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Abstract 
 

The World Health Organization has considered tuberculosis (TB) a threat with a significant mortality 

and morbidity rate worldwide. TB is caused by notorious Mycobacterium tuberculosis, which has 

evolved with successful survival strategies leading to the emergence of drug-resistant TB strains 

making drugs (first-line TB drugs) and vaccine (BCG) ineffective. The global emergence of tuberculosis 

is threatening to make one of humankind’s most lethal infectious diseases incurable, with an estimated 

10.0 million new TB cases and 1.4 million deaths in 2019. Further, TB affects animals too; bovine 

tuberculosis primarily affects cattle and it is caused by the etiological agent Mycobacterium bovis. 

Twenty to thirty per cent of the global livestock population is potentially affected by bovine TB, leading 

to annual economic losses of more than USD 3 billion globally (Kuria, 2019). This study conducts an in-

depth investigation into pathogen-human interactions to gain deeper insights into the evolution of 

pathogen and their drug resistance mechanisms and uses this understanding to provide potential 

solutions for effective vaccine and drug development for human and bovine tuberculosis. 

 

Our research begins with gaining an understanding of the pathogenesis of human and bovine TB, the 

interaction of TB bacteria with its host, the host defence mechanism, bacterial survival strategies in 

evading the host immune response, and in-depth knowledge of the mechanisms of TB drug resistance. 

The current drug treatment regimen has not changed in nearly 40 years. Although the first-line drugs 

play a pivotal role in combating TB, the emergence of resistant TB strains due to different survival 

mechanisms of TB bacteria such as reduced permeability of cell wall preventing drug entry into the 

cells, mutations in the drug target protein (major hurdle in TB treatment), inactivation of drug 

molecules with the help of bacterial enzymes, and a transmembrane drug efflux system to expel the 

drug out from the bacterial cell has heightened the burden of TB globally. BCG is the only licensed 
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vaccine available and has been around for almost a hundred years. BCG (Bacillus Calmette-Guérin) is 

prepared from a live-attenuated strain of Mycobacterium bovis and it has shown protection in babies 

and young children. The inefficiency of BCG in not reducing the prevalence of disease and not 

protecting adults is so far not understood. Some of the crucial factors might include Mycobacterium 

bovis is less virulent and not a primary causative agent of TB, diversity in TB strains and over-

attenuation of presently used BCG strain. The low efficacy of BCG, the emergence of the drug-resistant 

Mycobacterium tuberculosis strains, and challenges in developing drugs and vaccines have generated 

an urgent requirement for a powerful and effective therapeutic approach for TB treatment. This study 

introduces three holistic strategies/frameworks for developing new and effective therapeutic methods 

for fighting TB.  

 

Firstly, the complex diversity of evolution of mutations demands a conceptual approach to tackling the 

problem at its root and eliminate it there. In this regard, a potential cue would be that fundamentally 

bacteria favour mutations that are harmless to them and provide maximum protection from the drug 

while making it ineffective or efflux it from the system. Therefore, when trying to map the 

pathogenicity of drug resistant bacteria, a promising line of attack is to assess the impact of the 

mutation on Mycobacterium tuberculosis, i.e., whether the mutation is neutral or harmful, and how 

effectively it weakens the efficacy of the drug binding to the target. In particular, Mycobacterium 

tuberculosis could favour mutations that afford them structural stability and flexibility and functional 

advantage to disempower the drug from its entry right up to reaching the target. Our study develops 

this conceptual foundation through a comprehensive and systematic in-depth analysis of drug 

resistance mechanisms from global mutation data for Mycobacterium tuberculosis reported over the 

last 30 years. We collected data on 821 non-synonymous mutations corresponding to the four first-

line drugs isoniazid (n= 202), pyrazinamidase (n=273), rifampicin (n=120) and ethambutol (n=226) from 

149 published studies. We first investigated single mutation frequency for understanding the 

prevalence and diversity of mutations in first-line TB drug targets across the globe. Our research then 

focussed on comprehensive coverage of mutations to identify their impact on TB bacteria and drug 

binding with a detailed bioinformatics analysis for understanding crucial changes at the molecular level 

affecting function, structural stability and sequence conservation and influence of mutation position 

on drug binding affinity. Our study introduced a new concept of ranking drug-resistant TB mutations 

into lethal, moderate, mild, and neutral. Out of 821 non-synonymous mutations, we identified 340 

‘lethal,’ 284 ‘moderate,’ 185 ‘mild’ and 12 ‘neutral’ mutations. We observed that the frequently 

occurring drug resistant mutations had mild to moderate impacts suggesting that Mycobacterium 

tuberculosis favours less harmful mutations suggesting that it tries to strike a balance between its 

fitness and drug resistance in evolving its survival strategy. The bacteria have followed this mutation 
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pattern over the last three decades globally and could continue to follow the same generic pattern 

across the globe in the future. 

 

Vaccines are cost-effective pharmaceutical products that have played an essential role in eliminating 

and eradicating infectious diseases. The conceptual framework developed in this study uses different 

bioinformatics approaches, such as comparative proteome analysis, reverse vaccinology, 

immunoinformatics, and structural vaccinology to identify potential vaccine candidates and construct 

an in-silico epitope-based vaccine. Our epitope-based TB vaccine development focused on pathogen 

polymorphism, broad coverage of host population and enhancing humoral and cell-mediated 

immunity that would significantly reduce TB globally or drastically minimise its prevalence. Our holistic 

framework identified potential therapeutic candidates by directly analysing the proteome of TB 

bacterial strains. We performed a comparative proteomic analysis of 159 strains of Mycobacterium 

tuberculosis and 11 Mycobacterium bovis strains to cover the diversity and identify conserved proteins 

among those strains for developing human and bovine TB vaccines. An extensive reverse vaccinology 

and immunoinformatics analysis provided highly immunogenic, non-toxic and non-allergenic 27 

epitopes (CTL epitopes-14, HTL epitopes-5 and B-cell epitopes-8) for Mycobacterium tuberculosis and 

26 epitopes (CTL epitopes-8, HTL epitopes-2 and B-cell epitopes-16) for Mycobacterium bovis required 

for three-dimensional structure construction of TB vaccine constructs based on a new concept 

introduced in this research. The constructed epitope-based human and bovine TB vaccines had a 

strong interaction inside the host, thus activating the macrophages, further leading to the production 

of B-cells, T-cells and cytokines and generating efficient cell-mediated and humoral immune responses. 

 

Next, a novel subtractive proteomic approach was developed for identifying bovine TB drug targets. 

We performed a subtractive proteomics approach on the 11 Mycobacterium bovis strains to identify 

drug targets that could further help investigate therapeutic drugs for the treatment of bovine TB. This 

approach helped identify nine drug targets that are conserved, essential, antigenic and have unique 

metabolic pathways in Mycobacterium bovis.  

 

Our research makes novel contributions to the field of vaccine and drug development for tuberculosis. 

This research is intended to address the challenges of TB vaccine development that include: expensive, 

time-consuming and arduous experimental testing; safety concerns while culturing the pathogen in a 

laboratory; global coverage, identification of immunodominant and conserved epitopes in highly 

variable or drug-resistant Mycobacterium tuberculosis and Mycobacterium bovis for inducing potent 

humoral and cell-mediated immune responses and elimination of cross-reactive epitopes. It identified 

new drug targets for bovine TB. Better insight into drug resistance mechanisms will aid the 

development of novel diagnostic tools, design of new drugs and inhibitors, and help plan proper 
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treatment for the patients. Therefore, the outcome of this study’s investigation into the global pattern 

of drug target mutations and drug resistance mechanisms can help significantly improve current 

treatment plans and develop new diagnostic techniques for treating TB in humans. As we used several 

bioinformatics prediction tools together to ensure checks and balances, aiming to reduce the chance 

of errors and provide accurate results, the vaccines and drug targets developed in this study can be 

tested experimentally with confidence for further validation as therapeutics with the potential to 

eradicate human and bovine TB globally. 

 
Keywords: Tuberculosis, Mycobacterium tuberculosis, drug resistance mechanisms, bacterial survival 

strategy, reverse vaccinology, conceptual framework for vaccine development, epitope-based vaccine 

for human and bovine TB, Mycobacterium bovis, improved drug treatment of human TB, new drug 

targets for bovine TB. 
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Chapter 1 

Introduction 

Advancements in medical science and health care systems have doubled the life expectancy of humans 

and reduced the mortality rates of children. The death rate from infectious diseases has also been 

reduced over the past decade. But the emergence of new, and re-emergence of already existing 

infectious diseases and antimicrobial resistance (AMR), has become a global threat. In 2019, more than 

seven million people died of infectious or communicable diseases. There were also 2.5 million deaths 

caused by lower respiratory infections, including pneumonia, influenza and bronchitis that year. 

Tuberculosis (TB) has remained among the top causes of death in the past 20 years. 

 

The emergence of rapidly evolving and lethal tuberculosis disease threatens to make one of 

humankind’s most important infectious diseases incurable. Vaccine and drug therapy are the two most 

important countermeasures that humans have developed against TB. The complex evolution has led 

to the expansion of survival strategies in TB bacteria, and the emergence of drug-resistant TB strains 

made drugs and vaccine ineffective. In-depth knowledge of the pathogenesis of infection, 

antimicrobial resistance and challenges in vaccine and drug development will help ease the burden of 

global infectious diseases. Our study conducts an in-depth investigation into pathogen-human 

interactions to gain deeper insights into evolution of pathogen and their drug resistance mechanisms 

and use this understanding to provide potential solutions for effective vaccine and drug development 

for tuberculosis. This chapter discusses the research problem, the research objectives and gives an 

overview of the thesis chapters. 

 

1.1 Tuberculosis - a deadly infectious disease  

In 2020, TB was the 13th leading cause of death and the second leading cause of death from a single 

infectious agent after COVID-19. Regardless of the advancements made in the field of medical science, 

TB remains the cause of death for more than 1.4 million people every year (WHO Global Tuberculosis 

Report, 2020). TB is the leading cause of mortality in low- and middle-income countries and is 

considered a major health concern worldwide (World Health Statistics, 2021). Tuberculosis is an 

infection of the lungs caused by closely related bacterial species called the Mycobacterium tuberculosis 

complex (MTBC). The primary causative bacterium is Mycobacterium tuberculosis. Tuberculosis is a 

highly contagious disease that spreads from an infected person to a healthy person through air and 

inhaled airborne droplet nuclei. When another uninfected individual inhales these droplets, they travel 

down the person’s trachea to the lungs. The TB bacteria multiply and activate the body’s immune 
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response resulting in macrophages surrounding the bacteria to form a  granuloma, thereby containing 

the spread of TB infection in the lungs (Hong et al., 2016). 

 

In the early 19th century, TB was a widespread infection. First-line TB drugs for treating drug-

susceptible TB patients are isoniazid (INH), ethambutol (EMB), pyrazinamide (PZA) and rifampicin (RIF) 

(Joshi, 2011). However, the evolution of TB bacteria has led to the emergence of drug-resistant TB 

strains that make drugs ineffective. Bacteria do this through various mechanisms including by making 

the cell wall impermeable preventing drug entry into the cells, mutations in the drug target protein, 

inactivation of drug molecules with the help of bacterial enzymes, and a transmembrane drug efflux 

system to expel the drug out from the bacterial cell. In 2019, an 85% success rate was observed in 

drug-susceptible TB patients, and the remaining 15% was accounted for by drug resistance and deaths 

(WHO Global Tuberculosis Report, 2020). Therefore, a better understanding of resistance mechanisms 

is essential for increasing the success rate of TB drugs to 98-100% to save lives. Furthermore, this 

understanding is key to improving current treatment strategies, designing new drugs and inhibitors, 

developing new diagnostic techniques and developing new vaccines. 

 

Vaccines have been considered crucial in combating deadly and drug-resistant infectious diseases, 

such as TB, by reducing the prevalance of tuberculosis and eradicating TB from its roots. Currently, 

there is only one licensed vaccine available for TB, called BCG. This is prepared from a live-attenuated 

strain of Mycobacterium bovis, the causative agent of TB in cattle (Brosch et al., 2007). BCG has been 

around for almost a hundred years and was first used in 1921 (Dockrell & Smith, 2017). BCG is given to 

infants after birth in most parts of the world. This vaccine protects babies and young children; however, 

it fails to protect adults against TB (McShane, 2014). The inefficiency of BCG in reducing the prevalence 

and emergence of disease and in protecting adults is currently not well understood. Some critical 

factors might include Mycobacterium bovis being less virulent and not the principal causative agent of 

human TB, diversity in TB strains, and over-attenuation of the currently used BCG strain.  

 

The widespread emergence of TB resistant strains has challenged the view of tuberculosis as a 

treatable disease. As of August 2020, 22 drugs and 14 vaccines were in different phases of clinical trials 

(WHO Global Tuberculosis Report, 2020). To accomplish the WHO’s goal of eliminating TB with its End-

TB strategy, there is a need for a vaccine that can stimulate a specific cell-mediated and humoral 

immune response in the host to eliminate the chances of infection and re-infection from tuberculosis. 

Vaccines in clinical trials are mainly dependent on inducing humoral immune responses using either 

weak mycobacterial strains or two to three antigens for producing recombinant subunits and viral 

vectored vaccines. Therefore, these vaccines do not guarantee yielding of a broad coverage of immune 

response. The drug-resistant issue is also not addressed adequately by the vaccines in clinical trials. 
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The low efficacy of BCG, re-emergence of the disease in immunocompetent individuals and the 

emergence of drug-resistant Mycobacterium tuberculosis strains have, together, generated an urgent 

requirement for a powerful and effective treatment against TB.  

 

Bovine tuberculosis, caused by Mycobacterium bovis, has also become a global concern over the last 

two decades. Bovine TB primarily affects cattle, but other domestic livestock, such as deer, goats, 

horses, sheep, etc., are also affected. It is a zoonotic disease that can spread to humans by the 

inhalation of aerosols or by ingesting unpasteurized milk. Bovine TB is more common in less-developed 

and developing countries. Twenty to thirty per cent of the global livestock population is potentially 

affected by bovine TB. The disease can lead to an economic crisis because of the significant loss of 

livestock and trade restrictions. For example, in New Zealand, the beef and dairy industries are at 

potential risk from TB. Thus, bovine tuberculosis has a zoonotic potential to raise health concerns for 

the public (Cosivi, 1998; Renwick et al., 2007) Out of 10 million cases in humans, in 2019, WHO 

estimated that 0.14 million cases were zoonotic TB, caused by Mycobacterium bovis, with 11,400 

human deaths (WHO Global Tuberculosis Report, 2020). Animal test-and-slaughter schemes 

implemented in several countries have successfully reduced the prevalence of bovine tuberculosis. 

However, such expensive control programmes have increased economic burdens and opposition by 

farmers (Bennett, 2009; Torgerson & Torgerson, 2010). There is no effective treatment available for 

bovine TB due to its infectious nature and the drug resistance of Mycobacterium bovis. Antibiotic 

therapy can be used on animals living in captivity, but it is not so reliable for herd or free-grazing 

animals. The BCG vaccine is another option available for treating the disease, but it shows limited 

efficacy in cattle. The prevention of bovine TB is a long-term goal that can only be accomplished by 

developing more effective vaccine than BCG and designing new drugs. 

 

1.2 Formulating the research problem and solution 

Global eradication of TB at its roots, requires a deep understanding of: (i) pathogenesis of TB, (ii) 

interaction of TB with its host, (iii) the host defence mechanism, (iv) bacterial survival strategies in 

evading the human immune response, (v) in-depth knowledge of the mechanisms of TB drug 

resistance, and (vi) challenges in developing drugs and vaccines for TB. Thus, for reducing the burden 

of TB globally, we developed holistic strategies/frameworks for accomplishing three main goals of this 

study: 

(1) Understanding the impact of drug resistant mutations to gain an in-depth knowledge of the 

survival strategies of Mycobacterium tuberculosis and resulting drug resistance mechanisms 
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The main barrier to an effective TB treatment is the evolution of Mycobacterium tuberculosis, resulting 

in resistant strains. The available TB drugs are successfully evaded by the genetically-encoded 

resistance mechanisms in Mycobacterium tuberculosis. The rapidly increasing rates of mono-resistant 

(resistance to only one first-line TB drug), multi-drug resistant (resistance to at least isoniazid and 

rifampicin, two most important first-line TB drugs) and poly-resistant (resistant to more than one first-

line TB drug, other than isoniazid and rifampicin), with 0.5 million new cases and 0.2 million deaths, in 

2019, due to MDR-TB (multi-drug resistance), is a frightening situation resulting in treatment failures 

(WHO Global Tuberculosis Report, 2020) (Almeida Da Silva & Palomino, 2011). To understand 

Mycobacterium tuberculosis survival mechanisms that help it escape first-line TB drug actions, it is 

crucial to answer the following research questions: 

(i) What are the effects of mutations on first-line TB drug targets and how serious is the 

problem? 

 

Prolonged exposure to TB drugs helps Mycobacterium tuberculosis acquire spontaneous chromosomal 

mutations in the first-line drug target proteins, katG, rpoB, pncA and embCAB, that are targeted by the 

drugs, INH, RIF, PZA and EMB, respectively. Acquired resistance due to chromosomal mutations 

(mostly point mutations in the coding region of the target proteins (Robert & Pelletier, 2018) is the 

main reason for drug resistance in TB and is achieved through: altering the drug binding site of first-

line TB target proteins, whole target modifications, drug inactivation and mutations in the conserved 

regions of the targets that makes the drugs ineffective but does not completely disrupt the biological 

function of the target (Alcaide et al., 1997; Almeida Da Silva & Palomino, 2011; Nguyen, 2016; Riccardi 

et al., 2009; Zhang & Yew, 2009). In light of the inadequate protection from the BCG vaccine, 

improvement in the success rate of drug therapy has become crucial for tackling TB. However, due to 

drug resistance, only an 85% success rate was observed in 2019 in the treatment of drug-susceptible 

TB patients. Therefore, a better understanding of drug resistance mechanisms is essential for 

increasing its success rate to 98-100% to save lives. 

(ii) What are the gaps in drug resistance research? 

 

Several studies have been conducted to understand the mechanism of drug resistance and the 

evolution of Mycobacterium tuberculosis (Telenti et al., 1993; Heym et al., 1995; da Cunha et al., 2007; 

Lakshmipathy et al., 2013). Most of the studies were conducted to determine the changes in drug 

binding affinity by constructing a 3D structure of wild-type target proteins and mutants, performing 

molecular docking using different tools, and comparing the wild-type target proteins’ binding energy 

with the mutant proteins. However, these studies focussed on studying only a few mutations although, 

over the years, a large number of mutations have been reported. Further, by focusing only on drug 
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binding affinity, they have not provided significant knowledge of the evolution of drug resistant 

mutations and survival strategies including drug resistance mechanisms of Mycobacterium 

tuberculosis.  

(iii) What can be done to reduce the problem of drug resistance? 

 

Our study follows the process of Mycobacterium tuberculosis and TB drug interactions to probe deeply 

into how TB bacteria evolve drug resistance mechanisms for survival. In this regard, a potential clue 

would be that fundamentally bacteria favour mutations that help them survive by providing maximum 

protection from the drug while making the drug either ineffective or efflux it from the system. For a 

mutation to be a drug-resistant mutation, it should reduce the binding affinity of a drug without 

hampering the natural affinity of its substrate. Normal functioning and the structural stability of the 

target protein is needed for the survival of the disease-causing organism. Thus, it is essential to 

elucidate the effect of the first-line drug-resistant mutations in Mycobacterium tuberculosis on: (i) 

functional changes (leading to modification of target), (ii) stability changes leading to destabilizing or 

stabilizing effect on the target protein, (iii) irregular binding (reduced affinity for drug resulting in its 

inactivation) or tighter binding with the drug (the prodrug ( an inactive biological compound which is 

metabolized inside the host body to make an active drug (Rautio et al., 2018)) activated but not 

released), (iv) altered functionality of the relevant amino acid residues (changes in residues in the 

binding site or residues directly interacting with an active site impact the binding of drug with its 

target), (v) altered conserved protein sequences (whether bacteria mutate conserved regions for 

survival), and (vi) hotspot sites within the drug target (some mutations are more prevalent at specific 

positions or regions (Zhang & Yew, 2009). Therefore, when trying to map the pathogenicity of drug 

resistant bacteria, a promising line of attack is to assess the impact of the mutation on Mycobacterium 

tuberculosis, i.e., whether the mutation is neutral or harmful, and how effectively it weakens the 

efficacy of the drug binding to the target. These two perspectives will help unravel drug resistance 

mechanisms employed by bacteria, that will shed light on potential avenues for improving the efficacy 

of existing drugs, developing new drugs and developing improved diagnostic methods and treatment 

strategies. 

 

(2) Developing an epitope-based in-silico human TB vaccine for greatly improved efficacy 

 

Vaccines are designed using biological agents (attenuated, killed or toxoids) resembling the disease-

causing pathogen. Vaccines work by mimicking disease-causing agents to stimulate the host immune 

system to provide defences against them when infected or re-infected (Figure 1.1). Cell-mediated and 

humoral immune responses are the two main forms of immune response. T-cells and B-cells, 
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respectively, are the principal constituents of these two forms of response of the immune system. The 

T-cells play a significant role in cell-mediated immunity (CMI). CMI is the predominant form of the 

immune response. In CMI, the pathogen is ingested by the antigen-presenting cells (APCs), such as 

macrophages, dendritic cells, etc. The pathogen is then fragmented into smaller antigenic peptides 

and later presented to T-cell receptors (TCR) present on the T-cell surface, through the major 

histocompatibility complex (MHC) molecule attached to antigen presenting cell surface, to produce 

memory T-cells. The B-cells are essential in providing a humoral or antibody-mediated response. 

 

The antigens recognised by the antibody paratope (antigen-recognition site in antibodies) or by the B-

cell receptor (BCR) produce memory B-cells. Antigenic determinants, specific segments of an antigen, 

are known as epitopes. Epitopes comprise a short stretch of amino acids that are recognised by B-cell 

and T-cell receptors and specific antibodies. Chapter2 provides details of the immune system and 

immune response generated by humans against Mycobacterium tuberculosis. 

 

 

Figure 1. 1:  Immune response generated in the host body after delivery of a vaccine (Image source: 
https://www.historyofvaccines.org/content/how-vaccines-work) 

 

Vaccination is administering a vaccine into a host body to elicit an artificial active immune response 

against infectious diseases. An antigen is a molecule that stimulates an immune response inside the 

host body and that is recognised by APCs, T-cells or antibodies. After vaccination, the APCs and B-cells 

recognise, ingest and breakdown the foreign substance into smaller antigens (Figure 1.1). The antigens 

fragmented inside APCs are then presented to T-helper cells, leading to activation of the immune 

response. Vaccination helps in the production of memory cells to remember a specific disease agent. 

The immune response thus produced is called the primary response to a pathogen. Figure 1.1 shows 

the activation of B-cells and T-cells, the response of B-cells by producing antibodies that later bind to 

specific antigens and the T-cell response by fragmenting the antigens and production of B-cell and T-

https://www.historyofvaccines.org/content/how-vaccines-work
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cell memory cells. When the pathogen attacks the host body again, the memory cells produced by the 

vaccination process will recognize the specific antigens and alert the immune cells to generate a 

specific immune response to kill the pathogen. This response to a pathogen is called a secondary 

response. The secondary immune response is greater in magnitude and faster than the primary 

response. The main goals of developing a new TB vaccine are to: (i) enhance the speed and strength 

of the host immune response against Mycobacterium tuberculosis, (ii) provide long-lasting protection, 

(iii) enhance herd immunity, (iv) reduce mortality, (v) cost-effective vaccine, and (vi) prevent 

antimicrobial resistance (Kennedy & Read, 2017; Lipsitch & Siber, 2016; Rodrigues & Plotkin, 2020).  

 

(i) Why is the current TB vaccine not effective? 

Although BCG has shown its effectiveness by reducing the incidence of tuberculosis in children, miliary 

TB and tubercular meningitis, there are main concerns for adult TB (Brewer, 2000). BCG trials have 

shown that it does not induce the same immune response as when a vaccine is given to premature 

babies. The safety of BCG remains a significant concern in immunocompetent persons (Hesseling et 

al., 2007). The protection by BCG is highly variable in adults and the prevention of chronic infection is 

not high. The reasons for such high variability of BCG vaccine include differences in clinical assays, 

genetic variability in a sample population, different levels of protection against the clinical forms of 

tuberculosis, malnutrition and variability in Mycobacterium tuberculosis strains (Barreto et al., 2006; 

Doherty & Andersen, 2005; Skeiky & Sadoff, 2006). 

 

(ii) What are the challenges in developing a new TB vaccine? 

The first challenge that needs to be addressed is pathogen polymorphism, i.e., the vaccine's 

effectiveness against the many strains of Mycobacterium tuberculosis (Gulukota, 2008). A vaccine 

prepared using a single strain or single antigen of a pathogen does not provide effective immunity to 

the host. The genetic variability among different strains of an immunoevasive pathogen increases the 

chances of drug resistance. The second critical challenge is triggering a B-cell and T-cell immune 

responses in the host. The third challenge faced in developing a vaccine is autoimmunity or 

hypersensitive reactions. Sometimes there is a homology that exists between the Mycobacterium 

tuberculosis genome and the host genome. Suppose this homologous part of the genome is used in a 

vaccine? In that case, the host body may trigger a suppressive immune response due to the host’s 

immune system being tolerant or by triggering autoimmunity against itself (de Groot & Martin, 2009). 

Another challenge in developing an effective TB vaccine is the broad coverage of the population 

needed. 
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In most cases, a single strain or single antigen vaccine helps treat a small subset of patients in a specific 

region. The vaccine is then sometimes considered ethnicity-biased in terms of protection. The other 

obstacles in vaccine design are safety (Movahedi & Hampson, 2008), expensive experimental testing, 

and time (Naveen et al., 2014). The culturing of Mycobacterium tuberculosis to identify vaccine targets 

in the laboratory is costly and time-consuming. The purification and detoxification of vaccine products 

are expensive. Leakage of Mycobacterium tuberculosis is always a risk in the laboratory.  

 

(iii) What are the gaps in vaccine research? 

Many studies have been performed to address the issues of TB. Some studies provided satisfactory 

results, but they did not significantly contribute to the End-TB strategy. The H4:IC31 recombinant 

subunit vaccine, in phase II of the clinical trial of 2020, contained the fusion protein of Ag85A and 

TB10.4 with an IC31 adjuvant (Ahsan, 2015). In-vitro studies were also performed to evaluate the T-

cell immune response of the H4:IC31 vaccine using data from clinical trials. These studies suggested 

the need for a new vaccine with a more specific response (Luabeya et al., 2015; Penn-Nicholson et al., 

2018; Rodo et al., 2019). The subunit vaccine developed using the conventional approach contained 

one or more antigenic proteins (an antigen is a molecule that stimulates an immune response inside 

the host body) for initiating the immune response. The traditional method requires cultivating 

pathogens in the laboratory and then performing different biochemical, microbiological, 

immunological tests to detect the vaccine candidates. This approach is laborious, requires expensive 

experimental testing and sometimes fails to reveal suitable antigens. The research by Monterrubio-

López et al. (2015) did not provide a solution to pathogen polymorphism as they applied a reverse 

vaccinology approach using only a single strain of Mycobacterium tuberculosis. In 2017, Hossain et al. 

(2017) identified T-cell epitopes present on the extracellular protein, 85B, of Mycobacterium spp. They 

used one protein for recognising promiscuous T-cell epitope and did not focus on the antigen variability 

issue. 

(iv) How can we develop a new TB vaccine with a strong and specific immune response? 

An effective solution for pathogen polymorphism is using highly conserved vaccine targets from 

genome sequences of different Mycobacterium tuberculosis strains for developing a TB vaccine. 

Targeting highly conserved regions for their significant structural and functional roles in the 

Mycobacterium tuberculosis life cycle would provide broad-spectrum protection against 

Mycobacterium tuberculosis strains and also protection against drug resistance. A successful vaccine 

development approach must address the following challenges of conventional vaccine development: 

- reducing the cost, time and arduous experimental testing  

- overcoming safety concerns while culturing the entire pathogen in the laboratory 

- narrowing the research to the selected vaccine targets 
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- identifying the surface-exposed (Rappuoli, 2000), secreted, adhesin proteins 

- conserved epitopes in highly variable (Gershoni et al., 2007) or drug-resistant mycobacteria 

- identifying immunodominant epitopes for inducing a potent humoral and cell-mediated 

immune response 

- identifying of highly immunogenic and non-toxic targets 

- eliminating cross-reactive epitopes  

 

(3) Identify drug targets and develop an epitope-based vaccine for the treatment of bovine TB 

 

Bovine TB is a chronic infectious disease caused by Mycobacterium bovis. Cattle are considered the 

main reservoir of bovine TB compared to other domestic livestock. Isolating the infected animals and 

slaughtering them are undertaken to reduce transmission among other animals in the herd. The 

isolation of infected animals is not an option in hugely populated or low-income countries. Srinivasan 

et al., 2018 estimated that 21.8 million cattle are infected with bovine TB in India (Srinivasan et al., 

2018). The pasteurization of milk is not compulsory in India. Thus, bovine TB in cattle also impacts 

human health. It is also important to remember that getting infected from eating the meat of the 

infected animal is less likely, but the risk is still there. While accomplishing this objective the following 

research questions need answering: 

(i) What are prominent issues in bovine tuberculosis treatment?  

Currently, there is no effective treatment available for bovine TB. Mycobacterium bovis is considered 

naturally resistant to pyrazinamidase (first-line TB drug) (Nakajima et al., 2010). First-line human TB 

drugs for treating livestock are also ineffective and costly as the treatment requires six to nine months 

of daily doses of medication. The use of BCG vaccine has not provided a sufficient level of protection. 

Several attempts were made to develop a live-attenuated or heat-killed vaccine against bovine TB in 

cattle, but none were successful (Buddle, 2010; Buddle et al., 2018; Palmer & Thacker, 2018; Parlane 

& Buddle, 2015). 

(ii) What approach can be used against Mycobacterium bovis for treating bovine TB? 

The development of a bovine TB epitope-based vaccine containing B-cells and T-cells (MHC-I and MHC-

II restricted) epitopes could elicit a humoral and cell-mediated immune response. Thus, protective 

immunity is required for lowering the transmission of infection. Generating memory cells against 

bovine TB is an essential step towards tackling the disease worldwide. A new approach for the 

treatment of bovine TB can be developed by using or modifying the available veterinary drugs to target 

Mycobacterium bovis drug candidates to answer pathogenicity and drug resistance against bovine TB. 
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1.3 Research objectives and approaches 

Over the recent years, the development of vaccines and drugs has gained the attention of researchers 

to develop effective therapeutic tools against tuberculosis. The current explosion in bioinformatics has 

revolutionized the field of vaccine and drug development. Bioinformatics provides new tools to identify 

potential vaccine and drug targets without culturing the pathogens in the laboratory. These tools help 

identify potential therapeutic candidates by directly analysing the proteome of a bacterial strain. First, 

however, it is essential to understand why the existing drugs and vaccines are ineffective before 

developing new therapeutic tools for TB. Chapter- 2 attempts to understand in depth the reasons 

behind the ineffectiveness of current TB treatments. 

 

The primary purpose of this research is to understand the interaction of hosts and TB bacteria and 

to acquire in-depth knowledge of the survival strategies of TB bacteria against host immune 

responses and TB drugs and developing an effective therapeutic technique for fighting TB.  

 

There are three overall objectives for this research that are further divided into sub-objectives. The 

main objectives of the study are to: 

(1) Undertake a comprehensive analysis of TB drug resistant mutations to understand the survival 

strategy of Mycobacterium tuberculosis 

Eradicating TB globally demands a fundamental understanding of the emergence and evolution MDR-

TB as the foundation for a strategic approach to combat the threat of MDR to human life for good. 

Currently, such a foundation is lacking and is urgently needed. Our study develops this foundation 

through a comprehensive and systematic in-depth analysis of drug resistance mechanisms from global 

mutation data for Mycobacterium tuberculosis reported over the last 30 years. For this extensive 

investigation of drug resistance, an in-depth look into global mutation patterns to explore the global 

evolution of drug resistance is performed using the following sub-objectives: 

 

(1.1) Creating a catalogue of non-synonymous first-line TB drug mutations. 

(1.2) Calculating the single mutation frequencies for each mutation and identifying hotspot residue 

sites and areas in the target proteins. 

(1.3) Predicting the impact of drug-resistant mutations at the molecular level affecting the function, 

structural stability, and sequence conservation in the first-line Tb drug targets to understand 

the survival of Mycobacterium tuberculosis. 
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(1.4) Categorizing drug resistant mutations into lethal, moderate, mild and neutral in relation to 

impact on bacterial survival. 

 

Figure 1. 2: Framework designed for understanding the impact of mutations on Mycobacterium 
tuberculosis survival 

 

The essential things needed to address drug resistance are collecting first-line mutation data from 

different sources and using that data to improve our knowledge of the underlying drug resistance 

mechanisms to achieve the long-term goal of eradicating TB. Figure 1.2 shows that the proposed 

framework has four phases: collecting mutational data, screening of non-synonymous mutations, 

analysing mutational data in two stages: (i) mutational statistics, and (ii) the impact of mutations on 

the targets and drugs, and categorizing mutations into lethal, moderate, mild and neutral in relation 

to impact on bacterial survival to evaluate the total drug resistance strategy of Mycobacterium 

tuberculosis. The single mutation frequency was calculated to understand the prevalence and diversity 
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of mutations in first-line TB drug targets across the globe. Our research focused on providing a 

comprehensive coverage of mutations and identifying their impact on TB bacteria and drug binding, 

using detailed bioinformatics analysis to understand crucial changes at the molecular level of the target 

affecting its function, structural stability and sequence conservation. The influence of mutation 

position on drug binding affinity is determined by comparing the binding energies of mutant TB drug 

target proteins with the wild-type target protein. The coverage of a large number of strains (mutations) 

is novel in this study as well as the study of mutational impact on targets and drugs. Further, this 

research introduced a new concept of ranking drug-resistant TB mutations into lethal, moderate, mild 

and neutral for bacterial survival. When designing new drugs, this method can help predict the impact 

of the mutation on the respective drug targets to develop better drugs for TB treatment. Furthermore, 

the ranking of mutations into four different categories can assist in developing inhibitors for a specific 

mutation or group of mutations and help develop personalised treatment plans for TB patients.  

 

(2) Designing a conceptual and computational framework for developing an effective epitope-

based human TB vaccine  

 

An epitope-based vaccine can stimulate a specific and swift adaptive and humoral immune response. 

Thus, a conceptual framework is developed that uses different bioinformatics approaches, such as 

comparative proteome analysis, reverse vaccinology, immunoinformatics, and structural vaccinology 

to identify potential vaccine candidates and construct an in-silico vaccine. Advancements in genomics 

have introduced various sequencing techniques, like shotgun sequencing, which provides information 

about the whole genome sequence of an organism. Information about the genome, transcriptome or 

proteome of a pathogen (Brusic & Flower, 2004) can help identify novel vaccine candidates that are 

important for developing effective vaccines. Computational vaccinology uses computer-aided vaccine 

design to identify novel vaccine candidates within the genome of the target pathogen before 

experimental testing and validation (He et al., 2010). Computational vaccinology allows researchers to 

identify vaccine targets that might be missed in the conventional approach because a pathogen cannot 

be successfully and safely cultured in the laboratory (Flower et al., 2010). Currently, computational 

vaccinology aims to identify suitable vaccine targets using reverse vaccinology (RV) and immuno-

informatics approaches. Suitable vaccine candidates can be identified using a computational pipeline 

that allows analysis of the genome or proteome of a pathogen. This approach is known as ‘reverse 

vaccinology’ RV provides the repertoire of antigenic proteins present in a pathogen, that are not able 

to be understood in the conventional approach (Rappuoli, 2000). The antigenic proteins identified by 

the RV approach can be analysed further to predict their B-cell and T-cell epitopes. The field of 

immunoinformatics provides many tools for epitope mapping (Vivona et al., 2008). 
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Crucial features of an epitope-based vaccine include sequence conservancy, antigenicity, exclusion of 

self-peptides and multiple allelic interactions. For achieving this objective, several sub-objectives are 

required to be accomplished:  

 

(2.1) Undertake comparative proteomic analysis of the 159 strains of Mycobacterium tuberculosis 

for identification of conserved proteins. 

(2.2) Use functional classification of the conserved proteins identified. 

(2.3) Identify surface-exposed antigenic proteins that are virulent and do not cause autoimmunity 

in the host using the reverse vaccinology pipeline. 

(2.4) Perform immunoinformatics analysis for identifying T-cell and B-cell epitopes from the 

antigens and filter potential epitopes. 

(2.5) Construct an in-silico vaccine and evaluate immune response. 

 

 

Figure 1. 3: Conceptual framework for developing in-silico vaccine against Mycobacterium 
tuberculosis 

 

Figure 1.3 shows the conceptual framework created for designing the TB vaccine. The first sub-

objective, comparative proteomic analysis, must identify conserved proteins across 159 

Mycobacterium tuberculosis strains to address pathogen polymorphism. The resultant conserved 

proteins need to be categorised into eleven distinct functional categories, as given by Smith (2003). 

After a detailed study of the etiology of tuberculosis, reverse vaccinology methods are then used to 

perform several essential steps that were not carried out in previous research undertaken on TB. These 
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steps identifies the outer-membrane antigenic proteins with unique characteristics, such as, like signal 

peptides, membrane-spanning regions, lipoprotein signatures, adhesion probabilities, and motif 

attachment from the genome or proteome of the pathogen. After completing this, immunoinformatics 

analysis for the prediction of T-cells (MHC-I and MHC-II restricted epitopes) and B-cell epitopes is 

performed. Filtering of the epitopes is undertaken to identify most antigenic, non-allergic, non-toxic 

and excluding self-peptides. The docking analysis of the filtered epitopes with every other epitope 

creates unique combinations of epitopes. Combinations having a strong binding affinity to one another 

are used for constructing vaccines. Structural vaccinology is then used to help develop an in-silico 

vaccine and elucidate its tertiary structure. This extensive study analysing strains reported in the last 

30 years will identify the broadest coverage of effective epitopes to date. The construction of the 

three-dimensional structure of the vaccine is based on a new concept introduced in this research. 

 

The benefit of an epitope-based vaccine is removing deleterious epitopes that can cause cross-reactive 

reactions or autoimmunity in the host. Evaluation of the immune response is essential for predicting 

vaccine efficacy in generating a strong and specific humoral and cell-mediated immune response. This 

research is intended to address the challenges of TB vaccine development that include: expensive, 

time-consuming and arduous experimental testing; safety concerns while culturing the pathogen in a 

laboratory; identification of surface exposed, secreted and adhesin proteins; conserved epitopes in 

highly variable or drug-resistant Mycobacterium tuberculosis; identifying immunodominant epitopes 

for inducing potent humoral and cell-mediated immune responses; elimination of cross-reactive 

epitopes; and immunogenicity assessment of selected epitopes. The development of an in-silico 

epitope-based subunit vaccine using computational vaccinology is expected to be highly effective and 

safer against tuberculosis.  

 

(3) Developing effective vaccines and identifying drug targets against bovine TB 

 

The third objective of the thesis is to study the comparative proteomic analysis of Mycobacterium bovis 

to discover an in-silico vaccine and drug targets for treating bovine tuberculosis. The objective was 

achieved using the following sub-objectives: 

 

(3.1) Undertaking comparative proteomic analysis of 11 strains of Mycobacterium bovis for the 

identification of conserved proteins. 

(3.2) Designing an in-silico vaccine against bovine TB using the same framework developed in 

objective 2 for human TB. 

(3.3) Identifying potential drug targets against Mycobacterium bovis. 
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Currently, no effective treatment is available for treating bovine tuberculosis and animal slaughtering 

is usually undertaken to reduce the burden of bovine tuberculosis in the environment. In this research, 

we propose therapeutic drug targets and vaccines for treating bovine TB. The emergence of 

antimicrobial resistance in bacteria has reduced the efficacy of antibiotics in treating the disease. To 

overcome the antimicrobial resistance issue, we used a novel approach to identify conserved and 

pathogenic drug targets to design better drug therapeutics against bovine TB. For designing an in-silico 

vaccine for bovine tuberculosis, the framework created in objective 2 was used. A novel subtractive 

genomic approach was developed for identifying bovine TB drug targets. This approach was used to 

determine the drugs targets that are conserved, essential, antigenic and have unique metabolic 

pathways in Mycobacterium bovis. The detailed method for drug target identification is explained in 

chapter 5. The strategy developed for identifying drug targets is generic and can be used for other 

zoonotic infectious diseases. 

 

1.4 Organization of the thesis  

This research provides an in-depth exploration of the TB bacteria's distinctive set of strategies for 

survival and the different defence mechanisms it uses against drugs and vaccines. It provides a 

potential solution to each research question. This research makes novel contributions to the field of 

vaccine development for tuberculosis. It also makes an effort to understand the global pattern of drug 

mutations for improving current treatment plans and developing new diagnostic techniques. 

Conducting laboratory or in-vitro studies on Mycobacterium tuberculosis and Mycobacterium bovis 

would be time-consuming and expensive. In this research, various bioinformatics tools and software 

have been used to computationally analyse the TB bacterial genome to provide a potential solution to 

reduce the burden from TB disease through vaccine and drug development. Using a number of 

prediction tools together to achieve checks and balances, our research framework aimed to reduce 

the chance of errors and provide accurate results.  

 

The thesis is divided into six chapters. Figure 1.4 explains the overall thesis organization.  
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Figure 1. 4: Overall thesis organization in six chapters 

 

Chapter 1 provides a brief introduction to infectious diseases and TB and the emergence of 

antimicrobial resistance. This chapter highlights the importance of vaccines in reducing the burden of 

infectious diseases and TB. The research problem, three research objectives and approaches used in 

accomplishing each objective are summarised in this chapter. Chapter 2 provides a detailed review of 

why the existing drugs and vaccines against tuberculosis are not adequate. It explains the pathogenesis 

of TB, the human immune response and evasion strategies of Mycobacterium tuberculosis from an 

immune response perspective. The challenges in developing new drugs and vaccines for TB treatment 

and potential solutions to address the challenges are discussed. Chapter 3 corresponds to the first 

objective, which deals with understanding the impact of mutations on the first-line TB drug targets. 

This chapter provides an in-depth understanding of the impact of mutations at the evolutionary, 

functional and structural levels. The method developed in this chapter can also help when studying 

future mutations and there is scope to introduce new steps in the method to improve it. Chapter 4 

focuses on the second objective, which is developing an in-silico vaccine against human tuberculosis. 

The chapter describes the method proposed for developing a potentially safe, conserved and 

immunogenic epitope-based in-silico vaccine using reverse vaccinology, immunoinformatics and 

structural vaccinology. The evaluation of the humoral and cell-mediated immune responses generated 

by the TB vaccine is also described in this chapter. The vaccine identified is expected to evoke a specific 

immune response to provide broad immune protection against many Mycobacterium tuberculosis 

strains. Chapter 5 corresponds to the third objective, which deals with developing a method for 

Chapter 1- Introduction

Chapter 2- Why are the existing TB vaccine and drugs not effective? A potential
solution to the problem

Chapter 3- A comprehensive analysis of first-line tuberculosis drug resistant mutations
to understand the survival strategy of Mycobacterium tuberculosis

Chapter 4- Developing and testing a conceptual and computational framework
towards an effective human TB vaccine

Chapter-5 Identification of therapeutic vaccine and drug candidates against
Mycobacterium bovis

Chapter 6- Summary and conclusion
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proposing a potential therapeutic vaccine and drug targets for bovine tuberculosis. The vaccine is 

produced using the same method as objective 2. A conceptual method to identify drug targets against 

Mycobacterium bovis is described in the chapter. Finally, a summary of the entire thesis is given in 

chapter 6, which provides an overview of the research with important highlights, conclusions, and 

suggestions for future. 
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Chapter 2 

Why are the existing TB vaccine and drugs not effective? A potential 

solution to the problem 

The available anti-TB therapies have led to a 50% reduction in mortality rate since 1990. Still, millions 

of people are getting infected and dying from the TB disease. The low efficacy of BCG and the 

emergence of drug resistance are the main challenges to eliminating TB globally. This research is 

designed to provide potential solutions by developing efficient therapeutic tools (vaccine and drugs) 

for treating TB through a deep understanding of the disease. Thus, it is crucial to understand host-

pathogen interactions and the underlying mechanisms Mycobacterium tuberculosis uses to evade the 

vaccine and drug treatment. Section 2.1 discusses the history of TB, the epidemiology, cell wall 

structure and genome of Mycobacterium tuberculosis and the pathogenesis of TB. This section explains 

TB disease progression, the multitude of immune responses generated by the host’s immune system 

and mechanisms used by Mycobacterium tuberculosis to evade those responses. Section 2.2 reviews 

the current treatments (vaccine and drugs) available and highlights the crucial factors that make the 

treatments ineffective. Section 2.3 describes the challenges for developing new drugs and vaccines. 

Section 2.4, in the latter part of the chapter, provides knowledge about what efforts can be made in 

TB vaccine and drug development to provide potential therapeutic tools. 

 

2.1 Tuberculosis- a persisting infectious disease 

TB is an evolving deadly disease caused by one of the world’s most infectious bacteria, Mycobacterium 

tuberculosis. According to the World Health Organization (WHO), tuberculosis is a global threat with 

significant mortality and morbidity rates (Pieters, 2008; Wlodarska et al., 2015) (WHO Global 

tuberculosis Report, 2020). Despite the advances in medical sciences, TB remained the cause of death 

for 1.4 million people in 2019 and was responsible for 10.0 million new cases worldwide (WHO Global 

Tuberculosis Report, 2020). According to the world’s oldest literature, TB has plagued some of 

humanity's earliest civilizations (Zimmerman, 1979). Today, vaccine and drug therapy are the two most 

important human countermeasures against TB. However, Mycobacterium tuberculosis has developed 

several ways to destabilize the human immune response by adapting to the host's changing 

environment and spreading the infection to other parts of the body. This high level of adaptation has 

led to the evolution of Mycobacterium tuberculosis and the resulting rise in resistant strains. The 

widespread emergence of TB resistant strains has challenged the view of tuberculosis as a treatable 

disease. 
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2.1.1 History of tuberculosis 

Mycobacterium tuberculosis has plagued some of the earliest civilizations. DNA findings in ancient 

Egyptian remains have provided evidence that tuberculosis is well over 3000-5000 years old 

(Zimmerman, 1979). Since ancient times, tuberculosis has been an epidemic and had been called by 

many names, such as, white plague, phthisis, scrofula, Pott’s disease. Hippocrates was the first to 

describe phthisis as a pulmonary infection manifesting as weight loss, cough, and blood in the sputum, 

which gradually led to death. In the 16th century, Italian physician, Girolamo Fracastoro, proposed a 

theory that the disease was transmitted by microorganisms that are invisible to the naked eye. 

Benjamin Marten, in 1720, published information about the infectious origin of tuberculosis in his 

publication “A new Theory of Consumption.” He stated that TB could be caused by tiny living creatures 

that could lead to the symptoms and lesions of tuberculosis (Hardy, 1999). In 1793, Mathew Baille, a 

Scottish pathologist, named phthisic abscesses “tubercules” (Houston, 1999). In 1854, Hermann 

Brehmer, a botany student suffering from tuberculosis, submitted his doctoral dissertation 

“Tuberculosis is a curable disease,” describing the first successful remedy to cure tuberculosis. As 

suggested by his doctors, he travelled to a healthier climate, the Himalayan mountains, to get rid of TB 

(Daniel, 2011). In 1895, Jean-Antoine Villemin, a French military surgeon, demonstrated the infectious 

nature of tuberculosis by inoculating a rabbit with purulent liquid obtained from a tuberculous cavity 

of a patient who died from TB (Daniel, 2006). The history of TB dramatically changed when Robert 

Koch, a German physician, discovered Mycobacterium tuberculosis, in 1882. He named it Koch’s 

bacillus. Robert Koch presented his findings on the infectious cause of tuberculosis on the evening of 

24 March 1882, a day commemorated as World TB Day. In his presentation, he not only demonstrated 

the identification of tubercule bacteria but also provided his famous “Koch postulates.” Koch 

postulates are as follows: (i) the microbes should be present in abundance in organisms suffering from 

the disease and should not be found in healthy organisms, (ii) the microbes can be taken from an 

infected host and grown independently in pure culture, (iii) the cultured microbe should cause disease 

when introduced into a healthy host and (iv) the microbe isolated and identified from the host (healthy 

host who was infected by the microbe in (iii)). Koch was awarded the Noble Prize in Physiology and 

Medicine in 1905 for identifying the TB bacterium.  

2.1.2 Epidemiology of tuberculosis 

As stated earlier, in 2019, about 10.0 million new TB cases were reported worldwide (Figure 2.1), and 

approximately 5.8 million (56%) were men, 3.2 million (32%) women and 1.0 million (12%) were 

children (WHO Global Tuberculosis Report, 2020). HIV-infected patients accounted for 2.7 million 

(11%) of all new TB cases. The prevalence of TB is the highest in South-East Asia (44%), Africa (25%) 

and the Western Pacific (18%). India, Indonesia, China, Nigeria, Philippines, Pakistan, Bangladesh and 

South Africa are the top eight countries, accounting for two-thirds of the total global cases. Therefore, 
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global progress on eradicating TB depends on significant advances in TB prevention and care in these 

countries (WHO Global tuberculosis Report, 2020). Further, as stated earlier, there were 1.2 million 

deaths from TB in 2019 and an additional 0.2 million deaths from tuberculosis in HIV-positive people. 

Resembling prevalence of TB, low-income and low-middle income countries in the world find TB to be 

one of the leading causes of death.  

 

 

Figure 2. 1: Estimated TB incidence rates in 2019 (Sourced from WHO Global TB Report, 2020) 

 

The burden of tuberculosis can be measured in terms of: 

1. Incidence (number of new and relapse cases at a specific point in time) 

2. Prevalence (number of cases at a given point in time) 

3. Mortality (number of deaths at a given point in time) 

4. Fatality rate (number of persons dying from tuberculosis among all persons with the disease) 

5. Attack rate (number of cases developing tuberculosis among all persons who were exposed to 

the disease) 

 

The emergence and spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-

resistant tuberculosis (XDR-TB) is of great concern when treating infected patients. MDR-TB is defined 

as tuberculosis that shows resistance to at least two crucial first-line anti-TB drugs, isoniazid and 

rifampicin, with or without resistance shown to other first-line drugs (WHO Global tuberculosis Report, 



 21 

2020). MDR-TB is a serious global concern and outbreaks have been reported in many countries. In 

2019, 0.5 million new MDR-TB cases were reported. The incidence rate has reduced compared to the 

incidence in 2019; however, 0.2 million still died from MDR-TB in 2019 (WHO Global tuberculosis 

Report, 2020). The majority of new cases of MDR-TB was seen in South-East Asia, Western Pacific and 

Africa (Figure 2.2). MDR-TB requires prolonged treatment using expensive and highly toxic, second-

line anti-TB drugs. Extensively drug-resistant TB is a form of TB where Mycobacterium tuberculosis 

shows resistance to isoniazid and rifampicin (MDR-TB) as well as fluoroquinolone and all of the second-

line anti-TB injectable drugs (amikacin, kanamycin or capreomycin) (WHO Global tuberculosis Report, 

2020). A total of 12,350 new XDR-TB cases were notified in 2019. 

