1IVAR

UCd) = mldy / DIv = L

X(J) = XB(JY + UlJ)

WRITE (10,10) (U(J),J=1,NVAR)
EDRMAT (3X, "ADJUSTMENTS TO X VALUES:',10F9.h)
ITEST = 2

WRITE (10,99

gg?géT (3X, "FIRST STEP IN DIRECTION OF STEEPEST ASCENT')
TURN '

DEFINE SECOND STEP IN ASCENT DIRECTION

IF (Z.LT,FAY GO To L2
FUNCTION INCREASING Su STEP FORWARD
FB = Z
STEP = 1,
ITEST = 3

GO To L&

FUNgTESN DECREASING SO STEP BACKWARDS
TEP = <1 2

F .
€ = B + STEP
DO he J=1,1VAR

() = ¥B{J) « € % U(d)
WRITE (I0,11)

FORMAT (3X,"SECOND STEP®)
RETURN

L@C?EE MAXIMUM OR CONTINUE STEPPING

o Z [}
IF (FC.GT.FB) GO To 52

MAXIMUM BRACK)

MUM = (B*B=C*C)*FA + (C*¥C-A*A)*FB + (A%A-B*B)*FC
DEN = 2, )

BETA = MUM / DEN

DO 60 J=1,1VAR

X(J) = XB(J) + BETA * U(J)
VAR = O

ITEST = O

P (ZLT.ZL.OR.ITREAT.GE.NLIN) ITEST = 4

WRITE (I0n,12) BETA

FORMAT (3X, "LINEAR OPTIMIZATION;: BETA =',F12.4)
RETURN



110,

c
102 VAR = IVAR + {
IF (IVAR,EQ.IVAR) GO Tg 110
X(IVAR=1) = X(IVAR=1) = S(IVAR=-1)
JVAR = IVAR + 1
XCIVAR) = X(IVAR) + S(IVAR)
X(JVAR) = X(JVAR) + S(JVAR)
WRITE (10,15) IVAR,JVAR
RE TURN ' :
C  CALCULATE ELEMENTS OF HESSIAN MATRIX H BELOW THE DIAGONAL
P10 DO 112 I=1,HVAR
DO 112 J=1,NVAR
112 H(J, 1) = H(L,d)
WRITE (10,16)
16 FORMAT (3X, 'JACOBIAM GRADIENT VECTQOR!)
WRITE (10,18) (11(J),J=1,NVAR)
WRITE (10,17)
17 FORMAT (3X, "HESSIAHN MATRIX')
DO 114 I=1,1IVAR
114 WRITE (I0,18) (H(I,J),J=1,NVAR)
18 FORMAT (3X,10F12.4)
C OBTAIN THE INVERSE OF H (=E), AT THE SAME TIME TESTING FOR NEGATIVE
C DEFINATENESS

MAX = 0
MIN = O
ISIGN = 1
DET = 1,

DO 120 I=1,NVAR
DO 120 J=1,1VAR
E(1,J) = 0, )
IF (1.,EQ.J) E(1,J) = 1,
120 CONTINUE
C FOR EACH ROW
DO 122 I=1,NVAR
C DIVIDE THRQUGH BY PIVOT ELEMENT
PIV = H{I,I)
DET = DET * PlV
IF {DET.LT,0.) MIN = MIN + 1
ISIGN = ISIGHN * (=1)
JSIGN = 1
IF (DET.LT.0,) JSIGN = -1
IF (JSIGNL.HE.ISIGN) MAX = MAX + 1
MIN = MIN + JSIGN
DO 124 J=1,HVAR
H(IsJ) = H(I,J) / p
126 E(1,J) E(1,d) / P
C  FOR EACH OTHER Row
DO 126 K=1,HVAR
IF (K.EQ,I) GO To 126
TEMP = H(K,1)
c FOR EACH LLEMENT
DO 128 J=1,NVAR
H(K,d) = H(K,J) = TEMP * HQI.J;
128 E(K,J) = E(K,J) = TEMP * E(I,J
126  CONTINUE
122 . CONTINUE
C CALCULATE REQUIRED ADJUSTHMENTS IM X
DO 130 I=1,1IVAR
Uiy = o,
DO 132 J=1,HVAR
132 U(I) = U(I) = EC(I,d)*11(J)
130 COHTINUE
€ CALCULATE OPTIMAL X VALUES
DO 134 J=1,NVAR
134 X(J) = XB(J) + u(d)
IF (MAX.EQ,0) J = 1
IF éMIN.EQ,NVAR) J =2
IF (MAX NE.O.AND.MIN,HE.MVAR) J = 3
WRITE (I0,162) D(J)
162 FORMAT (/3%,'THE STATIGHARY POINT IS A YLA12/)
[TRCAT = THAX =~ 1
ITEST = 10
140  RETURN
END

v
Iv

3]



INITIAL ESTIMATE
TREATHEMT NO t 7 = -1872.0000

¥ VALUES: 5,0000

ITERATION NO 1§

VARIABLE - ¥ FORUARD DIFFERENCED BY- 0.1000 TO  5,1000

TREATHENT MO 2 Z = -1873,1000 X VALUES: . 5.1000

CURRENT Z = =-1873,1000 BASE 7 = ~-1872,0000

VARIABLE 2 FORWARD DIFFERENCED BY 0,1000 TO -7.9000

TREATHEMT NO 3 Z = =1856,1500 X VALUES: 5.0000

CURRENT Z = -1856,1500 BASE 7 = ~-1872,0000

VARTABLE 3 FORWARD DIFFERENCED BY 0,1000 To 10,1000

TREATMENT NO L Z =z =1896,6300 X VALUES: 5,0000

CURRENT Z = ~1896.6300 BASE 7 = -1872.0000

ADJUSTMENTS TO X VALUES: =0.0751 1.0815 =1,6807

FIRST STEP IM DIRECTION OF STEEPEST ASCENT

TREATMENT MO 5 Z = =1339,8638 X YALUES: L ,9249

SECOND STEP

TREATMENT MO 6 Z =  =912.,4123 X VALUES: 4,8499

THIRD OR LATER STEP

TREATMENT NO 7 Z = «589,6455 X VALUES: L.,7748

THIRD OR LATER STEP ' -

TREATMENT NO 8 Z =  =371,5634 X VALUES: L,6998

THIRD OR LATER STEP

TREATHMENT HO 9 L = =258,1661 X VALUES: L,6247

THIRD OR LATER STEP :

