Valuing ground rentals – modelling the land value percentage rate

Keywords:
Ground leases -- ground rental valuation – land value – rental percentage – leasehold investment returns – leasehold v freehold investment

Abstract

Ground rentals are commonly valued by applying a ‘ground rental rate’ as a percentage per annum to an assessed vacant land value.

This paper presents a ground rental valuation model to determine the appropriate ‘ground rental rate’ based on equating the long-term costs of building on leasehold land versus freehold land.

The model solves for a ground rental that produces equivalent net present values at differential freeholder’s and lessee’s required investment returns. These returns reflect the different risks and returns in ground leasing compared to outlaying capital to buy land for erecting a building as an investment property.

A paper to be presented to
The 11th Annual Conference of the Pacific Rim Real Estate Society
The University of Melbourne, Victoria, Australia,
January 2005

Author and contact:

Rodney L Jefferies
Associate Professor of Urban Property Studies
Head Property Group, Commerce Division
P. O. Box 84, Lincoln University, Canterbury
New Zealand
E-mail: jefferir@lincoln.ac.nz
1.0 INTRODUCTION

1.1 Background – ground rental models

This paper seeks to rationalise and respond to criticism of the use of various economic ground rental valuation models presented and applied in recent precedent-setting ground rental determinations, particularly in New Zealand.

These models conform to two broad types as described by Jefferies (1997a):

- **Lessor’s return** (or supply) models that seek to determine a ground rental that will give a lessor a desired long-term real rate of return on the land value; and

- **Lessee’s affordability** (or demand) models that seek to determine what ground rental a prudent lessee can fairly afford to pay for the use of the land.

These models which approach the problem exclusively from either a supply (lessor’s) or demand (lessee’s) side of the market fail to produce any equilibrium position. Paradoxically, they are usually promoted respectively – by advocates for lessees arguing how little lessors need to receive by way of rental due to annualising future returns from assumed land value capital gains; whilst equally puzzling – by advocates for lessors who argue from a position of seeking from the lessee a share of the income returns to be made from using the land.

Typically, lessor’s return models are based on an assumption that the present value of the cash flows from ground rentals and future land value upon termination (or renewal) must equate the current land value. The author argues that where these cash flows are discounted at a lessor’s expected or required rate of return this will not determine the current land value – but the lessor’s interest in the land. It is widely recognised in practice that this will usually determine an asset value less than the land value.

This paper, presents a ground rental valuation model that is based on equating the long-term investment benefits and costs of developing leasehold versus developing freehold
land. It is based on the hypothesis that an investor in a new building development would be *indifferent* as between being a freehold owner and buying the land at its current market value or alternatively becoming a leaseholder and leasing the land at a fair annual ground rental (subject to the terms of the lease). This is a bold assumption in that it assumes there is no ‘stigma’ or cultural aversion amongst investors to owning leasehold land interests rather than freeholds. In the model there is an implied assumption that these affects, if any, are reflected in the leaseholder’s risk premium.

1.2 Market constraints, returns and fairness

In a free market both sides must agree resulting in a land sale or a new ground lease or the land remains in the hands of the owner – undeveloped or for the owner to develop.

With a new ground lease, the expected net rental income\(^1\) after paying ground rent must reflect an acceptable return to the leaseholder for the changed risk as between investing as a ground lessee versus being a freeholder.

The owner-developer will weigh up the relative risks/returns compared to leasing versus owning the land.

The difference between the leasehold v freehold tenure including any impact of institutional leasehold ownership constraints is reflected in the respective required investment returns\(^2\). This difference will determine the ground rental that is affordable and fair making the decision *indifferent* as to lease or to buy the land.

Finding that fair annual ground rental, expressed as a percentage of the land value within real world market restraints and returns is the focus of this paper.

\(^1\) Assuming the ground lessee will ‘on lease’ the completed development or where to be owner-occupied, notional rental equivalent benefits are assessed.

\(^2\) The model implies that market efficiency exists in the local land market, that alternative sites are available for freehold purchase from which land value evidence is available. Where lessors hold monopoly or a few lessors hold oligopoly position on the supply of vacant land this may not be so and premium ground rentals may be able to be extracted from developers.
1.3 Structure of paper

The main sections of the paper are as follows:

- A literature review
- An outline of the ground rental model debate
- A presentation of an indifference ground rental model proffered as a solution
- An outline of the steps necessary to apply the model
- International considerations, issues and conclusions

The paper is an abbreviated version of a working paper (Jefferies, 2005) in which the model is expanded and sets out the detailed math and practical steps needed in its application in valuation practice. The working paper also includes a spreadsheet template short-cut DCF form of the model. It includes a case study applying the model to solve a practical valuation problem and sensitivity analysis is applied to test the responsiveness of the model to key inputs.

2.0 LITERATURE REVIEW

Ground leases, of various types, are found in the United Kingdom, Netherlands, Sweden, Australia, New Zealand, United States (principally Hawaii) and other countries (Freeman, 1993).

Little is published in the international real estate, valuation or appraisal literature on the specific problem of ground rental valuation. Especially lacking are papers on ground rental rates and their determination or modelling.

Some older articles are merely anecdotal descriptions of specific ground lease renewals (Barth, 1974; Halper, 1973; Weiss, 1971). Others expound procedural advice that assumes the ground rental rate is given or simply based on current valuation practice or precedent (Kahn, 1974; Brooks, 1996; McMichael, 1925, 1974). Some articles describe local ground rental valuation practices and methodologies like those found in Victoria,
Australia (Dickson & Carsile, 1994); San Francisco, United States (Carneghi, 1994) and New York, United States (Konikoff, 2004; Rothenberg, 2003).

There are passing references to different types of ground lease tenures, but not how ground rents are valued, in various countries in recent comparative international valuation texts (Adair et al, 1995; Gelbtuch, et al., 1997). Freeman (1993) started some research into comparative international ground rental valuation practices raising some of the methodological problems involved but did not complete the research to the point of offering any solutions.

Generally the ground rental rate is set, in New Zealand, by latest arbitration determination precedent; pragmatically adopting industry “ruling rates” (Bayleys Research, 1998). Valuers tend to increase (or reduce) these in line with rising (or falling) interest rates generally (Jeffries, 1995) with variations for different lease terms, types of land and locations.

Various ground rental models are criticised and new models in response developed in a number of unpublished conference and research papers on the topic (Jeffries, 1992, 1995, 1997a & 1997b; Mitchell, 1997).