 

 

Figure 2. 2: Incidence of new cases of MDR-TB reported in 2019 by the World Health Organization 
(WHO). The majority of new cases of MDR-TB occurred in South-East Asia, Western 
Pacific and Africa 

 

2.1.3 Mycobacterium tuberculosis- the causative agent of tuberculosis 

2.1.3.1 Taxonomy 

Kingdom:  Bacteria 

Phylum:  Actinobacteria 

Order:   Actinomycetales 

Suborder:  Corneybacterineae 

Family:   Mycobacteriaceae 

Genus:   Mycobacterium 

Species:  tuberculosis 



 22 

2.1.3.2 Morphology 

Mycobacterium tuberculosis is a rod-shaped, acid-fast bacillus measuring around 0.2-0.6 μm in width 

and 1.5-4 μm in length. It is a weakly gram-positive, slow-growing and an obligate aerobe. Under an 

electron microscope, tubercle bacilli appear as straight or slightly curved rods (Figure 2.3). According 

to growth conditions and the age of the culture, bacilli may vary in size and shape. Some of the bacilli 

may have coccobacillus, filamentous and branched growth in the form of long rods. Irregular staining 

and mechanical damage to the cell wall during smear preparation may cause a beaded appearance in 

some stained bacilli. Cell division by Mycobacterium tuberculosis usually takes 20-24 hours and it can 

be cultured in three to five weeks using Lowenstein-Jensen medium. 

 

      
 

Figure 2. 3: Mycobacterium tuberculosis scanning electron micrograph (Image source: 
http://textbookofbacteriology.net/tuberculosis.html) 

 

2.1.3.3 Cell wall structure 

The cell wall of Mycobacterium tuberculosis has a complex structure that provides specific 

characteristics such as virulence and resistance to antibiotics. It mainly contains mycolic acid (MA), 

which makes up to 50% of the dry weight of the cell (Kleinnijenhuis et al., 2011). In principle, the cell 

wall consists of an inner layer and an outer layer (Figure 2.4). The inner layer consists of peptidoglycan 

(PG), phosphatidyl-myo-inositol mannoside (PIM) and arabinogalactan (AG) (Torrelles & Schlesinger, 

2010). Peptidoglycan is composed of peptides and glycan. The glycan strand consists of repeating units 

of N-acetylglucosamines (NAG) attached to N-acetylmuramic acid (NAM) (Trias et al., 1992). The 

peptidoglycan helps in preventing osmotic lysis in the Mycobacterium tuberculosis cell. The highly 

cross-linked network of peptidoglycan maintains the shape of the bacteria. Arabinogalactan is the most 

important polymer present next to peptidoglycan in the cell wall. It is linked to peptidoglycan by a 

unique diglycosylphosphoryl bridge, containing NAG and rhamnose. Arabinogalactan comprises a 

http://textbookofbacteriology.net/tuberculosis.html
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galactose backbone with arabinose branches and provides strength to the Mycobacterium tuberculosis 

cell wall (Trias et al., 1992; Trias & Benz, 1994).  

 

Figure 2. 4: Structure of cell wall of Mycobacterium tuberculosis showing the components of the 
outer and inner layers of the cell wall and their distributions (Kleinnijenhuis et al., 2011) 

 
The outer compartment consists of mycolic acid, mannose-capped lipoarabinomannan (Man-LAM) and 

mannoglycoproteins (Torrelles & Schlesinger, 2010). Mycolic acids are the most significant 

components of a cell wall and are unique α-branched lipids linked to a hexa- arabinose motif by ester 

linkages at the terminus of the branched arabinogalactan (Trias & Benz, 1994). Mycolic acid molecules 

are responsible for providing resistance to the lysosomal enzymes of the host cell (Brennan & Nikaido, 

1995). A thick layer of mycolic acid impairs the entry of nutrients into the mycobacteria and is the main 

reason behind the slow growth of Mycobacterium tuberculosis. InhA, involved in synthesising mycolic 

acid, is an important drug target for isoniazid and ethionamide (Ahmad & Mokaddas, 2014). Man-LAM, 

present on the surface of Mycobacterium tuberculosis, is an important virulence factor (Strohmeier & 

Fenton, 1999; Torrelles & Schlesinger, 2010). It binds to the mannose receptor present on the surface 

of the alveolar macrophage of the host, leading to its entry into the host cell (Torrelles & Schlesinger, 

2010). LAM also helps in resisting the host’s cellular oxidative response. Mannoglycoproteins are 

secreted by mycobacteria that help in the growth of the cell. The porin present in the cell wall 

facilitates the transport of substances. The cell wall is hydrophobic and has a strong, permeable barrier, 

making it naturally resistant to host defence mechanisms and antibiotics. 

2.1.4 Transmission of tuberculosis 

Tuberculosis is a contagious disease and persons having active pulmonary tuberculosis are the sources 

of transmission for the disease. Mycobacterium tuberculosis can be released into the environment by 

the infected person through coughing, sneezing, speaking loudly or singing, in the form of aerosol 

droplets. The infection begins when healthy individuals inhale these aerosol droplets. The transmission 

process of tuberculosis is very efficient as these droplets can persist in the environment for several 
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hours. The infectious dose is very low, i.e., fewer than ten bacilli are needed to start an infection. The 

risk of transmission is dependent on numerous factors, such as the number of organisms being 

expelled into the air, the concentration of microorganisms in the air determined by the volume of the 

space and its ventilation, the duration of time an exposed person breathes the contaminated air and 

the immune status of the exposed person (Churchyard et al., 2017). An infected person takes three to 

four weeks to transmit the disease to another healthy person. Other factors influencing tuberculosis 

transmission include poor nutrition, HIV infection, close contact within highly populated areas, and 

intravenous drug use (Jerant et al., 2000). 

2.1.5 Genome of Mycobacterium tuberculosis 

The genome of the strain Mycobacterium tuberculosis H37Rv was first published in 1998. The circular 

genome consists of 4,411,529 base pairs with around 4000 genes and contains a high G+C content of 

about 65.6% (Cole et al., 1998). The genome also comprises six pseudogenes. Table 1 shows the 

classification of Mycobacterium tuberculosis H37Rv genes and their function.  

 

Table 2. 1: General classification of Mycobacterium tuberculosis H37Rv genes (Smith, 2003) 

 

Function No. of genes % of total 
genes 

% of total 
coding 
capacity of 
total genes 
in genome 

Lipid metabolism 225 5.7 9.3 

Information pathways 207 5.2 6.1 

Cell wall and cell processes 517 13.0 15.5 

Stable RNAs 50 1.3 0.2 

IS elements and bacteriophages 137 3.4 2.5 

PE and PPE proteins 167 4.2 7.1 

Intermediary metabolism and respiration 877 22.0 24.6 

Regulatory proteins 188 4.7 4.0 

Virulence, detoxification and adaptation 91 2.3 2.4 

Conserved hypothetical function 911 22.9 18.4 

Proteins of unknown function 607 15.3 9.9 
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About 6% of the genome is involved in lipid metabolism and this is considered an essential part of the 

Mycobacterium tuberculosis genome (Cole et al., 1998; Smith, 2003). Out of the 225 genes involved in 

lipid metabolism, 100 genes, required for β-oxidation of fatty acids, are necessary for the pathogen's 

survival inside the host body. In addition, fatty acids are thought to be a significant carbon source 

essential for the growth of Mycobacterium tuberculosis inside macrophages (Smith, 2003).  

 

One of the distinctive features of the Mycobacterium tuberculosis genome is the presence of 167 genes 

belonging to acidic, glycine-rich protein families named the PE and PPE protein families. PE (proline-

glutamate) and PPE (proline-proline-glutamate) sequences, 110 and 180 amino acids in length, 

respectively, are present in the conserved N-terminal regions of each of the PE and PPE protein families 

(Brosch et al., 2000; Smith, 2003). Out of 167 genes, 104 genes belong to the PE family and 68 belong 

to the PPE family (Brosch et al., 2000). Proteins belonging to these protein families, present in the cell 

wall and cell membrane (Banu et al., 2002), are the main reason for the antigen variability in 

Mycobacterium tuberculosis (Banu et al., 2002; Smith, 2003). These proteins can play an important 

role in vaccine design and development. 

 

The 188 regulatory genes present in the genome include 13 sigma factors required for transcription 

regulation and 13 two-component regulatory genes necessary for signal transduction (Smith, 2003). 

Out of 517 genes involved in cell wall and cell processes, 125 genes are needed for transportation 

processes. Most of the genes present in the cell walls are involved in intermediary metabolism, and 

cell wall and cell processes. Fifteen per cent of the genes in the cell wall are required for lipid 

metabolism and 5% for virulence, detoxification and adaptation. KatG, rpoB, inh-A, ahpC, gyrA, pncA, 

rpsL and rrs are examples of genes involved in TB drug resistance. In addition, 19-kDa is an essential 

lipoprotein engaged in suppressing the human immune response (Hestvik et al., 2005). The two genes, 

sodA and sodC, encode the superoxide dismutase required for protecting Mycobacterium tuberculosis 

against reactive oxygen species (ROS) inside the alveolar macrophages (Piddington et al., 2001). 

 

Table 2.2 shows the size and number of genes of some sequenced genomes. Accordingly, the genome’s 

size varies from 4.33-4.41 million base pairs (MB) and the number of genes varies from 4008-4846.  
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Table 2. 2: List of some completely sequenced Mycobacterium tuberculosis members 

Organism Genome size (MB) No. of genes 

Mycobacterium tuberculosis H37Rv 4.41 4008 

Mycobacterium tuberculosis CDC1551 4.40 4282 

Mycobacterium tuberculosis H37Ra 4.41 4296 

Mycobacterium tuberculosis F11 4.42 4288 

Mycobacterium tuberculosis KZN1435 4.39 4277 

Mycobacterium tuberculosis str. Haarlem 4.40 4271 

Mycobacterium tuberculosis KZN4207 4.39 4271 

Mycobacterium tuberculosis KZN605 4.39 4276 

Mycobacterium tuberculosis CCDC5180 4.40 4284 

Mycobacterium tuberculosis str. Erdman= ATCC 35801 4.39 4284 

Mycobacterium tuberculosis str. Beijing/NITR203 4.41 4294 

Mycobacterium tuberculosis EAI5/NITR206 4.39 4272 

Mycobacterium tuberculosis CCDC5079 4.41 4285 

 

2.1.6 Immune response against tuberculosis 

Before understanding how the immune system responds to TB infection, it is essential to have a basic 

understanding of the immune system.  

2.1.6.1 Overview of the immune system 

The immune system comprises immune cells that undertake functions to protect the host body in 

response to an infection. The mammalian immune system includes the innate (natural) and adaptive 

immune systems (Marshall et al., 2018). The innate immune system provides the first line of defence 

by eliminating an infection in its initial stages. The innate immune system also plays a vital role in the 

activation of the adaptive immune system. The innate immune system recognizes conserved microbial 

structures called pathogen-associated molecular patterns (PAMPs) (Hoffmann, 1999; Medzhitov & 

Janeway, 2000). The PAMPs interact with the toll-like receptors (TLR) present on the surface of 
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antigen-presenting cells (APCs), causing activation of the adaptive immune system resulting in 

elimination of the infection (Hoffmann, 1999; Marshall et al., 2018; Medzhitov & Janeway, 2000).  

 

There are two types of responses produced by the adaptive immune system: a humoral immune 

response (activation of B-lymphocytes) and a cell-mediated immune response (activation of T-

lymphocytes) (Tomar & De, 2014). In humoral immunity, extracellular microbes are eliminated by 

antibodies secreted by B-lymphocytes. B-lymphocytes differentiate into B-effector cells, secreting 

antibodies, and memory B-cells. In cell-mediated immunity, helper and cytotoxic T-lymphocytes play 

a role in eradicating the infection. The activation of T-lymphocytes is dependent on the presentation 

of antigens/epitopes by MHC molecules. MHC molecules are glycoproteins present on the surface of 

the APCs and their main task is to present epitopes to the T-cell receptors of T-cells (Figure 2.5). MHC 

class-I molecules present the antigen to the cytotoxic T-lymphocyte (CTL) and MHC class-II molecules 

present it to the helper T-lymphocyte (HTL) (McMaster et al., 2015; Tomar & De, 2014). CTL can directly 

kill the pathogenic antigens or infected cells, whereas HTL plays an indirect role in eliminating the 

infection. HTL instructs the immune cells and releases the cytokines to activate the APCs, CTL and B-

cell to kill the pathogen (Medzhitov & Janeway, 2000). 

 

 

Figure 2. 5: Classical pathway of presentation of antigens/epitopes by MHC present on the surface 
of APC to TCR of T-cell. Figure created using template from Biorender 
(https://biorender.com/)  

 

2.1.6.2 Innate immune response to Mycobacterium tuberculosis 

Mycobacterium tuberculosis is usually transmitted as droplet nuclei by inhalation. Most of the larger 

droplets are blocked by the epithelium of the upper respiratory tract, where an infection is unlikely to 

develop (McNerney et al., 2012; Rohde et al., 2007). ). The smaller droplet nuclei reach the tiny air sacs 
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where the actual infection begins. Once in the lung, alveolar macrophages provide the body’s first line 

of defence against Mycobacterium tuberculosis. The immune system can clear the infection only if the 

innate immune system is activated correctly. The toll-like receptors present on the surface 

macrophage recognizes the foreign proteins (PAMPS) present on Mycobacterium tuberculosis and 

phagocytoses, forming a space called a phagosome (Yuk & Jo, 2014). TLR-2, 4 and 9 are essential 

immune receptors for TB bacteria (Adami & Cervantes, 2015; Ferluga et al., 2020; Rivas-Santiago et al., 

2008). The phagosome fuses with lysosomes within macrophages to form a phagolysosome (Vergne 

et al., 2003; Yuk & Jo, 2014). After fusion, the hydrolytic molecules of the lysosome inhibit the 

replication of Mycobacterium tuberculosis and lead to its breakdown. The proteolytic activity of the 

proteasome helps in the fragmentation of whole pathogenic bacterium. However, Mycobacterium 

tuberculosis has developed several ways to subvert the killing mechanisms that allow the replication 

and proliferation of bacteria. In the first three weeks of infection, most individuals do not show any 

symptoms of infection (asymptomatic) or may only have a mild flu-like illness. 

2.1.6.3 Adaptive immune response to Mycobacterium tuberculosis 

Approximately three weeks after the initial infection, adaptive immunity attempts to wall off the 

Mycobacterium tuberculosis and prevent it from spreading. Figure 2.6 presents the stages of the 

adaptive immune response against Mycobacterium tuberculosis. First, the alveolar macrophage 

presents mycobacterium antigens to CD4+ T helper cells through MHC class II and MHC class I to CD8+ 

cytotoxic T lymphocytes, leading to the activation of the lymphocytes (Dheda et al., 2010). Upon 

activation, T-helper cells release interferon-gamma (IFN-ɣ) to perform bactericidal activity and 

enhance the killing of Mycobacterium tuberculosis present within the macrophages by the production 

of nitric oxide (NO) and reactive oxygen species (Adami & Cervantes, 2015; Rohde et al., 2007). The 

infected macrophages then release pro-inflammatory cytokines, such as interleukin-12 (IL-12), IL-23 

and tumour necrosis factor-alpha (TNF-α), which lead to the recruitment of mononuclear cells from 

nearby blood vessels (Figure 2.6)  (Dheda et al., 2010; Schaible & Kaufmann, 2000). Finally, the release 

of IL-4, IL-5 IL-10 and IL-13 by T-helper cells promote the activation of B-lymphocytes leading to 

antibody production. The role of B-lymphocytes in protecting against TB is still not clear. However, 

researchers are working to provide experimental evidence in support of cellular immunity provided by 

B-lymphocytes. The immune cells surround the site of primary infection and form a mass of tissue 

called a granuloma. 

 

The roles of some of the cytokines involved in the immune response are described below: 

 Interferon-gamma (IFN-γ): T-helper cells release interferon-gamma (IFN-ɣ) to enhance the 

killing of Mycobacterium tuberculosis present within the macrophage by the production of 

nitric oxide (NO) and reactive oxygen species (ROS) (Ferluga et al., 2020; Rohde et al., 2007). 
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 Tumour necrosis factor-alpha (TNF-α) plays a vital role in forming granuloma, activating 

alveolar macrophages. In addition, TNF-α has several immunoregulatory properties for the 

containment of the disease (Ferluga et al., 2020; Pal et al., 2016). 

 IL-12 is produced mainly by alveolar macrophages after the phagocytosis of TB bacteria and 

has a crucial role in the production of IFN-γ. Therefore, the expression of IL-12 receptors is 

increased at the disease site (Pal et al., 2016). 

 IL-4 expression causes suppression of IFN-γ production. It is also involved in the activation of 

macrophages (van Crevel et al., 2002). In the later stages of infection, the expression of IL-4 is 

related to progression of disease, reactivation of latent infections and intensified tissue 

damage (Schindler et al., 2001). 

 IL-10: The macrophages produce IL-10 after the phagocytosis of TB bacteria (van Crevel et al., 

2002). Expression of IL-10 downregulates the production of IFN-γ, TNF-α and IL-12 (Ferluga et 

al., 2020). 

 

Figure 2. 6: Adaptive immune response against Mycobacterium tuberculosis. Figure created using 
template from Biorender (https://biorender.com/)  

 

2.1.7 Disease progression 

The development of a TB infection depends on the patient’s immune system. Progression of infection 

includes primary tuberculosis, secondary tuberculosis, miliary tuberculosis and extrapulmonary 
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disease (Knechel, 2009; S. Sharma & Mohan, 2004). Primary TB usually occurs in the upper part of the 

lower lobe and lower part of the upper lobe of the lungs. It is generally asymptomatic and, in most 

cases, primary TB is contained. In the case of healed TB, the site of infection becomes fibrosed and, 

later, calcified. The calcification may be seen on a chest X-ray. In other instances, TB infection may 

progress either to active tuberculosis, i.e., progressive lung disease or miliary tuberculosis. In miliary 

tuberculosis, the infection spreads from the lung to other parts of the body through lymph nodes or 

blood vessels. A different fate of a primary infection is latent tuberculosis. In this later case, bacterial 

growth is arrested but may get activated if the patient’s immune system become suppressed. 

Secondary tuberculosis refers to a pattern of TB that develops in a previously sensitized individual. It 

can develop from the re-activation of latent TB or by re-infection with Mycobacterium tuberculosis. 

The re-activation of TB can result from alcoholism, smoking, poor nutritional status or reduced 

immunity. The site of secondary tuberculosis is the apex of the lungs. In extrapulmonary disease, the 

infection spreads to other parts of the body, such as, the central nervous system (CNS), kidney, liver 

and the condition becomes fatal. 

2.1.8 Survival mechanisms of Mycobacterium tuberculosis 

Mycobacterium tuberculosis is a pathogen that has developed several mechanisms for subverting the 

innate and adaptive immune responses.  

1. Sulfatides (anionic glycolipids) present in Mycobacterium tuberculosis, prevent 

phagolysosomal fusion facilitating the existence and replication of bacteria (Goren, 1977).  

2. Mycobacterium tuberculosis can modify the expression of the Rab5 present on the 

phagosome, thus inhibiting of fusion of phagosome and lysosome (Ankley et al., 2020; Clemens 

et al., 2000; Vergne et al., 2005).  

3. TACO (tryptophan-aspartate containing coat) protein, usually not expressed in macrophages, 

is present on the phagosome wall. Expression of TACO protein prevents the degradation of 

Mycobacterium tuberculosis by inhibiting the fusion of the phagosome with the lysosome 

(Ferrari et al., 1999). 

4. Mycobacterium tuberculosis relies on inhibition of IFN-ɣ by the help of 19-kDa lipoprotein 

(Hestvik et al., 2005). 

5. Two genes, sodA and sodC, encode the superoxide dismutase required against ROS and 

convert it to molecular oxygen to protect Mycobacterium tuberculosis inside the alveolar 

macrophages (Piddington et al., 2001). 

6. PE11, a PE and PPE protein family member, is involved in the pathogenesis of TB and 

macrophage persistence (Deng et al., 2015) and PE65 evades the adaptive immune response 

by obstructing the helper-T cell response (Khubaib et al., 2016). 
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7. The secretory system of TB bacteria plays a vital role in the pathogenesis of Mycobacterium 

tuberculosis. For example, ESAT-6 regulates macrophage apoptosis and ESX-1 and ESX-5 

subvert the defence action of alveolar macrophages (Ates et al., 2016; McLaughlin et al., 2007; 

Shah & Briken, 2016). 

8. Lipoarabinomannan (LAM) in the cell wall plays a vital role in phagosome maturation arrest 

(Strohmeier & Fenton, 1999).  

9. The induction of suppressor of cytokine signalling inhibits the differentiation of helper-T cells, 

thus, escaping from antigen presentation (Nagabhushanam et al., 2003). 

10. Mycobacterium tuberculosis can also produce ammonia in large quantities, thereby preventing 

its acidification. 

2.1.9 Signs and  Symptoms 

Early symptoms of pulmonary tuberculosis can include - 

 Cough with sputum for more than three weeks. 

 Weight loss, loss of appetite, fatigue and night sweats. 

 Fever, with a rising body temperature in the evening. 

The infection can progress to a more severe condition of TB with the following symptoms - 

 Chest pain. 

 Cough with blood-stained sputum. 

 Pulmonary shadow in an X-ray. 

 Increased erythrocyte sedimentation rate (ESR) that supports the investigation findings. 

 Presence of Mycobacterium tuberculosis in the clinical sample. 

 Additional symptoms relevant to the organ/tissue involved. 

2.1.10 Diagnosis of tuberculosis 

The World Health Organization stated that millions of people had missed proper diagnosis and care 

since 2000 (WHO Global Tuberculosis Report, 2020). They need more funding for universal access for 

diagnosis and testing: “Despite increases in TB notifications, there was still a large gap (2.9 million) 

between the number of people newly diagnosed and reported compared to the 10 million people 

estimated to have developed TB in 2019. This gap is due to a combination of the underreporting of 

people diagnosed with TB and under-diagnosis (if people with TB cannot access health care or are not 

diagnosed when they do)” (WHO Global Tuberculosis Report, 2020). Efforts are needed to close the 

gap between the diagnosis and treatment of tuberculosis. 
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The barriers in controlling TB are early, accurate and rapid diagnosis of the disease. Early detection of 

the disease helps in preventing transmission and ensures prompt treatment of tuberculosis. The most 

frequent sample used by a patient with a persistent and productive cough is sputum. Because most 

mycobacteria grow slowly, three to six weeks may be required to detect them on solid media growth 

(Knechel, 2009). The diagnosis of TB can be made by two methods: (i) direct detection of actively 

growing TB bacilli (sputum smear microscopy, culturing TB bacteria and molecular assays), and (ii) 

indirect detection by diagnosing the immune response of humans against TB bacilli (tuberculin skin 

test and interferon-gamma release assay). The diagnostic methods used by many countries include 

chest X-rays, Mantoux test (tuberculin skin test), Interferon Gamma Release assay (IGRA), sputum 

smear microscopy and biopsies (Katoch, 2004; Mehta et al., 2012). The chest X-ray determines the 

impact of tuberculosis on the lungs. In the Mantoux test (TST), a tuberculin purified protein derivative 

(PPD) is injected on the lower part of the arm to detect an active TB infection (Lange & Mori, 2010). 

The drawback of TST is that it does not detect latent tuberculosis. The diagnostic field in detecting TB 

has made tremendous advances over the years. New diagnostic methods are molecular-based tests 

that include amplification of nucleic acid, facilitating the rapid diagnosis of infection. MODS 

(microscopic observation of drug susceptibility) have been used to detect drug susceptibility and Xpert 

MTB/RIF is used to detect resistance towards rifampicin (Vadwai et al., 2011). 

 

2.2 Current TB treatment: Are we successfully battling tuberculosis? 

 
This section explains the drug therapy and vaccine (BCG) used for TB treatment and factors impacting 

the efficacy of current therapies. According to World Health Organization are (WHO, 2010), the aims 

of a standard treatment regime should be: 

 curing patients with active TB to reduce the mortality rate. 

 preventing reactivation of TB. 

 reducing transmission of tuberculosis.  

 preventing the progress of drug resistance. 

2.2.1 Drug therapy 

In 1943, streptomycin (STP) was the first effective anti-TB drug discovered (Schatz et al., 2005). STP is 

an aminoglycoside that interferes with mRNA translation by binding with ribosomal proteins and 

inhibiting protein synthesis of mycobacterial proteins (Flynn & Chan, 2001). At the start, TB patients 

treated with streptomycin improved, but after a few months of medication, patients' health started to 

deteriorate. The resistance shown by Mycobacterium tuberculosis was identified as the main reason 

behind the ineffectiveness of streptomycin (Crofton & Mitchison, 1948). Therefore, single anti-

mycobacterial drugs were introduced in the 1950s (isoniazid) (Middlebrook, 1954) and 1960s 
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(rifampicin) (Wehrli et al., 1968). Unfortunately, the use of a single drug for TB treatment saw a 

significant increase in deaths of TB patients. Between 1970 and 1990, there were several outbreaks of 

tuberculosis (Keshavjee & Farmer, 2012), causing more people to die. In 1993, tuberculosis was stated 

as a global public health emergency (Murray & Lopez, 1994). This emergency necessitated the use of 

multidrug combination therapies with active health programmes - named the directly observed 

treatment short-course (DOTS) strategy (Grange & Stanford, 1994). The DOTS strategy implemented 

the supervision of treatment and regular follow-up of patients by community or health care workers 

to achieve a success rate of treatment of up to 95% (Frieden, 2007). The first-line treatment regimen 

(DOTS strategy) includes an intensive phase with four drugs (isoniazid (INH), rifampicin (RIF), 

ethambutol (EMB) and pyrazinamide (PZA)) for two months followed by a continuation phase with two 

drugs (isoniazid and rifampicin) for next four months. The DOTS strategy involves taking multiple drugs 

daily for 6-12 months to combat infection and prevent a relapse of TB, depending on the health of the 

patient and success rate of the treatment (Rook & Hernandez-Pando, 1996). 

2.2.1.1 First-line anti-TB drugs 

First-line TB treatment drugs comprise isoniazid, rifampicin, pyrazinamide and ethambutol. Figure 2.7 

shows that TB drugs' mechanisms are very organized, targeting from unique aspects of cell walls to the 

genetic machinery of Mycobacterium tuberculosis. Most of the first-line drugs have bactericidal activity 

and are incredibly active against Mycobacterium tuberculosis. The most effective TB drug at killing 

replicating tubercle bacilli is isoniazid, while rifampicin is active against replicating and non-replicating 

TB bacilli. The current regimen has not changed in nearly 40 years as it is still efficacious in treating 

drug-sensitive TB patients (Seung et al., 2015). The mechanism of action of each drug is as follows: 

 

(i) Isoniazid (INH) 

Isoniazid interferes with the biosynthesis of the cell wall and possesses bactericidal activity. INH is a 

prodrug that is activated inside isoniazid-susceptible species. Isoniazid passively diffuses through the 

cell wall and gets activated by the catalase-peroxidase enzyme (katG) of the mycobacterial species 

(Zhang et al., 1992). The activation of isoniazid results in highly reactive oxidants such as superoxide, 

hydrogen peroxide, alkyl hydroperoxides and highly acylating groups. These oxides attack multiple 

targets in the cell wall of Mycobacterium tuberculosis (Johnsson & Schultz, 1994; Timmins & Deretic, 

2006). Specifically, activated INH prevents the action of enoyl-acyl carrier protein reductase (inhA) 

(Quemard et al., 1995), an essential component of the fatty acid synthetase II (FAS-II) complex required 

for mycolic acid synthesis (Rawat et al., 2003; Vilchèze et al., 2000). Mycolic acids are essential 

components of the cell wall (Figure 2.4) and inhibition of mycolic acid will disrupt the cell wall, 

ultimately leading to the death of Mycobacterium tuberculosis (Zhang, 2005).  
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(ii) Pyrazinamide (PZA)  

Pyrazinamide is also a prodrug, which is activated into pyrazinoic acid (POA) (Scorpio & Zhang, 1996) 

with the help of the Mycobacterium tuberculosis enzyme, pyrazinamidase (pncA) (Salfinger et al., 

1990). PZA interferes with cell wall synthesis by targeting the enzyme fatty acid synthase I (FAT-I). PZA 

has excellent sterilizing activity against semi-dormant Mycobacterium tuberculosis bacilli (Sun et al., 

2002) and is usually given with rifampicin to shorten the duration of TB treatment (Mitchison, 1985).  

 

 

Figure 2. 7: Mechanism of action of first-line TB drugs. The TB drugs target Mycobacterium 
tuberculosis in a very organized manner. First, it weakens the cell wall and cell 
membrane and targets the Mycobacterium tuberculosis genetic machinery. (Figure 
created using template from Biorender (https://biorender.com/) 

 

(iii) Ethambutol (EMB) 

EMB, a bacteriostatic agent, was added to the DOTS treatment regimen to reduce the occurrence of 

drug-resistant tuberculosis. EMB enters mycobacterial cells through the porin protein channel. It 

inhibits cell wall synthesis by interacting with the membrane-associated arabinosyl transferase enzyme 

(emb CAB) (Deng et al., 1995). The embCAB operon, consisting of three genes embC, embA and embB 

(Telenti et al., 1997), encodes the protein, arabinofuranosyl transferase. The encoded protein is 

required to synthesise arabinogalactan, an essential structural component of the cell wall of 

Mycobacterium tuberculosis (Sahu et al., 2015) (Figure 2.4). 

 

(iv) Rifampicin (RIF) 

Rifampicin has an excellent bactericidal effect on actively growing Mycobacterium tuberculosis cells 

and a sterilizing action on semi-dormant tubercle bacilli (Somoskovi et al., 2001). Once inside 
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Mycobacterium tuberculosis, RIF inhibits mRNA transcription by binding to the β-subunit of the DNA-

dependent RNA polymerase (RNAP) (Pang et al., 2013). Thus, the inhibition of protein synthesis leads 

to cell death; however, the actual mechanism of destruction of Mycobacterium tuberculosis cell by 

transcription inhibition is not entirely understood (Koch et al., 2014).  

 

2.2.1.2 Drug resistance 

Drug resistance is described as a decrease in the sensitivity of a strain to a satisfactory degree when it 

encounters a drug. The emergence of drug resistance in tuberculosis is not a new phenomenon. 

Mycobacterium tuberculosis strains showed resistance to streptomycin in 1944 (Zhang & Yew, 2009). 

The evolution of the Mycobacterium tuberculosis complex has led to the development of survival 

strategies, linked with point mutations in the coding region of first-line TB drug targets (catalase-

peroxidase, pyrazinamidase, arabinosyl transferase and DNA-directed RNA polymerase subunit beta), 

leading to the daunting scenario of drug resistance. Drug-resistant TB bacterial strains have many 

mechanisms to make drugs ineffective, such as preventing entry of drug molecules into the bacterial 

cell with the help of impermeable cell walls, alteration of the drug target protein by random, single or 

multistep chromosomal point mutations and expelling the drugs by the transmembrane drug efflux 

systems of the bacterial cell wall (Cohen et al., 2014; Nachega & Chaisson, 2003; Peñuelas-Urquides et 

al., 2018). Other factors associated with the available tuberculosis treatments (Chan & Iseman, 2002; 

Jasmer et al., 2002; Narita et al., 1998; Szakacs et al., 2006; van den Boogaard et al., 2009; Volmink & 

Garner, 2007) are: 

 inadequate or inefficient administration of TB drugs and ignorance of healthcare workers in 

the treatment and control of TB 

 poor case holding, use of poor quality/sub-standard drugs and insufficient or irregular TB drug 

supplies 

 drug intolerance and toxicity 

 poor compliance of patients to the prescribed regimens. 

 availability of anti-TB drugs without prescription 

 illiteracy and low socio-economic status of patients 

 coinfection with HIV. 

 delay in the identification and susceptibility testing of Mycobacterium tuberculosis strains and 

failure to identify pre-existing drug resistance. 

Tuberculosis bacteria showing resistance to a single first-line drug are known as mono-resistant TB. 

Resistance to more than one drug, other than isoniazid and rifampicin, is called polyresistant TB. 

Different levels of drug resistance (monoresistance, polyresistance and multi-drug resistance) and 

failure to the complete therapy as prescribed can lead to the unfortunate outcomes from of treatment, 
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including the risk of treatment failure, continued transmission of Mycobacterium tuberculosis isolates, 

disease relapses, drug resistance, and death.  

The drug resistance mechanism in tuberculosis can be categorised as follows (Lemos & Matos, 2013): 

(i) Intrinsic resistance – this refers to the natural or inborn ability of tubercle bacilli to resist 

the action of a drug through making changes in its fundamental structural properties or 

functions, irrespective of previous exposure to the drug. For example, Mycobacterium 

tuberculosis has evolved numerous intrinsic resistance mechanisms for neutralizing the 

toxicity of chemicals, including anti-TB drugs (Nguyen, 2016). The main factors involved in 

the intrinsic resistance mechanism are as follows: 

 Cell wall permeability: the Mycobacterium tuberculosis cell wall is usually thick and 

hydrophobic due to the presence of mycolic acid and arabinogalactan (Jarlier & 

Nikaido, 1994). The unusual composition and structure of the cell wall plays a vital role 

in the resistance mechanism and provides a hydrophobic barrier to hydrophilic 

substances, including antibiotics (Karakousis et al., 2008). 

 Efflux pump:  Mycobacterium tuberculosis expels drugs or chemical reagents with the 

help of efflux pumps (Paulsen et al., 2001). The Mycobacterium tuberculosis genome 

encodes 26 ABC transporters and 18 facilitator proteins, which act as drug exporters 

(Braibant et al., 2000). The membrane-spanning proteins perform vital functions in the 

TB bacteria’s physiology and metabolism, such as transportation of nutrients, toxins, 

or signalling molecules through the cell wall. Consequently, the antibiotic resistance 

roles of many carriers could be secondary and attributable to non-specific transport 

(Nguyen, 2016).  

 Drug target mimicry: Mycobacterium tuberculosis neutralizes fluoroquinolones by a 

molecular mimicry mechanism. Overexpression of the mfpA gene results in setting 

DNA gyrase free from drug attack (Ferber, 2005). 

 

(ii) Primary resistance - Is defined as drug resistance in a TB patient who has never received 

any anti-TB drugs previously (Zhang & Yew, 2009). Primary drug resistance can occur by 

the transmission of resistant tubercle bacilli from one infected individual to another. The 

most significant factors contributing to drug resistance are poor treatment regimens, non-

compliance with drugs and poor diagnostic techniques. 

 

(iii) Acquired resistance - Acquired resistance is defined as resistance developed in a patient 

where earlier treatment was inadequate. Acquired drug resistance usually occurs through 

horizontal gene transfer or mutations (Nguyen, 2016). First-line TB drugs have been 
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designed for Mycobacterium tuberculosis target proteins that play a vital role in biological 

processes and functions, such as physiology, metabolism and translation of proteins. Thus, 

a mutation in a drug target protein causes structural or functional changes, eventually 

leading to a decrease in the drug’s binding affinity or preventing the drug from binding to 

its respective target. A mutation changes the nucleotide base and that may or may not 

change its expression, resulting in different or similar protein sequences. Mutations can 

impact the biological function of the resulting protein either by loss of function or gain of 

a new function. Depending on the resulting protein, mutations can be classified into the 

following categories: 

(i) Nonsense mutation: A mutation in the DNA leads to a premature stop codon in the 

transcribed mRNA, resulting in an abnormal function or non-functional protein 

product. 

(ii) Silent mutation (synonymous mutation): A mutation occurring within a codon that 

does not alter the resulting amino acid protein sequence. 

(iii) Missense mutation (non-synonymous mutation): A mutation in the codon that 

results in an amino acid substitution in the final protein product. 

There are few other types of mutations: insertion (addition of a new nucleotide base), deletion 

(removal/deletion of one or more nucleotide bases) and a frameshift mutation (insertion or deletion 

in a coding frame, resulting in an entirely different protein product).  

 

The compartmentalization of the Mycobacterium tuberculosis cell and a thick lipid-rich cell wall 

prevents the transfer of genetic material across it. Spontaneous chromosomal mutations are the 

leading cause of acquired resistance in Mycobacterium tuberculosis, as horizontal gene transfer has 

not been reported (Nachega & Chaisson, 2003; Nguyen, 2016; Zhang & Yew, 2009). Almost 20% of all 

TB strains are resistant to at least one primary TB drug and there is a growing incidence of multi-drug 

resistant tuberculosis (MDR-TB). Evolution has led to the development of survival strategies in TB 

bacteria, which are linked with point mutations, insertions or deletions in the first-line drug targets, 

leading to the daunting scenario of drug resistance (Cohen et al., 2014; Heym et al., 1994; Nachega & 

Chaisson, 2003; Telenti et al., 1993). Prolonged exposure to drugs helps in acquiring spontaneous 

chromosomal mutations in katG (Heym et al., 1995; Rouse et al., 1996), rpoB (Telenti et al., 1993), 

pncA (Scorpio et al., 1997; Sreevatsan et al., 1997) and emb (Ramaswamy et al., 2000) for INH, RIF, PZA 

and EMB resistance, respectively. Some laboratory studies that have been conducted to identify 

mutations in the first-line targets include: (i) mutations identified in katG S315T (Rouse et al., 1996), 

D419H, M420T, D542H, and R632C (Ando et al., 2010), (ii) studies of  rpoB identified F505L (Heym et 

al., 1994), (iii) pncA studies predicted H51P, F58L, S67P, T114P, V130G (Hirano et al., 1998), and (iv) 

mutations in embB M306I, M306L, M306V, F330V, T630I (Ramaswamy et al., 2000). 
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2.2.1.3 Global TB drug pipeline 

The World Health Organization has recommended first-line, second-line and third-line drugs to treat 

drug-susceptible and drug-resistant tuberculosis. The first-line drugs for the treatment of drug-

susceptible TB are a combination of the already mentioned INH, RIF, PZA and EMB. Second-line anti-

TB drugs are used to treat patients who have shown drug resistance to first-line drugs and the 

treatment time is extended from six to nine months (Cheng et al., 2004). Fluoroquinolone, amikacin, 

capreomycin, kanamycin and viomycin are second-line TB drugs for drug resistance (Ahmad & 

Mokaddas, 2014; Peñuelas-Urquides et al., 2018). Second-line anti-TB drugs target many essential 

functions in tubercle bacilli, such as DNA synthesis, transcription, translation and energy metabolism 

pathways (Hoagland et al., 2016; Sun et al., 2002). However, these drugs are less active and have a 

higher degree of toxicity and intolerability in patients. The third-line anti-tuberculosis drugs, linezolid, 

amoxicillin, ciofazine and thiacetazone treat multi-drug resistant tuberculosis (MDR-TB). However, the 

efficacy of these drugs is not yet evident (Dooley et al., 2013). The current treatment regime for TB 

includes drugs that are around 40 years old (Seung et al., 2015) and the success rate has reduced from 

95% to 85% (WHO Global tuberculosis Report, 2020). The emergence of drug resistance has led to the 

inhibition of important drug targets. Several programmes for drug development are in process to 

determine novel drugs that target essential mechanisms, such as energy metabolism, virulence, 

persistence, biosynthesis of the cell wall and signal transduction to ensure a shorter duration and safer 

TB regime (Lamichhane, 2011; Singh & Mizrahi, 2017). The current global TB drug development 

pipeline includes 22 drugs in phase-I, phase-II and phase-III of clinical trials, as shown in Figure 2.8 

(WHO Global tuberculosis Report, 2020).  
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Figure 2. 8: Global drug discovery development and treatment regimen for treating tuberculosis 
disease. (New drugs are listed followed by treatment regimen) (Sourced from WHO 
Global tuberculosis Report, 2020) 

 

2.2.2 TB vaccine 

A vaccine is considered the most effective method for combating an infectious disease in reducing 

incidence rates and costs and increasing safety. To achieve the WHO goals of End-TB strategy, an 

effective vaccination programme is required to prevent TB transmission. 

2.2.2.1 BCG 

For TB, the only licensed vaccine available is the BCG (Bacillus Calmette-Guérin). BCG was developed 

by Albert Calmette and Camille Gurein, in 1921, at the Institute Pasteur in France (Herr & Morales, 

2008). Calmette and Guerin followed Louis Pasteur’s principle for constructing a live-attenuated 

vaccine against the infectious disease. BCG is a live attenuated vaccine prepared from Mycobacterium 

bovis, the causative agent of TB in cattle (Brosch et al., 2007). Mycobacterium bovis has shown more 

than 95% sequence similarity to Mycobacterium tuberculosis (Garnier et al., 2003). The administration 

of BCG to children began in 1921 with no, or few, significant side effects. In 1960, the World Health 
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Organization started developing policies for BCG vaccination and in 1974, BCG was part of the 

Expanded Program of Immunization (EPI) for infants (Lahariya, 2014).  

 

When BCG is injected intracutaneously, the host body initiates the process of an anti-tuberculosis 

immune response. First, toll-like receptors (TLR-2, 4 and 9) (Bulut et al., 2005; Quesniaux et al., 2004) 

present on the APCs (macrophages and dendritic cells) recognize, internalize the injected components, 

and stimulates the production of different costimulatory molecules (innate immune response against 

BCG) (Moliva et al., 2017). This leads to the activation of the adaptive immune system (helper-T cells 

and cytotoxic-T cells) (Andersen & Kaufmann, 2014), resulting in cytokine production; for example, 

interferon- ɣ and granzymes (Covián et al., 2019; Kaufmann, 2013; Moliva et al., 2017). IFN- ɣ activates 

the macrophages leading to the destruction of vaccine components. The role of humoral immunity is 

not well understood in response to BCG (Dockrell & Smith, 2017). Memory immune cells (memory B 

cells, helper-T cells and cytotoxic-T cells) are then generated for eliminating a TB infection in the future. 

The administration of BCG can cause a mild infection at the site of injection.  

 

Currently, BCG immunization is one of the widely implemented vaccination programmes in the world. 

The main reason for the success of BCG is its cost-effectiveness (Doherty & Andersen, 2005). The BCG 

vaccine is given to neonates and infants in countries with a low incidence of TB disease. However, in 

countries with high incidence rates, the BCG vaccine is also given to young children (WHO Global 

Tuberculosis Report, 2020).  

2.2.2.2 Failure of BCG 

Although BCG has shown its effectiveness in reducing the incidence of tuberculosis in children, miliary 

TB and tubercular meningitis, there are major concerns regarding adult TB (Brewer, 2000). BCG trials 

have shown that it does not induce the same kind of immune response as when the vaccine is given to 

premature babies. Disseminated BCG disease has been observed in HIV-infected children following the 

BCG vaccination. The safety of BCG remains a significant concern in immunocompetent persons 

(Hesseling et al., 2007). BCG has shown 0-80% efficacy against pulmonary tuberculosis in adults 

(Doherty & Andersen, 2005). The effectiveness of BCG varies from person to person, country to country 

and children to adult (Briassoulis et al., 2005; Colditz et al., 1994). The genetic variability among the 

sample population significantly impacts vaccine efficacy. 

 

BCG generates a higher helper-T cell response than a cytotoxic-T cell response (Lindestam et al., 2015). 

CTL plays direct role in killing pathogenic bacteria. Despite the efforts of BCG immunization 

programmes, the incidence rate of tuberculosis has not lowered in recent years. The inefficiency of 

BCG in reducing the prevalence of disease and not protecting adults is, so far, not well understood. 
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Some of the crucial factors that contribute to lowering the efficacy of BCG might include (Barreto et 

al., 2006; Doherty & Andersen, 2005; S. Gupta et al., 2011): 

 

 Mycobacterium bovis is less virulent and not a primary causative agent of TB 

 diversity in TB strains  

 the ability of TB bacteria to evade the immune response 

 over-attenuation of the presently used BCG strain  

 differences in clinical assay 

 different levels of protection against the clinical forms of tuberculosis 

 malnutrition 

 health condition of an individual 

 MHC-I and II polymorphism among the vaccinated population. 

Other factors that impact BCG are tobacco and alcohol consumption, pollution, and the presence of 

other diseases, such as, HIV/AIDS, cancer and diabetes in individuals (Gupta et al., 2011).  

 

2.2.2.3 TB vaccine in clinical trials 

TB prevention is a long-term goal. There has been considerable progress made in TB vaccines using 

different approaches including the use of recombinant protein or DNA attenuated Mycobacterium 

tuberculosis, virus as a vector, novel adjuvants and potent antigen delivery systems. The global effort 

to eradicate tuberculosis has led to 14 vaccines being in various stages of clinical trials (WHO Global 

Tuberculosis Report, 2020) (Figure 2.9). There are three vaccines in phase-I, nine in phases-II-a and II-

b and two in phase-III of clinical trials. Ad5 Ag85A is a recombinant vectored vaccine using adenovirus 

serotype 5 that expresses Mycobacterium tuberculosis Ag85A. ChAdOx1.85A/MVA85A vaccine uses 

simian adenovirus as a vector for expressing Ag85A and TB/FLU-04L is a recombinant influenzae 

vectored vaccine expressing Mycobacterium tuberculosis Ag85A and ESAT-6 (Wilkie et al., 2020). 

MTBVAC is a live-attenuated vaccine produced from a clinical isolate of Mycobacterium tuberculosis 

Mt103 by deleting the phoP and fadD26 genes (Arbues et al., 2013; Tameris et al., 2019). DAR-901 is a 

heat-killed vaccine produced using the Mycobacterium obuense strain (von Reyn et al., 2017). The 

vaccine was developed by researchers at Dartmouth University. RUTI is a polyantigenic vaccine made 

by detoxifying and fragmenting Mycobacterium tuberculosis encapsulated in a liposome (Ahsan, 2015). 

H56:IC31 is a recombinant subunit vaccine containing Ag85A, ESAT-6, Rv2660c with the IC31 adjuvant. 

M72+AS01E is a recombinant subunit vaccine containing Mycobacterium tuberculosis antigens, 32A 

and 39A, along with the AS01E adjuvant (Brazier & McShane, 2020). The two vaccines in phase-III are 

VPM 1002 and MIP/Immuvac. MIP is produced by heat-killing Mycobacterium indicus pranii to prevent 

the high risk of causing tuberculosis (Sharma et al., 2017).  
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The vaccines in the clinical trial mainly depend on inducing an immune response using either weak 

mycobacterial strains or using two to three antigens to produce recombinant subunits and viral 

vectored vaccines. These vaccines do not guarantee to yield a broad coverage immune response. The 

drug-resistant issue is also not adequately addressed by any of the vaccine in the clinical trial. The 

emergence of drug resistant Mycobacterium tuberculosis emphasizes the need for a new and effective 

TB vaccine.  

 

Figure 2. 9: TB vaccine candidates in phases-I, -II and -III of clinical trials in 2020. A total of 14 vaccine 
candidates are in clinical trials. (Sourced from WHO Global tuberculosis Report, 2020) 

 

2.3 Major obstacles in developing an effective TB treatment  

Current therapeutic and diagnostic strategies are inadequate to eliminate TB by 2050 (Ottenhoff & 

Kaufmann, 2012). The complete eradication and elimination of TB from the world needs more effective 

and safer therapeutic tools. For this reason, it is crucial to have an in-depth knowledge of mechanism 

of TB infection when developing an efficient TB treatment. 

2.3.1 Challenges to providing an effective drug treatment 

First-line drugs have been designed to target proteins that play a vital role in biological processes and 

functions, such as the physiology, metabolism and translation of proteins within Mycobacterium 

tuberculosis. Figure 2.10 describes the critical challenges in providing efficient drug treatment: 
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Figure 2. 10: Challenges in providing efficient tuberculosis drug treatment 

1. Drug resistance - The emergence and transmission of TB drug-resistant strains obstruct the 

efforts to control and manage TB. Multi-drug-resistant TB (resistant at least to rifampicin and 

isoniazid) occurs due to the sequential accumulation of mutations in the drug target’s genes 

(Zhang & Yew, 2015). 

2. Selection of bacterial evasion strategies - Mycobacterium tuberculosis must follow some 

strategic pathway to select a drug-resistant mutation to balance the impact of drug-resistant 

mutations on the fitness of Mycobacterium tuberculosis (Gagneux et al., 2006). 

3. Understanding compensatory mechanisms - If a drug-resistant mutation alters the function 

and structure of Mycobacterium tuberculosis, there must be a compensatory mechanism to 

compensate for TB bacteria's fitness cost (Comas et al., 2012).  

4. Delay in detecting drug-resistant TB bacilli - TB patients are sometimes not assessed correctly 

as drug-resistant positive, resulting in inappropriate treatment for TB. 

5. Lengthy treatment regimen - Prolonged exposure to first-line TB drugs can allow 

Mycobacterium tuberculosis to potentially evolve more resilient drug resistance strategies 

(Ginsberg & Spigelman, 2007). 

6. Animal model - Most animal models are not able to replicate human TB disease. So, 

understanding the pathology of TB is quite a difficult task (de Rycker et al., 2018). 

7. Insufficient funding - Despite the progress in the global drug development pipeline, more 

funding is needed for developing new drugs and improving the pipeline.  

8. Time - Drug discovery and development is a time-intensive process. If a drug fails in a clinical 

trial, it will waste not only money but also time. 
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9. Some other challenges include:   

 improper use of drugs 

 costly MDR drugs 

 toxic side effects of MDR drugs 

 

2.3.2 Challenges in developing an effective TB vaccine  

BCG, a hundred-year-old vaccine, is the only registered vaccine available to prevent tuberculosis, but 

there is still a high morbidity and mortality rate in various countries from this disease. Moreover, over 

the previous decades, there have been no significant achievements in vaccine development. Figure 

2.11 shows some of the hurdles in TB vaccine development. 

 

 

 

Figure 2. 11: Major obstacles in TB vaccine development. Some crucial challenges include pathogen 
diversity, host variability and vaccine safety 

 

1. Pathogen diversity - The emergence of resistant strains has caused the genetic variability 

among Mycobacterium tuberculosis. The current vaccines in clinical trials mainly use either 

weak mycobacterial strains or two to three antigens for producing recombinant subunits and 

viral vectored vaccines. The most significant issue with these vaccines is that they do not 

guarantee to yield a broad spectrum of immune response. In addition, the knowledge gap in 

understanding the human-TB bacteria interaction, host evasion strategies and poor 

understanding of Mycobacterium tuberculosis antigens is of significant concern. 
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2. Understanding of host immune response - Understanding the correct functioning of the 

human immune system is very complex. Therefore, the identification of novel TB antigenic 

proteins and their immunodominant regions (B-cell and T-cell epitopes) using the conventional 

approach remain a significant challenge in TB vaccine development. However, an in-depth 

knowledge of host responses is critical for developing a TB vaccine to generate a strong innate 

and adaptive (humoral and cell-mediated) immune response. 