TREATMEMT NO 10 Z = -249,4534 X VALUES: L, 5496

THIRD OR LATER STEP

TREATMENT NO 11 Z =  =345,4255 X VALUES: L, L4746

LIMEAR OPTIMIZATION: BETA = 5.5832

TREATHENT NO 12 Z = =240,3616 X VALUES: L, 5809
ITERATION NO 2

VARIABLE 1 FORWARD DIFFERENCED BY 0,1000 T - 4,6809

TREATMENT D 13 7 = =249 4683 X VALUES: L, 6809

CURRENT Z = =249,4683 BASE Z = =240,3616

VARIABLE 2 FQRWARD DIFFERENCED BY 0.,1000 TO -1,8615

TREATHMENT N0 14 Z = =236,3479 X VALUES: L,5809

CURRENT Z = =236,3479 BASE Z = -240,3616

VARIABLE 3 FORWARD DIFFERENCED BY 0,1000 T0 0,7165

TREATHENT NO 15 Z = =237.L742 X VALUES: 44,5809

CURRENT Z = =237.4742 BASE Z = -240,3616

ADJUSTHENYS Tu X VALUES: -1,7576  0.7747 0.5573

FIRST STEP It DIRECTION OF STEEPEST ASCENT

TREATMENT No 16 Z = -86,3018 X VALUES: 2.8233

SECOND SYEP

TREATHENT MO 17 Z = =37:3243 X VALUES: 1.0656

THIRD QR LATER STEP :

TREATHMENT NGO 18 7= -93,4293 X VALUES: -0,6920

LINEAR OPTIMIZATION: BETA = 1,9661

TREATMENT MO 19 Z = «37.2639 X VALUES: 1.1252
ITERATION NO 3

VARIABLE 1 FORWARD DIFFERENCED BY 0.1000 To 1.,2252

TREATMENT MG 20 = =37.5352 X VALUES: 1,2252

CURRENT Z = =37 +5352 BASE Z = =37,2639 |

VARIABLE 2 FORWARD DIFFERENCED BY 0,1000 To ~0,338hL

TREATHENT po 21 1= -35,4981 X VALUES: 1.1252

CURRENT Z = «35,4981 BASE 7 = 37,2639

VARTABLE 3 FORWARD DIFFERENCED BY 0,1000 TQ 1.8121

TREATHEHNT NO 22 I = -40, L4582 X VALUES: 1,1252

CURRENT Z = -40,4582 BASE Z = -37.2639

ADJUSTMENTS TO X VALUES:T -0.1482 0.9649 =1,7456

FIRST STEP It DIRECTION OF STEEPEST ASCENT

TREATMENT HO 23 Z = -18,0583 X VALUES: 0,9770

SECOMD STEP

TREATMENT NO 24 Z= -102,9697 X VALUES: 0,.8288

LINEAR QPTIMIZATIOM; BETA = 0.6845

TREATHENT MO 25 L = 12,8752 X VALUES: 1,0238

.«800000

-8,0000
SLOPE

"7 ®° 9000
SLOPE

-8,0000
SLOPE
-6,9185
-5,8369
-4, 7554
~3,6738
-2,5923
-1.5107
-0,4292
-1.9615

-1.9615
SLOPE

-1.8615
SLOPE

-1.9615
SLOPE
-1,.1868
-0.,4121
0.3626°
-0,4384

-0, 4384
SLOPE

-0,3384
SLOPE

-0,.4384
SLOPE

0.5265
1 491k

0.2221

111.

10,0000

10,0000
= =-11,0000

10,0000
= - 158,5000

10,1000

= -246,3000
8.3193
6.6387
4,9580
3,277

1.5967
-0,0840
~1.7646
0,6165

0,616
= é91.0666

0.6165
= LO,1374

S.716528.8736
1,1738
1.7310
2,2883

1.7121

1.7121 ”
= "207121

1.7121
= 17.657!

S 1.8121
= -3109“"3:

~-0,0334
"1 -7790

0.5174
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MON-LINEAR

LOCAL EXPLORATION

-9c2813

VARIABLE 1 FORWARD DIFFERENCED BY 0,1000 To
TREATMENT NO 26 Z = -14,1130 X VALUES:
VARIABLE 2 FORWARD DIFFERENCED BY 0.1000 To
TREATMENT MO 27 Z = =12,5273 X VALUES:
VARIABLE 3 FORWARD DIFFERENCED BY 0.1000 TO
TREATMENT NO 28 Z = -12,6886 X VALUES:
TREATMENT NO 29 Z = -12,8752 X VALUES:
VARIABLE 1 BACKWARD DIFFERENCED BY 0,1000 ToO
TREATHMENT NO 30 7 = -11,8373 X VALUES:
VARIABLE 2 BACKWARD DIFFERENCED BY 0.1000 TO
TREATMENT NO 31 7= =13.3230 X VALUES:
VARIABLE 3 BACKWARD DIFFEREMNCED BY 0.,1000 TO
TREATMENT NO 32 Z = -«13,3217 X VALUES:
VARIABLE 1 AND 2 FORWARD DIFFERENCED
TREATMENT NO 33 Z = -13,7252 X VALUES:
VARIABLE 1 AND 3 FORVARD DIFFERENCED
TREATMENT NO 34 Z = -13,8065 X VALUES:
VARIABLE 2 AND 3 FORWARD DIFFERENCED
TREATMENT NO 35 Z = 12,2807 % VALUES:
JACOBIAN GRADIEMT VECTOR :

-11,3788 3.9789 3.1658
HESSIAN MATRIX

-20,0000 4 ,0000 12,0000

L ,0000 -10,0000 6,0000
12,0000 6.,0000 «26,0000

THE STATIONARY POINT IS A MAXIMUM
TREATMENT MO 60 Z =

X VALUES:

1.,1238
1.1238
0.3221
1.0238
0.6174
1.0238
1.,0238
0,9238
0,9238
0,1221
1.0238

0,4174

1,0238
1,1238
1.1238
1.0238

0.3438

0.2221
0.3221

0.2221
0,2221

0.2221
0.1221
0,2221
0.3221
0.2221
0.3221

0.2344

0.5174
0.5174

0.6174
0.5174

0.5174
0.5174
O.4174
0,5174
0.6174
0.6174

0.3281



APPENDIX V
CONJUGATE DIRECTIONS

This program follows the conjugate directions method as
outlined in Chapter 5. The parameters defined in DATA statements

have the following interpretations.