In New Zealand, in particular, there have been many major arbitration hearings to fix the rental under perpetually renewable ground leases with resulting awards setting valuation benchmarks and methodologies. On appeal to the Courts, the judiciary have also set

<table>
<thead>
<tr>
<th>Review Periods</th>
<th>Perpetual Lease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Years</td>
<td>6.0% - 6.5%</td>
</tr>
<tr>
<td>7 Years</td>
<td>6.5% - 6.75%</td>
</tr>
<tr>
<td>21 Years</td>
<td>7.0% - 7.5%</td>
</tr>
</tbody>
</table>

Source: Bayleys Research

3 as at November 1997 (still current)

4 In New Zealand terminating leases generally are set at 0.5% p.a. lower than perpetually renewable leases; residential ground leases at approx 1% p.a. lower than commercial and industrial leases; while there are regional differences tending to be slightly higher where some lessors hold monopoly land holding positions or where land value growth expectations are lower than main centres.
legal precedents as to the manner in which leases can be interpreted that affect valuation practice and methodology. Some of these practices have been questioned on economic and financial grounds (Haslett, 1989; Brown, 1996) applying lessor’s return type modelling. In arbitrations involving disputes over ground rentals the appropriateness of various ground rental valuation models has arisen, (Mitchell, 1997; Jefferies, 1992, 1995, 1997a). These criticisms have focussed on the limitations and perceived errors in the use of lessor’s return models, whilst developing alternative models relating trends in interest rates to ground rental rates.

The seminal research work developing lessee affordability approaches to ground rental took place in New Zealand (Jefferies, 1995, 1997a). The approach used in the 1997 paper was based on finding an empirical relationship between trends in interest rates and lagged changes in ground rental percentages rates. Based on a critique of this paper the model was further developed in Sweden (Mandell, 1999). The New Zealand model had, however, been further independently developed (Jefferies, 1998) shifting the focus to apply a lease - or - buy lessee’s affordability approach.

Application of finance theory and real option pricing models to real estate leases generally, where ground leases are a special application, have assumed a lessor’s return type model (Grenadier, 2003; Dale-Johnson, 2001; Lally & Randall, 2004).

Grenadier deals with ground leases very briefly, within the context of modelling real estate lease options and his focus is on valuing leases using a game-theoretic variant of real options under demand uncertainty.

Dale-Johnson’s model focuses on determining alternative contractual arrangements that would produce optimum contract terms as Pareto preferred by owners of the leased fee (lessor’s) estate and the leasehold (lessee’s) interest.
Lally & Randall focus on applying option pricing valuation methodology relying on the volatility in rural land prices to measure the impact of ratchet clauses on the ground rental rate (given exogenously) using rural forestry licence rental data in New Zealand. The effect of a full ratchet clause is found to reduce the ground rental rate by approx one percentage point and partial ratchets by 80% of that.

In this paper, the author further develops the lessee affordability model concept using a ground rental model on a lease-or-buy decision determined on the basis of a differential between the required returns for freehold v leasehold ownership. This has required consideration of not just the land (on which all previous models are solely based) but also buildings and/or improvements which would put the land into its most productive use and the required returns of investors in such buildings. Only one other author (Dale-Johnson, 2001) specifically does this in using a ground rental model, but not to determine the ground rental – but which he uses to analyse redevelopment options and incentives. Dale-Johnson’s model takes the ground rental, land value, building rental, building value, capitalisation rate and required returns (without any difference in risk between leaseholder and freeholder) as exogenously given. The author’s model herein is distinguished by only taking the land value, capitalisation rates and required returns (including a lessee’s risk premium) as being exogenously given.

3.0 OUTLINE OF THE GROUND RENTAL MODEL DEBATE

3.1 Ground rental valuation problems, procedures and errors

Though generally ground rental models can be useful in determining appropriate ground rental rates for new ground leases, the more common valuation problem arises, on review or renewal, where the parties are not in a free market position, being contractually bound by the terms of an existing ground lease.
Typically, a sitting lessee is either subject to a rent review or exercising a renewal imposed by the terms of the lease. In the latter case the sitting lessee is also a captive one, due to the high investment in buildings and improvements on the land, and must renew the lease to protect that investment. Typically there is no provision for compensation for the value of the improvements, should the lessee not exercise the right of renewal and/or the lease terminates. The rental needs to be determined in accordance with the lease provisions – normally by valuation and in event of dispute settled by arbitration (or other forms of dispute resolution).

In New Zealand such ground leases have usually been created over 21 or more years ago and may have been previously renewed for a number of similar terms. Intermediate rent reviews may apply at (variously) 5, 7, 11 year intervals to be fixed “at a fair annual rental excluding the value of any (specified) improvements” or words to similar material effect.

Other definitions found in New Zealand include the ground rental being based on “unimproved value” or “land exclusive of improvements”.

Complicating the practical valuation and rental determination process is that such lands are frequently held by lessors under statutorily defined powers, definitions, terms of lease constraints and procedures.

Similar types of leases are found in many countries, however this paper is focused on New Zealand “Glasgow leases” created around the turn of the 19th/20th Century through to the mid 1980’s which provide for perpetually renewable terms (Jackson, 1999).

These ground leases pose unique problems as the freehold land never reverts to the lessor and thus intrinsic capital gains in land value can only be reflected in rental increases at review or renewal of the ground lease. This factor therefore invalidates the application of a lessor’s return ground rental model that relies on a terminating lease assumption where the lessor’s full capital gain through reversion of the land is assumed.
When such future land value reversion is computed into the model (instead of a perpetually renewable steam of future ground rentals) to satisfy the lessor’s assumed required return on the Lessor’s asset value – it has the effect of reducing the ground rental calculated to be paid by the lessee. Hence its frequent use by lessee’s advocates in ground rental disputes.

A more fundamental error, in a lessor’s return ground rental model (i.e. Brown, 1996; Grenadier 2003; Lally & Randal, 2004) is that they are premised on the hypothesis that the current freehold land value at the commencement date is the same as the lessor’s interest value\(^5\) (which if properly valued produces an irresolvable circular argument).

The ground lessor’s required return applied to determine the value of the lessor’s asset – the *lessor’s interest* – is immaterial in determining the fair ground rental. Based on the lessor’s required return, once the ground rental is set (or estimated in future reviews), the lessor’s interest is capable of valuation. The latter asset value flows from the ground rental – not the other way round.

The land value upon which the ground rental is based is usually different from – usually higher than – the lessor’s interest value\(^6\). Considerable empirical evidence exists for this (Jefferies, 1991, 1997b). Dale-Johnson (2001) also axiomatically acknowledges this, though his model does not distinguish between a leaseholder’s and freeholder’s (nor lessor’s) required return as he adopts the same discount rate for valuing each respective owner’s asset value, i.e. in his model the lessor’s or lessee’s interest.

\(^5\) Intrinsically and intuitively this can’t be true – as ‘something’ is ‘missing’ in a leasehold and ‘gone’ from the freehold by the very nature of the change in tenure. The ‘right to use’ is transferred to the lessee.

\(^6\) Normally the lessor’s interest value as a proportion of the land value will decline, where there is land value growth, during term and build up again as the next review or renewal is approaching. The exception is, when, during the term land values decline to such an extent that the ground rental paid is ‘over-rented’, the lessor’s interest value can equal or exceed the then current land value but will decline as the next review or renewal approaches.
Thus, it is argued by the author, that the answer to determining a fair annual ground rental rate, to be applied to a given land value, theoretically and in practice, is logically determined from the demand side or lessee’s affordability type model and using a lease-or-buy model that follows valuation and financial theory.