3. Host variability - MHC molecules are highly polymorphic and more than a thousand HLA 

(human leukocyte antigen) alleles for humans have been identified. Furthermore, the different 

HLA types are expressed at different rates in different ethnicities worldwide. Thus, developing 

a TB vaccine needs an analysis of population coverage to minimize the risk of developing an 

ethnically biased vaccine (Bui et al., 2006). 

4. Vaccine safety - The reversion to a disease-causing pathogen is a significant risk involved with 

a viral-vectored vaccine. Therefore, the vaccine should not contain any toxic compounds that 

can cause severe side effects after vaccination. In addition, the use of antigens that cause 

autoimmunity or hypersensitive reactions in a host is also a major issue in vaccine 

development. 

5. Time and cost - The conventional process of using whole organisms and live-attenuated or 

heat-killed organisms in vaccine development and production is very costly and it takes many 

years to develop an effective vaccine. Traditional vaccine development requires cultivating 

Mycobacterium tuberculosis in the laboratory and then performing different biochemical, 

microbiological, immunological tests to detect the vaccine candidates. This approach is 

laborious, requires expensive experimental testing and sometimes fails to reveal suitable 

antigens. In addition, the purification and detoxification of vaccine products are costly.  

6. Environmental and geographic factors - Poor health, co-occurrence of HIV/AIDS and diabetes, 

poverty, smoking and alcohol consumption, pollution and the economic status of the country 

indirectly impact the development of a TB vaccine. The COVID-19 pandemic caused a 50% drop 

in the correct diagnosis of TB cases, and this will lead to 400,000 more deaths due to TB in the 

future (WHO Global tuberculosis Report, 2020). 

 

2.4 Potential solution to the TB treatment problem 

Mycobacterium tuberculosis has developed several ways to destabilize the human immune response 

by adapting to the changing environment of the hosts and spreading the infection to various parts of 

the body. The high level of adaptation has led to the evolution of TB bacteria, resulting in resistant 

strains. The available TB drugs and vaccine are successfully evaded by genetically encoded resistance 

mechanisms in TB bacteria. The widespread emergence of TB resistant strains has challenged the view 

of tuberculosis as a treatable disease. In this research, an attempt is made to provide a solution for 
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developing an effective TB treatment using an in-depth understanding of host-TB bacteria interaction, 

survival strategies of the bacteria and challenges in developing TB drugs and vaccines. 

2.4.1 TB drug therapy 

Drug resistance is emerging at an alarming rate, thus requiring more research to address this situation. 

The success rate of first-line TB drugs is 85%. Thus, there is a need to understand the underlying drug 

resistance mechanisms more deeply to help improve the success rate of drugs and achieve the long-

term goal of the End-TB strategy. The non-synonymous mutations in katG, pncA, emb and rpoB are the 

main reason for drug resistance in the first-line TB drugs. The mutations lead to alterations in drug 

binding sites, modification of the whole drug target, inactivation of drug or preventing the entry of 

drug inside Mycobacterium tuberculosis. Thus, a mutation in a drug target protein causes structural or 

functional changes, eventually leading to a decrease in drug binding affinity or preventing the drug 

from binding to its respective target. Therefore, the analysis of first-line mutation data accumulated 

over several decades is crucial to improving our knowledge of the underlying drug resistance 

mechanisms. In addition, the whole spectra of mutations need to be studied to understand the 

Mycobacterium tuberculosis survival strategies and the impact of mutations resulting in:  

 functional changes (leading to modification of target), 

 stability changes with destabilizing or stabilizing target protein,  

 irregular binding (reduced affinity for drug resulting in its inactivation) or tighter binding with 

drug (prodrug is activated but not released),  

 altered functionally relevant residues (changes in residues in binding site, catalytic site or 

residues directly interacting with active site), 

 protein sequence conservation and  

 hotspot sites within drug target (some mutations are more prevalent at specific positions or 

regions.  

 

This thesis research proposes a solution for in-depth understanding of the Mycobacterium 

tuberculosis survival strategy against first-line TB drugs through the analysis of the impact 

of mutations on the structure and function of targets and weakening the effectiveness of 

drugs. Chapter- 3 of the thesis explains the approach developed in this research based on a 

comprehensive bioinformatics study.  

 

Examining the impact of mutations on the drug-target protein structure and function in the laboratory 

can be time consuming and costly. Bioinformatics provides advanced and user-friendly algorithms 

crucial to managing and analysing the genomic data available from sequencing techniques. 
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Computational analysis has been an excellent method to understand the impacts of mutations on 

structure and function as well as the drug binding affinity of the first-line TB drug target proteins. 

Therefore, different bioinformatics tools have been used in this research to predict the impact of non-

synonymous amino acid substitution. Furthermore, using a combination of bioinformatics tools, this 

research will be able to identify these effects in detail.  

Most of the studies conducted in the past determined changes in drug binding affinity by comparing 

the wild-type TB drug target protein's binding energy with the that of the mutant protein. However, 

the nature of the drug resistant mutations and the specific changes they cause in first-line TB drug 

targets and how they afford drug resistance and their impact on Mycobacterium tuberculosis fitness is 

currently not well understood.  

The analysis of each mutation will help explore the specific drug resistance mechanisms it confers that 

would provide deep insights into some of the unnoticed features from the limited studies in the past. 

A deeper understanding of the survival of Mycobacterium tuberculosis may guide us in:  

 optimizing the action of currently available drugs by designing new inhibitors for drug 

resistance 

 developing new drugs and designing new TB therapy regimens  

 creating an atlas of drug-resistance mutations as a reference in diagnosis 

 documenting an in-depth view of bacterial survival strategies and their development for future 

reference  

 developing new tools for proper diagnosis of drug-resistant TB patients. 

 

2.4.2 TB vaccine 

The complete eradication and elimination of TB from the world requires developing a more effective 

and safer vaccine. The generation of a strong and swift immune response that can prevent disease 

progression and transmission is a prerequisite for a TB vaccine. New approaches for vaccine 

development must focus on host-pathogen interactions, the limitations of BCG and drug-resistant 

Mycobacterium tuberculosis strains (Ahsan, 2015). Helper (CD4+) and cytotoxic-T (CD8+) cells and 

cytokines released by T-cells play an essential role in providing optimum protection against a 

tuberculosis infection (Deenadayalan et al., 2013; Flynn, 2004). As stated earlier, BCG generates a 

higher helper-T cell response than a cytotoxic-T cell response. Thus, developing a new TB vaccine with 

improved efficacy must create a pool of effective B-cell, T-helper and T-cytotoxic type memory cells.  
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In the current research, we developed an epitope-based vaccine using computational 

vaccinology that can help in treating TB. Chapter-4 of this thesis explains the proposed 

computational framework for addressing the challenges of TB vaccine development to 

produce an effective TB vaccine. 

 

The current explosion in bioinformatics has revolutionized the field of vaccine development. 

Bioinformatics provides new tools that facilitate identification of the potential vaccine targets without 

the need to culture pathogens in the laboratory. The application of bioinformatics in biotechnology, 

immunology and vaccinology has allowed the development of the more revolutionary field of 

computational vaccinology (CV) (Vivona et al., 2008). The present study incorporates different 

branches of computational vaccinology, such as, comparative analysis, reverse vaccinology, 

immunoinformatics and structural vaccinology to identify potential vaccine candidates against 

tuberculosis. Computational vaccinology is a low-cost technique, entirely feasible for use on the 

plethora of genomic data being generated. Therefore, it is justifiable for use on a broad range of 

pathogens. The introduction of new steps in reverse vaccinology and immunoinformatics tools 

introduced in this study, will improve the search for identifying T-cell and B-cell epitopes as potential 

vaccine candidates for Mycobacterium tuberculosis and help in constructing an epitope-based vaccine 

for TB. 

 

To address issues, such as antigen variability, drug resistance and broad coverage of the immune 

response, a large number of Mycobacterium tuberculosis strains should be used to identify vaccine 

targets. Thus, to develop a universal vaccine for TB, there is the necessity to include these 

Mycobacterium tuberculosis strains in the vaccine development approach and identify the conserved 

antigens among them. Selecting novel antigens or vaccine candidates is a stumbling block in the 

vaccine design process. Advancements in genomics have provided information regarding the genome, 

transcriptome or proteome of a pathogen (Brusic & Flower, 2004) to help identify novel vaccine 

candidates.  

 

Computational reverse vaccinology (CRV) allows the analysis of genomic sequences to predict surface-

exposed antigenic proteins that can be used as potential vaccine candidates for subunit vaccine 

preparation (Flower et al., 2010). Many of the essential and virulent TB vaccine candidates are 

Mycobacterium tuberculosis membrane-bound proteins. For developing an effective epitope-based 

vaccine that can elicit a cell-mediated and humoral response, the epitopes (B-cell, CD4+ and CD8+ T-

cell epitopes) identified from these membrane-bound proteins can be promising targets for the 

vaccine. Compared to the conventional approach, computational vaccinology helps to develop a safer 

vaccine as careful selection of non-toxic, non-allergenic immunodominant epitopes is undertaken. The 
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main advantage of an epitope-based vaccine is the removal of deleterious epitopes that can cause 

cross-reactive reactions or autoimmunity in the host. Epitope-based vaccines are more potent and, 

when controlled correctly, induce a specific immune response to a broad range of immunodominant 

epitopes, target multiple-conserved epitopes and break immune tolerance. An epitope-based vaccine 

helps in the selection of vaccine candidates that are not harmful when following safety measures of 

the laboratory. The proposed vaccine can be further studied in vivo and in vitro to prove its 

effectiveness in mounting an immune response. 
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Chapter 3 

A comprehensive analysis of first-line tuberculosis drug resistant 

mutations to understand the survival strategy of Mycobacterium 

tuberculosis 

 
Chapter-3 aims to accomplish objective-1 of our study by providing a potential solution to reduce the 

burden of the emerging global drug resistance problem. In chapter-2, we discussed the available TB 

treatments and the enormous efforts expended to eradicate this disease. Unfortunately, the 

emergence of drug resistance has led to a decrease in the success rates of TB drugs from 95% to 85%. 

This chapter explains the holistic analysis performed in this research to gain deeper insights into drug 

resistance mechanisms in TB based on a comprehensive bioinformatics study. This chapter comprises 

six sections. Section 3.1 provides an overview of chapter-3. Section 3.2 discusses the current 

understanding of drug resistance and what needs to be undertaken to improve our knowledge to 

unravel drug resistance mechanisms to gain insights into bacterial survival strategy. This section also 

describes the framework developed in this study for this purpose. The materials and methods used to 

implement the framework are discussed in section 3.3 and the results are discussed in section 3.4. 

Finally, a summary of the chapter is given in section 3.5.  

 

3.1 Overview 

TB is a deadly disease caused by an infectious bacterium, Mycobacterium tuberculosis, which poses a 

significant threat to global health. According to the world’s oldest literature, TB plagued some of 

humanity's earliest civilisations (Zimmerman, 1979). Regardless of the advancements made in medical 

sciences, TB remains the cause of death of 1.4 million people, with 10.0 million new cases worldwide 

in 2019 (WHO Global tuberculosis Report, 2020). TB drug treatment includes the directly observed 

treatment short-course (DOTS) strategy comprising intensive and continuation phases. The rapidly 

increasing mono-, poly- and MDR-TB cases with 0.5 million new MDR-TB cases (drug resistance shown 

to INH and RIF) and 0.3 million deaths are a frightening situation leading to treatment failure (WHO 

Global tuberculosis Report, 2020). Although the first-line drugs play a pivotal role in combating TB, the 

emergence of drug resistant TB strains, the improper use of drugs, patients’ non-compliance with the 

treatment, drug intolerance and toxicity, delayed or incorrect diagnosis, and limited access to 

medicines has heightened the burden of TB globally (Bhat et al., 2018; Portelli et al., 2018). Improving 

the success rate of the current TB treatment and eliminating TB from its roots requires an in-depth 

knowledge of the survival strategies of Mycobacterium tuberculosis against first-line TB drugs. Our 
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study aims to understand drug resistance mechanisms through a comprehensive and systematic in-

depth analysis of global mutation data for Mycobacterium tuberculosis as reported over the last 30 

years. Our study investigates drug resistance mutations, their frequency, global spread, and the 

evolution of mutations over time, to explore the nature and geographic spread of drug-resistant 

mutations. Importantly, we unravel the mechanisms of drug resistance through an in-depth look into 

the interplay between Mycobacterium tuberculosis and drugs, and how mutations alter it in favour of 

its survival. 

 

3.2 How we can unravel the TB drug resistance mechanisms 

3.2.1 TB Drug resistance - what we know 

The emergence of drug resistance in tuberculosis is not a new phenomenon, as Mycobacterium 

tuberculosis strains showed resistance to streptomycin in 1944 (Crofton & Mitchison, 1948). The 

current DOTS strategy for TB treatment comprises: (i) an intensive phase including a combination of 

four first-line drugs rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) (two 

to four months), and (ii) a continuation phase with INH and RIF (four to six months) followed by four 

months of continuation phase (Grange & Stanford, 1994). The drugs used in the current treatment 

regime are approximately 40 years old. Unfortunately, the resistance showed by Mycobacterium 

tuberculosis has led to heightened burdens of TB across the globe.  

 

Several Mycobacterium tuberculosis drug resistance mechanisms have been put forward (Cohen et al., 

2014; Nachega & Chaisson, 2003). For example, preventing the entry of drug molecules into 

Mycobacterium tuberculosis with the help of its impermeable cell wall, expelling of drugs by 

transmembrane drug efflux systems, alteration of the drug target protein by random, chromosomal 

point mutations (Sebastian et al., 2017), and altering the bacterial cell wall. In chapter-2, we briefly 

discussed the intrinsic and acquired drug resistance mechanisms. The presence of a thick lipid cell wall 

and the action of the efflux pump provide natural resistance to TB treatment. 

 

In contrast, prolonged exposure to drugs helps in acquiring spontaneous chromosomal mutations in 

the first-line TB drug targets katG (Heym et al., 1995), rpoB (Telenti et al., 1993), pncA (Sreevatsan et 

al., 1997) and emb (Ramaswamy et al., 2000) targeted by INH, RIF, PZA and EMB, respectively. Thus, 

the main reason for drug resistance in TB is chromosomal mutations (mostly point mutations in the 

coding region of the target proteins) resulting in the alteration of drug target or prodrug target binding 

site, whole target modification, drug inactivation and imitation of the drug target by other 

mycobacterial proteins (Alcaide et al., 1997; Nguyen, 2016; Riccardi et al., 2009; Zhang & Yew, 2009). 

The mutations resulting in these acquired resistance mechanisms can be due to changes in function, 
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structure or stability, alteration in conservation of protein sequence or reduced drug binding affinity 

of first-line TB target proteins. da Cunha et al. (2007) tried to understand the change happening when 

INH binds to mutant katG S315T. They first performed docking and dynamic simulations and later 

conducted an in vitro study to understand the enzymatic activity of katG. They found a reduction in 

enzymatic activity of katG due to mutation at position S315T. Lakshmipathy et al. (2013) observed 

deviations in the interaction of PNZ and mutant pncA with an A102P mutation and reduced drug 

binding as compared to the wild-type pncA. Kumar and Jena (2014) performed a computational study 

to understand the impact of S450L, H445Y mutations on RIF through molecular docking and found that 

the mutations had impacted the binding of rpoB and RIF. Aggarwal et al. (2018) conducted a study to 

understand the role of W68R and W68G mutations in PNZ resistance. The researchers predicted that 

changes in structural stability caused by W68R and W68G reduced the drug affinity of PNZ. Singh and 

Mizrahi (2017) performed a dynamic molecular analysis of mutation G279D in catalase-peroxidase 

(katG). They found changes in structural stability, changes in the binding cavity and reduced affinity 

for INH with a lower docking score. Unissa et al. (2017) identified different types of mutations at 

position 315 of catalase-peroxidase (katG) showed reduced affinity towards INH. They used five 

mutants in their study: S315T, S315I, S315R, S315N and S315G. We found no relevant research 

performed for understanding ethambutol resistance.  

 

Most of the studies discussed above were conducted to determine changes in drug binding affinity by 

constructing a 3D structure of the wild-type target protein and the mutant, performing molecular 

docking using different tools, and comparing the wild-type target protein's binding energy with the 

that of the mutant protein. However, the nature of the mutations and the specific changes they cause 

in first-line TB drug targets and how they afford drug resistance and their impact on Mycobacterium 

tuberculosis fitness is currently not well understood.  

3.2.2 What is needed to know to improve our understanding of TB drug resistance? 

Drug resistance is emerging at an alarming rate and requires further research to address this situation. 

The most urgent and crucial research need is to understand the underlying drug resistance 

mechanisms more deeply to help achieve the long-term goal of eradication of TB globally through a 

clearer understanding of the bacterial survival strategy. The most promising avenue for this is to 

analyse the first-line mutation data accumulated over recent decades to improve our knowledge of 

the underlying drug resistance mechanisms.  

 

The first-line TB drugs were designed to target proteins that play a vital role in biological processes and 

functions, such as physiology, metabolism and translation of proteins within Mycobacterium 

tuberculosis. Thus, for a mutation to be drug resistant, it should reduce the binding affinity of a drug 
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without hampering the natural affinity for its substrate, thus, not jeopardising the normal functioning 

and structural stability of the target protein needed for the survival of the disease-causing organism.  

 

Specific studies have shown that chromosomal mutations in Mycobacterium tuberculosis are 

frequently associated with a decrease in relative fitness, thereby affecting the growth, stability and 

development of resistant TB strains (Andersson & Hughes, 2010; Gagneux et al., 2006; Mariam et al., 

2004). Therefore, Mycobacterium tuberculosis usually has compensatory mutations to counteract the 

reduction in fitness. In-vitro studies and mathematical models have shown that the fitness cost of a 

drug-resistant isolate could be compensated for by putative compensatory mechanisms that restore 

the fitness of the mutant strains (Reynolds, 2000). For example, the fitness cost of the RIF resistant 

mutation, S531L, in the rpoB gene is overcome by a compensatory mutation in the rpoA and rpoC genes 

(Comas et al., 2012) and the mutation leading to overexpression of ahpC gene compensates for the 

S315T katG gene mutation (Sherman et al., 1996). 

 

Previous studies have assumed that only few mutations occur in Mycobacterium tuberculosis but our 

study has revealed the extensive repertoire of these mutations as will be shown in this chapter. 

Considering the extensive nature of mutations that Mycobacterium tuberculosis uses to make the drug 

ineffective and stay viable, an in-depth exploration of the impact of different mutations at different 

positions in the first-line TB drug targets of Mycobacterium tuberculosis is the key to better 

understanding the distinctive set of strategies used by a bacterium for its survival and the different 

defence mechanisms it uses against drugs. Specifically, a deeper understanding of the underlying 

changes occurring in drug target proteins due to mutations in Mycobacterium tuberculosis can provide 

crucial insights into drug resistance mechanisms. These changes in the target protein correspond to 

two aspects of the interplay between the drugs and Mycobacterium tuberculosis - the effect on the 

drug and on the survival of Mycobacterium tuberculosis. The impact on the drug can be broken down 

into various defence mechanisms against the drug: preventing the entry of a drug, inactivation of the 

drug, preventing drug binding by altering drug binding sites or modification of the target. However, 

changes in target proteins alter the structure and function of the target which, in turn, can affect the 

bacterial fitness that Mycobacterium tuberculosis needs to minimise through various compensatory 

mechanisms. Investigation into these opposing forces by analysing mutation data could provide a 

balanced view of drug resistance and the survival of Mycobacterium tuberculosis. In particular, 

understanding where the target protein mutations occur, whether in conserved or non-conserved 

regions, mutation frequency and the advantage and role of the mutations in these specific locations in 

maximising the effect on drug and minimising the impact on Mycobacterium tuberculosis can provide 

crucial insights into bacterial strategies leading to acquired resistance. 
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3.2.2.1 Hypothesis on drug resistance and bacterial fitness 

To gain a deeper understanding of TB drug resistance due to mutations, we hypothesize that for its 

survival, Mycobacterium tuberculosis uses an arsenal of different strategies to disable drugs and its 

survivability. Strategies with the most significant disruption to the drug and the most negligible impact 

on its survival may be preferable. However, this may not always be realistic; therefore, Mycobacterium 

tuberculosis may instead use compromise strategies that offer it a relative survival advantage over the 

drugs. This study is designed to test this hypothesis and elucidate the most effective Mycobacterium 

tuberculosis strategies for drug resistance. 

 

Central to unravelling drug resistance mechanisms is the nature and extent of the changes in the drug 

targets due to mutations. In the drug - Mycobacterium tuberculosis interplay, these changes in the 

target determine the extent of the disabling of drugs and the survival of Mycobacterium tuberculosis. 

Drug resistant mutations may cause modification of the target, leading to structural changes in the 

target leading to a reduced affinity for drugs to prevent the activation of prodrugs (INH and PZA) or 

irregular binding with drugs (EMB and RIF) leading to failure in disrupting the cell wall/membrane and 

RNA polymerase to kill Mycobacterium tuberculosis. These changes also affect the function and 

stability of the target and impact Mycobacterium tuberculosis survival. Therefore, drug resistance is an 

instance of bacterial evolution through natural selection in favour of bacterial survival. How these 

processes work are reflected in the thriving drug resistance mechanisms achieved through target 

modification. 

 

The most effective changes in the target are those that produce non-synonymous amino acid 

substitutions (AAS). Hotspot sites within the target would help develop successful strategies by 

Mycobacterium tuberculosis for drug resistance. These are single positions substituted multiple times 

by different amino acids (non-synonymous AAS) and these mutations could be more prevalent at 

specific positions in the target. It is also crucial to find where in the drug target these changes are 

occurring. Mutations in the conserved regions would have a more significant effect than those in non-

conserved regions as they can cause greater functional and stability changes in drug targets, that 

significantly impact drug binding. However, this can also more severely impact the survivability of 

Mycobacterium tuberculosis. Therefore, these mutations would be much less favourable than those in 

the variable (non-conserved) regions. Another essential consideration would be the specific region of 

the mutations, as mutation in some regions can weaken the drug more effectively. Mutations in the 

drug binding region (DBR) could be favoured more as they can weaken the drug target more; however, 

those outside this region could also play a supporting role or compensatory role to improve the survival 

of Mycobacterium tuberculosis. To investigate this, we divide the target into three sites: site-1, 

representing residues in the drug binding site, site-2, having residues directly interacting with the 
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binding site and, site-3, representing the rest of the target protein. Mutations in site-1 have a more 

significant impact on drug binding compared to sites-2 and -3. These are expected to be the most 

favoured by Mycobacterium tuberculosis. All these possibilities suggest that Mycobacterium 

tuberculosis has at its disposal an arsenal of strategies to help them strike a favourable balance 

between weakening the drugs and improving its survival that needs to be elucidated (Zhang & Yew, 

2009).  

 

The strategies described above have different effects on both Mycobacterium tuberculosis and the 

drugs. As said previously, a strategy that has the least impact on bacteria and the highest impact on a 

drug is the best from a bacterial point of view; however, a compromise solution may be most pragmatic 

for bacterial survivability. Mycobacterium tuberculosis may seek a compromise solution by largely 

favouring mutations with mild to moderate impact on fitness and fewer mutations with neutral fitness 

effect and even fewer mutations that are lethal to its survival. Therefore, in this study, we aim to 

uncover the specific strategies used by Mycobacterium tuberculosis from the type of mutations 

(conserved or not), frequency and location of mutations and their relative impact on the structure and 

function of the target and drug binding from the mutational data found over the last 30 years. We then 

rank the mutations in terms of their impact on drugs and Mycobacterium tuberculosis into lethal, 

moderate, mild and neutral. Lethal mutations could be considered deleterious to Mycobacterium 

tuberculosis and a drug, and mild to moderate mutations as low-cost mutations favouring the survival 

of Mycobacterium tuberculosis while enabling drug resistance, and neutral as cost-free or beneficial 

mutations with the potential restoration of fitness by compensatory mutations. From these arsenals 

of strategies that variously impact drug binding and Mycobacterium tuberculosis survival, we could 

expect a higher occurrence of mild-moderate, much fewer lethal mutations and even fewer neutral 

mutations. Our study also explores the global and regional character of drug resistance towards 

developing strategies for the worldwide eradication of TB. 

3.2.3 Framework developed for studying drug resistant mechanisms 

Conducting laboratory or in-vitro studies for determining the effect of different mutations on 

Mycobacterium tuberculosis would be time-consuming and expensive. Our study provides a potential 

solution to reduce the burden of the emerging drug resistance problem globally. With this aim, we 

perform a holistic research study to gain deeper insights into drug resistance mechanisms in TB based 

on a comprehensive bioinformatics study. We investigate the mutation statistics and the impact of 

different mutations on the survival of TB and drug weakening and then rank them accordingly to 

uncover the totality of the Mycobacterium tuberculosis strategy for drug resistance. This can be used 

as the foundation for either improving first-line drugs or developing new drug therapeutics or 

treatment protocols. We also aim to create an atlas of drug resistant-mutations in the targets of first-
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line TB drugs for future reference. A reliable catalogue of drug-resistant mutations can be used as a 

reference standard for validating the mutations identified in the genome of new drug-resistant TB 

strains when available. The survival strategies unravelled in this study can also be the foundation for 

continuing the exploration of the evolution of drug resistance into the future.  

 

Accordingly, this study is focused on understanding the nature of drug resistance through an in-depth 

analysis of drug resistant mutations. We design a complete methodological pipeline to make the 

discoveries mentioned above. The main advantage of the method developed is that it can be used to 

predict the impact of any newly discovered mutation. The procedure can also be used for mutational 

studies in any other organism (not restricted to Mycobacterium tuberculosis).  

 

The proposed method involves four phases: collecting mutational data (phase 1) and screening non-

synonymous mutations in the drug targets (phase 2). In phase 3, mutations are analysed in two stages: 

(i) mutational statistics, and (ii) the impact of mutations on the targets. These impacts will then be 

used in Phase 4 to categorise mutations into lethal, moderate, mild and neutral to evaluate the total 

drug resistance strategy of Mycobacterium tuberculosis. Figure 3.1 shows the workflow for the 

comprehensive analysis of the impact of TB drug resistant mutations on target function and stability, 

and drug binding, using various bioinformatics tools. The details of the methods used in the workflow 

can be found in the Materials and Methods Section.  

 

Following these phases, this study analyses 821 mutations found in katG, pncA, rpoB and embCAB of 

drug resistant TB isolates (approximately 31,073 TB isolates). These 821 mutations were found in this 

study from an extensive survey of 1489 studies, subsequently reduced to 149 studies that provided 

the relevant mutational data reported over three decades as discussed in the Methods and Results 

sections of this chapter. Then we studied mutation statistics covering the prevalence, i.e., mutation 

frequency, location of all single mutations and hot spot sites in drug resistant TB isolates. We also 

explored the character of the global (WHO regions) spread of mutations to assess regional variations 

in mutations and drug resistance. Then we studied the impact of a mutation on structural stability, 

functionality, target conservation and the altered binding energy of drugs using several bioinformatics 

tools (shown in capital letters in Fig. 3.1). Furthermore, each of these studies uses up to three different 

bioinformatics tools for comparison, validation or consensus. 

 

In the analysis of impact of mutation on the drug and target, the first step involves building and 

validating the protein structure of the wild-type and each mutant-type first-line drug target. In the 

second step, the identification of evolutionarily conserved amino acid residues in the target proteins 

and protein domain prediction is undertaken. In the third step, mutated residues are distributed into 
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three sites: sites -1, -2 and -3. In the fourth step, each of these mutations is analysed for the impact of 

the mutation on Mycobacterium tuberculosis and drugs in terms of functional changes and structural 

stability, and its drug binding affinity based on molecular docking. In the final step, these impacts are 

used for a consensus prediction, using several computational methods, of lethal, moderate and neutral 

mutations in first-line TB drug target proteins, as metrics Mycobacterium tuberculosis could use to 

develop its survival strategy. These results will be synthesised to formulate the holistic drug resistance 

strategy evolved by Mycobacterium tuberculosis. Furthermore, analysis of each mutation in terms of 

the survivability of Mycobacterium tuberculosis, and the impact on each drug will help explore specific 

drug resistance strategies that would provide deep insights into some of the features that had not 

been noticed in the limited studies of the past. The new knowledge gained in this research can help 

develop new strategies or tools to combat drug-resistant TB, including identifying new drugs, designing 

effective inhibitors to deal with drug-resistant strains, and developing personalized treatments and 

diagnostics techniques. 
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Figure 3. 1: Comprehensive analysis of mutations to predict their impact on first-line TB drug target 
proteins and first-line drugs (821 non-synonymous mutations were found in this study 
from 149 publications covering mutations in the last 30 years as discussed in Results 
section) 
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3.3 Materials and Methods 

 

Resistance against tuberculosis drugs is increasing at an alarming rate. Thus, there is a need for 

understanding the potential impact of mutations in first-line drug target proteins as these mutations 

play a significant role in drug resistance. Mutation cause changes in the protein structure, inhibits drug 

activity, changes drug binding sites and inhibits drug binding or enables a different resistance level 

depending on the specific mutation and changes in target protein function, leading to non-activation 

of a drug. Mutation can either be located in the coding or non-coding region of the genome. Most of 

the mutations in Mycobacterium tuberculosis are in the coding regions of the genome. These 

mutations can be further divided into synonymous (no change in the amino acid at mutation position) 

and non-synonymous mutations (substituting one amino acid for another at the mutation position) 

depending on whether they lead to changes in the corresponding amino acid sequence. Non-

synonymous mutations in the coding region have a substantial impact on Mycobacterium tuberculosis. 

This research is focused on creating a catalogue of the first-line drug-resistant non-synonymous 

mutations in katG, rpoB, pncA and embCAB and identifying the most impactful and lethal mutations 

from them. Study will investigate mutational impact further to unravel how bacteria use the mutations 

to resist drugs and form their survival strategy.  

 

3.3.1 Data Collection  

3.3.1.1 Literature search  

A search was performed for identifying research published (relating to tuberculosis drug resistance) in 

PubMed, Scopus, Google Scholar and online archives of the International Journal of Tuberculosis and 

Lung Disease. The search was undertaken using the following keywords individually and in 

exhaustive/extensive combinations by applying the AND operator: ‘tuberculosis,’ ‘incidence,’ 

‘Mycobacterium tuberculosis,’ ‘tuberculosis patients,’ ‘first-line TB drugs,’ ‘katG,’ ‘rpoB,’ ‘pncA,’ ‘emb,’ 

‘isoniazid,’ ‘rifampicin,’ ‘pyrazinamide,’ ‘ethambutol,’ ‘prevalence of drug-resistant tuberculosis,’ ‘drug 

resistant first-line TB drugs,’ ‘drug-resistant tuberculosis,’ ‘first-line drug resistant tuberculosis,’ 

‘multidrug-resistant tuberculosis,’ ‘MDR-TB,’ ‘isoniazid resistance,’ ‘rifampicin resistance,’ 

‘pyrazinamide resistance’ and ‘ethambutol resistance.’ We did not exclude any publications based on 

their published date. 
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3.3.1.2 Study inclusion and exclusion criteria  

Publications were selected based on the following criteria:  

a) published original data,  

b) analysis performed on strains of Mycobacterium tuberculosis obtained from a clinical sample, 

c) phenotypic drug susceptibility testing (DST) was done,  

d) characterizing mutations by sequencing (either DNA or pyrosequencing), 

e) information available on individual amino acid mutation. 

 

Publication’s exclusion criteria: 

a) laboratory Mycobacterium tuberculosis strains used in the study, 

b) phenotypic DST not performed by the author, 

c) if sequencing was not done as a method for determining drug-resistant mutations, 

d) if individual amino acid mutation data not included in the study, 

e) if the publication contained inconsistent mutation data, 

f) publications in different languages other than English. 

Duplicate publications and studies that did not meet inclusion criteria were eliminated to ensure the 

accuracy of the data collected. 

3.3.1.3 Quality assessment 

Mycobacterium tuberculosis H37Rv (GenBank accession number NC_000962.2) was taken as a 

reference genome to control errors in the data selected. Every mutated amino acid reported was 

compared to its reference H37Rv sequence. Mutations inconsistent with the reference amino acids 

were excluded from the analysis, while those with the correct amino acid reference were included in 

the study. 

3.3.2 Creating an atlas of non-synonymous mutations in first-line target genes 

An atlas/catalogue for non-synonymous first-line TB drug resistant mutations could prove a starting 

point for designing better molecular diagnostic tests and serve as reference data for studying drug 

resistance in tuberculosis. 

3.3.2.1 Data extraction 

The following information was extracted and compiled in an excel file using Microsoft Excel software: 

 PubMed ID 

 Author name 

 Sample collection year 

 Publication year 
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 Geographic location of sample collection 

 Total number of isolates used in each study 

 Total number of resistant strains identified in each study 

 Total number of drug target (katG, rpoB, pncA and embCAB) mutations in each publication 

3.3.2.2 Analysis of the prevalence of first-line drug target mutations by WHO-region 

The data collected were further stratified into the six WHO-defined regions (Africa, Americas, Eastern 

Mediterranean, Europe, South-East Asia and the Western Pacific) based on the sample's origin. Finally, 

the relative frequency of mutations in first-line TB drug target genes was calculated for each region. 

3.3.2.3 Data collation and calculation of single mutation frequency 

Data showing resistant non-synonymous mutations in katG, rpoB, pncA and embCAB genes were 

collected from different publications according to the above guidelines. The data collected were 

filtered based on the inclusion criteria and mutations associated with resistance to INH, RIF, PZA and 

EMB were grouped according to their target genes (katG, rpoB, pncA and embCAB, respectively). This 

arrangement of data was undertaken to identify the global distribution of drug resistant mutations in 

first-line TB drug targets. The total number of specific amino acid mutations was calculated by 

combining the number of incidences of a particular amino acid mutation in all publications. Single 

mutation frequency was calculated using the following formula (Georghiou et al., 2012)   

                                                  

                                      Total number of specific amino acid mutations in a particular drug target * 100 

frequency %       = 

of single mutation                         Total number of resistant isolates for a particular drug target 

3.3.2.4 Identification of mutations in the hotspot region and hotspot residue site  

The next step was to calculate the frequency of hotspot mutations. The frequency of the different 

types of mutations (substituting one amino acid for other) at each position in the target gene was 

calculated. For example, amino acid S present at position 315 of a drug target can be substituted by 

how many different amino acids? This frequency analysis helps identify hotspot residue sites and 

provides information on the prevalence of mutations at a specific site or region in a gene.  

3.3.3 Structure modelling and validation of wild-type and mutant first-line TB drug 
target proteins 

3.3.3.1 Homology modelling 

3D structures of wild-type target proteins, catalase-peroxidase, pyrazinamidase, arabinosyl 

transferase, and DNA-directed RNA polymerase subunit beta of Mycobacterium tuberculosis, were 
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constructed using MODELLER v9.23 (Eswar et al., 2008; Webb & Sali, 2016). Figure 3.2 describes the 

steps used in creating a model structure for drug target proteins of Mycobacterium tuberculosis. 

 

Figure 3. 2: Step-by-step workflow of MODELLER v9.23 used for the generation of a 3D structural 
model for wild-type and mutant-type protein 

(1) Target sequence: The target protein sequence retrieved from the UniProt database to 

construct structural models.  

(2) Template selection: For selecting a suitable template, PSI-BLAST was performed by taking the 

protein databank (PDB) database as the source database. A template is a protein structure 

available in the PDB database and used for constructing structural model of a query protein 

sequence. The template was chosen with a maximum identity percentage and query coverage. 
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The identity percentage describes how similar the query sequence is to the template. The 

higher identity percentage shows a significant alignment between a query sequence and the 

template. Query coverage is the percentage of the query sequence length included in the 

alignment with the template. The higher the query coverage score, the better the alignment. 

(3) Target sequence and template structure alignment: To align the target sequence with the 

template structure, the “align 2d()” command in MODELLER v9.23 was used. The alignment 

algorithm used by MODELLER v9.23 differs from other sequence-sequence alignment 

algorithms, as it uses structural information from a template for constructing the alignment. 

This was achieved using the gap penalty function to reduce errors during the alignment 

process.  

(4) Model building: After aligning the target sequence and template structure, the “automodel” 

class of MODELLER v9.23 was used for generating a structural model. The modelling module 

was instructed to produce ten models.  

(5) Selection of model: The model building results were stored in a log file, which contained the 

molpdf, DOPE and GA341 scores. The 3D structural models with the lowest DOPE score and 

highest GA341 score were selected for structural validation. 

3.3.3.2 Structure validation 

After constructing the 3D structure of the wild-type and mutant protein structures, it is essential to 

check the structural validity. In our study, we used PROCHECK, ERRAT and Verify 3D for structure 

validation. PROCHECK is a suite of programs used for checking the stereochemical quality of the protein 

modelled. It examines the overall structural geometry and analyses residues by residue geometry. It 

provides detailed information about the chi angles, chirality, planarity of the peptide bonds, disulphide 

bonds, non-bonded interaction, the main chain hydrogen bonds and the backbone dihedral angles ψ 

against φ by Ramachandran plot (Laskowski et al., 1993). ERRAT is a structure validation algorithm that 

helps in checking the reliability of the protein model. ERRAT is specifically designed for evaluating the 

progress of crystallographic model building and refinement. In addition, ERRAT analyses the statistics 

of the non-bonded interactions between different atom types (Bowie et al., 1991). Verify 3D works by 

determining the compatibility of the 3D atomic model with its amino acid sequence by assigning a 

structural class based on location and the environment (alpha-helix, beta-sheet, loops) (Colovos & 

Yeates, 1993). All three servers help in selecting the best-modelled protein structure. If the model had 

more than 90% residues in the most favoured region, it was considered the best quality model and 

used for further analysis (Figure 3.2). 
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3.3.3.3 Energy minimization 

After selecting the model protein for first-line wild-type and mutant proteins, it is essential to perform 

energy minimization to reduce unfavourable bond lengths, bond angles, distorted geometry or non-

bonded interactions. The main goal of energy minimization is to obtain a structure corresponding to 

its natural geometry. We used the GROMACS 4 (Groningen Machine for Chemical Simulation) package 

(Hess et al., 2008) for energy minimization of the wild-type and mutant first-line drug target proteins. 

GROMACS works in a LINUX environment. The GROMACS96 43A1 force field was used in the energy 

minimization process. Table 3.1 describes the energy minimization steps and commands used to 

perform each step in GROMACS 4. Lastly, Chimera was used for protein visualization (Pettersen et al., 

2004). 

Table 3. 1: Energy minimization steps performed in GROMACS 4 

Energy minimization steps Command used in GROMACS 4 

(1) Create a gromacs topology file from protein’s PDB file pdb2gmx 

(2) Define a box around molecule editconf 

(3) Add solvent molecules to the box genbox 

(4) Prepare file for mdrun grompp 

(5) Final step for energy minimization mdrun 

 

3.3.4 Comprehensive computational analysis for identifying the impact of non-
synonymous drug resistant mutations on Mycobacterium tuberculosis 

In this study, we conducted a detailed bioinformatics analysis for understanding mutational changes 

at the molecular level affecting the function, structural stability, protein folding, physio-chemical 

properties,  protein sequence conservation and drug binding affinity in the  target drug protein (Figure 

3.1).  

3.3.4.1 Identification of conserved amino acid residues 

ConSurf is a bioinformatics tool used for the estimation of the conserved amino acid residues in a 

protein. It performs multiple sequence alignments between the input protein sequences and 

homologous sequences and then constructs a phylogenetic tree to determine the evolutionary 

relations between them (Ashkenazy et al., 2016). It grades conservation scores on a scale of 1-9 where 

1-3 are variable, 4-6 are average and 7-9 represent highly conserved amino acid residues in a protein 

(Celniker et al., 2013). Here, we grouped different mycobacterial species to determine the evolutionary 

relations between them using ConSurf. 



 65 

3.3.4.2 Determining the occurrence of mutations in a protein domain 

A protein domain is a conserved part of a protein that can independently exist, fold and function 

separately from the rest of the protein structure (Richardson, 1981; Wetlaufer, 1973). Some proteins 

have a single domain, while others have multiple domains. The presence of mutations in a domain 

region may impact its biological function or protein folding. 

Pfam, Interpro Scan and SMART are freely accessible databases online. These three were used to 

predict protein domains in the first-line target proteins of Mycobacterium tuberculosis (catalase-

peroxidase, pyrazinamidase, arabinosyl transferase and DNA-directed RNA polymerase subunit beta). 

Pfam is a curated database of protein families constructed using the profile hidden Markov model 

(HMM) (Finn et al., 2014). Interpro Scan classifies a given protein sequence into protein families and 

then predicts the presence of a functionally important protein domain (Jones et al., 2014). Interpro is 

based on the signature recognition method and is constructed by combining signature sequences from 

multiple databases into a single searchable resource (Mitchell et al., 2019). The simple modular 

architecture research tool (SMART) uses a SMART database to predict and annotate protein domains. 

The database manually integrates curated HMM for several domains (Letunic & Bork, 2018). After 

identification of the protein domains, we assessed the presence of our drug-resistant non-synonymous 

mutations in the protein domains.  

3.3.4.3 Identification of essential sites in a protein 

In this step, the mutated residues were distributed into three sites: site-1 is the ligand-binding site, 

site-2 contains the residues directly interacting with the binding site, and site-3 contains other mutated 

residues. 

The structure of a protein is complex and consists of ample surface pockets, cavities and cross 

channels. These topographic characteristics are the structural basis of a protein and help it perform 

significant tasks, such as ligand binding, DNA or protein interactions and enzymatic activity. The 

presence of a mutation in a ligand-binding site interferes with the binding of the first-line drugs to their 

respective drug targets. A mutation can impact ligand binding site residues and the neighbouring 

region of a protein's ligand site, affecting the drug, substrate or metal binding. Prediction of the binding 

cavity helps in the understanding of protein-ligand interactions. Also, the amino acid residues having 

a direct connection with residues present in ligand-binding sites play a crucial role in the correct 

functioning and stability of a protein and mutations present in these contact residues can have a 

destabilizing effect on protein structure. 

For identifying the binding sites (site-1) for catalase-peroxidase (katG), pyrazinamidase (pncA), DNA-

directed RNA polymerase subunit beta (rpoB) and arabinosyl transferase C, A and B (embCAB) proteins 
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of Mycobacterium tuberculosis, COACH-D and the 3D LigandSite web server were used. COACH-D 

predicts binding for a given protein sequence or structure using five methods (Wu et al., 2018): 

ConCavity (Capra et al., 2009), TM-SITE (Yang et al., 2013), FINDSITE (Brylinski & Skolnick, 2008), 

COFACTOR (Roy et al., 2012) and S-SITE (Yang et al., 2013). After submitting the protein structure in 

COACH-D, the above-mentioned five different methods will predict protein-ligand binding sites. 3D 

LigandSite uses MAMMOTH (Ortiz et al., 2009) to perform structural alignment to identify similar 

structures with bound ligands to identify ligand binding sites in the query protein (Wass et al., 2010). 

The Ring webserver was used to predict the site-2 residues. The webserver produces a residue 

interaction network (Piovesan et al., 2016) that helps determine intra- and inter-chain contacts among 

amino acid residues of a protein. 

3.3.4.4 Assessment of the functional impact of mutations 

The mutations present in a protein can have substantial effects on function by either the loss or gain 

of function. Some mutations do not have any impact on the role of a protein. However, the position 

and property of some mutating amino acid residues can have a significant effect on the functioning of 

a protein. To determine the phenotypic impact of drug resistant mutations of Mycobacterium 

tuberculosis, SIFT, PROVEAN and POLYPHEN-2 computational tools were used in the study to predict 

deleterious mutations, mutations with intermediate effect and benign mutations. 

SIFT (sorting intolerant from tolerant) is a sequence homology-based tool to predict intolerant and 

tolerant mutations (Ng & Henikoff, 2001). The FASTA sequence of target proteins is submitted to each 

computational tool. When a query protein sequence is submitted, SIFT performs PSI-BLAST (Altschul 

& Koonin, 1998) to align all functionally relevant proteins and provides a tolerance index for the 

mutation based on the conservation score obtained from the sequence alignment. The tolerance index 

ranges from 0-1, where scores ≥0.05 are “tolerant” and scores ≤ 0.05 are considered “intolerant” or 

“deleterious” (Kumar et al., 2009). PROVEAN is also a sequence homology-based tool that performs 

sequence alignment using BLAST (basic local alignment search tool) (Altschul et al., 1990). The 

alignment hits with more than 75% sequence identity are clustered together to generate a PROVEAN 

score (Choi et al., 2012). If the PROVEAN score is ≥ -2.5, the mutation has a “neutral” effect, while if 

the score is ≤ -2.5, the mutation has a “deleterious” or “harmful” effect on a protein (Choi & Chan, 

2015). POLYPHEN-2 predicts the impact of a mutation on protein structure and function using specific 

considerations (structure and evolution). POLYPHEN-2 generates the PSIC (position-specific indecent 

count) score by performing BLAST against protein structures similar to query protein in the PDB 

database. The outcome for query protein can be “probably damaging,” “possibly damaging,” or 

“benign” mutation (Adzhubei et al., 2013; Ramensky, 2002).  
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3.3.4.5 Prediction of structural stability change 

Non-synonymous amino acid substitution occurring in a protein may have a significant impact on the 

protein’s structure. The mutations can alter structural stability, protein folding, solvent accessibility, 

and the structural motifs involved in critical molecular mechanisms. Mutations in amino acid residues 

present on the surface affect the protein binding with its interacting molecules (protein, DNA or 

ligand). Amino acid substitutions occurring in buried residues have a high probability of impacting 

protein folding or causing the unfolding of the protein, thereby affecting stability. Thus, the presence 

of mutations in the buried residues first-line protein targets (catalase-peroxidase, pyrazinamidase, 

arabinosyl transferase and DNA-directed RNA polymerase subunit beta) of Mycobacterium 

tuberculosis may cause destabilization of the protein.  

I-MUTANT 3.0 and mCSM were used in this study for analysing the mutational impact on protein 

stability. I-MUTANT 3.0 uses a support vector machine (SVM) algorithm to predict changes in the 

stability of a protein caused by a single non-synonymous mutation. The FASTA sequence of a query 

protein is submitted along with information on mutation and changes in the amino acid residue. The 

output is classified into three categories: “large increase” (DDG >0.5kcal/mol), “neutral” (-0.5 ≤ DDG ≤ 

0.5 kcal/mol) or “large decrease” (DDG≤ -0.5kcal/mol) (Capriotti et al., 2005) in stability. mCSM is a 

machine learning tool used to determine the effects of mutations using graph-based structural 

signatures. The signatures of mCSM were obtained from the Cutoff Scanning Matrix (CSM), a graph-

based concept used to study biological systems to represent the distinct pattern of network topology 

(Pires et al., 2016). The output of mCSM provides information on the change in stability as either 

“destabilizing” or “stabilizing”.  

3.3.4.6 Drug binding affinity analysis 

The drug binding energy score predicts the strength of interaction between ligand and protein. 

Mutations occurring in drug target proteins can have a potential impact on the binding affinity of a 

drug. Sometimes this may not allow the drug to bind to its target protein. Our study performed a 

docking procedure to determine the impact on drug binding of a mutation in catalase-peroxidase, 

pyrazinamidase, arabinosyl transferase, and DNA-directed RNA polymerase subunit beta proteins of 

Mycobacterium tuberculosis.  

Molecular docking is a computational simulation that involves the interaction between a ligand and a 

receptor to give a stable conformation (Ferreira et al., 2015; Shoichet et al., 2002). Our study's purpose 

is to determine the predominant drug binding affinity of wild-type and mutant proteins with their 

respective first-line drugs. The AutoDock 4.2 docking tool, was used for determining the binding 

orientation and binding affinity between a drug and its respective drug target (Morris et al., 1998). 

AutoDock suite consists of two programs: autogrid for pre-calculating the grids and AutoDock program 
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for performing docking of the ligand to protein with pre-calculated grids (Morris et al., 2009). The 

following steps were performed for molecular docking using AutoDock 4.2: 

(1) Preparation of coordinate file: In the docking process, Mycobacterium tuberculosis proteins 

were considered rigid and their binding ligands were deemed flexible (Rauf et al., 2015). The 

ligands INH, PZA, EMB and RIF for catalase-peroxidase, pyrazinamidase, arabinosyl transferase 

and DNA-directed RNA polymerase subunit beta proteins were retrieved from the PubChem 

database (Wang et al., 2009) in the mol2 format and then converted into the PDB format using 

PyMOL molecular graphics system. The protein and ligand files should be converted into the 

PDBQT format and then used for docking.  

(2) Generating a grid box: Autodock4 used a grid-based approach to approximate the energy 

calculations. The docking area was defined by 100 × 100 × 100 points with a grid spacing of 

0.375 Å. The grid box was centred on the macromolecule and covered almost the whole ligand-

binding site of the target protein. 

(3) Docking: Lamarckian genetic algorithms implemented with a 200-docking population size and 

two million energy evaluations, were used for docking experiments (Morris et al., 1998). 

Twenty docking poses were generated for each docking process. 

(4) Analysis: The docking output clusters were analysed for determining the best conforming one. 

The best output can be selected as that possessing strong binding affinity and lowest binding 

energy. Furthermore, the binding energy of the mutant proteins was compared with their 

corresponding wild-type protein to determine the effect of mutation on binding affinity. 

 

3.4 Results 

3.4.1 Selection of drug-resistant mutation studies and data extraction 

Here we provide the details of the extraction of mutations for this study. In the initial extensive search, 

a total of 1511 studies were selected. Out of the 1511 studies, 1486 studies were retrieved through 

electronic searches in PubMed, Scopus, Google Scholar and online archives of the International Journal 

of Tuberculosis and Lung Disease using keywords described in the Material and Methods section. An 

additional 25 research papers were identified by looking at the reference lists of the 1486 studies. The 

removal of 252 duplicate papers left 1259 studies for further review. After completing a thorough 

search based on the inclusion and exclusion criteria shown in Figure 3.3, 149 studies were selected for 

TB drug-resistant mutation study. 
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Figure 3. 3: The process of selection of studies based on keyword search and eligibility criteria. The 
initial investigation was done using keywords individually and combination of ‘AND,’ 
‘OR’ operators: ‘tuberculosis,’ ‘incidence,’ ‘Mycobacterium tuberculosis,’ ‘tuberculosis 
patients,’ ‘first-line TB drugs,’ ‘katG,’ ‘rpoB,’ ‘pncA,’ ‘emb,’ ‘isoniazid,’ ‘rifampicin,’ 
‘pyrazinamide,’ ‘ethambutol,’ ‘prevalence of drug-resistant tuberculosis,’ ‘drug 
resistant first-line TB drugs,’ ‘drug-resistant tuberculosis,’ ‘first-line drug resistant 
tuberculosis,’ ‘multidrug-resistant tuberculosis,’ ‘MDR-TB,’ ‘isoniazid resistance,’ 
‘rifampicin resistance,’ ‘pyrazinamide resistance’ and ‘ethambutol resistance’ 
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The data collected from 149 studies included the PubMed ID of the study, name of the author, 

publication year, year of sample collection from TB patients, geographic location of the collected 

sample, first-line TB drug studied, total number of clinical isolates used in each study and the total 

number of resistant strains identified for the first-line TB drug targets (katG, rpoB, pncA and embCAB) 

in each study. The Appendix Table A.1 provides detailed information on the 149 selected studies. In 

addition, Table 3.2 shows the number of research studies carried out for each and in combination for 

first-line TB drugs in the 149 selected studies.  