Main program

As in Appendix III,

Subroutine

NVAR = number of experimental factors (here 3),

L(l), L(2), L(3) = step size parameters for variables
1 to 3 (here each 2.0).

Q = maximum step size (here 12.0).

DMIN = minimum improvement in response from a full
search iteration for which the experiment is to be
continued (here 1.0).

MIT = maximum number of iterations before the search

must terminate (here 4).

This method, which is also quadratically convergent, locates

the exact minimum of the test function (Z = 9.2813) and corresponding

factor levels in three iterations or 47 treatments.

113,
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B6700 FORTRAN CoOMPILATION MARK 2.9.190

TUESDAY, 05/16/78 OL4:57 PM
I

I o
I o
nx

FILE 5=FILE5,UNIT=READER
FILE 6=FILE6,UNIT=PRINTER

INTEGER TMAX

DIMENSION X(10)

CoMMON X
1 ,I,ITEST,M,DELTA,A,B, c FA,FB,FC,F1,F2,F3,ZL,ZBASE,S,UMAX,ITHN
DATA 1IN/ /. 0/6/

, DATA X(1 /5 /.y(z)/ 8./.,X(3)/10./,TMAX/60/
ITREAT
1 ITREAT = ITREAT + 1

(X(1)5205%(21) %52 & (X(2)=3,5X(3))552 + (3.5K(1)=2.%X(3)) 752
0

. T2.EX(1) F X{2) - 3.%x
CAL% OPTL (ITREAT,TMAX,Z)
ITREAT.LT.THAX) GO T
STOP
END

1
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C SUBROUTINE T HMAXIMIZE A FUNCTION OF SEVERAL VARTABLES USING THE
C METHOD OF COHJUGATE DIRECTIONS

SUBR@U?EEE OPTL{ITREAT , TMAX,Z)
INTEGER THAX

REAL L, NURN
DIM&%&ZUN 103 ,L(10),W(10),U(10,10), xo(lo) XN(?O) xa(io)
COMMOHN A
1 o1, ITEST, M, DELTAL,A,B,C,FA,FB,FC,F1,F2,F3,ZL,ZBASE ,S,UMAX, ITN
DATAumggﬁiﬁfgﬁéiz 12.0,002)72.7,L(3)/2.7,0/12./, lo/6/
3 8 i :E‘s M%"i“
\TEGL 1) WRITE (10,3)
SRR IH CESTIMATE®/)
Ly L8 2 Lo (X{d),d=1 NVAR)
RE TR0 ,I5,6X,%2 =% ,F12.4,4X, X VALUES:®,6F12.4/

010
BASE
DIRECTION VEQTORS

Vé@@zgwh

Y OUMAY = U1, d)
UMINT UMIN = U(I,d)
(uMind)

B =8
WRITE (10,1163 S
116 FORMAT {g;@&S? P SIZE PARAMETER SET AT',F10.4)
C STORE BASE TREATMENT FOR CURRENT LINEAR MIMIMIZATION
bo 18 ﬁmaﬁwvga
18 XBLJ) = ¥(J)
C SPECIFY FIRST TREATMENT OF LINEAR OPTIMIZATION
19 DG 14 J=1 v”&@
W x(Jy = a{ + B % UL,
PF <z?a5§@hqﬁgi RETURHN’
IF (1.67,1) Go To 20
DELTA = G,
=1
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C RECORD WHETHER IMPROVEMENT IS GREATER THAN IN PREVIOUS LINEAR QPTIMNS
30 DIFF = ZL = Z
IF (DIFF.L.T.DELTA) GO TO 34

DELTA = DIFF
Mz I=-1

34 L = L
ITEST = 1
RETURN

C

50 F2 Z

: ITEST = ITEST + 1
Do 36 J=1, NVAR
36 X(J) = 2, % XN(J) = X0(J)
DIFF = ZL = 2
IF (DIFF.GT.DELTA) M = NVAR
IF (DIFF.GT.DELTA) DELTA = DIFF
WRITE (10, 120)
120  FORMAT (3X,'DOUBLE ITERATION STEP!')
RETURN

c -
C RETURN FROM EVALUATION OF DOUBLE ITERATION STEP (X=2XN=-XO0)
60 F3 =1
WRITE (10,118) F1,F2,F3,M,DELTA
118 FORMAT (3X,'F1 =',F12,4,5%,'F2 =',F10.4,5X,'F3 =',F10.4 . 5%,
1 L 12, 5%, 'DELfA —'.Flo L)
xF (F3 GE . Fl) GO T 3
T1 = (F1-2. F2+F3) (Fl F2- DELTA)
T2 = DELTA * (F1 F3) %2 /) 2,
IF (T1.GE. T2) GO To 38
C INTRODUCE NEW SEARCH DIRECTION VECTOR
D0 42 K=M,NVAR=1 ,
DO 4& J=1,NVAR
Ly U(K,d) = U(K+I,J)
L2 CONTINUE
DO 46 J=1,NVAR
Lo U(NVAR’J) = XN(J) = X0(J)
WRITE {I0,124) (U(NVAR,J),Jd=1,NVAR) .
124 FgRﬁ%TJ(%X&’NEW SEARCH DIRECTION VECTOR:',10F10,4)