Determining an appropriate and workable model has not been easy (Jefferies, 1992, 1995, 1997a, 1998; Mandell, 1999). This paper attempts to further advance this ongoing search towards a valid and defendable solution.

3.2 Ground rental determination methodologies

Traditionally, in most countries, valuers assess ground rentals by applying a “ground rental rate” or percentage per annum to the property’s land value at the beginning of the review or renewal term. Disputes may arise over the appropriate basis for and value of the land itself, especially where in built-up areas where there is a paucity of vacant land sales, but that is not the problem dealt with in this paper. Disputes less frequently arise over the appropriate ground rental rate to apply, which is the focus of this paper.

It follows that once the appropriate land value (LV) and annual ground rental rate (GR%) is determined — the ground rental (GR) can be calculated as:

\[
\text{Ground Rental (per annum)} = \text{Land Value} \times \text{Ground Rental Rate}
\]

or abbreviated to:

\[
GR = LV \times GR\% \tag{Equation 1.}
\]

There are other methodologies for valuing ground rents. A “classic” or comparative method relies on comparable open market or new ground rental evidence. A key practical problem is that market data is typically unavailable, of insufficient volume or on non-comparable lease terms. The validity of comparisons with any available recent reviews or renewals of comparable existing ground leased properties can be challenged as lacking an “objective” or “open market” test. Such ground rents, if in comparable locations and on similar lease terms, have invariably been determined on the above
(Equation 1) basis. The “comparison” leads to a circular “valuer-led” or “umpire-determined” self-perpetuating ground rental rate basis that lacks fundamental market testing and objectivity (see Section 5.4).

Alternative approaches using residual ground rental calculations based on a hypothetical development of the land allowing for returns on the building investment are possible. These are, however, often criticised or rejected by umpires on the grounds that they are open to significant unreliability. The validity of land residual approaches is questioned, due to the number of assumptions required, i.e. building type, scale, cost, occupancy terms, rentals and operating expenses. An additional assumption is required as to the return on the capital invested in the building only that significantly affects the residual ground rental calculation. The resulting ground rental is highly sensitive to small variations in many of these inputs. The method suffers from being highly subjective and is not favoured as a reliable method of determining ground rentals. Additionally, these residual rental return approaches are not usually tested against the resulting land value assuming a freehold ownership, so that the methodology is firmly supported by market land value evidence.

The model developed herein, involves a hypothetical optimum building development but largely overcomes many of the above criticisms by the use of Capital Value to Land Value and to Improvement Value ratios, coupled with market capitalisation rates to calculate building rentals that are exogenously and reliably determined from empirical market evidence. The model also requires, as a first step, reconciliation of a defendable residual land value as being in line with current market vacant land sales evidence.

Some leases and, in some countries, legislation “prescribe” a formula for assessing the amount of the rental or a set percentage or ground rental rate to be applied to a defined
land value (Jefferies, 1996a). In these circumstances the fairness or otherwise of the resulting ground rental is over-ridden by the contract or prescriptive provisions.

This paper specifically addresses the problem where no prescribed methodology or formula applies under the terms of the lease, nor by any governing legislation or regulation. Provided the land value can be determined, the problem reduces to the appropriate methodology to determine a fair ground rental rate.

4.0 AN INDIFFERENCE GROUND RENTAL RATE VALUATION MODEL

4.1 Concept and outline

This ground rental valuation model equates the long-term costs of developing leasehold land versus freehold land. It assumes a prospective investor in buildings would be indifferent as between leasing land at a fair annual ground rental or buying the land.

The model is based on hypothetical freehold residual valuation methodology. It is presented using established discounted cash flow valuation techniques but the technique used is not an essential feature of the model. It could equally be applied using other techniques such as option pricing valuation methodologies such as Dale-Johnson (2001) and Grenadier (2003) use.

It relies firstly on being able to justify, on a simplified freehold residual valuation methodology, a current market land value, satisfying a freeholder’s required return.

It secondly, uses the same set of development assumptions, to derive a residual ground rental valuation subject to the terms of lease, satisfying a leaseholder’s required return.

The model is structured to express the ground rental as a percentage rate of the freehold land value.
4.2 The model defined

This model ‘solves’ for the ground rental rate that equates as “indifferent” the net present value (NPV) of net cash flows from investment in buildings on leasehold land (LH) given specific lease terms – with the alternative of investing in buildings by purchasing the freehold land (FH), given a land value (LV).

Both scenarios’ cash flows will be the same, excluding the ground rental in the case of the leaseholder and excluding the land outlay in the case of freehold land purchase.

The key feature is that it ‘solves’ for a ground rental rate using a differential lessee’s required investment rate of return (Y_{LH}) from the freeholder’s required investment rate of return (Y_{FH}). These respective rates of returns reflect the different risks in ground leasing land compared to outlaying capital to buy land for erecting a building as an investment property, the riskier leasehold investment requiring an added risk premium (rp) i.e. (Y_{LHp}).

The basic indifference model is expressed using the above abbreviations:

$$\text{PV of LH net cash flows (incl GR)} = \text{PV of FH net cash flows (incl. LV)}$$ \hspace{1cm} \text{Equation 2.}

In net present value (NPV) terms, the cash flows are discounted at the respective leaseholder’s required return (Y_{LH}) and the freeholder’s required return (Y_{FH}). The ground rental that produces the indifference solution is found by solving for the GR in Equation 2 that makes this equal zero:

$$\text{NPV of LH cash flows} = \text{NPV of FH cash flows} = 0$$ \hspace{1cm} \text{Equation 3.}

Subject to: $Y_{LH} > Y_{FH}$; and $Y_{LHp} > 0$

In both scenarios the potential highest and best (allowable) uses, estimated building costs, entrepreneurial risk, tenant demand or competing supply risks and thus estimated building net rental cash flows (excluding ground rental) will be the same.
A leaseholder will only benefit from any estimated land value growth during the review term due to the fixed term ground rental but the PV of this is computed into the ground rental paid. The lessee will pay increases in ground rentals as from future reviews or renewals. Offsetting that, the leaseholder does need to outlay the cost of buying the land. Both leaseholder and freeholder face the same uncertainties and risks for the demand for space, building costs, building rentals, vacancies and un-recovered costs.

This difference is determined by using risk-adjusted leasehold v. freehold expected investment returns as discount rates over the economic building life or term of lease (if terminating). For the NPVs of the LH and FH scenarios to equate and thus for the investor to be indifferent as between the lease-or-buy alternative, the differential present value of the estimated net building only cash flows should equate the land value at the commencement of the lease.

This is the essence of this model and distinguishes it from lessor’s return models used by other authors (i.e. Haslett, 1989; Brown, 1996; Mandell, 1999; Dale-Johnson, 2001; Grenadier, 2003; Lally & Randall, 2004) and from previous affordability models (Jefferies, 1992, 1995, 1997a, & 1998).