 

Table 3. 2: The different first-line TB drugs studied in the selected 149 studies. INH-isoniazid, RIF-
rifampicin, PZA-pyrazinamide and EMB-ethambutol 

First-line TB drugs studied in the selected studies Number of studies 

INH 24 

RIF 20 

PZA 25 

EMB 19 

INH and RIF 36 

INH and EMB 1 

RIF and PZA 1 

EMB and PZA 1 

INH, RIF and EMB 7 

INH, RIF and PZA 2 

INH, RIF, PZA and EMB 13 

 

The timeframe of sample collection ranges from 1988 to 2018 (the final year of clinical isolate 

collection) spanning 30 years. From the 149 studies, 33 did not provide the details of the sample 

collection year. In terms of publication year, 88 studies were published between 2010 and 2019. From 

94,687 isolates collected over 30 years from patients diagnosed with TB, 31,073 isolates (from seven 

to 2081 Mycobacterium tuberculosis isolates per study) were used for studying resistance to different 

first-line TB drugs. Out of 31,073 isolates, mutation data for Mycobacterium tuberculosis isolates 

showing resistance to the four first-line TB drugs, isoniazid (n= 5703), rifampicin (n=5282), 

pyrazinamide (n=2608) and ethambutol (n=1771), were available. After collection and cleaning, this 

30-year mutation dataset formed the basis for the study of the strategy of Mycobacterium tuberculosis 

for drug resistance.  

 



 71 

A total of 12,616 non-synonymous mutations (p) identified in drug-resistant Mycobacterium 

tuberculosis isolates (determined using Mycobacterium tuberculosis H37Rv as the reference genome) 

conferred mutations on first-line TB drug targets in katG (p=4589), pncA (p=1227), rpoB (p=5191) and 

embCAB (p=1609). katG and rpoB, targets of the two most crucial TB drugs INH and RIF, respectively, 

showed a high mutation count compared to pncA and embCAB. INH and RIF are used in both the 

intensive and continuation phases of the DOTS strategy. The latter two target drugs, PZA and EMB, are 

used in the two- to four-month intensive phase of TB treatment. The prolonged exposure of INH and 

RIF, for six to nine months, during TB treatment could be a reason for the higher mutation counts in 

katG and rpoB. This suggests that prolonged exposure to TB drugs can allow Mycobacterium 

tuberculosis to evolve potentially stronger drug resistance strategies. 

3.4.2 Global distribution of first-line TB drug resistant mutations 

Accurate geographic locations were reported in 139 research papers for 51 different countries. Of the 

51 countries, 15 belonged to high TB burden countries. Some of the high TB burden countries in the 

selected studies were from Bangladesh, China, Ethiopia, India, Myanmar, Pakistan, Philippines, Russia, 

South Africa and Zambia. Geographically, 18 studies were conducted in China, 13 in India, 10 in U.S.A 

and seven each in South Africa and South Korea.  

 

For understanding the global prevalence of drug resistant mutations in tuberculosis, computation of 

the number of mutations present for a drug in a specific country was needed. Unfortunately, country-

level mutation data were very sparse, leading to the aggregation of mutational data into six WHO 

regions. The 51 countries covered the six WHO regions: Africa- 6, Americas- 10, Eastern 

Mediterranean- 5, Europe- 15, South-East Asia- 5, Western Pacific- 10. Figure 3.4 shows first-line TB 

drug resistant mutations found in six WHO regions and Table 3.3 shows that the occurrence of drug 

resistant mutations varies among the WHO regions. 
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Figure 3. 4: Geographic distribution of first-line TB drug resistant mutations in the six WHO regions 

 

As shown in Figure 3.4, mutations occurred most frequently in the Western Pacific (29.68%), followed 

by South-East Asia (17.03%), the Americas (13.23%), Europe (12.86%), Africa (9.89%) and Eastern 

Mediterranean (6.05%). Mutations of unknown origin accounted for 11.26% of the total. Mutations in 

all four drug targets (katG, rpoB, pncA and emb) were found most frequently in the Western Pacific 

region and least frequently in Africa (katG and emb) and the Eastern Mediterranean (rpoB and pncA) 

(Table 3.3). At the WHO regional level, the mutation frequencies of katG and rpoB were considerably 

higher than that of pncA and embCAB in all six WHO regions. The differences in mutation count could 

be due to several reasons: weather conditions, the health of the patient, prolonged exposure to drugs, 

and poor performance of some sequence-based diagnostic testing. Inconsistencies in the identification 

of drug resistance could lead to incorrect TB treatment plans posing a threat to drug-resistant TB 

patients' lives. Thus, it is essential to develop better diagnostic methods and perform whole genome 

sequencing for predicting drug resistance in first-line TB drugs.  

Table 3. 3: Number of drug resistant mutations in first-line drug targets in the six WHO regions. Fifty-
one countries were divided into six WHO regions (from 139 publications) and unknown 
regions (10 studies did not specify exact location) 

 

Drugs/ 
WHO 
regions 

Africa Americas Eastern 
Mediterranean 

Europe South-
East 
Asia 

Western 
Pacific 

Unknown 

katG 308 919 349 436 973 1075 529 

rpoB 849 490 317 676 954 1455 450 

pncA 71 146 2 244 69 332 363 

embCAB 20 114 95 266 153 883 78 
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3.4.3 Single mutation frequency of the first-line TB drug targets 

A total of 821 non-synonymous mutations (m) occurring in the coding region of katG (m=202), rpoB 

(m=120), pncA (m=273) and embCAB (m=226) were identified. The single mutation frequency for each 

mutation identified was calculated using the formula described in the Materials and Methods, section 

3.3.2.3, to determine the prevalence of a mutation at a specific site. An atlas of non-synonymous 

mutations identified in the first-line TB drug targets of Mycobacterium tuberculosis was created 

describing their amino acid substitution, phenotypically resistant clinical isolates sequenced for a 

specific target or position, mutation count and single amino acid mutation frequencies (Appendix B). 

The previous section revealed that more mutations in katG and rpoB, compared to pncA and embCAB, 

suggest that prolonged exposure to a drug allows Mycobacterium tuberculosis to experiment with 

more mutation options. After calculating the single mutation frequency, it was observed that the 

mutation count varies significantly in different first-line TB targets and within each target. This suggests 

that Mycobacterium tuberculosis either purposefully or through random trial and error has found 

strategies for mutating the drug target by trying diversity of mutations. 

(i) katG mutations associated with INH resistance 

Isoniazid is used for inhibiting mycolic acid biosynthesis, thus weakening the Mycobacterium 

tuberculosis cell wall. This prodrug is activated by katG. A total of 202 point mutations were found at 

140 different positions in the coding region of katG. The range in mutation counts varied from 1 to 

3690 (Figure 3.5). The most frequent mutations were observed at the katG S315 position, with 3690 

mutations in 5667 INH resistant isolates. katG R463 was the second most commonly mutated codon 

with 333 mutations in 2400 resistant isolates. Approximately 24 different positions in katG had two 

mutations and 69 had only one mutation.  

 

The calculation of single mutation frequency revealed that katG S315T was the most prevalent amino 

acid substitution with a single mutation frequency of 60.57%, followed by R463L with 13.75% and 

S315N with 2.95%. The crystal structure of katG with 1SJ2 PDB entry (Bertrand et al., 2004) shows that 

S315 is the INH binding site. Therefore, a mutation at the INH binding site might bring conformational 

changes in katG, preventing activation of INH. The mutation pattern of katG suggests that 

Mycobacterium tuberculosis uses a strategic plan to safeguard itself against INH. 
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Figure 3. 5: Mutation count of katG observed in INH resistant Mycobacterium tuberculosis isolates 

 

(ii) rpoB mutations associated with RIF resistance 

RIF is used to attack the genetic machinery of Mycobacterium tuberculosis. It targets the β-subunit of 

RNA polymerase encoded by rpoB, thus, inhibiting the transcription process (Zhang & Yew, 2009). 

Generally, the E. coli numbering system for rpoB is used as a standard reference for identifying 

mutations associated with RIF resistance. This numbering system has sometimes led to 

misinterpretation of drug resistant mutations. In this study, we used the Mycobacterium tuberculosis 

rpoB numbering system, as described by Andre et al. (2017). rpoB consists of an 81 base-pair 

rifampicin-resistance determining region (RRDR), from position 507 to 533, in E. coli (Taniguchi et al., 

1996) and, from codon 426 to 452, in Mycobacterium tuberculosis (Andre et al., 2017). The collected 

mutation data for rpoB found that 42 distinct rpoB codons had 120 non-synonymous amino acid 

mutations. The range of mutation counts for rpoB varied from 1 to 3054. The most prevalent mutations 

were identified at codon number S450 with 3054 mutations accompanied by rpoB H445 with 1019 

mutations (Figure 3.6). Eight codons had only a single mutation. It was found that most of the RIF drug 

resistant mutations were present inside RRDR. Forty-nine mutations were present outside RRDR at 17 

distinct codons: 170, 413, 424, 453, 454, 455, 457, 460, 480, 481, 482, 483, 487, 488, 491, 493 and 507.  

 

The most commonly occurring rpoB mutations at positions rpoB S450L, H445Y, D435V and H445D had 

single mutation frequencies of 56.7%, 8.01%, 6.5% and 4.53%, respectively. The high density of 

mutations occurring in RRDR seem to hamper the binding of a drug to rpoB leading to RIF resistance. 

Unfortunately, the crystal structure for Mycobacterium tuberculosis rpoB is not available. 
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Figure 3. 6: Mutation count of rpoB observed in RIF resistant Mycobacterium tuberculosis isolates 

 

(iii) pncA mutations associated with PNZ resistance 

PZA, a prodrug, is activated by pyrazinamidase encoded by pncA. It weakens the cell membrane and 

inhibits transportation across the cell membrane (Zhang & Yew, 2009). For pncA, 273 different types 

of non-synonymous mutations were observed at 111 distinct codons. Unlike other first-line drug 

targets, mutations in pncA are scattered throughout the gene. The mutation count for pncA ranged 

from 1 to 62. The most pervasive mutation was observed at pncA W68 with 62 mutations, followed by 

Q10 with 54 mutations and codon H57 with 52 mutations (Figure 3.7). Scorpio et al. (1997) described 

three catalytic regions in pncA: I5-D12, P69-L85 and G132-T142. We found that the G132-T142 region 

had more mutations compared to I5-D12 and P69-L85.  

 

In contrast to the mutation count at each amino acid position, the single mutation frequency was 

observed at Q10P with 1.46%, accompanied by W68R and Y103D with 1.03% single mutation 

frequencies. The crystal structure of pncA is available with 3PL1 PDB entry (Petrella et al., 2011). While 

studying the crystal structure, we found that the ligand-binding region (D49, H51, H57 and H71) was 

not frequently mutated except for H57. This indicates that that pncA has different resistance 

mechanisms, which needs investigation.  
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Figure 3. 7: Mutation count of pncA observed in PZA resistant Mycobacterium tuberculosis isolates 

 

(iv) emb mutations associated with EMB resistance 

Drug resistant mutations occurring in the embCAB operon, encoding for arabinosyltransferase C, A and 

B, confer EMB resistance. EMB targets arabinosyltransferase for inhibiting arabinogalactan synthesis, 

thus weakening the cell wall (Bhat et al., 2018). In our study, we observed 168 different point 

mutations in embB at 101 distinct codons. The most frequent mutations in embB occurred at the M306 

codon with 900 mutations, followed by codon G406 with 164 mutations and codon 497 with 115 

substitutions (Figure 3.8(ii)). The highest single mutation frequency was observed at embB M306V with 

29.18%, followed by M306I and G406A with 18.01% and 4.71%, respectively. For embA and embC, no 

significant mutation data were available. From the available data, we identified that there were only 

two mutations present at the embA 4 and 913 codons (Figure 3.8(i)) whereas, embC was commonly 

mutated at codon numbers 270 with 31 mutations and at position 981 with 30 mutations (Fig 3.8(iii)). 

However, the crystal structure for embA and embB is not available. 3PTY PDB entry is the known crystal 

structure for the C-terminal domain of embC (Alderwick et al., 2011). Thus, understanding the EMB 

resistance mechanism in embCAB is a challenge due to the limited mutation data and lack of crystal 

structure. 
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(i) 

 

(ii) 
 

 

(iii) 

Figure 3. 8: Mutation count for emb associated with EMB resistance: (i) embA, (ii) embB, and (iii) 
embC observed mutations in EMB resistant tuberculosis isolates 

 

When we looked deeply into mutation patterns, spread, and frequency, we found that the most 

commonly occurring mutations were highly prevalent in all six WHO regions. However, their frequency 

varied in each region. For example, katG S315T and rpoB S450L were the most highly occurring 

mutations in all WHO regions. 



 78 

3.4.4 Hotspot mutation site in the first-line TB drug targets 

The number of amino acid substitutions occurring at each mutated position of the first-line TB drug 

targets was also evaluated (Appendix C). The position in the target gene with three or more 

substitutions was considered a hotspot residue site in our study. katG had 12 sites with multiple amino 

acid substitutions. S315 was found to have the maximum number of eight substitutions (S→ A, D, G, I, 

L, N, R, T). In rpoB, 14 sites with distinct replacements and H445, in particular, with 13 variants (H→A, 

C, D, E, G, L, N, P, Q, R, S, T, Y) were identified. A high degree of diversity with 44 hotspot sites was 

observed for pncA with H71 having eight distinct amino substitutions (H→D, E, N, P, Q, R, T, Y) followed 

by D8, H51, H57 and W68 with six multiple mutations. embA and embC had no hotspot sites, whereas 

embB showed 18 hotspot sites, with G406 having seven variants (G→P, S, C, K, R, D, A). The relationship 

between mutation frequency and hotspot site revealed that the frequently mutated position in the 

first-line TB drug target also had many variants. 

 

The results above (single mutation frequency and hotspot residue site) showed that Mycobacterium 

tuberculosis might have a more focused approach for generating resistance against INH and RIF. The 

prolonged exposure to these two drugs could be contributing to the evolution of Mycobacterium 

tuberculosis. In INH resistance, the widespread mutation, katG S315, in the drug-binding region, is the 

most commonly used strategy for generating resistance against INH. However, the strategy used for 

evading the other three drugs is not clearly understood. Therefore, it is essential to determine the 

location of frequent mutations in drug targets and the impact of mutation in terms of its presence in 

conserved region, functional change, structural stability change, location as well as changes in drug 

binding to understand the survival mechanism of Mycobacterium tuberculosis against first-line TB 

drugs. For understanding the strategy used by Mycobacterium tuberculosis, we performed a 

comprehensive computational analysis on the 821 non-synonymous mutations. 

3.4.5 Structure modelling, validation and energy minimization of first-line TB drug 
targets 

The structural models for wild-type (WT) catalase-peroxidase, β subunit of RNA polymerase, 

pyrazinamidase, arabinosyl transferase A, B and C encoded by katG, rpoB, pncA, embA, embB and 

embC, respectively and mutant protein targets were generated using MODELLER v9.23.   

(1) Retrieval of target sequence: First, the protein sequence of catalase-peroxidase (P9WIE5), 

pyrazinamidase (Q50575), β-subunit of RNA polymerase (A0A0K0PZB9), arabinosyltransferase 

A (P9WNL9), arabinosyltransferase B (P9WNL7) and arabinosyltransferase C (P9WNL5) were 

retrieved from the UniProt database. It was necessary to convert protein sequence into the 

PIR file format, so that it is easily read and processed by MODELLER v9.23. The converted 
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sequence was saved as file= “target.ali”; for example, “catp.ali” used for generating model for 

mutant catalase-peroxidase S315T.  

(2) Selection of template structure: PSI-BLAST was performed by taking the PDB database as the 

source database to select template structure. The template was chosen with the maximum 

identity percentage and query coverage. The chosen template for the wild-type protein was 

taken as a template for modelling their respective mutant proteins. For example, 1SJ2 was 

selected as a template for modelling mutant catalase-peroxidase S315T, 3PL1 for 

pyrazinamidase Q10P and 5UH5 for the β-subunit of RNA polymerase H445R. Table 3.4 shows 

the result of PSI-BLAST for wild-type proteins. 

Table 3. 4: Results of template structure search from PSI-BLAST 

Protein Protein 
sequence 
accession 
number 

Amino 
acid 

length 

Selected 
template 

PDB ID 

Identity 
(%) 

PDB 
Chain 

Query 
cover 

(%) 

Catalase-peroxidase P9WIE5 740 1SJ2 99.86 A 100 

Pyrazinamidase Q50575 186 3PL1 100 A 100 

β-subunit of RNA 
polymerase 

A0A0K0PZB9 1172 5UH5 99.83 C 
 

100 

Arabinosyltransferase 
A 

P9WNL9 1094 3PTY 40.4 A 35 

Arabinosyltransferase 
B 

P9WNL7 1098 3PTY 42.97 
 

A 33 

Arabinosyltransferase 
C 

P9WNL5 1094 3PTY 100 A 34 
 

 

Table 3.4 shows the details of the templates selected for homolog modelling with a sequence 

identity of the query with selected template and query coverage for structural model 

generation. The selected templates for catalase-peroxidase, pyrazinamidase and β-subunit of 

RNA polymerase shows the 100% query coverage with more than 99% sequence identity. 3PTY 

PDB entry is the known crystal structure for the C-terminal domain of embC. 3PTY was selected 

as a template for constructing the structural models for arabinosyltransferase A, B and C. Due 

to the unavailability of structural information for arabinosyltransferase A, B and C, the query 

coverage and sequence identity were low. 

(3) Alignment of a target sequence and template structure: The alignment of the target sequence 

with template structure was undertaken using the “align 2d()” command in MODELLER v9.23. 

A python script was generated and saved as “target-template.py”. Two alignments files were 

generated after target-template alignment: “target-template.pap” and “target-template.ali”. 
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For example, Figure 3.9 illustrates “catp-1sj2.pap” generated after alignment between target 

sequence and template (1sj2) for wild-type catalase-peroxidase (P9WIE5). File “catp-1sj2.ali” 

was used for subsequent model generation. 

 

 

Figure 3. 9: Target-template alignment. The figure shows the “catp-1sj2.pap” file generated after 
alignment between the target sequence (wild-type catalase-peroxidase (P9WIE5)) and 
the template (1sj2) using align 2d() command in MODELLER v9.23;  “*” represents 
conserved regions 

 

(4) Building structural model:  After aligning the target sequence and template structure, “target-

template.ali” was generated to generate a model using the “automodel” class of MODELLER 

v9.23. A python script was used to create, for example, ten similar structural models for wild-

type catalase-peroxidase, pyrazinamidase, β-subunit of RNA polymerase, 
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arabinosyltransferase A, arabinosyltransferase B and arabinosyltransferase C. The result of 

model building was stored in the “catp_model.log” file, which contained the molecular PDF 

(molpdf), discrete optimized protein energy (DOPE)  (Shen & Sali, 2006) and GA341 scores 

(Melo et al., 2009). Figure 3.10 presents the summary of the generated models for wild-type 

catalase-peroxidase (P9WIE5).  

 

Figure 3. 10: Summary of the structural models generated for wild-type catalase-peroxidase 
(P9WIE5). The figure shows the first ten models generated using MODELLER v9.23 along 
with molpdf, DOPE and GA341 scores.  

 

Molpdf represents the standard homology modelling score function. DOPE score assesses the 

quality of the atoms in the constructed structural model using the DOPE method (Shen & Sali, 

2006). The 3D structure models with the lowest DOPE score are considered good models. 

GA341 score is used for assessing the quality of the structural model. The structural model 

with GA341 scores of more than 0.5 is considered a good model (Melo et al., 2009). 

(5) Selection of model: The results for model building were stored in a log file, which contained 

molpdf, and the DOPE and GA341 scores. The 3D structure models with the lowest DOPE score 

and highest GA341scores were selected for structural validation. For example, according to 

the summary result displayed in Figure 3.10, catp.B9999006.pdb had the highest GA341 score 

of 1.00000 and the lowest DOPE score of -82128.24219. Thus, “catp.B9999006.pdb” was 

chosen as a 3D structure model for wild-type catalase-peroxidase (P9WIE5). 

 

Following this, models were generated for the mutant-type proteins. For the 821 mutations, we were 

able to construct a total of 603 mutant protein structural models. Due to the unavailability of a suitable 

template for arabinosyltransferase (emb), only 12 mutant protein models were generated. (Python 

scripts used for structural modelling are in the Appendix, section H1 and H2). 
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The model selected was further evaluated for stereochemical quality using PROCHECK, ERRAT and 

Verify 3D. The chosen model had more than 90% of residues in the most favoured region, which 

illustrates the importance of selecting the best quality model. Energy minimization of the protein 

models was performed by the GROMACS package using the GROMACS96 43A1 force field. Similarly, 

six wild-type target protein structures were constructed. Figure 3.11 shows the final structural models 

selected for the main wild-type first-line TB drug targets.  

          

(i) 

 
(ii) 
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(iii) 

 
(iv) 

Figure 3. 11: 3D structural models constructed for the wild-type first-line drug target proteins: (i) 
catalase-peroxidase (katG), (ii) pyrazinamidase (pncA), (iii) β-subunit of RNA 
polymerase (rpoB), and (iv) arabinosyltransferase B (embB). The structures are coloured 
in rainbow colour from violet to red (starting from N-terminus to C-terminus) 
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3.4.6 Comprehensive computational analysis of the drug resistant strategy of first-
line TB drug targets 

A mutation in the drug target can change its biological function and structural stability. For a mutation 

to be drug resistant, it must cause a minimum loss to the infectious agent. Thus, it is essential to 

identify the impact of first-line TB drug resistant mutations on Mycobacterium tuberculosis. Here, we 

used several bioinformatics tools to determine the effect of the 821 drug resistant mutations on the 

properties of the target proteins to assess how these mutations impact the fitness of Mycobacterium 

tuberculosis. Figure 3.1 presents the workflow depicting the approach used to systematically 

understand drug resistance and the number of different bioinformatics tools used for each step (in 

bold letters). In particular, we combined the results of the impact of mutations on Mycobacterium 

tuberculosis fitness and the effect of mutations on drug binding/activation, and then ranked the 821 

mutations into neutral, mild, moderate and lethal categories to uncover the Mycobacterium 

tuberculosis drug resistance strategy. This understanding will help unravel the drug resistance 

mechanisms of Mycobacterium tuberculosis and develop effective strategies to prevent or eliminate 

TB at its root.  

3.4.6.1 Evolutionary conservation analysis 

Evolutionary information about a protein sequence reveals the sites that can be more prone to 

mutation and what impact a mutations in conserved or variable (non-conserved) position can have on 

a protein. From the perspective of evolution, mutations in less conserved regions will have less impact 

on structure and function than highly conserved areas. Mutations in highly conserved areas can 

significantly affect the target proteins’ structure and function, leading to improper drug binding 

contributing to drug resistance. However, these can also impact considerably the fitness of 

Mycobacterium tuberculosis. Therefore, we first investigated if Mycobacterium tuberculosis in fact 

made use of mutations in the conserved regions. For this, we analysed the spread of mutations in the 

target in terms of sequence conservation. We used ConSurf for determining sequence conservation as 

ConSurf identifies functional regions based on evolutionary relationships among homologues. ConSurf 

provides the distribution of mutations in all four drug targets in three regions: highly conserved (HC), 

less conserved (C) and highly variable (V) (Figure 3.12). Out of the 821 mutations, 66.5% (546) were in 

HC, 14.13% (117) were in C and 19.37% (159) were in V, indicating that approximately 80% of 

mutations were in conserved regions (Appendix D summarizes the prediction of sequence 

conservation). This indicates that drug resistance strategy could come at a fairly significant cost to 

bacterial fitness depending on whether frequent mutations are in the conserved regions. 
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Figure 3. 12: Categorizing first-line TB drug resistant mutations into three categories: highly 
conserved, conserved and variable 

 

It was interesting to observe that the mutations occurring more frequently were not present in the 

highly conserved and conserved regions of the first-line drug targets but were in the variable region. 

The most frequent mutation in catalase-peroxidase (katG), S315, and in β-subunit of RNA polymerase 

(rpoB), S450 and arabinosyltransferase B (embB), M306, were found in a highly variable region. 

However, the most frequent mutation in pyrazinamide (pncA), Q10, was present in the highly 

conserved region. As for the less frequent mutations, we found them occurring equally in the 

conserved and variable region with no apparent pattern of occurrence across the regions.  

 

Highly conserved residues are supposed to be involved in essential protein interactions crucial for 

maintaining the function of Mycobacterium tuberculosis. Surprisingly, although the mutation count is 

higher in the conserved regions (Figure 3.12), most of these were the least prevalent mutations. This 

suggests that Mycobacterium tuberculosis experiments with or employs different strategies not to 

jeopardise the normal functioning and structural stability needed for the TB bacteria survival. Thus, TB 

bacteria follow an evolutionary strategy with the slightest disturbance to highly conserved regions in 

attaining drug resistance. 

 

We also identified domain regions in the first-line target proteins using Pfam, SMART and Interpro 

Scan. (Appendix D describes the protein domain region). Domains are considered as evolutionarily 

conserved regions in a protein. Amino acid residues present in the domain are responsible for 

performing essential biological functions. Therefore, mutations in them could lead to more remarkable 
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functional changes. More than 95% of mutations were in the domain region of their respective 

proteins. This indicates that Mycobacterium tuberculosis experiments with mutations in conserved 

regions but does so very sparingly, still favouring variable regions to mutate in developing its drug 

resistance strategy.  

3.4.6.2 Distribution of drug resistant mutation into three sites: 1, 2 and 3 

We then looked at the position of mutations from another angle; specifically, in terms of drug binding. 

For this, we categorised mutation positions in the target proteins into three sites: site-1, site-2 and 

site-3. Site-1 was defined as mutations present in the ligand-binding region; site-2 contains mutant 

residues directly interacting with site-1, and site-3 had mutations occurring elsewhere. Table 3.5 shows 

the mutations present at the ligand-binding sites (site-1 mutations) for first-line wild-type protein 

targets identified using COACH-D and 3D LigandSite. Out of 821 non-synonymous substitutions, 77 

mutations (n) were present at 29 different positions (p) in the binding region of the four targets: 

catalase-peroxidase (n=31, p=17, encoded by katG and target of INH), pyrazinamidase (n=36, p=7, 

encoded by pncA and target of PZA), β subunit of RNA polymerase (n=10, p=5, encoded by rpoB and 

target of RIF).  

 

Table 3. 5: Mutations present in site-1 identified using COACH and 3D LigandSite 

Protein Ligand binding site with mutations 

Catalase-peroxidase 101 LEU, 104 ARG, 107 TRP, 229 TYR, 230 VAL, 
232 PRO, 248 ILE, 269 GLY, 270 HIS, 274 LYS, 
275 THR, 314 THR, 315 SER, 317 ILE, 321 TRP, 
380 THR, 408 PHE  

Pyrazinamidase 8 ASP, 13 PHE, 49 ASP, 51 HIS, 57 HIS, 71 HIS, 
102 ALA 

DNA dependent RNA polymerase subunit beta 432 GLN, 448 ARG,483 PRO, 487 ASN, 491 ILE 

 

S315 in catalase-peroxidase had the highest and H57 in pyrazinamidase had the third-highest mutation 

count. For arabinosyltransferase A, B and C (encoded by embA, B, C and target of EMB), no mutations 

were found in site-1. 

 

Table 3.6 shows the mutant residues present in site-2 found from the RING webserver. We found 53 

mutations (m) present at 25 different positions (r) in the site-2 of catalase-peroxidase, pyrazinamidase 

and β subunit of RNA polymerase. Catalase-peroxidase had 22 mutations in site-2 (r=14, m=22) and 

pyrazinamidase had 30 mutations (r=10, m=30). The β subunit of RNA polymerase had only one 

mutation present at site-2. W68 in pyrazinamidase had the highest and H445 in β subunit of RNA 

polymerase had the second-highest mutation count. For arabinosyltransferase A, B and C, there were 
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no site-2 mutations; all its mutations were present in site-3 with no mutations in site-1 and site-2 

(Appendix D provides information on the distributed sites for each first-line TB drug target.) 

 

Table 3. 6: Mutations present in site-2 identified by RING webserver 

Protein Mutated residues interacting with site-1 

Catalase-peroxidase 105 MET, 108 HIS, 172 ALA, 176 MET, 234 GLY, 
251 THR, 257 MET, 262 THR, 316 GLY, 318 GLU, 
328 TRP, 350 ALA, 384 LEU, 415 LEU  

Pyrazinamidase 19 LEU, 21 VAL, 47 THR, 54 PRO, 58 PHE, 68 TRP, 
72 CYS, 96 LYS, 97 GLY, 133 ILE 

DNA dependent RNA polymerase subunit beta 445 HIS 

 

As shown in the above tables, of all the first-line TB targets, only S315 of catalase-peroxidase showed 

that the presence of a mutation in the ligand-binding region could be the potential source for INH 

resistance. In contrast, most commonly occurring mutations in the β-subunit of RNA polymerase, 

pyrazinamidase and arabinosyltransferase were present in sites-2 and 3, indicating that 

Mycobacterium tuberculosis may follow a different, potentially less drastic strategy with these three 

targets. 

3.4.6.3 Determination on the impact of drug resistant mutations on biological function 

We used three predictive tools, SIFT, PolyPhen-2 and PROVEAN, to determine the impact of mutations 

on the function of first-line drug targets. Figure 3.13 shows the deleterious mutations predicted by 

these computational tools. Deleterious mutations are those that can significantly alter the biological 

function of the target. The differences found in the predictions shown in Figure 3.13 can be due to the 

different algorithms used by various tools. SIFT and PROVEAN use sequence information for predicting 

functional changes, whereas PolyPhen-2 is not solely dependent on sequence homology, but also uses 

the structural information of a protein for determining the impact on function. SIFT and PROVEAN 

directly predict deleterious mutations. In the case of PolyPhen-2 prediction, we considered ‘probably 

damaging’ and ‘possibly damaging’ mutations as ‘deleterious.’ Out of 821 amino acid substitutions, 

507 were predicted to be ‘deleterious’ (D) (Figure 3.13) and 79 as ‘neutral’ (N) by all three programs 

(Appendix E describes functional change for each mutation in drug targets as predicted by each tool).  
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Figure 3. 13: Deleterious drug resistant mutations predicted by SIFT, PROVEAN and PolyPhen-2 

Catalase-peroxidase had 148 deleterious mutations, pyrazinamidase had 158 mutations, the β-subunit 

of RNA polymerase had 106 mutations and arabinosyltransferase had 95 deleterious mutations, as 

predicted by all three tools. A larger number of deleterious mutations were present in pyrazinamidase 

and catalase-peroxidase than in the other two first-line targets. The changes in biological function are 

not beneficial to Mycobacterium tuberculosis; therefore, there must be some form of compensation 

for the lost function.  

 

In terms of location, 67 deleterious mutations were found in site-1 and were distributed among the 

four targets as: catalase-peroxidase (encoded by katG) (n=25), pyrazinamidase (pncA) (n=34) and β-

subunit of RNA polymerase (rpoB) (n=8). Only one mutation in site-1 of catalase-peroxidase I317L was 

found to be neutral indicating that catalase-peroxidase undergoes a significant change in the binding 

region which may have contributed to the deleterious effect on its biological function. All 95 

deleterious mutations of arabinosyltransferase (emb) were in site-3. Functional changes due to 

mutation in site-1 could be directly involved in altering the ability of the target to bind with the first-

line TB drug. Change in function occurring in target protein because of site-2 and site-3 variations could 

be indirectly involved in reducing the enzymatic activity of the target, for example, non-activation of 

pro-drugs such as INH and PZA.  

 

The presence of a large number of deleterious mutations shows that the target proteins undergo 

significant biological changes to acquire drug resistance. The deleterious mutations were less 

frequently occurring. In contrast, frequently occurring mutations were found to have a mild to 
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moderate impact on the biological function of first-line TB drug targets indicating a favourable drug 

resistant strategy. These predictions enable researchers to give preference to and work on mutations 

based on their biological significance. 

3.4.6.4 Predicting the structure stability changes in first-line targets due to mutations 

Stability is crucial for correct protein folding and maintaining the biological function of proteins as it 

provides structural integrity to carry out their roles. For determining changes in structural stability, we 

used I-MUTANT 3.0 and mCSM. mCSM predicted that some of the mutations (16%) drastically change 

stability (highly destabilising, HDT); an example is the W68G position found mutated at site-2 of 

pyrazinamidase that had a highly destabilizing effect. Figure 3.14(i) shows that out of the 821 

mutations, most (96%) destabilise the target, with only marginal differences in their free energy values 

as predicted by mCSM. As for I-MUTANT 3.0 predictions, out of the 821 mutations, 678 (82.6%) 

mutations ‘decrease’ and only 143 (17.4%) ‘increase’ structural stability (Figure 3.14(ii)) (Appendix E 

describes the structural stability changes for each mutation in drug target predicted by each tool). 

In particular, the most frequent mutation site, S315 of catalase-peroxidase, caused a minor change in 

structural stability in the target structure, which could be a reason for its prevalence in drug resistance. 

Similarly, frequent mutations in the β-subunit of RNA polymerase cause little destabilization indicating 

that it also tries to maintain its stability while reducing drug binding. Mutations in pncA and emb had 

the most destabilising effect on stability. Overall, mutations predominantly decrease the stability of 

the target proteins with only a marginal increase in stability. Further, the most frequently occurring 

mutations in first-line drug targets cause moderate changes in protein stability (without highly 

destabilising it) in resisting drugs but they cause greater harm to biological function. Considering the 

effects of mutations on target protein function and stability, this appears to be the strategy of 

Mycobacterium tuberculosis for drug resistance: sacrificing function for stability. In the later section of 

this chapter, we explored how changes in biological function and structural stability specifically affect 

Mycobacterium tuberculosis survival. 
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(i)                                                                                   (ii) 

Figure 3. 14: First-line mutant target protein stability changes predicted by I-MUTANT 3.0 and mCSM: 
(i) Distribution of stability changes into ‘highly destabilizing,’ ‘destabilizing’ and 
‘stabilizing’ identified for 821 mutations in first-line targets as predicted by m-CSM, and 
(ii) ‘Decrease’ and ‘Increase’ in stability in first-line mutant targets as predicted by I-
MUTANT 3.0  

 

3.4.6.5 Analysing the impact of drug binding affinity 

Our analysis observed that each mutation directly or indirectly affects drug binding with its target. To 

determine the pronounced effect of mutations on the conformation of the first-line TB mutant 

proteins, drug binding energies were calculated between ligand (first-line drugs) and receptor (first-

line drug targets) using AutoDock. Figure 3.15 shows the binding energy calculated for catalase-

peroxidase (katG), pyrazinamidase (pncA) and the β-subunit of RNA polymerase (rpoB) mutant first-

line TB targets. Only fifteen binding energies were calculated for arabinosyltransferase, 3 wild-type 

and 12 mutant-type, due to the unavailability of a suitable template for arabinosyltransferase (emb). 

It was observed that wild-type proteins' binding energies were more positive than the mutant proteins 

in contributing to drug resistance. Some less frequent mutations had more positive binding energies 

than wild type proteins. 

 

For rifampicin, binding energy with the WT β-subunit of RNA polymerase was -8.23 kcal/mol and with 

the most frequent mutant H445R (site-2) was -7.78 kcal/mol. The docking score calculated for the WT 

catalase-peroxidase (katG) complex with INH was -5.53 kcal/mol. In contrast, binding energies with 

the identified most frequent mutants S315T, S315N and S315R of site-1 were -4.99 kcal/mol, -5.15 

kcal/mol and -5.2 kcal/mol, respectively. WT pyrazinamidase had a docking score of -4.73kcal/mol and 
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the most frequent mutants Q10P (site-3) and W68R (site-2) had -3.9 had -4.29 kcal/mol, respectively. 

For arabinosyltransferase C, the docking score for WT was -4.03 kcal/mol and the most frequent 

mutant V981L (site-3) had binding energy of -3.78 kcal/mol. This weakened affinity indicates that these 

mutations cause changes that reduce drug binding and enzymatic activity of the drug targets.  

 

The overall view of drug binding was that mutations in site-1 showed a more weakened drug binding 

affinity than mutations in site-2 and site-3. The changes in binding strength/affinity due to mutations 

in site-2 and site-3 could be due to some underlying mechanisms that directly (site-2) or indirectly (site-

3) affect the orientation of the drug binding region through different mechanisms. We have already 

established that site- 1 also experiences deleterious changes in function and moderate changes in 

stability. Any change in function and stability comes with a fitness cost to Mycobacterium tuberculosis. 

As drug resistance appears to come with a fitness cost to Mycobacterium tuberculosis, it is essential to 

investigate the fitness cost of underlying changes due to mutations. 

 

 

Figure 3. 15: Drug binding affinity of wild-type and mutant drug target protein: (A) catalase-
peroxidase (katG), (B) pyrazinamidase (pncA), and (C) β-subunit of RNA polymerase 
(rpoB). The X-axis represents the residue number (position of the mutation in target 
protein) and Y-axis represents the lowest binding energy (kcal/mol) identified in each 
docking 
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3.4.6.6 Categorisation of mutation into lethal, moderate, mild and neutral 

As hypothesised earlier, Mycobacterium tuberculosis may favour mutations harmful to the drug but 

benign to itself. However, in reality, Mycobacterium tuberculosis fitness may be compromised to a 

small or large extent while achieving this balance. Furthermore, a realistic assessment of the fitness 

cost is challenging because, as shown earlier, the various bioinformatics tools used for mutation 

analysis have varying degrees of overlap due to the different approaches they use, such as sequence-

based or structure-based. Therefore, a deeper investigation into these results is needed to validate 

them and properly assess the fitness cost. 

 

A concordance analysis was carried out to integrate results from the previous mutation analysis for 

proper validation and categorisation of mutations into lethal, moderate, mild and neutral. The 

mutations that were deleterious and present in the highly conserved region of drug target with a 

significant reduction in structural stability and binding affinity, were categorised as ‘lethal.’ As the level 

of these decreases, the ranking accordingly goes down to ‘moderate’ and ‘mild.’ Mutations with no 

harmful impact on Mycobacterium tuberculosis were defined as ‘neutral.’ Out of 821 variations, 340 

were identified as ‘lethal,’ 284 as ‘moderate,’ 185 as ‘mild’ and 12 as ‘neutral.’  

 

Table 3.7 presents the distribution of first-line TB target mutations in all four categories. Appendix F 

contains detailed information of all four types. The number of lethal mutations was higher, but when 

we looked at their prevalence, we found that most lethal mutations were the least prevalent across 

the world. In contrast, mutations with a mild impact on Mycobacterium tuberculosis were highly 

persistent. For example, catalase-peroxidase and the β-subunit of RNA polymerase had more lethal 

mutations than moderate and mild mutations. Still, their most prevalent mutations were found to be 

in the mild mutation category. Due to the unavailability of complete structural information for 

arabinosyltransferase B (embB), we could not find any mutations in site-1 and site-2. Still, we found 

that the most frequently occurring mutations at position M306 present at site-3 had a moderate 

impact on Mycobacterium tuberculosis. In contrast, lethal mutations of pyrazinamidase (pncA) were 

highly prevalent. 

 

Catalase-peroxidase (katG) and arabinosyltransferase are essential for cell wall synthesis, and the β-

subunit of RNA polymerase (rpoB) is required for the transcription process (Almeida Da Silva & 

Palomino, 2011; Lange et al., 2018). The results found for these three targets indicate that 

Mycobacterium tuberculosis prefers mild to moderate mutations to achieve resistance for INH and RIF 

and most likely for EMB resistance as well while still being viable. This makes sense as Mycobacterium 

tuberculosis needs to protect the cell wall and protein production machinery to safeguard its survival.  
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Some studies suggest pyrazinamidase (pncA) is not considered essential for Mycobacterium 

tuberculosis growth and development (Baddam et al., 2018). Hence, Mycobacterium tuberculosis can 

afford to resist the drug more strongly with lethal mutations in pyrazinamidase without compromising 

its viability. 

Table 3. 7: Number of lethal, moderate, mild and neutral mutations in first-line TB drug targets 
identified from comprehensive bioinformatics analysis 

 
Lethal mutations (340) 

 
Catalase-

peroxidase 

(105) 

Pyrazinamidase 

(115) 

β-subunit of 

RNA 

polymerase 

(58) 

Arabinosyltransferase 

A (5) 

Arabinosyltransferase 

B (43) 

Arabinosyltransferase 

C (14) 

site-1 14 19 6 0 0 0 

site-2 19 27 7 0 0 0 

site-3 72 69 45 5 43 14 

Moderate mutations (284) 
 

Catalase-

peroxidase 

(53) 

Pyrazinamidase 

(126) 

β-subunit of 

RNA 

polymerase 

(51) 

Arabinosyltransferase 

A (9) 

Arabinosyltransferase 

B (40) 

Arabinosyltransferase 

C (5) 

site-1 6 14 3 0 0 0 

site-2 3 3 6 0 0 0 

site-3 44 109 42 9 40 5 

Mild mutations (185) 
 

Catalase-

peroxidase 

(40) 

Pyrazinamidase 

(31) 

β-subunit of 

RNA 

polymerase 

(11) 

Arabinosyltransferase 

A (6) 

Arabinosyltransferase 

B (78) 

Arabinosyltransferase 

C (19) 

site-1 11 3 1 0 0 0 

site-2 0 0 0 0 0 0 

site-3 29 28 10 6 78 19 

Neutral mutations (12) 
 

Catalase-

peroxidase 

(4) 

Pyrazinamidase 

(1) 

β-subunit of 

RNA 

polymerase 

Arabinosyltransferase 

A 

Arabinosyltransferase 

B (7) 

Arabinosyltransferase 

C 

site-1 0 0 0 0 0 0 

site-2 0 0 0 0 0 0 

site-3 4 1 0 0 7 0 
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3.5 Chapter Summary 

Drug-resistant TB is a severe threat globally. Understanding drug-resistant mutations for their 

prevalence, global spread, drug resistance mechanisms and impacts on the drug and Mycobacterium 

tuberculosis is a challenge. This study aims to better understand the prevalence, regional differences, 

mutation diversity with different hotspot positions, and impact of drug-resistant mutations on 

Mycobacterium tuberculosis and first-line TB drugs in terms of functional change, stability change and 

sequence conservation of the target and changes in drug binding to its target protein. For this, we 

collected mutational data from 31,073 Mycobacterium tuberculosis isolates published in 149 studies 

over the last 30 years.  

From our 149 studies, we found 821 non-synonymous drug resistant mutations in first-line drug targets 

(katG-202, pncA-273, rpoB-120 and embCAB-226). For these, we calculated single mutation 

frequencies for each substitution for a better understanding of the prevalence and diversity of 

mutations in first-line TB drug targets. The pattern of mutations for the first-line TB drugs appeared to 

be different for each drug target with respect to the frequency of mutations, their positions, the overall 

spread of mutations in the target and hotspot positions (various amino acid substitutions at a single 

position).  

In katG, we found that two positions were frequently mutated, with S315 (80.4%) being the most 

commonly mutated position; S315T was highly prevalent (60.58%) followed by R463 (7.25%) among 

the INH resistant isolates. For rpoB, most of the mutations were present in the rifampicin-resistance 

determining region (RRDR), with S450 (58.83%) being the most frequently mutated, along with H445 

(19.63%), the second most common, occurring in RIF resistant isolates. M306 and G406 were two 

commonly mutating positions of embB showing EMB resistance. For embC and embA, studies did not 

provide significant mutation data. Unlike the other first-line targets, mutations in pncA were highly 

scattered, with W68, Q10 and H57 being the most frequent among all the other mutations (as shown 

in Figure 3.7).  

 

Mutations in all four targets having the highest single mutation frequency were katG S315T (60.58%), 

rpoB S450L (56.70%), pncA Q10P (1.46%) and embB M306V (29.18%). katG and rpoB have one very 

frequent mutation and both have a large number of rare mutations scattered across the targets. These 

drugs are in both phases of treatment, and prolonged exposure to them seems to have enabled 

Mycobacterium tuberculosis to acquire many mutations. embCAB has a large number of low-frequency 

mutations spread across the target. pncA has a very low frequency (less than 2%) of mutations 

scattered across the region. These two drugs are only used in the first phase of treatment, and 

Mycobacterium tuberculosis might not produce highly frequent mutations in these two in the shorter 
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period of exposure to them. We also found that the frequent mutations had undergone frequent 

amino acid substitutions. When we looked closely at these sites, we found that most of these 

mutations were in non-conserved sites in the target protein except for pncA W68 and Q10 and rpoB 

H445. This means that Mycobacterium tuberculosis usually escapes from drug actions by mutating 

more variable regions compared to conserved.  

 

Looking at the geographical occurrence of the mutations, we found a higher mutational burden of katG 

and rpoB compared to embCAB and pncA. Higher mutational frequency can be due to prolonged 

exposure (over six to twelve months) to INH and RIF during TB treatment. When we looked deeply into 

mutation patterns, spread, and frequency, we found that the most commonly occurring mutations 

were highly prevalent in all six WHO regions. However, their frequency varied in each region. For 

example, katG S315T and rpoB S450L were the most highly occurring mutations in all WHO regions. 

However, the total number of mutations was high in the Western Pacific and South-East Asia compared 

to the other four regions. The environmental and economic conditions and poor TB diagnosis might be 

the reason behind the differences in frequency of mutation count in different geographic areas (WHO 

Global Tuberculosis Report, 2020). Thus, Mycobacterium tuberculosis has followed a generic pattern 

across the globe over the last 30-35 years to develop resistance to drugs.  

 

Drug resistant mutations are known to impair the growth and development of Mycobacterium 

tuberculosis. Information on the degree of impact on fitness is crucial for understanding the nature of 

mutations in different drug targets and for assessing how bacteria attain drug resistance. Mutations 

usually alter the drug targets’ structural stability and biological function. Analysing the extensive data 

(821 drug resistant mutations) by wet-laboratory experiments would be difficult, time-consuming, and 

expensive. Thus, we performed a comprehensive analysis for predicting each mutation’s impact on its 

respective protein using several bioinformatics tools relatively quickly with reliable accuracy to 

scrutinize the changes in sequence conservation, function, stability, and drug binding affinity in the 

mutant proteins.  

Drug resistance is about Mycobacterium tuberculosis manipulating this arsenal of mutational 

capabilities to find a strategy that minimises its drug binding affinity with a minimum fitness cost. In 

the current study, we used ConSurf, SIFT, PROVEAN, PolyPhen-2, I-MUTANT 3.0 and mCSM (see 

Method section) that use information on sequence conservation and physiochemical or structural 

properties for making predictions on whether Mycobacterium tuberculosis employs mutations in 

conserved regions and predict functional and stability changes resulting from mutations. We used 

AutoDock for calculating drug binding affinity. Use of a number of prediction tools together reduces 

the chance of errors and provides accurate results.  
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To our knowledge, this is the first study using systematic sorting and comprehensive in silico analysis 

of 821 non-synonymous mutations in first-line drug targets, based on five crucial factors- sequence 

conservation, distribution of mutations into three sites, function, structure stability and drug binding, 

to probe into drug resistance mechanisms and Mycobacterium tuberculosis strategies for survival. 

Previous studies have focused on few mutations in studies of drug resistance. From our analysis, we 

found a much larger number of mutations and that: (i) Out of 821 mutations, 66.5% were present in 

the highly conserved sites, but when we looked at their frequency of occurrence, we found that they 

were infrequent (<9% in frequency). In contrast, frequent mutations (> 60% in frequency) were at 

variable (non-conserved) sites, (ii) in katG S315T was the only frequent mutation in site-1, whereas, in 

rpoB, pncA and embCAB, the most commonly occurring mutations were in site-2 and -3, (iii) 507 

mutations out of 821 were found to be affecting significant functional changes leading to these 

mutants acquiring drug resistance, (iv) Around 80% of 821 mutations had a destabilizing impact with a 

small proportion of mutations improving structural stability, and (v) More than 85% of 821 mutations 

showed reduced drug binding affinity. 

 

Based on the above findings incorporating the five important factors mentioned and the level of harm 

caused by Mycobacterium tuberculosis drug resistant mutations, we categorized mutations into four 

ranks - lethal, moderate, mild and neutral. Out of 821 non-synonymous mutations, we identified 340 

‘lethal,’ 284 ‘moderate,’ 185 ‘mild’ and 12 ‘neutral’ mutations. Out of the four first-line TB targets, 

three targets were required for survival of Mycobacterium tuberculosis, i.e., katG (catalase-

peroxidase), rpoB (β-subunit of RNA polymerase) and embCAB (arabinosyltransferase CAB). While 

ranking drug the resistant mutations, we observed that the highly prevalent mutations in these three 

drug targets had mild to moderate impacts on drug binding with reduced drug binding energies, 

changes in enzymatic activity and low steric hindrance caused by structural changes; for example, the 

S315T mutation of katG, the S450L mutation of rpoB and the M306V mutation of embB were found to 

be highly frequent across the globe but had only a mild impact on their respective proteins. The 

number of lethal mutations was high for katG and rpoB, but these mutations were less prevalent. 

 

This shows that Mycobacterium tuberculosis prefers mild mutations in targets essential for its survival 

in developing resistance to first-line TB drugs. On the other hand, pncA (pyrazinamidase), which is not 

essential for the survival of Mycobacterium tuberculosis, was found to have frequent lethal mutations. 

There can be several reasons for the occurrence of lethal mutations - the health of a patient, living 

conditions, severe antibiotic pressure and errors in DNA replication (McGrath et al., 2014).  
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Our comprehensive analysis for determining the prevalence and ranking of mutations based on its 

effect on Mycobacterium tuberculosis has improved our knowledge of the survival strategies used by 

this bacterium to maintain its fitness. Our study found that Mycobacterium tuberculosis follows some 

evolutionary pathways to balance the harmful impact of drug-resistant mutations on itself against drug 

resistance. Some literature studies have provided information regarding compensatory mutations 

occurring in Mycobacterium tuberculosis to compensate for fitness cost; for example, the fitness cost 

of RIF-resistant mutation, S450L, in the rpoB gene was overcome by a compensatory mutation in the 

rpoA and rpoC genes (Comas et al., 2012). The mutation leading to the overexpression of the ahpC 

gene compensates for S315T katG gene mutation (Sherman et al., 1996). We found that most frequent 

mutations had followed a generic pattern over the last three decades, suggesting that Mycobacterium 

tuberculosis will also follow a generic pattern across the globe in the future.  

