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Abstract 

Investigation of variation in genes influencing fertility in New Zealand sheep 

by 

Hamed Amirpour Najafabadi 

An important trait in commercial sheep breeding is the number of lambs born per ewe, because the 

amount of meat produced per ewe is to a great extent determined by litter-size. Accordingly, the 

Identification of functional variation in genes that are responsible for improving fertility, would 

potentially allow for flocks to be bred for increased fertility, and thus increase profitability in the NZ 

sheep industry. Fertility if realised as increased fecundity, would not only be a determinant of 

profitability but may also affect the carbon footprint of New Zealand livestock production systems. 

In this research, three genes involved in regulating fertility in sheep were investigated. Polymerase 

Chain Reaction – Single Strand Conformational Polymorphism (PCR-SSCP) analyses were used to 

search for genetic variation in three genes, the Growth Differentiation Factor 9 gene (GDF9), the 

Bone Morphogenetic Protein 15 gene (BMP15), and the Bone Morphogenetic Protein Receptor Type 

1B gene (BMPR1B). Once identified by PCR-SSCP the genetic variation was further characterised with 

DNA sequencing. Confirmation of the sequence variation, then enabled subsequent testing of 

whether the variation was associated with variation in fertility in three sheep breeds (Finnish 

Landrace, Finnish Landrace X Texel and composites) using best linear unbiased prediction (BLUP) and 

ASREML with both animal and sire models. 

In this study, the number of sheep studied was 1064 for the GDF9 gene and 852 for the BMP15 gene. 

A total of 241, 251 and 335 ewes were analysed for GDF9, BMP15 and BMPR1B respectively. These 

included NZ Finnish Landrace sheep, Finnish Landrace × Texel-cross sheep, and composite sheep 

(farm 1) (of varying breed background). These three breeds derived from a single large ewe flock 

farmed on pasture and all fed in the same way in North Canterbury. All ewes had records for the 

2016 lambing season, hence the number of lambs born in 2016 were used for association study. 
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In the sheep studied, variations in ovine GDF9 and BMP15 were associated with litter-size. Finnish 

Landrace × Texel-cross sheep with the c.1111A variant of GDF9 were found to be more fertile (P = 

0.036) than those without c.1111A. In animal models, the effect of GDF9 appeared to be additive, 

with one copy of c.1111A increasing litter-size by 0.43 ± 0.202 in the Finnish Landrace x Texel-cross 

ewes, and two copies increasing litter-size by 0.86. No such effect was seen Finnish Landrace and 

composite sheep. However, the impact of a single copy of c.1111A led to an increase in litter-size of 

0.34 ± 0.154 (p = 0.027) compared to those ewes with c.1111G, when all the sheep groups were 

analysed together. In contrast to the c.1111A>G results, litter-size did not differ between sheep with 

and without GDF9 c.994A in all three groups of sheep investigated. 

The c.31_33del in BMP15 was found to be associated with litter-size (P < 0.001) in composite sheep. 

The effect of the presence of one copy of c.31_33del was an increase of 0.26 ± 0.092 (P = 0.008) 

lambs compared to those ewes without c.31_33del using the animal model. The estimate for the 

effect of variant A (absence of the c.31-33del) in the composite sheep was -0.26 ± 0.092 (p = 0.008) 

and -0.22 ± 0.095 (p = 0.026) in both the animal and sire models, respectively. This association 

between the detected c.31-33del and litter-size was not observed for Finnish Landrace or the Finnish 

Landrace x Texel-cross (P > 0.05). It is possible that the effect of this deletion in the signal sequence 

seems to vary from study to study and breed to breed. 

Sequence analysis of a 394 bp fragment spanning the partial exon 9 and intron 8 and a 338 bp of 

exon 8 and intron 7 regions of BMPR1B in 335 sheep belonging to three groups of New Zealand 

sheep of differing background, revealed 5 variant sequences with a total of six single-nucleotide 

substitutions. The sequencing results revealed nucleotide substitutions c.1032T>C in the amplified 

region of exon 9/intron 8 and c.754-144G>A, c.754-88G>A, c.762G>A, c.754-31C>T and c.765G>A in 

the amplified region of exon 8/intron 7. Despite the presence of six nucleotide substitutions (found 

across two regions) in BMPR1B, no association was found between the sequence variation and litter-

size (p > 0.05). This gene may not play a significant role in the fertility of the New Zealand sheep 

breeds investigated. The only modest (but not statistically significant, p = 0.162) association of intron 

7/exon 8 was the effect of variant C on increased litter-size in composite sheep (0.23 ± 0.167). The 

impact of variant B in Finnish Landrace sheep (-0.04 ± 0.239 lambs, P = 0.861) is very similar to the 

effect of the variant B when all the groups were analysed together -0.04 ± 0.146 (P = 0.747). 

The identification of functional sequence variation in the breeds studied here, may at first be of 

limited value to breeds that do not have the observed variation, but it lays a strong foundation to 

further this type of analysis with more common New Zealand breeds. 

 



 iv 

Keywords: Fertility, Litter-size, Growth differentiation factor (GDF9), Bone Morphogenetic Protein 15 

(BMP15), Bone Morphogenetic Protein Receptor Type 1B (BMPR1B), NZ Sheep, Ovis aries, genetic 

selection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

Publications and Conference presentations arising from this thesis 

Papers 

 

Amirpour Najafabadi, H., Hickford, J.G.H., Zhou, H., & Khansefid, M. 2020. The effects of Single 

Nucleotide Polymorphisms in Growth Differentiation Growth Factor 9 Gene (GDF9) on Litter-size in 

three common New Zealand Sheep (Ovis aries) breeds. “Reproduction in Domestic Animals, 

accepted.” 

 

Amirpour Najafabadi, H., Hickford, J.G.H., Zhou, H., Z., Byun, S.O., & Fang, F. 2019. Genetic variation 

in the growth differentiation factor 9 (GDF9) gene in different New Zealand sheep (Ovis aries) breeds. 

“In preparation”. 

Conferences 

 

Amirpour Najafabadi, H., Hickford, J.G.H., Zhou, H, & M. Khansefid, M. 2019. Identification of variation 

in the growth differentiation growth factor 9 (GDF9) gene associated with litter-size in New Zealand 

sheep (Ovis aries) breeds. 37th International Society for Animal Genetics Conference, Poster session- 

Applied Sheep and Goat Genetics. 

 

Amirpour Najafabadi, H., Hickford, J.G.H., & Zhou, H. 2018. Having better genetic control over fertility 

in New Zealand maternal Sheep breeds. Proceedings of the World Congress on Genetics Applied to 

Livestock Production, Electronic Poster Session - Biology - Reproduction 2.11.801 

 

 

 

 

 



 vi 

Nucleotide Sequences Submitted to the NCBI GenBank 

Ovine GDF9 

 

Ovine growth differentiation factor 9 (GDF9) gene, GDF9 variant 1, A sequence: MK675521  

Ovine growth differentiation factor 9 (GDF9) gene, GDF9 variant 2, B sequence: MK675522  

Ovine growth differentiation factor 9 (GDF9) gene, GDF9 variant 3, C sequence: MK675523 

 

Ovine BMP15 

 

Ovine bone morphogenetic protein 15, (BMP15) gene, variant 1, A sequence: MN607693  

Ovine bone morphogenetic protein 15, (BMP15) gene, variant 1, B sequence: MN607694 

 

Ovine BMPR1B 

 

Ovine bone morphogenetic protein receptor type 1B (BMPR1B) gene, exon 8, A sequence: MN607695  

Ovine bone morphogenetic protein receptor type 1B (BMPR1B) gene, exon 8, B sequence: MN607696  

Ovine bone morphogenetic protein receptor type 1B (BMPR1B) gene, exon 8, C sequence: MN607699 

Ovine bone morphogenetic protein receptor type 1B (BMPR1B) gene, exon 9, A sequence: MN607697  

Ovine bone morphogenetic protein receptor type 1B (BMPR1B) gene, exon 9, B sequence: MN607698 

 



 vii 

Acknowledgements 

Firstly, I would like to express my sincere gratitude to my supervisor Professor Jon Hickford for the 

continuous support of my Ph.D. study and related research for his patience, motivation, and 

immense knowledge. His heaps of advice show me the direction to write up this thesis. I would never 

have imagined that having a better advisor and mentor for my Ph.D. study. All my success and 

knowledge, I owe to him. I am grateful for his support! 

Also, I would like to thank the rest of my thesis committee: Dr Huitong Zhou, for his insightful 

comments and encouragement, but also for the hard question which incentivised me to widen my 

research from various perspectives. I am particularly grateful to Dr Majid Khansefid for his valuable 

advice and help, and most of all, his good nature that goes with it. 

My sincere thanks also go to Andrew Hogan and Freeman Fang, who gave access to the laboratory 

and research facilities. Also, I thank my friend in the Bio-Protection Research Centre (Dr Hossein 

Alizadeh) for his precious support. 

I would also like to acknowledge the sources of funding for this work. New Zealand International 

Doctoral Research Scholarship (NZIDRS), Kathleen Ann Stevens Scholarship and Macmillan Brown 

Agricultural Research Scholarship. Thank you to Christine Roberts, Anna Dekkers, and Jane Edwards 

for helping with scholarships. Thank you again for your generosity and support. Your generosity has 

inspired me to help others and give back to the community. I hope one day I will be able to help 

students achieve their goals just as you have helped me. 

I particularly wish to thank Jenny Juengel of AgResearch, for her advice throughout my studies. 

Thanks also to the AGLS group for their friendliness and helpfulness; Craig Bunt, Robyn Wilson, Alison 

Hind. I also thank Mr Daniel Wheeler for his collaboration in providing blood samples, data, and 

pedigree for my experimental work. 

I thank my fellow lab-mates for the stimulating discussions, and for all the fun we have had in the last 

four years. Also, I appreciate my friends in the following institution. I am also grateful to my friends 

(Ghassan, Kelly, Sali, Shayan, Babak, Richard, Jan, Grace, Léonie, Leo, Reza, Leila, Ishaku, Jane, Lucy, 

Ivy) and I hope these new and old friendships will last a lifetime. I just wanted to write to let you 

know how much I appreciate the positive influence you've had on my life. Thanks for all you do and 

useful advice! I will forever be grateful. 

 



 viii 

Lastly, and most significantly, I would like to offer my sincere appreciation to my lovely parents 

(Rouholamin and Zahra), my brothers and their wives for their affection, moral support and 

encouragement to complete this thesis. I would like to dedicate my thesis to my parents, without 

whose unwavering support it could not have been completed. All their help was invaluable 

throughout my Ph.D. To my mom and dad, Thank you for always being my side. A life without them is 

like a flower without petals; I don't know where I would be. Thanks for walking ahead of me. And I 

love you both more than anything in my life. I promise I will make you proud. 

 



 ix 

Table of Contents 

Abstract ....................................................................................................................................... ii 

Publications and Conference presentations arising from this thesis ................................................ v 

Nucleotide Sequences Submitted to the NCBI GenBank ................................................................ vi 

Acknowledgements .................................................................................................................... vii 

Table of Contents ........................................................................................................................ ix 

List of Tables ............................................................................................................................... xi 

List of Figures ............................................................................................................................. xii 

Abbreviations ............................................................................................................................ xiii 

 Introduction and Literature Review .......................................................................... 1 
1.1 Introduction ..............................................................................................................................1 
1.2 Why is fertility important in sheep production? ......................................................................4 
1.3 Factors that affect fertility ........................................................................................................4 

1.3.1 Environmental and management factors that affect fertility ...................................... 4 
1.3.2 Genetic factors that affect fertility .............................................................................. 5 

1.4 Genes that affect fertility in sheep ...........................................................................................6 
1.5 The genes that were studied in this thesis ...............................................................................6 

1.5.1 Growth Differentiation Factor 9 and the GDF9 gene (GDF9, Ensembl: 
ENSOARG00000013229.1, also known as GDF-9, POF14) ........................................... 7 

1.5.2 Bone Morphogenetic Protein 15 and BMP15 gene (BMP15: Ensembl: 
ENSOARG00000009372, also known as GDF9B, BMP-15, GDF-9B, ODG2 and 
POF4) ..........................................................................................................................13 

1.5.3 Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) gene (BMPR1B, Ensembl: 
ENSOART00000018678.1, also known as Alk6, SKR6, ALK-6, AMDD, BDA2, BDA1D, 
CDw293, Acvrlk6, BMPR-1B, BMPR-IB, CFK-43a, AI385617 and AV355320) .............18 

1.6 Sheep studied and statistical models used in this thesis ....................................................... 22 
1.7 Aims of this thesis .................................................................................................................. 24 

 Genetic variation in the growth differentiation factor 9 gene (GDF9) in New Zealand 
sheep ..................................................................................................................................... 25 
2.1 Introduction ........................................................................................................................... 25 
2.2 Materials and method ........................................................................................................... 26 
2.3 Results .................................................................................................................................... 29 
2.4 Discussion............................................................................................................................... 34 

 Associations between the detected variations in GDF9 and litter-size in New Zealand 
sheep ..................................................................................................................................... 38 
3.1 Introduction ........................................................................................................................... 38 
3.2 Materials and methods .......................................................................................................... 39 
3.3 Results .................................................................................................................................... 40 
3.4 Discussion............................................................................................................................... 43 



 x 

 Identification of a Single Codon Deletion in the bone morphogenetic protein 15 
(BMP15) gene in New Zealand sheep ...................................................................................... 47 
4.1 Introduction ........................................................................................................................... 47 
4.2 Materials and methods .......................................................................................................... 48 
4.3 Results .................................................................................................................................... 50 
4.4 Discussion............................................................................................................................... 54 

 Associations between the detected variation in BMP15 and litter- size in New Zealand 
sheep ..................................................................................................................................... 56 
5.1 Introduction ........................................................................................................................... 56 
5.2 Materials and Methods .......................................................................................................... 57 
5.3 Results .................................................................................................................................... 58 
5.4 Discussion............................................................................................................................... 60 

 Association of bone morphogenetic protein receptor type 1B (BMPR1B) variation in 
two amplified regions with litter-size in New Zealand sheep .................................................... 63 
6.1 Introduction ........................................................................................................................... 63 
6.2 Material and methods ........................................................................................................... 64 
6.3 Results .................................................................................................................................... 66 
6.4 Discussion............................................................................................................................... 71 

 General discussion, conclusions and future directions .............................................. 73 

Appendix A GDF9 gene ........................................................................................................... 76 
A.1 Sequence alignment of submitted sequence and GenBank sequence (AF078545.2) of exon 

two of GDF9 ........................................................................................................................... 76 

Appendix B BMP15 gene ......................................................................................................... 81 
B.1 Sequence of amplified BMP15 fragment from exon 1 (NC_019484.2) ................................. 81 

Appendix C BMPR1B gene ....................................................................................................... 86 
C.1 Sequences of amplified BMPR1B fragments from exon 8/intron7 (NC_019463.2) .............. 86 
C.2 Sequences of amplified BMPR1B fragments from exons exon 9/intron8 (NC_019463.2) .... 87 

References ................................................................................................................................. 96 



 xi 

List of Tables 

Table 1 Growth Differentiation Factor-9 gene (GDF9) nucleotide changes/mutations and their 
effects on ovulation rate and litter-size .......................................................................10 

Table 2 Bone morphogenetic protein 15 gene (BMP15) nucleotide changes/mutations and their 
effects on litter-size ......................................................................................................16 

Table 3 BMPR1B (Bone Morphogenetic Protein Receptor Type 1B) nucleotide changes/mutations 
and their effects on litter-size ......................................................................................20 

Table 4 Description of different sheep breeds in New Zealand 
(http://www.therural.co.nz/livestock/sheep- breeds-in-new-zealand, 2017) ............23 

Table 5 Estimated effect of GDF9 variants and nucleotide substitutions fitted as having an additive 
and dominance effects on number of lambs born per ewe in three groups of NZ 
sheep ............................................................................................................................42 

Table 6 Allelic and genotype frequency of variants of BMP15 exon 1 in sixteen New Zealand sheep 
groups/breeds ..............................................................................................................53 

Table 7 Estimated effect of BMP15 variants and nucleotide substitutions fitted as having an 
additive and dominance effects on number of lambs born per ewe in three groups of 
NZ sheep .......................................................................................................................60 

Table 8 The observed variant and genotype frequencies for the variants of an exon nine and exon 
eight fragments of Bone Morphogenetic Protein Receptor type 1B (BMPR1B) in 
Finnish Landrace, Finnish Landrace x Texel-cross, composite NZ sheep ......................68 

Table 9 Estimated effect of BMPR1B variants and nucleotide substitutions in exon 8/intron7 fitted 
as having an additive and dominance effects on number of lambs born per ewe in 
three groups of New Zealand sheep .............................................................................69 

Table 10 Estimated effect of BMPR1B variants and nucleotide substitutions in (intron 8/exon 9) 
fitted as having an additive and dominance effects on number of lambs born per ewe 
in three groups of New Zealand sheep .........................................................................70 

 
 



 xii 

List of Figures 

Figure 1 Total number of sheep and lambing percentage between 1935 and 2011 in New Zealand 
(Stats NZ, 2017) .............................................................................................................. 2 

Figure 2 Trends in New Zealand breeding ewe and lamb numbers over the 1990s and early 2000 
decades (Source: Beef+Lamb New Zealand economic service, 2016) ........................... 3 

Figure 3 Ensembl image file of ovine GDF9 sequence variation 
(https://www.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Table?db=cor
e;g=ENSO ARG00000013229;r=5:41841034-41843517;t=ENSOART00000014382) ....12 

Figure 4 Ensembl image file of ovine BMP15 sequence variation 
(https://asia.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Image?db=core
;g=ENSO ARG00000009372;r=X:50970938-50977454;t=ENSOART00000010201) ......17 

Figure 5 Ensembl image file of ovine BMPR1B sequence variation 
https://asia.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Image?db=core;
g=ENSOA 
RG00000017161;r=6:117031472117031472;t=ENSOART00000018678;v=rs42418150
1;vdb=variation;vf=18621617.......................................................................................21 

Figure 6 Six different Polymerase Chain Reaction – Single Strand Conformation Polymorphism 
(PCR-SSCP) patterns (AA, AB, BC, AC, CC and BB) for an exon 2 fragment of GDF9 in 
New Zealand (NZ) sheep breeds (Finnish Landrace, Finnish Landrace x Texel-cross, 
Romney, and composite sheep). ..................................................................................29 

Figure 7 Nucleotide sequences of Growth Differentiation Factor 9 gene (GDF9) variants A - C. .....30 
Figure 8 (A) The observed variant and (B) genotype frequencies for the variants of an exon 2 

fragment of GDF9 in New Zealand (NZ) Finnish Landrace, Finnish Landrace x Texel-
cross, and composite sheep. ........................................................................................32 

Figure 9 a) The resulting gel patterns from polymerase chain reaction single-strand 
conformational polymorphism (PCR-SSCP) analyses indicating genotypes AA, AB, and 
BB. (b) The sequence variation detected in the exon 1 region for BMP15 in the NZ 
sheep breeds. ...............................................................................................................51 

Figure 10 Nucleotide sequences of bone morphogenetic protein 15 (BMP15) in exon 1 variants A 
and B. ............................................................................................................................52 

Figure 11 The gel patterns for PCR-SSCP analysis of a 394 bp fragment of intron-8/exon 9 of 
BMPR1B. Two banding patterns representing two variants (A and B) were identified 
in both homozygous and heterozygous forms. b) Sequence analysis revealed one 
sequence variation. c) PCR-SSCP patterns for a 338 bp fragment of exon 8/intron7 of 
BMPR1B. Three banding patterns representing three variants (A, B and C) were 
identified in both homozygous and heterozygous forms indicating homozygous 
variants A (well 1), B (well 5), and C (well 7). d) Sequence analysis revealed 6 
sequence variations in the exon8/ intron7 of BMPR1B. ..............................................67 

 
 

 
 
 
 
 
 
 
 
 
 



 xiii 

 
 
 
 

Abbreviations 

 
 
 

 
 



 1 

 

Introduction and Literature Review 

1.1 Introduction  

It is projected by the United Nations (UN) that the global population will increase to 9.7 billion people 

by 2050 (United Nations, 2019). If the consumption of livestock products per person does not 

change, then it is expected that at least 1.5 times more product than currently produced will be 

required (FAO, 2003). 

Sheep are one of the more common livestock species farmed. They are distributed across the globe, 

being found equatorially and at higher latitudes too. Their ability to live in different environments, 

including a wide range of temperatures, rainfalls and altitudes, is in part attributable to the ability to 

maintain reproductive performance. What-is-more, as ruminants they can survive on a diversity of 

forage sources and for extended periods of time with very low feed intakes. They also have the 

ability to go in search of food and they can cover large distance in that quest. 

Sheep have been selected to be multi-purpose animals for production. They can produce fibre 

(wool), meat, milk and skins. To achieve this production, the most important aim of sheep breeding is 

to maintain a high reproductive rate to sustain replacement flocks for both milk and meat 

production. In New Zealand specifically, as a major lamb exporter, the primary focus is to produce 

lambs for slaughter. Higher rates of fertility are therefore very desirable, provided the farming 

system can support that reproductive performance. 

Animal breeding is one of the ways to improve animal productivity and meet the above demand. It 

can increase the quantity and quality of production, but it can be a very slow process. Breeding 

programs are therefore usually considered to be a long-term approach to increasing livestock 

production (Henryon et al, 2014). A well designed breeding program will attain a breeding goal or 

objective through the selection of the best animals for achieving that goal (Flint & Woolliams, 2007), 

and optimised breeding strategies can lead to genetic gain and prevent inbreeding. Van der Werf 

(2007) describes how estimated breeding values (EBVs) have been calculated for many traits of 

economic importance, and how they can be used to improve the accuracy of animal evaluation and 

selection in any given breeding program. 
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Making genetic gain in key livestock traits like reproductive performance is typically very slow, and 

both the fecundity and fertility of the livestock need to be considered. Fecundity means the ‘ability’ 

to produce live offspring, while fertility means the ‘actual production’ of live offspring (i.e. fecundity 

refers to the potential for production, and fertility is the actual production of live offspring). In 

livestock production, while male fecundity is important, non-performing males can usually be rapidly 

detected and culled. Given that it is the female that produces the progeny that will become the next 

generation, the ability to accurately assess a female’s reproductive performance, especially fertility, 

can only really be undertaken at the end of her reproductive life. This makes breeding for increased 

fertility rather challenging. 

In New Zealand (NZ), genetic selection for different production traits in sheep has been undertaken 

using a genetic evaluation system called Sheep Improvement Limited (SIL; https://www.sil.co.nz/). 

This system calculates EBVs for various production traits, including EBVs for the number of lambs 

born (NLB, or litter-size), growth and weight performance, and carcass traits that are of value. In the 

context of fertility, it has led to gain in the number of lambs born (Beef+Lamb New Zealand Economic 

Service., 2016). 

This reproductive success is measured at a national level as lambing percentage, this being a 

measure of the number of lambs produced, per ewe mated. During the period 1935-2011, there has 

been marked improvement in this performance measure in New Zealand, with an increase from 0.8-

0.9 lambs per ewe (80-90%) to approximately 1.02 (102%) and 1.16 (116%) in 1989 and 2011, 

respectively Figure 1 (Stats NZ, 2017). 

 

Figure 1 Total number of sheep and lambing percentage between 1935 and 2011 in New Zealand 
(Stats NZ, 2017) 

http://www.sil.co.nz/)
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More recently Beef+Lamb NZ (Beef+Lamb New Zealand Economic Service., 2016), has described the 

effect in more detail, the decline in lambs produced in NZ being somewhat less marked than the 

reduction in breeding ewe numbers (Figure 2). 

 

 

Figure 2 Trends in New Zealand breeding ewe and lamb numbers over the 1990s and early 2000 
decades (Source: Beef+Lamb New Zealand economic service, 2016) 

 

 
There is evidence that improvements in genetic evaluation and breeding can be achieved by having a 

better understanding of both the genome and individual genes in livestock species, and typically the 

use of DNA information enables us to increase the rate of genetic gain compared to using only 

phenotypic information (Meuwissen et al., 2001). Research has identified useful information about 

sheep genetics and the use of ‘DNA markers’ to improve performance is becoming widespread. 

Specifically, animals with better performance for key production traits of economic significance, can 

be selected for use as breeding stock by both commercial farmers and sheep breeders. 

Previous research has established that variation between individual sheep in reproductive 

performance, can be the result of variation in both their genetics and the environment in which they 

are farmed. There is also likely to be genotype by environment, or non-additive combination effects 

(Lush & Mollin, 1942). This provides a context to search for genes and genetic variation that affects 

reproductive performance in sheep. 
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1.2 Why is fertility important in sheep production? 

Fertility is widely considered to be the most important trait as regards sheep productivity, with the 

number of offspring obtained per lambing (variously described as ‘litter-size’, or ‘number of lambs 

born’) being a useful indicator of fertility rates. According to some authors (Petrovic, 2000) fertility is 

more important than production in lambs (i.e. their biological capacity for meat, milk and wool 

production), because these factors are ultimately affected by fertility (Notter, 2008). 

Equally, various studies have described how perinatal mortality results in major economic losses to 

the sheep industry (Amer, 2000; Dalton et al., 1980; Darby et al., 1992; Sykes & Dingwall, 1976). It 

has therefore been suggested that the weight of meat and wool produced each year is more 

dependent upon the total number of lambs that survive to weaning, than upon the individual 

performance of the lambs (Lax & Newton, 1965; Sidwell et al., 1962). It could also therefore be 

argued that the selection for enhanced lamb survival is economically more important than selection 

for production traits. Taken together this explains the challenge that can exist between increasing 

fertility and thus increasing the number of lambs born, versus the survival of those lambs, especially 

if the lambs are of a markedly reduced or elevated birth weight, and thus more susceptible to 

perinatal mortality (Dalton, 1979). 

1.3 Factors that affect fertility 

Prior to discussing the genetic factors that might affect fertility, it is important to briefly touch on the 

environmental factors that can affect litter-size. These include factors that can be managed in 

farming systems, such as nutrition, but also less manageable environmental effects such as climate. 

1.3.1 Environmental and management factors that affect fertility 

A variety of environmental factors can affect sheep reproductive performance in sheep. For example, 

heat stress reduces performance (Hansen, 2009), with high summer temperatures affecting semen 

quality and reducing sexual activity (Petrović et al., 2002). 

The importance of farm management in fertility has been described by several researchers (Anel et 

al., 2005; Paulenz et al., 2002), and there are numerous reviews detailing both general and very 

specific detail on the effect of nutrition on fertility. For example, Robinson et al. (2006) described the 

nutritionally sensitive affects fertility indirectly through its impact on the circulating concentrations 

of the hormones and other nutrient-sensitive metabolites periods in the production of gametes and 

viable embryos, and provided a conceptual framework from which to develop long-term feeding 

strategies that enable sheep fertility to be maximised. At a more pragmatic level in New Zealand, 
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Beef+Lamb NZ has scientifically-based resource material describing how to optimise feeding systems 

for sheep farmers (New Zealand Sheep Council, 1994). 

Although environmental and management factors are important factors affecting sheep fertility, only 

genetic factors are permanent and can be passed to the next generation through sheep breeding. 

They are therefore the primary focus of this literature review. 