Freehold v leasehold scenarios and model implementation

In a typical leasehold scenario the present value of the ground rent at commencement of the ground lease is calculated by the following PVs discounted at the leaseholder’s required rate of return:

1. \(CV_{cLH} = PV \) of the net cash flows from the fully let building (\(CV_{LH} \))
2. \(Less \ PV_{LHC_\text{Com}} = PV \) of building (outlay) (IV) at completion of the construction period (Com)
3. \(Less \ PV_{LHRU} = PV \) of rental vacancies from completion to being fully rented up (RU)
4. \(Equals \) the PV of the investment at commencement (\(PV_{LH} \)) including the PV of the ground rental in perpetuity (\(PV_{LH_p} \)).
When the land is to be developed to its optimum use which produces a freehold residual land value in line with market evidence then in NPV terms:

\[\text{NPV}_{\text{LH}} = CV_{c\text{FH}} - \text{PV}_{\text{LH Com}} - \text{PV}_{\text{LH RU}} - \text{PV}_{\text{LH gr}} = 0 \]Equation 4.

In a typical freehold scenario the residual value or present value of the land at commencement of a ground lease is calculated by the following present values (PVs) discounted at the freeholder’s required rate of return:

1. \(CV_{c\text{FH}} = \text{PV} \) of the net cash flows from the fully let building (\(CV_{\text{FH}} \))
2. \(\text{Less} \ \text{PV}_{\text{Com}} = \text{PV} \) of building value (outlay) (IV) at completion of the construction period (Com)
3. \(\text{Less} \ \text{PV}_{\text{RU}} = \text{PV} \) of rental vacancies from completion to being fully rented up (RU)
4. \(\text{Equals} \) the PV of the investment at commencement (\(PV_{\text{FH}} \)) including the land value (\(LV_c \)).

When the land is to be developed to its optimum use which produces a freehold residual land value in line with market evidence then in NPV terms:

\[\text{NPV}_{\text{FH}} = CV_{c\text{FH}} - \text{PV}_{\text{Com}} - \text{PV}_{\text{RU}} - LV_c = 0 \]Equation 5.

The indifference model in Equation 3 i.e. \(\text{NPV}_{\text{LH}} = \text{NPV}_{\text{FH}} = 0 \) is therefore expanded as solving for the GR that equates the net present value of the leaseholder’s and freeholder’s cash flows that equal zero:

\[CV_{c\text{LH}} - \text{PV}_{\text{LH Com}} - \text{PV}_{\text{LH RU}} - \text{PV}_{\text{LH gr}} = CV_{c\text{FH}} - \text{PV}_{\text{Com}} - \text{PV}_{\text{RU}} - LV_c = 0 \]Equation 6.

Present values and indifference valuation methodology

A prospective investor should be indifferent as between ground leasing the land or alternatively buying land as a freehold investment over the estimated building’s life. A ground rental set at a fair annual rental or buying the land should calculate to equal net present values, being zero where the land was available at fair market price (= \(LV_c \)).

If the land is used for its highest and best use, or optimum use, the calculated residual freehold land value should equate the fair market value of the land confirmed by comparative sales analysis.
In both the above leasehold v freehold scenarios, Items 1 2, & 3 have the same estimated cash flows except the leaseholder’s present values will be lower due to a higher leaseholder’s required rate of return. As the CV_{LH} will be lower than the CV_{FH}, i.e. $\text{CV}_{\text{LH}} < \text{CV}_{\text{FH}}$, due to the higher leasehold capitalisation rate $E_{\text{LH}} > E_{\text{FH}}$, due in turn to the higher leaseholder’s required rate of return $Y_{\text{LH}} > Y_{\text{FH}}$, there will be an initial comparative ‘loss’ on completion of the building to the leaseholder. This is built into the model in that the same IV at completion is used both to determine the building rentals and the PVs of the respective outlay on the building, reflected in the differential between $\text{PV}_{\text{LHCom}} > \text{PV}_{\text{FHCom}}$.

As the frequency and timing of ground rental and building rentals will differ, and as the completion period and rent-up period will be in part years (or months), the model in Equations 4, 5 & 6 are expanded in the full Working Paper (Jefferies, 2005). The present values of all the cash flows are calculated separately on the appropriate per payment period basis in the Excel template model in the Working Paper. Allowances are made for time delays in cash flows from lease commencement to building start, to building completion with payments spread over the construction period and rental receipts over the vacancy period to being fully rented-up. A sample copy of this template model with a case study included is attached in the Appendix.

Required rates of return (required yields Y) defined

Given a freeholder’s (FH) annual required return of Y_{FH} per annum and a leaseholder’s (LH) required risk premium of Y_{LHrp} per annum, the leaseholder’s annual required return is: $Y_{\text{FH}} + Y_{\text{LHrp}} = Y_{\text{LH}}$ per annum.

Estimated growth rates, future building rentals, capital, improvement and land values

The completed freehold value of the development fully let or capital value (CV) less the (then) land value (LV) gives the (then) added value of the buildings or improvements
(IV): i.e. CV – LV = IV. The ratio of IV:LV represents the relative amount of the capital value contributed by these components of the completed freehold capital value. The present value, as at the date of land purchase or date of ground lease commencement, of the capital value is defined as CV. Similarly the present value at commencement of the lease of the completed IV is defined as IV; and the present value of the LV as LV. The land value growth rate is defined as LV per annum.

The current market building costs plus normal holding costs plus normal expected builder’s or developer’s profit equate the added value of the IV on completion. Thus the CVFH will be the estimated fully let net building rentals R, capitalised at the freehold fully let capitalisation rate E FH, i.e.:

\[
\frac{R}{E_{FH}} = CV_{FH}
\]

Equation 7.

Holding costs are included due to the DCF discounting at the required return rate.

Local property market data should provide empirical evidence of a normal ratio of IV:LV and thus CV:LV. The market should similarly provide evidence of the required freehold rates of return and fully let capitalisation rates E FH; or the latter can be calculated using short-cut DCF formulae (Equation 12) as used in the spreadsheet template model in the full working paper. Comparable sales provide evidence as to market land values LV as at the commencement date of a ground lease. It is not therefore necessary to explicitly estimate the R, IV, or CV as at the building completion date as they can be endogenously based on the land value at commencement, LV.

Given the time to the building being fully let as RF years the estimated fully let building rentals R and the building value IV can be expressed in terms of LV as follows:

\[
R = \left(\frac{CV}{LV \times LV} \times E_{FH}\right) \times \left(1 + LV_g\right)^{RF}
\]

Equation 8.

\[
IV = \left(\frac{IV}{LV \times LV}\right) \times \left(1 + LV_g\right)^{RF}
\]

Equation 9.
Therefore, the capitalised building rental value CV_{FH} is:

\[
\frac{R_t}{E_{FH}} = CV_{FH} = (CV : LV \times LV_c) \times (1 + LV_g)^{RF} \tag{Equation 10}
\]

This is the key relational equation from which the building rentals R_t drives the endogenous cash flows in the model.

The leasehold capitalisation rate is also derived but is only used to determine the completed leasehold building investment value.