L7 X(J) = Xn{Jd)
o Z:=F2

Go Tg_21
38 IF (F3.LT.F2) GO To 48
C SET HEW ITERATION BASE AS XN
DO 56 J=1,NVAR
56 - X0(J) = Xn{J)
GO TO 54
C SET NEW ITERATION BASE AS 2XN-XO
L8 D0 52 J=1,NVAR
52 X0(J) = 2, * XN(J) - XO(J)
C END OF ITERATIOM
54  ZI1T = AMINI(F2,F3)
ZDIFF = ZBASE - ZIT

IF (ZDIFF.LT.DMINLOR.ITN.EQ.MIT) GO To 58
IF (ZIT.GT.ZBASE) GO TO 58
- ITEST = O
I =0
DO 55 J=1,NVAR
55 X(J) = xo(J)
Z =117
_ GO To 20
C. END OF OPTIMIZATION
58 ITREAT = TMAX
' RETURN
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c
C TAKE A SECOMD STEP
70 FB = Z
ITEST = ITEST + 1
C =2, * 8§
IF (FB.GTOFA) C = 00 - S
76 DO 78 J=1,NVAR

78 X(J) = XB(J) + C * U(l,Jd)
RETURN

c
C THIRD OR LATER STEP IN LINEAR MINIMIZATION
80 FC = Z
DEN = 2, * ((B=C)*FA + (C=A)*FB + (A=-B)*FC)
TEST = DEN / ((A=B)*(B=C)*(C=A))
IF (TEST.LT.0.) GO TO 90
IF (FB.GT.FA) GO To 88

C FUNCTION DECREASING. TAKE A FURTHER STEP FORVARDS
A =B :

FA = FB
B =C
FB = FC
C=¢C+ §
Go To 76
gg FUN%TIO% INCREASING., TAKE A STEP BACKWARDS
FB = FA
A =C
FA = FC
C =C =
c Go To 76
C CALCULATE OPTIMAL STEP SIZE .
90 NUM = (B*B=C*C)*FA + (C*C=A®A)*FB + (A®A~B*B)*FC
BETA = NUM / DEN
PROD = BETA * UMAX
IF (ABS(PROD).GT.Q) BETA = BETA * ABS(Q/PRQD)
C PLACE MEW TREATMENT AT OPTIMAL PQOSITION
DO 94 J=1,NVAR
X(J) = XB(J) + BETA * U(1,J) :
IF (1.,EQ.NVAR,AND,ITEST.EQ.2) XN(J) = X{J)
o4 CONTINUE
WRITE (10,128) BETA
128  FORMAT (3X,'LINEAR OPTIMIZATIONM; BETA =',F12,4)
IF (1.EQ.HNVAR,AND,ITEST.EQ.6) GO TO 96
IF (I.LT.NVAR) ITEST = O
IF (I.EQ.NVAR) ITEST = 3
RETURN
C
C END OF ITERATION (INTRODUCED DIRECTIOQN). SET NEW ITERATION BASE
C AT XN + BETA®™Ul
96 DO 98 J=1,NVAR
98 X0(J) = X(J)
ITEST = O
I =0
RETURN
END
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INITIAL ESTIMATE

TREATMENT NO i iz 1872,0000 X VALUES: 5.0000 -8,0000 10,0000
ITERATION NO 1

SEARCH IN DIRECTION MO 1
STEP SIZE PARAMETER SET AT 2,0000

TREATMENT NO 2 Z= 1932,0000 X VALUES: 7.,0000 -8,0000 10.0000
TREATMENT MO 3 Z= 1892,0000 X VALUES: 3.0000 -8,0000 10,0000
LINEAR OPTIMIZATION; BETA = -0, 5000

TREATMENT MO 4 L= 1869,5000 X VALUES: L ,5000 =8,0000 10,0000
SEARCH IN DIRECTION NO 2

STEP SIZE PARAMETER SET AT 2,0000

TREATHENT NO 5§ Z = 1575,5000 X VALUES: L4 ,5000 =6,0000 10,0000

TREATMENT NO 6 L = 1321,5000 X VALUES: 4 ,5000 =4 ,0000 10,0000

LINEAR OPTIMIZATION; BETA = 12,0000

TREATMENT NO 7 Z = 705,5000 X VALUES: 4 ,5000 h,OOOO 10,0000

SEARCH IN DIRECTION NO 3 ' . . '

STEP SIZE PARAMETER SET AT 2.,0000

TREATMENT NO 8 Z = 1115.5000 X VALUES: 4,5000 - 4,0000 12,0000

TREATMENT MO 9 Z 399,5000 X VALUES: 4,.5000 4 ,0000 8,0000

LINEAR DPTXMIZATION, BETA = -6, 8846

TREATMENT MO 10 Z = 89,3269 X VALUES: 4, 5000 4.0000 3,1154
DOUBLE ITERATION STEP . 6. 0000 3.7692
REAT} T 11 Z = 1940,7692 X VALUES: - L ,0000 16.0 -3,

EaEzT”E?87§?oooo F2 = 948923569 F3-2 1940.7693 M =2 DELTA = 1164.0000

ITERATION MO 2

SEARCH It DIRECTION NO 1
STEP SIZE PARAMETER SET AT 2,0000

TREATMENT N0 12 Z = 198,5577 X VALUES: 6,5000 L ,0000 3.1154
TREATMENT No 13 Z= 60,0962 . X VALUES: 2,5000 L.,0000 3.,1154
LIMEAR OPTIMIZATION; BETA = =1,7308

TREATMENT MO 14 Z = 59,3713 X VALUES: 2,7692 L,0000 3.1154
SEARCH IN DIRECTION NO 2

STEP SIZE PARAMETER SET AT 2,0000

TREATMENT MO 15 Z = 101,8328 X VALUES: 2,7692 6.0000 3.1154
TREATMENT MO 16 = 56,9098 X VALUES: 2,7692 2,0000 3.1154
LINEAR OPTIMIZATIONS BETA = =1.1231

TREATMENT MO 17 Z = 53,0648 X VALUES: 2,7692 2.8769 3.1154
SEARCH IN DIRECTION MO 3

STEP SIZE PARAMETER SET AT 2,0000 _

TREATMENT NGO 18 Z = 160,0802 X VALUES: 2,7692 2,8769 5.1154
TREATMENT NO 19 iz= 50,0494 X VALUES: 2,7692 2.8769 1,1154
LINEAR OPTIMIZATION: BETA = =-1,0580