 

Drug resistance mechanisms and survival strategy of Mycobacterium tuberculosis found in this study 

can greatly contribute to eradicating TB globally. It can help develop effective and personalised 

treatment plans, develop new drugs and repurpose existing drugs for the frequent mutations 

worldwide. Our methods can be used to train new computational models for predicting positions in 

proteins with a higher tendency for acquiring new mutations and their consequences. Better insights 

into drug resistance mechanisms will aid in developing novel diagnostic tools that can help in the early 

diagnosis of drug resistance TB, reducing the transmission rate and planning proper effective 

treatment for the patients. When designing new drugs, our method can help predict the impact of 

mutations on their respective drug targets for developing better drugs for TB treatment. The ranking 

of mutations into four different categories can assist in developing inhibitors for a specific mutation or 

group of mutations and help develop personalized treatment plans for TB patients. In summary, this 

study provides an in-depth understanding of the impact of mutations at the evolutionary, functional 

and structural levels. The method developed in this study can also help in studying future mutations 

and there is the scope for introducing new steps in the method for improvement. Further, our method 

can be used to study the nature and impact of mutations in other infectious diseases.  
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Chapter 4 

Developing and testing a conceptual and computational framework 

towards an effective human TB vaccine 

Chapter-4 of aims to accomplish objective-2 of our study. In chapter-2, we discussed the host’s 

immune response against TB bacteria and the survival strategies of the Mycobacterium tuberculosis 

against immune response. We also discussed the available TB vaccine, its lack of efficacy and the 

challenges in vaccine development. In this chapter, we developed a framework based on a new 

concept introduced in this research for TB vaccine development after gaining a deeper understanding 

from chapter-2. We tested the framework using bioinformatics tools to provide a potential vaccine 

solution to reduce the burden of TB worldwide. An overview of the chapter is provided in section 4.1. 

In section 4.2, the gaps in TB vaccine research are discussed. The formulation of the framework for TB 

vaccine development is discussed in section 4.3. The step-by-step process of the computational 

framework developed, and the bioinformatics tools used in each step, are explained in section 4.4. The 

results (effective vaccine candidates) are discussed in section 4.5. Finally, a summary of the chapter is 

presented in the last section (Section 4.6). 

 

4.1 Overview 

Vaccines are cost-effective pharmaceutical products that play an essential role in the elimination and 

eradication of infectious diseases. Despite the massive success of vaccines, new vaccines are still 

needed for re-emerging and drug-resistant pathogens. The objective of the present study is to identify 

potential vaccine candidates against Mycobacterium tuberculosis. The World Health Organization 

considers TB a global threat with significant mortality and morbidity rates. BCG, the only licensed 

vaccine available, and prepared from a live-attenuated strain of Mycobacterium bovis, has shown 

protection for babies and young children. The inefficiency of BCG in neither reducing the prevalence 

of the disease nor protecting adults is so far not understood. Some important factors might include 

Mycobacterium bovis being less virulent and not a primary causative agent of TB, diversity in TB strains 

and over-attenuation of the presently used BCG strain. For complete elimination and eradication of TB 

globally, an effective and powerful vaccine is needed for curtailing the dissemination and transmission 

of tuberculosis. 

 

The conventional vaccine development and production process is very costly, and it takes many years 

to develop effective vaccines. Advances in genomics, transcriptomics, and proteomics have reduced 

the time and cost of vaccine development by focusing mainly on selecting novel antigens or epitopes. 
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One of the important advancements in vaccine development is computational vaccinology that uses 

different bioinformatics approaches, such as comparative genome analysis, reverse vaccinology, 

immunoinformatics and structural vaccinology for identifying potential vaccine candidates. Reverse 

vaccinology identifies the outer-membrane antigenic proteins with unique characteristics, such as 

signal peptides, membrane-spanning regions, lipoprotein signatures, adhesion probability, motif 

attachment from the genome or proteome a single pathogen or pathogens. Immunoinformatics 

performs computational analysis of antigenic proteins for the prediction of T-cell and B-cell epitopes. 

Epitopes comprise a short stretch of amino acids that are recognised by B-cell and T-cell receptors and 

specific antibodies. The vaccine targets identified are expected to evoke a specific immune response 

to provide broad immune protection against a large number of Mycobacterium tuberculosis strains. 

Our study used computational vaccinology on a large spread of strains to develop an epitope-based 

vaccine that is expected to be effective and safer against tuberculosis.  

 

This study is designed to address the challenges of conventional vaccine development that include: 

expensive, time-consuming and arduous experimental testing; safety concerns while culturing the 

pathogen in a laboratory; identification of surface exposed, secreted, adhesin proteins; identification 

of conserved epitopes in highly variable or drug-resistant Mycobacterium tuberculosis; identifying 

immunodominant epitopes for inducing a potent humoral and cell-mediated immune response; 

elimination of cross-reactive epitopes; and immunogenicity assessment of the selected targets. Unlike 

traditional methods, computational vaccinology saves time and costs by minimising repeated 

laboratory testing.  

 

4.2 Gaps in TB vaccine research 

BCG, a hundred-year-old vaccine, has failed to provide complete protection against Mycobacterium 

tuberculosis. The formulation of the live-attenuated vaccine, BCG, involves the cultivation and 

attenuation (reducing the virulence) of Mycobacterium bovis using various in vitro techniques in the 

laboratory. The protection by BCG is highly variable in adults and the prevention of chronic infection 

is not high. The reasons for such high variability of BCG vaccine include differences in clinical assays, 

genetic variability in a sample population, different levels of protection against the clinical forms of 

tuberculosis, malnutrition and variability in Mycobacterium tuberculosis strains (Barreto et al., 2006; 

Doherty & Andersen, 2005).  

 

Currently, there are 14 vaccines in different stages of clinical trials. Out of the 14, seven are protein 

and viral vectored vaccines. The remaining seven vaccines are live-attenuated and heat-killed vaccines. 

The main limitation of live-attenuated and inactivated or heat-killed vaccines is the maintenance of 

purity and safety while culturing the microorganism in the laboratory. A major drawback of live 
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attenuated vaccines is the reversion of the pathogen into its original pathogenic form (Versteeg et al., 

2019). The subunit TB vaccine developed using the conventional approach contains one or more 

antigenic TB proteins for initiating the immune response in the host. The traditional method requires 

cultivating pathogens in the laboratory and then performing different biochemical, microbiological, 

immunological tests to detect the vaccine candidates. This approach is laborious, requires expensive 

experimental testing and sometimes fails to reveal suitable antigens. Rodo et al., (2019) used clinical 

data for six subunit TB vaccines (MVA85A, ID93+GLA-SE, AERAS-402, H56:IC31, M72/AS01E and 

H1:IC31) and found that only M72/AS01E provided protective immunity against TB. This study 

suggested the need for a new and improved vaccine with a more specific immune response. The 

vaccines in the clinical trial mainly depend on inducing an immune response using either weak 

mycobacterial strains or using two to three antigens to produce recombinant subunits and viral 

vectored vaccines. These vaccines do not guarantee to yield a broad coverage immune response. The 

drug-resistant issue is also not adequately addressed by any of the fourteen vaccines in the clinical 

trial. 

 

Current vaccine development approaches focus on enhancing cell-mediated immunity by using one or 

more antigens and does not consider global coverage. Some computational studies have also been 

performed to address the vaccine problems for TB disease (Hossain et al., 2017; Monterrubio-López et 

al., 2015; Ortega-Tirado et al., 2020). Monterrubio-López et al. (2015) applied the reverse vaccinology 

approach to the proteome of Mycobacterium tuberculosis H37Rv (Figure 4.1). They identified six 

antigenic proteins as potential vaccine candidates PBP1, PPE65, EsxL, PE26, PE PGRS49, and Erp 

(Monterrubio-López et al., 2015). Hossain et al. (2017) identified T-cell epitopes present on the 

extracellular protein 85B of Mycobacterium spp. The PE_PGRS33 protein was used to identify T-cell 

epitopes by Ortega-Tirado et al. (2020). Both these studies used only one protein for recognising 

promiscuous T-cell epitopes. The major drawback of the above-described studies was that they did not 

provide a solution to pathogen polymorphism, allergenicity and genetic variability among the hosts. 

A well-designed epitope-based TB vaccine based on an understanding of the tuberculosis disease and 

the above concepts can become a powerful therapeutic tool against Mycobacterium tuberculosis. 

Developing a TB vaccine using the conventional vaccine development process would be time-

consuming and expensive. The purification and attenuation of TB vaccine products in the laboratory is 

arduous and leakage of Mycobacterium tuberculosis is always a risk in the laboratory. The conventional 

vaccine development works only with one or few strains yielding limited coverage. Therefore, a vaccine 

developed based on many strains with a broad coverage and based on a deep understanding of host-

pathogen interaction can greatly contribute to eliminating TB globally or drastically minimise its 

prevalence.  
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Our study aims to provide a potential solution to reduce the burden of tuberculosis disease globally. 

With this aim, we developed a conceptual and computational framework for designing a universal 

vaccine against Mycobacterium tuberculosis. We performed a holistic study to gain deeper insights 

into the pathogenesis of tuberculosis and the challenges in TB vaccine development and developed a 

method using computational vaccinology to identify potential vaccine candidates for TB. As we know, 

the current explosion in bioinformatics has revolutionized the field of vaccine development. Using a 

myriad of bioinformatics tools, the computational vaccinology approach facilitates identification of 

potential vaccine targets without culturing Mycobacterium tuberculosis in the laboratory. Also, 

information about the proteome of Mycobacterium tuberculosis can help identify novel vaccine 

candidates that are important for developing effective TB vaccines. 

 

 

Figure 4. 1: Reverse vaccinology applied to Mycobacterium tuberculosis proteome by Monterrubio-
López et al., 2015 

 

4.3 Conceptual and holistic framework designed for identifying TB vaccine 
candidates 

Epitope-based vaccines are more potent when controlled properly, and they induce a specific immune 

response to a broad range of immunodominant epitopes, target multiple-conserved epitopes and 

disrupt tolerance. An epitope-based vaccine development helps select vaccine candidates that are not 

harmful when following the safety measures of the laboratory. In this study, we proposed a conceptual 

framework for developing an epitope-based TB vaccine providing broad spectrum of protection against 

many Mycobacterium tuberculosis strains and drug resistance. We addressed most of the challenges 

in conventional TB vaccine development using computational vaccinology. Thus, we developed a 

framework for designing a TB vaccine aimed to evoke a strong humoral and cell-mediated immune 
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response in humans. By bridging the gaps in vaccine development, a powerful, effective and universal 

TB vaccine can be developed that: 

 brings down the incidence rate of infection 

 eradicates latent infection 

 quells the spread of drug-resistance pathogens 

 prevents and protects from the overuse of antibiotics  

 elicits a specific and swift immune response, and 

 averts autoimmunity or hypersensitive reactions. 

4.3.1 Computational vaccinology 

The use of bioinformatics tools in biotechnology, immunology and vaccinology has developed an 

innovative field known as computational vaccinology (Vivona et al., 2008). Computational vaccinology 

performs in-silico analyses to identify novel vaccine candidates within a pathogen’s genome (He et al., 

2010). The aims of computational vaccinology include minimising the number of targets, identifying 

protective antigens that can be safely expressed in the laboratory, and reducing the number of 

experimental tests and the costs required to validate vaccine targets. Computational vaccinology uses 

reverse vaccinology and immunoinformatics to identify potential vaccine candidates, aiming to 

develop an effective vaccine (Figure 4.2). The main advantage of computational vaccinology is that 

there is the scope for improving the prediction of vaccine candidates by performing several additional 

steps. 

 

Figure 4. 2: Generic computational vaccinology approach to identify vaccine candidates 
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4.3.1.1 Reverse vaccinology 

The availability of the genome sequence of disease-causing pathogens facilitates the prediction of 

antigenic proteins for vaccine development, without the need to culture them in the laboratory. As 

stated in Chapter-1, in-silico analysis of the entire genome of a pathogen to identify potential vaccine 

targets is known as ‘reverse vaccinology’ (RV) (Seib et al., 2012). Reverse vaccinology emerged as a 

novel approach that accelerates the vaccine design process and has revolutionised both immunology 

and biotechnology. The critical perspective of RV includes identifying vaccine targets that are either 

surface-exposed or secreted into the extracellular surrounding of a pathogen (Donati & Rappuoli, 

2013). The unique features of the RV approach have attracted the attention of researchers developing 

vaccines against pathogens where the conventional method has failed to produce an effective vaccine 

(Grandi, 2001). The reverse vaccinology approach offers three significant advantages to researchers. 

First, it allows the discovery of a broad spectrum of vaccine candidates that have not been detected 

before; secondly, it enables the identification of potential candidates that are difficult culture in the 

laboratory (Donati & Rappuoli, 2013) and, thirdly, it allows the stimulation of a precise immune 

response.  

 

Reverse vaccinology starts with a high-throughput in silico analysis of the genome of a pathogen using 

GLIMMER, GeneMark or ORPHEUS for identifying open reading frames (ORF) (Figure 4.3). The 

alignment of coding sequences using homology search tools, such as BLASTN, BLASTX, TBLASTX 

(Altschul, 1997; Altschul et al., 1990), allows the functional annotation of genes and helps in the 

identification of the conserved sequences among different isolates of a pathogen (Movahedi & 

Hampson, 2008). 

 

The outer-membrane proteins are considered potential vaccine targets because these proteins contain 

specific molecular patterns recognised by the host’s immune system (Zagursky & Russell, 2001). The 

outer-membrane proteins can be identified using two different approaches. First, an integrated search 

in protein-domains and family databases, such as Pfam, PROSITE, Interpro Scan and ProDom, can help 

identify sequence motifs, which can, therefore, determine the surface-exposed proteins. Secondly, 

subcellular localisation prediction tools help predict the location of proteins in the cell (Bulashevska & 

Eils, 2006). The surface-exposed proteins are essential for interaction with host cells because they 

(Bhavsar et al., 2007; Simeone et al., 2009; Stavrinides et al., 2007) 

 adhere to host cell 

 damage host tissue 

 resist host environmental stress 

 subvert host’s immune response 
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Several bioinformatics tools are available for the identification of surface-exposed or secreted 

proteins: the subcellular localisation of proteins can be determined using PSORTb 3.0 (Yu et al., 2010), 

CELLO (Yu et al., 2006), LocTree3  (Goldberg et al., 2014) and SOSUI (Imai et al., 2008). Outer membrane 

proteins with more than one transmembrane region are not considered good vaccine targets because 

they are hard to clone. The membrane-spanning regions are identified with the help of HMMTOP 

(Tusnady & Simon, 2001) and TMHMM (Krogh et al., 2001). Adhesion probability is also an essential 

aspect of identifying potential candidates as adhesins help the bacteria colonise. Adhesion probability 

can be predicted using SPAAN (Sachdeva et al., 2005). Adhesin proteins aid in the attachment of 

pathogens to the host’s cell-surface receptors. 

 

 

Figure 4. 3: A classical reverse vaccinology approach for identifying vaccine candidates 

 

RV was used to analyse Men B (Neisseria meningitidis serogroup B), a causative agent of meningitis. 

The whole genome of N. meningitidis was analysed using reverse vaccinology to predict surface-

exposed proteins that can act as potential vaccine candidates (Pizza, 2000). Five antigen candidates 

were selected to produce the multicomponent meningococcal serogroup B vaccine (4CMenB). 

4CMenB has completed clinical trials (Donati and Rappuoli, 2013) and is approved for 30 countries 

(Doolan et al., 2014). In classical reverse vaccinology, only one genome is analysed for vaccine targets 
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(Figure 4.3). However, a single isolate of a pathogen fails to explain the genetic variability among 

different strains. This is a limitation of RV. 

 

In our study, we will be using comparative proteomic analysis to address the limitation of RV. 

Comparative proteomic analysis helps in identification of conserved vaccine candidates that are 

broadly effective on different Mycobacterium tuberculosis strains and provide protection against drug 

resistance. 

 

4.3.1.2 Immunoinformatics 

Antigenic determinants, specific segments of an antigen, are known as epitopes. Epitopes comprise a 

short stretch of amino acids that are recognised by B-cell and T-cell receptors and specific antibodies. 

The epitopes are usually present on the surface of a protein and are more flexible than the rest of the 

protein. Multiple epitopes can be identified within a single antigenic protein. The major challenge 

faced in stimulating an effective immune response is the accurate prediction of the immunogenic site 

of an antigenic protein (You et al., 2010).  

 

The availability of the genome sequence of a pathogen has advanced our understanding of 

immunology. The development of bioinformatics tools, and the analysis of antigenic proteins from 

reverse vaccinology that has helped the emergence of a new paradigm known as ‘immunoinformatics’. 

The computational analysis of antigenic proteins for the prediction of T-cell and B-cell epitopes is 

defined as immunoinformatics. The field of immunoinformatics has advanced the research and 

discovery of subunit vaccines. It has also enhanced our knowledge of handling immunological data 

appropriately. The immunoinformatics research includes epitope mapping, designing epitope 

databases, virulence identification and prediction of MHC classes-I and -II binding HLA alleles. 

Immunoinformatics has attracted the attention of researchers working in the field of vaccine discovery 

and development. 

 

Hossain et al. (2017) and Ortega-Tirado et al. (2020) used one protein for recognising promiscuous T-

cell epitope and did not focus on crucial features of an epitope-based vaccine such as sequence 

conservancy, immunodominance, antigenicity, exclusion of self-peptides and multiple allelic 

interactions. The epitope-based vaccines comprising immunodominant epitopes helps in eliciting a 

swift and specific immune response. The emergence of new bioinformatics tools for predicting 

epitopes with high accuracy has reduced the time and costs of developing an epitope-based vaccine. 

Epitope-based vaccines are stable, specific and free from infectious agents. An epitope-based vaccine 

is anticipated to induce a robust and prolonged immune response against pathogens. 
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Epitopes are classified into B-cell epitopes and T-cell epitopes (Almeida et al., 2012). 

(i) B-cell epitopes are the part of the antigen recognised by the B-cell receptor (BCR) and 

antibodies. They have been classified into linear or continuous epitopes, and 

conformational or discontinuous epitopes (Flower et al., 2010). A linear epitope is a short 

stretch of the peptides of a protein. In contrast, the conformational epitopes comprise 

amino acids folded in a tertiary structure (EL-Manzalawy & Honavar, 2010). The tools 

available for predicting B-cell epitopes are Bepitope (Larsen et al., 2006), ABCpred (Saha 

& Raghava, 2006b) and BCPREDS (Chen et al., 2007). 

 

(ii) T-cell epitopes are fragments of the antigenic proteins of a pathogen formed in the host 

antigen-presenting cells (APC) by the proteolytic activity of proteasomes or endosomes, 

that are then exposed to the surface of APC with the help of MHC molecules, followed by 

interaction with TCR (Figure 4.4) of T cells leading to activation of T-cells for releasing 

cytokines (Sobolev et al., 2005). T-cell epitopes play an essential role in cell-mediated 

immunity against Mycobacterium tuberculosis. The most crucial problem in designing an 

epitope-based vaccine is identifying T-cell epitopes that can stimulate the T-cells of the 

host immune system (Schirle et al., 2001). T-cell activation is dependent on the 

presentation of epitopes by MHC molecules. MHC molecules are glycoproteins present on 

the antigen presenting cell's surface, and their main task is to present epitopes to the TCR 

of T-cells. Thus, epitopes are predicted based on their ability to bind with MHC class-I and 

class-II molecules, found in cytotoxic and helper T-cells, respectively. There are different 

tools available for the prediction of T-cell epitopes. Among the most popular tools for 

predicting MHC class-I binding T-cell epitopes are IEDB MHC-I (Zhang et al., 2008), 

NetCTLpan 1.1 (Stranzl et al., 2010), IEDB MHC-NP (Giguère et al., 2013), SYFPEITHI 

(Rammensee et al., 1999) and RANKPEP (Reche et al., 2004). The tools for MHC class-II are 

NetMHCIIpan 3.2 (Jensen et al., 2018), IEDB MHC-II (Wang et al., 2010), ProPred (Singh & 

Raghava, 2001) and TEPITOPE (Zhang et al., 2012). 
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Figure 4. 4: T-cell epitopes binding to MHC-I and II molecules. Figure created using template from 
Biorender (https://biorender.com/)  

 

4.3.2 Application of computational vaccinology to develop a conceptual and holistic 
framework for TB vaccine design 

TB prevention is a long-term goal that can only be accomplished by developing a more effective vaccine 

than BCG. The current therapeutic and diagnostic strategies are inadequate to eliminate TB by 2050 

(Ottenhoff & Kaufmann, 2012). At this juncture, new approaches for vaccine development must focus 

on host-pathogen interactions, the limitations of BCG, induction of a specific immune response that 

can prevent the reactivation of latent tuberculosis, prevent the spread of MDR-TB and XDR-TB (Ahsan, 

2015), and provide broader coverage of immune response. 

 

An extensive study of host-pathogen interactions, the distinctive strategies used by Mycobacterium 

tuberculosis for escaping host responses, the global pattern of drug resistant mutations, the limitations 

of BCG, challenges in developing an effective vaccine and the advantages of application of 

computational techniques in vaccine design helped us to create a conceptual framework for TB vaccine 

design. In our study, we used some crucial concepts for designing and developing an effective and 

robust TB vaccine compared to the conventional TB vaccine development approach as follows:  

 

(1) Mycobacterium tuberculosis genetic variability: The vaccine prepared using a single strain or 

single antigen of Mycobacterium tuberculosis does not provide effective immunity to the host. 

Genetic variability among different strains of the immune evasive Mycobacterium tuberculosis 

increases the chances of drug resistance. Around 0.3 million people die each year from drug-

resistant TB infections. Its high variability is one of the fundamental reasons behind the non-

availability and less effective vaccines against tuberculosis. The practical solution to the TB 

bacteria polymorphism issue is to use highly conserved vaccine targets from the proteome of 
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Mycobacterium tuberculosis for developing a universal TB vaccine. Targeting highly conserved 

regions for their significant structural and functional roles in the life cycle of the pathogen 

would provide broad spectrum of protection against many Mycobacterium tuberculosis strains 

and drug resistance. 

 

(2) Identification of proteins involved in pathogenesis: The proteome of Mycobacterium 

tuberculosis consists of proteins involved in the virulence, the progression of TB and escape 

from the host immune response. Some examples are secretory proteins, lipoproteins, PE 

(proline-glutamate) and PPE (proline-proline-glutamate) proteins. The secretory signal 

peptides are ubiquitous protein-sorting signals that help translocate a protein across the 

cytoplasmic membrane to cell wall and extracellular space in mycobacteria. Studies have 

shown that the secretory systems of Mycobacterium tuberculosis are involved in the virulence 

mechanism (Abdallah et al., 2007). There are two important secretion systems in 

Mycobacterium tuberculosis: the secretory pathway (Sec pathway) and the twin-arginine 

translocase pathway (TAT pathway). The Sec pathway helps in the translocation of proteins in 

their unfolded state. The Tat pathway translocate proteins in their folded state. The proteins 

involved in the TAT pathway help in the translocation of the phospholipase C enzyme in 

Mycobacterium tuberculosis. This enzyme exhibits a cytotoxic effect on the alveolar 

macrophage of the host (Assis et al., 2014). 

 

Lipoproteins are an essential set of membrane proteins performing different functions in 

Mycobacterium tuberculosis, such as modulating the inflammatory response, translocating 

virulent factors in the macrophages, showing resistance to drugs, signal transduction, and the 

uptake of nutrients (Kovacs-Simon et al., 2011). These proteins constitute 2.5% of the 

predicted proteome of Mycobacterium tuberculosis and represent a significant virulent 

protein family (Sutcliffe & Harrington, 2004). Proteins belonging to the PE and PPE protein 

families present in the cell wall and cell membrane (Banu et al., 2002), are the main reason for 

developing antigen variability in Mycobacterium tuberculosis (Smith, 2003).  

 

(3) Surface-exposed protein as vaccine target: As described above, most of the proteins involved 

in pathogenesis of TB are present in the cell membranes or cell walls. The surface proteins are 

easily accessible to the host immune system. For example, the extracellular proteins of 

Mycobacterium tuberculosis are involved in interactions with toll-like receptors (TLR-2 and 

TLR-4) present on the macrophages. Thus, surface-exposed proteins are potential vaccine 

targets to weaken Mycobacterium tuberculosis and eliminate TB infection.  
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(4) Heightened immune response: The triggering of a robust immune response is the most crucial 

challenge in vaccine development. The conventional TB vaccine approach, focused on the 

helper T-cell immune response, has not shown protective immunity against Mycobacterium 

tuberculosis (Rodo et al., 2019). Thus, an epitope-based TB vaccine containing helper-T cell, 

cytotoxic-T cell and B-cell epitopes can stimulate a specific cell-mediated and humoral immune 

response in the host to eliminate the chances of infection and re-infection of tuberculosis.  

 

(5) Careful selection of vaccine candidates: Various studies have shown that all predicted T-cell 

epitopes are reliable MHC class-I and -II binders, but not all MHC binding epitopes are T-cell 

epitopes (Patronov & Doytchinova, 2013). Therefore, careful selection of the 

immunodominant T-epitopes, and determining their binding affinity with MHC molecules, is 

an extremely important step in vaccine design and development.  

 

(6) Genetic variability of population: Another important concept in developing an effective TB 

vaccine is broad coverage of the human population. In most cases, a single strain or single 

antigen vaccine helps treat a small subset of patients in a specific region. The vaccine is then 

sometimes considered ethnically-biased in terms of protection. MHC molecules are highly 

polymorphic and more than a thousand HLA alleles for humans have been identified. The 

different HLA types express at different rates in different ethnicities around the world. Thus, 

the selection of T-cell epitopes binding to MHC HLA alleles which are most prevalent in the 

human population will help in designing a universal vaccine with optimal efficacy against TB. 

 

(7) Safer vaccine candidates to reduce the probability of side effects: An epitope-based vaccine 

is safer than live-attenuated or heat-killed vaccines as they only contain fragments from 

antigenic proteins and not the live components of the pathogen. Thus, there is no risk of the 

reversion of an epitope-based vaccine to harmful elements. The elimination of cross-reactive 

and toxic epitopes that cause autoimmunity or hypersensitive reactions in the host makes the 

vaccine safer. 

 

(8) Immunogenicity enhancement: The use of adjuvants in vaccines heightens the immune 

response (Pasquale et al., 2015). An adjuvant increases the vaccine's immunogenicity and 

helps induce a robust and long-lasting immune response in immunocompetent individuals.  

 

We purposefully designed a reductionist pipeline method for developing an epitope-based TB vaccine 

from the proteome of Mycobacterium tuberculosis using the aforementioned concepts. The proposed 

method involves six phases (Figure 4.5). The first phase involved comparative proteomic analysis to 
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identify conserved proteins across 159 Mycobacterium strains and functional categorisation of these 

conserved proteins. In the second phase, reverse vaccinology was used on conserved proteins to 

analyse the surface-exposed, antigenic, non-allergic proteins involved in the pathogenesis of TB that 

were easily accessible to surveillance by the host immune system. In phase three, B-cell and T-cell 

epitopes were predicted using the immunoinformatics approach. T-cell epitope selection to a broad 

range of MHC HLA alleles is crucial for global coverage of the human population. The fourth phase 

comprised filtering the immunodominant epitopes that can induce protective and robust immunity in 

the host. The B-cell and T-cell epitopes predicted by the fourth phase are used for generating the final 

vaccine construct. In the fifth phase, using the structural vaccinology technique, the structural model 

of the new TB vaccine, with the adjuvant attached to it, is generated. The binding affinity of the TB 

vaccine with toll-like receptors in the host antigen presenting cell helps determine the behaviour of 

the vaccine inside the host body. The sixth phase involved analysing the immune response generated 

by the designed epitope-based TB vaccine using the C-ImmSim server. This step determines the 

efficacy of the developed TB vaccine inside the human body. 

The details of the methodology and bioinformatics tools used in each step can be found in the next 

section.  

 

Figure 4. 5: Conceptual framework for constructing an epitope-based TB vaccine against 
Mycobacterium tuberculosis using comparative proteomic analysis, reverse 
vaccinology, immunoinformatics and structural vaccinology 
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4.4 Testing the framework on Mycobacterium tuberculosis to identify 
potential TB vaccine candidates 

 
Our study developed a conceptual framework for identifying potential T-cell and B-cell epitopes for 

developing a universal vaccine for tuberculosis. This study utilises sequence conservancy, antigenicity, 

exclusion of self-peptides and allelic interactions, and other essential factors. This section of the 

chapter describes the step-by-step approach to the framework developed. In this study, we used 

several bioinformatics tools to identify ideal vaccine candidates by directly analysing the proteome of 

Mycobacterium tuberculosis strains that assisted in developing an epitope-based vaccine that can 

stimulate a specific and swift humoral and cell-mediated immune response. 

4.4.1 Comparative proteomic analysis 

A large number, 159, Mycobacterium tuberculosis strains were used to identify the conserved antigenic 

vaccine targets to solve the problem of antigen variability, drug resistance and limited coverage. These 

antigenic proteins can help in developing a universal vaccine for TB that is effective and harmless to 

the host.  

4.4.1.1 Data retrieval and formatting 

The proteome of the completely sequenced 159 strains of Mycobacterium tuberculosis was 

downloaded in FASTA format via the NCBI (National Center for Biotechnology Information) Genome 

FTP site. The unwanted information and blank spaces within protein sequences were removed. The 

protein sequences in multiline FASTA format were converted into a single-line format. 

4.4.1.2 Identification of conserved proteins 

The basic local alignment search tool (BLAST) program performs sequence alignment for screening 

homologous sequences among similar or different species (Altschul, 1997; Altschul et al., 1990). 

Standalone BLAST was downloaded from the NCBI FTP site for performing a homology search among 

Mycobacterium tuberculosis strains. The selection of conserved proteins was made based on three 

criteria: (i) Mycobacterium tuberculosis H37Rv was used as reference proteome, (ii) only those proteins 

that were present in all 159 strains were considered, and (iii) protein sequences with more than 99% 

sequence similarity across all 159 strains were considered as conserved proteins and selected for 

further research. 

4.4.1.3 Function assignment to selected conserved proteins 

The resulting conserved proteins were categorised into eleven distinct functional categories given by 

Smith (2003). The eleven functional categories given by Smith are lipid metabolism; information 
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pathways; cell wall and cell processes; stable RNAs; IS elements and bacteriophages; PE and PPE 

proteins; intermediary metabolism and respiration; regulatory proteins; virulence, detoxification and 

adaptation; conserved hypothetical function; and proteins of unknown function. There are 

hypothetical proteins (HPs) as well as proteins with unknown functions in Smith’s classification. These 

proteins might be involved in some essential metabolic activity or growth and development or 

pathogenicity. Some of the selected conserved proteins (from the previous step) might be HPs. Thus, 

it is crucial to predict the function of hypothetical proteins. In this step, we attempted to assign the 

functions to the HPs in two ways:  

 domain prediction using Pfam, Interpro Scan and SMART (explained in the Materials and 

Methods section 3.3.4.2 of chapter-3), and 

 homology search using BLAST  

The analysis could provide a functional contribution of HPs in Mycobacterium tuberculosis and improve 

the understanding of the survival of Mycobacterium tuberculosis. 

4.4.2 Identifying antigenic proteins using reverse vaccinology 

Reverse vaccinology identifies outer-membrane antigenic and non-allergenic proteins that have 

unique characteristics, such as, the presence of signal peptides, membrane-spanning regions, 

lipoprotein signatures and adhesion probability from the proteome of Mycobacterium tuberculosis. 

4.4.2.1 Subcellular localisation (SCL) prediction 

The proteins present in the cell membrane and extracellular space are considered suitable TB vaccine 

candidates since they are easily accessible to the host’s immune system. These proteins play an 

essential role in maintaining cell integrity. In this step, we used six SCL predicting tools: PSORTb v.3.0 

(Yu et al., 2010), CELLO (Yu et al., 2006) and LocTree3  (Goldberg et al., 2014) that are the machine 

learning tools that use support vector machines (SVM) for SCL prediction; SOSUI (Imai et al., 2008) and 

pLoc_bal-mGpos (Xiao et al., 2019) that use protein sequence information, such as physiochemical 

properties for predicting SCL; and GramLocEN that uses a single and multi-label elastic net classifier to 

make SCL predictions (Wan et al., 2017). The proteins present in the cell membranes and extracellular 

spaces, predicted by four or more tools, were selected for further analysis. 

4.4.2.2 Transmembrane helix prediction 

Proteins with more than one transmembrane helix are difficult to clone and purify in the laboratory 

(Pizza, 2000). Thus, proteins having a single transmembrane helix were used to help design the vaccine. 

TMHMM, based on the hidden Markov model (HMM), allows the prediction of transmembrane regions 

and their orientation (Krogh et al., 2001).  
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4.4.2.3 Identification of functionally relevant proteins 

The outer membranes and extracellular spaces of Mycobacterium tuberculosis consist of some 

essential secretory and lipoproteins that help in the translocation of a protein across the cytoplasmic 

membrane. In this step, we used the following tools for predicting the functionally-important proteins: 

(i) SignalP 4.1 server is a combination of several artificial neural networks (ANN) and predicts the 

presence and position of a signal peptide in the query sequence (Petersen et al., 2011); (ii) PRED-TAT 

is used for identifying TAT-signal peptides using HMM (Bagos et al., 2010); (iii) SecretomeP is an ANN-

based method for predicting secretory proteins (Bendtsen et al., 2005), and proteins with a score of 

0.5 or above were selected; and (iv) PRED-LIPO is an HMM-based method for predicting lipoproteins 

(Bagos et al., 2008). 

4.4.2.4 Antigenicity prediction 

The development of a vaccine for TB requires identification of antigenic proteins that can stimulate a 

precise immune response in the host. Thus, there is the need to identify proteins that have the 

capability of causing an infection in the host cell. We used three tools for predicting antigenic proteins. 

VaxiJen helps predict the antigenic properties based on the physiochemical properties of the protein 

(Doytchinova & Flower, 2007). VirulentPred is an SVM-based method (Garg & Gupta, 2008), whereas 

MP3 tool uses SVM and HMM (Gupta et al., 2014) to predict antigenicity within a protein. The proteins 

predicted as antigenic by all three methods were selected for further analysis. 

4.4.2.5 Allergenicity prediction 

The allergenicity determines whether the antigenic protein is allergic or non-allergic. Algpred is an SVM 

model that differentiates between allergenic and non-allergenic proteins based on the amino acid 

composition of protein(Saha & Raghava, 2006a).  

4.4.2.6 Adhesion probability 

Mycobacteria have adhesin proteins that help it attach to the host cell-surface receptors. The 

adherence of Mycobacterium tuberculosis to host cells generates membrane agitation and enables a 

robust interaction between Mycobacterium tuberculosis and the host (Vidal Pessolani et al., 2003). The 

adhesion probability of the protein can be predicted using an artificial neural network-based method 

known as SPAAN (software for predicting adhesins and adhesin-like proteins using neural networks) 

(Sachdeva et al., 2005). The proteins with a probability score of 0.5 or above were selected for further 

analysis. 
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4.4.2.7 Interaction pathway analysis 

Analysis of the protein-interaction pathways was performed to predict its functional significance in 

Mycobacterium tuberculosis. The protein-interaction network was analysed using the STRING 

database (Szklarczyk et al., 2019). Proteins having more than ten interacting partners with a confidence 

score of 0.4 or above were selected. 

4.4.2.8 Homology to humans 

For predicting the homology between human and Mycobacterium tuberculosis, a standalone BLAST 

was used to identify sequence similarity between them. Proteins with sequence similarity of more than 

30% were eliminated from the research. The Kyoto Encyclopaedia of Gene and Genome (KEGG) 

(Kanehisa et al., 2017) was then used for identifying proteins involved in metabolic pathways common 

in humans and Mycobacterium tuberculosis. The proteins involved in the common pathways were 

removed. This step helps exclude proteins that can cause autoimmunity or any hypersensitive 

reactions in the host. 

4.4.3 Prediction of B-cell and T-cell epitopes 

The antigens identified using the reverse vaccinology approach were further analysed for predicting 

potential B-cell and T-cell epitopes for developing an effective vaccine against tuberculosis. To predict 

epitopes, datasets containing experimentally validated epitopes were used to train and test different 

machine learning models such as support vector machines, hidden Markov models and neural 

networks. 

4.4.3.1 B-cell epitope prediction 

B-cell epitopes play a vital role in initiating the humoral immune response. B-cell epitopes were 

predicted using three methods. The Bepipred tool of the immune epitope database (IEDB) uses a 

combination of a hidden Markov model and a propensity scale method for accurate prediction of linear 

B-cell epitopes (Larsen et al., 2006). ABCpred uses a recurrent neural network for predicting B-cell 

epitopes (Saha & Raghava, 2006b). BCPREDS is a server used for B-cell epitope prediction using the 

amino acid pair (AAP) antigenicity scale (Chen et al., 2007). The common epitopes predicted by all 

three methods were chosen. 

4.4.3.2 T-cell epitope prediction 

MHC molecules are an important class of proteins present on the surface of a cell and play an essential 

role in cell-mediated immunity. The important function of the MHC molecules is the presentation of 

fragmented or processed antigens to the appropriate T-cells of the immune system. The binding of a 

peptide with MHC molecule is essential for recognising an epitope by the T-cell receptors. 
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(i) MHC-I binding T-cell (cytotoxic-T cell) epitope prediction 

MHC class I molecules are present on the surface of all nucleated cells in the human body. MHC class 

I molecules present the epitope to the cytotoxic T-lymphocyte (CTL). The triggering of CTL causes the 

APCs to undergo programmed cell death. Three methods were used in this step: IEDB MHC I (Zhang et 

al., 2008), NetCTLpan 1.1 (Stranzl et al., 2010) and IEDB MHC-NP (Giguère et al., 2013). In the IEDB 

MHC-I method, we used a reference file containing 27 MHC-I HLA alleles (HLA-A0101, HLA-A0201, HLA-

A0203, HLA-A0206, HLA-A0301, HLA-A1101, HLA-A2301, HLA-A2402, HLA-A2601, HLA-A3001, HLA-

A3002, HLA-A3101, HLA-A3201, HLA-A3301, HLA-A6801, HLA-A6802, HLA-B0702, HLA-B0801, HLA-

B1501, HLA-B3501, HLA-B4001, HLA-B4402, HLA-B4403, HLA-B5101, HLA-B5301, HLA-B5701, HLA-

B5801) for a broader human population coverage. The 9-mer epitopes with percentile rank lower than 

0.5 were chosen. The lower value of the percentile rank indicates a higher affinity of the epitope 

towards the MHC molecule. NetCTLpan 1.1 uses an artificial neural network for predicting MHC-I 

epitopes. IEDB MHC-NP is a machine learning method that predicts naturally-processed peptides using 

MHC- I experimental data (Giguère et al., 2013). The epitopes common in all three prediction results 

were selected as T-cell MHC class I epitopes. 

(ii) MHC-II binding T-cell (helper-T cell) epitope prediction 

MHC class-II molecules are present on the surface of antigen-presenting cells (APC), such as 

macrophages and dendritic cells. The primary function of MHC-II is to present the antigen to the naïve 

T-helper cells. This interaction leads to the release of cytokines that help transform naïve-T- helper 

cells into effector T-cells or memory T-cells. We used 2 methods. The NetMHCIIpan 3.2 server supports 

the prediction of epitopes that bind to MHC class-II molecules. The method is based on a feed-forward 

artificial neural network that predicts all three MHC-II alleles HLA-DR, -DP, -DQ for humans covering 

36 HLA-DR, 9 HLA-DP, 27 HLA-DQ molecules (Jensen et al., 2018). The second method used for 

prediction was the IEDB MHC-II binding server for predicting 15-mer MHC-II epitopes using the 

consensus prediction method (Wang et al., 2010). Thirty MHC-II HLA alleles used in the study are HLA-

DRB1_0101, HLA-DRB1_0102, HLA-DRB1_0301, HLA-DRB1_0401, HLA-DRB1_0404, HLA-DRB1_0405, 

HLA-DRB1_0701, HLA-DRB1_0801, HLA-DRB1_0802, HLA-DRB1_0804, HLA-DRB1_0901, HLA-

DRB1_1101, HLA-DRB1_1201, HLA-DRB1_1301, HLA-DRB1_1302, HLA-DRB1_1501, HLA-DRB1_1502, 

HLA-DRB3_0101, HLA-DRB4_0101, HLA-DRB5_0101, HLA-DQA1_0501/DQB1_0201, HLA-

DQA1_0501/DQB1_0301, HLA-DQA1_0301/DQB1_0302, HLA-DQA1_04:01/DQB1_0402, HLA-

DQA1_0101/DQB1_0501, HLA-DQA1_01:02/DQB1_06:02, HLA-DPA1_02_01/DPB1_01_01, HLA-

DPA1_0103/DPB1_0201, HLA-DPA1_0301/DPB1_0402, HLA-DPA1_0201/DPB1_0501. The epitope 

with percentile ranks lower than 0.5 were chosen. The lower value of the percentile rank indicates a 

higher affinity of the epitope towards the MHC molecule. The epitopes commonly predicted by both 

methods were selected as T-cell MHC class II epitopes. 
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4.4.4 Filtering of epitopes  

Filtering epitopes was undertaken to identify antigenic, non-toxic and non-allergenic epitopes with a 

high potential to initiate a robust immune response. The filtering process had the following steps: 

4.4.4.1 Antigenicity and toxicity prediction of B-cell and T-cell epitopes 

VaxiJen (Doytchinova & Flower, 2007) was used to predict the epitope having the potential to initiate 

an immune response. The epitopes with a VaxiJen score of 0.8 or above were selected. The toxicity 

and non-toxicity of an epitope can be determined using the SVM-based tool, ToxinPred (Gupta et al., 

2013). Non-toxic epitopes were chosen for further analysis. 

4.4.4.2 Hydrophilicity prediction 

Hydrophilic epitopes are present on the surface of the antigenic proteins. The selection of hydrophilic 

epitopes would help in constructing a vaccine that would initiate a quick immune response. The grand 

average of hydropathicity (GRAVY) index score (Kyte & Doolittle, 1982) was predicted using ProtParam 

(Gasteiger et al., 2005). 

4.4.4.3 Allergenicity prediction 

Allergenicity determines whether the epitope is allergic or non-allergic. AllerTOP 2.0 predicts the 

allergenicity of epitopes based on the physiochemical properties of a protein sequence (Dimitrov et 

al., 2014). All allergenic epitopes were eliminated. 

4.4.4.4 Population coverage analysis  

Designing a universal vaccine for TB needs an analysis of the population coverage to minimise the risk 

of developing an ethnically-biased vaccine (Bui et al., 2006). The population coverage assessment uses 

the IEDB epitope analysis resource for a distinct population coverage. This analysis tool predicts the 

predictable population coverage, average number of epitope hits or HLA combinations recognised by 

diverse ethnic groups or populations, and the least number of epitope hits expected by 90% of the 

population (Bui et al., 2006). The final epitopes for a vaccine must have extensive population coverage 

worldwide.  

4.4.5 In silico vaccine construction using structural vaccinology 

After selecting epitopes from immunoinformatics analysis, structural vaccinology was implemented to 

design the structural model for the TB vaccine and analyse its interaction with toll-like receptors 

present in the host. 
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4.4.5.1 Vaccine structure construction and validation 

1. Vaccine design: For designing a final vaccine sequence from the shortlisted epitopes, we used 

a new approach that had the following steps:  

(i) Selection of linkers: Flexible linkers help restore protein folding and maintain the 

interaction between protein domains. Figure 4.6 shows the linker used for designing 

the vaccine proteins. 

 The GPGPG linker was used to attach helper-T cell epitopes with cytotoxic-T 

epitopes and cytotoxic-T cell epitopes with B-cell epitopes.  

 For attaching helper-T cell epitopes with themselves, the GPGPG linker was 

used. 

 For attachment of cytotoxic-T cell epitopes, AAY was used. 

 For B-cell epitopes, KK was used.  

The 3D structure of each epitope with the attached linker was generated using 

PEPstrMOD (Singh et al., 2015).  

(ii) Pan DR epitope (PADRE) is a universal synthetic 13 amino acid peptide. The PADRE 

sequence was used to improve the efficacy of cell-mediated immune response. The 

attachment of PADRE with CTL epitopes would facilitate quick and robust interaction 

with Toll-like receptors in the host body. It would accomplish the goal of initiating the 

immune response. Thus, it was attached to the first helper-T cell epitope in the 

vaccine protein  (Ghaffari-Nazari et al., 2015).  

(iii) For finalising the vaccine sequence, the 3D structure of the PADRE sequence with the 

GPGPG linker attached to its end was generated using PEPstrMOD. Next, molecular 

docking of the 3D structure of PADRE was completed with each structure of the 

helper-T cell epitopes (structure constructed in step (i)) using PatchDock 

(Schneidman-Duhovny et al., 2005) and FireDock (Mashiach et al., 2008). The helper-

T cell epitope with strong binding with the structure of PADRE was selected as the 

first epitope in the final sequence design.  

(iv) Next, the PADRE+1st helper-T cell epitope structure was constructed using I-TASSER 

(Yang et al., 2015), and its compatibility was checked again with the remaining helper-

T cell epitopes. This process was completed first for helper-T cell epitopes, then 

cytotoxic-T cell epitopes and finally the B-cell epitopes. This process continues until 

the last B-cell epitope was found for the vaccine sequence. 

(v) Adjuvants were used to enhance the immune response in the host. In this study, we 

used two adjuvants. At the N-terminal of protein, we used the 50S ribosomal protein 

L7/L12 and at the C-terminal of the vaccine, protein β-defensin (Tani et al., 2000) was 

used (Figure 4.6). The 50S ribosomal protein L7/L12 and β-defensin were attached to 
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vaccine protein obtained from above using an EAAAK linker (purple coloured box in 

Figure 4.6).  

 

 

Figure 4. 6: The location of different linkers used in designing the final vaccine protein - purple 
coloured box: EAAAK linker, red: GPGPG, blue: AAY, yellow: KK. The adjuvants are 
connected to the vaccine protein using EAAAK. The GPGPG linker combined different 
types of epitopes 

 

2. Antigenicity and allergenicity prediction: For predicting the antigenicity of the final vaccine 

construct, VaxiJen (Doytchinova & Flower, 2007) was used. Algpred, an SVM module, was 

used for determining the allergenicity of the vaccine protein (Saha & Raghava, 2006a). 

3. Physiochemical properties analysis: ProtParam was used for computing the various 

physiochemical properties of the final TB vaccine. The properties include molecular weight 

(MW), the isoelectric point of a protein (pI), amino acid composition, extinction coefficient 

(Gill & von Hippel, 1989), instability index (II), estimated half-life (Bachmair et al., 1986), 

aliphatic index (Ikai, 1980) and the GRAVY index score (Kyte & Doolittle, 1982) 

4. Secondary structure prediction: The secondary structure prediction of the vaccine construct 

used PSIPRED (Buchan & Jones, 2019). Knowledge of alpha-helix, beta-sheet and coils 

improves understanding of the structure of the vaccine construct. 

5. Tertiary structure construction and validation: The tertiary structure of the final TB vaccine 

construct was generated using RaptorX (Wang et al., 2016). First, RaptorX performed a 

template search based on the similarity of the input sequence and then constructed a good 

quality structural model. The output structural model of the vaccine, given by RaptorX, was 

further refined using GalaxyRefine to minimise any distortions present in the structure (Ko et 

al., 2012). In the last step, RAMPAGE was used for determining the quality of the vaccine 

structural model (Lovell et al., 2003). If the vaccine structural model had more than 90% of its 

residues in the most favoured region, it was considered the best quality model and was used 

for further analysis. 
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4.4.5.2 Vaccine-TLR docking and dynamics 

TLRs present on the surface of the antigen-presenting cells interact with the pathogen to initiate the 

innate immune response. As stated in chapter-2, Mycobacterium tuberculosis usually interacts with 

TLR-2, 4 and 6.  Analysis of the interaction of TLRs with the final vaccine construct was undertaken by 

performing molecular docking. For the docking process, the 3D structures of TLR-2, TLR-4 and TLR-6 

were retrieved from PDB with PDB ID 2Z7X, 4G8A and 4OM7, respectively. The Cluspro 2.0 (Kozakov 

et al., 2017) webserver was used for performing molecular docking of the vaccine construct-TLR. 

Cluspro 2.0 performs three steps: (i) performing rigid docking using the fast Fourier transform (FFT) 

correlation method, (ii) calculation of the root-mean-square deviation (RMSD) for docked clusters, and 

(iii) refinement of the structure using a Monte Carlo simulation algorithm (Kozakov et al., 2017). After 

docking, normal mode analysis (NMA) helped determine the mobility and the presence of any 

deformation in the interacting macromolecule. iMODS (López-Blanco et al., 2014) was used for 

determining the dynamic motion of the vaccine-TLR docked complex.  

4.4.6 Analysis of the evoked immune response by the TB vaccine construct 

The final, and most crucial, step in this study was analysing the immune response generated by the 

final vaccine construct. This helped in understanding the immunogenic nature of the vaccine. For 

estimating the immunogenic potential of the TB vaccine constructed, the C-ImmSim (Rapin et al., 2010) 

server was used. C-ImmSim server is an agent-based model that uses the position-specific scoring 

matrix (PSSM) and machine learning approaches, such as neural networks, for predicting epitopes, the 

immune interactions of epitopes and immune cells, and immune response activation (Rapin et al., 

2010). The C-ImmSim server simulated three sections that corresponded to the three different 

anatomical regions inside the host body: (i) bone marrow, (ii) thymus, and (iii) lymph nodes (Rapin et 

al., 2010). For determining vaccine efficacy, the TB vaccine protein sequence in FASTA format was given 

as input to the server. The vaccine protein sequence was administered three times at an interval of 

four weeks. In C-ImmSim, one simulation step represented eight hours. So, we used 1050 simulation 

steps to predict the immune response for the TB vaccine for over a year.  

4.5 Results 

Here we present results from the vaccine development pipeline. Specifically, this study designed and 

tested a conceptual framework using computational vaccinology. This section describes the result of 

the holistic framework tested using several bioinformatics tools. 

4.5.1 Comparative proteomic analysis 

To develop a potent TB vaccine that would provide broad spectrum of protection against many 

Mycobacterium tuberculosis strains and drug resistance, we downloaded the complete proteome 
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sequence of 159 different Mycobacterium tuberculosis strains from the NCBI Genome FTP site 

(Appendix Table G. 1 provides information on the 159 Mycobacterium tuberculosis strains). 

Mycobacterium tuberculosis H37Rv (GenBank accession number NC_000962.3), having 3906 proteins, 

was taken as the reference proteome for identifying the conserved proteins within 159 strains. A 

protein was selected as a conserved target only if: (i) it was present in all 159 strains, (ii) it had a 100% 

query coverage compared to Mycobacterium tuberculosis H37Rv, and (iii) it had a more than 99% 

sequence identity among the 159 strains. Proteome comparison was made using a standalone BLAST 

and the results from sequence similarity were stored in Excel files. Out of 3906 proteins of H37Rv, 1982 

proteins were conserved among 159 strains of Mycobacterium tuberculosis. 