Capitalisation rates

Leasehold capitalisation rate

The estimated building net rental annual growth rate is defined as R_g; the building rental review terms as B_r years. Defining the market leasehold capitalisation rate as E_{LH} the fully let building investment value (assuming nil ground rental)\(^7\) can be calculated by capitalisation of the net building rental. Using the standard present value formula for the present value of an ordinary annuity when payments change at a compound rate following regular rent reviews the leasehold building market capitalisation rate can be calculated as follows:

\[
E_{LH} = Y_{LH} - \left(L_{LH} \times \frac{(1 + R_g)^{B_r} - 1}{(1 + Y_{LH})^{B_r} - 1} \right) \tag{Equation 11}
\]

Freehold capitalisation rate

Similarly, defining the market freehold capitalisation rate for a fully let leasehold building investment as E_{FH} per annum, the freehold building market capitalisation rate can be calculated as follows:

\[
E_{FH} = Y_{FH} - \left(Y_{FH} \times \frac{(1 + R_g)^{B_r} - 1}{(1 + Y_{FH})^{B_r} - 1} \right) \tag{Equation 12}
\]

\(^7\) N.B. The PV of the leasehold ground rental, PV_{LHgr}, is deducted in the indifference model Equation 6.
In both cases these capitalisation rates should be market tested against empirical sales analysis to ensure they are defensible.

Ground rental capitalisation rates

The ground rent would normally be paid at different frequencies and review terms than net building rentals. The ground rental review terms is defined as Grr years.

Leaseholder’s ground rental capitalisation (outlay) rate

Defining the leaseholder’s ground rental capitalisation (outlay) rate as E_{gr} per annum; it is calculated as follows:

$$
E_{gr} = Y_{LH} - \left(Y_{LH} \times \frac{\left(1 + \frac{LV_g^{Grr}}{1 + Y_{LH}^{Grr}}\right) - 1}{\left(1 + \frac{LV_g^{Grr}}{1 + Y_{LH}^{Grr}}\right) - 1}\right)
$$

..Equation 13.

The present value of the ground rental in perpetuity to the leaseholder is calculated by capitalising the ground rental at the above E_{gr} rate, i.e.

$$
PV_{LHgr} = \frac{GR}{E_{gr}}
$$

..Equation 14.

This represents the present value of the ground rental outlays. This is used in the model as a short-cut DCF avoiding the need for fully explicit DCF or use of other valuation techniques.

Freeholder’s notional ground rental capitalisation (outlay) rate

Similarly to the above, the freeholder’s ground rental capitalisation (outlay) rate E_{FHgr} per annum; is calculated as follows:

$$
E_{FHgr} = Y_{FH} - \left(Y_{FH} \times \frac{\left(1 + \frac{LV_{gr}}{1 + Y_{FH}^{Grr}}\right) - 1}{\left(1 + \frac{LV_{gr}}{1 + Y_{FH}^{Grr}}\right) - 1}\right)
$$

..Equation 15.

The capitalised ground rental at the above E_{FHgr} rate, i.e.:

$$
PV_{FHgr} = \frac{GR}{E_{FHgr}}
$$

..Equation 16.
This represents the present value of the ground rental to the freeholder in perpetuity. This is purely a notional figure as the freeholder will in fact own the land and not pay any ground rental. Its relevance to the basic model is theoretical only as being the PV of the ground rentals if there is no leaseholder’s premium and would compute to equal the LVc (see the penultimate paragraph of Section 5.5).

5.0 APPLICATION OF THE MODEL

For the model to work in practice it requires a minimum of assumptions that materially affect the outcome. Nevertheless there a number of considerations required, some of which can be dismissed as not having a material affect on the lease-or-buy outcome as their discounted differential will show an immaterial affect on the differential NPVs. This allows the model to proceed, in application, by making market based assumptions relying on the valuer’s experience and judgement backed up by empirical evidence of those critical assumptions that drive the model. Each critical aspect is dealt with briefly.

5.1 Step 1: Determining building density, capital value and rental income

Typically, the value of any existing building(s) on the land is to be disregarded in determining the rental under the terms of the ground lease. This is frequently a legal requirement to ensure the rental is assessed on the value of the land only, without regarding the building erected on the land or its current use. In determining the ground rental, however, the valuer needs to have regard to the hypothetical optimum “highest and best” or “most probable” potential use that justifies the current value of the land. This may require consideration of alternative uses and a range or mix of legally allowable uses. This normally introduces almost irresolvable complexity leading to inaccuracy if using a hypothetical land residual valuation approach (see under Section 3.2). In this ground rental model, provided empirically justified building density in terms of the
IV:LV rate is adopted, the actual use and physical scale is largely immaterial as both lease-or-buy estimated cash flow scenarios are equal.

This simplification avoids the need and complexity of modelling a specific building and its scale, costs, uses and values. Given a market land value multiplied by such a ratio and applying a normal market based initial (fully let) freehold capitalisation rate, produces fully let market net building rentals.

The typical IV:LV ratio can be ascertained empirically based on analysis of comparable types of building developments in the market. Further, acceptable variance in this ratio is unlikely to have a material effect on the ground rental rate, as in PV terms both FH and LH scenarios are only marginally differentially affected.

5.2 Step 2: Confirming the Land Value – the PV of the freehold cash flows

A data set of realistic and empirically based model inputs needs to be determined that results in a present value of the freehold investment cash flows that derives a residual land value approximating a market comparison based land value. This is an essential test of the model’s ability to replicate the market and to give robustness to the model.

Alternatively, using an independently assessed market freehold land value as an initial outlay, other data inputs can be used falling within realistic parameters that produce a net present value (NPV) of zero, applying the freeholder’s required return.

It is important that the land value is valid by comparison to direct available land value evidence from comparable freehold land sales. Trial and error, (Goal Seeking or Solver spreadsheet) techniques within defined freehold investment risk and return criteria and other data input parameters (in a spreadsheet application) can be used to arrive at a realistic and feasible set of data inputs that produce a supportable current market land value.
5.3 Step 3: The PV of the leasehold cash flows

Once the above Step 2 above is achieved, then trial and error (Goal Seeking or other techniques) solve for the ground rental, using the same data inputs except the higher leaseholder’s required return to meet the “indifference” test applying the model. This will be the ground rental (GR) that equates the present value of the estimated net rental cash flows from the leasehold v. freehold scenarios as in Equation 2, or produces the NPV = 0 in Equation 3 & 6. From this ground rental the fair annual ground rental rate (GR%) is calculated as follows:

\[
\text{GR\%} = \frac{\text{GR}}{\text{LV}_c} \times 100
\]

Equation 17.

5.4 Fair annual ground rental

The ground rental produced should satisfy the requirements of being the “fair annual ground rental” or meeting similar definitions, e.g. “market ground rental”. It is fair that this should apply to the relevant review period or renewal term of the lease based on the information set existing at the commencement, review or renewal date.

When re-applying the model at subsequent reviews any changed outcomes from the pro-forma model will be replaced by the then future estimates thus adjusting for any market based and realistic input changes at that time.