1.3.2 Genetic factors that affect fertility 

Advances in selection for increased fertility depend on the genetic variability of key reproductive 

components (Petrović et al., 2007; Petrović et al., 2002; Petrović et al., 1997; Petrović et al. , 2001). 

However, heritability estimates for fertility traits are typically low and they have been reported to 

vary between 0.1 and 0.26 (Petrović, 2000). This suggests a complex genetic background underpins 

the traits. It has however been argued that genetic improvement in litter-size can be achieved by 

three main methods: 

1) The use of breed resources of differing reproductive capability, 2) selection within a given breed 

for superior individuals, and 3) the use of technologies that enable major genes to be selected for 

(Elsen et al., 1994). 

The combination of low heritability estimates for fertility, discrete phenotypic expression and 

realisation of fertility only being easily measured in sexually mature ewes, does however lead to 

typically low selection intensities and long generation intervals in breeding for fertility. This has 

driven the search for major genes that influence fertility traits. 

From this perspective, understanding genes that underpin variation in ovulation rate has become 

important. Ovulation is the release of an oocyte from the ovary, and it is the culmination of an 

integrated and synchronised succession of hormonal actions and morphological changes that 

principally involve the anterior hypothalamus, the anterior pituitary, and the ovaries themselves. The 

major protein ‘players’ in this system are gonadotropin releasing-hormone (GnRH), follicle 

stimulating hormone (FSH), luteinising hormone (LH), oestrogen and progesterone, but fine-tuning of 

this system is provided by a many other factors including inhibin, activin, and other growth factors. 

Accordingly, the specific genes that produce the proteins involved in these processes can be key 

determinants of fertility, and this will be addressed in more detail below. 

Genetic variation in ovulation rate in sheep has been studied in different breeds, and it is now 

understood that prolificacy can be affected by the segregation of major genes associated with 

reproduction and ovulation (Mulsant et al., 2001; Wilson et al., 2001). What-is-more, in the past two 
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decades, geneticists have located some of these genes on chromosomes, described their nucleotide 

sequence and ultimately described the nucleotide sequence variation that affects ovulation. 

1.4 Genes that affect fertility in sheep 

The identification of genes that affect ovulation rate and other reproductive traits, is now allowing 

more rapid progress in breeding sheep for increased fertility. Genes affecting the rate of synthesis 

and function of gonadotropins, uterine size, etc., have been identified.  

Key genes that affect sheep fertility have been described (Davis et al. , 2001; Demars et al., 2013; 

Mullen & Hanrahan, 2014; Nicol et al., 2009; Souza et al., 2001; Våge et al. , 2013; Wilson et al., 

2001). These include Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) (also known as Alk6, 

SKR6, ALK-6, AMDD, BDA2, BDA1D, CDw293, Acvrlk6, BMPR-1B, BMPR-IB, CFK-43a, AI385617 and 

AV355320), Growth Differentiation Factor 9 (GDF9) (also known as GDF-9, POF14), Bone 

morphogenetic protein 15 (BMP15) (also known as GDF9B, BMP-15, GDF-9B, ODG2 and POF4), Beta-

1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2) (also known as B4GALT and GALGT2), Wishart 

(FecW) and FecX2, a yet to be identified X- linked mutation (Davis et al., 2001, 2006), which has been 

found in Woodlands (W) ewes (FecX2W). Both the heterozygous and homozygous carrier animals for 

Woodlands have higher ovulation rates and litter- sizes (Davis, 2005; Davis et al., 2001) 

The homeobox protein prophet of Pit-1 (PROP1) gene (PROP1, also known as CPHD2, PROP-1, and 

PROP paired-like homeobox 1) also plays a vital role in fertility. There are twelve reported mutations 

in the human PROP1 that may prevent the production of several hormones leading to either absence 

or delay of secondary sexual development and infertility (Navardauskaite et al., 2014; Sornson et al., 

1996; Taha, Mullis, Ibáñez, & De Zegher, 2005). Some of the above mentioned mutations in humans 

have been uncovered in sheep, most notable of which is a C>T transversion at position 330 

(ENSOART00000007395: c.109+207C>T) in intron 1, and this is a potential molecular marker to 

improve litter-size of sheep (Liu et al., 2015). 

Of the genes described above, three were chosen for further analysis in this study. They were 

BMPR1B, GDF9 and BMP15. 

1.5 The genes that were studied in this thesis 

The proteins GDF9 and BMP15 belong to the transforming growth factor-β (TGF β) family, a large 

group of structurally related proteins that regulate the expression and secretion of hormones that 

affect follicular growth and ovulation rates. Members of the TGF-superfamily share several 

characteristics and the biologically active (i.e., mature) regions of most of these proteins are usually 

quite small. Of the TGF-superfamily, both GDF9 and BMP15 are produced as precursor proteins, with 
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the biologically active portion of the protein residing in the c-terminus (Juengel et al., 2004). The 

precursor proteins are 453 and 393 amino acids in length for ovine GDF9 and BMP15 respectively, 

and they consist of a short secretory signal sequence followed by a pro-region with the final 135 

(oGDF9) or 125 (oBMP15) amino acid sequences comprising the mature or biologically active regions 

of the proteins (Bodensteiner et al., 1999; Galloway et al., 2000). Although the function of the pro-

region portions of GDF9 and BMP15 is unknown, in other TGF-family members this is thought to 

facilitate the correct folding and dimerisation of the mature proteins, and hence they may be 

necessary for regulating biological activity (Barker, 1994; Chang et al., 2002). The mature regions can 

dimerise with themselves (to form homodimers) or with the mature regions of other TGF-

superfamily members (to form heterodimers) (Mottershead et al., 2015). 

The mature regions of most TGF-superfamily members contain an odd number of cysteine residues 

(typically seven), with six of these residues forming a characteristic cysteine knot, and the remaining 

cysteine involved in creating a disulphide bond between the two mature regions (Chang et al., 2002). 

The GDF9 and BMP15 proteins are however two of the very few TGF-superfamily members that do 

not have the cysteine residue that is involved in dimer formation. As such, it is unclear if the 

structure of dimers is a necessary prerequisite for their biological activity (as it is for other TGF-

superfamily members). Moreover, as both proteins are produced in the oocyte, the potential for 

production of biologically active heterodimers of GDF9/BMP15 certainly exists. Recently, it was 

shown that both heterodimers and homodimers of GDF9 and BMP15 could be formed when 

produced in transfected cell lines (Liao et al., 2003), but the biological activity of these dimer proteins 

was not tested. 

There is a large body of literature describing the activity of GDF9 and BMP15 in cows, sheep, and 

pigs, and how variation in these genes affects reproductive performance. It has also been reported 

that variation in these genes can be used as a marker to increase litter-size and ovulation rate in 

mammals. This will be discussed in more detail below. 

1.5.1 Growth Differentiation Factor 9 and the GDF9 gene (GDF9, Ensembl: 
ENSOARG00000013229.1, also known as GDF-9, POF14) 

Growth differentiation factor 9 (GDF9) is a protein that is secreted in mammals by growing follicular 

oocytes (McPherron & Lee, 1993). The gene is expressed in the oocytes and is essential for follicle 

production (Bodensteiner et al., 1999), granulosa cell growth (Davis, 2005), the rate of oocyte 

maturation, premature ovarian activity (Galloway et al., 2000), and in the differentiation and 

maturation of oocytes. It is now well established from a variety of studies that GDF9 is necessary to 

produce ovarian follicles in sheep (Hanrahan et al., 2004) and the importance of regulating the 
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process of folliculogenesis by GDF9 is illustrated by the observation that an absence of this factor 

leads to the cessation of follicular growth and development (Chang et al., 2002). 

The GDF9 gene (GDF9) is expressed in oocytes from the primary stage of follicular development until 

ovulation (Laitinen et al., 1998; McGrath et al. , 1995) and female GDF9 knockout mice (GDF9-/-) are 

infertile due to a block in follicular development at the primary stage (Dong et al., 1996). While the 

GDF9-/- female mice were sterile, the heterozygous females were fertile. In this knockout mouse 

model, the ovaries from female mice deficient in GDF9 produced primordial and primary 1- layer 

follicles, but there was a block in follicular development beyond the primary 1-layer follicle stage, 

which led to complete infertility. Oocyte growth and zona pellucida formation proceeded normally, 

but other aspects of oocyte differentiation were compromised. The oocytes in the knockout mice 

grew faster and had more structural defects (Carabatsos et al., 1998). Additionally, the levels of FSH 

and LH were elevated, and ovarian cysts were often observed (Dong et al., 1996). Aberrant 

expression of mRNA encoding several proteins was observed in the mice lacking GDF9, with ovarian 

tissue expression of stem cell factor (SCF) being increased, whereas expression of aromatase, activin- 

B, follistatin, and COX-2 was decreased compared to the GDF9-intact controls (Dong et al., 1996; 

Elvin et al. , 1999). Changes in the above mentioned mRNAs appear to be a consequence of the block 

in follicular growth (and thus the absence of more mature follicles), along with the presence of 

abnormal nests of luteinizing granulosa cells following degeneration of the oocyte and the loss of an 

interactive feedback system. 

Aaltonen et al. (1999) determined the localisation of the GDF9 mRNA and protein during 

folliculogenesis in humans using in-situ hybridization and immuno-histochemical analyses, and 

compared it with that of a related protein growth differentiation factor 9B (GDF9B), which is now 

called bone morphogenetic protein 15 (BMP15 – see below). The GDF9 transcripts were not detected 

in primordial follicles, but were abundantly expressed in primary follicles in frozen sections of ovarian 

cortical tissue. The human GDF9B transcripts could only be detected in the gonads by RT-PCR 

analysis, and in-situ hybridization studies indicated that GDF9B is not expressed in small primary 

follicles, but instead in the oocytes of the late primary follicles. 

From the above work, Aaltonen et al. (1999) concluded that both GDF9 mRNA and protein are 

abundantly expressed in oocytes of primary follicles in human ovaries, suggesting that the GDF9 

transcript is translated at this early stage of folliculogenesis; that BMP15 is specifically expressed in 

gonads at low levels; that the expression of GDF9 mRNA begins slightly earlier than that of BMP15 in 

human oocytes during follicular development; and that the results are consistent with the suggestion 

that GDF9 and BMP15 regulate human folliculogenesis in a manner specific to the ovary. 
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Filho et al. (2002) compared the pattern and level of expression of GDF9 and BMP15 mRNA in ovaries 

from normal-cycling individuals, with women with polycystic ovary syndrome (PCOS) and polycystic 

ovaries (PCO). In-situ hybridisation suggested that the expression of GDF9 and BMP15 was restricted 

to oocytes in all the ovaries examined, with a decreased level of GDF9 signal observed in developing 

PCOS and PCO oocytes, compared with normal oocytes. This difference was evident throughout 

folliculogenesis. The results indicated that the expression of GDF9 mRNA is delayed and reduced in 

PCOS and PCO oocytes during their growth and differentiation phase, and because oocyte- derived 

GDF9 is crucial for normal folliculogenesis and female fertility, Filho et al. (2002) suggested that a 

dysregulation of oocyte GDF9 expression may contribute to the aberrant folliculogenesis in PCOS and 

PCO women. 

Sheep GDF9 has been mapped to sheep chromosome 5 (Sadighi et al., 2002). The gene spans about 

2.5 kilobases (kb) and contains 2 exons separated by a single 1126-base pair (bp) intron and encodes 

a pre-propeptide of 453 amino acid residues. The active mature peptide is 135 amino acids long 

(Bodensteiner et al., 1999). 

 

Genetic variation and mutations in the ovine GDF9 gene 

 
Nucleotide sequence variation has been described for ovine GDF9. Some of this variation causes a 

loss of fertility and thus can be deemed to be a mutation, while other sequence variations are more 

benign, and have only minor effects. Some of the nucleotide substitutions that affect fertility are 

listed in Table 1, while a comprehensive description of nucleotide variation can be found at Ensembl 

(https://www.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Table?db=core;g=ENSOARG0 

0000013229;r=5:41841034-41843517;t=ENSOART00000014382). Figure 3 is a graphical 

representation of the currently identified nucleotide sequence variation in the gene. 

 
 
 
 
 
 

 

 

 

 

http://www.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Table?db=core%3Bg%3DENSOARG0
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Table 1 Growth Differentiation Factor-9 gene (GDF9) nucleotide changes/mutations and their effects on ovulation rate and litter-size 

  

Name Nucleotide 
sequence 
change* 

Reference 
SNPs 

Amino acid 
change 

Effect on ovulation rate and litter-size Reference 

 ENSOART00 
000014382.1: 
c.152A>G 

- p.Asn51Asp Unknown (Liao et al., 2003) 

G1 (FecG1) c.260G>A rs410123449 p.Arg87His Increased ovulation rate and the majority of the sterility phenotypes in these animals can be 
explained by the presence of homozygous mutant (His/His) genotypes. 

(Hanrahan et al., 2004) 

     

Litter-size in (+/+) and (+/-) genotypes was equal to 1.16 ± 0.05 and 1.78 ± 0.05 respectively. 
(Javanmard, Azadzadeh, & Esmailizadeh, 
2011) 

    
Did not affect reproductive traits. (Abdoli, Zamani, Deljou, & Rezvan, 2013) 

    Litter-size in (+/+) and (+/-) genotypes was equal to 1.25 ± 0.09 and 1.56 ± 0.08 respectively. 
 

One copy of each of the BMP15 and GDF9 mutations had equivalent effects on ovulation rate in 
Moghani and Ghezel sheep. 

 

(Paz, Quinones, Bravo, Montaldo, & 
Sepulveda, 2015) 

 

(Barzegari et al., 2010) 

G2 c.471C>T rs422644056 p.157 - No change No association was found with litter-size. (Hanrahan et al., 2004) (Albarella et 
al., 2015) 

G3 c.477G>A rs160076413 p.159 - No change No association was found with litter-size. (Hanrahan et al., 2004) 
(Albarella et al., 2015) 

 c.692T>C - p.Leu231Thr Unknown  

(Guan et al., 2005) 

G4 c.721G>A rs160076408 p.Glu241Lys Increased ovulation rate and the majority of the sterility phenotypes in these animals can be 
explained by the presence of homozygous mutant (Lys/Lys) genotypes. 

 

 c.729G>T - p.Gln243His Homozygous wild type and heterozygote had 2.11 ± 0.10 and 2.99 ± 0.19 lambs per litter 
respectively in Small Tail Han sheep. 

(M. X. Chu, Li, Wang, Ye, & Fang, 2004) 
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 c.750G>A rs193637058  The GG homozygous individuals displayed a significantly higher value of litter-size when 
compared with GA ewes in the Bagnolese and Lori breed 

(Albarella et al., 2015) 
 

(Zamani, Abdoli, Deljou, & Rezvan, 2015) 

FecG7 c.943C>T - p.Arg315Cys Increased ovulation rate and litter-size in heterozygous and infertility in homozygous ewes.  
(Souza, McNeilly, Benavides, 
Melo, & Moraes, 2014) 

G5 c.978A>G rs399579080 p.326 – No change No association was found with litter-size. (Hanrahan et al., 2004) 
 

(Albarella et al., 2015) 

G6 c.994G>A rs421019907 p.Val332Ile The increased ovulation rate and the majority of the sterility phenotypes in these animals can be 
explained by the presence of heterozygous mutations and homozygous mutations, respectively. 

(Hanrahan et al., 2004) (Albarella et 

al., 2015) 

FecGE/FecGSI 

Embrapa 
c.1034T>G rs1092755620 p.Phe345Cys FecGE homozygous ewes are not sterile but show a significant increase compared to non-mutated 

individuals ovulation rate (2.22 ± 0.12 vs. 1.22 ± 
0.11) and litter-size (1.78 vs. 1.13) in Brazilian Santa Ines sheep breed. 

(Silva et al., 2011) (Melo et al., 

2008) 

    
The average number of corpora lutea in the homozygous ewes was more than heterozygote or 
wild type animals. 

 

             +Nucleotide positions relative to GenBank AF078545.2 
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 Figure 3 Ensembl image file of ovine GDF9 sequence variation 
(https://www.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Table?db=core;g=ENSO ARG00000013229;r=5:41841034-
41843517;t=ENSOART00000014382) 
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Over the last decade, the sheep industry has utilized GDF9 marker-assisted selection (MAS) to 

identify fertile sheep and improve the quality of sheep breeding programs. 

The economic impact of some of the variations identified in GDF9 is very high. For example, the 

nucleotide sequence variation (c.1111G>A) identified in Cambridge and Belclare sheep, was strongly 

associated with litter-size in Norwegian White sheep (Våge et al., 2013). This nucleotide variation 

was also detected in the Finnish Landrace breed in NZ, and this has enabled the development of a 

commercial gene-marker for GDF9 variation for use in improving fertility by the Gene-Marker 

Laboratory at Lincoln University, New Zealand. 

The New Zealand Sheep Breeders Association reported that the presence of GDF9 mutation has the 

potential to increase ovulation in Texel sheep by 25-40% (Gardyne, 2017). 

The presence of GDF9 c.1034T in the Brazilian Santa Ines and Morada Nova hair has been shown to 

increase litter-size, and this mutation is used as a commercial marker to improve sheep production in 

Brazil. The uncommon presence of the beneficial GDF9 and Booroola mutations in Iranian sheep 

breeds (Eghbalsaied et al., 2017; Nanekarani et al., 2016) has led to the importation of higher fertility 

sheep carrying the functional mutations. The GDF9 gene has been used as a marker to increase 

fertility in different research stations around Iran (http://www.avingen.com). 

1.5.2 Bone Morphogenetic Protein 15 and BMP15 gene (BMP15: Ensembl: 
ENSOARG00000009372, also known as GDF9B, BMP-15, GDF-9B, ODG2 and 
POF4) 

The bone morphogenetic protein (BMP) family is also part of the transforming growth factor-beta 

superfamily. These proteins are typically synthesised as pre-propeptides, cleaved, and then 

processed into dimeric proteins. With a few exceptions, members of the TGFB superfamily are 

defined by seven spatially-conserved cysteine residues (Dube et al., 1998). Using degenerative 

oligonucleotides to target the conserved amino acids of the BMP/Vg1/DPP subgroup of the TGFB 

superfamily, Dube et al. (1998) identified an additional member of the BMP family, BMP15 (also 

referred to as GDF9B), in both mouse and human. The pre-propeptides exhibit an amino acid identity 

of 63%, and both have five potential N- linked glycosylation sites, of which three are spatially 

conserved between the species (Dube et al., 1998).  

Using Northern blot analysis, Dube et al. (1998) revealed that mouse BMP15 is expressed only in the 

ovaries. In-situ hybridization revealed that murine BMP15 was expressed exclusively in the oocyte 

soon after primordial follicles are recruited, and that expression is maintained until after ovulation. 

The spatio-temporal patterns of BMP15 and GDF9 activity are identical, such that Dube et al. (1998) 
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suggested that BMP15 may be involved in oocyte maturation and follicular development as a homo- 

dimer, or by forming hetero-dimers with GDF9. 

Using in-situ hybridisation and immuno-histochemical analysis, (Otsuka et al., 2000) demonstrated 

selective and increasing expression of BMP15 in oocytes throughout follicular development. 

Immunoblot analysis detected 16- and 50-kD proteins. Functional analysis showed that the addition 

of BMP15 to rat granulosa cells increased proliferation and DNA synthesis, which was unaffected by 

FSH. The BMP15 protein produced a marked decrease in FSH-induced progesterone production, but 

had no effect on FSH-stimulated oestradiol production, suggesting that BMP15 is a selective 

modulator of FSH function. 

Genetic variation and mutations in the ovine BMP15 gene 

 

The BMP15 gene (BMP15) of sheep maps to the X chromosome, and includes an 1179 bp coding 

sequence structured in two exons, and separated by a 5.4 kb intron. This produces a 393 amino acid 

residue pre-propeptide and a 125 amino acid mature peptide (Galloway et al., 2000). Like GDF9, 

BMP15 consists of three parts: a signal peptide (the pre-region), a large precursor segment with a 

chaperone function (the pro-region), and a mature domain at the carboxy-terminal (the mature 

region) (Chang et al., 2002; Liao, Moore, & Shimasaki, 2004). The molecular weight of mature BMP15 

is 44,900 Da. 

Both male and female mice lacking a functional BMP15 are fertile, although sub-fertility is observed 

in females. While follicular growth appears normal, ovulation and the fertilisation of oocytes are 

impaired (Yan et al., 2001). While no apparent effect on ovulation rate or litter-size was observed in 

mice heterozygous for inactive copies of GDF9 or BMP15 alone, mice heterozygous for inactive 

copies of both BMP15 and GDF9 had smaller and less frequent litters than control mice. This effect 

was even more dramatic in BMP15 knockout mice that were also heterozygous for the inactive GDF9. 

In these animals, follicular growth appeared normal, but fertilisation of released oocytes was 

dramatically reduced due to disruption of the cumulus cell-oocyte complex. Many oocytes were 

recovered with few or no cumulus cells attached. In some animals, this effect was severe enough to 

cause infertility. Yan et al. (2001) reported that homozygous BMP15 knock-out female mice were 

sub-fertile, with reduced litter-size compared to heterozygous and wild-type females. They also 

believed that the BMP15 knockout mice exhibited reduced fertility due to defects in ovulation and 

embryo development. It is known that the overexpression of mouse BMP15 in oocytes does result in 

a higher reserve of antral follicles due to rising folliculogenesis, but concomitantly the atresia rate is 

increased in the transgenic mice (McMahon et al., 2008). The importance of BMP15 in sheep fertility 

was confirmed with the identification of five separate point mutations in the mature BMP15 coding 
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region (Davis, 2005), and these were subsequently revealed to be associated with increased 

ovulation rate and litter-size in sheep (Hanrahan et al., 2004). There are now many other known 

nucleotide sequence variants of BMP15, some of which can be considered to be mutations, while 

others have more benign effects. Table 2 summarises the better known mutations, while a 

comprehensive description of nucleotide variation can be found at Ensembl 

(https://asia.ensembl.org/Ovis_aries/Gene/Variation_Gene/Table?db=core;g=ENSOARG0000000937 

2;r=X:50970938-50977454;t=ENSOART00000010201). Figure 4 is a graphical representation of the 

currently identified nucleotide sequence variation in the gene. 
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Table 2 Bone morphogenetic protein 15 gene (BMP15) nucleotide changes/mutations and their effects on litter-size 

 
Name Nucleotide sequence 

change* 
Reference 
number 

Amino acid change Effect on ovulation rate and litter-size Reference 

B1 ENSOART000000102 
01.1:c.31_33del 

rs592773279 p.Leu11del No known phenotypic effect. 
 

The absence of this deletion increase fertility 

(Hanrahan et al., 2004) 
 

(Guo et al., 2004) 

FecX Bar
 c.302_304delCTA, 

c.301G > T, 
c.310insC 

- p.Ala101Cys 
fsTer113 

Ovulation rate increases by +0.7 ova and litter- size by +0.3 lambs.  

(Lassoued et al., 2017) 

FecXG
 c.718C>T - p.Glu239ter- 

premature stop 
codon 

The effect on ovulation rate in heterozygous ewes is +0.77 ± 0.537 in Belclare sheep and +1.18 ± 0.387 
for Cambridge sheep. Homozygous ewes are sterile. 

(Hanrahan et al., 2004) 

FecXB
 c.1100T>G - p.Ser367Ile The effect on ovulation rate in heterozygous was +2.38 ± 0.549 in Belclare ewes, and homozygous are 

sterile. 
(Hanrahan et al., 2004) 

FecXI
 c.897A>T - p.Val299Asp Increase the number of lambs born per ewe by 0.6, however homozygous ewes are sterile. (Galloway et al., 2000) 

 

(Davis, Dodds, 
McEwan, & Fennessy, 1993) 

FecXH
 c.873C>T - p.Glu291ter stop 

codon in the place of 
glutamic acid 

Increased ovulation rates in heterozygous ewes +1.0 and litter-size by +0.6 and sterility in homozygous 
Romney ewes. 

(Galloway et al., 2000) (Davis, 
2005) 

FecXL
 c.963G>A - p.Cys321Tyr Increased ovulation rate and sterility in heterozygous and homozygous ewes respectively  

(Bodin et al., 2007) 

FecXR
 c.487_503del rs421419167 p.Trp163AsnfsTer5 

5 Premature stop 
codon 

Increased prolificacy and sterility in heterozygous and homozygous ewes respectively 
 

Heterozygous ewes present 0.63 and 0.35 extra ovulations and additional lambs per lambing adult 
ewe respectively 

 

(Martinez-Royo et al., 2008) 
 

(Lahoz et al., 2011) 

FecXGr
 c.950C>T - p.Thr317Ile Increased litter-size and ovulation rate in French Grivette sheep. (Demars et al., 2013) 

FecXO
 c.1009A>C - p.Asn337His Responsible for the highly prolific phenotype in 

the Olkuska breeds 
V135G c.404T>G  p.Val135Gly No known phenotypic effect. 
L110L c.330C>T  p.110Leu–No 

change 
No known phenotypic effect. 

A77A c.231T>G  p.110Ala–No 
change 

No known phenotypic effect. 

P101A c.301G>C  p.Pro101Ala No known phenotypic effect. 
+Nucleotide positions relative to GenBank NC_019484 
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Figure 4 Ensembl image file of ovine BMP15 sequence variation (https://asia.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Image?db=core;g=ENSO 
ARG00000009372;r=X:50970938-50977454;t=ENSOART00000010201)
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1.5.3 Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) gene (BMPR1B, 
Ensembl: ENSOART00000018678.1, also known as Alk6, SKR6, ALK-6, AMDD, 
BDA2, BDA1D, CDw293, Acvrlk6, BMPR-1B, BMPR-IB, CFK-43a, AI385617 and 
AV355320) 

In the early 1980s, research conducted on fertility and litter-size in Merino sheep revealed that there 

was a major autosomal gene with a positive effect on ovulation rate and on prolificacy. Those sheep 

that received one copy of the so-called, but unidentified ‘Booroola gene’ (called B or FecB) from each 

of their parents produced 1.5 more ovules and one lamb more than any other sheep in each lambing 

(Davis et al., 1982). In 1993, the first DNA marker test for the Booroola gene revealed that this gene 

was located on chromosome 6. The test was performed using three gene markers that were located 

close to each other on the chromosome and that provided 90% accuracy in predicting the phenotype 

(Montgomery et al., 2001). The ovarian phenotype in homozygous ewes (BB) is completely different 

from ewes homozygous for BMP15 or GDF9. The most important characteristic of homozygous ewes 

(BB) is the larger size and number of ovarian follicles than other genotypes. Mature and ovulated 

follicles in homozygous (BB) and heterozygous (B+) sheep have a smaller diameter than in the wild-

type homozygous (++) sheep. Smaller ovarian follicles in BB ewes have fewer granulosa cells than ++ 

ewes (McNatty et al., 2005). Thus, the number of granulosa cells from all ovarian follicles and the 

total amount of steroid or inhibin output from the ovary of the homozygous (BB) or heterozygous 

(B+) ewes are similar to the wild-type homozygous (++) (Wilson et al., 2001). The most important 

feature of ewes carrying the Booroola gene is the small size of ovum comparing to those ewes 

without this gene. The non-carrier homozygous ewes of this gene have an average of one to two 

ovum with a diameter of seven millimetres, heterozygous ewes for this gene have three to four ova 

(four to five millimetre in diameter), and homozygous ewes with Booroola gene in each cycle of more 

than five ova (three to five millimetres in diameter) (Davis et al., 1982). The reduction in cell 

proliferation activity and increase the in expression of the main markers responsible for the follicular 

maturity during the follicle growth in the ovary, is characterized by the development of aromatase 

activity and LH receptors by the granulosa cells of the antral follicles at markedly smaller diameters 

than in wild-type ewes. The most important effect of the Booroola gene is in increasing FSH levels, 

which are much higher in homozygous ewes than wild-type ewes (Elsen et al., 1991). The increase in 

FSH is due to an increase in hormone secretion from the pituitary gland and ovarian follicles (Lundy 

et al., 1999). Young et al. (2008) investigated whether the Booroola gene directly or indirectly led to 

an increase in FSH levels. They found that the pituitary cells of the ewes carrying the Booroola gene 

had a higher sensitivity to the BMP hormone group than the wild-type, and these hormones led to a 

significant reduction in the secretion of FSH. The similarity in the size of the pituitary gland, the 

number of cells in the gland, the number of cells containing FSH and LH in the ewes carrying 

Booroola and wild-type ewes and the high sensitivity of the pituitary cells of the ewe carrying the 



 19 

gene to the BMP group indicates that Booroola gene does not directly increase FSH but acts through 

the effects of BMP or GnRH hormones (Young et al., 2008). 