TREATMENT no 20 = 38,5134 X VALUES: 2,7692 2,8769 2.0574
DOUBLE ITERATION STEP

TREATMENT NO 21 Z = 15,5710 X VALUES: 1,0385 1.7538 00,9994
Fi 89,3269 F2 = 38,5134 F3 = 15.5710 M=1 DELTA = 29,9556
NEW SEARCH DIPE(T!ON VECTORa =1,7308 -1.1231 =1.0580

SEARCH IN DIRECTION NO 3

STEP SIZE PARAMETER SET AT 1.1556

TREATMENT NO 22 i = 14,5071 X VALUES: 0.7692 1,579 0.8348
TREATMENT NO 23 Z 27,7175 X VALUES: -1.,2308 ©0,2814 -0.3877
LINEAR OPTIMIZATIONS BETA = «3232

TREATMENT NO 24 Z= Th,1157 X

VALUES: 0.4791 1.3909 0.6575
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ITERATION NO 3

SEARCH IN DIRECTION MO 1
STEP SIZE PARAMETER SET AT 2,0000

TREATHEHT MO 25 L= 52,2107 X VALUES: - 0.4791 3.3909 0,6575
TREATHMENT NO 26 7= 16,0207 X VALUES: 0.4791 -0,6091 0.6575
LINEAR OPTIMIZATION; BETA = ~0.9047

TREATHFNT N0 27 Z = 10,0228 X VALUES: 0.4791 0. 4862 0.6575
SEARCH IN DIRECTION NO 2

STEP SIZE PARAMETER SET AT 2.0000 '

TREATHMENT MO 28 Z = 72,8798 X VALUES: 0.4791 0.4862 2,6575
TREATMENT NO 29 Z = 51,1659 X VALUES: 0.4791% 0.L4862 =1,3425
LINEAR OPTIMIZATION; BETA = -0,2088

TREATMENT Mo 30 7= 9.4561 X VALUES: 0, 4791 0,u4862 0,.4487
SEARCH I8 DIRECTION NO 3

STEP SIZE PARAMETER SET AT 1.1556

TREATMENT o 31 = 25,9314 X VALUES: =1,5209 -0,8116 ~0,7738
TREATHEUT HNO 32 Z = 30,1975 X VALUES: 2.4791 1.7839 1.6713
LINEAR OPTIMIZATION; BETA = 00,0662

TREATMENT No 33 Z = 9.3950 X VALUES: . 0.3645 0.4118 0,3787
DOUBLE ITERATION STEP ,
TREATHMENT 1D 34 L= 11,6044 X VALUES: 0.2499 -0,5673 0,.0998
Fi = 14,1157 2 = 3.3950 F3 = 11.,604L M= DELTA = L.,0929
NEW SEARCH DIRECTION VECTOR: -0,1146 =-0,9791 «0,2789

SEARCH Il DIRECTION NO 3

STEP SI1ZE PARAMETER SET AT 2,0426 ‘ 1.5882 0.19 6
TREAYMENT E Z = 21,28 X VALUES: 0.1304 -1, =0,191
“ﬁ‘az:mr%e:rrir Qg 32 Z= 26.4!%? . X VALUES! 0,5987 2.h118 0,5483
LINEAR OPTIHIZATION: BETA = 0.1812 '
TREATMENT NO 37 Z = 9,2813 X VALUES: 0,3438 0,234k 0.3281

ITERATION NO &
{ Iy DIRECTION NO 9
S1ZE PARAMETER SET AT 2,0000

; ENT HO 38 7 = 61,2813 X VALUES: 0.3438 0,234y 2,3281

oho 39 7= 61,2813 X VALUES: 0.3438 0,234k =1.6719
L} OPTINIZATION: BETA = 0,0000

TRE v Hg Lo 7= 9,2813 X VALUES: 0.3438 0.2344 0.3281
SEARZH I DIRECTION NO 2

STEP SIZE PARAMETER SET AT 1.1556

TREATMENT 10O L L = 27,8895 X VALUES: -1,6563 ~1,0634 -0,8944
TREATHMENT NO 42 Z = 27,8895 X VALUES: 2,3438 t.5322 1,5507
LINEAR OPTINIZATION; BETA = 00,0000 .
TREATMENT MO L3 Z= 9,2813 X VALUES: 0.3438 0.234Y4 0,3281
SEARCH 1IN DIRECTION 1O 3

STEP SIZE PARAMETER SET AT 2,0426
TREATHMENT MO L& L = 23,7385 X VALUES: 0.,1096 -1,7656 -0,2415
TREATMEMT MO 45 Z = 23,7385 X VALUES: 0.5779 2,2344 0.8977 -
LINEAR OPTIMIZATION; BETA = 0.0000 '

TREATMENT NO 46 Z = 19,2813 X VALUES: 0.,3438 0.2344 0,3281
DOUBLE ITERATION STEP 438 0.2344 0.3281
TREATMENT HO 47 Z = 9,2813 X VALUES: 0.3 o o

F1 = 9,2813 F2 = 9,2813 F3 = 9,2813 M =2 DELTA = 0.0000






APPENDIX VI

RANDOM SEARCH WITH LEARNING

This subroutine follows the procedure outlined in Chapter 5.
The layout is slightly different from that of the previous four sub-
routines due to the nature of random search. In particular, experi-
mental ranges are defined for the three factors and the number of
equally spaced levels to be considered within these ranges is specified,
If the program were to be used for discrete rather than continuous
factors then actual levels (rather than ranges) could be defined as
DATA in the main program. The parameters set out in DATA
statements in the main program have the following interpretations:

NVAR = number of experimental factors (here 3).

N = vector of number of levelé to be included for each facior;
5

here N = 4
7

1.C and HI = vectors defining the experimental regions for each factor;

¥

-10 10

here LO = -5 and HI = 10 , meaning
-1 0 20

for exarnple that X(1) is allocated five equally spaced levels over the
range -{0 to 10 (i.e, -10, -5, 0, 5 and 10).

N> = initial number or seed for the random number generator,

here 524,287.