The model is a forward looking ‘expectations’ model. It does not rely on the past performance of the ground lease investment, nor compensates for any past miss-pricing, but relies purely on future expectations. Any error in the estimated and required returns or movements in these inputs over the review terms are reflected in the risk element in the required returns for the term. At subsequent reviews the application of the model will re-balance the “indifference” between the leasehold and freehold scenarios. It will adjust for any changes in then future expectations while updating the rental for any actual land value growth since the last review date. The land value then applied in the model
will result in a new fair ground rental to apply over the next review term, and so on to the termination of the lease or over perpetually renewable terms if that applies. As the model is totally an expectations model, it is not encumbered by past ground rental settlement precedents that plague traditional valuation methodologies. It allows a fresh inquiry on reasonable basis and logically defendable as to what a prudent lessee could fairly afford to pay by way of ground rental as from the commencement of a new lease or renewing an existing lease instead of alternatively buying the freehold. This presents a rational way of beating the cycle of ‘valuer-led’ – ‘umpire-determined’ precedent setting or administrative cum legislative prescription based ground rental rate setting that has plagued some countries, especially New Zealand.

5.5 **Required leaseholder’s and freeholder’s return analysis**

The required risk-adjusted investment returns on the respective capital required for investment in the building(s) for a leaseholder, will differ from that required by a freeholder for investment in the land *plus* building(s).

The leaseholder’s risk premium (Y_{LHrp}) reflects the building development and investment risk transferred from the freeholder to the leaseholder when creating the lease. The lessee is usually obligated to undertake development of the land (if not already improved) subject to the lessor’s approval of use, type, timeframe, etc.

8 As expressed by Sir Clifford Richmond, Umpire in the Britanic House arbitration award Between Wellington City Council as Lessor & BP Pacific Investments Limited as Lessee - Unpublished, 27 pages, dated 12 April 1984:

"...I would hesitate to regard the most compelling influence, from the point of view of the prudent lessee, as being a consideration of what other lessees have agreed to pay as indicated by negotiated settlements or formal arbitrations. I say that only because, while I accept that a prudent lessee would attach very great weight to such considerations, I would not wish a state of affairs to develop where the answer in these cases might in practice depend too much on past precedent. Lessees, having watched what Mr Holmes called "slow marginal increase from time to time" in ground rentals, should be quite untrammeled in their right to query the justification for any further increase, however slow. And in like manner a lessor should not be precluded by precedent from seeking a fresh inquiry into the fairness of the rental levels achieved by historical methods"
From the leaseholder’s perspective the premium is required compensation for the building development and investment risk, without the offsetting compensation of the land value growth and its prospective capital gain to offset long-term building depreciation.

The lessee is bound to pay the rental irrespective of the degree of success or changes in the entrepreneurial risks and outcomes in carrying out and/or managing the development on the land. Such rental is normally unable to be deferred or postponed and if not paid the lessor can re-enter and take possession of the lessee’s improvements and terminate the lease – without compensation under typical lease terms in New Zealand. This provides a very secure income stream for the lessor who faces very low risk but equally increases the risk to the lessee.

In addition, leaseholders are likely to face increased financing costs as lenders will impose stricter mortgage terms, often involving an increase in mortgage lending interest rates compared to a freehold security, especially where the lessor will not subordinate their interest to the mortgagee in event of the lessee’s default under the mortgage. North American lenders usually impose additional conditions on leasehold borrowers (Rothenberg, 2003; Kronikoff, 2004). This aspect, in itself will justify a higher leaseholder’s required return to cover the increased interest rate on the borrowing required for the building development.

This increased risk can only be reflected in a higher required leaseholder’s rate of return compared to a freeholder’s, i.e. by the leaseholder’s risk premium, for the same intensity of capital investment in the building component of the prospective development.

The existence of and extent of leaseholder’s risk premium is the most critical input factor in the model. The ground rental is very sensitive to changes in this risk premium (see Appendix).
The leaseholder’s risk premium determines the magnitude of the differential present values of the leasehold v freehold net building rentals over the economic life of the building(s). This in turn affects the level of the affordable fair annual ground rental.

Ideally this risk premium should be able to be derived from DCF analyses of sales of comparable types of leasehold versus freehold properties. This can present practical problems especially where there is thin trading in improved ground leaseholds also where, due to the owner/occupier nature of sales of otherwise comparable leasehold properties, sales based return analysis is not possible or purely hypothetical.

The required returns, where sufficient sales evidence exists, are derived from market data for fully let leasehold building capitalisation rates (initial income returns after ground rental). The methodology required applies the same long term growth assumptions as reflected in alternative fully let building capitalisation rates (Equations 11 & 12).

The creation of leasehold tenure splits the returns related to the land and the building investment and in one sense leasing the land has an aspect of cheaper financing than for the freehold. However that comes at an increase in risk partly due to the potential imbalance between land value growth and building income growth and the usually inevitable aging and obsolescence in the building, particularly as the building reaches the end of its economic life. To the leaseholder this is not offset by increases in land value. Further there is the risk that land value growth LVg will exceed building rental growth \(R_g \), adding to the disparity of the returns between a freeholder and a leaseholder.

The model assumes that the ratio of required returns between the freeholder and leaseholder remains constant during the term of the lease, but assumes any rebalancing will be adjusted at each review or renewal.

A measure of the leaseholder’s risk premium can be indicated by the corresponding (offsetting) reduced ground lessor’s interest returns shown by analysis of sales of ground
lessor’s interest investments compared to freehold (land and building) investments. Ground lessors do not take on the entrepreneurial building and management risk that a freehold or leasehold investor does.

Empirical evidence from research in New Zealand (Jefferies, 1997b) of ground (only) lessor’s interest returns compared to overall returns from prime freehold (land and building) investments indicates that this differential is within a range of 1% to 3% p.a. By implication, to allow for increased risk, lessees’ required returns would intuitively show a greater premium, i.e. as between freehold and leasehold building investment.

The leaseholder’s risk premium is the most important factor in this model as it drives the differential and thus the fair ground rental rate required to meet the “indifference” test between the leasehold and freehold scenarios. This is an area for further empirical research to determine the extent of this premium in the market in applying this model in any particular case.

In the highly unlikely event that there is no leaseholder’s risk premium then the leaseholder’s and the freeholder’s required returns will equate and the ground rental rate will be the same freeholder’s ground rental capitalisation rate, i.e.:

\[E_{gr} = E_{FHgr} \]

Under these conditions the indifference model will collapse to be similar to (but not the same as) the lessor’s return model, with the important difference that is a freeholder’s and not a lessor’s required return that is used to compute the ground rental rate. Where the freeholder’s return is higher than a lessor’s required return the ground rental rate will be higher than a lessor’s return model will calculate.

The author cannot, however, conceive how a leasehold investment in buildings only on leasehold land for which there is a priority ground rental payment outlay obligation, no long term enjoyment of land value growth and increased entrepreneurial risk would not
require a greater return than freehold investment on the same land and in the same buildings. Thus a leaseholder’s risk premium should intuitively and logically always apply. This is the crux of this model as compared to a lessor’s return model and earlier forms of the lessee’s affordability model.