Over time the gene underpinning the Booroola phenotype was identified and it has many names in 

the literature. The protein is now called the Bone Morphogenetic Protein Receptor Type 1B and the 

gene is BMPIRB. 

Genetic variation and mutations in the ovine BMPR1B gene 

 

Many sequence variants of BMPR1B have been described, some of which can be considered to be 

mutations, while others have more benign effects (Table 3). 

It was found that BMPR1B-deficient females are infertile due to a constellation of defects, including 

irregular oestrus cyclicity, impaired pseudo-pregnancy responses, severe defects in cumulus cell 

expansion, and insufficient uterine endometrial gland development (Yi et al., 2001). BMPR1B knock-

out leads to infertility in mice due to a block in folliculogenesis at the primary stage and increased 

fertility in sheep (Baur et al., 2000; Yi et al., 2001). Various studies (Mulsant et al., 2001; Davis et al., 

2006; Polley et al., 2010) have been published on the importance of BMPR1B mutation in sheep 

prolificacy and they have proposed that no variation was observed in the expression levels of the 

mutated gene. Hence, the regulation of follicular development appears to be due to changes in the 

signal transduction pathway (Yi et al., 2001). BMPR1B serves as a potent receptor for various BMP 

factors including BMP15 (Ten Dijke et al, 2003). BMP15, GDF9, and BMPR1B modulate the effect of 

FSH on antral follicles. 

A comprehensive description of nucleotide variation can be found at Ensembl 

(https://asia.ensembl.org/Ovis_aries/Gene/Variation_Gene/Table?db=core;g=ENSOARG0000001716 

1;r=6:29361947-29448079;t=ENSOART00000018678). Figure 5 is a graphical representation of the 

currently identified nucleotide sequence variation in the gene. 
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Table 3 BMPR1B (Bone Morphogenetic Protein Receptor Type 1B) nucleotide changes/mutations and their effects on litter-size 

 
 

Name Nucleotide 
sequence 
change* 

Reference 
number 

Amino acid 
change 

Effect on ovulation rate and litter-size Reference 

FecB, 
Fecundity 
Booroola, 

ENSOART0 
0000018678. 
1:c.746A>G 

 p.Arg249Glu Increase ovulation rate and litter-size in most 
sheep breeds around the world (Hyper-prolific). 

(Piper & Bindon, 1983) 
(Piper, Bindon, & Davis, 1985) 

    
(Fabre et al., 2003) 

    
(Souza et al., 2001) (Chu et al., 2007) (Chu et al., 2011) (Davis et al., 2006) (Davis et al., 1982) 
(Wilson et al., 2001) (Mulsant et al., 2001) (Polley et al., 2010) (Kumar et al., 2008) (Roy et al., 
2011) (Zuo et al., 2013) (Mahdavi et al.,  2014) (Jia et al., 2005) (Yan et al., 2005) (Liu et al., 
2003) (Tian et al., 2009) (Zuo et al., 2013) (Fogarty, 2009) 

M64I ENSOART0 
0000018678. 
1:c.360G>A 

rs428753381 p.Met64IIe Unknown (Heaton et al., 2017) 

T345N ENSOART0 
0000018678 
c.1180A>C 

 p.Thr345Asp Unknown (Heaton et al., 2017) 

 g.66496G>A  p.Thr306 – No 
change 

Unknown (Abdoli, et al., 2018) 

          +Nucleotide positions relative to GenBank NC_019463.1 
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Figure 5 Ensembl image file of ovine BMPR1B sequence variation 
https://asia.ensembl.org/Ovis_aries/Transcript/Variation_Transcript/Image?db=core;g=ENSOA 
RG00000017161;r=6:117031472117031472;t=ENSOART00000018678;v=rs424181501;vdb=variation;vf=18621617 
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1.6 Sheep studied and statistical models used in this thesis 

The sheep breeds investigated in this study were Finnish Landrace, Finnish Landrace × Texel-cross, NZ 

Romney, Coopworth, Perendale, White Dorper, Dohne, Merino, Wiltshire, Texel, Corriedale, and 

Polwarth. There were also other ‘composite sheep’ of undefined breed background, but based on NZ 

Romney-type genetics. These breeds were chosen based on their variability in prolificacy, but for all 

of them understanding what controls fertility would be of interest to the New Zealand sheep 

industry. The amount of available data about fertility varied from breed to breed, but included data 

for the average number of lambs born per ewe, the ewe’s age at lambing and pedigree, up to a 

maximum depth of five consecutive generations. The investigation of the variation detected in the 

genes studied and their association with litter-size was carried out in only three sheep groups 

including NZ Finnish Landrace, Finnish Landrace × Texel-cross and composite sheep. For the 

association study, best linear unbiased prediction (BLUP) has proven itself to be an efficient method 

for genetic evaluation of domestic livestock. The ASREMEL software used in this thesis was used to 

estimate the additive and dominance effects of SNPs using two models: animal models and sire 

models. In the sire models, the sires were evaluated using progeny records and it was is assumed 

that all mates are of similar genetic merit and this can result in bias in the predicted breeding values 

if there is preferential mating, but in animal models, full pedigree is considered in the model and it 

includes all animals including those with records and without records. The main advantage of the sire 

models is that the number of equations solved is less than in the animal models, since only sires are 

evaluated.  

Blood samples from these breeds were made available by the Gene-Marker Laboratory at Lincoln 

University. The Table 4 summarises the wide variety of sheep breeds in New Zealand. The main 

breeds are: 1) the New Zealand Romney (NZ Romney), with a lambing percentage (lambs weaned to 

ewes mated) of 90 - 140 (one of the most popular breeds in NZ and constitutes more than 60% of the 

National flock), 2) the Perendale with medium fertility with a lambing percentage of more than 115 

and that constitutes 10 to 15% of National flock, 3) the Coopworth makes up the second largest flock 

in New Zealand (13%) which is known as prolific sheep with a lambing percentage of 110 - 160 and 

that is a stabilised cross between the Romney and the Border Leicester, and 4) the Merino sheep 

with an average lambing percentage of 90% and constitutes only about 6% of the national flock . 

There are also Texel sheep, Finnish Landrace (Finn) sheep (one of the most fertile breeds in New 

Zealand with a lambing percentage around 260), the Wiltshire (another prolific breed with a lambing 

percentage over 180%), the Corriedale with an average lambing percentage of 90 - 130%, and the 

Polwarth with an average lambing percentage of 100 -120% 

 



 23 

Table 4 Description of different sheep breeds in New Zealand 
(http://www.therural.co.nz/livestock/sheep- breeds-in-new-zealand, 2017) 

 

 

 

 

http://www.therural.co.nz/livestock/sheep-
http://www.therural.co.nz/livestock/sheep-
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1.7 Aims of this thesis 

 

While the relationship between variation in GDF9, BMP15 and BMPR1B and variation in fertility is 

quite well understood in some breeds, little is known about the genes in other breeds, especially 

those commonly farmed in New Zealand. Accordingly, this study focused on a variety of breeds, and 

breeds that span a spectrum of fertility. Fertility is a key determinant of profitability in NZ farming 

systems, and variation in these genes is already being used in some breeds to improve reproductive 

performance. 

If variation exists in GDF9, BMP15 and BMPR1B in the common New Zealand breeds, then that 

variation may be useful for improving fertility. This will be undertaken using a combination of 

polymerase chain reaction - single-strand conformation polymorphism (PCR-SSCP) analyses and DNA 

sequencing to detect the sequence variation, and then a variety of statistical analyses to ascertain if 

the variation can predict variation in fertility.
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Genetic variation in the growth differentiation factor 9 gene (GDF9) 

in New Zealand sheep 

2.1 Introduction 

New Zealand (NZ) is a major exporter of sheep meat, predominantly lambs, or sheep that are under 

one year of age. In the 2017 season, the NZ farmer organization Beef and Lamb NZ (B+LNZ), reported 

that 23.7 million lambs had been tailed (lamb tails are docked to mitigate flystrike), with a national 

lambing percentage of 127.2% (i.e. an average of 1.272 lambs per ewe mated). The number of these 

lambs that survive to weaning determines the amount of meat produced per ewe, and thus, NZ’s 

export meat production is to a great extent determined by lambing performance. This explains the 

ongoing research emphasis on improving fertility, fecundity, and lamb survival. 

Two important traits with high economic value to sheep production are, therefore, ewe ovulation rate 

and litter-size (Notter, 2008). Ovulation rates differ in different breeds, and the range is from one egg 

per ovulation (as is typical for the Texel or Suffolk breeds), up to ten eggs per ovulation for prolific 

breeds such as the Booroola Merino, or Finnish Landrace sheep (Souza et al., 2001). Factors affecting 

ovulation rates in individual ewes include their genetics, stress levels, weight, and age (Kareta te al., 

2006). With respect to genetics, the Finnish Landrace breed has been used as a source of genetic 

material around the world to cross into other sheep breeds to increase fecundity. Understanding the 

factors that affect ovulation rates is not only important from an animal production perspective, but 

also enables improved understanding of animal infertility and other genetic disorders that affect 

reproductive performance (Jansson, 2014). 

Genetic improvement in ovulation rate in sheep is slow because it is only expressed in one gender 

(sex limited trait), and because an accurate record of the trait, for any given ewe, can only fully be 

achieved at the end of her reproductive life. Attention has, therefore, focussed on the genes that 

might underpin variation in fertility, this in the hope that when identified, these genes will enable 

sheep with superior reproductive performance to be selected for breeding. In this context, there 

have been many studies in sheep describing how members of the transforming growth factor ß (TGF 

ß) superfamily and their related cell-surface receptors are essential intra-ovarian regulators of 

development and/or of ovulation rate (Galloway et al., 2000; Mulsant et al., 2001). The TGF ß 

superfamily includes more than 35 members, a number of which appear to be critical for regulating 

fertility (Juengel et al., 2004). A TGF ß superfamily member that has received considerable attention 

is growth differentiation factor 9 (GDF9), or FecG (McNatty et al., 2005). The GDF9 gene (GDF9) is 
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expressed from the primary stage of follicular development (McGrath et al., 1995). It is an autosomal 

gene located on ovine chromosome 5. 

Various sequence variations have been described in the ovine GDF9. For example, ‘Vacaria’ (FecGV), 

or c.943C>T/p.Arg315Cys (Souza et al., 2014) and c.1111G>A/p.Val371Met (Våge et al., 2013), are 

variations in GDF9 that appear to have an additive effect in increasing litter-size. Contrastingly, ‘High 

Fertility’ (FecGH), or c.1184C>T/ p.Ser1184Phe (Hanrahan et al., 2004) and ‘Thoka’ (FecGT), or 

c.750G>A/p.Ser427Arg (Nicol et al., 2009), could be considered to be mutations, as they increase 

prolificacy in the heterozygous state, but are associated with sterility in homozygous ewes. Another 

nucleotide substitution, c.994G>A/p.Val332Ile (Hanrahan et al., 2004), has not been reported to have 

any association with fecundity, but more analysis will be needed to confirm this result. 

Increased knowledge about the genes that affect fertility and litter-size in sheep has the potential to 

increase profitability in sheep production systems. Accordingly, a better understanding is required of 

GDF9 variation in NZ’s most common maternal sheep breeds (e.g., the NZ Romney, Perendale, 

Coopworth, and out-crosses of those breeds). These breeds may have potentially more benign 

variation in GDF9, but a variation that if selected for, would allow us to better control and increase the 

number of lambs born per ewe, per year, on individual farms. This might enable a better ‘matching’ of 

lambing performance to feed supply, and potentially the ability to finish lambs on the farm to a weight 

where they can be slaughtered for export, thereby improving the resilience of the system. To 

develop the tools to undertake this research into common NZ maternal breeds, composite sheep that 

have one of the common NZ maternal breeds in their lineage, and which have been described as 

having higher fertility, were investigated. 

2.2 Materials and method 

All research involving animals was conducted under authority from the Animal Welfare Act 1999 (NZ 

Government). And the collection of sheep blood drops by the nicking of their ears was covered by 

Section 7.5 Animal Identification, in: Code of welfare: sheep and beef cattle (2016); a code of welfare 

issued under that act. This process is considered to be a regular practice in farm management 

system, and cause little or no harm to animal, therefore no formal ethics review needed in this study. 

Blood samples and DNA purification 

One thousand and sixty-four sheep were studied. The blood samples were obtained from different 

farms. The Finnish Landrace breed (n = 164), and Finnish Landrace × Texel-cross sheep (n = 118) and 

one of the composite sheep (n = 189) belonged to one farm (farm 1) located in the North of 

Canterbury. Composite sheep are sheep bred from a wide variety of genetic backgrounds based on 

selection for key production traits. Their background is typically very diverse, and in the case of the 
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sheep described here will include at very least NZ Romney, Texel, East Friesian and Finnish Landrace 

sheep based on what is known about the history of the flock. The breed proportion is unknown and 

likely variable from sheep to sheep.  These sheep were primarily bred for lamb/meat production and 

not wool or milk, using the NZ eBV-based system known as Sheep Improvement Limited (SIL). 

There were another 266 composite sheep of undefined breed background, but based on NZ Romney 

type genetics, and derived from another three farms (n = 220, 38, and 76, from farms 2-4 

respectively). Besides these, blood samples were randomly collected from different farms around 

New Zealand  in South Island for NZ Romney sheep (n = 48), Coopworth (n =24) and Perendale (n = 

24), White Dorper (n = 24), Dohne (n = 24), Merino (n = 24), Wiltshire (n = 24), Texel (n = 24), 

Corriedale (n = 24) and Polwarth (n = 24). All the composite sheep were identified as potentially 

containing some Finnish Landrace genetics. The percentage of Finnish Landrace in the composite 

sheep from two farms (farm 1 and farm 2) ranged 12.5% up to 50 %, but it was not known precisely 

how much Finnish Landrace genetics was in these sheep. 

Blood from the sheep investigated was collected onto FTA cards from a small incision in the ear of 

the sheep. DNA was extracted from the blood samples by punching a 1.2 mm disc from the FTA card, 

followed by genomic DNA purification using a two-step procedure described by Zhou et al. (2006). To 

begin this process, the FTA card punch was placed in tubes containing 200 µL of 20 mM NaOH and 

left for 20 to 30 minutes at 62 °C, or until the disk became white. All the liquid was then removed by 

aspiration and the disk equilibrated in 200 µL of 1× TE-1 buffer (10 mM Tris–HCl, 0.1 mM EDTA, pH 

8.0). After this, the liquid was again removed, and the disks were left overnight to air dry in the 

tubes. 

PCR amplification and PCR-SSCP analysis of GDF9 

A Polymerase Chain Reaction - Single Strand Conformation Polymorphism (PCR-SSCP) approach was 

used to search for sequence variation in a 395-bp amplicon of the GDF9 gene. The PCR primers used 

were 5ʹ-ATAAGCGATTGAGCCATCAGG-3’ (forward primer) and 5ʹ-GCTGAGGGTGTAAGATCGTC-3’ 

(reverse primer). The primers were designed based on GenBank sequence AF07854.2 to amplify a 

fragment that spanned nucleotides 3826 to 4221 of the AF07854.2 sequence of the exon 2 region 

and encompassed nucleotide variation reported previously in the literature that had an association 

with litter-size. These SNPs include c.943C>T (Souza et al., 2014), c.1111G>A (Mullen et al., 2014; 

Våge et al., 2013), c.1184C>T (Galloway et al., 2000; Hanrahan et al., 2004), and c.1279A>C Nicole et 

al., 2009). The PCR amplifications were performed in a 15-μL reaction containing the genomic DNA 

on one 1.2-mm punch of FTA card, 0.25 μM of each primer, 150 μM of each dNTP (Bioline, London, 

UK), 0.3 mM Mg2+, 0.5 U of Taq DNA polymerase (Qiagen, Hilden, Germany) and 1× reaction buffer 

supplied with the enzyme.  Amplification was undertaken as follows:  initial denaturation at 94 °C for 
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2 min, followed by 35 cycles 94 °C for 30 s (denaturation), 59 °C for 30 s (annealing), and 72 °C for 30s 

(elongation), with a final extension step at 72 °C for 5 min. 

The amplicons obtained from the PCR reactions were visualized by electrophoresis in 1% agarose 

(Quantum Scientific, Queensland, Australia) gels, using 1x TBE buffer (89 mM Tris, 89 mM boric 

acid,2mMNa2EDTA), containing 200 ng/mL ethidium bromide. A 2μLaliquot of PCR product was 

added to 2μL of loading dye (0.2% bromophenol blue, 0.2% xylene cyanol, 40% (w/v) sucrose) and 

the gels were run at a constant 10 V/cm for 10 min., prior to visualization by UV trans-illumination at 

254 nm. 

For SSCP analysis, a 0.7 μL aliquot of each amplicon was mixed with 7 μL of loading dye (98% 

Formamide, 10 mM EDTA, 0.025% bromophenol blue, 0.025% xylene-cyanol), and after denaturation 

at 95 oC for 5 minutes, the samples were rapidly cooled on wet ice and immediately loaded on to 16 

cm × 18 cm, 12% acrylamide: bisacrylamide (37.5:1; Bio-Rad) gels. Electrophoresis was performed 

using Protean II xi cells (Bio-Rad), at 350 V for 18 hours at 7 oC in 0.5x TBE buffer. The DNA fragments 

were visualized using a silver nitrate staining method (Byun et al. 2009). Briefly, the gels were bathed 

in a solution of 10% ethanol, 0.5% acetic acid and 0.2% AgNO3 for 10 minutes. Next, the gels were 

rinsed with distilled water then developed with a solution of 3% NaOH and 0.1% HCOH until dark-

staining bands appeared on the yellow background of the gel. 

Sequencing of variants and sequence analyses 

PCR amplicons representing different banding patterns from sheep that appeared to be homozygous 

were sequenced in triplicate in both directions at the Lincoln University DNA sequencing facility, to 

confirm that the variants detected represented unique DNA sequences. Variants that were only 

found in heterozygous sheep were sequenced using an approach described by (Gong et al., 2011). 

Briefly, a band corresponding to each variant was excised as a gel slice from the polyacrylamide gel, 

macerated, and then used as a template for re-amplification with the original primers. This second 

amplicon was then sequenced directly. Sequence alignments, translations, and comparison were 

carried out using Geneious version 5.5.3, (http://www.geneious.com, Biomatters, New Zealand) 

(Kearse et al., 2012). The resulting sequences were displayed using the ChromasPro software 

(Technelysium, 1996). 

 

 

 

http://www.geneious.com/
http://www.geneious.com/
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Statistical analyses 

Allelic and genotypic frequencies were calculated in R programming software (Team, 2013) for the 

Finnish Landrace, the Finnish Landrace × Texel-cross, NZ Romney, White Dorper, Dohne, Merino, 

Perendale, Coopworth, Wiltshire, Texel, Corriedale, Polwarth, and four different composite sheep 

flocks from four separate farms. 

The calculation of variant and genotype frequencies, and Hardy-Weinberg equilibrium were performed 

using the methods test with likelihood-ratio as the test statistic, as appropriate for a sample containing 

multiple alleles as described by (Engels, 2009). 

2.3 Results 

PCR-SSCP analysis of the 395 bp amplicon of GDF9 exon 2 in the different sheep breeds, revealed three 

banding patterns (named A, B, and C), and six genotypes of these banding patterns (AA, AB, AC, BB, BC 

and CC) (Figure 6). Sequencing confirmed that the three variants were unique DNA sequences. 

 

 

Figure 6 Six different Polymerase Chain Reaction – Single Strand Conformation Polymorphism 
(PCR-SSCP) patterns (AA, AB, BC, AC, CC and BB) for an exon 2 fragment of GDF9 in 
New Zealand (NZ) sheep breeds (Finnish Landrace, Finnish Landrace x Texel-cross, 
Romney, and composite sheep). 

Sequence analyses of the three variants revealed three nucleotide variations: c.978A>G, c.994G>A and 

c.1111G>A. The nucleotide substitution C.978A>G was a silent substitution (i.e., would result in no 

amino acid change). The relationship between the occurrence of these nucleotide variations and the 

three variants is detailed in Figure 7. The nucleotide substitution c.994G>A has been reported 

previously (Hanrahan et al., 2004) and would result in a substitution of valine with isoleucine 

(p.Val332Ile). The c.1111G>A nucleotide substitution has also been reported previously ((Hanrahan et 

 AA      AB      BC      AC      CC      BB 
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al., 2004; Våge et al., 2013), and upon translation would result in p.Val371Met (Figure 7). The three 

nucleotide substitutions detected in this study have been described in earlier studies, and no new 

variation was found in NZ sheep breeds. 

 

Figure 7 Nucleotide sequences of Growth Differentiation Factor 9 gene (GDF9) variants A - C. 

Nucleotides in the coding region are shown in uppercase, while those outside the coding region are 

in lowercase. The position of the nucleotide variation marked above the sequences, and those that 

would result in amino acid changes are indicated. 
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                                                                                                                                         (B) 

Figure 8 (A) The observed variant and (B) genotype frequencies for the variants of an exon 2 fragment of GDF9 in New Zealand (NZ) Finnish Landrace, Finnish 
Landrace x Texel-cross, and composite sheep.
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The frequencies of the variants and genotypes are summarised in Figure 8. Nearly half of the sheep 

studied were of genotype AA, and the frequency of CC in the Finnish Landrace and Finnish Landrace × 

Texel-cross sheep was 2% and 1% respectively. This investigation revealed that all of the substitutions: 

variant A, c.978A>G, c.994G>A were found in most of the breeds studied on the different farms. 

None of the composite sheep from farms 1 and 4, NZ Romney, White Dorper, Dohne, Merino, 

Perendale, Coopworth, Wiltshire, Texel, Corriedale, Polwarth were CC. No BB was found in the Finnish 

Landrace, White Dorper, Dohne, Perendale, Wiltshire, Texel, Corriedale, and composite sheep from 

Farm 2. The frequency of AB was very low in the Finnish Landrace and Finnish Landrace × Texel-cross 

sheep (1% and 2% respectively), while the highest frequency of AB was 46%, in the Merino and 

Wiltshire. It is apparent from Figure 8, that AC is present only in the composite sheep, Finnish 

Landrace, Texel and Finnish Landrace × Texel-cross sheep. All the genotypes were observed in all the 

composite sheep, with the exception that BB was not recorded on farm 2, and CC was not recorded 

on farms 1 and 4. Out of the 1064 samples, the homozygous genotype AA occurred most frequently 

(714 Samples) in all breeds, while the other two homozygous genotypes BB and CC, appeared in just 

36 and 27 samples, respectively. Results of the HWE test showed only a significant deviation from 

equilibrium within Finnish Landrace × Texel-cross breed (P < 0.01). 

Overall, the A variant was most common in the Perendale, Dohne and Corriedale sheep (100%), 

whereas variant B was most prevalent in the composite sheep from Farms 3 and 4 (36%), and variant 

C in the Farm 2 composites (39%). Only 1% and 3% of the Finnish Landrace and Finnish Landrace x 

Texel-cross respectively, were carriers of c.978A>G and c.994G>A. The substitution c.1111G>A 

(variant C) was detected at a very low frequency in the composite sheep from farm 1(1%). 

Interestingly, this nucleotide sequence variation was not detected in most breeds, including Perendale, 

Coopworth, NZ Romney, White Dorper, Dohne, Merino, Corriedale and the Polwarth breeds. However, 

it was found in the Texel sheep, but no homozygous c.1111A Texel sheep were observed. 

Of the 1064 sheep genotyped, no homozygous individuals were identified for the c.994A variation in 

the Finnish Landrace sheep, White Dorper, Dohne, Perendale, Wiltshire, Texel, Corriedale or the 

composite sheep on farm 2.  

All three variants of GDF9 were found in the Finnish Landrace, Finnish Landrace × Texel-cross sheep, 

Texel and the composite sheep. The frequency of sheep with genotype AA were nearly similar in the 

Finnish Landrace x Texel- cross sheep and the composite sheep from farm 1 (61% and 58% 

respectively), while the genotype was more common in the pure Finnish Landrace sheep (74%). 
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2.4 Discussion 

The advantage of using DNA information in breeding is that it enables us to improve the rate of genetic 

gain when compared with breeding programmes that only use phenotypic information (Meuwissen et 

al., 2001). When genes that contribute to useful traits have been characterised, DNA marker-assisted 

selection (MAS) can be used in breeding for improvement in traits that are either expressed later in 

life, or sex-limited, and/or have low heritability, such as litter-size (Dekkers, 2004). 

In sheep, screening ewes for genetic variation that is known to affect prolificacy is an effective way to 

manage fertility in flocks. For example, studies suggest that growth differentiation factor 9 (GDF9), 

bone morphogenetic protein 15 (BMP15; also known as GDF9B) and bone morphogenetic receptor 

type 1B (BMPR 1B) are important intra-ovarian regulators of ovulation rate and thus litter-size in sheep 

(Galloway et al., 2000; Mulsant et al., 2001; Souza et al., 2001). Of these three factors, GDF9 appears 

to have a critical role in regulating mammalian fertility, and the objective of this study was, therefore, 

to investigate GDF9 sequence variation in different flocks of sheep. 

In the sheep investigated, the GDF9 was found to be variable. Three sequence variations (c.994G>A, 

c.978A>G and c.1111G>A ) were detected in the gene for sheep from the four farms, including Finnish 

Landrace and Finnish Landrace x Texel-cross sheep, and other composite sheep. Six different variant 

genotypes (AA, AB, AC, BB, BC, and CC) were found, but the observed genotype frequencies deviated 

from the expected genotype frequencies (calculated based on the variant frequencies) in the Finnish 

Landrace × Texel-cross sheep, which could be a result of non-random mating between the sheep 

from two different breeds.  