 

After performing sequence similarity among the 159 strains, we categorised each protein into a 

functional class, as given by Smith (2003). This step was carried out to determine the functional 

significance of conserved proteins and predict their role in bacterial survival strategy in the evolution 

of bacteria into many strains. Table 4.1 shows the distribution of proteins of conserved proteins in 

each functional category. When we compared the conserved proteins (1982) with the whole proteome 

(3906), we found a high percentage (73%) of conserved proteins involved in critical functional classes. 

For example, intermediary metabolism and respiration (28%), cell wall processes (19%), information 

pathways (8%), lipid metabolism and regulatory proteins (7%), and virulence, detoxification and 

adaptation (4%). This suggests that Mycobacterium tuberculosis does not support an evolutionary 

process in proteins playing a vital role in biological processes and functions, such as physiology, 

metabolism and translation of proteins. Instead, it experiments with or employs other less functionally 

essential proteins, thus not jeopardising the normal functioning and structural stability needed to 

survive the TB bacteria. 

 

Twenty-four per cent of conserved hypothetical proteins (proteins with no assigned function) were 

found in the conserved protein list, which was almost half the whole proteome of H37Rv. We 

discovered an under-representation of proteins in functional categories, such as the PE and PPE 

proteins, IS elements and bacteriophages and proteins with unknown functions in the list of conserved 

proteins. Out of 167 PE and PPE proteins, only 21 proteins were found to be conserved. No protein 

was found in stable RNA.  
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Table 4. 1: Distribution of whole proteome (3906 proteins) of Mycobacterium tuberculosis H37Rv 
and the conserved proteins (1982 proteins) identified after performing sequence 
similarity within 159 strains into functional categories suggested by Smith (2003) 

 

S. No Functional classes Whole proteome Conserved 
proteins 

I Lipid metabolism 215 147 

II Information pathways 207 154 

III Cell wall and cell processes 506 373 

IV Stable RNAs 44 0 

V IS elements and bacteriophages 125 15 

VI PE and PPE proteins 167 21 

VII Intermediary metabolism and respiration 845 561 

VIII Regulatory proteins 188 135 

IX Virulence, detoxification and adaptation 91 85 

X Conserved hypothetical function 911 467 

XI Proteins of unknown function 607 24 

  3906 1982 

 

Next, we performed the functional annotation of the 467 conserved hypothetical proteins and 24 

proteins with unknown functions to predict their functional roles in Mycobacterium tuberculosis. For 

function annotation, we used Pfam, SMART, Interpro Scan and BLASTp. Based on the sequence 

similarity of the query proteins with already annotated proteins, we can determine the function of 

hypothetical proteins. Out of the 467 conserved hypothetical proteins, we were able to annotate 259 

proteins. No reference was found for the 24 proteins with unknown functions. Figure 4.7 shows the 

distribution of 259 conserved hypothetical proteins into different functional classes. A large number 

of proteins (n) were found to be involved in intermediary metabolism and respiration (n=125), 

followed by cell wall processes (n=43), regulatory proteins (n=38) and information pathways (n=33). 

The percentages of proteins belonging to lipid metabolism (n=12), IS elements and bacteriophages 

(n=4), and virulence, detoxification and adaptation (n=3), were very low. Only one protein was found 

to be from the PE and PPE protein family. No protein was found in stable RNAs. 

 

Comparative proteomic analysis suggests that Mycobacterium tuberculosis prefers mutations in 

proteins that have less biological significance in the growth and development of TB bacteria. 

Mycobacterium tuberculosis safeguards the proteins involved in the normal functioning of bacteria, 

progression of TB disease and survival within the host. 
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Figure 4. 7: Distribution of 259 conserved hypothetical proteins into functional categories as 
suggested by Smith (2003) 

 

4.5.2 Identification of 24 antigenic proteins from 1982 conserved proteins using a 
reverse vaccinology approach 

A reductionist reverse vaccinology process was performed on the 1982 conserved proteins to reduce 

the time and resources needed to identify potential antigenic TB proteins as vaccine candidates. Figure 

4.8 shows the reverse vaccinology approach used for the identification of 24 TB antigens from 1982 

proteins. 

4.5.2.1 Prediction of the subcellular location of the 1982 conserved proteins 

SCL prediction was undertaken to identify the location of each protein in Mycobacterium tuberculosis. 

The proteins present in the outer membrane and extracellular space are involved in membrane 

integrity and permeability, efflux mechanism and active transport of molecules. They are considered 

as suitable TB vaccine candidates since they are easily accessible to the host immune system. The 

proteins present in the cell membrane, cell wall and extracellular space of Mycobacterium tuberculosis, 

as predicted by four or more tools, were selected in this step. With the help of PSORTb v.3.0, CELLO, 

LocTree3, SOSUI, pLoc_bal-mGpos and GramLocEN, 525 proteins were filtered from 1982 conserved 

proteins. These 525 proteins were localized in the cell membrane, cell wall and extracellular space of 

Mycobacterium tuberculosis.  
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Figure 4. 8: Reverse vaccinology approach used for identification of 24 Mycobacterium tuberculosis 
antigens from 1982 conserved proteins 

 

4.5.2.2 Exclusion of proteins having more than one transmembrane α-helix 

Transmembrane integral proteins are membrane-spanning proteins and contain a transmembrane α-

helix. Proteins with more than one transmembrane α-helix are difficult to clone and purify in the 

laboratory. Thus, proteins having a single transmembrane helix were intended to help in designing a 

potential vaccine. With the help of the TMHMM server, we found that out of 525 proteins, 242 proteins 

had more than one transmembrane α-helix. These 242 proteins were excluded from the study and the 

remaining 283 proteins were selected for further analysis. 

4.5.2.3 Identification of secretory and lipoproteins 

In Mycobacterium tuberculosis, secretory proteins and lipoproteins are considered important antigenic 

and immunogenic TB vaccine targets. Secretory signal peptides are ubiquitous protein-sorting signals 

that help translocate a protein across the cytoplasmic membrane in mycobacteria. There are two 

important secretion systems in Mycobacterium tuberculosis: the secretory pathway (Sec pathway) and 

the twin-arginine translocase pathway (TAT pathway) and they already have a highly conserved 
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process for protein secretion. Studies have shown that secretory proteins of Mycobacterium 

tuberculosis are involved in the virulence of mycobacteria (Abdallah et al., 2007). The Sec pathway 

helps in the translocation of proteins in their unfolded state. The TAT pathway translocates proteins in 

their folded state. We identified 119 proteins involved in the Sec pathway using SecretomeP and the 

SignalP 4.1 server. PRED-TAT identified 17 proteins involved in the TAT pathway. Out of 283 proteins, 

136 proteins were found to be engaged in the secretory pathway of Mycobacterium tuberculosis. 

 

Lipoproteins are an essential set of membrane proteins that perform different functions in 

Mycobacterium tuberculosis, such as modulating the host’s immune response, translocation of virulent 

factors in the macrophages, signal transduction, and the uptake of nutrients. Therefore, with the help 

of PRED-LIPO, 41 lipoproteins were identified from the 283 proteins. Thus, a total of 177 (136 secretory 

proteins and 41 lipoproteins) proteins were selected for further analysis (Figure 4.8). 

4.5.2.4 Selection of antigenic and non-allergic proteins as vaccine targets 

A protein is considered a potential vaccine target only if it can initiate an immune response without 

causing considerable side effects inside the host body. For the prediction of antigenicity among the 

177 conserved proteins, three bioinformatics tools were used. Concordance analysis by VaxiJen, 

VirulentPred and MP3 showed that 86 proteins were potentially highly antigenic compared to the 

remaining proteins (91 proteins).  

 

Algpred was used to predict the allergenic or non-allergenic proteins. From the 86 antigenic proteins, 

78 proteins were found to be non-allergenic. These 78 conserved proteins were further analysed for 

adhesion probability. SPAAN was used to identify the adhesin proteins among these proteins. Adhesin 

proteins help attach Mycobacterium tuberculosis to the host’s cell-surface receptors. 44 proteins had 

a strong adhesion probability with a score of 0.5 or above. Hence, these 44 proteins were chosen to 

study Mycobacterium tuberculosis pathway interactions using the STRING database. Twenty-four 

conserved and antigenic proteins were found to have more than ten interacting partners with a 

confidence score of 0.4. Targeting a protein having a large number of interacting partners in the 

membrane region of Mycobacterium tuberculosis plays a crucial role in weakening cell membrane and 

cell wall, thus, leading to the death of the bacterial cell. The last step of reverse vaccinology involved 

the prediction of the homology between humans and Mycobacterium tuberculosis. The homologous 

proteins may initiate autoimmune reactions causing severe health problems in the host. We found no 

similarity among the 24 Mycobacterium tuberculosis proteins and humans (Figure 4.8). 

  

A total of 24 conserved, membrane-spanning, antigenic, non-allergic proteins with high adhesion 

probability and non-homologous to humans were selected using the reverse vaccinology approach, as 
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shown in Table 4.2. Out of the 24 proteins, nine proteins were observed in the cell walls and the cell 

processes functional class. Six proteins belonged to the PE and PPE protein families. Three proteins 

were involved in lipid metabolism, whereas only one protein belonged to the virulence, detoxification, 

and adaptation class. The literature showed that these proteins play an essential role in escaping from 

the human immune response. PPE11 is involved in the pathogenesis of TB and macrophage persistence 

(Deng et al., 2015) and PPE15 inhibits the production of reactive nitrogen inside alveolar macrophages 

(Fishbein et al., 2015). Mazandu and Mulder (2012) predicted the role of PPE21 in the pathogenicity of 

Mycobacterium tuberculosis. PPE65 helps evade the adaptive immune response by obstructing the 

helper-T cell response (Khubaib et al., 2016). ESAT-6 regulates macrophage apoptosis (Roy et al., 2020). 

The membrane protein, MmpS4, plays an essential role in the growth of Mycobacterium tuberculosis 

under iron-deficiency conditions (Wells et al., 2013). Goulding et al. (2009) study suggests that 

immunogenic protein Mpt63 is involved in the virulence mechanism inside the host body. A 

recombinant vaccine constructed using Ag85A and Ag85B is in phase-I of a TB vaccine clinical trial 

(WHO Global Tuberculosis Report, 2020). 

 

Thus, literature validates that we had selected some of the most crucial proteins involved in the 

survival mechanisms of Mycobacterium tuberculosis and the construction of an epitope-based TB 

vaccine from these 24 proteins would help generate a robust immune response in humans. 

Table 4. 2: List of 24 surface-exposed, antigenic and non-allergic proteins identified by reverse 
vaccinology approach. Column 1- gene id, column 2- accession number of the protein, 
column 3-function of protein, column 4- functional class given by Smith (2003) 

Gene Accession No Function Functional 
class 

Rv0129c YP_177694.1 diacylglycerol acyltransferase/mycolyltransferase 
Ag85C 

I 

Rv0287 NP_214801.1 ESAT-6 like protein EsxG III 

Rv0451c NP_214965.1 membrane protein MmpS4 III 

Rv0453 YP_177727.1 PPE family protein PPE11 VI 

Rv1039c YP_177778.1 PPE family protein PPE15 VI 

Rv1184c NP_215700.1 hypothetical protein Rv1184c VI 

Rv1252c NP_215768.1 lipoprotein LprE III 

Rv1548c YP_177817.1 PPE family protein PPE21 VI 

Rv1706c YP_177828.1 PPE family protein PPE23 VI 

Rv1886c NP_216402.1 diacylglycerol acyltransferase/mycolyltransferase 
Ag85B 

I 

Rv1891 NP_216407.1 hypothetical protein Rv1891 - 

Rv1906c NP_216422.1 hypothetical protein Rv1906c - 

Rv1926c NP_216442.1 immunogenic protein Mpt63 III 

Rv1973 NP_216489.1 Mce associated membrane protein III 

Rv2376c NP_216892.1 low molecular weight antigen MTB12 III 

Rv2507 NP_217023.1 hypothetical protein Rv2507 III 
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Rv2518c NP_217034.1 L,D-transpeptidase LdtB III 

Rv2873 NP_217389.1 cell surface lipoprotein III 

Rv3572 NP_218089.1 hypothetical protein Rv3572 - 

Rv3621c YP_177998.1 PPE family protein PPE65 VI 

Rv3707c NP_218224.1 hypothetical protein 3707c VIII 

Rv3803c YP_178017.1 MPT51/MPB51 antigen IX 

Rv3804c NP_218321.1 diacylglycerol acyltransferase/mycolyltransferase 
Ag85A 

I 

Rv3873 YP_178022.1 PPE family protein PPE68 VI 

 

4.5.3 Immunoinformatics analysis for the prediction of B-cell and T-cell epitopes 
for TB vaccine construction 

The most crucial step in designing an epitope-based TB vaccine is identifying the immunodominant B-

cell and T-cell epitopes. Epitopes are the part of an antigen that binds to T-cells, B-cells or antibodies 

in the host body. The T-cells and B-cells are the principal constituents of the immune system. For 

predicting epitopes, immunoinformatics analysis is performed to predict the B-cell and T-cell (MHC-I 

and II-restricted epitopes) and then the most suitable vaccine candidates are filtered based on 

immunogenicity, toxicity allergenicity and hydrophilicity. The hydrophilic peptides are usually present 

on the surface of the protein. 

4.5.3.1 B-cell epitopes for TB vaccine 

B-cells are essential in providing humoral or antibody-mediated responses. The epitopes recognised 

by the antibody's paratopes (antigen/epitope-recognition site in antibodies) or B-cell receptors (BCR) 

are termed B-cell epitopes. In our study, we used Bepipred, ABCpred and BCPREDS for identifying the 

B-cell epitopes. From all three bioinformatics tools, a total of 280 B-cell epitopes were identified from 

the 24 antigenic proteins. These 280 epitopes had varying lengths of 2-40 amino acid residues. A B-cell 

epitope with a length of 8-20 residue was considered a suitable vaccine candidate. Concordance 

analysis was undertaken to identify B-cell epitopes commonly predicted by all three tools to improve 

prediction accuracy. In total, 74 B-cell epitopes of 8-20 residues length were found to be common 

among these 24 antigenic TB proteins. Table 4.3 provides the results of immunoinformatics analysis 

performed on the 24 TB antigens. The third and fourth columns of Table 4.3 show the B-cell epitopes 

predicted and selected for each TB protein. 
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Table 4. 3: Immunoinformatics analysis for prediction of B-cell epitopes. Column 3 shows the number 
of epitopes predicted by the Bepipred, ABCpred and BCPREDs server. Column 4 shows 
the number of epitopes commonly predicted by three servers. Columns 5, 6 and 7 show 
the total number of epitopes filtered by performing antigenicity and toxicity prediction, 
hydrophilicity prediction and non-allergenicity prediction, respectively from the 24 
Mycobacterium tuberculosis antigenic proteins 

 

Gene Protein 
accession 
number 

B-cell 
epitopes 
predicted 

B-cell 
epitopes 
selected 

Antigenicity 
& toxicity 
prediction 

Hydrophilicity 
prediction 

Non-
Allergenicity 
analysis 

Rv0129c YP_177694.1 12 4 1 - - 

Rv0287 NP_214801.1 10 1 1 - - 

Rv0451c NP_214965.1 11 1 1 1 1 

Rv0453 YP_177727.1 15 8 2 2 2 

Rv1039c YP_177778.1 11 4 1 - - 

Rv1252c NP_215768.1 9 4 1 1 1 

Rv1548c YP_177817.1 6 1 - - - 

Rv1706c YP_177828.1 10 5 1 - - 

Rv1886c NP_216402.1 12 3 2 - - 

Rv1926 NP_216442.1 20 2 1 - - 

Rv1973 NP_216489.1 10 1 1 1 1 

Rv2376c NP_216892.1 13 2 1 - - 

Rv2518c NP_217034.1 16 5 3 - - 

Rv2873 NP_217389.1 11 2 3 1 1 

Rv3612 YP_177998.1 9 3 1 - - 

Rv3803c YP_178017.1 5 4 4 - - 

Rv3804c NP_218321.1 14 3 2 - - 

Rv3873 YP_178022.1 11 2 2 - - 

Rv1184c NP_215700.1 15 4 2 - - 

Rv1891 NP_216407.1 17 3 1 1 1 

Rv1906c NP_216422.1 10 3 2 2 1 

Rv2507 NP_217023.1 6 2 3 - - 

Rv3572 NP_218089.1 15 3 1 - - 

Rv3707c NP_218224.1 12 4 1 - - 

 

After selecting 74 epitopes, a filtering process was carried out to investigate safe and 

immunodominant B-cell epitopes for vaccine construction. First, a prediction of the immunogenic 

nature of B-cell epitopes was made using the VaxiJen server and ToxinPred. A total of 38 non-toxic B-

cell epitopes having a Vaxijen score higher than 0.8 were selected for further analysis. The selection of 

hydrophilic epitopes for constructing TB vaccine helps in swift interactions between a vaccine and the 

host cells. This enables a high chance of initiating a robust immune response in the host. The 

hydrophilicity prediction was made by calculating the GRAVY score using the ProtParam server. In 
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ProtParam analysis, 9 B-cell epitopes with negative GRAVY scores were selected. For further 

identification of non-allergenic epitopes, the ALLERTOP 2.0 bioinformatics tool was used. Out of 9 B-

cell epitopes, one epitope was found to be allergenic and excluded from the study. After finishing the 

immunoinformatics analysis, a total of 8 B-cell epitopes were shortlisted for TB vaccine construction. 

4.5.3.2 MHC-I restricted T-cell epitopes for TB vaccine 

T-cells play a significant role in cell-mediated or cellular immunity. In cellular immunity, 

Mycobacterium tuberculosis is ingested by antigen-presenting cells, such as macrophages, dendritic 

cells, etc. The pathogen is then fragmented into smaller antigenic peptides. These are later presented 

to T-cell receptors (TCR) present on the surface of T-cells through the cell-surface attached major 

histocompatibility complex (MHC) molecule. Most T-cell epitope prediction tools are trained with 

experimentally validated 9-mer residues and 15-mer epitope residues for MHC-I and MHC-II restricted 

epitopes prediction. 

 

The epitopes binding to MHC-I molecules are termed cytotoxic T-cell (CTL) epitopes or MHC-I restricted 

T-cell epitopes. In our study, we set the length of the CTL epitope at nine amino acid residues long. The 

prediction of CTL epitopes used IEDB MHC-I, NetCTLpan 1.1 and IEDB MHC-NP. In the IEDB server 

analysis, CTL epitopes with higher binding affinity and a percentile rank lower than 0.4 were selected. 

From the 24 TB antigens, there was a total of 469 CTL epitopes from all three servers. Two hundred 

and seven CTL epitopes were found to be commonly predicted by all three servers. The third and fourth 

columns of Table 4.4 show the CTL epitopes predicted and selected for each TB membrane-localized 

antigen. 

Table 4. 4: Immunoinformatics analysis for the prediction of CTL epitopes or MHC-I restricted T-cell 
epitopes. Column 3 shows the number of epitopes predicted by the IEDB MHC-I, 
NetCTLpan1.1 and IEDB MHC-NP server. Column 4 shows the number of epitopes 
commonly predicted by three servers. Columns 5, 6 and 7 show the total number of 
epitopes filtered by performing antigenicity and toxicity prediction, hydrophilicity 
prediction and non-allergenicity prediction, respectively from the 24 Mycobacterium 
tuberculosis antigenic proteins 

 

Gene Protein accession 
number 

CTL 
epitopes 
predicted 

CTL 
epitopes 
selected 

Antigenicity 
& toxicity 
prediction 

Hydrophilicity 
prediction 

Non-
allergenicity 
analysis 

Rv0129c YP_177694.1 34 16 3 2 2 

Rv0287 NP_214801.1 8 2 2 1 - 

Rv0451c NP_214965.1 12 5 4 2 1 

Rv0453 YP_177727.1 35 15 4 1 - 

Rv1039c YP_177778.1 39 14 3 1 1 

Rv1252c NP_215768.1 7 3 1 1 - 
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Rv1548c YP_177817.1 26 13 5 2 2 

Rv1706c YP_177828.1 44 17 4 - - 

Rv1886c NP_216402.1 22 12 1 1 - 

Rv1926 NP_216442.1 13 4 1 1 1 

Rv1973 NP_216489.1 10 4 - - - 

Rv2376c NP_216892.1 11 6 1 1 1 

Rv2518c NP_217034.1 29 14 2 2 - 

Rv2873 NP_217389.1 16 7 4 1 1 

Rv3612 YP_177998.1 33 16 6 3 1 

Rv3803c YP_178017.1 24 11 3 - - 

Rv3804c NP_218321.1 16 7 2 - - 

Rv3873 YP_178022.1 22 5 2 - - 

Rv1184c NP_215700.1 15 7 2 2 1 

Rv1891 NP_216407.1 8 4 1 1 - 

Rv1906c NP_216422.1 7 6 1 1 1 

Rv2507 NP_217023.1 12 5 3 1 1 

Rv3572 NP_218089.1 11 5 - - - 

Rv3707c NP_218224.1 15 9 3 1 1 

 

 

For confirming the ability of CTL epitopes to initiate an immune response, antigenicity and toxicity 

analysis was performed using VaxiJen and Toxin Pred. The antigenicity and toxicity scores revealed that 

out of 207 CTL epitopes, 58 epitopes were highly immunogenic and non-toxic. These 58 epitopes were 

considered for further hydrophilic score calculations. In our study, we excluded the epitopes having 

positive GRAVY scores. Thus, we had 25 CTL epitopes that were hydrophilic in nature and with a 

negative GRAVY score. The allergenic nature of the epitopes was then determined using ALLERTOP 2.0. 

Out of 25 CTL epitopes, 11 were found to cause allergenic reactions inside the host body. These 

epitopes were excluded from the study. Finally, 14 CTL epitopes were chosen for constructing an 

epitope-based TB vaccine. 

4.5.3.3 MHC-II restricted T-cell epitopes for a TB vaccine 

MHC class-II molecules are present on macrophage and dendritic cells. The primary function of MHC-

II is to present antigens/epitopes to the naïve T-helper cells. This interaction leads to the release of 

cytokines that help the development of naïve T-helper cells into effector or memory T-cells. The 

epitopes presented by MHC-II molecules are termed helper T-cells (HTL epitopes) or MHC-II restricted 

T-cell epitopes. We set the length of HTL epitopes at 15 amino acid residues. IEDB MHC-II and the 

NetMHCIIpan 3.2 server identified a total of 428 epitopes. Concordance analysis estimated 346 

common HTL epitopes among the 24 Mycobacterium tuberculosis proteins. There was no common 

epitope found in one protein with accession number NP_214965.1. 

 



 130 

Table 4. 5: Immunoinformatics analysis for the prediction of HTL epitopes or MHC-II restricted T-cell 
epitopes. Column 3 shows the number of epitopes predicted by the IEDB MHC-II and 
NetMHHCIIpan 3.2 server. Column 4 shows the number of epitopes commonly 
predicted by both servers. Columns 5, 6 and 7 show the total number of epitopes filtered 
by performing antigenicity and toxicity prediction, hydrophilicity prediction and non-
allergenicity prediction, respectively from the 24 Mycobacterium tuberculosis antigenic 
proteins 

 

Gene Protein 
accession 
number 

HTL 
epitopes 
predicted 

HTL 
epitopes 
selected 

Antigenicity 
& toxicity 
prediction 

Hydrophilicity 
prediction 

Non-
allergenicity 
analysis 

Rv0129c YP_177694.1 21 13 3 - - 

Rv0287 NP_214801.1 13 9 8 - - 

Rv0451c NP_214965.1 3 - - - - 

Rv0453 YP_177727.1 34 27 9 - - 

Rv1039c YP_177778.1 46 39 36 - - 

Rv1252c NP_215768.1 7 5 2 - - 

Rv1548c YP_177817.1 40 32 21 - - 

Rv1706c YP_177828.1 30 25 16 - - 

Rv1886c NP_216402.1 21 18 14 2 2 

Rv1926 NP_216442.1 1 1 - - - 

Rv1973 NP_216489.1 13 10 9 - - 

Rv2376c NP_216892.1 31 25 17 - - 

Rv2518c NP_217034.1 3 2 2 - - 

Rv2873 NP_217389.1 27 23 21 - - 

Rv3612 YP_177998.1 32 27 25 1 1 

Rv3803c YP_178017.1 4 4 4 - - 

Rv3804c NP_218321.1 24 18 14 2 2 

Rv3873 YP_178022.1 18 15 14 - - 

Rv1184c NP_215700.1 7 7 4 - - 

Rv1891 NP_216407.1 15 12 10 - - 

Rv1906c NP_216422.1 1 1 1 - - 

Rv2507 NP_217023.1 10 10 10 1 - 

Rv3572 NP_218089.1 11 11 6 - - 

Rv3707c NP_218224.1 16 12 4 - - 

 

Table 4.5 shows the results of the immunoinformatics analysis on the 24 Mycobacterium tuberculosis 

proteins. Columns 5, 6 and 7 in Table 4.5 show the outcomes of the antigenicity, toxicity, hydrophilicity 

and allergenicity analysis. Out of the 250 immunogenic and non-toxic HTL epitopes, only six were found 

to be hydrophilic. All remaining HTL epitopes were excluded from the study and finally, five HTL 

epitopes remained after evaluating the allergenic nature of epitopes. 

 

After selecting highly immunogenic and exclusion of cross-reactive epitopes, we had 27 epitopes (8 B-

cell epitopes, 14 CTL epitopes and 5 HTL epitopes) from 18 (out of 24) antigenic Mycobacterium 
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tuberculosis proteins. The selected epitopes from the 18 proteins that can evoke a strong cellular and 

humoral immune response in the host are listed in Table 4.6. Three proteins were found to have both 

B-cell and T-cell epitopes. No suitable vaccine candidates were found in six proteins: NP_214801.1, 

YP_177828.1, NP_217034.1, YP_178017.1, YP_178022.1 and NP_218089.1. Out of these six proteins, 

the functional significance of the three proteins (NP_217034.1, NP_218089.1 and YP_178017.1) was 

unknown in Mycobacterium tuberculosis. 

Table 4. 6: Final 27 epitopes (8 B-cell epitopes, 14 CTL epitopes and 5 HTL epitopes) selected from 18 
Mycobacterium tuberculosis antigens for constructing an epitope-based vaccine for 
tuberculosis. Length represents the length of an epitope or number of amino acid 
residues in an epitope, start and end represents starting and ending position of an 
epitope in a protein, and epitope represents one letter code of amino acid residues 

 

S. 
No 

Accession B-cell epitope CTL epitope HTL epitope Immune 
response 

length start end epitope length start end epitope length start end epitope 

1 YP_177694.1 
    

9 72 80 FQGGGPHAV 
    

Cellular 
immunity 

9 210 218 LAMNDSGGY 

2 NP_214965.1 12 119 130 KVRAERVSNEVN 9 124 132 RVSNEVNAY 
    

Cellular and 
humoral 
immunity 

3 YP_177727.1 20 181 201 SNAQSQHSSSNNSGGADPVD 
        

Humoral 
immunity 

20 424 444 RHQARRRRRAAAKERGNADE 

4 YP_177778.1 
    

9 365 373 SAAKGTGAY 
    

Cellular 
immunity 

5 NP_215768.1 20 25 45 TLTGCGSGDSTVAKTPEATP 
        

Humoral 
immunity 

6 YP_177817.1 
    

9 457 465 NSATTSTGW 
    

Cellular 
immunity 

9 564 572 HTGTNNSGY 

7 NP_216402.1 
        

15 46 60 LPVEYLQVPSPSMGR Cellular 

immunity 
15 47 61 PVEYLQVPSPSMGRD 

8 NP_216442.1 
    

9 99 107 RTADGINYR 
    

Cellular 
immunity 

9 NP_216489.1 10 127 136 ITVGKDAPTT 
        

Humoral 
immunity 

10 NP_216892.1 
    

9 93 101 RIADHKLKK 
    

Cellular 
immunity 

11 NP_217389.1 20 162 182 QASPSRIDGTHQTLQGADLT 9 36 44 SPKPATSPA 
    

Cellular and 
humoral 
immunity 

12 YP_177998.1 
    

9 398 406 RYGFKPTVI 15 361 375 SNGLGAAAAAEGSTH Cellular 

immunity 

13 NP_218321.1 
        

15 49 63 LPVEYLQVPSPSMGR Cellular 
immunity 

15 50 64 PVEYLQVPSPSMGRD 

14 NP_215700.1 
    

9 308 316 LQPQIDAAY 
    

Cellular 
immunity 

15 NP_216407.1 20 20 40 PVAGADPQRYDGDVPGMNYD 
        

Humoral 
immunity 
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16 NP_216422.1 20 30 50 AGADPEPAPTPKTAIDSDGT 9 4 12 KPAPSPAAA 
    

Cellular and 
humoral 
immunity 

17 NP_217023.1 
    

9 70 78 HEASPTQQL 
    

Cellular 
immunity 

18 NP_218224.1 
    

9 9 17 GTGTPTGDY 
    

Cellular 
immunity 

 

4.5.3.4 Population coverage analysis 

MHC molecules are highly polymorphic and different HLA types are expressed at different rates in 

different ethnicities around the world. The prevalence of MHC-I and II HLA alleles in the diverse ethnic 

groups of the world helped in determining the most likely set of T-cell epitopes. Tables 4.7 and 4.8 

show the CTL epitopes and HTL epitopes and their corresponding MHC-I and MHC-II HLA alleles.  

Table 4. 7: Potential CTL epitopes with their respective MHC-I HLA alleles 

S. 
No 

Accession 
No 

CTL epitopes 

start end epitope MHC-I HLA allele 

1 YP_177694.1 72 80 FQGGGPHAV HLA-A*02:01, HLA-B*39:01, HLA-B*53:01, HLA-A*02:06, HLA-A*01:01 

210 218 LAMNDSGGY HLA-A*01:01, HLA-A*26:01, HLA-B*15:01, HLA-B*53:01, HLA-B*44:03, HLA-
B*35:01, HLA-A*30:02 

2 NP_214965.1 124 132 RVSNEVNAY HLA-A*01:01, HLA-A*26:01, HLA-B*15:01, HLA-B*53:01, HLA-B*44:03, HLA-
B*35:01, HLA-B*57:01, HLA-A*02:01, HLA-A*30:02 

3 YP_177778.1 365 373 SAAKGTGAY HLA-A*01:01, HLA-A*26:01, HLA-B*15:01, HLA-B*44:03, HLA-B*53:01, HLA-
B*35:01, HLA-B*57:01, HLA-A*30:02 

4 YP_177817.1 457 465 NSATTSTGW HLA-B*58:01, HLA-B*53:01, HLA-B*44:03, HLA-B*57:01, HLA-A*01:01 

564 572 HTGTNNSGY HLA-A*01:01, HLA-A*26:01, HLA-B*44:03, HLA-B*35:01, HLA-A*02:01 

5 NP_216442.1 99 107 RTADGINYR HLA-B*53:01, HLA-B*44:03, HLA-B*57:01, HLA-A*31:01, HLA-A*68:01, HLA-
A*02:01, HLA-A*01:01 

6 NP_216892.1 93 101 RIADHKLKK HLA-A*03:01, HLA-B*53:01, HLA-A*02:01, HLA-B*44:03, HLA-A*11:01, HLA-
A*02:01 

7 NP_217389.1 36 44 SPKPATSPA HLA-B*07:02, HLA-B*53:01, HLA-B*35:01, HLA-A*01:01, HLA-A*26:01, HLA-
B*44:03, HLA-B*35:01 

8 YP_177998.1 398 406 RYGFKPTVI HLA-A*24:02, HLA-B*53:01, HLA-B*07:02, HLA-B*44:03, HLA-A*01:01, HLA-
A*26:01 

9 NP_215700.1 308 316 LQPQIDAAY HLA-B*15:01, HLA-B*44:03, HLA-B*53:01, HLA-B*35:01, HLA-A*01:01, HLA-
A*26:01 

10 NP_216422.1 4 12 KPAPSPAAA HLA-B*53:01, HLA-A*02:01, HLA-B*07:02, HLA-A*01:01, HLA-A*02:01 

11 NP_217023.1 70 78 HEASPTQQL HLA-B*40:01, HLA-B*35:01, HLA-B*44:03, HLA-B*07:02, HLA-A*01:01, HLA-
A*02:01 

12 NP_218224.1 9 17 GTGTPTGDY HLA-A*01:01, HLA-B*53:01, HLA-B*44:03, HLA-B*35:01, HLA-A*30:02, HLA-
A*02:01 
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Table 4. 8: Predicted HTL epitopes interacting with their MHC-II HLA alleles 

S. 
N
o 

Accession No HTL epitopes 

start end epitope MHC-II HLA allele 

1 NP_216402.1 46 60 LPVEYLQVPSPSMGR HLA-DRB1*01:01,HLA-DRB1*15:01,HLA-DRB1*03:01,HLA-
DRB1*04:05,HLA-DRB1*07:01,HLA-DRB1*09:01 

47 61 PVEYLQVPSPSMGR
D 

HLA-DRB1*04:01, HLA-DRB1*01:01, HLA-DRB5*01:01, HLA-
DRB1*11:01, HLA-DRB1*09:01 

2 YP_177998.1 361 375 SNGLGAAAAAEGST
H 

HLA-DQA1*04:01, HLA-DRB1*01:01, HLA-DRB3*02:02, HLA-
DRB1*11:01, HLA-DRB5*01:01 

3 NP_218321.1 49 63 LPVEYLQVPSPSMGR HLA-DRB1*01:01,HLA-DRB1*15:01,HLA-DRB1*04:01,HLA-
DRB1*04:05,HLA-DRB1*11:01,HLA-DRB1*13:02,HLA-
DRB1*07:01,HLA-DRB1*08:02,HLA-DRB1*09:01 

50 64 PVEYLQVPSPSMGR
D 

HLA-DRB1*01:01,HLA-DRB1*15:01,HLA-DRB1*04:01,HLA-
DRB1*04:05,HLA-DRB1*11:01,HLA-DRB1*13:02,HLA-
DRB1*07:01,HLA-DRB1*08:02,HLA-DRB1*09:01 

 

To design a universal vaccine against TB, there is a need to analyse population coverage of the selected 

T-cell epitopes to minimize the risk of developing an ethnically-biased vaccine (Bui et al., 2006). Thus, 

the population coverage assessment of the predicted CTL and HTL epitopes and their corresponding 

MHC-I and MHC-II HLA alleles used the IEDB epitope analysis resource. Among 15 regions, the results 

exhibited maximum population coverage in Europe (99.74%), closely followed by North America 

(99.54%), East Asia (99.44%), West Indies (98.14%), South Asia (97.09%), Oceania (96.94%), Southeast 

Asia (96.52%), Northeast Asia (95.53%), North Africa (95.06%) and others (Figure 4.9). The lowest 

coverage, compared to the others, was found in Central Africa (89.09%), followed by South Africa 

(83.76%). As a result, 99.16% of the population of the world was covered by the predicted CTL and HTL 

epitopes from the 18 antigens of Mycobacterium tuberculosis. This analysis supports our strategy of 

developing a universal TB vaccine. 

 

Figure 4. 9: Population coverage analysis predicted using IEDB-AR for 14 CTL epitopes and 5 HTL 
epitopes with their respective MHC HLA alleles. The percentage of population coverage 
was calculated for 15 regions covering the globe 
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4.5.4 Designing a structural model for a TB vaccine 

After selecting the final TB vaccine epitopes, the TB vaccine sequence was designed and the vaccine 

structural model was constructed to determine its efficacy of interaction inside the host.  

4.5.4.1 Vaccine sequence design 

The epitopes mentioned in Table 4.9 were used for designing the TB vaccine protein sequence.  

Table 4. 9: Final 27 epitopes for TB vaccine construction 

Epitope 
No. 

CTL epitopes 
(E) 

Epitope 
No. 

HTL epitopes(E) Epitope 
No. 

B-cell epitopes(E) 

1 FQGGGPHAV 15 LPVEYLQVPSPSMGR 20 KVRAERVSNEVN 

2 LAMNDSGGY 16 PVEYLQVPSPSMGRD 21 SNAQSQHSSSNNSGGADPVD 

3 RVSNEVNAY 17 SNGLGAAAAAEGSTH 22 RHQARRRRRAAAKERGNADE 

4 SAAKGTGAY 18 LPVEYLQVPSPSMGR 23 TLTGCGSGDSTVAKTPEATP 

5 NSATTSTGW 19 PVEYLQVPSPSMGRD 24 ITVGKDAPTT 

6 HTGTNNSGY 
  

25 QASPSRIDGTHQTLQGADLT 

7 RTADGINYR 
  

26 PVAGADPQRYDGDVPGMNYD 

8 RIADHKLKK 
  

27 AGADPEPAPTPKTAIDSDGT 

9 SPKPATSPA 
    

10 RYGFKPTVI 
    

11 LQPQIDAAY 
    

12 KPAPSPAAA 
    

13 HEASPTQQL 
    

14 GTGTPTGDY 
    

 

The structure of the PADRE sequence and the 27 epitopes attached with the linker was constructed 

using PEPstrMOD. First, the affinity of the PADRE sequence with the five HTL epitopes was determined 

using PatchDock and FireDock. The PADRE-E17 (HTL epitope) was discovered to be the best 

combination compared to the other four HTL epitopes. The structure of PADRE-E17 was then 

constructed using the I-TASSER server. The binding compatibility of PADRE-E17 was determined for 

the remaining HTL epitopes. E-15 was found to have strong binding to PADRE-E17. The structure of the 

PADRE-E17-E15 combination was then generated using I-TASSER. This process was first undertaken for 

the HTL epitopes, followed by CTL epitopes and then the B-cell epitopes. Figure 4.10(i) shows the final 

TB vaccine sequence obtained through the extensive analysis of the TB epitope combinations.  

 

The adjuvant 50S ribosomal protein L7/L12 at the N-terminal and β-defensin at the C-terminal were 

added to the vaccine protein sequence with the help of EAAAK linker. With the two adjuvants and 

linkers, the final length of the TB vaccine sequence was 629 amino acid residues (Figure 4.10 (ii)). 
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(i) 
 

 
(ii) 

Figure 4. 10: Epitope-based vaccine sequence construction scheme: (i) Schematic representation of 
TB vaccine construct consisting of B-cell and T-cells epitopes joined by flexible linkers 
and adjuvants at N- and C-terminals of the vaccine protein. The epitope combinations 
were found after determining the binding affinity with each of them using PatchDoack 
and FireDock, and (ii) TB vaccine protein sequence. The adjuvant sequence is highlighted 
in green, the PADRE sequence in pink, the flexible linkers in purple (EAAAK), red 
(GPGPG), blue (AAY) and yellow (KK). The HTL epitopes are highlighted in orange, the 
CTL epitopes are black, and the B-cell epitopes are brown 

 

4.5.4.2 Assessment of properties of TB vaccine construct 

After designing the TB vaccine sequence, its antigenicity, allergenicity and physiochemical properties 

were evaluated. The antigenicity was predicted using the VaxiJen server. The high antigenic score of 

0.9126 showed the great immunogenic potential of the constructed TB vaccine. The AlgPred server 

indicated that the vaccine designed is non-allergenic to the host. 
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Figure 4. 11: Physiochemical properties of the final TB vaccine construct 

 
ProtParam was used for predicting the physiochemical properties of the designed TB vaccine 

sequence. Proteins with MW less than 100 kDa indicate the possibility of experimentally studying the 

proteins in the laboratory for vaccine or drug development. Thus, proteins having a molecular weight 

of more than 100 kDa were not considered as potential vaccine targets. The vaccine sequence 

comprised 629 amino acid residues with a molecular weight of 64.86 kDa. The TB vaccine construct 

was composed of 9071 atoms and its molecular formula was C2837H4507N817O895S15. The isoelectric 

point (pI or pH(I)) is the pH at which a molecule carries no net electrical charge. The pI was assessed to 

be 9.19, indicating the vaccine construct to be slightly basic. In vivo half-life predicts the time taken by 

half of the amount of protein to disappear within a cell. A half-life between 2 to 100 hours is considered 

suitable for the degradation of protein, depending on the nature of the protein. The estimated half-

life was found to be 30 hours in mammalian reticulocytes (in-vitro). An instability index with a value of 

37.94 represented the stable nature of the TB vaccine. The higher value of the aliphatic index (62.29) 

indicated the higher thermostability of the protein. The GRAVY score of the vaccine was found to be -

0.503. The negative value of the estimated GRAVY indicated the hydrophilic nature of the vaccine. 

After evaluating all the properties, we discovered that our designed TB vaccine had all the 

characteristics of a promising vaccine candidate required for initiating an effective immune response 

inside the host. 
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4.5.4.3 Structural model of the TB vaccine 

Secondary structure is crucial for maintaining the three-dimensional structural stability of a protein. 

The secondary structure of the TB vaccine was constructed using PSIPRED. According to PSIPRED, 213 

amino acid residues were involved in forming alpha-helixes, constituting 33.86% of the overall TB 

vaccine sequence. Only 66 residues participated in beta-strand formation (10.49%), whereas 350 

amino acid residues formed the coils (55.64%) in the whole TB vaccine sequence. Secondary structural 

arrangement showed that the vaccine protein was highly flexible. The higher flexibility of the TB 

vaccine facilitates smooth interactions with the immune cells.  

 

Figure 4. 12: Secondary structure prediction of the TB vaccine sequence using PSIPRED. The sequence 
comprised alpha-helixes (33.86%), beta-strands (10.49%) and coils (55.64%) 

 

The tertiary structural model of the TB vaccine was constructed using the RaptorX server. RaptorX 

performed homology modelling and 1DD3_A PDB entry was used as a template for generating a 

structural model. All 629 amino acid residues were modelled with only 10% being in the disordered 

region. In the constructed model, 61% of the residue were exposed, 17% medium and 21% were buried 
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in folded conformation. Before refining the structural model, the Ramachandran plot showed that 

87.6% of the amino acid residues were in the most favoured region. Thus, refinement of the structural 

model was carried out using the GalaxyRefine server to improve the quality of the predicted structural 

model. Figure 4.13 (i) shows the 3D structural model of the TB vaccine after performing the refinement 

step. The refined structural model had 92.3% amino acid residues in the most favoured region (Figure 

4.13 (ii)).  

 

Other parameters evaluated after refinement were GDT-HA (global distance test- high accuracy), 

MolProbidity, clash score, RMSD and poor rotamers. GDT-HA score determines the backbone quality 

of the generated 3D structural models (Kopp et al., 2007). GDT-HA score ranges from 0 to 1 (Alapati et 

al., 2020). MolProbity score indicates the log-weighted combination of clash score, percentage of not 

favoured amino acid residues in Ramachandran plot and percentage of bad side-chain rotamers (Chen 

et al., 2010). The lower numerical value of MolProbilty score represents better quality of the three-

dimensional structure. The results for the parameters evaluated after refinement were GDT-HA score 

of 0.9112, MolProbidity of 2.027, a clash score of 10.7, a RMSD 0.52 and poor rotamers with the value 

of 0.7. 

   

                                           (i)                                                                                 (ii)  

Figure 4. 13: Refined structural model of TB vaccine construct: (i) The 3D structure is coloured in 
rainbow colour from violet to red (from N-terminus to C-terminus), and (ii) the 
Ramachandran plot of the refined structure showing 92.3% amino acid residues in the 
most favoured region (green crosses) 
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4.5.4.4 Interaction of TB vaccine construct with toll-like receptors 

The epitopes present on the surface of the pathogen interact with toll-like receptors (TLRs) present on 

the surface of the antigen-presenting cells (APCs), causing activation of the adaptive immune system. 

For understanding the interaction of the TB vaccine with TLRs, molecular docking was performed. The 

strong binding of both molecules will initiate the process of immune response generation. The ClusPro 

2.0 server was used for performing molecular docking between the TB vaccine construct and TLR-2, 

TLR-4 and TLR-6 with PDB id 2Z7X, 4G8A and 4OM7, respectively (Figure 4.14). The output of the 

docking process displayed 30 clusters (0-29) for each docked complex. Cluster 0 of TLR-2 and the TB 

vaccine docked complex was found to have the lowest binding energy of -1172.8 kcal/mol. This cluster 

involved the highest number of members in the docking interaction, i.e., 66 amino acid residues of the 

vaccine interacting with TLR-2. Cluster 2 of the TLR-4 docked complex had the lowest binding energy 

of -1241.1 kcal/mol, with 52 residues involved in the interaction. For TLR-6 and the TB vaccine, cluster 

0 had the lowest binding affinity of -1002.2 kcal/mol, with 38 members involved in the docking 

interaction. The docking results revealed that the designed TB vaccine had strong interaction with the 

selected TLRs and would accomplish the goal of initiating the immune response. 

 

                                                 (i)                                                                                   (i i) 
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(iii) 

Figure 4. 14: The docked complex of toll-like receptors (brown colour) with the TB vaccine construct 
(yellow colour). TB vaccine construct docked with: (i) TLR-2, (ii) TLR-4 and (iii) TLR-6  

Normal mode analysis (NMA) was carried out to determine the stability of the docked complex and 

mobility of the TB vaccine residues within the complex on a large scale. The iMODS server was used to 

perform a dynamic simulation of the docked complex of the vaccine with TLR-2, TLR-4 and TLR-6. The 

presence of deformation in the docked complex of the TB vaccine and TLR will not activate the immune 

system. Deformability is the ability of amino acid residues to deform at a particular position within the 

protein. Analysis of the trajectory of the docked complex helps determine the occurrence of any 

deformation in the complex. The eigenvalue provided by the docked complex represents the energy 

required for deforming the complex. The eigenvalues found for the TB vaccine with TLR-2, TLR-4 and 

TLR-6 complex were 1.018829e-5, 1.304754e-05 and 2.501926e-5, respectively. The resulting 

eigenvalues indicated low chances of deformation for the TB vaccine-TLR docked complex. Thus, this 

analysis supports that our TB vaccine designed has the potential to generate a quick immune response.  
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                                             (i)                                                                                            (ii) 

 
(iii) 

Figure 4. 15: Results of molecular dynamic simulation performed using iMODS. The eigenvalue of 
the docked complex of TB vaccine and toll-like receptors: (i) TB vaccine-TLR2, (ii) TB 
vaccine-TLR4, and (iii) TB vaccine-TLR6 

 

4.5.5 Study of the immune response profile of the TB vaccine construct for 
predicting vaccine efficacy 

 

Vaccines are cost-effective pharmaceutical products that have played an important role in eliminating 

and eradicating infectious diseases. The main goal of this study was to develop a cost-effective epitope-

based TB vaccine that can provide long-lasting protection and herd immunity, reduce mortality rates, 
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fight against antimicrobial resistance and enhance the speed and strength of the host immune 

response against Mycobacterium tuberculosis. In the previous step, we designed an epitope-based TB 

vaccine and predicted its interaction with antigen-presenting cells. It is also essential to determine the 

efficacy of our epitope-based TB vaccine by studying the immune response it generated. We used the 

C-ImmSim server for examining the immune response profile of our vaccine construct. The vaccine 

construct was administered three times at different time intervals. The fixed time interval between 

each vaccine dose was four weeks.  

 

After exposure to the vaccine construct, we found that the immune response generated by the host 

immune system was higher after every dose. Figure 4.16 (i) shows that the secondary and tertiary 

immune responses are higher than the primary response. The repeated exposure of TB epitopes via 

injections caused an increase in immunoglobulin activity (IgM, IgG1+IgG2, IgG1, IgG2 and IgM+IgG) 

after each exposure with rapid antigen clearance from the host. This shows that the host body is 

eliciting a robust immune response after encountering TB antigens. The rise in the population of active 

B-cells after each injection indicated an effective humoral immune response against Mycobacterium 

tuberculosis (Figure 4.16, (ii)). Several B-cell isotypes (IgM, IgG1 and IgG2) and memory B-cells were 

observed (Figure 4.16 (iii)). The presence of B-cells throughout the year indicates the formation of 

memory B-cell for a more extended period. This revealed the long-lasting humoral response against 

TB. 

 

     
                                                 (i)                                                                                             (ii) 
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                                                                                           (iii)                                                                                     
 

Figure 4. 16: Humoral immune response profile of the epitope-based TB vaccine construct: (i) 
generation of immunoglobulins upon exposure to TB vaccine construct, (ii) number of 
active B-cell populations per state of antigen exposure, and (iii) evolution of B-cells into 
different isotype populations after the administration of three TB injections 

 

The number of active T-cells (helper T-cells and cytotoxic T-cells) significantly increased after the 

second and third exposures to the TB vaccine construct and slowly decreased while eliminating the 

antigen (Figure 4.17 (i), (iii)). The elevated level of CTL and HTL cells also activated the generation of 

memory CTL and HTL cells (Figure 4.17 (ii), (iv)). The memory cells generated in this process would play 

a crucial role in providing immune protection against Mycobacterium tuberculosis. The host body 

restores these memory cells and responds quickly on re-encounter with Mycobacterium tuberculosis 

by generating a robust immune response.  

 

The activation of T-cells led to an increase in the concentration of cytokines and interleukins (Figure 

4.17 (v)). The repeated exposure to the three TB injections maintained the high level of IFN- γ required 

for eliminating the TB antigens. IL-4, IL-10, IL-12, IL-23 and TNF-α are the key players needed to recruit 

mononuclear cells from nearby blood vessels to contain a TB infection. Thus, generation of all these 

cytokines would lead to the activation of macrophages and proliferation of helper T and cytotoxic T-

cells required for complete the elimination of Mycobacterium tuberculosis antigens present inside the 

host body. A Simpson index (D) indicates the diversity in response generated. The lower value of the 

Simpson index implies greater diversity in the immune response of the host. The output of the immune 

simulation shows that immunization from our vaccine has generated required cytokines and 

interleukins required to eliminate TB antigens from the host body and activated sufficient number of 

B-cells and T-cells for long-lasting humoral and cell-mediated immune response. 
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                                           (i)                                                                                               (ii)   

     
                                              (iii)                                                                                         (iv)   

 



 145 

 
 (v) 

Figure 4. 17: Cell-mediated immune response profile of the epitope-based TB vaccine construct: (i) 
population of helper T-cells per state upon exposure to TB vaccine construct, (ii) 
population of memory helper T-cell per state, (iii) population of cytotoxic T-cells per 
state after exposure to the antigen, (iv) population of memory cytotoxic T-cell per state, 
and (v) production of different cytokines and interleukins with Simpson index (D) in 
three subsequent responses 

 

The results obtained from stable interactions of the TB vaccine construct, TLRs and immune response 

simulation shows that our designed epitope-based TB vaccine would successfully initiate a swift and 

robust immune response against Mycobacterium tuberculosis. Thus, we have successfully constructed 

an in-silico epitope-based TB vaccine having all characteristics of the best possible vaccine. 