5.6 Other non-market factors

In some markets there may be systematic non-financial benefits or non-tangible costs, risk, uncertainty or insecurity associated with leasehold tenures not reflected in the risk premium. When faced with the prospect of, or ‘in the throws of’ leasehold reform, enfranchisement or government intervention in existing ground lease contracts, additional uncertainty will adversely affect leasehold prices and the attractiveness of leasehold investment. An example is the reform of Maori leasehold land tenures in New Zealand (Boyd, 1997, 1998; Jefferies, 1996a). These types of interferences in normal mean reverting equilibrium market assumptions underlying this model may make its application difficult or inappropriate in certain states and individual cases or classes of land.

5.7 Application to non-commercial land

The model should be able to be applied to a wide range of rental residential apartment, retail, industrial, tourist, recreational and rural production classes of land uses. Its application to owner-occupier classes of land uses such as owner-occupier housing will be more difficult, but feasible, requiring the use of housing ownership cost (rental-equivalent) indifference models.

This model should be equally applicable (in principle) to rural (farming) ground leases. However, the implications and techniques required of productive valuation methodologies and their inputs and required rural investment required rates of return in the rural real estate market will require adaptation and modifications to the way the model is applied in practice.
5.8 Limitations and modifications of the model

The full Working Paper (Jefferies, 2005) sets out a number of issues relating to limitations involved in applying the model in valuation practice and some modifications required.

6.0 INTERNATIONAL COMPARISONS, ISSUES AND CONCLUSION

Despite differences in legislative and institutional factors affecting ground rental leasehold tenures in different countries, some similarities do exist and the problem of how to determine a fair ground rental rate under different lease terms and conditions is an international one.

Ground leaseholds (erfpacht) exist in The Netherlands, e.g. in Amsterdam where the land value (grondwaarde) reflects the allowable use of the land and the ground rental rate (canonpercentage) is determined by the Central Council (Land Leasing in Amsterdam, 1994). Five-year reviews are adjusted by indexing to the purchasing power of the Dutch guilder. At the end of the typical 50-year lease term the new ground rental is determined on the basis of the land value and ground rental rate applying. There are provisions for a change in the ground rental consequent on a change of use.

These are distinguishable from the typical 21-year perpetually renewable type common in New Zealand, where the land value and ground rental rate is reviewed without regard to the actual use of the land. A change of use does not trigger the lessor’s ability to accordingly review the ground rental.

In a number of other countries ground rental rates are determined by a variety of processes, mainly administratively, legislative prescription, executive decision, precedent or customary valuation practice and negotiation.

In some countries the setting of ground rental rates where land is leased from the state, government or municipal agencies, seems to be partly politically or administratively
“determined”. This is particularly so where negotiations are not really open to market forces or effective challenge and independent determination.

With an increasing pressure, world-wide, to deregulate government institutions and to let market forces price the use of capital, pressure will be exerted to remove ground rentals from administrative or prescribed formulae to market based determinations. This is exemplified in the proposed reform of Maori (or indigenous) leasehold land in New Zealand (Boyd, 1997, 1998; Jefferies, 1996a) where the Maori Reserved Land Act has (subsequently) been amended in late 1997 and early 1998. This reform provides for Maori lessors to have ground rentals determined at market rentals at seven-year reviews replacing the previous twenty-one year reviews at prescribed ground rental rates (of 4% - 5% p.a.). In the process, compensation is to be paid by the Crown to lessees for the effect of the increased ground rental costs. Considerable protests and a great debate raged over the adequacy of the compensation model. Consequential debates in future arbitrations will undoubtedly occur over the proper basis for determining market ground rental rates so as to achieve “market ground rentals” in the absence of any new leasing market evidence.

It is hoped that this research and the ground rental model presented will provide an opportunity for the underlying issues to be examined and for a rational resolution to the problems to be achieved.

It is hoped that the ground rental valuation model presented will be helpful and find counterpart applications in other states. The model is flexible enough to adjust for different leasehold terms and conditions. It is hoped that its use will help in determining ground rental rates that are fair and truly reflect the advantages and disadvantages of leasehold land tenure compared to freehold or other forms of land ownership, tenure or land use rights.
REFERENCES:

Land Leasing in Amsterdam (1994) Gemeentelijk Grondbedrijf (Real Estate Department), The Local Authority of Amsterdam, The Netherlands.

9 The author would welcome a request for a copy of this, which includes a CDRom of the PRRES Conference PowerPoint explanatory presentation, together with a working copy of the Excel Template.

Rothenberg, P. V. (2003) “A ground lease primer: “dealing” with the intimidating ground lease” Real Estate Finance 20:4 29-32

APPENDIX

A sample of the Excel template used by the author to implement the model using shortcut DCF techniques, including a case study follows.

The case study applies the model to a 21 year perpetually renewable ground lease where the assumed ratio of improvements value to land value (IV:LV) was 2.4:1 with a 1.5 year total delay for construction and letting up period to achieve full letting. A land value of $1.0m is assumed. The freeholder’s required return (Y_{FH}) is 11% p.a., the leaseholder’s risk premium (Y_{LHrp}) of 1% p.a. resulting in the leaseholder’s required return (Y_{LH}) of 12% p.a.. Given an estimated growth in land values (LV_{g}) of 3.0% p.a. and building rental growth rates (R_{g}) of 2.5% p.a., resulted in a NPV of the FH Investment very close to zero. Solving techniques were used determine a set of inputs to give NPV=0, in this case by slightly reducing the effective IV:LV ratio (to 2.393:1).

Clicking on a button “Solve GR% to give NPV$_{LH} = NPV_{FH} = 0$” runs a macro using Excel’s Goal Seek utility to give an equilibrium ground rental rate (GR%) of 7.089% p.a. of the land value (LV_{c}) as from the commencement of the lease term.

The case study in the full Working Paper includes sensitivity analyses such as testing the model for the effect of different risk premiums, changes in Lease terms, different solutions requiring different levels of IV:LV ratios, etc.

Of interest are the results of testing the effect of changes in the risk premium, the ground rental review terms and the frequency of ground rental payments the results being as follows:

- The leaseholder’s risk premium Y_{LHrp}

The model was re-solved holding constant all data inputs except with changes of 0.5% in the risk premium and the following resulted:

<table>
<thead>
<tr>
<th>Y_{LHrp}</th>
<th>0.00%</th>
<th>0.50%</th>
<th>1.00%</th>
<th>1.50%</th>
<th>2.00%</th>
<th>2.50%</th>
<th>3.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR%</td>
<td>9.61%</td>
<td>8.34%</td>
<td>7.08%</td>
<td>5.83%</td>
<td>4.58%</td>
<td>3.34%</td>
<td>2.12%</td>
</tr>
<tr>
<td>Total Diff</td>
<td>-2.53%</td>
<td>-1.26%</td>
<td>1.25%</td>
<td>2.50%</td>
<td>3.74%</td>
<td>4.97%</td>
<td></td>
</tr>
<tr>
<td>Diff</td>
<td>1.27%</td>
<td>1.26%</td>
<td>1.25%</td>
<td>1.25%</td>
<td>1.24%</td>
<td>1.23%</td>
<td>1.25%</td>
</tr>
</tbody>
</table>
For each 0.5 percentage point change in the leaseholder’s risk premium this analysis shows a resulting 1.25 percentage point change in the ground rental percentage, illustrating how sensitive the GR% is to changes in the Y_{LHrp}.