Variant C in this study has the sequence c.1111A and encodes the amino acid methionine at position 

371 of GDF9. This substitution has been described previously in Cambridge and Belclare sheep 

(Hanrahan et al., 2004), Norwegian white sheep (Våge et al., 2013) and Finnish Landrace sheep 

(Mullen & Hanrahan, 2014). This substitution is associated with litter-size in the Norwegian White 

sheep (Våge et al., 2013), but no association with fertility was observed in the Cambridge and Belclare 

sheep, where it results in homozygous mutant sheep to show complete primary ovarian failure, 

leading to total infertility (Hanrahan et al., 2004). The presence of the c.1111A variant in the 

Cambridge breed is unsurprising, given the genetic contribution of the Finnish Landrace breed to the 

ancestors of the Cambridge breed (Mullen & Hanrahan, 2014). The c.1111A variant identified in this 

study was present in Finnish Landrace, Finnish Landrace × Texel-cross, Texel, and all the composite 

sheep. All of the composite sheep were believed to have some Finnish Landrace genetics in them, and 

it might therefore be appropriate to assume that the presence of the c.1111A in the composite sheep 

was originally from Finnish Landrace breed. That cannot however be proven. Although the c.1111A 

variant was detected in the Texel and composite sheep in farm 1, the frequency was very low. 
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Variant and genotypic frequencies for GDF9 in various sheep breeds have been reported previously 

(Hanrahan et al., 2004; Mullen & Hanrahan, 2014; Våge et al., 2013). Mullen and Hanrahan (2014) 

reported that the frequency of c.1111A was 30% in the Finnish Landrace breed, which is higher than 

the variant frequency found in this study (13%) for that breed in NZ. The frequency for this sequence 

variant (c.1111A) in Norwegian white sheep (25%: (Våge et al., 2013)), was also more than that seen 

in Finnish Landrace and the Finnish Landrace × Texel-cross sheep (18%), in the current study. Heaton 

et al. (2017) reported that the frequency of the GDF9 c.1111A variant was 0.25% in US Finn sheep, 

which was significantly lower than that in the NZ Finnish Landrace. The variant and genotype 

frequencies presented in Figure 8 for different breeds may not be comparable to other studies, 

because the numbers were typically small and the sheep typed were not necessarily representative 

of the breed as a whole. It should be noted that all the Perendale sheep in this study were homozygous 

and no sequence variation was detected in the GDF9 region amplified. 

The variant A was the most common variant detected in the NZ sheep breeds in this study. The 

frequencies of variant B (defined by the presence of c.994A, c.978G) in the flocks in this investigation 

were different to frequencies reported in other studies. For example, Kaczor (2017) reported a 

frequency of 17% for c.994A in Olkuska sheep, and Khodabakhshzadeh et al. (2016) reported that the 

frequency of c.994A was 63% in Kermani sheep. The Kermani sheep are thought to be the source of 

the c.994G>A variation. The maximum frequency observed for the c.994A variant in this study was 

36% in the composite sheep from farms 3 and 4. Interestingly, in the current study, the c.994A 

variant was detected in all breeds except the Perendale sheep. A high frequency of c.994A was 

observed for the Merino and Polwarth sheep. The substitution c.994G>A has also been reported in 

the Afshari sheep breed (Eghbalsaied et al., 2017).  

Phylogenetic relationships between species can be determined by comparison of DNA sequences (Hou, 

Pan, & He, 2014). Alignment of the DNA sequences obtained in this study with other reported 

sequences for GDF9 revealed similarities of up to 98.3%. The similarity of the sequence with the 

presence of c.994A detected in this study is 99.2% similar to Brazilian Santa Ines sheep (GenBank 

Accession No. FJ429111.1) and Norwegian White sheep (GenBank Accession No. He866499.1). 

Our sequence revealed the presence of three nucleotides sequence substitutions, c.994G>A, C.978G 

and c.1111A, while only the variants c.1111A and c.1034T were detected in the GDF9 sequences 

obtained from Norwegian White sheep (Våge et al., 2013) and in Brazilian Santa Ines sheep (Silva et 

al., 2011) respectively. The sequences obtained from Norwegian White sheep were 99.7% similar to 

those from the Brazilian Santa Ines sheep, and the sequence of the C variant in the present study, was 

identical to the reported Norwegian White sheep DNA sequence (GenBank Accession No. 

He866499.1). There was also a high similarity (99%) between the sequence with the presence of 
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c.1111A and the Finnish Landrace sheep with the presence of nucleotide c.1034T (GenBank 

Accession No. NM_001142888.2). 

When optimized, the PCR-SSCP procedure for typing GDF9 detected the variant A, c.978A>G, c.994G>A 

and c.1111G>A substitutions for all the sheep studied. This technique allows large numbers of sheep 

to be typed rapidly, but the region amplified also encompassed other known substitutions including 

c.894A>C, c.974C>A, c.C943T, c.978A>G, c.994G>A, c.1034T>G, c.1040T>C , c.1042C>T, c.1111G>A, 

c.1124A>G, c.1184C>T, c.1203G>A and c.1219G>T, (Hanrahan et al., 2004; Nicol et al., 2009; Silva et 

al., 2011; Souza et al., 2001; Våge et al., 2013). Whether this nucleotide sequence variation did occur 

in the sheep studied here would be impossible to confirm without sequencing this region in all of the 

sheep. It is also conceivable that with further optimisation for gel temperature and running voltage, 

banding patterns may have varied, thus enabling other sequence variation to be identified (Sinville & 

Soper, 2007). This stated, PCR-SSCP can reliably detect single nucleotide changes in DNA sequences 

when used under optimised conditions (Bettinaglio et al., 2002). It also needs to be noted that 

Hanrahan et al. (2004) discovered eight variants (G1 to G8) of GDF9 in Cambridge and Belclare sheep 

breeds using PCR-SSCP and sequencing. The DNA sequence of variant A (containing nucleotides 

c.978A, c.994G, and c.1111G), indicated that this variant exhibited 100% homology with the GenBank 

accession number sequence AF07854.2. In a study by (Hanrahan et al., 2004) the c.1184T variant of 

c.1184C>T (also known as FecGH: High Fertility) had effects on fertility phenotype. The c.1184T 

mutation causes sterility in homozygous ewes due to absence of the active form of the protein, but 

hyper-fertility and increased ovulation rates are observed in heterozygous ewes. Thc.1184C>T 

nucleotide sequence variation was not observed in the sheep typed in this study, but this is not 

unexpected as other studies have also not detected this variation (Paz et al., 2015; Vacca et al., 

2010). 

Although there is abundant research on the importance of variation in GDF9 and fertility, a low 

frequency of c.994A and c.1111A was observed overall in this study for breeds of NZ sheep that 

nevertheless are quite fertile. It could therefore be concluded that these variants are not the only 

things responsible for increased fertility, and that other genes or environmental effects may be having 

greater impact on the fertility of these NZ breeds. Moreover, considering that some of the GDF9 

variation described above markedly increases fertility, one also needs to consider whether having 

excessively large litter-size is beneficial. After all, genetic variation like c.1184T, can lead to the 

production of lambs with low growth rates and that need hand-rearing (Abdoli, Zamani, Mirhoseini, 

Ghavi Hossein‐Zadeh, & Nadri, 2016; Mullen & Hanrahan, 2014). 

Generally, achieving genetic gain is difficult for fertility traits, because firstly it cannot be measured 

before maturity, and secondly because these traits are expressed in only one sex. Moreover, the 
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accurate measurement of the fertility traits can be difficult and expensive at the farm level. On the 

other hand, the high cost of genotyping limits its commercial use. For example, while it is claimed that 

Single Nucleotide Polymorphism (SNP) chips can be used to ascertain genotype (and thus phenotype), 

a large number of sheep are often required to train the chips, especially for low heritability traits, 

and accordingly the use of genomic selection with SNP chips is currently   limited in sheep breeding 

programs. In contrast, the identification and use of single gene markers for key traits can be an 

appropriate and suitable method to improve production performance. 

Together the results in this chapter provide valuable insights into the finding of three GDF9 variants 

using the PCR-SSCP approach, and it justifies the further use of this approach for looking at more sheep 

and of other breeds to those studied here. Further studies on the effects of other GDF9 SNPs (in introns or 

exons) could yield even more information allowing improvement of sheep fertility. Although no new mutations 

have been detected in this study but it is evident that GDF9 is variable in NZ sheep. This lays foundation to 

further this type of analysis with more breeds from New Zealand, and elsewhere. 
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Associations between the detected variations in GDF9 and litter-size 

in New Zealand sheep 

3.1 Introduction 

Sheep farmers have an opportunity to improve the genetic merit of sheep through breeding, and how 

they choose to apply genetic information in making selection decisions. Research has identified useful 

information about sheep genetics and the use of ‘DNA markers’ to improve performance is becoming 

widespread. Specifically, animals with better performance for key production traits of economic 

significance, can be selected for use as breeding stock, and by both commercial farmers and sheep 

breeders. Fertility is one of the essential functional traits in sheep, and it is now well established that 

improving reproduction trait performance is feasible by accommodating the effects of genes that 

have been identified to affect reproductive performance. This has led to the development of 

improved breeding approaches, including the use of marker-assisted selection (MAS), where 

genotyping identifies genetic variation that marks desirable traits such as the number of lambs born 

per ewe, per year. Research has shown that MAS can assist improve reproduction traits, despite the 

heritability of these traits typically being low, and the fact that many of the reproduction traits are 

only expressed in one sex. Moreover, the approach has an added advantage, because fertility traits 

can be both difficult and expensive at the farm level. 

In this context, the study of genes involved in fecundity has become of major interest to sheep 

science and farming. One of the most studied genes affecting sheep fertility is the Growth 

Differentiation Growth Factor 9 (GDF9) (Chung & Davis, 2014; Davis, 2005). This gene maps to ovine 

chromosome 5 (Sadighi et al., 2002), spans approximately 2.5 kilobases (kb) and contains two exons 

and a single 1126-base pair (bp) intron. The gene encodes a pre-propeptide of 453 amino acid 

residues, which produces an active mature peptide of 135 residues (Bodensteiner et al., 1999). 

Nucleotide sequence variation has been described in GDF9 by many researchers. For example, 

Hanrahan et al. (2004) described nine different alleles of GDF9, but among them only c.1184C>T had 

additive effects on prolificacy in Cambridge and Belclare sheep breeds. The c.1034T>G variation led 

to an increase in ovulation rate (82%) and prolificacy (58%) in Brazilian flocks (Silva et al., 2011), and 

variation reported by (Nicol et al., 2009) (c.1279A>C, also known as FecGTT or Thoka), results in an 

amino acid substitution of serine with arginine at position 427 (p.S427A). This increases ovulation 

rate in heterozygous individuals, but causes infertility in homozygous individuals. Nicol et al. (2009) 

also confirmed that c.1279C resulted in 0.6 more lambs per ewe lambing in heterozygous animals. 
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Våge et al. (2013) investigated the effect of variation in GDF9 in Norwegian White sheep. In this 

study, they identified that ewes homozygous for c.1111A produced more lambs when compared to 

heterozygous ewes, while the daughters of homozygous rams also produced more lambs (minimum 

0.46 - 0.57 additional lambs). Mullen & Hanrahan (2014) revealed that c.1111A also affected litter-

size in high prolificacy Finnish Landrace sheep in commercial flocks. 

In the previous chapter, three variants and six unique genotypic banding patterns of the GDF9 gene 

were detected in some NZ sheep. It remains to be demonstrated if there is any significant association 

between the variants and litter size. There have been no studies on whether GDF9 variation occurs in 

New Zealand (NZ) sheep breeds, or whether it affects fertility traits. Accordingly, this Chapter aimed 

at testing the hypothesis that there are significant associations of GDF9 variation and its association 

with fertility was carried out in NZ Finnish Landrace, Finnish Landrace × Texel-cross and composite 

sheep.  

3.2 Materials and methods 

Ethics statement 

This research project was carried out under license from the Animal Welfare Act 1999 (NZ 

Government) for research involving animals. And the collection of sheep blood drops by the nicking 

of their ears was covered by Section 7.5 Animal Identification, in: Code of welfare: sheep and beef 

cattle (2016); a code of welfare issued under that act. This process is considered to be a regular 

practice in farm management system, and cause little or no harm to animal, therefore no formal 

ethics review needed in this study. 

Sheep studied 

The litter-size data for ewes lambing in 2016 was obtained from one flock. The pedigree had a 

maximum depth of five consecutive generations. Sheep without records and unknown family history 

were omitted. A total of 241 ewes were analysed for this study. These included NZ Finnish Landrace 

sheep (n = 104), Finnish Landrace × Texel-cross sheep (n = 61), and composite sheep (farm 1) (of 

varying breed background, n = 76). These three groups were derived from a single large ewe flock 

farmed on pasture and all fed the same way in North Canterbury. 

The blood samples analysed, DNA purification method, PCR amplification, SSCP analysis, genotyping 

and DNA sequencing were described in chapter two. 
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a 

Statistical analyses 

Analyses, undertaken in the R programme (Team, 2013), included determining the number of lambs 

born per ewe with different GDF9 genotypes, and an analysis of variant and genotype frequencies in 

the Finnish Landrace, Finnish Landrace × Texel-cross and composite sheep. 

Assessment of the presence or absence of each of the GDF9 variants on fertility was conducted using 

an ASREML approach (Gilmour et al., 2015), and with both animal and sire models. The ASREML 

software was used to estimate the additive and dominance effects of single GDF9 variants in the 

different models. In the models, the effect of each variant relative to other variants on litter-size was 

estimated. For example to estimate the additive effect of A relative to B and C, the genotypes were 

coded according to the ‘number of copies’ of A: AA = 2; AB or AC = 1; and BB, BC or CC = 0. For 

estimating the dominance effect of A, genotypes were coded according to the ‘presence’ of A: 

AA or AB or AC = 1; and BB or BC or CC = 0. The best complete model was selected by screening all 

possible subsets of the following full model: 

1)yijkln = µ + αi + Breedj +AGEk + Gl + eijkln 

2) yijkln = µ+ Si + Breedj +AGEk + Gl +eijkln 

Where yijkln represents the phenotypic value of litter-size of the ith ewe in 2016; µ is the average 

number of lambs born per ewe; Gl is the additive effect of GDF9 variant, Breedj is the fixed effect of 

breed (when the three breeds were analysed together); AGEk is the ewe’s age at lambing fitted as 

covariate; αi is the random animal effect of ewe i (~N(0, σ2a) when full pedigree matrix A was fitted 

in the animal model; Si is the random effect of sire of ewe i ~N(0, σ2s) when the relationships 

between the sires in Matrix S was fitted in sire model; and eijkln is the random residual effect for each 

observation (~N(0, σ2e)). 

3.3 Results 

As shown in chapter two, the SSCP analysis revealed three banding patterns (named variants A, B and 

C), and six genotypes of these banding patterns (AA, AB, AC, BB, BC, and CC) in all three groups of 

sheep. The sequencing of homozygous genotypes confirmed that the three variants were unique 

DNA sequences, and upon comparison of these sequences, three nucleotide variations c.978A>G, 

c.994G>A and c.1111G>A were identified in the fragment of GDF9 that was amplified. The variant B 

was defined by the presence of nucleotides c. 978G and c.994A and variant C contained c.1111A. 

The variant frequency distribution data indicated a predominance of A in the sheep typed. While all 

three variants were detected in the three different groups of sheep, some genotypes were not 
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identified. The frequency of variant B (c.978G, c.994A) in the Finnish Landrace, Finnish Landrace x 

Texel-cross and composite sheep was 0.01, 0.01, and 0.17 respectively, while that of c.1111A was 

0.08, 0.18, and 0.03 respectively. No homozygous c.994A individuals were detected for the Finnish 

Landrace and Finnish Landrace × Texel-cross sheep, while the genotype frequency was very low for 

the composite sheep (0.05). A low frequency of homozygous c.1111A ewes was observed for the 

Finnish Landrace x Texel- cross sheep, while the frequency of heterozygous ewes was 0.32. With the 

composite sheep, the c.1111A variant was present at a low frequency (0.3), while in these sheep 

c.994A was present at a frequency of 0.17. 

The average litter size for the studied group was 2.47±1.04 in Finnish Landrace , 1.92±0.66 in Finnish 

Landrace × Texel-cross sheep, and 1.91±0.49 in composite sheep= (All groups=2.18±0.85). 

In many investigations, only the additive effects of putative casual mutations on variation in traits are 

studied, but estimation of the dominance effects are beneficial when using terminal-sire breeding 

systems. The association results from this study are shown in Tables 5. The association results are 

shown in Tables 5 (additive effect and (dominance effect). ewe age affected fertility in the Finnish 

Landrace and composite sheep, but not the Finnish Landrace × Texel-cross sheep. They indicate 

associations between the variation in GDF9 and litter-size, and suggest additive and dominance 

effects respectively. In the Table 5, there was evidence for the Finnish Landrace × Texel-cross sheep, 

of an association (P < 0.05) between c.1111A (versus c.1111G) and litter-size, while for the Finnish 

Landrace (0.33 ± 0.292; P = 0.270) and composite sheep (-0.43 ± 0.316; P = 0.127), no association was 

observed. The effect of the GDF9 gene variation appeared to be additive, with one copy of c.1111A 

increasing litter size by 0.43, and two copies by 0.86 in the Finnish Landrace × Texel-cross ewes. The 

effect of c.1111A was 0.34 ± 0.15 (P = 0.027) compared to those ewes with c.1111G using an animal 

model, when all groups were analysed together (i.e. the effect of breed was included in the model). 

Litter-size appeared to be unaffected by both variant B and variant A in all the groups when GDF9 

variant was fitted as an additive effect (Table 5). Table 5 reveals the estimated effect of the GDF9 

variants and nucleotide substitutions when fitted as having a dominance effect. Once again, ewe age 

affected fertility in the Finnish Landrace and composite sheep, but not the Finnish Landrace × Texel-

cross sheep. There was evidence, for the Finnish Landrace × Texel-cross sheep, of an association 

(0.47 ± 0.222; P = 0.037) between c.1111A and litter-size, but this was not observed with the Finnish 

Landrace sheep (0.33 ± 0.296; P = 0.270), or the composite sheep (-0.43 ± 0.316; P = 0.172). There 

was an overall effect of c.1111A on litter-size (0.35 ± 0.162; P = 0.033), but no effects were observed 

for variant B or variant A. 
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Table 5 Estimated effect of GDF9 variants and nucleotide substitutions fitted as having an additive 
and dominance effects on number of lambs born per ewe in three groups of NZ sheep 

Groups Models Type of 

effect 

GDF9 

Variation 

P-value Effect (± se)a                       Source of variation 
Group                                               Ewe age 

All Groups Animal Additive A 0.227 -0.13 ± 0.114 0.019 0.001 
 Animal Additive B 0.536 -0.10 ± 0.164 0.027 0.001 
 Animal Additive C 0.027 0.34 ± 0.154 0.022 0.001 
 Animal Dominance A 0.714 -0.11 ± 0.331 0.022 0.001 
 Animal Dominance B 0.64 -0.09 ± 0.200 0.028 0.001 
 Animal Dominance C 0.033 0.35 ± 0.162 0.022 0.001 
 Sire Additive A 0.271 -0.12 ± 0.112 0.019 0.001 
 Sire Additive B 0.472 -0.11 ± 0.162 0.027 0.001 
 Sire Additive C 0.029 0.33 ± 0.152 0.022 0.001 
 Sire Dominance A 0.812 -0.07 ± 0.33 0.022 0.001 
 Sire Dominance B 0.593 -0.1 ± 0.198 0.028 0.001 
 Sire Dominance C 0.034 0.34 ± 0.159 0.022 0.001 

Finnish Landrace Animal Additive A 0.172 -0.36 ± 0.263 - 0.001 
 Animal Additive B 0.328 0.66 ± 0.67 - 0.001 
 Animal Additive C 0.27 0.33 ± 0.296 - 0.001 
 Animal Dominance A 0.909 -0.09 ± 0.906 - 0.001 
 Animal Dominance B 0.328 0.66 ± 0.676 - 0.001 
 Animal Dominance C 0.27 0.33 ± 0.296 - 0.001 
 Sire Additive A 0.147 -0.37 ± 0.251 - 0.001 
 Sire Additive B 0.236 0.75 ± 0.627 - 0.001 
 Sire Additive C 0.26 0.33 ± 0.292 - 0.001 
 Sire Dominance A 0.614 -0.44 ± 0.893 - 0.001 
 Sire Dominance B 0.236 0.75 ± 0.627 - 0.001 
 Sire Dominance C 0.26 0.33 ± 0.292 - 0.001 

Finnish Landrace 
x Texel cross 

Animal Additive A 0.135 -0.30 ± 0.199 - 0.261 

 Animal Additive B 0.07 -1.33 ± 0.717 - 0.250 
 Animal Additive C 0.036 0.43 ± 0.202 - 0.239 
 Animal Dominance A 0.521 -0.46 ± 0.713 - 0.270 
 Animal Dominance B 0.07 -1.33 ± 0.717 - 0.250 
 Animal Dominance C 0.037 0.47 ± 0.222 - 0.240 
 Sire Additive A 0.135 -0.30 ± 0.199 - 0.261 
 Sire Additive B 0.07 -1.33 ± 0.717 - 0.250 
 Sire Additive C 0.036 0.43 ± 0.202 - 0.239 
 Sire Dominance A 0.522 -0.46 ± 0.714 - 0.270 
 Sire Dominance B 0.07 -1.33 ± 0.717 - 0.250 
 Sire Dominance C 0.037 0.47 ± 0.222 - 0.240 

Composite sheep Animal Additive A 0.551 0.06 ± 0.112 - 0.002 
 Animal Additive B 0.898 -0.01 ± 0.116 - 0.002 
 Animal Additive C 0.172 -0.43 ± 0.316 - 0.002 
 Animal Dominance A 0.963 -0.01 ± 0.278 - 0.002 
 Animal Dominance B 0.892 0.02 ± 0.147 - 0.002 
 Animal Dominance C 0.172 -0.43 ± 0.316 - 0.002 
 Sire Additive A 0.551 0.06 ± 0.112 - 0.002 
 Sire Additive B 0.899 -0.01 ± 0.116 - 0.002 
 Sire Additive C 0.157 -0.45 ± 0.315 - 0.002 
 Sire Dominance A 0.954 -0.01 ± 0.278 - 0.002 
 Sire Dominance B 0.893 0.02 ± 0.147 - 0.002 
 Sire Dominance C 0.157 -0.45 ± 0.315 - 0.002 

aEstimation of the effect +/- standard error of each variant relative to other variants on litter size. P < 0.05 in bold type 
 

It is apparent from the Table 5 that all the effects are significant in different models except ewe age 

in the model for Finnish x Texel-cross sheep (P > 0.05). Thus, ewe age appears to have an influence 

on the estimate of the effect of the variations on litter-size. 
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3.4 Discussion 

One of the most important goals in sheep breeding is finding functional variations that affect highly 

favourable traits such as fertility. These affect overall profitability in the sheep industry. Detecting such 

variations potentially leads to the design of efficient breeding programmes, especially those that can 

use MAS and thus increases the accuracy of selection in farm animals, more rapidly and in a cost 

effective manner. It is of great advantage if a trait or traits are only expressed upon maturity, 

as is the case with reproduction. Against this background, this study reflected the broad interest in 

the role of GDF9 in controlling sheep fertility, through its activity in controlling ovarian function. 

Together the results in this study provide valuable insights into variation in GDF9 revealed using the 

PCR-SSCP approach. Three nucleotide sequence variations (c.978A>G, c.994G>A and c.1111G>A) 

were detected in Finnish Landrace sheep, Finnish Landrace x Texel-cross sheep and composite sheep. 

The modelling approach employed suggested that the presence of GDF9 variant C, which contains 

c.1111A, is associated with litter-size in the Finnish Landrace x Texel-cross sheep, whereas 

associations with litter-size were not observed for the other variants (A contains c.978A, c.994G, and 

1111G and B, which contain c.978A>G and c.994G>A respectively). 

The association between the number of lamb births per ewe and genotypes was tested. When analysis 

was conducted across all breeds, the c.1111A variant was associated with litter-size in Finnish Landrace 

x Texel-cross. However, no significant associations were found between this nucleotide substitution 

and litter size in the two other groups of sheep investigated in this study. There was no association in 

the Finnish Landrace breed and composite sheep which might be attributable to the phenotypic 

expression of one allele that is somewhat dependent on other alleles, especially if there are multiple 

interacting mutations. Therefore, the phenotypic effect of any given allele may be observed in one 

breed, while being absent in another (Abdoli et al., 2016). It is also possible, given the low frequency 

of c.1111A in the sheep studied, that other phenotypic effects masked or diluted the association. 

The data were analysed using both animal and sire models and both dominance and additive effects 

were fitted in the models. All the fixed effects fitted in the models were significant except for the age 

at parturition in the model for Finnish x Texel-cross ewes, probably because most of the Finnish x 

Texel-cross ewes in the model were at a similar age at parturition. Unexpectedly, in the current study 

the estimation of variant effect on litter-size as an additive effect, bore a close resemblance to a 

dominance effects. A reasonable explanation for this is that the standard errors of the estimation of 

effects were very high; or perhaps the study had a low number of either heterozygous or 

homozygous ewes. For example, the effect of c.1111A on litter-size in the Finnish Landrace x Texel-

cross was 0.43 and 0.47 in both the additive and dominance effects respectively. The only reason for 
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this is that only one homozygous (CC) sheep was detected in the sheep studied. Although there was 

no significant difference between the results obtained from the animal model and the sire model, the 

animal model was preferred to the sire model in this study because the animal model uses the 

relationship between all animals in the pedigree to measure the polygenic effects, and it can better 

separate phenotypic variance into additive genetic and residual effects components (Henderson & 

Quaas, 1976). 

Previous studies have demonstrated that genetic variation in GDF9 was associated with increased 

ovulation rates and litter-size in sheep. The sequence variation c.1111A detected in the current study 

had an effect on litter-size that is consistent with the findings of Våge et al. (2013) who found a strong 

association between this substitution and litter-size in Norwegian white sheep. They demonstrated 

that daughters of rams that were homozygous for c.1111A gave birth to 0.46 to 0.57 additional lambs, 

while daughters of rams heterozygous for c.1111A gave birth to 0.20 to 0.25 additional lambs. Kaczor 

(2017) found that Olkuska ewes with one copy of the c.1111G>A substitution, had an increase in litter- 

size of 0.55. The lambs from homozygous ewes were twice the size of the heterozygous ewes. 

In the present study, we found that Finnish Landrace × Texel-cross ewes with one copy of c.1111A, 

produced approximately 0.43 more lambs, than the c.1111G homozygous ewes. These results are 

consistent with the findings of (Mullen & Hanrahan, 2014) who reported no statistically significant 

effect of a single copy of c.1111A on ovulation rate in Finnish Landrace ewes. Although the Finnish 

Landrace sheep studied here also failed to reveal an association between fertility litter-size and a 

single copy of c.1111A. It needs to be noted that the average litter-size for the Finnish Landrace 

sheep (2.4) was larger than for the Finnish Landrace × Texel-cross sheep and composite sheep (1.8) in 

this study. This might suggest that the effect of c.1111A was not found to affect litter-size in the pure 

Finnish Landrace sheep because other genes were also affecting their fertility, and the effect of 

c.1111A was small in comparison to these other genes. In contrast in Belclare sheep, Hanrahan et al. 