K = learning rate parameter (here 4000).

NT1 = number of treatments in the initial sampling phase (here 5).
NTZ = number of treatments in the learning phase (here 20).

NT3 = number of treatments in the final sampling phase (here 15).

No parameters are defined in the subroutine.

The greatest response level achieved during the initial sampling
phase is Z = -920, and this is used as the standard of comparison when
revising probabilities in the learning phase. The adjusted probability
distributions for the three factors are listed after each treatment,

At the end of the learning phase (after the 25th treatment) these
distributions are decidedly peaked around factor levels nearest zero.
Response values in the final sampling phase are generally high
(near zero), a number of near-optimal treatments being generated.
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122.  Be6700 FORTRAWN ComMPILATION

TUESDAY, 05/16/78 07:50 PM

1o
nw
W
ne

FILE 5=FILE5,UNIT=READER

FILE 6=FILE6,UNIT=PRINTER
€ MAIN PRO&RAMME To TEST RANDOM SEARCH ROUTINE

REAL LO,K

DIMENSION X(10,10),J(10),8(10),L0(10),H1(10)
COMMON Ko JoNTT1,NT2,1T3, xs ZNOR1 NVAR, N ITEST,K

MARK 2.9,190

DATA IN/5/, 10/6/ ss/ 5?4287/ NTI/ 5/, NT2/20/ NT3/15/,K/4000,/

DATA HVAR/B/;H(T)/S/ M(2) /L7 ,0(3)/7/,L0(1)/- 10
i /sloe/gHz(i)/xoa/QHI(z)/loe/,HI(B)"' !

DD 10 1=1,1VAR

(HI(I) LO(l)) / (4(1) 1o)

DD 12 L=1,0(1)

KT,0) = Lodl) + (L=1)*S

ConTIHUE

NTOT = NT1 + 1T2 + NT3

ITREAT = 0O

[ ITREAT, = ITREAT + 1
CALL OPT5 (IT?EAT Z)

i (BQ 1,4(1)
2 3.%%X(3, J(3}) + IO
L = =1L

b G
[ ]

IF (ITREAT,LE.NTOT) GO To 1
SToP

D

LO(Z)/ =5./,L0(3)

(xé% J(%)g EZ J(Z));#?z + (X(Z,J(Z))~3.*X(3,J(3))g**2 +
3,d(3))0%%2 = 2.%X(1,J(1)) + X(2,J(2)
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SUBROUTINE T FIND THE MAXIMUM FOR A FUNCTION -OF SEVERAL VARIABLES
USING RANDONM SEARCH PLUS LEARNING

- SUBRQUTINE OPTS(ITREAT, Z)

REAL K

DIMENSTION X(10,10),M(10),SU(10),E(10,10), P(IO 10) CPL10,11),
1 D(10,10), J(IO) W(IO 10)

DOUBLE PRECISION F(23

COMMON X, d, HT1,MT2,HT3, 1S, ZNORM, NVAR, N, ITEST,K

DATA 1076/ F)0 UPNARDS' 'DOHNNARDS'/

IF (ITREAT.GT.1) GO To 1
WRITE (10,3)

FORMAT (1x 'OISCRETE X VALUES?1/)
DO 18 I=1,[IVAR
WRITE {10,4) I,(x(1, g), =1, H(1)) '
FORMAT /3\.'VAPIAPLE oLl 96‘,§OFiO 23
WRITE (10,5)
FORMAT (/1% "INITIAL SAMPLING PHASE'/)
MT2 = NT2 + NT1
NT3 = NT3 + NT2
ZHORH = =-10000,
SET UP INITIAL CHOICE DISTRIBUTIONS
DO 20 1=1,NVAR
SWi{iy = o,
o 22 iw”«”(l}

I
JLY 7 Ssull)

cp(e L+¥1) = CP(I,L) + P(I,L)

SonT e

WRITE (10,6)

FORMAT {/3X, "INITIAL PROBABILITIES?/)

DO 28 1=1,NVAR

WRITE (10,7 (PCI,L),L=1,H(1))

FORHAT (ih 10F8, u)

WRITE (10,8)

FORMAT (1X,' ')
ITEST = ©

GO T0 50

couT?naa

JTREAT = ITREAT =~ 1

WRITE (I0,10) JTREAT,Z,(X(1,J(1)),I=1,NVAR)

FORMAT (3&/;TREATMENT NO',13,5X,'Z =',F12,4,5X,'X VALUES:',6Fi2.%

11X, 4F1

GO To (30,40,50), ITEST
UPDATE PERFORMANCE NORM

IF (ZNORM.LT.Z) ZHORM = Z

IF (ITREAT.EQ.NT1) ITEST =1

Go To 50
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30 IF (ZMNORM.LT.Z) ZHORM = Z
WRITE (I0,11)

11 FORMAT (/1X, "LEARNING PHASE " /)
WRITE (10,12) ZNORM

12 FORMAT (/3X, 'PERFORMANCE STANDARD OR NORH =V, F12.4/7)
WRITE (I0,8)

ITEST = 2

Go To 50

REV{SE P§OBABILITY OF VALUE J(I) OF. EACH VARIABLE I
) D =

IF (Z,LT.ZHNORM) ID = 2

ADJT = (7= ZHORM) /

OO0

DO uz I=1, NVAR
D(1,d4(1)) = ADJT
E(I.J(I)) = EQ(L,Jd(1)) + D(I,d(1))
SW(I) =)§~(I> - W(I,J(1))
(1,J(1 = 2,%%E(],Jd(I
42 sw(i)(z SW(I)'+ wil.dﬁlgg
0 44 I=1,NVAR :
CP(I’ ) =O¢
DO 44 L=1,1(1)
P(I,L) = W(I,L) / SW(1)
uh CP(I L+I) = CP(IaL) + P(I’L)
WRITE (10,14) FCID),(J(1),I=1,NVAR)
14 |§0R¥A¥O§g). PROBABILITLES REVISED f,Alz 'FOR X(1,J(1)), ALL I, J(I