- The ground rental review term

The model was re-solved holding constant all data inputs except changes in the rental review terms found in New Zealand as shown below:

<table>
<thead>
<tr>
<th>Term Grr</th>
<th>3 yrs</th>
<th>5 yrs</th>
<th>7 yrs</th>
<th>11 yrs</th>
<th>14 yrs</th>
<th>21 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR%</td>
<td>6.05%</td>
<td>6.20%</td>
<td>6.34%</td>
<td>6.59%</td>
<td>6.76%</td>
<td>7.08%</td>
</tr>
</tbody>
</table>

This shows overall a change of 1.03 percentage points from a 21 year to a three year term or an average of 0.57 percentage points per year difference. This is similar to New Zealand practice (see Footnote 1, Bayleys Research, 2001) which shows an average of 0.94 percentage points per year difference, and lines up well with but slightly lower than current commercial rates (supplied by Barratt-Boyes, Jefferies Ltd, Registered Valuers, Auckland) which shows a 0.063 percentage points per year difference as below:

<table>
<thead>
<tr>
<th>Term Grr</th>
<th>5 yrs</th>
<th>7 yrs</th>
<th>11 yrs</th>
<th>14 yrs</th>
<th>21 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR%</td>
<td>6.50%</td>
<td>6.75%</td>
<td>7.00%</td>
<td>7.25%</td>
<td>7.50%</td>
</tr>
</tbody>
</table>

- The frequency of ground rental payments (in advance).

The model was re-solved holding constant all data inputs except with changes of payment frequency and the following resulted (for a 21 year term):

<table>
<thead>
<tr>
<th>Frequency</th>
<th>monthly</th>
<th>3 monthly</th>
<th>6 monthly</th>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR%</td>
<td>6.89%</td>
<td>6.96%</td>
<td>7.08%</td>
<td>7.33%</td>
</tr>
</tbody>
</table>

This represents an average of 0.037 percentage points per month difference.
APPENDIX (Cont’d)

Case Study using the Excel™ model applied to a commercial ground leased property

<table>
<thead>
<tr>
<th>Indifference Ground Rental Model Template</th>
<th>Enter data in Red outlined cells only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs: where: FH=freehold; LH=leasehold</td>
<td></td>
</tr>
<tr>
<td>Ground lease rent review (in Yrs) Grr</td>
<td>21 yrs</td>
</tr>
<tr>
<td>Frequency period of ground rent payments (in Months) Per</td>
<td>6 mths</td>
</tr>
<tr>
<td>Payment basis : EOP(0); BOP(1) Pay</td>
<td>1</td>
</tr>
<tr>
<td>Land value growth rate p.a. LV</td>
<td>3.00%</td>
</tr>
<tr>
<td>Building lease rent review (in Yrs) Br</td>
<td>2 yrs</td>
</tr>
<tr>
<td>Frequency period of building rent payments (in Months) Ber</td>
<td>1 mths</td>
</tr>
<tr>
<td>Building rental growth rate p.a. Rb</td>
<td>2.50%</td>
</tr>
<tr>
<td>Risk free rate (ie equiv to a Govt Stock rate for a 21 term) GS</td>
<td>7.50%</td>
</tr>
<tr>
<td>FH building investment market premium Fmp</td>
<td>3.50%</td>
</tr>
<tr>
<td>LH required extra risk premium (c/- freehold) LHrp</td>
<td>1.00%</td>
</tr>
<tr>
<td>= FH required risk adjusted return (yield) p.a. YFH</td>
<td>11.00%</td>
</tr>
<tr>
<td>= FH Capital Value - fully tenanted CVFH</td>
<td>$3,251,517</td>
</tr>
<tr>
<td>PV of FH value - fully tenanted CVFH</td>
<td>$3,011,240</td>
</tr>
<tr>
<td>PV of FH building outlay @ completion PVFH</td>
<td>$2,042,357</td>
</tr>
<tr>
<td>PV of vacancies during rent-up PVFH</td>
<td>$311,118</td>
</tr>
<tr>
<td>PV of FH investment at Commencement incl land value PVFH</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Land value at commencement date LVc</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Land value at commencement date LVc</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Ground rental ex Comm GR</td>
<td>$70,829 p.a.</td>
</tr>
<tr>
<td>Construction period (in Yrs) Con</td>
<td>1.00 yrs</td>
</tr>
<tr>
<td>Delay to construction start (in Yrs) Del</td>
<td>0.25 yrs</td>
</tr>
<tr>
<td>Rent up period after building completion (in Yrs) RU</td>
<td>0.25 yrs</td>
</tr>
<tr>
<td>Rent up period after building completion (in Yrs) RU</td>
<td>0.25 yrs</td>
</tr>
<tr>
<td>Net building rental - fully tenanted Rr</td>
<td>$286,100 p.a.</td>
</tr>
<tr>
<td>FH Improvements Value on completion - fully tenanted CVFH</td>
<td>$2,483,784</td>
</tr>
<tr>
<td>PV of FH value - fully tenanted CVFH</td>
<td>$3,011,240</td>
</tr>
<tr>
<td>PV of FH building outlay @ completion PVFH</td>
<td>$2,042,357</td>
</tr>
<tr>
<td>PV of vacancies during rent-up PVFH</td>
<td>$311,118</td>
</tr>
<tr>
<td>PV of FH investment at Commencement incl land value PVFH</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Land value at commencement date LVc</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>PV of FH investment in building = (PVFH - LVc) NPVFH</td>
<td>$0</td>
</tr>
<tr>
<td>LH rent before GR - fully tenanted (= Rr) LHRR</td>
<td>$286,100 p.a.</td>
</tr>
<tr>
<td>Calculated LH building capitalisation rate p.a. = (eLH x b) E_LH</td>
<td>9.0349%pa</td>
</tr>
<tr>
<td>Calculated LH ground rental capitalisation rate p.a. = (eLH x b) E_LG</td>
<td>10.6933%pa</td>
</tr>
<tr>
<td>LH capital value - fully tenanted nil ground rental CVLH</td>
<td>$3,166,606</td>
</tr>
<tr>
<td>PV of LH Capital Value - fully tenanted nil ground rental PVLH</td>
<td>$2,671,573</td>
</tr>
<tr>
<td>PV LH building outlay @ completion PVLH</td>
<td>$2,039,955</td>
</tr>
<tr>
<td>PV LH vacancies during rent-up PVLHR</td>
<td>$30,748</td>
</tr>
<tr>
<td>PV LH ground rental in perp PVLHR</td>
<td>-$662,366</td>
</tr>
<tr>
<td>Difference between NPVLH & NPVFH NPVLH</td>
<td>$0</td>
</tr>
</tbody>
</table>

Solve GR% to give:
NPVLH = NPVFH = 0

Solve for IV:LV to give NPVFH = 0