 

4.6 Chapter Summary 

Tuberculosis is an evolving deadly disease caused by the highly pathogenic Mycobacterium 

tuberculosis. TB is a highly contagious bacterial infection that spreads from an infected person to a 

healthy person through air by the inhalation of  airborne droplet nuclei. Despite advances in the 

medical science, TB remains the cause of death of more than 1.4 million people every year. The World 

Health Organization considered tuberculosis a global threat with a significant mortality and morbidity 

rates. The BCG vaccine and drug therapy are the two most important countermeasures created by 

humans against TB. The evolution of Mycobacterium tuberculosis has led to the expansion of survival 

strategies and the emergence of drug-resistant TB strains that make drugs ineffective through various 

mechanisms. For example, an impermeable cell wall prevents drug entry into the cells, or a mutation 

in the target protein can lead to inactivation of drug molecules with the help of bacterial enzymes. 

Therefore, vaccination is still a promising strategy to protect the human population and bring down 

the incidence rate of TB. BCG is the only licensed vaccine available that is prepared from a live-
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attenuated strain of Mycobacterium bovis. The low efficacy of BCG, the reemergence of the disease in 

immunocompetent individuals and drug-resistant Mycobacterium tuberculosis strains have generated 

an urgent requirement for a powerful and effective TB vaccine. 

 

Today, after 100 years of research in the field of TB vaccines, the process of designing and developing 

an ideal universal TB vaccine is still hindered by several challenges, such as pathogen polymorphism, 

eliciting a precise immune response against TB, genetic diversity of the human population, 

hypersensitivity, safety and time. In the present study, we designed an epitope-based TB vaccine by 

developing and testing a conceptual framework to address the research challenges of the conventional 

vaccine development process.  

 

With the aim of developing an effective TB vaccine that would elicit a robust immune response inside 

the host, we focussed on selecting the highly immunodominant epitopes from the conserved and 

surface-exposed antigenic proteins of Mycobacterium tuberculosis for constructing the TB vaccine. In 

recent years, bioinformatics tools and software have offered many significant breakthroughs in 

computational vaccinology. Our study incorporates different branches of bioinformatics such as 

comparative proteomic analysis, reverse vaccinology, immunoinformatics and structural vaccinology, 

for identifying potential vaccine candidates and designing an epitope-based TB vaccine. 

 

Using a single strain or single antigen does not offer a complete picture of the genetic diversity of 

Mycobacterium tuberculosis. Thus, we used the proteome of 159 completely sequenced strains of 

Mycobacterium tuberculosis to cover the diversity and identify conserved proteins among those 

strains. Mycobacterium tuberculosis H37Rv was used as a reference proteome. By performing 

comparative proteomic analysis using a standalone BLAST, we found that out of 3906 proteins of 

H37Rv, 1982 proteins were conserved among the 159 strains of Mycobacterium tuberculosis. The 

functional classification of the 1982 conserved proteins was undertaken for understanding the impact 

of evolution on the biological processes and functions, such as physiology, metabolism and translation 

of proteins of Mycobacterium tuberculosis. We observed a high percentage (73%) of conserved 

proteins involved in critical functional classes, such as intermediary metabolism and respiration, cell 

wall processes, information pathways, lipid metabolism and regulatory proteins and virulence, 

detoxification and adaptation. This suggests that Mycobacterium tuberculosis experiments by 

mutating fewer essential proteins, thus, not risking the normal functioning and structural stability 

needed for its survival. 

 

After the identification of conserved proteins, a reductionist reverse vaccinology process was 

performed. Reverse vaccinology is a low-cost technique, entirely feasible for use on the plethora of 
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genomic or proteomic data being generated. Reverse vaccinology helps identify surface-exposed, 

antigenic proteins having unique characteristics like signal peptides, membrane-spanning regions, 

lipoprotein signatures and adhesion probabilities that are crucial for the survival of Mycobacterium 

tuberculosis and non-homologous to the host proteome or host metabolic pathways. Thus, we 

performed comprehensive reverse vaccinology analysis using several bioinformatics tools with reliable 

accuracy to scrutinize the ideal vaccine candidates by directly analysing the conserved proteins of the 

Mycobacterium tuberculosis H37RV strain. Out of 1982 conserved proteins, a total of 24 membrane-

spanning, antigenic and non-allergic proteins were selected for the reverse vaccinology approach. 

These 24 shortlisted proteins were further examined for determining their efficacy in developing an 

epitope-based vaccine that can stimulate a specific and swift humoral and cell-mediated immune 

response. 

 

The epitope-based vaccine provides a powerful new strategy for pathogen-specific immunity. Here, 

we have used the immunoinformatics approach for identifying safe and immunodominant epitopes 

that could stimulate an innate, humoral and cell-mediated immune response in the host. From an 

extensive repertoire of TB epitopes predicted from immunoinformatics analysis, we shortlisted 27 

epitopes (CTL epitopes-14, HTL epitopes-5 and B-cell epitopes-8) from 18 antigenic Mycobacterium 

tuberculosis proteins. These 27 epitopes were highly immunogenic, non-toxic and non-allergenic to 

the host. Population coverage analysis showed that 99.16% of the world's population were covered by 

the predicted CTL and HTL epitopes from the 18 antigens of Mycobacterium tuberculosis. This analysis 

strengthens the confidence in our strategy of developing a universal TB vaccine. 

 

Structural vaccinology then helped in developing an in-silico vaccine. The design of the vaccine 

sequence was based on a new concept introduced in this research. The docking analysis of the 27 

filtered epitopes with every other epitope created distinct combinations of epitopes. The combinations 

that had a strong binding affinity to one another were used for constructing vaccines. The epitopes 

were attached with the help of flexible linkers (GPGPG, AAY and KK). After arranging the epitopes 

based on their binding affinity, the final vaccine sequence was completed using two adjuvants, 50S 

ribosomal protein L7/L12 and β-defensin attached at the N- and C-terminals, respectively, with the 

help of the EAAAY linker. After designing the TB vaccine sequence, the antigenicity, allergenicity and 

physiochemical properties were evaluated. After assessing all the properties, we discovered that our 

developed TB vaccine had all the characteristics of a promising vaccine candidate required for initiating 

an effective immune response inside the host. 

 

The structural model of the TB vaccine was constructed using RaptorX. The model was then refined to 

improve the quality of the vaccine’s structure. The structural analysis of the model of the TB vaccine 
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construct highlighted the structural integrity with more than 92% amino acid residues in the most 

favourable region. Then, molecular docking and dynamics simulation of TB vaccine construct and TLRs 

(TLR-2, 4 and 6) was carried out. A strong interaction between the pathogen and host TLR can help in 

initiating a strong immune response. The results of our docking analysis suggested stable and robust 

interactions between the TB vaccine construct and TLRs with binding energies -1172.8 kcal/mol (TB 

vaccine-TLR2), -1241.1 kcal/mol (TB vaccine-TLR4) and -1002.2 kcal/mol (TB vaccine-TLR6). The results 

of an analysis predicted a minimum level of deformability between the vaccine construct and TLRs. 

This indicates that the constructed epitope-based TB vaccine would have a strong interaction inside 

the host, thus activating the macrophages, further leading to the activation of cell-mediated and 

humoral immunity. Finally, evaluating our constructed TB vaccine's immune response profile helped 

predict the vaccine’s efficacy in generating a strong and specific humoral and cell-mediated immune 

response. The production of B-cells, T-cells and cytokines after exposure to the TB antigen showed the 

vaccine's efficacy in generating an immune response. Extensive analysis of the results suggests that 

the epitope-based TB vaccine we developed has a high potential of evoking a specific immune response 

to provide broad immune protection against many Mycobacterium tuberculosis strains. A further trial 

in the laboratory in suitable in vitro and in vivo models is recommended to validate our prediction of 

safety, efficacy and immunogenicity. 
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Chapter 5 

Identification of therapeutic vaccine and drug targets for bovine 

tuberculosis treatment 

 

In chapter 5, we accomplished objective 3 of our study. We had briefly discussed the need for efficient 

treatments for bovine TB in chapter 1. In this chapter, we will use the framework developed in chapter-

4 for designing a bovine TB vaccine. We also developed a method for identifying potential anti-bovine 

TB drug targets and tested the framework using bioinformatics tools for providing a solution to reduce 

the burden of bovine TB worldwide. An overview of bovine tuberculosis is provided in section 5.1. In 

Section 5.2, the control measures used in bovine TB, problems with them and formulation of the 

framework for potential therapeutics, are discussed. Section 5.3 explains the step-by-step process of 

the computational framework developed and the bioinformatics tools used for identifying vaccine and 

drug targets for bovine TB. In section 5.4, the results of the extensive computational analysis are 

discussed. Finally, a summary of the chapter is presented in the last section (Section 5.5). 

 

5.1 Bovine Tuberculosis 

Bovine tuberculosis is a chronic infectious disease that primarily affects cattle, but other livestock, such 

as deer, goats, horses and sheep, are also affected by the bacteria (Kuria, 2019). Bovine TB is a zoonotic 

disease that can spread to humans directly by inhaling aerosols or, indirectly, by ingesting 

unpasteurised milk. Twenty to thirty per cent of the global livestock population is potentially affected 

by bovine TB, leading to annual economic losses of more than USD 3 billion globally (Kuria, 2019). 

There is significant loss of livestock and trade restrictions due to bovine TB, e.g., in New Zealand, the 

beef and dairy industries are at potential risk of TB (Price-Carter et al., 2018). Bovine TB also decreases 

milk production by four and 20 per cent worldwide. 

 

Bovine TB is caused by the etiological agent Mycobacterium bovis. It is a rod-shaped, intracellular, 

aerobic, gram-positive and a slow-growing bacterium. The Mycobacterium bovis cell wall comprises 

covalently linked peptidoglycans, arabinogalactans, non-peptidoglycan amino acids and a glucan (Petit 

et al., 1975). The cell structure and metabolism of Mycobacterium bovis is similar to Mycobacterium 

tuberculosis. The main in-vitro difference that occurs in Mycobacterium bovis is a point mutation in 

pykA that affects the binding of the Mg2+ cofactor with pyruvate kinase in the final step of glycolysis. 

Pyruvate kinase cannot catalyse the reaction and the glycolytic metabolites are not transferred to 

oxidative metabolism. Thus, Mycobacterium bovis rely on fatty acids or amino acids for growth and 

development in the laboratory (Garnier et al., 2003). 
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The genome of Mycobacterium bovis is 99.95% identical to Mycobacterium tuberculosis (Garnier et al., 

2003). A fully virulent strain, Mycobacterium bovis AF2122/97, was isolated from an infected cow in 

1997 (Garnier et al., 2003). The complete information on the genome sequence of Mycobacterium 

bovis AF2122/97 was published in 2003. The Mycobacterium bovis genome contains a single, circular 

chromosome containing 4,345,492 base pairs with a high G+C content of 65.6% (Garnier et al., 2003). 

Around 4043 genes are present, encoding 3988 proteins in Mycobacterium bovis AF2122/97. 

Developments in high-throughput experimental methods have made completed genomes available for 

different Mycobacterium bovis strains. 

 

Cattle are the primary host of infection, but Mycobacterium bovis can infect many hosts, including 

humans as well as domestic and wild mammals (Kuria, 2019). The reported susceptible domestic 

species are sheep, goats, pigs, deer, horses, camel, cats, dogs and ferrets (The Centre for Food Security 

and Public Health, Iowa State University). Wild mammals infected by Mycobacterium bovis are bears, 

African buffalo, elephants, raccoons, primates, possums, rhinoceros, foxes and rodents (Thomas et al., 

2021). There is little information available about the susceptibility of birds to Mycobacterium bovis. A 

maintenance host can be defined as a species endemic to infection that transmits the disease to other 

animals by direct contact (Haake & Levett, 2015). There are several maintenance hosts for 

Mycobacterium bovis, such as brush-tail possums (New Zealand), badgers (United Kingdom and 

Ireland), bison and elk (Canada) (Thomas et al., 2021).  

 

Mycobacterium bovis is usually transmitted by the inhalation or ingestion of droplet nuclei. The 

infection can also be transmitted through other bodily fluids such as urine, saliva, milk and colostrum. 

The transmission of Mycobacterium bovis depends on several factors such as the frequency of 

excretion, infective dose through coughing, period of communication with the infected host and the 

host’s susceptibility (Good & Duignan, 2011). Humans get infected by Mycobacterium bovis by 

ingesting unpasteurised milk and raw or undercooked meat (Kuria, 2019). A person working in dairy 

farms or slaughter-houses is more susceptible to TB. The infected person can transmit the infection to 

other people, but the transmission rate of bovine in humans is low (Davies, 2006). It has been seen 

that transmission of TB from humans to animals is rare (The Centre for Food Security and Public Health, 

Iowa State University). 

 

Bovine TB is found globally, but eradication programmes have helped eliminate or nearly eliminate 

this chronic disease from domestic animals in several countries. The countries reported as TB-free 

include Iceland, Denmark, Sweden, Switzerland, Norway, Canada, Singapore, Australia and Finland 

(The Centre for Food Security and Public Health, Iowa State University). The World Organization for 
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Animal Health (OIE) has a total of 181 member countries. In 2017, 78 countries reported the prevalence 

of bovine TB of the 181 OIE countries (World Organization for Animal Health, 2018). Reis et al. (2020) 

studies showed the prevalence of bovine TB is more in Ireland (22.87%) and the United Kingdom 

(16.43%), compared to France (5.03%) and Spain (3.05%). The disease prevalence is still high in Africa 

and some parts of Asia. Srinivasan et al., 2018 estimated that 21.8 million cattle are infected with 

bovine TB in India. Currently, several eradication programmes focussing on eliminating the 

maintenance hosts are being implemented in the United Kingdom, the U.S.A, Mexico, Japan and New 

Zealand. The precise estimation of the prevalence of bovine TB remains poorly understood at the 

global level due to poor diagnosis of livestock and domestic animals, and the lack of surveillance data 

from most countries in the world. Mycobacterium bovis infections detected in wildlife can cause severe 

health implications to other organisms living in the same ecosystem. Moreover, bovine tuberculosis 

has zoonotic potential, raising health concerns for the public (Renwick et al., 2007).  

 

The main factors associated with the prevalence of bovine tuberculosis are the sex of the species, 

breed of cattle and living conditions (Biffa et al., 2012; O’Reilly & Daborn, 1995; Torres-Gonzalez et al., 

2013). Male badgers have a high risk of transmitting the infection to cattle (Nugent et al., 2018). Poor 

sanitation and no isolation of infected cattle from the herd on the farm can lead to exposure of 

Mycobacterium bovis to humans. Out of 10 million incidence cases in humans in 2019, WHO estimated 

0.14 million cases were zoonotic TB caused by Mycobacterium bovis, with 11,400 human deaths (WHO 

Global Tuberculosis Report, 2020; World Organization for Animal Health, 2019). 

 

The immune response generated by cattle against Mycobacterium bovis is similar to the human 

immune response against Mycobacterium tuberculosis because of the similarity of the mammalian 

immune system and cells. In cattle, a primary infection results in a lesion in the nasopharynx and upper 

parts of the lungs (Cousins, 2001). The alveolar macrophage is the primary host for intracellular growth 

of Mycobacterium bovis and performs phagocytosis. In phagocytosis, the alveolar macrophage ingests 

Mycobacterium bovis forming a phagosome, which later, together with a lysosome, forms a 

phagolysosome complex. The formation of phagolysosome causes the breakdown of Mycobacterium 

bovis into smaller fragments with the help of hydrolytic enzymes present in the lysosome. In the lung, 

alveolar macrophages play a vital role in interacting with innate and acquired immune cells. After an 

initial infection, the alveolar macrophages present the bacterial fragments (antigens) to T-helper cells 

leading to activation of cell-mediated immunity. The release of anti-inflammatory cytokines IL-4, IL-5 

IL-10 and IL-13 by T-helper cells promotes the activation of B-lymphocytes leading to antibody 

production. The B-cells and T-cells surround the site of primary infection and form a mass of tissue 

called a granuloma. 
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In the initial stages of bovine TB infection, cattle are asymptomatic, so it can take a few months to 

years for any sign or symptom to be observed. As the infection progresses, the infected animal shows 

clinical signs that include weakness, fluctuating fevers, prominent lymph nodes, a moist cough with 

increased breathing rate, loss of weight, emaciation, diarrhoea and induration of the udder. The 

standard approaches for diagnosing bovine tuberculosis include skin testing, microscopic examination, 

culturing of bacteria and the nucleic acid recognition method (Kuria, 2019). Microscopic analysis of 

bovine bacteria obtained from clinical samples is performed by staining direct smears using the Ziehl-

Neelsen stain. Definitive diagnosis of Mycobacterium bovis is made by culturing bacteria in the 

laboratory for at least eight weeks. A tuberculin skin test is the primary screening test for diagnosing 

TB in cattle. A small amount of a purified-protein derivative is injected into the skin to measure the 

adaptive immune response in the tuberculin test. Polymerase chain reaction (PCR) assays confirm 

infections in cattle by comparing interferon-gamma levels in blood samples. 

5.2 Control measures for eradicating bovine TB 

The techniques involved in controlling bovine tuberculosis in wildlife are restricted. The isolation of 

infected animals is not an option in hugely populated or low-income countries. Pasteurisation of milk 

is not compulsory in India. Thus, bovine TB in cattle also impacts human health. It is also important to 

remember that getting infected from eating meat of the infected animal is less likely, but the risk is 

still there. In New Zealand, possums serve as the significant wildlife reservoir for Mycobacterium bovis 

infection and, since 1994, there has been a marked increase in the implementation of possum poisons 

(Corner & Norton, 2003). This resulted in a 70% reduction in the prevalence of Mycobacterium bovis-

infected cattle herds from June 1994 to June 2001. Animal test-and-slaughter schemes implemented 

in several countries have successfully reduced the prevalence of bovine tuberculosis. Still, such 

expensive control programmes have raised economic burdens and increasing opposition by the 

farmers (Bennett, 2009; Torgerson & Torgerson, 2010). 

 

Currently, there is no effective treatment available for bovine TB due to its infectious nature and drug 

resistance of Mycobacterium bovis. The available treatment of bovine TB mainly depends on the health 

status of the infected species. Antibiotic therapy can be used for animal species living in captivity, but 

this is not reliable for herd or free-grazing animals. Mycobacterium bovis is considered naturally 

resistant to pyrazinamidase (first-line TB drug) (Nakajima et al., 2010). First-line human TB drugs for 

treating livestock are also ineffective and costly as the treatment requires six to nine months of daily 

medication. BCG vaccine is another option available for treatment of the disease, but it shows limited 

efficacy in cattle. BCG is prepared from a live-attenuated strain of Mycobacterium bovis. It is produced 

by using living Mycobacterium bovis that has been weakened or attenuated under specific laboratory 
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conditions so, while it cannot cause the disease, it retains the ability to generate an immune response 

within the host. BCG has been around for almost a hundred years and was first used in 1921. 

 

As the lives of humans and animals are interrelated, it is essential to implement specific therapeutic 

measures to reduce the burden of bovine TB in the world. The prevention of bovine TB is a long-term 

goal that can only be accomplished by developing more effective therapeutics against Mycobacterium 

bovis. Our study aims to identify potential vaccine and drug targets for bovine TB treatment using a 

number of bioinformatics approaches. The current explosion in bioinformatics has revolutionized the 

field of vaccine and drug development and will provide new tools that facilitate identification of 

potential vaccine and drug targets without the need to culture the pathogens in the laboratory. 

Information about the genome, transcriptome or proteome of Mycobacterium bovis can help in the 

identification of novel therapeutic candidates.  

 

Vaccination is still a promising strategy to protect livestock and reduce the incidence rate of bovine TB. 

The goal of vaccinating cattle against tuberculosis is to prevent the establishment of the infection in 

these animals. Interest in the development and use of TB vaccines for cattle can be rekindled with an 

improved understanding of the protective immunity against TB. The development of a new vaccine 

against bovine TB is considered as a control option to address two important issues: preventing the 

establishment of the disease, and the elimination of zoonotic bovine TB. The goal of our study is to 

design an improved vaccine that can provide protection against bovine TB disease. Generating 

effective memory cells against bovine TB would be a crucial step towards tackling the disease 

worldwide.  Epitope-based vaccine is a powerful strategy for this.  The development of epitope-based 

bovine TB vaccine containing B-cell and T-cell (MHC-I and MHC-II restricted) epitopes could elicit a 

humoral and cell-mediated immune response. For designing an epitope-based bovine TB vaccine, we 

used the method developed in chapter-4. Section 5.3.1 provides the details of the method’s application 

for Mycobacterium bovis. 

 

For identifying the therapeutic drug candidates for bovine TB treatment, we developed a new 

bioinformatics approach to answer pathogenicity and drug resistance against bovine TB. The 

emergence of antimicrobial resistance (AMR) has reduced the efficacy of antibiotics in treating 

diseases. To overcome the AMR issue, we used an approach that identifies conserved and pathogenic 

drug targets to design better drug therapeutics against bovine TB. Various bioinformatics approaches 

can be used for examining the proteome of Mycobacterium bovis to identify potential drug targets 

that can facilitate drug development for bovine TB treatment. A subtractive proteomic approach was 

used to determine the conserved, essential, antigenic and druggable targets having unique metabolic 

pathways in Mycobacterium bovis (Figure 5.1). The detailed methods for vaccine development and 
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drug target identification are explained in section 5.3.1 and 5.3.2, respectively. The strategy developed 

for identifying drug targets is generic and can be used for other zoonotic infectious diseases.  

5.3 Method for identifying potential therapeutic bovine TB vaccine and drug 
candidates 

5.3.1 Epitope-based bovine TB vaccine design and development 

This study designed an epitope-based bovine TB vaccine to stimulate a specific and swift humoral and 

cell-mediated immune response. For this, we used the conceptual framework developed in chapter-4. 

This section of the chapter briefly describes the step-by-step approach for designing a bovine TB 

vaccine. We used several bioinformatics tools to identify ideal vaccine candidates by directly analysing 

the proteome of the Mycobacterium bovis strain.  

5.3.1.1 Subtractive reverse vaccinology analysis  

Our study used 11 strains of Mycobacterium bovis to identify the conserved antigenic vaccine targets 

to solve antigen variability, drug resistance, and to provide a broad coverage. Reverse vaccinology was 

used to determine the outer-membrane antigenic and non-allergenic proteins with unique 

characteristics, such as, signal peptides, membrane-spanning regions, lipoprotein signatures and 

adhesion probability, from the proteome of Mycobacterium bovis. These antigenic proteins would help 

in developing a vaccine for bovine TB.  

 

The proteome of the completely sequenced 11 strains of Mycobacterium bovis was downloaded in 

FASTA format via the NCBI Genome FTP site. Blank spaces and unwanted information were removed 

and multi-line protein sequences were converted into single line FASTA format. Standalone BLAST 

(Altschul 1997; Altschul et al., 1990) was downloaded from the NCBI FTP site for performing a 

homology search. Mycobacterium bovis AF2122/97 was used as a reference proteome to identify 

conserved proteins with more than 99% sequence similarity across all 11 strains. The conserved 

protein sequences identified were selected for analysis using reverse vaccinology. 

 

The outer membrane and extracellular space of Mycobacterium bovis consist of some essential 

secretory and lipoproteins that help in the translocation of proteins across the cytoplasmic membrane. 

The proteins present in the cell membrane and extracellular space were predicted using six SCL 

predicting tools: PSORTb v.3.0 (Yu et al., 2010), CELLO (Yu et al., 2006), LocTree3 (Goldberg et al., 2014), 

SOSUI (Imai et al., 2008), pLoc_bal-mGpos (Xiao et al., 2019) and GramLocEN (Wan et al., 2017). Those 

selected were analysed for the presence of a transmembrane-helix. Proteins having a single 

transmembrane helix were chosen for designing a bovine TB vaccine. TMHMM server was used to 

predict transmembrane regions and their orientation (Krogh et al., 2001). Next, we used SignalP 4.1 



 155 

(Petersen et al., 2011) and SecretomeP (Bendtsen et al., 2005) to predict secretory proteins. PRED-TAT 

(Bagos et al., 2010) was used for identifying TAT-signal peptides and lipoproteins were identified using 

PRED-LIPO (Bagos et al., 2008). 

 

The development of a vaccine for bovine TB requires identifying an antigenic protein that can stimulate 

a precise immune response in the host. VaxiJen (Doytchinova & Flower, 2007), VirulentPred (Garg & 

Gupta, 2008) and MP3 (Gupta et al., 2014) tools were used for determining the antigenicity of the 

selected proteins. The proteins predicted antigenic by all three methods were chosen for further 

analysis. Algpred (Saha & Raghava, 2006a) was then used to determine the allergenic nature of the 

selected antigenic proteins. Non-allergenic proteins were chosen. The adhesin proteins of 

mycobacteria help in its attachment to host cell-surface receptors. The adhesion probability was 

predicted with the help of SPAAN (Sachdeva et al., 2005). The proteins with a probability score of 0.5 

or above were selected for further analysis. For predicting homology, BLASTp was used for identifying 

homologous proteins between cattle and Mycobacterium bovis. Proteins with a sequence identity of 

30% or more and a bit score of more than 100 should be eliminated. The homologous proteins that 

could cause autoimmunity or any hypersensitive reactions in the host were excluded from the study.  

5.3.1.2 Prediction of B-cell and T-cell epitopes 

The antigens identified using the reverse vaccinology approach were further analysed for predicting 

potential B-cell and T-cell epitopes for developing an effective vaccine against bovine tuberculosis. 

5.3.1.2.1 B-cell epitope prediction 

B-cell epitopes play a vital role in initiating the humoral immune response. ABCpred was used for the 

prediction of the B-cell epitopes. ABCpred uses a recurrent neural network for B-cell epitope prediction 

(Saha & Raghava, 2006b). The length of B-cell epitopes was set to 20 amino acid residues 

5.3.1.2.2 T-cell epitope prediction 

MHC molecules are an important class of proteins present on the surface of antigen-presenting cells. 

The function of the MHC molecules is to present the fragmented or processed antigen to the 

appropriate T-cell (HTL or CTL) of the immune system. This initiates the cell-mediated immune 

response and secretion of the cytokines to eliminate the infection from the host.  

(i) Prediction of MHC-I binding T-cell (cytotoxic-T cell) epitopes 

MHC class I molecules are present on the surface of all nucleated cells in the host body. The MHC class 

I molecules present the epitope to cytotoxic T-lymphocytes (CTL). The selection of epitopes that bind 

strongly to MHC-I is the most crucial step in the vaccine design process. It helps to predict the most 

antigenic and immunodominant epitopes required for initiating the immune response. To predict 
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MHC-I restricted T-cell epitopes, we used the following bovine MHC-I HLA alleles: BoLA-D18.4, BoLA-

AW10, BoLA-JSP.1, BoLA-HD6, BoLA-T2a, BoLA-T2b and BoLA-T2c. We used two methods in this step: 

IEDB MHC I (Zhang et al., 2008) and NetMHCpan 4.1 server (Reynisson et al., 2020). In the IEDB MHC I 

method, the prediction was made using an artificial neural network for determining the binding affinity 

of epitopes with bovine HLA alleles. Nine-mer epitopes with a percentile rank lower than 1.0 were 

chosen. The lower value of percentile rank indicates a higher affinity of epitope towards the MHC 

molecule. The NetMHCpan 4.1 server predicts the peptides binding to MHC class-I molecule. The 

method uses an artificial neural network trained with 201 different MHC alleles of humans, mice, 

cattle, primates and swine. The technique has shown a strong preference for the 9-mer peptide 

(Reynisson et al., 2020). 

(ii) MHC-II binding T-cell (helper-T cell) epitope prediction 

MHC class-II molecules are present on the surface of antigen-presenting cells, such as macrophages 

and dendritic cells. The primary function of MHC-II is to present antigens to the naïve T-helper cells. 

This interaction leads to the release of cytokines that help develop naïve-T- helper cells into effector 

T-cells or memory T-cells. The method used for the prediction of HTL epitopes was the IEDB MHC II 

server. This helped predict 15-mer MHC-II epitopes using the consensus prediction method (Wang et 

al., 2010). The HLA alleles of the mouse model were used in this step as no information was available 

for bovine MHC-II molecules. The epitopes with a percentile rank lower than 1.0 were chosen.  

5.3.1.3 Filtering of epitopes  

B-cell and T-cell epitopes were filtered to identify immunodominant epitopes that were antigenic, non-

toxic and non-allergenic. VaxiJen (Doytchinova & Flower, 2007) was used to predict the epitope having 

the potential to initiate an immune response. Epitopes with a VaxiJen score of 0.7 or above were 

selected. Non-toxic epitopes were predicted using the ToxinPred (Gupta et al., 2013). AllerTOP 2.0 

predicts the allergenicity of epitopes based on the physiochemical properties of a protein’s sequence 

(Dimitrov et al., 2014). The allergenic epitopes were excluded from the study. The hydrophilic epitopes 

are present on the surface of the antigenic proteins. The selection of hydrophilic epitopes would help 

in constructing a vaccine that would initiate a quick immune response. The grand average of 

hydropathicity (GRAVY) (Kyte & Doolittle, 1982) was predicted using ProtParam.  

5.3.1.4 Bovine TB vaccine construction using structural vaccinology 

After selecting the immunodominant B-cell and T-cell epitopes from immunoinformatic analysis, 

structural vaccinology was implemented to design a structural model for the bovine TB vaccine and 

analyse its interaction with MHC molecules and the toll-like receptors present in the host (cattle). 
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5.3.1.4.1 Vaccine design 

To design a final bovine TB vaccine sequence from the shortlisted epitopes, we joined the HTL, CTL and 

B-cell epitopes with the help of flexible linker, AAY. An adjuvant 50s ribosomal protein L7/L12 was 

attached using an EAAAK linker at the N-terminal of the bovine TB vaccine protein sequence. 

5.3.1.4.2 Analysis of antigenicity and physiochemical properties 

VaxiJen (Doytchinova & Flower, 2007) was used to predict the antigenicity of the final vaccine 

construct. Algpred, an SVM model, was used for determining the allergenicity of the vaccine protein 

(Saha & Raghava, 2006a). ProtParam was used for computing the various physiochemical properties 

of the final bovine TB vaccine. These properties include molecular weight (MW), an isoelectric point of 

the protein (pI), amino acid composition, extinction coefficient (Gill & von Hippel, 1989), instability 

index (II), estimated half-life (Bachmair et al., 1986), aliphatic index (Ikai, 1980) and the grand average 

of hydropathicity (GRAVY) (Kyte & Doolittle, 1982) 

5.3.1.4.3 Vaccine structural model construction  

Prediction of the secondary structure of the vaccine construct consisting of alpha-helices, beta-sheet 

and coil (Buchan & Jones, 2019) PSIPRED (Buchan & Jones, 2019). The tertiary structure of the final 

bovine TB vaccine construct was generated using RaptorX (Wang et al., 2016). First, RaptorX performed 

a template search based on the similarity of the input sequence and then constructed a good quality 

structural model. The output structural model of the vaccine, given by RaptorX, was further refined 

using GalaxyRefine to minimise any distortions present in the structure (Ko et al., 2012). In our study, 

we used PROCHECK and Verify 3D for structure validation. PROCHECK is a suite of programs used for 

checking the stereochemical quality of the protein modelled. It analyses the overall structural 

geometry and residues using residue geometry (Laskowski et al., 1993). Verify 3D works by 

determining the compatibility of the 3D atomic model with its amino acid sequences by assigning a 

structural class based on location and environment (alpha-helices, beta-sheets, loops) (Colovos & 

Yeates, 1993). If the vaccine structural model had more than 90% residues in the most favoured region, 

it was considered the best quality model and was used for further analysis. 

 

5.3.1.5 Vaccine-TLR docking and dynamics 

Bovine toll-like receptors are present on the surface of antigen-presenting cells (macrophages or 

dendritic cells). TLRs interact with the pathogen/vaccine antigen for initiating the innate immune 

response. The structures of bovine TLRs were not present in the PDB database. The protein sequence 

of bovine used for structure construction was Q95LA9, Q9GL65 and B5T278 for TLR-2, TLR-4 and TLR-

6. I-TASSER server was used for generating the 3D structure of TLRs. I-TASSER is an online platform for 
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automated protein structure predictions from amino acid sequences. The I-TASSER suite pipeline 

consists of four essential steps (Yang et al., 2015): 

 Threading template prediction: after submission of the query sequence, template proteins of 

similar folds are retrieved from the PDB library by LOMETS (local meta threading server)  

 Iterative Monte-Carlo simulation for structural assembly: continuous fragments expunged 

from the PDB templates are assembled into full-length models using Monte Carlo simulations 

and loops are constructed using ab initio structure modelling. 

 Selection of model and refinement: simulation is performed to remove steric clashes between 

atoms of the amino acid residues. The global topology of the constructed model is improved 

and the final structures built by optimising the hydrogen bonds.  

 Function annotation: function is inferred by comparing the structural models with known 

proteins. 

The final output of I-TASSER includes top ten structural models for bovine TLR along with top ten 

alignments and top ten PDB structures that are used in model building and are the closest to the 

modelled structure. 

 

For performing molecular docking analysis, the PatchDock (Schneidman-Duhovny et al., 2005) and 

FireDock (Mashiach et al., 2008) servers were used. The PatchDock server computes the docking 

transformations of the receptors and ligands based on their molecular shape complementarity. The 

results of PatchDock were then presented to FireDock for further refinement of the docking results 

and predicting the global binding energy of receptor (TLR) and ligand (bovine vaccine).  
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5.3.2 Drug target identification of Mycobacterium bovis using subtractive proteomic 
analysis 

 

Figure 5. 1: Comprehensive subtractive proteomic analysis for the identification of potential drug 
targets in Mycobacterium bovis  

 

5.3.2.1 Exclusion of proteins homologous with the host proteome 

The conserved proteins identified by subtractive reverse vaccinology analysis, present among 11 

strains of Mycobacterium bovis, were first tested for homology with the host proteome. The drugs 

targeting homologous proteins may cause side effects or hypersensitive reactions in the host. To 

identify homologous proteins between Mycobacterium bovis and the host (cattle), BLASTp was used 

(Boratyn et al., 2013). BLASTp was performed using a non-redundant protein sequence database with 

a threshold E-value of e10-4. Bos (taxid:9903), Bos tauurus (taxid:9913) and Bos indicus (taxid:9915) 

were used as reference organisms for performing sequence similarity. BLASTp performs local sequence 

alignment and measures sequence similarities based on maximum segment pairs (MSP) (Altschul et 

al., 1990). The results of BLASTp consist of homologous and non-homologous sequences. The proteins 

with sequence identity and a bit score of more than 30% and 100, respectively, were excluded from 

the study. 
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5.3.2.2 Eliminating proteins involved in common metabolic pathways with the host 

Comparative metabolic pathway analysis was carried out to identify proteins involved in metabolic 

pathways common in cattle and Mycobacterium bovis. The Kyoto Encyclopaedia of Gene and Genome 

(KEGG) (Kanehisa et al., 2017) was used for performing this step. A manual comparison was made and 

the proteins involved in the common pathways were removed. 

5.3.2.3 Unique metabolic pathway analysis 

For the treatment of infectious disease, a drug target should be uniquely present in the pathogen. The 

selection of proteins involved in the specific pathways of Mycobacterium bovis was made using KEGG 

automatic annotation server (KAAS) (Moriya et al., 2007). BLAST was selected for performing the 

search in KAAS. Mycobacterium bovis AF2122/97 was chosen as a reference from the organism list. A 

manual search was carried out to choose proteins unique to the Mycobacterium bovis AF2122/97 

strain, while the remaining proteins were excluded from the study. 

5.3.2.4 Retrieval of the essential proteins of Mycobacterium bovis 

In this step, we identified proteins that played a vital role in biological processes and functions, such 

as physiology, metabolism and developmental processes within Mycobacterium bovis. These proteins 

help in the regular functioning and survival of the disease-causing Mycobacterium bovis. For the 

identification of essential proteins, we used the Database of Essential Genes (DEG). The database 

contains information about essential genes and their proteins obtained from different experimental 

methods (Zhang, 2004). For a query sequence, a similarity search was performed against the essential 

proteins present in DEG with the help of BLASTp. The parameters for the search were set as:  

 e-value 10-50 

 sequence identity more than 30% 

 bit score >100 

 query coverage 100% 

5.3.2.5 Prediction of the role of proteins in virulence  

 

The proteome of Mycobacterium bovis consists of proteins involved in virulence, the progression of 

bovine TB and escaping the host’s immune response (Garnier et al., 2003). Virulent proteins play a 

crucial role in infectious pathways, such as adherence, colonisation, invasion, and help in escaping 

from the host's immune response. Drugs targeting the virulent pathway of the pathogen would surely 

help in eliminating the disease from the host body. Thus, there is a need to identify proteins that play 

a major role in causing the infection in the host cell. We used two tools for predicting virulent proteins: 

VirulentPred that is an SVM-based method (Garg & Gupta, 2008) and MP3 tool that uses SVM and 
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HMM (Gupta et al., 2014). Proteins predicted virulent by both methods were selected for further 

analysis. 

5.3.2.6 Codon adaptation index 

The codon adaptation index (CAI) is a measure of synonymous codon usage bias (Puigbò et al., 2008). 

CAI predicts the translational efficiency and level of expression of a gene. The EMBOSS server was used 

to calculate the codon adaptation index for predicting the expression level of the selected gene targets 

of Mycobacterium bovis inside the host body. Proteins that are highly expressed are considered 

potential drug targets. To calculate CAI, the nucleotide sequences of the selected proteins were 

obtained from the NCBI Gene database. The gene sequences were then submitted to EMBOSS server 

for predicting the CAI of each gene. The genes with a CAI score of more than 0.7 were selected for 

further analysis. 

5.3.2.7 Analysis of physiochemical properties of selected drug targets 

ProtParam was used for computing various physiochemical properties of the selected drug targets in 

Mycobacterium bovis. The properties include molecular weight (MW), an isoelectric point of a protein 

(pI), amino acid composition, extinction coefficient (Gill & von Hippel, 1989), instability index (II), 

estimated half-life (Bachmair et al., 1986), aliphatic index (Ikai, 1980) and the grand average of 

hydropathicity (GRAVY) (Kyte & Doolittle, 1982). A potential drug target protein should have a 

molecular weight lower than 100 kDa. Isoelectric point is the pH of the solution at which the net 

electrical charge of the protein becomes zero (Pergande & Cologna, 2017). The instability index 

determines the stable nature of the protein in a laboratory test tube. A protein with an instability index 

of lower than 40 is considered as potential drug target. The extinction coefficient predicts the 

absorption of light at a particular wavelength by the target protein and helps in determining the 

protein concentration. The GRAVY score determines the hydrophilic or hydrophobic nature of a 

protein. 

5.3.2.8 Structural homology analysis 

The selected proteins were then analysed for the availability of their crystallographic X-ray structure 

in the PDB database. For this, BLASTp was performed using a PDB database with a threshold E-value 

of e10-6. The results of BLASTp consist of homologous and non-homologous sequences. The proteins 

with sequence identity and a bit score of more than 30% and 100, respectively, were selected in the 

study. The proteins with no template structure available for generating the 3D structural model were 

eliminated. 
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5.3.2.9 Prediction of druggability potency of the selected proteins 

Druggability is defined as the ability of a protein to bind to a drug molecule. The druggability of the 

selected proteins was predicted by performing a sequence similarity search in the DrugBank database. 

DrugBank is a trustworthy database providing information on the available drugs and their drug targets 

(Knox et al., 2011). DrugBank currently contains information on 9591 drugs with 2037 FDA approved 

drugs (Food and Drug Administration). Over 6000 experimental drug entries are present in DrugBank. 

The e-value for the similarity search was set to 10-20. The drug target proteins for whom homologous 

proteins are present in the DrugBank database are druggable proteins. The protein with no hits found 

against any protein sequence is termed a novel drug target. 

5.4 Results 

5.4.1 Developing an epitope-based bovine TB vaccine 

Bovine TB is a chronic infectious disease caused by the etiological agent, Mycobacterium bovis. Cattle 

are considered the main reservoir of bovine TB compared to other domestic livestock. Isolating the 

infected animal and slaughtering are performed for reducing transmission among other animals in the 

herd. The use of BCG has not provided a sufficient level of protection. Several attempts have been 

made to develop a live-attenuated or heat-killed vaccine against bovine TB in cattle, (Buddle, 2010; 

Buddle et al., 2018; Palmer & Thacker, 2018; Parlane & Buddle, 2015)r, 2018; Parlane & Buddle, 2015). 

As described in the previous section, in this study, we used the conceptual framework developed in 

chapter-4 for designing an epitope-based bovine TB vaccine containing B-cell and T-cell (HTL and CTL) 

epitopes that could elicit a humoral and cell-mediated immune response. This section describes the 

results of the holistic framework tested for bovine TB using several bioinformatics tools. 

5.4.1.1 Identification of nine conserved antigens through the subtractive reverse 
vaccinology approach 

Developing a vaccine providing a broad spectrum of protection against many Mycobacterium bovis 

strains and also combating drug resistance required the identification of conserved proteins within 

different strains of bovine TB bacteria. In this study, we used Mycobacterium bovis AF2122/97 as a 

reference strain with 3988 proteins present in its proteome. First, we downloaded complete proteome 

sequences of 11 strains of Mycobacterium bovis that have been completely sequenced using the NCBI 

Genome FTP site. A standalone BLAST was then used for a proteome comparison of 11 strains and the 

results were stored in Excel files. Manual comparison of the results revealed that 1163 proteins were 

conserved with more than 99% sequence similarity and 100% query coverage among the 11 strains of 

Mycobacterium bovis. 
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To develop an effective bovine TB vaccine, we used a subtractive reverse vaccinology approach to 

identify conserved, surface-exposed antigenic proteins with critical functional characteristics, such as 

signal peptides and membrane-spanning regions, non-homologous, lipoprotein signatures, adhesion 

probability and non-toxic from the proteome of Mycobacterium bovis AF2122/97. First, we predicted 

the localization of each conserved protein and selected proteins present in the cell membrane, cell 

walls and extracellular spaces of Mycobacterium bovis. As we know, the proteins present in the cell 

membrane, cell wall, and extracellular space are involved in membrane integrity and permeability, 

efflux mechanisms, and active transport of molecules; thus, they were considered suitable candidates 

for vaccine development. For subcellular localization prediction, we used six bioinformatics tools 

PSORTb v.3.0, CELLO, LocTree3, SOSUI, pLoc_bal-mGpos and GramLocEN. Of the 1163 conserved 

proteins, 273 proteins, commonly predicted by more than four SCL tools, were selected for further 

analysis. In the next step, proteins having more than one transmembrane α-helix were excluded from 

the study, as they were challenging to clone and purify in the laboratory. Then, using the TMHMM 

server, we shortlisted 142 proteins with 0 or 1 transmembrane α-helix.  

 

The presence of signal peptides and a lipoprotein signature within a protein makes it a vital antigenic 

and immunogenic vaccine target. The Sec (secretory) and TAT signal peptides are ubiquitous protein-

sorting signals that help in the translocation of a protein across the cell membrane in Mycobacterium 

bovis. For the prediction of secretory signal peptides, the SecretomeP and SignalP 4.1 servers were 

used. A total of 43 conserved and surface-exposed proteins showed the presence of Sec signal 

peptides. Next, PRED-TAT was used to identify tat signal peptides and 12 proteins were found to be 

involved in the TAT pathway. Thus, out of 142 proteins, 55 proteins (Sec and TAT proteins) were 

engaged in the secretory pathway of Mycobacterium bovis. Lipoproteins, which are essential sets of 

membrane proteins performing important functions in Mycobacterium bovis, were predicted using 

PRED-LIPO. Twenty-eight lipoproteins were identified from 142 proteins. Thus, we selected a total of 

83 proteins (55 secretory proteins and 28 lipoproteins) for further analysis. 

 

A protein that can activate an immune response against pathogenic bacteria without causing 

considerable side effects inside the host body is considered a potential vaccine target. The VaxiJen, 

VirulentPred and MP3 servers were used for determining the antigenicity of 83 proteins. Concordance 

analysis of the three antigen servers identified 21 highly antigenic proteins that can initiate a strong 

immune response with or without side effects. Thus, we identified the allergenic nature of the selected 

antigens. Algpred was used to predict the allergenic or non-allergenic proteins. From 21 antigenic 

proteins, 18 proteins were found to be non-allergenic. These 18 conserved, surface-exposed, antigenic 

and non-allergenic proteins were further analysed for adhesion probability. Adhesin proteins help the 

attachment of Mycobacterium bovis to the host’s cell-surface receptors. Hence, we used SPAAN to 
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identify adhesin proteins among the shortlisted proteins. Of the 18 proteins, only nine proteins had a 

strong adhesion probability score of a 0.5 or above. 

 

The last step of subtractive reverse vaccinology involves a study of the homology between the host 

(cattle) and Mycobacterium bovis. Homologous proteins can initiate hypersensitive reactions inside 

the host body, causing severe health problems or side effects. For homology analysis, BLASTp was used 

for determining sequence similarity among host and pathogen. We used Bos tauurus (taxid:9913) and 

Bos indicus (taxid:9915) as reference organisms for performing sequence similarity. We found no 

similarity among the nine proteins of Mycobacterium bovis and cattle. Finally, a total of nine 

conserved, membrane-spanning, antigenic and non-allergic proteins were selected with the help of a 

reverse vaccinology approach from the proteome of Mycobacterium bovis, as shown in Table 5.1. 

Table 5. 1: List of nine conserved, surface-exposed, antigenic and non-allergic proteins identified by 
reverse vaccinology approach. Column 1- accession number of protein, column 2- the 
function of protein, columns 3-10 show the results of the reverse vaccinology process 
for the shortlisted proteins 

 
Accession 
number 

Function Prediction of 
signal peptide 

TMHMM MP3 VirulentPre
d 

VaxiJen VaxiJe
n 
Score 

AlgPred Adhesion 
probabilit
y 

YP_009357464.
1 

SECRETED 
ANTIGEN 85-C 
FBPC (85C) 
(ANTIGEN 85 
COMPLEX C) 
(AG58C) 
(MYCOLYL 
TRANSFERASE 
85C) 
(FIBRONECTIN-
BINDING PROTEIN 
C) 

 Tat signal peptide 
predicted 

Pred 
Helix=1 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.4402 Non-
allerge
n 

0.812 

YP_009358272.
1 

ppe family 
protein ppe14 

 Sec signal 
peptide predicted 

Pred 
Helix=0 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.6802 Non-
allerge
n 

0.592 

YP_009359011.
1 

pe family protein 
pe17 

 Sec signal 
peptide predicted 

Pred 
Helix=0 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.4152 Non-
allerge
n 

0.78 

YP_009359070.
1 

ppe family 
protein ppe23 

 Sec signal 
peptide predicted 

Pred 
Helix=0 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.4637 Non-
allerge
n 

0.752 

YP_009361194.
1 

SECRETED 
MPT51/MPB51 
ANTIGEN 
PROTEIN FBPD 
(MPT51/MPB51 
ANTIGEN 85 
COMPLEX C) 
(AG58C) 
(MYCOLYL 
TRANSFERASE 
85C) 
(FIBRONECTIN-
BINDING PROTEIN 
C) (85C) 

 Sec signal 
peptide predicted 

Pred 
Helix=1 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.4515 Non-
allerge
n 

0.747 

YP_009361195.
1 

SECRETED 
ANTIGEN 85-A 
FBPA (MYCOLYL 
TRANSFERASE 
85A) 
(FIBRONECTIN-
BINDING PROTEIN 
A) (ANTIGEN 85 
COMPLEX A) 

 Tat signal peptide 
predicted 

Pred 
Helix=1 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.5259 Non-
allerge
n 

0.77 
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YP_009358321.
1 

POSSIBLE 
LIPOPROTEIN 
LPRP 

Lipoprotein Pred 
Helix=0 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.5052 Non-
allerge
n 

0.598 

YP_009358349.
1 

POSSIBLE 
CONSERVED 
EXPORTED 
PROTEIN 

 Sec signal 
peptide predicted 

Pred 
Helix=1 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.5621 Non-
allerge
n 

0.757 

YP_009361095.
1 

CONSERVED 
HYPOTHETICAL 
PROTEIN 

 Sec signal 
peptide predicted 

Pred 
Helix=0 

Pathogeni
c 

Virulent Probabl
e 
Antigen 

0.4189 Non-
allerge
n 

0.619 

 

5.4.1.2 Prediction of B-cell and T-cell epitopes from the nine conserved antigens using an 
immunoinformatics approach 

An ideal prophylactic bovine TB vaccine should stimulate a robust immune response by the generation 

of memory cells to eliminate an infection in the future. For this, there is a need to identify 

immunodominant B-cell and T-cell epitopes that would initiate humoral and cellular immunity inside 

the host. Hence, we performed immunoinformatic analysis for screening the effective B-cell and T-cell 

epitopes required for designing an epitope-based bovine TB vaccine. 

5.4.1.2.1 Prediction of B-cell epitopes 

B-cell epitopes help in generating a humoral or antibody-mediated immune response in the host’s 

body. We used ABCpred for identifying B-cell epitopes from the nine antigenic proteins of 

Mycobacterium bovis. The length of the B-cell epitope was set to 20 amino acid residues. A total of 251 

B-cell epitopes were found from the nine antigenic proteins. Table 5.2 provides the results of 

immunoinformatics analysis performed on these nine bovine TB antigens. The second column of Table 

5.2 shows the B-cell epitopes predicted for each bovine TB antigenic protein.  

Table 5. 2: Results of immunoinformatics analysis for predicting B-cell epitopes. Columns 2, 3, 4 and 
5 show the results for each step performed for filtering the immunodominant B-cell 
epitopes from the nine Mycobacterium bovis antigenic proteins 

 
Accession number B-cell 

epitopes 
predicted 

Antigenic & 
non-toxic 

Non-
allergenic 

Hydrophilicity 

YP_009357464.1 31 11 9 3 

YP_009358272.1 34 12 10 2 

YP_009359011.1 25 4 2 0 

YP_009359070.1 29 5 1 0 

YP_009361194.1 23 8 8 1 

YP_009361195.1 31 13 12 4 

YP_009358321.1 16 3 3 3 

YP_009358349.1 34 15 11 1 

YP_009361095.1 28 9 4 2 
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First, the immunogenic nature of B-cell epitopes was identified using the VaxiJen server and ToxinPred. 

For investigating safe and immunodominant epitopes, a filtering process was performed on the 251 B-

cell epitopes. Of the 251 epitopes, 80 B-cell epitopes were found to be antigenic and non-toxic. Next, 

the identification of non-allergenic epitopes was performed with the help of the ALLERTOP 2.0 server. 

A total of 60 non-allergenic epitopes were shortlisted for further analysis of their hydrophilicity. The 

hydrophilic residues present on the surface of antigenic proteins facilitate quick interactions with the 

host’s immune cells. The GRAVY score was calculated using the ProtParam server. In the ProtParam 

analysis, we discovered 16 B-cell epitopes with negative GRAVY scores. No potential B-cell epitopes 

were found in the YP_009359011.1 and YP_009359070.1 proteins. After finishing the 

immunoinformatics analysis, a total of 16 B-cell epitopes were selected for the construction of the 

bovine TB vaccine (Table 5.3). 