‘DO 46 I=1,HVAR
Le WRITE (I0,7) (P(I,L),L=1,N(1))
IF (ITREAT LE.NT2) GO TO 50
ITEST = 3
WRITE (Io 17)
17 FORMAT (/lx.'FINAL SAMPLING PHASE'/)

C SAMPLE A VALUE FROM EACH UNIVARIATE DISTRIBUTION
50 DO 64 I=1,NVAR
R = RANDUM(NS)
DO 66 L=1,H(I)
IF (R, GT LP(I L+1)) GO TO 66
J(1) =
- GO TO 64
66 CONTINUE
64 CONTINUE
RETURN
END



DISCRETE X VALUES ' 125,

VARIABLE MO 1 =10,00 -5.00 0,00 lg.gg 10,00
VARIABLE MO 2 =5,00 0,00 5.00 ),
VARIABLE 0 3 -10,00 =5,00 0,00 5.00 10,00 15.00 20.00

INITIAL SAMPLING PHASE

CINITIAL PROBABILITIES

0.,2000 0,2000 0,2000 0,2000 0,2000
0.,2500 0,2500 0,2500 0,2500
0.,1429 0.1429 0,1429 00,1429 0.1429 0.1429 0,1429

TREATHENT NO 1 L = =6080,0000 X VALUES: -10.0000 -5,0000 15.0000
TREATMENT NO 2 L = =2510,0000 X VALUES: 5.0000 5,0000 -10,0000
TREATHENT NO 3 Z = =4050,0000 X VALUES: -5,0000 0,0000 15,0000
TREATMENT MO & Z = =1940,0000 X VALUES: ~10,0000 10,0000 0,0000
TREATHENT NO 5 Z = =920,0000 A VALUES: 10,0000 5.0000 0,0000
LEARNING PHASE
PERFORMANCE STANDARD OR MNORM = =-920,0000
TREATMENT NO 6 Z = =2010,0000 X VALUES: -10,0000 -5,0000 5.0000

PROBABILITIES REVISED DOWNWARDS  FOR X(I,J(I)), ALL I, J(I) =1 1 &

0.1715 0,2071 0,2071 0,2071 0,2071

0,2163 0,2612 0,2612 0,.2612

0.1465 0,1465 0,1465 0,1213 00,1465 0,1465 0,1465

TREATMENT NGO 7 Z = =1530,0000 X VALUES: ~5,0000 5.0000 -10,0000
PROBABILITIES REVISED DOWHWARDS — FOR X(I,J(I)), ALL I, J(I) = 2 3 1

0,1751 0,1903 0.,2115 0,2115 0,2115

0.2221 0,2683 0,241L 0.2683 - ,

0.1337 0,1486 0.1486 0,1231 0,1486 0.1486 0,1486

TREATMENT MU 8 Z =  =720,0000 . X VALUES: -5,0000 -5,0000 -10,0000
PROBABILITIES REVISED UPWARDS FOR X(1,J(1)), ALL I, J(1) =2 11

0.,1740 0,1957 0,2101 00,2101 0,2101 ‘

0,2281 0,2662 0.2395 00,2662 '

0,1378 0.1L479 0.1L79 00,1225 0,1479 0.1479 0,.1479

TREATMENT NO 9 . Z = =980,0000 X VALUES: «5,0000 10,0000 0.0000
PROBABILITIES REVISED DOWNWARDS  FOR X(I,J(1)), ALL I, J(I) =2 & 3
0.1743 0.1941 0.2105 0.2105 0.2105

0.2288 00,2669 0,2401 0,26L2

0,1380 0.1482 0,1466 0,1227 00,1482 0,1482 0,1482 .
TREATHENT NO 10 Z = «6240,0000 X VALUES?: ~5,0000 5.0000 20,0000
PROBABILITIES REVISED DOWNWARDS  FOR X(1,J(I)), ALL I, J(I) =2 3 7

0.1974 0.0874 00,2384 0,238L 00,2384

0.2675 0,3121 0,1117 0.3088 -

0,1515 0.1627 0,1610 0,1347 0.1627 0,1627 0.0647

TREATMENT MO 11 Z = =19380,0000 X VALUES: -10,0000 10,0000 =5,0000
PROBABILITIES REVISED DOWNWARDS  FOR X(I,d(1)), ALL I, J(I) =1 4 2

0.1699 0,090k 00,2466 0,2466 0.2466

0.2821 0.329% 00,1178 0.2710

0.1558 0.1392 0.1655 0,1385 0,1673 0.1673 0.0665

TREATMENT NO 12 Z =  ~530,0000 X VALUES: 0,0000 10,0000 5.0000
PROBABILITIES REVISED UPWARDS FOR X(I,4(1)), ALL I, J(I) =3 4 &4

00,1670 0,0889 0.2593 0,224 0,2L24

0.2768 0.3230 0,1156 0,2846

0.1543 0,1379 0.1639 0,1467 0,1657 0.1657 0.0659

TREATMENT NO 13 Z =  =270,0000 X VALUES: -5,0000 0,0000 0,0000
PROBABILITIES.REVISED UPWARDS FOR X(I,J4(1)), ALL I, J(I) =2 2 3

0.1652 0,0984 0,2566 0,2399 0,2399

0,2666 0,3481 0,1113 0,274} :

0.1513 0.1352 0,1800 0,1439 0.1625 0,1625 0,0646

TREATMENT NO 14 Z =  =250,0000 X VALUES: 5,0000 0.,0000 0.0000
PROBABILITIES REVISED UPVARDS FOR X(I,J(1)), ALL I, J(i) =L 2 3

0.1605 0.0956 0,2493 0,2617 0.2330
0.2556 0.3749 00,1067 0,2628
0.1481 0.1323 0,1977 0,1408 0,1590 0,1590 0,0632

TREATHMENT NO. 15 Z =  -250,0000 X VALUES: 5,0006 0.0000 - 0.0000
PROBABILITIES REVISED UPWARDS FOR X(1,J(I))s ALL 1.7J(I) = &4 2 3
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U.ISEg 0.0926 0,2415 0,2847 00,2257