(2004) noted an association between c.1111A and ovulation rate. One copy of this variant increased 

ovulation rate by +0.17 in heterozygous ewes, compared to wild-type ewes without the mutation. 

The effect was non-additive though.  

No mutation in GDF9 with consistent major effect on litter size across breeds was detected in the current 

study. Hanrahan et al. (2004) did not detect any association of c.1111A with litter-size in Belclare and 

Cambridge sheep, probably because of the infrequency of this mutation in the sheep they studied. 

This contrasts the finding obtained in this study where c.1111A is associated with litter-size in Finnish 

Landrace x Texel-cross sheep, but is consistent with the findings of Hanrahan et al. (2004), who found 

that none of the sequence variation detected in the current study had additive effects on prolificacy. 
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The other GDF9 nucleotide sequence variations detected in this study (c.994G>A and c.978A>G) were 

also reported by Kaczor (2017), who illustrated that ewes carrying c.C994A had a decrease of 0.18 in 

lamb litter-size. The current study was unable to establish an association between these variants and 

litter-size. 

Undiscovered sequence variation may exist in other regions of the GDF9 gene and this may also affect 

the activity of the gene and the associations that are observed with some of the previously described 

nucleotide sequence variations. Equally, while the results of this study reflect those of Hanrahan et al. 

(2004), who did not observe an association between the variant B (c.994G>A/c.978A>G) and litter-

size, it may also be because of the low frequency of this sequence variation in the Finnish Landrace 

sheep and Finnish Landrace x Texel-cross sheep that were studied. It should also be noted that while 

the analysis of litter-size failed to identify any significant difference, the estimate for the effect of a 

single copy of c.994A on litter-size was - 1.33 ± 0.717 (P = 0.070) in the Finnish Landrace x Texel-cross 

sheep and 0.66 ± 0.676 (P = 0.328) in the Finnish Landrace sheep, with the former suggesting that a 

trend may exist. This therefore requires further investigation in sheep carrying these sequence 

variations. The findings in this chapter also differ from those of Bravo et al. (2016), who revealed that 

both c.994A and c.978G as detected variant B in this study were associated with an increase in with 

litter-size. 

The GDF9 variation detected in this study could be one, but not the sole factor in determining litter-

size in the sheep studied. As described previously, litter-size is affected by many things including the 

management (e.g. nutrition) of sheep and other environmental factors. The interaction between 

genotype and environment may also play a role in the number of lambs born per ewe per year; 

therefore, it is vital to consider the essential issue of environmental factors in sheep breeding 

programmes. Even so, the results of research like the current study could be applied in marker-assisted 

selection programmes, but it can be concluded that these variants are probably not the only ones 

responsible for the higher fertility in the sheep studied, and that other variation in GDF9 and other 

genes may also be involved. 

This study has gone some way towards enhancing our understanding of how establishing the 

association between functional variations in the GDF9 and sheep fertility can be done quickly and cost- 

effectively using a PCR-SSCP approach, and the technique would certainly have utility in investigating 

other sheep breeds and their fertility. This study lays a strong foundation to further this type of analysis 

with more common New Zealand breeds, not least the main maternal breeds, the Romney, Perendale, 

and Coopworth. The presence of the functional variation confirms that further research should be 

undertaken to detect more mutations associated with litter-size, and on a broader scale on some other 

candidate genes (such as BMP15 and BMPR1B). Using GDF9 variation as a genetic marker in a multi- 
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gene pyramiding approach could provide a way to improve litter-size and hasten the breeding of highly 

prolific sheep. 
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Identification of a Single Codon Deletion in the bone morphogenetic 

protein 15 (BMP15) gene in New Zealand sheep 

4.1 Introduction 

Kosgey, van Arendonk, and Baker (2003) highlighted that litter-size and lambing frequency are 

essential traits in sheep breeding, and that effective evaluation of these functional traits underpins 

genetic improvement plans. As described in earlier chapters, several genes, proteins, and hormones 

are involved in the regulation of growth and reproductive performance (Chu et al., 2007; Davis et al., 

2001; Galloway et al., 2000). 

In this thesis, three genes, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 

(BMP15), and bone morphogenetic protein receptor 1B (BMPRIB), known to affect reproductive 

performance were investigated in New Zealand (NZ) sheep. . Of these genes, BMP15 produces a 

protein (BMP15) that causes increased sensitivity of ovarian granulosa cells to follicular stimulating 

hormone (FSH), therefore speeding up follicular development and precocious ovulation of small 

follicles in heterozygous ewes (Moore & Shimasaki, 2005). The BMP15 protein belongs to the 

transforming growth factor ß (TGF-ß) superfamily TGFβ superfamily, and BMP15 is a gene of 5.4 kb in 

length that consists of two exons separated by one intron (exon 1 (accession number AF236078.1) 

and exon 2 (accession number AF236079.1). The gene is located on ovine chromosome X (50970938-

50977454 bp, OARv3.1) and is associated with 10 variations and with two exons and seven domain 

annotations and features (Abdoli et al., 2016). 

The BMP15 gene is known to contain nucleotide sequence variation, some of which affect sheep 

fertility, and these include, c.1279A>C (Nicol et al., 2009), c.950C>T (Demars et al., 2013), c.1009A>C 

(Kaczor, 2017), c.897A>T (Davis et al., 2001; Galloway et al., 2000), Woodlands (FecX2; Davis, 2005), 

c.963G>A (Bodin et al., 2007; Drouilhet et al., 2009), c.487_503del (Martinez-Royo et al., 2008), 

c.873C>T, c.718C>T and c.1100T>G (Galloway et al., 2000; Hanrahan et al., 2004; Montgomery et al., 

2001). 

It has been reported that heterozygous mutations in BMP15 lead to an increase in ovulation rate, 

and litter-size, while homozygous ewes are sterile (Chu et al., 2007). Hanrahan et al. (2004) identified 

four nucleotide sequence variations in Cambridge and Belclare sheep, and that one of them 

(c.31_33del) eliminated a single Leucine residue (p.Leu11del), but appeared to have no phenotypic 

effect. Similar results previously described this deletion (without any phenotypic effect) were obtained 
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by (Galloway et al., 2000). In contrast to this, (Guo et al., 2004) detected c.31_33del in Small Tail Han 

sheep, and it was associated with decreased litter-size in this Chinese breed. Monteagudo et al. 

(2009) reported increased litter-size in Rasa Aragonesa sheep associated with a 17 bp deletion in 

BMP15, while (Zamani et al., 2015) observed a point mutation (c.971A>G) in exon 2 of BMP15, 

which was found to be associated with prolificacy in Iranian Mehraban and Lori sheep. 

All these studies have established that the BMP15 gene plays a crucial role in sheep fertility, but little 

is known about variation in this gene in NZ sheep and whether variation, if present, affects litter-size. 

Accordingly this chapter investigated BMP15 in different NZ sheep breeds. 

4.2 Materials and methods 

Sample collection and DNA purification 

This research project was carried out in accordance with the Animal Welfare Act 1999 (New Zealand 

Government) for research involving animals. And the collection of sheep blood drops by the nicking 

of their ears was covered by Section 7.5 Animal Identification, in: Code of welfare: sheep and beef 

cattle (2016); a code of welfare issued under that act. This process is considered to be a regular 

practice in farm management system, and cause little or no harm to animal, therefore no formal 

ethics review needed in this study. 

In the present study, a total number of eight hundred and fifty two sheep from fifteen different NZ 

sheep breeds and a composite sheep were investigated. These included: Finnish Landrace (n = 148), 

Finnish Landrace × Texel-cross (n = 45), composite sheep are sheep bred from a wide variety of 

genetic backgrounds based on selection for key production traits. Their background is typically very 

diverse, and in the case of the sheep described here will include at very least NZ Romney, Texel, East 

Friesian and Finnish Landrace sheep based on what is known about the history of the flock (n = 59), 

White Dorper (n = 71), Perendale (n= 48), Merino (n = 80), Romney (n = 90), Texel (n = 28), Corriedale 

(n = 43), Wiltshire (n = 48), Coopworth (n = 48), Easycare (n = 24), Lleyn (n = 24), Shropshire (n = 24), 

Southdown (n = 24) and Dohne (n = 48). The samples were collected from different farms across New 

Zealand. 

In this study, FTATM cards (Whatman BioScience, Middlesex, UK) were used for blood collection from a 

small incision in the ear of the sheep. DNA was extracted from the blood samples by punching a 1.2- 

mm disc from the FTA card, followed by genomic DNA purification using a two-step procedure 

described by Zhou et al. (2006). To begin this process, the FTA card punch was placed in tubes 

containing 200 µL of 20 mM NaOH, left for 20 to 30 minutes at 60 °C, or until the disk became white. 

All the liquid was then removed and the disk equilibrated in 200 µL of 1× TE buffer (10 mM Tris– HCl, 
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0.1 mM EDTA, pH 8.0). After this washing and equilibration, the liquid was again removed, and the 

disks were left to air dry in the tubes overnight.  

PCR amplification and SSCP analysis 

Polymerase Chain Reaction - Single Strand Conformation Polymorphism (PCR-SSCP) analyses were 

used to search for sequence variation in 480 bp and 310 bp fragments of exon 1 and 2 of BMP15, 

respectively. Primers were designed based on GenBank sequence NC_019484.2 to amplify regions 

that encompassed nucleotide variation reported previously to have associations with litter- size. 

These included c.31_33del (Gua et al., 2004), c.302_304del, c.301G >T (Lassoued et al., 2017), and in 

exon 1; and c.873C>T (Galloway et al., 2000), c.897A>T (Galloway et al., 2000; Davis et al., 2005), 

c.963G>A (Bodin et al., 2007), c.950C>T, and c.1009A>C (Demars et al., 2013) in exon 2. The primers 

were 5ʹ- CCTTGCCCTATCCTTTGTG -3’ (forward) and 5ʹ-CCTCCCACCAGAACAATA-3’ (reverse) for a 5’-

UTR/exon 1/intron 1 region and 5ʹ-GCAGGCAGTATTGCATCGGAAG-3’ (forward) and 5ʹ- 

CCTCAATCAGAAGGATGCTAATGG -3’ (reverse) for an exon 2 region of BMP15. The PCR amplifications 

were performed in a 15-μL reaction containing the genomic DNA on one 1.2-mm punch of FTA card, 

0.25 μM of each primer, 150 μM of each dNTP (Bioline, London, UK), 0.3 mM Mg2+, 0.5 U of Taq 

DNA polymerase (Qiagen, Hilden, Germany) and 1× reaction buffer supplied with the enzyme.  For 

both regions, the amplification were undertaken as follows:  initial denaturation at 94 °C for 2 

minutes, followed by 36 cycles of 94 °C for 30 seconds (denaturation), 59 °C for 30 seconds 

(annealing), and 72 °C for 30 seconds (elongation); with a final extension step at 72 °C for 5 minutes. 

For the SSCP analysis, a 0.7-μL aliquot of each amplicon was mixed with 7 μL of loading dye (98% 

Formamide, 10 mM EDTA, 0.025% bromophenol blue, 0.025% xylene-cyanol), and after denaturation 

at 95 oC for 5 minutes, the samples were rapidly cooled on wet ice and immediately loaded on to 16 

cm × 18 cm, 12% acrylamide: bisacrylamide (37.5:1; Bio-Rad, Hercules, CA, USA) gels. Electrophoresis 

was performed using Protean II xi cells (Bio-Rad), at 350 V for 18 hours at 7 oC in 0.5x TBE buffer. The 

DNA fragments were visualized using a silver nitrate staining method (Byun et al., 2009). Briefly, the 

gels were bathed in a solution of 10% ethanol, 0.5% acetic acid and 0.2% AgNO3 for 10 minutes. Next, 

the gels were rinsed with distilled water then developed with a solution of 3% NaOH and 0.1% HCOH 

until dark-staining bands appeared on the yellow background of the gel. 

Sequencing of variants and sequence analyses 

PCR amplicons representing different banding patterns from sheep that appeared to be homozygous 

were sequenced for two samples in both directions at the Lincoln University DNA Sequencing Facility 

to confirm that variants detected represented unique sequences. Variants that were only found in 

heterozygous sheep were sequenced using an approach described by (Gong et al., 2011). Briefly, a 
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band corresponding to each variant was excised as a gel slice from the polyacrylamide gel, 

macerated, and then used as a template for re-amplification with the original primers. This second 

amplicon was then sequenced. Sequence alignments, translations, and phylogenetic analysis were 

carried out using DNAMAN (version 5.2.10, Lynnon BioSoft, Vaudreuil, Canada). 

Statistical analysis 

Allele and genotype frequencies were calculated in R programming software (Team, 2013)),for White 

Dorper, Finnish Landrace sheep, the Finnish Landrace × Texel-cross, Perendale, Merino, Romney, 

Corriedale, Wiltshire, Dohne, Coopworth, Easycare, Southdown, Shropshire, Lleyn and composite 

sheep from different sheep farms. 

4.3 Results 

A PCR-SSCP analysis of the 480 bp amplicon of BMP15 exon 1 in the different sheep breeds, revealed 

two banding patterns (named A, B), and three genotypes of these banding patterns (AA, AB, BB) (Figure 

9). Sequencing confirmed that the two variants were unique DNA sequences and a three base pair 

deletion (c.31_33del) was detected. The c.31_33del has been reported previously (Hanrahan et al., 

2004).  

No variation was observed in the 310 bp amplicon of BMP15 exon 2, as revealed by PCR-SSCP. 
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                                                                                      (A) 

 
(B) 

 

Figure 9 a) The resulting gel patterns from polymerase chain reaction single-strand conformational 
polymorphism (PCR-SSCP) analyses indicating genotypes AA, AB, and BB. (b) The 
sequence variation detected in the exon 1 region for BMP15 in the NZ sheep breeds. 

 
 
 

Figure 10 presents the exon 1 nucleotide sequences of BMP15, including the c.31_33del. This would 

result in the deletion of a single leucine residue (p.Leu20del). The nucleotide sequence is deposited 

in GenBank with the accession number AF236079). 

 

Variation A B 
c.31_33del CTT - 
   

AB       BB          AA      AB        BB        AA       AB 
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Figure 10 Nucleotide sequences of bone morphogenetic protein 15 (BMP15) in exon 1 variants A 
and B. 

 
Nucleotides in the coding region are shown in uppercase, while those outside the coding region are 

in lowercase. The c.31_33del is shown above the sequences. 

 

Table 6 presents an overview of the presence of c.31_33del in different New Zealand sheep breeds. 

The c.31_33del appears to be common in New Zealand sheep. The deletion c.31_33del is present in 

all breeds except Easycare, Shropshire and Southdown, but no homozygous BB sheep were detected 

in the Wiltshire, Finnish Landrace x Texel-cross, and no heterozygotes nor homozygotes in Easycare, 

Shropshire, and Southdown sheep. 
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Table 6 Allelic and genotype frequency of variants of BMP15 exon 1 in sixteen New Zealand sheep 
groups/breeds 

 

 
 
One interesting finding in the table is that for a number of breeds investigated in this study there are 

many sheep that are apparently homozygous for the A and B variants (AA and BB) including, 

Perendale, Texel, Corriedale, Coopworth, and Dohne sheep breeds, but only a few or no 

heterozygous AB sheep are detected. The lack of heterozygous genotypes while the minor allele 

frequency is high likely reflects the fact that BMP15 is located on the X chromosome, and hence what 

appears to be homozygosity is actually hemizygosity (i.e. the genotypes sheep were mainly rams). 

Variant A would appear to be the most common in most of the sheep, but as can be seen from Table 

6, the frequency of variant B (0.69) was more than variant A (0.31) in White Dorper sheep. A high 

frequency of variant A was detected in Easycare, Shropshire and Southdown sheep (1), whereas a 

high frequency of variant B (c.31_33del) was detected in White Dorper and Corriedale, 0.69 and 0.46 

respectively. 

 

Frequency  Genotype frequency#
  

Group Number Variant A Variant B Homozygous (AA) Heterozygous (AB) Homozygous (BB) 

White Dorper 71 0.31 0.69 0.20 0.23 0.58 

Perendale 48 0.88 0.13 0.88 0.00 0.13 

Finnish Landrace 148 0.77 0.23 0.64 0.26 0.09 

Merino 80 0.58 0.42 0.50 0.16 0.34 

Romney 90 0.81 0.19 0.78 0.06 0.17 

Texel 28 0.89 0.11 0.89 0.00 0.11 

Corriedale 68 0.54 0.46 0.54 0.00 0.46 

Finnish Landrace 
×Texel-cross 

45 0.92 0.08 0.84 0.16 0.00 

Composite sheep 59 0.68 0.32 0.46 0.44 0.10 

Wiltshire 48 0.75 0.25 0.50 0.50 0.00 

Coopworth 48 0.92 0.08 0.92 0.00 0.08 

Dohne 48 0.63 0.38 0.63 0.00 0.38 

Easycare 24 1 0 1 0 0 

Lleyn 24 0.71 0.29 0.71 0 0.29 

Shropshire 24 1 0 1 0 0 

Southdown 24 1 0 1 0 0 
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Heterozygous composite sheep were found at a frequency of 44%, but only 6% of the NZ Romney 

sheep were heterozygotes. The frequency of heterozygous sheep was similar in the Finnish Landrace 

x Texel-cross sheep and Merino sheep (16%). The highest frequency of homozygous sheep with the 

Leu codon deletion was observed for White Dorper samples (58%), and the lowest frequency was for 

Coopworth sheep (0.08%). All sampled Finnish Landrace x Texel-cross, Easycare, Shropshire and 

Southdown sheep in our study were homozygous for variant A (without the Leucine codon deletion). 

The frequency of variant A was very high in Coopworth and Texel sheep as well (0.92 and 0.89 

respectively).  

4.4 Discussion 

 
The introduction and development of a commercial DNA test (called the Inverdale gene test) for the 

c.897A>T (p.Val299Asp) BMP15 gene variation by AgResearch in New Zealand, led to an increase in the 

use of a specific BMP15 mutation in flocks in New Zealand, Australia, and Scotland. It is now well 

established that homozygous ewes are infertile, and thus commercial breeders must avoid mating two 

carrier parents (Davis et al., 2005). 

Without BMP15 being present, oocytes continue to grow in the absence of granulosa cell proliferation 

until they are unable to be supported by the residual granulosa cells, and then they degenerate (Braw- 

Tal et al., 1993; Smith et al., 1997). Although the absence of functional BMP15 blocks follicular growth 

in homozygous mutant sheep, inactivation of only one copy of BMP15 has been reported to increase 

ovulation rate (Davis et al., 1991; Davis et al., 1992). In heterozygous sheep, the reduction in 

expression of active BMP15 may reduce the number of mitotic divisions in the granulosa cells, which 

causes a reduction in the amount of steroid and inhibin release by each follicle. This process, in turn, 

can cause a delay in the suppressive effects on plasma FSH, resulting in more follicles being prepared 

for ovulation. The reduction in BMP15 also appears to increase the sensitivity of follicles to FSH, 

which accelerates follicle growth (Montgomery et al., 2001). 

The c.897A>T (p.Val299Asp) BMP15 gene variation was not observed in the sheep studied here. The 

only variation found was a previously reported three base pair deletion (c.31_33del, p.Leu11del) in 

BMP15 exon 1, with three different genotypes (AA, AB, and BB) being revealed using a PCR-SSCP typing 

approach. Variant B contained the c.31_33del (p.Leu11del) deletion. 

These are similar findings to the results obtained with Chinese Small Tail Han Sheep (Guo et al., 2004). 

These authors reported the same deletion (p.Leu11del) in the signal sequence of BMP15 and didn’t 

identify any other variation in the Han sheep. They reported frequencies for their A variant (without 

c.31_33del) and B (c.31_33del) of 0.73 and 0.27 respectively. This approximately matches the variant 

frequencies observed in the Finnish Landrace and Wiltshire sheep in this study, although the 
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frequencies are confounded by the gender of the sheep not being known for the sheep typed. The 

presence of c.31_33del reflects similar findings in other New Zealand sheep (Galloway et al., 2000; 

Hanrahan et al., 2004), but with both studies failing to detect any association between this sequence 

variation and litter-size. 

A low frequency of heterozygous genotypes was detected in the screened animals. This was probably 

as a result of male lambs appearing to be homozygous, when they were actually hemizygous for a 

single variant of BMP15. This stated, the absence of the B variant in the Easycare, Shropshire and 

Southdown sheep, may suggest the deletion is not present in those breeds, but this result would 

need to be confirmed by typing many more sheep of this type/breed. 

Equally, only a small portion of the BMP15 gene was studied in this chapter. Before it should be 

accepted that the only variation in BMP15 observed in the breeds/types of sheep studied is the 

presence of the c.31_33del in exon 1, the rest of the BMP15 gene, including upstream and 

downstream nucleotide sequences also need to be characterised in detail. In this respect no 

sequence variation was found in exon 2 of the sheep, and regardless of their apparent variation in 

prolificacy. This finding contrasts other studies which have detected variation in exon 2 of BMP15 in 

other the breeds including Iranian sheep (Amini et al., 2018) Grivette and the Olkuska sheep (Demars 

et al., 2013). Given the variation in prolificacy between the sheep breeds, we did not identify any 

variation in exon 2. It is likely that only c.31-33del in exon 1 observed in BMP15 gene in our studied 

sheep was a mutation affecting prolificacy over so many decades of evolutionary selection, but 

further studies using larger sample sizes are needed to confirm these results. 
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Associations between the detected variation in BMP15 and litter- 

size in New Zealand sheep 

5.1 Introduction 

Genetic variation in BMP15 that results in changes in amino acid sequence contributes to variation in 

prolificacy in sheep, and variants with a known functional effect have been found to be associated with 

increased litter-sizes in sheep (Bodin et al., 2007; Davis, 2005; Demars et al., 2013; Guo et al., 2004; 

Hanrahan et al., 2004; Martinez-Royo et al., 2008; Zamani, Nadri, et al., 2015). 

The BMP15 protein is a strong stimulator of granulosa cell mitosis and proliferation (Otsuka et al., 

2000) and also the mRNA expression of granulosa cell kit ligand, a factor which is necessary for early 

follicle growth (Otsuka & Shimasaki, 2002). The BMP15 protein has an important role in developing 

early follicle growth since it has no effect on FSH-induced oestradiol synthesis (Moore, et al., 2004). 

Otsuka, et al (2001) found that BMP15 suppresses mRNA expression of the FSH receptor, which 

results in inhibition of FSH-dependent progesterone synthesis. The BMP15 gene (BMP15) is known to 

contain nucleotide sequence variation, some of which affects sheep fertility. This includes: c.897A>T 

(Davis et al., 2001; Galloway et al., 2000), c.873C>T, c.718C>T and c.1100T>G (Galloway et al., 2000, 

Hanrahan et al., 2004; Montgomery et al., 2001), c.31_33del (albeit named differently: Galloway et 

al., 2000; Hanrahan et al., 2004; Guo et al., 2004), c.963G>A (Bodin et al., 2007; Drouilhet et al., 

2009), c.487_503del (Martinez-Royo et al., 2008), c.1279A>C (Nicol et al., 2009), c.950C>T and 

c.1009A>C (Demars et al., 2013), and c.755T>C (Amini et al., 2018). 

It has been suggested that heterozygous mutations in BMP15 lead to an increase in ovulation rate, 

and litter- size, while homozygous ewes are sterile (Chu et al., 2007). Hanrahan et al. (2004) 

identified four nucleotide sequence variations in Cambridge and Belclare sheep, and that one of 

them (c.31_33del; but named differently in that paper) eliminated a single leucine residue 

(p.Leu11del), but appeared to have no phenotypic effect. Similar results were obtained by Galloway 

et al. (2000). In contrast, Guo et al. (2004) demonstrated that this three base pair deletion 

(c.31_33del) was associated with fertility in Small Tail Han sheep (with ewes that didn’t have the 

deletion having greater fertility than those ewes that had the deletion). Additionally, Monteagudo et 

al. (2009) reported increased litter- size in Spanish Rasa Aragonesa sheep associated with a 17 bp 

deletion in BMP15, while Zamani et al. (2015) described a point mutation in exon 2 of BMP15, which 

they associated with prolificacy in Iranian Mehraban and Lori sheep. 
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In sheep, BMP15 consists of 2 exons, separated by an intron of approximately 5.4 kb in length. It 

encodes a prepropeptide of 393 amino acids that contains a predicted amino-terminal signal peptide 

of 25 amino acids length (Galloway et al., 2000). The signal peptide precedes a 244 amino-acid pro-

region and a putative 125 amino-acid carboxy-terminal mature peptide beyond the RRAR protease 

cleavage site. The ovine BMP15 coding region sequence is 82.9% homologous to that of human and 

78.8% homologous to that of mouse. The BMP15 gene is located on the X chromosome, so if a ram 

carries the gene, all of his daughters will inherit a single copy. This is of benefit in sheep breeding, as 

for some of the known BMP15 mutations, heterozygous ewes have been reported to have increased 

fertility (Galloway et al., 2000; Hanrahan et al., 2004). 

In order to ascertain the extent of BMP15 variation in New Zealand sheep, and whether that 

variation is associated with litter- size, two regions of the gene were analysed using Polymerase 

Chain Reaction-Single-Strand Conformation Polymorphism (PCR-SSCP) analysis. Associations with the 

litter- size were explored statistically in Finnish Landrace sheep, Finnish Landrace x Texel-cross sheep 

of varying breed proportions, and composite sheep that include a variety of breeds in unknown 

proportion. 

5.2 Materials and Methods 

Experimental animals 

The data on litter-size data of ewes in 2016 was obtained from one flocks’ records. The pedigrees had 

a maximum depth of five consecutive generations. Sheep without records and whose families could 

not be identified were omitted. A total of 251 sheep from three different breeds were analysed for 

this study. All sheep fertility data was derived from this flock which were farmed on pasture and all 

fed the same way. These included NZ New Zealand Finnish Landrace sheep (n = 148), Finnish 

Landrace × Texel-cross sheep (n = 45), and composite sheep (of varying breed background; n = 58). 

Composite sheep are sheep bred from a wide variety of genetic backgrounds based on selection for 

key production traits. Their background is typically very diverse, and in the case of the sheep 

described here will include at very least NZ Romney, Texel, East Friesian and Finnish Landrace sheep 

based on what is known about the history of the flock. The breed proportion is unknown and likely 

variable from sheep to sheep.  These sheep were primarily bred for lamb/meat production and not 

wool or milk, using the NZ eBV-based system known as Sheep Improvement Limited (SIL). 
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The blood samples analysed, DNA purification method, PCR amplification, SSCP analysis, genotyping 

and DNA sequencing were as described in chapter four.  

Statistical Analyses 

The R programme (Team, 2013) was downloaded from www.r-project.org and used to analyse the 

data. Analyses included determining the number of lambs born per ewe with different BMP15 

genotypes, and analysis of variant and genotype frequency between the Finnish Landrace, Finnish 

Landrace × Texel-cross and composite sheep. 

Assessment of the effect of the BMP15 variants on fertility was conducted using an ASREML software 

V4 (Gilmour et al. 2009) and two models: animal models and sire models. The ASREML software was 

used to estimate the additive and dominance effects of the nucleotide sequence variation in 

different models. In the models, the effect of each variant on litter size, relative to the other variant 

was estimated. For example, to estimate the additive effect of variant A relative to the variant B, the 

genotypes were coded according to the "number of copies" of variant A: AA = 2; AB = 1; and BB = 0. 