/
0,24 0.4025 0,1020 0,2512 :
0.1445 00,1291 00,2168 0,1374 0,1552 0,1552 0.0617
TREATHENT NO 16 Z = ~350,0000 X VALUES: - 0,0000 0.0000 -5,0000
PROBABILITIES REVISED UPWARDS FOR X(1,Jd(1)), ALL I, J(1) =3 2 2

0.1517 00,0904 0,2600 0,2777 0,2202
0.2345 O, L26lL 0,0979 0,2411
O0.1426° 0,1407 0,2139 0,1356 0,1531 0,1531 0,0609

TREATMENT MO lg Z = ~3720,0000 X VALUES: -10.0000 ~ =5,0000 10,0000
PROBABILITIES REVISED DOMWNWARDS ~ FOR X(I,J([)), ALL I, (1) =115

0.0992 0,0960 0.2761 0,2949 00,2338

0.1587 0.L4687 0,1076 0,2650

0.1515 0,1495 0,2273 0.1441 0,1002 0,1627 0.0647

TREATMENT NO 18 Z = «320,0000 X VALUES: 0.0000 -5,0000 -5,0000
PROBABILITIES REVISED UPYARDS FOR X(I1,J4(I)), ALL I, J(I) =3 1 2

0.0963 0,0931 0,2974 0,2863 0,2270

0.1731 0.4607 0,1058 0,2605
O,1491 0,1632 0,2237 0,1418 0,0985 0,1601 0,0637

TREATMENT MO 19 Z = -2140,0000 X VALUES: -5,0000 0.0000 10,0000
PROBABILITIES REVISED DOWNWARDS  FOR X(LL,J{I)), ALL I, J(I) =2 2 5

0.0980 0,0767 0,3028 0.2914 0.2311 :

0.1897 0,4088 0,1160 0,2856

0.1520 0.1663 0.2279 0.1445 0,0813 0,1631 0,0649 :

TREATMENT NO 20 Z = -250,0000 X VALUES: 5,0000 .0.,0000 0,0000
PROBABILITIES REVISED UPWARDS - FOR X(I,Jd(1)), ALL-I, (1) =4 23

0.0946 00,0741 0,2923 0,3160 0,2230 .

0.1806 0.4371 0,1104 0,2719

0.,1478 0,1617 0,2490 0,1406 0,0791 0.1587 0,0631
TREATMENT NO 21 Z = -3520,0000 X VALUES: 10,0000 0.,0000 -10,0000
PROBABILITIES REVISED DOWNWARDS  FOR K1,3(1)), ALL I, J(I) =5 2 1 :

0.1029 0,0806 0,3180 0,3438 0.1547
- 0.2146 0,3310 0,1312 0,3231

0,0995 0,1709 0,2631 0.1485 0,0835 0,1677 0.0667

TREATHENT NO 22 Z = -650,0000 X VALUES: 5.0000 5.0000 10,0000

PROBABILITIES REVISED UPWARDS FOR X{I,J(I)), ALL I, J(I1) =4 3 5

0.1013 0,0793 0,3129 0,3544 0,1522

0,2133 0.3290 0,.1366 0.3211

0.0991 0,1702 0,2621 0,1479 ° 0,0872 0,1670 0.066k

TREATMENT _NO 23 Z = -1980,0000 X VALUES: -10.,0000 10,0000 -5,0000

PROBABILITIES REVISED DOWNWARDS — FOR XCL,J(1)), ALL I, J(I) = 1 & 2

0,0857 0.0807 0,3183 0,3606 0,1548 o ’

0,2255 0.3477 0,144 0.2824

0.1020 00,1458 0,2698 0,1523 0,0898 0,1719. 0,0684

TREATMENT HO 24 Z = =1310,0000 X VALUES: 10,0000 -5,0000 0,0000

PROBABILITIES REVISED DOWHWARDS  FOR X(1,dC1)), ALL I, (1) =51 3

0.,0866 0,0815 0,3215 0,3642 0.1461

0.2139 0.3529 0,1466 0.2866 ' .

0.1039 0.1484 0,2567 0,1550 0,0914 0,1750 0,0696

TREATMENMT 1n 25 7= -10,0000 . X VALUES: 0.0000 0,0000 0,0000
PROBABILITIES REVISED UPWARDS FOR X(I,J(I1)), ALL I, J(1) = 3 2 3 . )
0,0821 0,0773 0,3568 0,3453 0,1385
0.2017 0,3897 0,1383 0,2703 : .
0.0995 0,1422 0,2879 0,1485 0,0875 0.1677 0.0667

FINAL SAMPLING PHASE
TREATMENT MO 26 = «2230,0000 X VALUES: 5.0000 ~0,0000 15.0000
TREATMENT MO 27 Z = ~630,0000 X VALUES: -~ 5,0000 10,0000 10,0000
TREATMENT MO 28 Z = -530,0000 X VALUES: 0.0000 10,0000 5,0000
TREATMENT MO 29 Z = -2340,0000 X VALUES: 10,0000 10,0000 -5,0000
TREATHENT MO 30 Z = ~3090.0000 X VALUES: 5,0000 10.0000 -10,0000
TREATMENT NO 31 Z = =270,0000 X VALUES: 5.0000 10.0000 5.0000
TREATMENT MO 32 Z = =520.0000 X VALUES: 0,0000 10.0000 0,0000
TREATMENT NO 33 Z = -1930,0000 X VALUES: 10,0000 0.,0000 -5,0000
TREATMENT MO 34 Z = ~-590,0000 X VALUES: 0.0000 ~5,0000 5,0000
TREATMENT MO 35 Z = ~2890.0000 X VALUES: 0,0000 0,0000 15,0000
TREATMENT MO 36 Z= ~10,0000 X VALUES: 0.0000 0,0000 0,0000
TREATMENT NO 37 Z = ~570,0000 X VALUES: 10,0000 10.0000 10,0000
TREATMEHT NO 38 Z =  ~560,0000 X VALUES: 5,0000 10,0000 0,0000.
TREATMENT MO 39 Z =  ~320,0000 X VALUES: 0,0000 0,0000 © 5,0000
TREATMENT NO 40 Z =  =250,0000 X

VALUES: 5.0000 0.0000 0.0000
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