For estimating the dominance effect of variant A, genotypes were coded according to the "presence" 

of variant A: AA or AB = 1; and BB = 0. 

The best complete models was selected by screening all possible subsets of the following full model: 

yijkln = µ+αi + Breedj +AGEk + Gl +eijkln 

yijkln = µ+ Si + Breedj +AGEk + Gl +eijkln 

Where yijkln represents the phenotypic value of litter size of the ith ewe in 2016; µ is the average 

number of lambs born per ewe; Gl is the additive effect of BMP15 variant, Breedj is the fixed effect of 

breed (when the three breeds were analysed together); AGEk is the ewe’s age at birth fitted as 

covariate; αi is the random animal effect of ewe i ~N(0, σ2a) ) when full pedigree matrix A was fitted 

in the animal model; Si is the random effect of sire of ewe i ~N(0, σ2s) when the relationships 

between the sires in Matrix S was fitted in sire model ; and eijkln is the random residual effect for each 

observation [~N(0, σ2e)]. 

5.3 Results 

Nucleotide sequencing of homozygous genotypes confirmed that the detected variants for region 1, 

spanning part of the 5’-UTR, exon 1 and part of intron 1, were two unique DNA sequences. The 

sequence of B revealed a three base pair deletion (CTT) deletion at positions 31 to 33 relative to A, 

leading to a leucine deletion (c.31_33del, p.Leu11del). The deletions were named according to the 

recommendations of the Human Genome Variation Society recommended nomenclature 
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(https://varnomen.hgvs.org/), this being noted because the deletion has been recorded previously 

(Guo et al., 2004, Hanrahan et al., 2004), but named differently as it was prior to the establishment 

of a unifying nomenclature. It should also be noted that while the deletion is named c.31_33del as 

recommended by the nomenclature, it could also erroneously be called c.28_30del; p.Leu10del, as 

the CTT sequence is present in two copies in the non-deletion A variant sequence. The variant names 

chosen in this study A and B, match with the allele names A and B used in the Guo et al. (2004) 

report.). The frequency of variant A (without c.31_33del) in Finnish Landrace and Finnish Landrace x 

Texel-cross and composite sheep observed was 0.77, 0.92, 0.68, respectively while the allelic 

frequency of variant B (c.31_33del) was 0.22, 0.07, 0.31, respectively. Interestingly, the frequency of 

c.31_33del was very high in the composite sheep. No homozygous BB (c.31_33del) Finnish Landrace 

× Texel-cross sheep were detected. The genotypic frequency of homozygous BB sheep (c.31_33del) 

for the Finnish Landrace and composite sheep was 0.09 and 0.1, respectively. The genotypic 

frequency of homozygous sheep without c.31_33del and heterozygous sheep was very similar in the 

composite sheep (0.4). The average litter size for the studied group was 2.47±0.99 in Finnish 

Landrace, 1.92±0.73 in Finnish Landrace × Texel-cross sheep and 1.93±0.45 in composite sheep (All 

groups=2.18±0.85). 

The association analysis results (Table 7), indicate an association between BMP15 variation and litter-

size including an additive effect and dominance effect (Table 7), but no associations with litter- size 

were observed for the Finnish Landrace or Finish Landrace x Texel-cross sheep. The estimates for the 

effect of variant A in the composite sheep was -0.26 ± 0.092 (P = 0.008) and -0.22 ± 0.095 (P = 0.026), 

in the animal and sire models respectively, suggesting homozygous sheep without c.31_33del 

(variant A) had a lower litter- size, while composite sheep with c.31_33del had a higher litter- size. It 

is apparent that in all models, all the sources of variation included in the models are significant, 

except the age at birth for the Finnish Landrace x Texel-cross sheep (P > 0.05). 

Table 7 suggests suggested that only the presence of c.31_33del (variant B) was associated with litter 

size in the composite sheep (P < 0.001). The presence of the c.31_33del deletion, was associated 

with an increase in the number of lambs born of 0.44 ± 0.122 (P < 0.001) and 0.40 ± 0.126 (P < 0.003), 

in the animal and sire models, respectively. All the factors included in these models were highly 

significant (P < 0.001), and variant A was not associated with litter- size when the effect of the 

BMP15 variants were fitted as a dominance effect. 

 

 

 



 60 

Table 7 Estimated effect of BMP15 variants and nucleotide substitutions fitted as having an 
additive and dominance effects on number of lambs born per ewe in three groups of 
NZ sheep 

Groups Models Type of 
effect 

BMP15 
Variation 

P-value              Effect (± se)a Source of variation 
 

Group                              Ewe age 
All Groups Animal Additive A 0.806 0.02 ± 0.108 0.022 0.001 

 Animal Additive B 0.806 -0.02 ± 0.108  0.027 0.001 

 Animal Dominance A 0.586 0.14 ± 0.272 0.022 0.001 

 Animal Dominance B 0.97 -0.004 ± 0.1335    0.027   0.001 

 Sire Additive A 0.811 0.02 ± 0.108  0.022 0.001 

 Sire Additive B 0.811 -0.02 ± 0.108   0.027 0.001 

 Sire Dominance A 0.608 0.13 ± 0.272  0.022 0.001 

 Sire Dominance B 0.968 -0.004 ± 0.1335     0.027   0.001 

Finnish Landrace Animal Additive A 0.232 0.24 ± 0.200 - 0.001 

 Animal Additive B 0.232 -0.24 ± 0.200 - 0.001 

 Animal Dominance A 0.072 0.95 ± 0.520 - 0.001 

 Animal Dominance B 0.511 -0.15 ± 0.236 - 0.001 

 Sire Additive A 0.333 0.18 ± 0.186 - 0.001 

 Sire Additive B 0.333 -0.18 ± 0.186 - 0.001 

 Sire Dominance A 0.15 0.76 ± 0.518 - 0.001 

 Sire Dominance B 0.586 -0.11 ± 0.221 - 0.001 

Finnish Landrace x 
Texel-cross 

Animal Additive A 0.954 -0.02 ± 0.381 - 0.239 

 Animal Additive B 0.954 0.02 ± 0.381 - 0.250 

 Animal Dominance A 0.667           0 -                  0.239 

 Animal Dominance B 0.954 0.02 ± 0.381 - 0.250 

 Sire Additive A 0.954 -0.02 ± 0.381 - 0.239 

 Sire Additive B 0.954 0.02 ± 0.381 - 0.250 

 Sire Dominance A 0.67        0 -                   0.239 

 Sire Dominance B 0.954 0.02 ± 0.381 - 0.250 

Composite sheep Animal Additive A 0.008 -0.26 ± 0.092 - 0.002 

 Animal Additive B 0.008 0.26 ± 0.092 - 0.002 

 Animal Dominance A 0.689 -0.08 ± 0.216 - 0.002 

 Animal Dominance B < 0.001 0.44 ± 0.122 - 0.002 

 Sire Additive A 0.026 -0.22 ± 0.095 - 0.002 

 Sire Additive B 0.026 0.22 ± 0.095 - 0.002 

 Sire Dominance A 0.749 -0.06 ± 0.204 - 0.002 

 Sire Dominance B 0.003 0.40 ± 0.126 - 0.002 

aEstimation of the effect +/- standard error of each variant relative to other variants on litter size. P < 0.05 in bold type 
 

5.4 Discussion 

Various studies have shown that BMP15 sequence variations, including c.897A>T, c.873C>T, 

c.1100T>G, c.487_503del, c.950C>T, c.718C>T, c.963G>A, c.1009A>C, c.302_304delCTA, c.301G > T, 

and c.310insC affect prolificacy in heterozygous ewes and sterility in homozygous ewes (Bodin et al., 

2007; Davis, 2005; Demars et al., 2013; Galloway et al., 2000; Hanrahan et al., 2004; Monteagudo et 

al., 2009). Rams that are carriers of this gene are mated with non-carrier ewes to increase prolificacy 

and maintain this gene in herds (Davis, 2005). 

This study did not find any sequence variation in the sheep studied, other than c.31_33del, which 

was associated with litter- size in only the composite sheep. The sequence containing the CTT 
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deletion at nucleotide positions 31-33 of exon 1 of BMP15 is deposited in GenBank (with the 

accession number: NC_019484.2), and the deletion was detected in the three different groups of 

sheep studied. 

This deletion in the signal sequence of BMP15 has been described previously (Galloway et al., 2000; 

Guo et al., 2004; Hanrahan et al., 2004). It was first reported by Galloway et al. (2000) who suggested 

that the deletion had no phenotypic effect, an observation that was also made by Hanrahan et al. 

(2004).  In contrast to these studies, Guo et al. (2004) reported the occurrence of c.31_33del in Small 

Tail Han Sheep, and described how the absence/presence of the extra leucine was associated with BB 

ewes having lower fertility compared to AA ewes in their second parity, albeit no effect was observed 

in the first parity, and neither the AA or BB ewes were significantly different top the AB ewes that 

had a least squares mean (LSM) value for fertility that fell between the AA and BB ewes. 

This result contrasts with our findings, where the presence of the c.31_33del deletion (B variant), 

was associated with an increase in the number of lambs born of 0.44 ± 0.122 (P < 0.001) and 0.40 ± 

0.126 (P < 0.003), in the animal and sire models, respectively. Taken together, with the observation 

that c.31_33del did not appear to affect litter- size in the Finnish Landrace and Finnish Landrace x 

Texel-cross sheep we investigated, then the effect of this deletion in the signal sequence seems to 

vary from study to study and breed to breed. The low small sample size used in Hanrahan et al. 

(2004) may however be the reason that no association with fertility was reported, and in the study of 

Guo et al. 2004 the frequency of the BB genotype was 7.5% (18 sheep). It is unclear whether the 

repeated comparison of genotypes without an apparent correction in this study may have affected 

the outcome, but with low allele frequencies, the outcomes could be biased by the fertility of 

individual sheep. In our analysis, 10% of the sheep had the rarer BB genotype. 

In another study, Yang et al. (2006) described two genotypes (AA and AB) of BMP15 in Small Tail Han 

sheep and Dorset sheep, with the frequencies of AA being 0.638 and 0.800, and the frequency of AB 

being 0.362 and 0.200, respectively in the two breeds. Sequencing revealed a CTT deletion at what 

they described as positions 28-30 of exon 1 of BMP15 gene (i.e. c.31_33del) in genotype AB when 

compared to genotype AA. The equated this deletion with the CTT deletion reported previously 

(Hanrahan et al., 2004), and suggested their preliminarily findings indicated the CTT deletion 

mutation of BMP15 has had no significant effect on prolificacy for Small Tail Han sheep; this 

contrasting the findings of Guo et al. (2004). 

 

In humans, Lakhal et al. (2009) have described BMP15 signal sequence variation that leads to the 

amino acid change p.S5R in a patient with severe ovarian dysfunction, and Rossetti et al. (2009) 
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described how that change leads to defective production of bioactive protein. This contrasts some of 

the findings in sheep with the p.Leu11del.  Care is needed in making these comparisons though, 

because not only is the variation in a different part of the signal sequence, but the substitution of 

serine, which is classified as a polar amino acid with a reactive hydroxyl group, with arginine a 

charged, aliphatic amino acid; is very likely to have a different effect to the loss of the non-polar 

aliphatic amino acid leucine in sheep. Additionally, BMP15 also appears to regulate ovulation rate 

and female fertility in a species-specific manner, being apparently crucial in humans and sheep, and 

largely trivial in mice where loss-of-function of BMP15 results only in subfertility (Yoshino et al., 

2006), with Yan et al. (2001) revealing that BMP15 ‘knockout’ mice are fertile, although fecundity is 

somewhat reduced. In this respect, Veitia & Caburet (2009) described how while the predicted signal 

peptide sequences of BMP15 are conserved in mammals, there is also evidence that in some species 

there has been sequence turnover, but with preservation of functionality, suggesting the 

accumulation of both neutral and compensatory mutations. 

We accept there are several limitations to this study. First, the number of samples of Finnish 

Landrace (n = 148) and Finnish Landrace x Texel-cross (n = 45) sheep may have been insufficient to 

detect the influence of BMP15 c.31_33del on the fertility. However, an effect was detected with the 

composite sheep (n = 58), albeit analysis of all the sheep together saw the association disappear. This 

suggests there may be other breed-specific effects that are greater than, and/or override the effect 

of BMP15 c.31_33del on fertility. When the three groups of sheep were analysed together, ‘group’ 

had a significant effect on the analysis, but unfortunately, given the lack of information about the 

genetic background of the composite sheep, it would be difficult to conclude anything about specific 

breed effects, as ‘group’ is a necessarily encompassing term for the sheep studied.  In addition, the 

lower frequency of the c.31_33del across all three groups would reduce the power to detect an 

association with litter size, and while known effects were factored into the analyses, environmental 

factors may also have affected the fertility of the sheep studied, thereby confounding the results. 

Use of the identified BMP15 deletion as a marker to improve reproductive performance in the NZ 

sheep industry, would appear to be worthy of further study. In effect, these results lay a theoretical 

foundation to further this type of analysis with more common NZ breeds and crosses, if c.31_33del is 

present and/or can be introduced from some of the breeds in the sheep studied. If that is done, then 

effort should also be made to search for other functional variations of BMP15, especially those that 

do not render sheep infertile when in a homozygous state. The rest of the BMP15 gene, including 

upstream and downstream nucleotide sequences also needs to be characterised in detail in the 

common NZ breeds such as the NZ Romney, Perendale and Coopworth. 
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Association of bone morphogenetic protein receptor type 1B 

(BMPR1B) variation in two amplified regions with litter-size in New 

Zealand sheep 

6.1 Introduction 

Progress in the past two decades in improving sheep reproduction has been achieved through the 

discovery of functional variation in fertility genes. One of the best known genes or genetic effects is 

‘Booroola’, which is now known to be a specific sequence change (c.746A>G, p.Arg249Glu) in the 

Bone morphogenetic protein receptor type 1B (BMPR1B) gene (BMPR1B, Ensembl: 

ENSOART00000018678.1, also known as Alk6, SKR6, ALK-6, AMDD, BDA2, BDA1D, CDw293, Acvrlk6, 

BMPR-1B, BMPR-IB, CFK-43a, AI385617 and AV355320). 

Initially focus was placed on the Booroola phenotype (Piper & Bindon, 1987), where the presence of 

the ‘Booroola gene’ not only increased ovulation rate by nearly three standard deviations per copy, 

but also increases litter-size. Davis et al. (1982) found that ewes carrying one copy of the Booroola 

gene from their parent produced 1.5 more ovules and one more lamb, than ewes lacking this gene. 

In 2001, three research groups from AgResearch (New Zealand), Institut National de la Recherche 

Agronomique (INRA) (France), and Edinburgh (United Kingdom) discovered that ewes carrying the 

Booroola gene had sequence variation in the gene for BMPR1B (Davis et al.,2005). 

Chu et al. (2007) found evidence that BMPR1B c.746A>G (p.Arg249Glu) in both heterozygous and 

homozygous sheep increased ovulation rate and litter-size, whereas in wild-type sheep no effect was 

observed on ovulation rate and litter-size. A study conducted by Bodin et al. (2007) found that 

Lacaune sheep in France lacked mutations in the BMPR1B gene, while a study of nine breeds of 

sheep (Guan et al., 2006) found that only the Hu and Chinese Merino sheep breeds carried BMPR1B 

variation that was associated with litter-size. Interestingly, only genotype BB (Booroola) was found in 

the Hu breed, but all three genotypes including ++, +B and BB were detected in Merino sheep. In 

another study on eight prolific sheep breeds, Davis et al. (2002) reported that only Garole Indian and 

Javanese sheep carried the c.746A>G mutation. Heaton et al. (2017) identified two new sequence 

variations c.360G>A and c.1180A>C that enhanced fertility and prolificacy in Katahdin and Romanov 

sheep. Abdoli et al. (2018) reported prolificacy in sheep was not affected by a new synonymous 

mutation (g.66496G>A) in exon 8 in Iranian Fat-Tailed Sheep. 
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Little is known about the role of BMPR1B variations in controlling fertility in NZ sheep breeds. 

Therefore, this investigation aimed to characterise variation in BMPR1B in NZ breeds and ascertain 

whether it affected litter size. 

6.2 Material and methods 

Ethics statement 

This research project was carried out following the requirements of the Animal Welfare Act 1999 (NZ 

Government) for research involving animals. 

Blood samples and DNA purification 

Three hundred and thirty-five ewes from three populations were genotyped for the sequence 

variations in two fragments of BMPR1B. The samples were collected from one flock in Canterbury 

from three New Zealand sheep breeds including Finnish Landrace (n = 165), Finnish Landrace × Texel-

cross (n = 56), composite sheep (of varying breed background based on NZ Romney-type genetics n = 

114) to analyse associations between polymorphisms in BMPR1B gene and litter-size in NZ sheep 

breeds. 

FTA cards (Whatman BioScience, Middlesex, UK) were used for blood collection from a small incision 

in the ear of the sheep. DNA was extracted from the blood samples by punching a 1.2 mm disc from 

the FTA card, followed by genomic DNA purification using a two-step procedure described by (Zhou 

et al., 2006). To begin this process, the FTA card punch was placed in tubes containing 200 µL of 20 

mM NaOH, left for 20 to 30 minutes at 62 °C, or until the disk became white. All the liquid was then 

removed and the disk equilibrated in 200 µL of 1× TE buffer (10 mM Tris–HCl, 0.1 mM EDTA, pH 8.0). 

After this, the liquid was again removed, and the disks were left to air dry in the tubes overnight. 

PCR amplification and PCR-Single Strand Conformation Polymorphism (PCR-SSCP) analysis 

The Polymerase Chain Reaction (PCR) primers used in this study were as follows: Forward: 5ʹ- 

CAACGAGGATGGGTATTAGTCG-3’ and Reverse: 5ʹ- TCAGATCTCGATGGGCAATTG-3’ designed to amplify 

a 394 bp fragment of BMPR1B exon 9 and intron 8; and Forward 5’-GATCGAACCCGAGTCTCTTG-3’and 

Reverse: 5’-AGCTGGCCTCCTCTGTAGTG-3’ designed to amplify a 338 bp fragment of exon 8 and part 

of intron 7. The primers were designed manually based on GenBank sequence NC_019463.2 to 

amplify fragments that were reported to contain sequence variation in other studies. 
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The PCR amplifications were performed in a 15-μL reaction containing the genomic DNA on one 1.2-

mm punch of FTA card, 0.25 μM of each primer, 150 μM of each dNTP (Bioline, London, UK), 0.3 mM 

Mg2+, 0.5 U of Taq DNA polymerase (Qiagen, Hilden, Germany) and 1× reaction buffer supplied with 

the enzyme.  Amplification was undertaken as follows:  initial denaturation at 94 °C for 2 min, 

followed by 35 cycles 94 °C for 30 s (denaturation), 60 °C for 30 s (annealing), 72 °C for 30 s 

(elongation), with a final extension step at 72 °C for 5 min. 

For SSCP analysis, a 0.7 μL aliquot of each amplicon was mixed with 7 μL of loading dye (98% 

Formamide, 10 mM EDTA, 0.025% bromophenol blue, 0.025% xylene-cyanol), and after denaturation 

at 95 oC for 5 minutes, the samples were rapidly cooled on wet ice and immediately loaded on to 16 

cm × 18 cm, 12% acrylamide: bisacrylamide (37.5:1; Bio-Rad) gels. Electrophoresis was performed 

using Protean II xi cells (Bio-Rad), at 350 V for 18 hours at 7 oC in 0.5x TBE buffer. The DNA fragments 

were visualized using a silver nitrate staining method (Byun et al. 2009). Briefly, the gels were bathed 

in a solution of 10% ethanol, 0.5% acetic acid and 0.2% AgNO3 for 10 minutes. Next, the gels were 

rinsed with distilled water then developed with a solution of 3% NaOH and 0.1% HCOH until dark-

staining bands appeared on the yellow background of the gel. 

Genotyping and sequencing 

PCR amplicons from two samples representing different banding patterns from sheep that appeared 

to be homozygous were sequenced in both directions at the Lincoln University DNA Sequencing 

Facility, NZ to confirm that variants detected represented unique sequences. Variants that were only 

found in heterozygous sheep were sequenced using an approach described by (Gong et al., 2011). A 

band corresponding to each variant was excised as a gel slice from the polyacrylamide gel, 

macerated, and then used as a template for re-amplification with the original primers. This second 

amplicon was then sequenced. Sequence alignments, translations, and phylogenetic analysis were 

carried out using DNAMAN (version 5.2.10, Lynnon BioSoft, Vaudreuil, Canada).  

Statistical analysis 

The genotype analysis was performed in R programming software (Team, 2013) to examine the 

number of lambs born per ewe with different BMPR1B genotypes, including an analysis of variant 

and genotype in the pure Finnish Landrace and Finnish Landrace × Texel-cross ewes and composite 

sheep. 

Assessment of the presence or absence of each of the BMPR1B variants on fertility was conducted 

using an ASREML approach (Gilmour et al. 2009) and using two models: animal models and sire 

models. The ASREML software was used to estimate the additive and dominance effects of single 
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SNPs in different models. In the models, the effect of each variant on litter-size, relative to the other 

variants was estimated. For example to estimate the additive effect of variant A relative to the other 

variants (B and C), the genotypes were coded according to the "number of copies" of variant A: AA = 

2; AB or AC = 1; and BB, BC or CC = 0. For estimating the dominance effect of variant A, genotypes 

were coded according to the "presence" of variant A: AA or AB or AC = 1; and BB or BC or CC = 0. 

The best complete models were selected by screening all possible subsets of the following full model: 

1) yijkln = µ + αi + Breedj +AGEk + Gl + eijkln 

2) yijkln = µ+ Si + Breedj +AGEk + Gl +eijkln 

Where yijkln represents the phenotypic value of litter-size of the ith ewe in 2016; µ is the average 

number of lambs born per ewe; Gl is the additive and dominance effect of BMPR1B variant, Breedj is 

the fixed effect of breed (when the three breeds were analysed together); AGEk is the ewe’s age at 

birth fitted as covariate; αi is the random animal effect of ewe i when full pedigree matrix A was 

fitted in the animal model~N (0, σ2
a); Si is the random effect of sire ewe i ~N(0, σ2s) when the 

relationships between the sires in Matrix S was fitted in sire model ; and eijkln is the random residual 

effect for each observation [~N(0, σ2e)]. 

6.3 Results 

A 394 bp fragment spanning the partial exon 9 and intron 8 and a 338 bp of exon 8 and intron 7 

regions of BMPR1B in 335 sheep, belonging to three NZ breeds was amplified (Figure 11). The PCR-

SSCP analysis and nucleotide sequencing revealed two banding patterns (A, B), and three 

combinations of these banding patterns (AA, AB, BB) in the intron-8/exon 9 amplicon from BMPR1B, 

and three banding patterns (A, B, and C) and six combinations (AA, AB, AC, BB, BC and CC) were found 

for the intron 7/exon 8 amplicons. 

Sequencing of the amplicons identified five unique DNA sequences. The sequencing results revealed 

sequence variation c.1032T>C (rs159952533) in the exon 9/intron 8 amplicon, and c.754-144G>A, 

c.754-88G>A, c.762G>A, c.754-31C>T and c.765G>A in the exon 8/intron 7 amplicon. The T>C 

substitution at position 1032, would be silent and not change the corresponding amino acid (p.Tyr344). 

In exon 8; c.754-144G>A, c.754-88G>A and c.754-31C>T are non-coding sequence variations, while 

c.762G>A and c.765G>A are synonymous substitutions (p.Arg254) and (p.Thr255) respectively. 

This investigation revealed that all of the sequence variations –c.1032T>C in the studied fragment of 

exon 9/intron 8, and c.754-144G>A, c.754-88G>A, c.762G>A, c.754-88G>A, c.754-31C>T and 

c.765G>A in the amplified region of exon 8/intron 7 were observed in all the investigated groups, 
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with the exception that variant B and C of exon 8/intron 7 was not detected in Finnish Landrace x Texel- 

cross, and all sheep were homozygous (AA) for this region. 

 

          AA  BB   AB  AA BB   AB AA BB  AB AB 

  

 

 

 

                                (a) (b) 
 
 
 
 
 
 

 
 
 
                           (c) (d) 
 

Figure 11 The gel patterns for PCR-SSCP analysis of a 394 bp fragment of intron-8/exon 9 of 
BMPR1B. Two banding patterns representing two variants (A and B) were identified in 
both homozygous and heterozygous forms. b) Sequence analysis revealed one 
sequence variation. c) PCR-SSCP patterns for a 338 bp fragment of exon 8/intron7 of 
BMPR1B. Three banding patterns representing three variants (A, B and C) were 
identified in both homozygous and heterozygous forms indicating homozygous 
variants A (well 1), B (well 5), and C (well 7). d) Sequence analysis revealed 6 sequence 
variations in the exon8/ intron7 of BMPR1B. 

 

AA     AC     AB    AB     BB     AC    CC    AC     AA 
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Table 8 The observed variant and genotype frequencies for the variants of an exon nine and exon 
eight fragments of Bone Morphogenetic Protein Receptor type 1B (BMPR1B) in Finnish 
Landrace, Finnish Landrace x Texel-cross, composite NZ sheep 

 

 
 
From Table 8, we can see allelic and genotypic frequency of BMPR1B variants in the Finnish Landrace 

and Finnish Landrace x Texel-cross sheep and the composite sheep. Variant A in both exons was the 

most common one in all the groups. The genotype CC for exon 8/intron 7 was absent in the Finnish 

Landrace x Texel-cross and composite sheep. The variant A was the most common, and the AA 

genotype was the most common in all the studied groups of sheep. It is also noted that variant B in 

exon 8/intron 7-8 was more common than C; consequently the AA genotype was the most prevalent 

followed by the AB then the AC genotypes. Overall, 7% of the Finnish Landrace and composite sheep 

were carriers of variant C, which was detected at a very low frequency in these two groups. The 

average litter size for the studied group was 2.43±1.04 in Finnish Landrace; 1.83±0.66 in Finnish 

Landrace × Texel-cross sheep; and 1.83±0.49 in the composite ewes (All groups=2.14±0.87). 

Association studies assessing the effect of the detected variants on litter-size were carried out for the 
335 sheep. The estimated impact of BMPR1B variants (intron-8/exon 9) fitted as having an additive 
effect on the number of lambs born per ewe in three groups of New Zealand sheep are 
summarised in (

Group Genotype  Frequencies Allele Frequencies Genotype Frequencies Allele 
Frequencies 

 exon 9/intron 8-9 exon 8/intron 7-8 

 
AA AB BB A B AA AB  AC BB BC CC A B C 

Finnish 
Landrace 

0.68 0.26 0.048 0.82 0.18 0.72 0.10 0.08 0.04 0.04 0.02 0.81 0.11 0.07 

Finnish 
Landrace x 
Texel-
cross 

0.625 0.33 0.035 0.79 0.20 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

Composite 
sheep 

0.88 0.10 0.008 0.93 0.061 0.62 0.21 0.09 0.03 0.05 0.00 0.77 0.16 0.07 
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Table 9). What stands out is that although the estimated p-values obtained for both variants with in 

each breed were similar, neither of the sequence variants in this region had a significant effect on 

litter-size in Finnish Landrace × Texel-cross sheep (P > 0.05). The estimate for the impact of variant B 

was 0.04 ± 0.186 (p = 0.82) and -0.03 ± 0.169 (P = 0.80) in both Finnish Landrace x Texel-cross and 

Finnish Landrace respectively. The effect of variant B was 0.01 ± 0.106 when all groups were analysed 

together, i.e., the breed effect was included in the model  
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Table 9 Estimated effect of BMPR1B variants and nucleotide substitutions in exon 8/intron7 fitted as having an additive and dominance effects on number of 
lambs born per ewe in three groups of New Zealand sheep 

aEstimation of the effect +/- standard error of each variant relative to other variants on litter size. P < 0.05 in bold type.

 groups Type of effect BMPR1B 
 
 variation
  

P-value Effect (±se)a Source of variation 
                     Group                                               Ewe age 

All Groups Animal Additive A 0.549 -0.06 ± 0.116 0.039 .001 
 Animal Additive B 0.747 -0.04 ± 0.146 0.037 .001 
 Animal Additive C 0.215 0.21 ± 0.170 0.038 .001 
 Animal Dominance A 0.47 -0.18 ± 0.260 0.038 .001 
 Animal Dominance B 0.596 -0.09 ± 0.172 0.036 .001 
 Animal Dominance C 0.15 0.28 ± 0.197 0.039 .001 
 Sire Additive A 0.425 -0.08 ± 0.111 .001 .001 
 Sire Additive B 0.9 -0.01 ± 0.142 .001 .001 
 Sire Additive C 0.182 0.22 ± 0.165 .001 .001 
 Sire Dominance A 0.424 -0.21± 0.262 .001 .001 
 Sire Dominance B 0.747 -0.05 ± 0.165 .001 .001 
 Sire Dominance C 0.116 0.30 ± 0.191 .001 .001 

Finnish Landrace Animal Additive A 0.726 -0.06 ± 0.195 - .001 
 Animal Additive B 0.861 -0.04 ± 0.239 - .001 
 Animal Additive C 0.504 0.17 ± 0.266 - .001 
 Animal Dominance A 0.972 -0.01 ± 0.455 - .001 
 Animal Dominance B 0.888 -0.04 ± 0.309 - .001 
 Animal Dominance C 0.434 0.28 ± 0.361 - .001 
 Sire Additive A 0.53 -0.11 ± 0.175 - .001 
 Sire Additive B 0.945 0.01 ± 0.225 - .001 
 Sire Additive C 0.392 0.22 ± 0.258 - .001 
 Sire Dominance A 0.973 0.01 ± 0.447 - .001 
 Sire Dominance B 0.859 0.05 ± 0.282 - .001 
 Sire Dominance C 0.282 0.37 ± 0.350 - .001 

Composite sheep Animal Additive A 0.855 -0.01 ± 0.104 - 0.071 
 Animal Additive B 0.398 -0.11 ± 0.138 - 0.103 
 Animal Additive C 0.162 0.23 ± 0.167 - 0.042 
 Animal Dominance A 0.399 -0.17 ± 0.210 - 0.058 
 Animal Dominance B 0.301 -0.16 ± 0.152 - 0.131 
 Animal Dominance C 0.162 0.23 ± 0.167 - 0.042 
 Sire Additive A 0.688 -0.04 ± 0.101 - 0.019 
 Sire Additive B 0.651 -0.05 ± 0.131 - 0.021 
 Sire Additive C 0.211 0.20 ± 0.162 - 0.020 
 Sire Dominance A 0.36 -0.19 ± 0.213 - 0.018 
 Sire Dominance B 0.484 -0.10 ± 0.145 - 0.020 
 Sire Dominance C 0.211 0.20 ± 0.162 - 0.020 
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The estimated effect of identified variants in intron 7/exon 8 and nucleotide substitutions fitted as 

having an additive effect are summarised in Table 10. 

Table 10 Estimated effect of BMPR1B variants and nucleotide substitutions in (intron 8/exon 9) 
fitted as having an additive and dominance effects on number of lambs born per ewe 
in three groups of New Zealand sheep 

aEstimation of the effect +/- standard error of each variant relative to other variants on litter size. P < 0.05 in bold type. 
 
 
 

No significant association was found between the number of lambs born and detected sequence 

variations in exon 8/intron 7 across all the studied groups. It is apparent from Table 10 that both 

fixed effects are significant in different models, except the age at lambing in the model for composite 

Groups Models Type of effect BMPR1B 
variation 

P-value Effect (± se)a Source of variations 
Group               ewe age 

All Groups Animal Additive A 0.85 -0.01 ± 0.106  0.021  .001 

 Animal Additive B 0.85 0.01 ± 0.106 0.021 .001 

 Animal Dominance A 0.715 0.09 ± 0.261 0.018 .001 

 Animal Dominance B 0.661 0.05 ± 0.136 0.019 .001 

 Sire Additive A 0.603 -0.05 ± 0.104 0.001 .001 

 Sire Additive B 0.603 0.05 ± 0.104 0.001 .001 

 Sire Dominance A 0.787 0.06 ± 0.266 0.001 .001 

 Sire Dominance B 0.432 0.10 ± 0.133 0.001 .001 

Finnish Landrace Animal Additive A 0.809 0.03 ± 0.169 - .001 

 Animal Additive B 0.809 -0.03 ± 0.169 - .001 

 Animal Dominance A 0.674 0.16 ± 0.393 - .001 

 Animal Dominance B 0.942 -0.01 ± 0.225 - .001 

 Sire Additive A 0.706 -0.06 ± 0.165 - .001 

 Sire Additive B 0.706 0.06 ± 0.165 - .001 

 Sire Dominance A 0.888 0.05 ± 0.397 - .001 

 Sire Dominance B 0.567 0.12 ± 0.219 - .001 

Finnish Landrace 
x Texel-cross 

Animal Additive A 0.822 -0.04 ± 0.186 - 0.404 

 Animal Additive B 0.822 0.04 ± 0.186 - 0.404 

 Animal Dominance A 0.74 -0.16 ± 0.499 - 0.404 

 Animal Dominance B 0.902 0.02 ± 0.227 - 0.405 

 Sire Additive A 0.82 -0.04 ± 0.186 - 0.406 

 Sire Additive B 0.82 0.04 ± 0.186 - 0.406 

 Sire Dominance A 0.739 -0.16 ± 0.499 - 0.404 

 Sire Dominance B 0.9 0.02 ± 0.227 - 0.404 

Composite sheep Animal Additive A 0.81 -0.04 ± 0.188 - 0.039 

 Animal Additive B 0.81 0.04 ± 0.188 - 0.039 

 Animal Dominance A 0.982 0.01 ± 0.496 - 0.039 

 Animal Dominance B 0.741 0.08 ± 0.249 - 0.039 

 Sire Additive A 0.752 -0.05 ± 0.183 - 0.014 

 Sire Additive B 0.752 0.05 ± 0.183 - 0.014 

 Sire Dominance A 0.996 -0.002 ± 0.4838 - 0.015 

 Sire Dominance B 0.677 0.10 ± 0.242 - 0.014 
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sheep (P > 0.05). Interestingly, all of the genotyped ewes were homozygous for Finnish Landrace × 

Texel-cross sheep and no variation was detected in this amplified region for this breed. The only 

modest (but not statistically significant, p ≈ 0.162) association was the effect of variant C on increased 

litter-size in composite sheep (0.23 ± 0.167). The impact of variant B in Finnish Landrace -0.04 ± 0.239 

(P = 0.861) is more or less identical to the effect of this variant when all groups were analysed 

together -0.04 ± 0.146 (P = 0.747). 

6.4 Discussion 

Due to the low heritability of sheep reproductive traits, many studies have been conducted using scans 

of candidate fertility genes in different sheep breeds. As discussed in previous chapters, the 

identification of nucleotide sequence variation in candidate genes (GDF9, BMP15 and BMPR1B) has 

been revealed to play a crucial role in phenotypic variation in fertility. Among the detected variations 

in the BMPR1B gene, the variant c.746A>G, was first found in Booroola Merino sheep (Mulsant et al., 

2001). This mutation is not only reported in Booroola Merino sheep, but also in Garole sheep (Davis 

et al., 2002), Javanese sheep (Davis et al., 2002), Iranian Kalehkoohi sheep (Mahdavi et al., 2014), and 

small-tailed Han (Chu et al., 2007). The BMPR1B Booroola mutation has an additive effect on 

ovulation rates and a dominant effect for litter-size. 

The results of the current study indicate that BMPR1B is a polymorphic gene in NZ sheep breeds. In 

the sheep investigated, BMPR1B was variable, with six single nucleotide polymorphisms detected. 

These were c.1032T>C (rs159952533) in the exon 9/intron 8 region, and c.754-144G>A 

(rs411048486), c.754-88G>A (rs399052946), c.762G>A(rs408447622), c.754-31C>T( rs421837112) 

and c.765G>A (rs427897187) detected in the exon 8/intron 7 region in Finnish Landrace, Finnish 

Landrace x Texel-cross sheep and composite sheep, when compared to the GenBank reference 

sequences (NC_019484.2) . 

The exon 8/intron 7 of the BMPR1B was found to be monomorphic in Finnish Landrace x Texel-cross; 

therefore, no association between the detected variant and litter-size could be established in this 

breed. Although variation in the gene was detected in the other groups of sheep, we did not find any 

evidence of association between the variations in the two fragments of BMPR1B and litter-size across 

all groups. Moreover, when analysis was conducted across all groups, using two different animal and 

sire models, again no sequence variation or haplotype was associated with litter-size in the New 

Zealand sheep that were studied. The absence of a significant association between variation in 

BMPR1B and litter-size in the three New Zealand sheep breeds/types, was possibly because the 

number of available records for numbers of lambs born per ewe for our genotyped samples was too 

low to reach statistical significance. Also the low frequency of some detected variants meant that, 

although they may have been present, they were not discernible in the studied sample. 
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Although three of the nucleotide variations (c.754-144G>A, c.754-88G>A and c.754-31C>T) identified 

in this study was in the non-coding region and thus does not usually result in expression of the gene, 

the effect of these sequence variations on litter-size may exist through a link with another 

susceptible gene or induction of aberrant splicing of mRNA resulting in mutant mRNA production 

(Shen et al., 2001). 

Abdoli et al. (2013) analysed the data for the association between sequence variations detected in 

exon 8 of BMPR1B and litter-size and concluded that sequence variations (c.66496G>A) detected in 

Iranian Mehraban sheep in exon 8 were significantly associated with litter-size, but in this study when 

the exon 8/intron 7 region was studied, no associations were found. 

Our analysis revealed that the two sequence variations identified in exon 8 (c.762G>A and c.765G>A), 

very close to the position of the c.746A>G variant (Booroola), would be silent and thus potentially 

less likely to affect fertility in NZ sheep breeds. They might however be in linkage disequilibrium with 

another causal mutation in BMPR1B. Moreover, linkage disequilibrium of the identified sequence 

variations in this study and c.746A>G and other mutations in other loci should be considered and 

investigated. It should be noted that analysing the combined effect of multiple genes or loci on litter-

size is very important in complex quantitative traits like reproductive traits (An et al., 2013), hence 

the association between multiple loci in different genes also needs to be considered and analysed. 

Notwithstanding the lack of significant association between detected variants and litter-size in this 

work, future studies could investigate the importance of variations in other fragments of this gene 

and other candidate gene like growth differentiation factor 9 (GDF9). Additionally, the failure to 

identify associations in the present study could suggest that larger sample sizes are needed to make 

the statistical analyses more robust. To help confirm or refute the current findings, further 

prospective understanding of the association of variations with litter-size in these two regions of 

BMPR1B in different sheep breeds should also be considered. 

In conclusion, our results suggest that BMPR1B is polymorphic in some New Zealand sheep breeds, 

but the genetic variations in this gene were not associated with litter-size. These results are 

informative and representative of an essential step in directing future research for detecting 

variations in other major genes and their association with litter-size. The results also demonstrate 

that the PCR-SSCP approach can efficiently identify variations in all domestic animals, including 

different sheep breeds and also help to direct future research on relationships between fertility and 

BMPR1B variation. 
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General discussion, conclusions and future directions  

 
Increased meat production in New Zealand can be obtained by increasing litter-size using both 

traditional phenotype-based breeding and functional variations in key genes to enable for genotype- 

assisted selection. It needs to be considered that a high number of lambs born, can result in lower birth 

weights and increased post-natal mortality, hence an optimum number of lambs born is desirable for 

different New Zealand sheep production systems. Such decisions by farmers will be dictated by costs 

associated with incorporation of such functional variations in marker-assisted selection programmes. 

This thesis began with the aim of identifying functional variations in candidate genes for increased 

litter-size in New Zealand sheep breeds, and thus to provide tools for selection in sheep breeding 

programs. The genes studied were chosen because they had been shown to affect litter-size or 

number of lambs born per ewe in previous studies with different breeds. The study utilized multiple 

models to establish the association between genetic variation and litter size, and has reported a 

range of results supporting three candidate genes for a role in improving litter size in some of New 

Zealand sheep, namely bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 

(GDF9) genes. . The three breeds were chosen for association study derived from a single large ewe 

flock of the three breeds (farmed on pasture and all fed the same way) so there is no flock effect to 

correct for (albeit we have corrected for breed). The phenotypic records were available only for 

these three groups and some records were omitted due to lack of sire or dam information, and 

because no records of litter size for most sheep in all years were available we only include the data of 

litter size for 2016. In this study, Although SSCP-sequencing is a suitable detection method for 

eukaryotic gene regions, there are some limitations in that it can only detect sequence variation in 

fragments under 400 bp in size, but if the DNA fragments of interest are less than 400 bp in length, 

then SSCP generally offers suitable discriminatory ability and reproducibility. A MassArray sequencing 

technique may allow more cost-effective and faster genotyping of multiple SNPs (spread across the 

entire gene region for multiple genes) in one go.  In this thesis, in the models to find the association 

between the detected variants and litter size, the random polygenic effects were calculated by 

performing BLUP (Best Linear Unbiased Prediction) analyses. ASREML software was used to solve the 

mixed model equations and the additive and dominance effects of each variant on litter size was 

estimated using two models: animal models and sire models. In the sire models, the polygenic effects 

were calculated using the sires' pedigree information and it is assumed that all mated dams are of 

similar genetic merit. In the animal models, polygenic effects are calculated using full pedigree 

information that can eliminate the issues in sire model. However, the main advantage of sire model 
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is reduction in the number of equations that need to be solved, compared to the animal models, 

since only sire information is used to calculate the polygenic effects (i.e. breeding values). Further, if 

the sire’s information is recorded more accurately, the polygenic predictions in sire models tend to 

be less affected by errors in pedigree. 

The first gene investigated in this study was GDF9 with some variations identified that had the 

potential to contribute to the functionality with respect to improving litter size in Finnish Landrace X 

Texel crosses. The findings of chapter two provided a better understanding of genetic variation in 

GDF9 in NZ sheep, and may ultimately be of value in controlling reproductive performance in sheep. 

Chapter two discussed the consequences of variation in the GDF9 gene, and how the most significant 

benefit of the functional variations may be realised, both for commercial breeders and the sheep 

themselves. Sequence analyses of the three variants detected in GDF9 exon 2 fragment revealed 

three sequence variations: c.978A>G, c.994G>A and c.1111G>A. Analysis of litter size data for Finnish 

Landrace × Texel- cross-bred sheep revealed an association between litter-size and the sequence 

variation c.1111G>A, but this was not observed for the Finnish Landrace sheep and the composite 

sheep. When all the sheep were analysed together, the presence of c.1111A was associated with 

increased litter-size compared to ewes that had c.1111G. Litter-size did not differ between sheep 

with and without c.994A in all three breeds investigated breeds.  

Validation of this apparent association in the Finnish Landrace x Texel-cross sheep by crossing this 

breed with other breeds without this mutation would be beneficial. Certainly for GDF9, the 

functional sequence variation (c.1111A) present in our studied samples would appear to be useful in 

selecting for improvement in the number of lambs born per ewe because the direction of effect on 

litter size was in line with the previous studies. Further study is needed to better understand the 

effect of the mutations associated with changes in protein structure on the number of lambs born 

per ewe.  

The other gene studied was BMP15. The c.31-33del in exon 1 is widely distributed in New Zealand 

sheep breeds, including White Dorper, Finnish Landrace sheep, the Finnish Landrace × Texel-cross 

sheep, Perendale, Merino, Romney, Corriedale, Wiltshire, Dohne, Coopworth, Easycare, Southdown, 

Shropshire, Lleyn and composite sheep. The fact that the c.58-60del deletion appears in the coding 

region highlights the necessity for the effect on the resulting protein to be investigated; hence the 

additive and dominance effect of variants on litter-size were estimated using both animal and sire 

models for composite sheep. This identified an association between litter-size and the c.31_33del in 

composite sheep. Analysing all groups together, the litter-size did not differ significantly between 

sheep breeds regardless of the presence of c.31_33del. The results suggest that the c.31_33del 

sequence variation could possibly be a genetic marker for improving fecundity in New Zealand sheep, 
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but more work will be needed. No relationship was found between c.31_33del and litter-size in Finnish 

Landrace or Finnish Landrace x Texel-cross sheep. 

The chapter six explored genetic variations within the BMPR1B. The sequencing results revealed six 

sequence variations including c.1032T>C in the studied fragment of exon 9 and intron 8, and c.754- 

144G>A, c.754-88G>A, c.762G>A,, c.754-31C>T and c.765G>A in the amplified region of exon 8 and 

intron 7. While variations in BMPR1B have been confirmed in different sheep breeds, no association 

was found between the detected variations and litter-size. The number of sheep studied may have 

been a limiting factor to obtaining statistical significance, as samples with phenotypic data were limited 

to Finnish Landrace, Finnish Landrace x Texel-cross and composite sheep. 

Overall, the sample size will need to be increased for all these candidate genes to ascertain their 

importance in reproduction and fertility in New Zealand sheep. The presence of some 

polymorphisms detected in the investigated genes (GDF9 and BMP15) in this study could possibly be 

used in marker-assisted selection (MAS) to improve fertility in New Zealand sheep breeds, but the 

research would benefit significantly from further investigation and with more sheep. 

The result of this thesis have occurred at the same time as the development of a commercial gene- 

marker within the GDF9 gene to improve litter size. A commercial gene-market for GDF9 gene, which 

has been successful marketed to farmers across Australian and New Zealand to improve sheep 

fertility now available at Gene marker laboratory at Lincoln University. 

The frequency of c.1111A was very high in the composites on farms 2, 3 and 4. Validation of the 

effect of this allele could be done using large number of sheep from those farms and also further 

studies on other genes that may influence fecundity in various New Zealand sheep breeds should be 

carried out. 

 

 

 

 

 
 
 
 



 77 

Appendix A 

GDF9 gene 

A.1 Sequence alignment of submitted sequence and GenBank sequence 
(AF078545.2) of exon two of GDF9 
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Table A. 1 The genotypic and phenotypic information for three different groups in for GDF9 

exon 2 

ID Sire Dam Group Genotype NLB in 2016 

285 249 250 Finnish Landrace AA 2 

289 242 159 Finnish Landrace AA 5 

314 259 250 Finnish Landrace AA 3 

319 288 289 Finnish Landrace AA 3 

323 286 295 Finnish Landrace AA 2 

326 286 297 Finnish Landrace AA 2 

332 259 204 Finnish Landrace AA 4 

336 312 251 Finnish Landrace AA 1 

338 288 257 Finnish Landrace AA 3 

339 317 315 Finnish Landrace AA 2 

341 288 284 Finnish Landrace AA 4 

343 317 318 Finnish Landrace AA 2 

344 317 319 Finnish Landrace AA 2 

350 286 324 Finnish Landrace AA 4 

366 352 158 Finnish Landrace AA 3 

375 282 355 Finnish Landrace AA 4 

380 282 364 Finnish Landrace AA 4 

384 363 266 Finnish Landrace AA 2 

385 282 366 Finnish Landrace AA 3 

390 363 255 Finnish Landrace AB 4 

395 363 298 Finnish Landrace AC 2 

399 363 290 Finnish Landrace AC 3 

401 363 287 Finnish Landrace AA 5 

403 363 307 Finnish Landrace AA 4 

407 311 354 Finnish Landrace AC 3 

409 376 375 Finnish Landrace AA 2 

411 311 360 Finnish Landrace AA 2 

414 363 289 Finnish Landrace AA 3 

417 378 377 Finnish Landrace AA 2 

418 378 379 Finnish Landrace AA 2 

419 312 380 Finnish Landrace AA 1 

422 381 314 Finnish Landrace AA 2 

424 381 316 Finnish Landrace AA 3 

425 282 382 Finnish Landrace AA 3 

427 378 384 Finnish Landrace AC 2 

428 378 379 Finnish Landrace AA 3 

445 363 266 Finnish Landrace AA 1 

447 363 306 Finnish Landrace AA 3 

458 363 275 Finnish Landrace AA 3 
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472 286 462 Finnish Landrace AA 4 

477 464 253 Finnish Landrace AA 1 

479 464 293 Finnish Landrace AA 3 

481 378 467 Finnish Landrace AA 2 

482 378 468 Finnish Landrace AC 2 

483 378 469 Finnish Landrace AC 4 

484 464 315 Finnish Landrace AA 3 

485 378 470 Finnish Landrace AA 1 

486 464 253 Finnish Landrace AA 1 

487 464 382 Finnish Landrace AC 2 

488 312 471 Finnish Landrace AA 1 

489 312 472 Finnish Landrace AA 1 

490 464 293 Finnish Landrace AA 4 

494 464 360 Finnish Landrace AA 1 

506 282 355 Finnish Landrace AA 4 

512 464 401 Finnish Landrace AA 3 

513 378 476 Finnish Landrace AA 2 

514 311 366 Finnish Landrace AC 4 

524 376 477 Finnish Landrace AA 2 

526 376 402 Finnish Landrace AA 2 

527 312 333 Finnish Landrace AA 2 

528 376 478 Finnish Landrace AA 2 

529 312 313 Finnish Landrace AA 3 

530 317 128 Finnish Landrace AA 2 

531 378 403 Finnish Landrace AA 3 

569 412 390 Finnish Landrace BC 2 

570 413 477 Finnish Landrace AA 2 

581 413 416 Finnish Landrace AA 1 

589 412 481 Finnish Landrace AC 2 

593 408 472 Finnish Landrace AA 1 

597 410 419 Finnish Landrace AA 1 

612 408 337 Finnish Landrace AA 2 

614 312 423 Finnish Landrace AA 2 

617 412 485 Finnish Landrace AC 2 

633 413 380 Finnish Landrace AA 2 

645 410 342 Finnish Landrace AA 1 

646 410 488 Finnish Landrace AC 2 

647 410 488 Finnish Landrace AA 1 

235 219 124 Finnish Landrace X Texel cross AA 1 

325 294 296 Finnish Landrace X Texel cross AC 2 

345 294 293 Finnish Landrace X Texel cross AA 2 

346 294 320 Finnish Landrace X Texel cross AA 2 

347 219 321 Finnish Landrace X Texel cross AC 2 

348 219 320 Finnish Landrace X Texel cross AA 2 

349 219 323 Finnish Landrace X Texel cross AA 2 

351 219 326 Finnish Landrace X Texel cross AA 1 

370 356 258 Finnish Landrace X Texel cross AA 3 

389 356 158 Finnish Landrace X Texel cross AA 2 
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392 356 158 Finnish Landrace X Texel cross AA 2 

431 357 386 Finnish Landrace X Texel cross AA 3 

434 219 387 Finnish Landrace X Texel cross AC 3 

435 219 388 Finnish Landrace X Texel cross AC 2 

437 357 386 Finnish Landrace X Texel cross AA 1 

438 294 389 Finnish Landrace X Texel cross AA 2 

439 294 355 Finnish Landrace X Texel cross AA 2 

440 357 390 Finnish Landrace X Texel cross AB 1 

446 294 370 Finnish Landrace X Texel cross AA 2 

448 219 392 Finnish Landrace X Texel cross AC 3 

450 394 322 Finnish Landrace X Texel cross AA 2 

452 394 325 Finnish Landrace X Texel cross AA 1 

453 327 395 Finnish Landrace X Texel cross AC 3 

455 394 397 Finnish Landrace X Texel cross AA 2 

456 219 398 Finnish Landrace X Texel cross AA 2 

457 219 393 Finnish Landrace X Texel cross AA 2 

473 357 463 Finnish Landrace X Texel cross AA 3 

491 219 462 Finnish Landrace X Texel cross AA 2 

492 294 473 Finnish Landrace X Texel cross AA 2 

493 219 474 Finnish Landrace X Texel cross AA 1 

495 394 475 Finnish Landrace X Texel cross AA 2 

558 219 479 Finnish Landrace X Texel cross AC 3 

561 219 392 Finnish Landrace X Texel cross AC 0 

658 219 345 Finnish Landrace X Texel cross AA 1 

660 219 325 Finnish Landrace X Texel cross CC 2 

662 219 392 Finnish Landrace X Texel cross AC 2 

678 433 434 Finnish Landrace X Texel cross AC 2 

681 219 307 Finnish Landrace X Texel cross AA 1 

685 219 354 Finnish Landrace X Texel cross AA 2 

689 219 389 Finnish Landrace X Texel cross AA 2 

693 219 438 Finnish Landrace X Texel cross AC 2 

703 219 475 Finnish Landrace X Texel cross AA 1 

704 219 365 Finnish Landrace X Texel cross AC 2 

712 433 348 Finnish Landrace X Texel cross AC 2 

748 433 453 Finnish Landrace X Texel cross AC 1 

753 433 457 Finnish Landrace X Texel cross AC 1 

782 219 475 Finnish Landrace X Texel cross AA 1 

198 139 138 composite sheep AB 2 

212 54 198 composite sheep AB 2 

223 115 200 composite sheep AA 2 

229 54 198 composite sheep AA 2 

234 123 218 composite sheep BB 2 

334 113 308 composite sheep AA 2 

373 115 361 composite sheep AA 2 

374 54 362 composite sheep AA 2 

406 113 374 composite sheep AA 2 

497 54 220 composite sheep BC 3 

502 113 222 composite sheep AB 2 
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508 113 126 composite sheep AA 2 

510 305 224 composite sheep AA 3 

511 113 198 composite sheep AB 2 

515 305 301 composite sheep AB 2 

516 310 330 composite sheep AA 2 

517 305 212 composite sheep AA 2 

518 305 198 composite sheep AB 2 

519 310 223 composite sheep AA 2 

520 305 374 composite sheep AA 2 

522 305 127 composite sheep AA 2 

532 129 226 composite sheep AA 2 

534 305 228 composite sheep AB 3 

535 305 130 composite sheep AB 2 

536 227 229 composite sheep AA 2 

537 305 230 composite sheep AA 2 

538 305 404 composite sheep AA 2 

539 305 231 composite sheep AA 2 

540 305 231 composite sheep AA 2 

541 305 131 composite sheep AA 2 

542 305 232 composite sheep AA 2 

543 227 233 composite sheep AB 1 

544 305 215 composite sheep AB 2 

545 227 223 composite sheep AA 2 

546 227 331 composite sheep AA 2 

547 227 121 composite sheep AA 1 

548 227 373 composite sheep AA 2 

550 305 405 composite sheep AA 2 

551 305 406 composite sheep AA 2 

552 305 374 composite sheep AA 1 

553 305 334 composite sheep AA 2 

554 305 334 composite sheep AA 2 

555 305 127 composite sheep AA 1 

556 305 127 composite sheep AA 1 

557 394 335 composite sheep AB 2 

766 0 215 composite sheep BB 1 

767 0 130 composite sheep BB 1 

768 227 198 composite sheep AA 2 

771 227 515 composite sheep AA 2 

772 227 518 composite sheep AB 1 

774 0 545 composite sheep AA 2 

775 0 131 composite sheep AB 1 

776 0 230 composite sheep AC 1 

777 227 497 composite sheep AC 0 

778 0 542 composite sheep AA 1 

779 0 553 composite sheep AA 2 

780 0 550 composite sheep AA 1 

781 0 555 composite sheep AA 1 
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Appendix B 

BMP15 gene 

B.1 Sequence of amplified BMP15 fragment from exon 1 (NC_019484.2) 
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Table B. 2 The genotypic and phenotypic information for three different groups in BMP15 (exon 1) 

ID Sire Dam Group Genotype NLB in 2016 

285 249 250 Finnish Landrace AA 2 

314 259 250 Finnish Landrace AA 3 

319 288 289 Finnish Landrace AA 3 

323 286 295 Finnish Landrace AB 2 

326 286 297 Finnish Landrace AB 2 

332 259 204 Finnish Landrace AA 4 

336 312 251 Finnish Landrace AB 1 

338 288 257 Finnish Landrace AA 3 

339 317 315 Finnish Landrace AA 2 

341 288 284 Finnish Landrace AA 4 

342 312 257 Finnish Landrace AA 2 

343 317 318 Finnish Landrace AB 2 

344 317 319 Finnish Landrace AA 2 

350 286 324 Finnish Landrace AB 4 

366 352 158 Finnish Landrace AA 3 

375 282 355 Finnish Landrace AB 4 

380 282 364 Finnish Landrace AA 4 

384 363 266 Finnish Landrace AA 2 

385 282 366 Finnish Landrace AA 3 

390 363 255 Finnish Landrace AA 4 

395 363 298 Finnish Landrace AA 2 

401 363 287 Finnish Landrace AB 5 

403 363 307 Finnish Landrace AA 4 

407 311 354 Finnish Landrace AA 3 

409 376 375 Finnish Landrace BB 2 

411 311 360 Finnish Landrace AA 2 

414 363 289 Finnish Landrace AB 3 

417 378 377 Finnish Landrace AB 2 

418 378 379 Finnish Landrace AB 2 

422 381 314 Finnish Landrace AA 2 

424 381 316 Finnish Landrace AA 3 

425 282 382 Finnish Landrace AA 3 

427 378 384 Finnish Landrace AB 2 

428 378 379 Finnish Landrace AB 3 

429 376 385 Finnish Landrace AB 1 

445 363 266 Finnish Landrace AA 1 

447 363 306 Finnish Landrace AA 3 

458 363 275 Finnish Landrace AA 3 

471 286 461 Finnish Landrace AB 3 

472 286 462 Finnish Landrace AA 4 

477 464 253 Finnish Landrace AB 1 

479 464 293 Finnish Landrace AA 3 
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481 378 467 Finnish Landrace AB 2 

482 378 468 Finnish Landrace BB 2 

483 378 469 Finnish Landrace AB 4 

484 464 315 Finnish Landrace AA 3 

485 378 470 Finnish Landrace BB 1 

486 464 253 Finnish Landrace AB 1 

487 464 382 Finnish Landrace AA 2 

488 312 471 Finnish Landrace AA 1 

490 464 293 Finnish Landrace AA 4 

494 464 360 Finnish Landrace AA 1 

506 282 355 Finnish Landrace AA 4 

512 464 401 Finnish Landrace AA 3 

513 378 476 Finnish Landrace AA 2 

514 311 366 Finnish Landrace AA 4 

524 376 477 Finnish Landrace AB 2 

526 376 402 Finnish Landrace AB 2 

527 312 333 Finnish Landrace AB 2 

528 376 478 Finnish Landrace AB 2 

529 312 313 Finnish Landrace AA 3 

530 317 128 Finnish Landrace AA 2 

531 378 403 Finnish Landrace AB 3 

569 412 390 Finnish Landrace AA 2 

570 413 477 Finnish Landrace AB 2 

581 413 416 Finnish Landrace AA 1 

589 412 481 Finnish Landrace AB 2 

593 408 472 Finnish Landrace AB 1 

597 410 419 Finnish Landrace AA 1 

612 408 337 Finnish Landrace AA 2 

614 312 423 Finnish Landrace AA 2 

617 412 485 Finnish Landrace AB 2 

633 413 380 Finnish Landrace AA 2 

235 219 124 Finnish Landrace X Texel cross AA 1 

325 294 296 Finnish Landrace X Texel cross AA 2 

346 294 320 Finnish Landrace X Texel cross AA 2 

347 219 321 Finnish Landrace X Texel cross AB 2 

348 219 320 Finnish Landrace X Texel cross AA 2 

351 219 326 Finnish Landrace X Texel cross AA 1 

370 356 258 Finnish Landrace X Texel cross AA 3 

389 356 158 Finnish Landrace X Texel cross AA 2 

392 356 158 Finnish Landrace X Texel cross AA 2 

431 357 386 Finnish Landrace X Texel cross AA 3 

434 219 387 Finnish Landrace X Texel cross AA 3 

435 219 388 Finnish Landrace X Texel cross AA 2 

437 357 386 Finnish Landrace X Texel cross AB 1 

438 294 389 Finnish Landrace X Texel cross AA 2 

439 294 355 Finnish Landrace X Texel cross AB 2 

440 357 390 Finnish Landrace X Texel cross AA 1 

441 294 387 Finnish Landrace X Texel cross AA 2 
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444 294 391 Finnish Landrace X Texel cross AA 2 

446 294 370 Finnish Landrace X Texel cross AA 2 

448 219 392 Finnish Landrace X Texel cross AA 3 

449 219 393 Finnish Landrace X Texel cross AA 2 

450 394 322 Finnish Landrace X Texel cross AA 2 

452 394 325 Finnish Landrace X Texel cross AA 1 

453 327 395 Finnish Landrace X Texel cross AA 3 

454 219 396 Finnish Landrace X Texel cross AA 1 

455 394 397 Finnish Landrace X Texel cross AA 2 

456 219 398 Finnish Landrace X Texel cross AA 2 

457 219 393 Finnish Landrace X Texel cross AA 2 

473 357 463 Finnish Landrace X Texel cross AB 3 

475 294 465 Finnish Landrace X Texel cross AA 1 

491 219 462 Finnish Landrace X Texel cross AA 2 

492 294 473 Finnish Landrace X Texel cross AB 2 

493 219 474 Finnish Landrace X Texel cross AA 1 

495 394 475 Finnish Landrace X Texel cross AA 2 

558 219 479 Finnish Landrace X Texel cross AA 3 

561 219 392 Finnish Landrace X Texel cross AA 0 

223 115 200 composite sheep AA 2 

234 123 218 composite sheep AB 2 

331 305 120 composite sheep AB 3 

334 113 308 composite sheep AA 2 

373 115 361 composite sheep AB 2 

374 54 362 composite sheep AA 2 

406 113 374 composite sheep AA 2 

498 123 198 composite sheep BB 2 

499 115 125 composite sheep AA 2 

502 113 222 composite sheep AB 2 

508 113 126 composite sheep AA 2 

509 113 223 composite sheep AA 1 

510 305 224 composite sheep AB 3 

511 113 198 composite sheep AB 2 

515 305 301 composite sheep AA 2 

517 305 212 composite sheep BB 2 

518 305 198 composite sheep AB 2 

519 310 223 composite sheep AA 2 

520 305 374 composite sheep AB 2 

522 305 127 composite sheep AB 2 

532 129 226 composite sheep AA 2 

533 227 330 composite sheep AA 2 

534 305 228 composite sheep AB 3 

536 227 229 composite sheep AA 2 

537 305 230 composite sheep BB 2 

538 305 404 composite sheep BB 2 

539 305 231 composite sheep BB 2 

540 305 231 composite sheep AA 2 

541 305 131 composite sheep AB 2 



 86 

542 305 232 composite sheep AB 2 

543 227 233 composite sheep AA 1 

544 305 215 composite sheep BB 2 

545 227 223 composite sheep AA 2 

546 227 331 composite sheep AB 2 

547 227 121 composite sheep AA 1 

548 227 373 composite sheep AB 2 

550 305 405 composite sheep AB 2 

551 305 406 composite sheep AB 2 

552 305 374 composite sheep AA 1 

553 305 334 composite sheep AB 2 

554 305 334 composite sheep AB 2 

555 305 127 composite sheep AA 1 

556 305 127 composite sheep AA 1 

557 394 335 composite sheep AA 2 
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Appendix C                                                                                                  

BMPR1B gene 

C.1 Sequences of amplified BMPR1B fragments from exon 8/intron7 
(NC_019463.2)  
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C.2 Sequences of amplified BMPR1B fragments from exons exon 9/intron8 
(NC_019463.2) 
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 Table C. 3 The genotypic and phenotypic information for three different groups in BMPR1B 

gene exon 8/intron7 

  

ID Sire Dam Group Genotype 
NLB in 
2016 

285 249 250 Finnish Landrace AA 2 

289 242 159 Finnish Landrace AA 5 

314 259 250 Finnish Landrace AA 3 

319 288 289 Finnish Landrace AA 3 

323 286 295 Finnish Landrace AA 2 

326 286 297 Finnish Landrace AA 2 

332 259 204 Finnish Landrace AA 4 

336 312 251 Finnish Landrace AA 1 

338 288 257 Finnish Landrace AA 3 

339 317 315 Finnish Landrace AA 2 

341 288 284 Finnish Landrace AA 4 

342 312 257 Finnish Landrace AA 2 

343 317 318 Finnish Landrace AA 2 

350 286 324 Finnish Landrace AA 4 

366 352 158 Finnish Landrace AC 3 

375 282 355 Finnish Landrace AA 4 

380 282 364 Finnish Landrace AA 4 

384 363 266 Finnish Landrace AC 2 

385 282 366 Finnish Landrace BB 3 

390 363 255 Finnish Landrace AA 4 

395 363 298 Finnish Landrace AA 2 

399 363 290 Finnish Landrace AC 3 

401 363 287 Finnish Landrace AA 5 

403 363 307 Finnish Landrace AC 4 

407 311 354 Finnish Landrace AA 3 

409 376 375 Finnish Landrace AA 2 

411 311 360 Finnish Landrace AA 2 

414 363 289 Finnish Landrace AA 3 

417 378 377 Finnish Landrace AB 2 

418 378 379 Finnish Landrace AC 2 

419 312 380 Finnish Landrace AA 1 

422 381 314 Finnish Landrace AB 2 

424 381 316 Finnish Landrace AA 3 

425 282 382 Finnish Landrace BB 3 

427 378 384 Finnish Landrace CC 2 

428 378 379 Finnish Landrace AB 3 

429 376 385 Finnish Landrace AA 1 

445 363 266 Finnish Landrace AA 1 
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447 363 306 Finnish Landrace AA 3 

458 363 275 Finnish Landrace CC 3 

471 286 461 Finnish Landrace AA 3 

472 286 462 Finnish Landrace AA 4 

477 464 253 Finnish Landrace AA 1 

479 464 293 Finnish Landrace AA 3 

481 378 467 Finnish Landrace AB 2 

482 378 468 Finnish Landrace AB 2 

483 378 469 Finnish Landrace AB 4 

484 464 315 Finnish Landrace AA 3 

485 378 470 Finnish Landrace AB 1 

486 464 253 Finnish Landrace AA 1 

487 464 382 Finnish Landrace AA 2 

488 312 471 Finnish Landrace AA 1 

489 312 472 Finnish Landrace AA 1 

490 464 293 Finnish Landrace AA 4 

494 464 360 Finnish Landrace AA 1 

506 282 355 Finnish Landrace AA 4 

512 464 401 Finnish Landrace AA 3 

513 378 476 Finnish Landrace AA 2 

514 311 366 Finnish Landrace AC 4 

524 376 477 Finnish Landrace AA 2 

526 376 402 Finnish Landrace AA 2 

527 312 333 Finnish Landrace AA 2 

528 376 478 Finnish Landrace AA 2 

529 312 313 Finnish Landrace AA 3 

530 317 128 Finnish Landrace AA 2 

531 378 403 Finnish Landrace AB 3 

569 412 390 Finnish Landrace AA 2 

570 413 477 Finnish Landrace AB 2 

581 413 416 Finnish Landrace AB 1 

589 412 481 Finnish Landrace AA 2 

593 408 472 Finnish Landrace AA 1 

597 410 419 Finnish Landrace AA 1 

612 408 337 Finnish Landrace AA 2 

614 312 423 Finnish Landrace AA 2 

617 412 485 Finnish Landrace AA 2 

633 413 380 Finnish Landrace AA 2 

645 410 342 Finnish Landrace AA 1 

646 410 488 Finnish Landrace AA 2 

647 410 488 Finnish Landrace AA 1 

235 219 124 Finnish Landrace X Texel cross AA 1 

325 294 296 Finnish Landrace X Texel cross AA 2 

345 294 293 Finnish Landrace X Texel cross AA 2 

346 294 320 Finnish Landrace X Texel cross AA 2 

347 219 321 Finnish Landrace X Texel cross AA 2 

348 219 320 Finnish Landrace X Texel cross AA 2 

351 219 326 Finnish Landrace X Texel cross AA 1 
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389 356 158 Finnish Landrace X Texel cross AA 2 

392 356 158 Finnish Landrace X Texel cross AA 2 

431 357 386 Finnish Landrace X Texel cross AA 3 

434 219 387 Finnish Landrace X Texel cross AA 3 

435 219 388 Finnish Landrace X Texel cross AA 2 

437 357 386 Finnish Landrace X Texel cross AA 1 

438 294 389 Finnish Landrace X Texel cross AA 2 

439 294 355 Finnish Landrace X Texel cross AA 2 

441 294 387 Finnish Landrace X Texel cross AA 2 

444 294 391 Finnish Landrace X Texel cross AA 2 

446 294 370 Finnish Landrace X Texel cross AA 2 

448 219 392 Finnish Landrace X Texel cross AA 3 

450 394 322 Finnish Landrace X Texel cross AA 2 

452 394 325 Finnish Landrace X Texel cross AA 1 

453 327 395 Finnish Landrace X Texel cross AA 3 

454 219 396 Finnish Landrace X Texel cross AA 1 

455 394 397 Finnish Landrace X Texel cross AA 2 

456 219 398 Finnish Landrace X Texel cross AA 2 

457 219 393 Finnish Landrace X Texel cross AA 2 

473 357 463 Finnish Landrace X Texel cross AA 3 

475 294 465 Finnish Landrace X Texel cross AA 1 

491 219 462 Finnish Landrace X Texel cross AA 2 

492 294 473 Finnish Landrace X Texel cross AA 2 

493 219 474 Finnish Landrace X Texel cross AA 1 

495 394 475 Finnish Landrace X Texel cross AA 2 

558 219 479 Finnish Landrace X Texel cross AA 3 

561 219 392 Finnish Landrace X Texel cross AA 0 

449 219 393 Finnish Landrace X Texel cross AA 2 

198 139 138 composite sheep AA 2 

212 54 198 composite sheep AA 2 

223 115 200 composite sheep AB 2 

229 54 198 composite sheep AA 2 

234 123 218 composite sheep AA 2 

334 113 308 composite sheep AB 2 

373 115 361 composite sheep AA 2 

374 54 362 composite sheep AA 2 

406 113 374 composite sheep AB 2 

497 54 220 composite sheep AA 3 

498 123 198 composite sheep AA 2 

499 115 125 composite sheep AA 2 

502 113 222 composite sheep AB 2 

510 305 224 composite sheep AC 3 

511 113 198 composite sheep AB 2 

515 305 301 composite sheep AC 2 

516 310 330 composite sheep AA 2 

517 305 212 composite sheep AC 2 

518 305 198 composite sheep AC 2 

519 310 223 composite sheep AB 2 
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520 305 374 composite sheep AC 2 

522 305 127 composite sheep AA 2 

532 129 226 composite sheep AA 2 

533 227 330 composite sheep AA 2 

534 305 228 composite sheep AB 3 

535 305 130 composite sheep AA 2 

537 305 230 composite sheep AC 2 

538 305 404 composite sheep AA 2 

539 305 231 composite sheep AA 2 

540 305 231 composite sheep AC 2 

541 305 131 composite sheep BC 2 

542 305 232 composite sheep AB 2 

543 227 233 composite sheep AB 1 

544 305 215 composite sheep AA 2 

545 227 223 composite sheep BB 2 

546 227 331 composite sheep AA 2 

547 227 121 composite sheep AB 1 

548 227 373 composite sheep AA 2 

550 305 405 composite sheep BC 2 

551 305 406 composite sheep BC 2 

552 305 374 composite sheep AB 1 

553 305 334 composite sheep BC 2 

554 305 334 composite sheep AA 2 

555 305 127 composite sheep AA 1 

556 305 127 composite sheep AA 1 

557 394 335 composite sheep AA 2 

766 0 215 composite sheep AA 1 

768 227 198 composite sheep AA 2 

769 0 406 composite sheep AA 1 

770 0 406 composite sheep AA 1 

771 227 515 composite sheep AA 2 

772 227 518 composite sheep AA 1 

773 0 758 composite sheep AA 2 

774 0 545 composite sheep AA 2 

775 0 131 composite sheep AA 1 

776 0 230 composite sheep AA 1 
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Table C. 2 The genotypic and phenotypic information for three different groups in BMPR1B gene 

(exon9/intron8)  

ID Sire Dam Group Genotype NLB in 2016 

285 249 250 Finnish Landrace AA 2 

289 242 159 Finnish Landrace AA 5 

314 259 250 Finnish Landrace AA 3 

319 288 289 Finnish Landrace AA 3 

323 286 295 Finnish Landrace AA 2 

326 286 297 Finnish Landrace AA 2 

332 259 204 Finnish Landrace AB 4 

336 312 251 Finnish Landrace AA 1 

338 288 257 Finnish Landrace AA 3 

339 317 315 Finnish Landrace AA 2 

341 288 284 Finnish Landrace AA 4 

342 312 257 Finnish Landrace AA 2 

343 317 318 Finnish Landrace AA 2 

344 317 319 Finnish Landrace BB 2 

350 286 324 Finnish Landrace AA 4 

366 352 158 Finnish Landrace AB 3 

375 282 355 Finnish Landrace AA 4 

380 282 364 Finnish Landrace AA 4 

384 363 266 Finnish Landrace AB 2 

385 282 366 Finnish Landrace BB 3 

390 363 255 Finnish Landrace AB 4 

395 363 298 Finnish Landrace AB 2 

399 363 290 Finnish Landrace AA 3 

401 363 287 Finnish Landrace AB 5 

403 363 307 Finnish Landrace AA 4 

407 311 354 Finnish Landrace AA 3 

409 376 375 Finnish Landrace AA 2 

411 311 360 Finnish Landrace AA 2 

414 363 289 Finnish Landrace AB 3 

417 378 377 Finnish Landrace AA 2 

418 378 379 Finnish Landrace AB 2 

419 312 380 Finnish Landrace AA 1 

422 381 314 Finnish Landrace AA 2 

424 381 316 Finnish Landrace AB 3 

425 282 382 Finnish Landrace AA 3 

427 378 384 Finnish Landrace AA 2 

428 378 379 Finnish Landrace AB 3 

429 376 385 Finnish Landrace AB 1 

445 363 266 Finnish Landrace BB 1 

447 363 306 Finnish Landrace AA 3 

458 363 275 Finnish Landrace AA 3 

471 286 461 Finnish Landrace AA 3 

472 286 462 Finnish Landrace AA 4 

477 464 253 Finnish Landrace AA 1 
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479 464 293 Finnish Landrace AA 3 

481 378 467 Finnish Landrace AB 2 

482 378 468 Finnish Landrace AA 2 

483 378 469 Finnish Landrace AA 4 

484 464 315 Finnish Landrace AA 3 

485 378 470 Finnish Landrace AA 1 

486 464 253 Finnish Landrace AB 1 

487 464 382 Finnish Landrace AA 2 

488 312 471 Finnish Landrace AA 1 

489 312 472 Finnish Landrace AA 1 

490 464 293 Finnish Landrace BB 4 

494 464 360 Finnish Landrace AA 1 

506 282 355 Finnish Landrace AB 4 

512 464 401 Finnish Landrace AB 3 

513 378 476 Finnish Landrace AB 2 

514 311 366 Finnish Landrace AA 4 

524 376 477 Finnish Landrace AA 2 

526 376 402 Finnish Landrace AA 2 

527 312 333 Finnish Landrace AA 2 

528 376 478 Finnish Landrace AA 2 

529 312 313 Finnish Landrace AA 3 

530 317 128 Finnish Landrace AB 2 

531 378 403 Finnish Landrace AA 3 

569 412 390 Finnish Landrace BB 2 

570 413 477 Finnish Landrace AA 2 

581 413 416 Finnish Landrace AB 1 

589 412 481 Finnish Landrace AB 2 

593 408 472 Finnish Landrace AA 1 

597 410 419 Finnish Landrace AA 1 

612 408 337 Finnish Landrace AA 2 

614 312 423 Finnish Landrace AA 2 

617 412 485 Finnish Landrace AA 2 

633 413 380 Finnish Landrace AA 2 

645 410 342 Finnish Landrace AA 1 

646 410 488 Finnish Landrace AA 2 

647 410 488 Finnish Landrace AA 1 

235 219 124 Finnish Landrace X Texel cross AB 1 

325 294 296 Finnish Landrace X Texel cross AA 2 

345 294 293 Finnish Landrace X Texel cross AB 2 

346 294 320 Finnish Landrace X Texel cross AA 2 

347 219 321 Finnish Landrace X Texel cross AA 2 

348 219 320 Finnish Landrace X Texel cross AB 2 

351 219 326 Finnish Landrace X Texel cross AA 1 

389 356 158 Finnish Landrace X Texel cross AA 2 

392 356 158 Finnish Landrace X Texel cross AA 2 

431 357 386 Finnish Landrace X Texel cross AA 3 

434 219 387 Finnish Landrace X Texel cross AA 3 

435 219 388 Finnish Landrace X Texel cross AA 2 
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437 357 386 Finnish Landrace X Texel cross AA 1 

438 294 389 Finnish Landrace X Texel cross AA 2 

439 294 355 Finnish Landrace X Texel cross AA 2 

441 294 387 Finnish Landrace X Texel cross AB 2 

444 294 391 Finnish Landrace X Texel cross AA 2 

446 294 370 Finnish Landrace X Texel cross AA 2 

448 219 392 Finnish Landrace X Texel cross AB 3 

450 394 322 Finnish Landrace X Texel cross AA 2 

452 394 325 Finnish Landrace X Texel cross AA 1 

453 327 395 Finnish Landrace X Texel cross AA 3 

454 219 396 Finnish Landrace X Texel cross AA 1 

455 394 397 Finnish Landrace X Texel cross AA 2 

456 219 398 Finnish Landrace X Texel cross BB 2 

457 219 393 Finnish Landrace X Texel cross AA 2 

473 357 463 Finnish Landrace X Texel cross AA 3 

475 294 465 Finnish Landrace X Texel cross AA 1 

491 219 462 Finnish Landrace X Texel cross AA 2 

492 294 473 Finnish Landrace X Texel cross AA 2 

493 219 474 Finnish Landrace X Texel cross AB 1 

495 394 475 Finnish Landrace X Texel cross AA 2 

558 219 479 Finnish Landrace X Texel cross AB 3 

561 219 392 Finnish Landrace X Texel cross AB 0 

658 219 345 Finnish Landrace X Texel cross AB 1 

660 219 325 Finnish Landrace X Texel cross AA 2 

662 219 392 Finnish Landrace X Texel cross AB 2 

678 433 434 Finnish Landrace X Texel cross AB 2 

681 219 307 Finnish Landrace X Texel cross AB 1 

685 219 354 Finnish Landrace X Texel cross AB 2 

689 219 389 Finnish Landrace X Texel cross AB 2 

693 219 438 Finnish Landrace X Texel cross AB 2 

703 219 475 Finnish Landrace X Texel cross AA 1 

704 219 365 Finnish Landrace X Texel cross AB 2 

712 433 348 Finnish Landrace X Texel cross AB 2 

748 433 453 Finnish Landrace X Texel cross AA 1 

782 219 475 Finnish Landrace X Texel cross AB 1 

449 219 393 Finnish Landrace X Texel cross BB 2 

198 139 138 composite sheep AA 2 

212 54 198 composite sheep AA 2 

223 115 200 composite sheep AA 2 

229 54 198 composite sheep AA 2 

234 123 218 composite sheep AA 2 

334 113 308 composite sheep AA 2 

373 115 361 composite sheep AA 2 

374 54 362 composite sheep AA 2 

406 113 374 composite sheep AA 2 

497 54 220 composite sheep AB 3 

498 123 198 composite sheep AA 2 

499 115 125 composite sheep BB 2 
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502 113 222 composite sheep AA 2 

510 305 224 composite sheep AA 3 

511 113 198 composite sheep AA 2 

515 305 301 composite sheep AA 2 

516 310 330 composite sheep AA 2 

517 305 212 composite sheep AA 2 

518 305 198 composite sheep AA 2 

519 310 223 composite sheep AA 2 

520 305 374 composite sheep AA 2 

522 305 127 composite sheep AA 2 

532 129 226 composite sheep AA 2 

533 227 330 composite sheep AA 2 

534 305 228 composite sheep AA 3 

535 305 130 composite sheep AB 2 

536 227 229 composite sheep AA 2 

537 305 230 composite sheep AA 2 

538 305 404 composite sheep AA 2 

539 305 231 composite sheep AA 2 

540 305 231 composite sheep AA 2 

541 305 131 composite sheep AA 2 

542 305 232 composite sheep AA 2 

543 227 233 composite sheep AA 1 

544 305 215 composite sheep AA 2 

545 227 223 composite sheep AA 2 

546 227 331 composite sheep AA 2 

547 227 121 composite sheep AA 1 

548 227 373 composite sheep AA 2 

549 129 234 composite sheep AA 1 

550 305 405 composite sheep AA 2 

551 305 406 composite sheep AA 2 

552 305 374 composite sheep AA 1 

553 305 334 composite sheep AA 2 

554 305 334 composite sheep AA 2 

555 305 127 composite sheep AA 1 

556 305 127 composite sheep AA 1 

557 394 335 composite sheep AA 2 

766 0 215 composite sheep AA 1 

768 227 198 composite sheep AA 2 

769 0 406 composite sheep AA 1 

770 0 406 composite sheep AA 1 

771 227 515 composite sheep AA 2 

772 227 518 composite sheep AA 1 

773 0 758 composite sheep AA 2 

774 0 545 composite sheep AA 2 

775 0 131 composite sheep AA 1 

776 0 230 composite sheep AA 1 

778 0 542 composite sheep AB 1 

779 0 553 composite sheep AA 2 
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