Table 5. 3: Shortlist of 16 B-cell epitopes from Mycobacterium bovis antigens required for 
constructing an epitope-based vaccine for bovine tuberculosis 

 

1. YP_009357464.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

83 103 LDGLRAQDDYNGWDINTPAF Antigen 1.0794 Non-
allergenic 

Non-
toxin 

-0.79 

275 295 GLTLRTNQTFRDTYAADGGR Antigen 1.132 Non-
allergenic 

Non-
toxin 

-0.94 

287 307 TYAADGGRNGVFNFPPNGTH Antigen 0.7017 Non-
allergenic 

Non-
toxin 

-0.79 

2. YP_009358272.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

285 305 GNAGGLGPTQGHPLSSATDE Antigen 1.064 Non-
allergenic 

Non-
toxicity 

-0.71 

381 401 LAARGTTGGGGTRSGTSTDG Antigen 3.0539 Non-
allergenic 

Non-
toxicity 

-0.65 

5. YP_009361194.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

131 151 NRGLAPGGHAAVGAAQGGY
G 

Antigen 0.8762 Non-
allergenic 

Non-
toxin 

-0.17 

6. YP_009361195.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

64 84 DIKVQFQSGGANSPALYLLD Antigen 1.3288 Non-
allergenic 

Non-
toxin 

-0.01 

114 134 PVGGQSSFYSDWYQPACGKA Antigen 0.7002 Non-
allergenic 

Non-
toxin 

-0.58 

281 301 IKFQDAYNAGGGHNGVFDFP Antigen 1.3875 Non-
allergenic 

Non-
toxin 

-0.42 

311 331 GAQLNAMKPDLQRALGATPN Antigen 0.7957 Non-
allergenic 

Non-
toxin 

-0.505 
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7. YP_009358321.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

156 176 SQIRDDGVTINLVNGDNRGP Antigen 0.8999 Non-
allergenic 

Non-
toxin 

-0.83 

181 201 NTGCHLPAAWRTAPPPLNMR Antigen 0.7017 Non-
allergenic 

Non-
toxin 

-0.545 

194 214 PPPLNMRPANDPDVHYPYLY Antigen 1.3269 Non-
allergenic 

Non-
toxin 

-0.985 

8. YP_009358349.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

316 336 DQSGATYPIAWEIEIERIGL Antigen 1.2462 Non-
allergenic 

Non-
toxin 

-0.135 

9. YP_009361095.1 

Start End Sequence VaxiJen VaxiJen score ALLERTO
P 2.0 

ToxinPre
d 

GRAVY 

223 243 GEMSIRQIDGQTVLSYFNAS Antigen 0.7201 Non-
allergenic 

Non-
toxin 

-0.185 

305 325 IFVSQWDTRARQNGPYRVIQ Antigen 0.7626 Non-
allergenic 

Non-
toxin 

-0.735 

 
 

5.4.1.2.2 Prediction of MHC-I restricted (CTL) T-cell epitopes 

 

The antigens of Mycobacterium bovis are engulfed by the antigen-presenting cells and then 

fragmented into smaller antigenic peptides called epitopes. These epitopes are later presented to T-

cell receptors (TCR) present on the surface of T-cells through cell-surface attached MHC molecules. 

The epitopes binding to MHC-I molecules are termed cytotoxic T-cell (CTL) epitopes, or MHC-I 

restricted T-cell epitopes and play an essential role in cellular immunity. In our study, the length of CTL 

epitopes was set to nine amino acid residues long. For predicting MHC-I restricted T-cell epitopes, we 

used the following bovine MHC-I HLA alleles: BoLA-D18.4, BoLA-AW10, BoLA-JSP.1, BoLA-HD6, BoLA-

T2a, BoLA-T2b and BoLA-T2c. 

 

IEDB MHC-I and the NetMHCpan 4.1 server were used for predicting CTL epitopes. We identified a 

total of 140 CTL epitopes from nine Mycobacterium bovis antigens. Of the 140 epitopes, 78 CTL 

epitopes were found to be commonly predicted by both servers. Table 5.4 shows the total predicted 

CTL epitopes and those common to both servers (first and second columns) and epitopes filtered in 

subsequent steps for each Mycobacterium bovis membrane-localized antigen. 
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Table 5. 4: Results of immunoinformatics analysis for predicting CTL epitopes. Columns 2, 3, 4, 5 and 
6 show the results for each step performed for filtering the immunodominant CTL 
epitopes from the nine Mycobacterium bovis antigenic proteins 

Accession number Total CTL 
epitopes 
predicted 

CTL epitopes 
(commonly 
predicted by 
IEDB MHC-I 
and 
NetMHCpan 
4.1 server) 

Antigenic 
& non-
toxic 

Non- 
allergenic 

Hydrophilicity 

YP_009357464.1 15 9 2 0 0 

YP_009358272.1 23 16 5 5 1 

YP_009359011.1 13 5 1 0 0 

YP_009359070.1 24 11 4 4 1 

YP_009361194.1 15 9 4 4 2 

YP_009361195.1 13 9 1 1 0 

YP_009358321.1 7 5 2 2 1 

YP_009358349.1 19 8 1 1 0 

YP_009361095.1 11 6 4 4 3 

 
 

To validate the CTL epitopes’ ability to initiate a cellular immune response, antigenicity and toxicity 

analysis was completed using VaxiJen and Toxin Pred. The antigenicity and toxicity scores revealed that 

out of 78 CTL epitopes, only 24 epitopes were highly immunogenic and non-toxic. These 24 epitopes 

were then considered for allergenicity prediction using ALLERTOP 2.0. The three CTL epitopes found 

to cause allergenic reactions inside the host body were excluded from the study. A hydrophilic score 

calculation was then undertaken using the ProtParam server. In our study, we excluded the epitopes 

having positive GRAVY scores. Thus, we had eight CTL epitopes, hydrophilic in nature, and with a 

negative GRAVY score. YP_009357464.1, YP_009359011.1, YP_009361195.1 and YP_009358349.1 

antigens had no potential immunodominant CTL epitopes. Finally, these eight CTL epitopes were 

chosen for constructing an epitope-based TB vaccine (Table 5.5). 
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Table 5. 5: The eight shortlisted CTL epitopes from Mycobacterium bovis antigens required for 
constructing an epitope-based vaccine for bovine tuberculosis 

 

2. YP_009358272.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

14 22 9 RMYSGPGPE Antigenic 1.1523 Non-toxic Non-
allergenic 

-1.356 

         

4. YP_009359070.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

50 58 9 RMYSGPGSG Antigenic 1.582 Non-toxic Non-
allergenic 

-0.922 

         

5. YP_009361194.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

82 90 9 NAMNTLAGK Antigenic 0.7311 Non-toxic Non-
allergenic 

-0.3 

258 266 9 NQYRSVGGH Antigenic 0.9887 Non-toxic Non-
allergenic 

-1.489 

         

7. YP_009358321.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

68 76 9 AMIAKYSPQ Antigenic 0.7577 Non-toxic Non-
allergenic 

-0.122 

         

9. YP_009361095.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

308 316 9 SQWDTRARQ Antigenic 1.2331 Non-toxic Non-
allergenic 

-2.233 

228 236 9 RQIDGQTVL Antigenic 0.9928 Non-toxic Non-
allergenic 

-0.4 

145 153 9 YQDGRQTQI Antigenic 1.826 Non-toxic Non-
allergenic 

-1.822 

 
 

5.4.1.2.3 Prediction of MHC-II restricted (HTL) T-cell epitopes 

MHC class-II molecules present on the surface of the macrophage and dendritic cells present 

antigens/epitopes to the naïve T-helper cells. The epitopes presented by MHC-II molecules are called 

helper T-cell epitopes (HTL epitopes) or MHC-II restricted T-cell epitopes. The interaction of epitopes 

with helper T-cells leads to the activation of cellular immunity with a further release of cytokines to 

eliminate the infection. The IEDB MHC II server was used to predict 15-mer HTL epitopes of 

Mycobacterium bovis using the consensus prediction method. HLA alleles of the mouse model were 

used in this step as no information was available for bovine MHC-II molecules. The lower percentile 

rank indicates a higher affinity of an epitope towards the MHC molecule. Thus, the epitope with 
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percentile ranks lower than 1.0 were chosen. A total of 145 HTL epitopes were predicted from the nine 

antigens of Mycobacterium bovis using the IEDB MHC II server. 

Table 5. 6: Results of immunoinformatics analysis for predicting HTL epitopes. Columns 2, 3, 4 and 5 
show the results for each step performed for filtering the immunodominant HTL 
epitopes from the nine antigenic proteins of Mycobacterium bovis 

Accession 

number 

HTL epitopes 

predicted 

Antigenic & non-toxic Non- allergenic Hydrophilicity 

YP_009357464.1 20 5 1 0 

YP_009358272.1 36 19 12 0 

YP_009359011.1 21 17 8 0 

YP_009359070.1 31 20 15 0 

YP_009361194.1 12 9 7 0 

YP_009361195.1 12 6 5 1 

YP_009358321.1 4 2 2 0 

YP_009358349.1 6 5 2 1 

YP_009361095.1 3 0 0 0 

 

Table 5.6 shows the results of immunoinformatics analysis on the nine antigens of Mycobacterium 

bovis. Columns 3, 4 and 5 of Table 5.6 show the outcome of the antigenicity, toxicity, allergenicity and 

hydrophilicity analysis, respectively. A total of 83 immunogenic and non-toxic HTL epitopes were 

discovered from 145 epitopes with the help of VaxiJen and ToxinPred. The allergenicity of 83 HTL 

epitopes were then predicted using the ALLERTOP 2.0 server. Fifty-two non-allergenic HTL epitopes 

were selected for further analysis. Finally, we had only two HTL epitopes after calculating the 

hydrophilicity of the selected 52 non-allergenic HTL epitopes (Table 5.7).  

 

 

 



 171 

Table 5. 7: Two shortlisted HTL epitopes from Mycobacterium bovis antigens required for 
constructing an epitope-based vaccine for bovine tuberculosis 

 

6. YP_009361195.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

66 80 15 KVQFQSGGANSPALY Antigen 1.1385 Non-toxic Non-
allergenic 

-0.353 

8. YP_009358349.1 

Start End Length Sequence VaxiJen VaxiJen 
score 

ToxinPred ALLERTOP 
2.0 

GRAVY 

16 30 15 TLVAFWWWQRPRTNA Antigen 0.8592 Non-toxic Non-
allergenic 

-0.487 

 

5.4.1.3 Designing the vaccine sequence and an assessment of properties 

After selecting highly immunogenic and excluding cross-reactive epitopes, we had 26 epitopes (HTL 

epitopes-2, CTL epitopes-8 and B-cell epitopes-16) from the nine antigenic proteins of Mycobacterium 

bovis (Table 5.8). The selected epitopes would evoke a potent cellular and humoral immune response 

inside the host body.  

Table 5. 8: Final shortlisted 26 epitopes for bovine TB vaccine construction 

HTL epitopes 

1 KVQFQSGGANSPALY 

2 TLVAFWWWQRPRTNA 

CTL epitopes 

3 RMYSGPGPE 

4 RMYSGPGSG 

5 NAMNTLAGK 

6 NQYRSVGGH 

7 AMIAKYSPQ 

8 SQWDTRARQ 

9 RQIDGQTVL 

10 YQDGRQTQI 

B-cell epitopes 

11 TYAADGGRNGVFNFPPNGTH 

12 GLTLRTNQTFRDTYAADGGR 
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13 LDGLRAQDDYNGWDINTPAF 

14 LAARGTTGGGGTRSGTSTDG 

15 GNAGGLGPTQGHPLSSATDE 

16 NRGLAPGGHAAVGAAQGGYG 

17 GAQLNAMKPDLQRALGATPN 

18 IKFQDAYNAGGGHNGVFDFP 

19 DIKVQFQSGGANSPALYLLD 

20 PVGGQSSFYSDWYQPACGKA 

21 SQIRDDGVTINLVNGDNRGP 

22 PPPLNMRPANDPDVHYPYLY 

23 NTGCHLPAAWRTAPPPLNMR 

24 DQSGATYPIAWEIEIERIGL 

25 IFVSQWDTRARQNGPYRVIQ 

26 GEMSIRQIDGQTVLSYFNAS 

 

The sequence of the bovine TB vaccine was designed using a simple strategy. First, the adjuvant 50s 

ribosomal protein L7/L12 at the N-terminal was added to the vaccine protein sequence with the help 

of the EAAAK linker (Figure 5.10 (ii)). We then joined the HTL, CTL and B-cell epitopes using flexible 

linker AAY. With one adjuvant, one EAAAY linker, 25 AAY linkers and 26 epitopes (HTL epitopes-2, CTL 

epitopes-8 and B-cell epitopes-16), the final length of the bovine TB vaccine sequence was 632 amino 

acid residues. 
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                                                                                         (i) 

 

                                                                                          (ii) 

Figure 5. 2: Epitope-based vaccine sequence construction scheme. (i) Schematic representation of 
bovine TB vaccine construct consisting of B-cell and T-cell epitopes joined together by 
flexible linkers and an adjuvant at N-terminal of the vaccine protein, (ii) TB vaccine 
protein sequence. The adjuvant sequence is highlighted in green with flexible linkers in 
purple (EAAAK) and blue (AAY). HTL epitopes are highlighted in orange, with CTL 
epitopes in black and the B-cell epitopes in brown 

 

After designing the bovine TB vaccine sequence, its antigenicity, allergenicity and physiochemical 

properties were evaluated. The VaxiJen server was used for predicting the antigenicity of the vaccine 

sequence. A high antigenic score of 0.82 showed the great immunogenic potential of the epitope-

based bovine TB vaccine. The AlgPred server indicated that the designed vaccine was non-allergenic 

to the host (cattle). 
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Figure 5. 3: Physiochemical properties of final bovine TB vaccine construct 

 

ProtParam was used for predicting the physiochemical properties of the epitope-based bovine TB 

vaccine sequence designed. The vaccine sequence comprised 632 amino acid residues with a molecular 

weight of 66.85 kDa. The bovine TB vaccine construct comprised 9071 atoms and its molecular formula 

was C2981H4509N823O912S12. The theoretical pI was assessed to be 5.77. The estimated half-life was found 

to be 30 hours in mammalian reticulocytes (in-vitro). The instability index with a value of 32.35 

represented the stable nature of the TB vaccine. The aliphatic index predicted the relative volume 

occupied by aliphatic side chains in a protein. A value for the aliphatic index greater than 30 indicates 

that the protein is thermodynamically stable. The higher the value of the aliphatic index (68.56 in this 

study), the higher the thermos-stability of the protein. The GRAVY score of the vaccine was found to 

be -0.302. The negative value of the estimated GRAVY score indicated the hydrophilic nature of the 

vaccine. After evaluating all the properties, we discovered that the epitope-based bovine TB vaccine 

we designed had all the attributes of a promising prophylactic vaccine candidate required for initiating 

a robust immune response inside the host. 

 

Bovine TB 
vaccine 

construct

Amino acid: 
632

Mol Wt: 
66853.28

Theoretical 
pI: 5.77

Negatively 
charged 

residue: 58

Positively 
charged 

residue:52
Extinction 

coefficient: 
116675

Instability 
index: 32.35

Stability: 
stable

Aliphatic 
index: 68.56

GRAVY: 

-0.302
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5.4.1.4 Constructing the structural model of the epitope-based bovine TB vaccine 

The secondary structure of the bovine TB vaccine was evaluated using PSIPRED. According to PSIPRED, 

239 amino acid residues were involved in forming alpha-helices, constituting 37.82% of the overall 

bovine TB vaccine sequence. Only 99 amino acid residues participated in the formation of beta-strand 

(15.66%), whereas 294 residues formed the coils (46.52%) of the whole epitope-based bovine TB 

vaccine sequence (Figure 5.12). 

 

Figure 5. 4: Secondary structure prediction for the bovine TB vaccine sequence using PSIPRED. The 
sequence comprised alpha-helices (37.82%), beta-strands (15.66%) and coils (46.52%) 
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The RaptorX server was used for constructing a tertiary structure model of the epitope-based bovine 

TB vaccine. It performed homology modelling using 6VHD_A PDB entry as a template for generating a 

structural model. All 632 amino acid residues were modelled with only 8% in the disordered region. 

The constructed model was 39% exposed, 29% medium and 31% buried in folded conformation. Before 

refining the structural model, the Ramachandran plot showed that 85.4% of amino acid residues were 

in the most favoured region. Thus, the refinement of the structural model was undertaken using the 

GalaxyRefine server to improve the quality of the predicted structural model. Figure 5.13 (i) shows the 

3D structural model of the bovine TB vaccine after refining. The refined structural model had 91.1% 

amino acid residues in the most favoured region (Figure 5.13 (ii)). Other parameters evaluated after 

refinement were GDT-HA score of 0.9568, MolProbidity 3.365 and RMSD 0.412. 

 

 

(i) 
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(ii) 

Figure 5. 5: Refined structural model of bovine TB vaccine construct. (i) The 3D structure is coloured 
in rainbow colours, from violet to red (from N-terminus to C-terminus), and (ii) the 
Ramachandran plot of the refined structure showing 91.1% amino acid residues in the 
most favoured region (green crosses) 

 

5.4.1.5 Analysis of the interaction of bovine TB vaccine and toll-like receptors 

TLRs interact with the pathogen/vaccine antigen for initiating the innate immune response. The stable 

interaction of a vaccine with receptors of host immune cells activates the immune system. For 

determining the ability of the designed bovine TB vaccine in generating an immune response, 

molecular docking analysis was performed. First, the structures of the bovine TLRs were constructed 

using the I-TASSER server (Figure 5.13). The protein sequences used for structure construction were 

Q95LA9, Q9GL65 and B5T278 for TLR-2, TLR-4 and TLR-6. 
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(i) 

 

 

(ii) 
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(iii) 

 

Figure 5. 6: Refined structural model of toll-like receptors of cattle. (i) TLR-2, (ii) TLR-4, and (iii) TLR-
6. The 3D structure is in rainbow colours from violet to red (from the N-terminus to the 
C-terminus) 

 

After the construction of the TLRs, PatchDock and FireDock were used to analyse the interactions 

between the bovine TB vaccine construct and the TLRs of cattle. The output of the PatchDock docking 

process displayed several docked transformations, which were further presented to FireDock for 

calculation of the global binding energy. PatchDock found 1455 docked transformations for TLR-2 and 

the bovine TB vaccine docked complex (Table 5.9). The lowest binding energy of -55.15 kcal/mol was 

predicted for the 433rd transformation of the docked complex. The global binding energies for the 

bovine TB vaccine docked with TLR-4 and TLR-6 were -61.78 kcal/mol and -53.89 kcal/mol, respectively. 

The docking results revealed that the bovine TB vaccine designed was adequately engaged in 

interaction with the selected TLRs and would accomplish the goal of initiating a strong immune 

response. 
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Table 5. 9: Molecular docking of bovine the TB vaccine and the toll-like receptors of the host (cattle). 
aVdW-attractive Van der Waals energy, rVdW-repulsive Van der Waals energy and HB-
hydrogen bonding 

 

Docked 
Complex 

Total number of 
docked 
transformations 

Transformation 
with lowest 
binding energy 

Global 
binding 
energy 
(kcal/mol) 

aVdW 
(kcal/mol) 

rVdW 
(kcal/mol) 

HB 
(kcal/mol) 

Bovine TB 
vaccine-TLR2 

1455 433rd -55.15 -39.38 26.12 -4.1 

Bovine TB 
vaccine-TLR4 

1398 37th -61.78 -39.51 22.19 -4.7 

Bovine TB 
vaccine-TLR6 

2911 12th -53.89 -36.96 20.78 -5.21 

 

This concludes the design of the epitope-based vaccine for bovine TB. Next section presents the 

identification of drug targets from selected conserved proteins. The aim is to select the most effective 

drug targets for designing improved drugs.  

 

5.4.2 Identification of nine potential drug candidates from the 1163 conserved 
proteins within 11 strains of Mycobacterium bovis 

 

The objective of this part of the study was to identify potential drug candidates for bovine TB. We 

performed some crucial steps to discover unique drug targets that are pivotal for the survival of 

Mycobacterium bovis and do not initiate hypersensitive reactions or side effects in the host. In our 

study, we took Mycobacterium bovis AF2122/97 as a reference organism for research and it has a total 

of 3988 protein sequences in its proteome. Through comparative proteomic analysis, we found 1163 

conserved proteins within 11 strains of bovine TB bacteria. Using the 1163 conserved proteins, we 

performed a subtractive proteomics approach to identify drug targets that could further help 

investigate therapeutic drugs for the treatment of bovine TB. Table 5.10 shows the summary of the 

results of the subtractive proteomic analysis 
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Table 5. 10: Exploration of potential drug targets for bovine TB using the subtractive proteomic 
approach for Mycobacterium bovis 

 

Steps Result 

Total proteins 3988 

Conserved proteins 1163 

Non-homologous proteins to cattle 815 

Non-homologous host metabolic pathways 735 

Proteins in unique metabolic pathways 386 

Essential metabolic proteins 195 

Virulent proteins 29 

Highly expressed target proteins 13 

Potential bovine TB drug target 9 

 

The homologous proteins present in Mycobacterium bovis and the host are not considered to be 

effective drug targets. Thus, to exclude homologous proteins, we performed sequence similarity 

analysis using BLASTp. The protein sequence identities of 30% or more, i.e., bit scores more than 100 

were eliminated from the study. Out of 1163 conserved proteins, we found 348 homologous protein 

sequences between the host and Mycobacterium bovis. These 348 proteins were excluded, and the 

815 non-homologous proteins were considered for further examination. To enhance the drug targets' 

safety profile, we performed an analysis to identify proteins involved in metabolic pathways common 

in cattle and Mycobacterium bovis. Seven hundred and thirty-five non-homologous proteins were 

subsequently obtained that were not involved in metabolic pathways similar to the host’s metabolic 

system. 

 

For determining the involvement of these 735 proteins in unique metabolic pathways, we used KEGG 

automated annotation server (KAAS). In the sub-sequential analysis, we found that more than 50% of 

the non-homologous proteins were involved in distinctive pathways in Mycobacterium bovis. A total 

of 386 proteins were involved in the unique metabolic pathways of Mycobacterium bovis. The proteins 

retrieved were first classified as enzymatic or non-enzymatic with the help of enzyme classification 

(EC) numbers. Around 56.74% of the proteins were enzymatic and 43.26% were non-enzymatic. In the 

KEGG database, the pathways were broadly classified into seven categories: metabolism, genetic 

information processing, environmental information processing, cellular processes, organism system, 

diseases and drugs.  
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Out of 386 proteins, 80.05% (309 proteins) were involved in different metabolic pathways (Figure 

5.14). For example, 60 proteins were involved in amino acid metabolism followed by 48 in 

carbohydrate metabolism, 34 in energy metabolism, 18 in lipid metabolism, 11 in nucleotide 

metabolism and the remaining proteins were involved in the biosynthesis of secondary metabolites, 

cofactors and vitamins, terpenoids and polyketides. Approximately 26 proteins (14%) were involved in 

genetic and environmental information processing, 14 in cellular processes (3%), four in the organism’s 

system, three in diseases and four in drug categories (Figure 5.14).  

 

 

Figure 5. 7: Percentage distribution of non-homologous proteins in seven pathways: metabolism, 
genetic information processing, environmental information processing, cellular 
processes, organism system, diseases and drugs 

 

Table 5.11 shows the classification of the 386 proteins based on the protein families involved in 

metabolism, genetic information processing, signalling mechanism and cellular processes.  
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Table 5. 11: Distribution of the 386 proteins found in unique pathways of Mycobacterium bovis in 
the protein families involved in the seven KEGG functional categories 

 

Proteins involved in unique metabolic pathways Number of proteins 

Enzymes 219 

Transporters 31 

DNA repair and recombination proteins 16 

Chromosome and associated proteins 11 

Peptidases and inhibitors 10 

Peptidoglycan biosynthesis and degradation proteins 9 

Glycosyltransferases 9 

Two-component system 9 

Lipid biosynthesis proteins 9 

Transcription factors 8 

Ribosome biogenesis 6 

Transfer RNA biogenesis 5 

Protein kinases 5 

Cytochrome P450  5 

Prokaryotic defence system 5 

DNA replication proteins 3 

Chaperones and folding catalysts 3 

Polyketide biosynthesis proteins 3 

Proteasome 3 

Cytoskeleton proteins 3 

Secretion system 3 

Transcription machinery 3 

Bacterial toxins 3 

Ribosome 2 

Lipopolysaccharide biosynthesis proteins 1 

Translation factors 1 

Amino acid related enzymes 1 

 

 

Identifying non-homologous proteins involved in the unique metabolic pathways is not the sole 

criterion for selecting potential drug targets for bovine TB. A protein might be involved in more than 

two or three metabolic pathways, but it could be a protein non-essential protein for Mycobacterium 
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bovis survival. Thus, it is crucial to target essential proteins that disrupt the normal functioning of 

bovine TB bacteria. Based on the criteria mentioned, above, we used the DEG database to select 

proteins that are important for the survival of Mycobacterium bovis. Proteins showing good sequence 

similarity, 100% query coverage and a bit score more than 100 with the laboratory validated essential 

proteins present in DEG were considered essential proteins. A total of 195 essential proteins were 

retrieved in this step.  

 

Other crucial criteria for the identification of drug targets are virulence and pathogenicity. A non-

homologous and essential protein involved in initiating the virulence mechanism in the host is 

considered a pivotal drug candidate. Targeting virulent proteins that help survive pathogenic bacteria 

inside the host would swiftly eliminate bovine TB disease. VirulentPred and MP3 tools were used for 

predicting the virulence of essential proteins. Twenty-nine proteins, commonly predicted as virulent 

by both methods, were selected for further analysis. In the next step, the codon adaptation index (CAI) 

was calculated. CAI indicates the translational efficiency and level of expression of a gene. CAI helps 

choose highly expressed proteins from the set of selected essential and virulent proteins. The value of 

CAI score ranges from 0 to 1 in the bacterial genome and proteins with a CAI score of more than 0.7 

are likely to be highly expressed in the Mycobacterium bovis genome. Of the 29 virulent proteins, only 

13 proteins were found to have a CAI score greater than 0.7. Table 5.12 provides information on the 

13 proteins selected. The chosen proteins were further analysed for their physiochemical properties, 

structural homology and druggability properties. 

Table 5. 12 : Results of subtractive proteomic approach for identification of non-homologous, 
essential, virulent and highly expressed proteins  

 

Protein Accession Protein Note KEGG 
ID 

DEG Role in 
virulence 

CAI 

YP_009357346.1 PROBABLE PENICILLIN-BINDING PROTEIN 
pbpA 

K05364 Yes Yes 0.718 

YP_009357462.1 Maltokinase mak  K16146 Yes Yes 0.716 

YP_009357464.1 SECRETED ANTIGEN 85-C FBPC (85C) 
(ANTIGEN 85 COMPLEX C) (AG58C) (MYCOLYL 
TRANSFERASE 85C) (FIBRONECTIN-BINDING 
PROTEIN C)  

K18851 Yes Yes 0.76 

YP_009357822.1 PROBABLE UDP-N-
ACETYLENOLPYRUVOYLGLUCOSAMINE 
REDUCTASE MURB (UDP-N-
ACETYLMURAMATE DEHYDROGENASE)  

K00075 Yes Yes 0.734 

YP_009358286.1 PROBABLE PHOSPHATE-TRANSPORT 
INTEGRAL MEMBRANE ABC TRANSPORTER 
PSTA1  

K02038 Yes Yes 0.701 

YP_009358342.1 Two component sensor kinase mprb  K07653 Yes Yes 0.711 

YP_009358652.1 PROBABLE OLIGOPEPTIDE-TRANSPORT 
INTEGRAL MEMBRANE PROTEIN ABC 
TRANSPORTER OPPB  

K02033 Yes Yes 0.703 
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YP_009358831.1 POSSIBLE CONSERVED INTEGRAL MEMBRANE 
PROTEIN  

K14339 Yes Yes 0.722 

YP_009358851.1 Possible invasion protein  K21474 Yes Yes 0.747 

YP_009359528.1 Probable penicillin-binding membrane protein 
pbpB  

K03587 Yes Yes 0.731 

YP_009359962.1 POSSIBLE GLYOXALASE II 
(HYDROXYACYLGLUTATHIONE HYDROLASE) 
(GLX II)  

K01069 Yes Yes 0.776 

YP_009360863.1 PROBABLE DICARBOXYLIC ACID TRANSPORT 
INTEGRAL MEMBRANE PROTEIN KGTP 
(DICARBOXYLATE TRANSPORTER)  

K03761 Yes Yes 0.709 

YP_009361152.1 Probable two component transcriptional 
regulatory protein tcrx  

K02483 Yes Yes 0.749 

 

ProtParam was used to predict the physiochemical properties of the selected proteins. Table 5.13 

shows the physiochemical properties of the selected 13 proteins of Mycobacterium bovis. The range 

of amino acid length was from 224-679 residues and the molecular weights varied from 21-72 kDa. All 

13 proteins had a molecular weight lower than 100 kDa or 100000 Da, making them possible drug 

targets. Out of the 13 proteins, eight proteins were stable with an instability index of lower than 40. 

The presence of dipeptides was the reason for the unstable nature of the remaining five proteins. The 

aliphatic index predicts the relative volume occupied by the aliphatic side chains in a protein. A value 

of aliphatic index greater than 30 indicates that the protein is thermodynamically stable. All 13 proteins 

had aliphatic index greater than 30, indicating the highly thermodynamically stable nature of the 

selected protein molecules. The GRAVY score predicts the hydropathy value, indicating the hydrophilic 

or hydrophobic nature of a protein molecule. Table 5.13 shows that six proteins had negative GRAVY 

scores indicating their hydrophilic nature. The remaining proteins had a GRAVY score below one, 

suggesting they are less hydrophobic molecules. Analysis of physiochemical properties showed that 

the selected 13 proteins have all the characteristics of potential drug targets. 

Table 5. 13: Physiochemical properties of the 13 non-homologous, essential, virulent and highly 
expressed proteins of Mycobacterium bovis 

 

Protein Accession Amino 
acids 

MW (Dalton 
or Da) 

pI Extinction Instability 
index 

Aliphatic 
index 

GRAVY 

YP_009357346.1 491 51575.6 8.59 36120 32.66 87.17 -0.085 

YP_009357462.1 455 49889.11 5.06 69455 38.05 88.62 -0.185 

YP_009357464.1 340 36771.27 5.92 85830 49.34 68.97 -0.253 

YP_009357822.1 369 38521 6.4 25690 27.64 99.95 0.133 

YP_009358286.1 304 32988.36 10.35 54430 41.3 129.51 0.868 

YP_009358342.1 504 54431.72 9.67 43430 50.18 102.38 0.006 
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YP_009358652.1 325 35083.25 10.68 46410 27.19 120.34 0.517 

YP_009358831.1 591 62694.38 10.95 112535 36.24 121.4 0.631 

YP_009358851.1 241 24623.99 9.71 26930 31.48 81.87 0.033 

YP_009359528.1 679 72537 9.64 49975 43.17 79.47 -0.346 

YP_009359962.1 224 21497.63 6.14 10095 26.06 98.35 -0.021 

YP_009360863.1 449 49578.72 9.37 81500 38.34 102.92 0.461 

YP_009361152.1 234 25843.77 5.65 19940 52.93 104.49 -0.059 

 

The selected proteins of Mycobacterium bovis were then investigated for structural homology. A 

template in the PDB database makes a protein a suitable target for drug discovery and development. 

For this, structural similarity analysis was performed using BLASTp. The proteins with a sequence 

identity and bit score of more than 30% and 100, respectively, were selected in the study (Table 5.14). 

Out of the 13 proteins, four proteins with no suitable template structure were eliminated from the 

study.  

Table 5. 14: Results of template search analysis of the selected nine potential drug targets  

 

Protein Accession Query cover Sequence 
similarity 

PDB ID 

YP_009357346.1 93 100 3LO7_A 

YP_009357462.1 100 99.78 4O7O_A 

YP_009357464.1 86 100 4MQM_A 

YP_009357822.1 100 100 5JZX_A 

YP_009358342.1 30 72.26 6BLK_A 

YP_009358851.1 87 100 3PBI_A 

YP_009359528.1 82 99.82 6KGH_A 

YP_009359962.1 95 32.57 2XF4_A 

YP_009361152.1 95 54.67 5ED4_A 

 

 

Finally, the druggability potential of the nine shortlisted drug targets were predicted using DrugBank. 

Six target proteins were found to have significant hits in DrugBank with bit scores of more than 100 



 187 

(Table 5.15). The six proteins (YP_009357346.1, YP_009357464.1, YP_009357822.1, YP_009358342.1, 

YP_009359528.1 and YP_009361152.1) with considerable similarity found in DrugBank, were termed 

druggable target proteins. The remaining three (YP_009357462.1, YP_009358851.1 and 

YP_009359962.1) proteins with no significant hits found were considered novel target proteins. 

 

The two FDA approved drugs Cefepime and Cefiderocol were found to target the same proteins, having 

accession numbers YP_009357346.1 and YP_009359528.1. Cefepime and Cefiderocol have the same 

mode of action as beta-lactam antibiotics, such as penicillin. They disrupt the synthesis of 

peptidoglycan in the bacterial cell wall, thus, weakening the structural integrity of the pathogenic 

bacteria. Cefpodoxime was found to be vet-approved with the potential to target the YP_009359528.1 

protein by inhibiting the synthesis of peptidoglycan, so deteriorating the bacterial cell wall. 

Cefpodoxime, flavin adenine dinucleotide approved compound, could target YP_009357822.1 protein, 

but the mechanism of compound action is not yet established. Experimental compounds were found 

for YP_009357464.1, YP_009358342.1 and YP_009361152.1 but no mechanism of action is known. 

Table 5. 15: Identified drugs, FDA approval or experimental compounds for them and their action on 
the six druggable proteins from the DrugBank  

 

Protein Accession Potential drugs Drug group Action 

YP_009357346.1 Cefepime, Cefiderocol Approved Inhibitor 

YP_009357464.1 Diethyl phosphonate Experimental Unknown 

YP_009357822.1 Flavin adenine dinucleotide Approved Unknown 

YP_009358342.1 Phosphoaminophosphonic acid-adenylate 
ester 

Experimental Unknown 

YP_009359528.1 Cefepime, Cefiderocol, Doripenem, 
Cefpodoxime 

Approved Inhibitor 

YP_009361152.1 Adenosine-5'-RP-alpha-thio-triphosphate Experimental Unknown 

 

In our study, we selected nine proteins as potential broad-spectrum drug targets (YP_009357346.1, 

YP_009357462.1, YP_009357464.1, YP_009357822.1, YP_009358342.1, YP_009358851.1, 

YP_009359528.1, YP_009359962.1 and YP_009361152.1) for bovine TB treatment that minimises the 

chances of drug resistance. YP_009357346.1 was a probable penicillin-binding protein having 491 
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amino acid residues in its sequence. This protein was found to be involved in peptidoglycan 

biosynthesis, thus, maintaining the cell wall and cellular structure of Mycobacterium bovis. The 

disruption of this protein by a drug would cause structural irregularity and loss of cell wall integrity, 

leading to the weakening of bacterial cells. Two potential drugs, Cefepime and Cefiderocol, were found 

to have the capability to disrupt the YP_009357346.1 protein. YP_009357464.1 was present in the cell 

wall of Mycobacterium bovis. This was involved in lipid metabolism for the biosynthesis of 

arabinogalactan. Arabinogalactan is an important cell wall constituent and provides strength to the 

cell wall of Mycobacterium bovis. Inhibition of the biosynthesis of arabinogalactan can make the 

bacteria fragile. DrugBank identified diethyl phosphonate as a potential experimental compound for 

targeting this protein.  

 

YP_009357822.1, present in the cytoplasm, was involved in amino sugar and nucleotide sugar 

metabolism with a significant role in cell division of the bacterial cell. Based on its function, targeting 

this protein would interfere in the cell division of Mycobacterium bovis. DrugBank identified the flavin 

adenine dinucleotide compound with the potential to target the YP_009357822.1 protein, but the 

compound’s action is unknown. YP_009358342.1, found in the cell membrane of Mycobacterium bovis, 

was involved in the environment information processing pathway. This two-component system 

present in mycobacteria plays a crucial role in the signal transduction mechanism required for 

continuing the bacterial infection. Attacking this protein by drugs would lead to halting the signalling 

mechanism; thus, containing the spread of bacterial infection. The phosphoaminophosphonic acid-

adenylate ester experimental compound could target YP_009358342.1 protein, but the mechanism of 

the compound’s action is not yet established.  

 

YP_009359528.1, a probable penicillin-binding membrane protein, pbpB, present in the cell wall, is 

involved in peptidoglycan biosynthesis. Four potential FDA approved drugs were identified for this 

drug target: Cefepime, Cefiderocol, Doripenem and Cefpodoxime. The role of all four drugs is inhibition 

of the synthesis of peptidoglycans. Cefpodoxime was found to be a vet-approved drug. 

YP_009361152.1, a two-component system protein, was found in the cytoplasm of Mycobacterium 

bovis. This protein is involved in the environment information processing pathway. Adenosine-5'-RP-

alpha-thio-triphosphate was found to have the potential for attacking YP_009361152.1 protein. 

 

The three (YP_009357462.1, YP_009358851.1 and YP_009359962.1) proteins with no significant hits 

found were considered to be novel target proteins. The YP_009357462.1 protein was found to be 

involved in carbohydrate metabolism and present in the cytoplasm of Mycobacterium bovis. The 

primary function of this protein is to transfer phosphorus-containing groups in starch and sucrose 

metabolism. Targeting carbohydrate metabolism usually induces a stress response in the cell leading 
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to the death of bacteria. YP_009358851.1 was involved in peptidoglycan biosynthesis and degradation. 

An effective drug with an inhibitory mechanism would contribute to disrupting the synthesis of 

peptidoglycan. YP_009359962.1 present in the cytoplasm is involved in carbohydrate metabolism, 

specifically, pyruvate metabolism. This protein benefits the bacterial cell during stress conditions. 

Thus, YP_009359962.1 is a potential target for enhancing stress inside the bacterial cell. The nine 

proteins selected are highly conserved, unique to Mycobacterium bovis, and involved in essential and 

virulent pathways. These nine proteins can be used for drug discovery and development against 

Mycobacterium bovis. 

5.5 Chapter Summary 

Bovine TB is a chronic infectious disease caused by the pathogenic bacteria, Mycobacterium bovis. It 

has become of global concern over the last two decades. Bovine TB primarily affects cattle, but other 

domestic livestock, such as deer, goats and sheep are also affected. Bovine TB is more common in less-

developed and developing countries. The disease can lead to a severe economic crisis because of 

significant losses of livestock, and the subsequent trade restrictions. Bovine TB is a zoonotic disease 

that can spread to humans by the inhalation of aerosols or the ingestion of unpasteurised milk. Thus, 

the zoonotic potential of bovine TB is raising health concerns for the public. Out of 10 million 

incidences in humans, in 2019, WHO estimated 0.14 million cases were zoonotic TB caused by 

Mycobacterium bovis, with 11,400 human deaths (WHO Global Tuberculosis Report, 2020; World 

Organization for Animal Health, 2019). Currently, there is no effective treatment available for bovine 

tuberculosis due to its infectious nature and the drug resistance of Mycobacterium bovis. The available 

treatment for bovine tuberculosis mainly depends on the health status of the infected animal species. 

Antibiotic therapy can only be given to the animal species living in captivity, as it is not reliable for herd 

or free-grazing animals. The BCG vaccine is another option available for treating disease, but it shows 

limited efficacy in cattle. 

 

In our study, we attempted to provide a potential solution for bovine TB treatment by identifying 

therapeutic targets. With this aim, we proposed an effective epitope-based vaccine for bovine TB. In 

designing an effective epitope-based bovine TB vaccine that would elicit a robust immune response 

inside the host, we focussed on selecting the highly immunodominant epitopes from the conserved 

and surface-exposed antigenic proteins of Mycobacterium bovis. Our study incorporates different 

branches of bioinformatics, such as subtractive reverse vaccinology, immunoinformatics and structural 

vaccinology, to identify potential vaccine candidates and design an epitope-based bovine TB vaccine.  

Our study used 11 strains of Mycobacterium bovis to cover their diversity and to identify the conserved 

proteins among them. Mycobacterium bovis AF2122/97 was used as a reference proteome for 

comparative analysis. Using standalone BLAST, we found that out of 3988 proteins of Mycobacterium 
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bovis AF2122/97, 1163 proteins were discovered to be conserved among 11 strains of Mycobacterium 

bovis. After identifying conserved proteins, a reductionist reverse vaccinology process was performed 

to identify non-homologous, surface-exposed, antigenic and non-allergenic proteins having unique 

characteristics, such as signal peptides, membrane-spanning regions, lipoprotein signatures and 

adhesion probabilities. Out of 1163 conserved proteins, a total of nine conserved, membrane-

spanning, antigenic and non-allergic proteins were selected from the reverse vaccinology approach. 

Next, extensive immunoinformatic analysis was performed and we shortlisted 26 epitopes (HTL 

epitopes-2, CTL epitopes-8 and B-cell epitopes-16) from the nine antigens of Mycobacterium bovis. 

These 26 epitopes were highly immunogenic, non-toxic and non-allergenic to the host.  

 

The epitopes selected were used for designing the vaccine sequence. The sequence of the bovine TB 

vaccine was created using a simple strategy. A 50s ribosomal protein L7/L12 adjuvant was attached at 

N- terminal connected with the help of EAAAY linker followed by HTL, CTL and B-cell epitopes bound 

together, using the flexible linker, AAY. Assessment of antigenicity, allergenicity and the 

physiochemical properties of the bovine TB vaccine showed that the vaccine sequence designed had 

all the qualities of a potential vaccine that would generate an effective immune response inside the 

host. A model of the bovine TB vaccine was constructed using RaptorX. Structural analysis of the 

epitope-based bovine TB vaccine construct model highlighted its structural integrity with more than 

91.1% amino acid residues in the most favourable regions. Molecular docking of bovine TB vaccine 

construct and TLRs (TLR-2,4 and 6) was then undertaken. The results of our docking analysis suggested 

stable and robust interactions between the TB vaccine construct and TLRs with binding energies of -

55.15 kcal/mol (bovine TB vaccine-TLR2), -61.78 kcal/mol (bovine TB vaccine-TLR4) and -53.89 kcal/mol 

(bovine TB vaccine-TLR6). The strong interaction between the bovine TB vaccine construct and the 

host TLRs showed that the designed vaccine can initiate a strong immune response inside the host. 

 

Next, we performed subtractive proteomic analysis to identify potential drug targets that could further 

help to investigate therapeutics drugs for the treatment of bovine TB. We performed some crucial 

steps in discovering unique drug targets that are pivotal for the survival of Mycobacterium bovis and 

do not initiate hypersensitive reactions or side effects in the host. We took 1163 conserved proteins 

(identified in comparative proteomic analysis in bovine TB vaccine part) of Mycobacterium bovis 

AF2122/97 and undertook a subtractive proteomics approach to identify drug targets. First, the 

homologous protein sequences between Mycobacterium bovis and host (cattle) were excluded from 

the study. Thus, we considered 735 non-homologous proteins out of the 1163 proteins. In the 

subsequent analysis, we found that more than 50% of the non-homologous proteins were involved in 

distinctive pathways in Mycobacterium bovis. Specifically, a total of 386 proteins were found to be 
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involved in the unique metabolic pathways of Mycobacterium bovis. Around 56.74% of these proteins 

were enzymatic and 43.26% were non-enzymatic proteins. 

 

An assessment of other crucial criteria, such as essentiality of target for survival, virulence, and 

determining the translation efficiency of the selected protein, to identify potential drug targets was 

then carried out. Out of 195 essential proteins predicted by DEG, 29 proteins were commonly 

predicted as virulent by the VirulentPred and MP3 tools. Of the 29 virulent proteins, only 13 proteins 

were found to have a CAI score greater than 0.7. The 13 proteins selected were further analysed for 

their physiochemical properties, structural homology and druggability properties. Analysis of their 

physiochemical properties showed that the 13 proteins selected all had characteristics of potential 

drug targets. Structural homology analysis showed that out of the 13 proteins, four proteins had no 

suitable template structure available in the PDB database and were excluded from the study. Finally, 

the druggability potential of the shortlisted nine drug targets was predicted using DrugBank. The six 

proteins (YP_009357346.1, YP_009357464.1, YP_009357822.1, YP_009358342.1, YP_009359528.1 

and YP_009361152.1) with considerable similarity found in DrugBank were termed druggable target 

proteins. The remaining three (YP_009357462.1, YP_009358851.1 and YP_009359962.1) proteins with 

no significant hits found were considered novel target proteins. The nine highly potential drug targets 

identified in the study could facilitate the development of novel drugs against Mycobacterium bovis. 

 

Thus, using an extensive and systematic approach, this chapter presented the development of an 

epitope-based vaccine that would be far more effective than the current BCG vaccine for bovine TB. It 

also found from a comprehensive investigation nine potential drug targets that could be far more 

effective than the currently used drugs in treating TB. Next Chapter provides a summary and 

conclusions from the thesis. 
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Chapter 6 

Summary, Conclusions and Contributions  

In this thesis, we conducted an in-depth investigation into pathogen-host interactions to gain deeper 

insights into the pathogenesis of infection, evolution of pathogen and their drug resistance 

mechanisms and use this understanding to provide potential solutions for effective vaccine and drug 

development for human and bovine tuberculosis. The central focus of our study was to acquire a 

deeper understanding of the pathogenesis of human and bovine TB, the interaction of TB bacteria with 

its host, the host defence mechanism, bacterial survival strategies in evading the host immune 

response, in-depth knowledge of the mechanisms of TB drug resistance, and challenges in developing 

drugs and vaccines for TB (Chapter 2). Thus, for reducing the burden of TB globally, we developed 

holistic strategies/frameworks for accomplishing the three main goals of this study. In this chapter, we 

give a brief overview of our research work and conclusions in section 6.1. Section 6.2 highlights the 

significant contributions of the study, and section 6.3 suggests the directions for future work. 

6.1 Research summary and conclusions 

Tuberculosis is an evolving and deadly disease caused by one of the world’s most infectious bacteria, 

Mycobacterium tuberculosis, which poses a significant threat to global health. According to the World 

Health Organization (WHO), tuberculosis is a major threat with significant mortality and morbidity 

rates worldwide. Despite the advancements made in medical science, TB remained the cause of death 

of 1.4 million people in 2019 and was responsible for 10.0 million new cases worldwide (WHO Global 

Tuberculosis Report, 2020). Vaccine (BCG) and drug therapy (first-line TB drugs) are the two most 

essential countermeasures humans have developed against TB. The evolution of Mycobacterium 

tuberculosis has led to the emergence of drug-resistant TB strains that makes drugs ineffective. 

Protection of BCG is highly variable for the following reasons: differences in clinical assays, genetic 

variability in a sample population, different levels of protection against the clinical forms of 

tuberculosis, malnutrition and variability in Mycobacterium tuberculosis strains. The worldwide 

emergence of tuberculosis resistant strains and inefficiency of BCG in reducing the prevalence and 

emergence of the disease and protecting adults is threatening to make one of humankind’s most 

important infectious diseases incurable.  

 

Bovine tuberculosis, caused by Mycobacterium bovis, has also become a global concern over the last 

two decades. Mycobacterium bovis is considered naturally resistant to pyrazinamidase (first-line TB 

drug) (Nakajima et al., 2010). First-line human TB drugs for treating livestock are also ineffective and 

costly as the treatment requires six to nine months of daily medication. The BCG vaccine is available 
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for treating the disease, but it shows limited efficacy in cattle. There is no effective treatment available 

for bovine TB due to its infectious nature and the drug resistance of Mycobacterium bovis. The 

prevention of bovine TB is a long-term goal that can only be accomplished by developing a more 

effective vaccine than BCG and designing new drugs based on a deep understanding of host-pathogen 

interaction and mechanisms of drug resistance that can help eliminate the disease at its root. 

 

Goal 1: The first goal of this research is to understand the impact of drug resistant mutations to gain 

an in-depth knowledge of the survival strategies of Mycobacterium tuberculosis and resulting drug 

resistance mechanisms (Chapter 3). For an extensive investigation of drug resistant mutations, we 

designed a holistic framework to unravel the survival strategies of drug resistant TB bacteria and an in-

depth look into global mutation patterns to explore the global evolution of drug resistance. Therefore, 

we did a comprehensive and systematic in-depth analysis of drug resistance mechanisms from global 

mutation data for Mycobacterium tuberculosis reported over the last 30 years. We collected 

mutational data from 31,073 Mycobacterium tuberculosis isolates published in 149 studies over 30 

years and found 821 non-synonymous drug resistant mutations in the four first-line drug targets (katG-

202, pncA-273, rpoB-120 and embCAB-226). The coverage of a large number of strains (mutations) is 

novel in this study as well as the study of the mutational impact on targets and drugs. We investigated 

the mutation statistics by calculating single mutation frequency to understand the prevalence and 

diversity of mutations in first-line TB drug targets across the globe. S315T was highly prevalent 

(60.58%), followed by S450L (58.83%), M306V (29.19%) and Q10P (1.45%) among the INH, RIF, EMB 

and PZA resistant isolates, respectively. Our research focused on identifying the impact of different 

mutations on TB bacteria and drug binding, using detailed bioinformatics analysis to understand crucial 

changes at the molecular level of the target affecting its function, structural stability, sequence 

conservation and the influence of mutation position on drug binding affinity. This research introduced 

a new concept of ranking drug-resistant TB mutations into lethal, moderate, mild and neutral to 

uncover the totality of the Mycobacterium tuberculosis strategy for drug resistance. Out of 821 non-

synonymous mutations, we identified 340 ‘lethal,’ 284 ‘moderate,’ 185 ‘mild’ and 12 ‘neutral’ 

mutations. We observed that the frequently occurring drug resistant mutations had mild to moderate 

impacts on drug binding with reduced drug binding energies, changes in enzymatic activity and low 

steric hindrance caused by structural changes. For example, katG S315T mutation, rpoB S450L 

mutation and embB M306V mutation were widespread across the globe but had only a mild impact on 

their respective proteins. 

 

Conclusion: The comprehensive analysis of drug resistant mutations for determining the prevalence 

and ranking of mutations based on their effect on Mycobacterium tuberculosis has provided crucial 

insights and improved our knowledge of the survival strategies used by this bacterium to maintain its 
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fitness. We found that Mycobacterium tuberculosis explores specific drug resistance strategies that 

balances the harmful impact of drug-resistant mutations on itself and drug resistance by following 

evolutionary pathways. We discovered that most frequent first-line drug resistant mutations had 

followed a generic pattern over the last three decades, suggesting that Mycobacterium tuberculosis 

may also follow the same general pattern across the globe in the future. The method developed in this 

study can also help in studying future mutations, and there is the scope for introducing new steps in 

the method for improvement. Further, our method can be used to examine the nature and impact of 

mutations in other infectious diseases. 

 

Goal 2: The second goal of this research is to develop an epitope-based in-silico human TB vaccine for 

greatly improved efficacy (Chapter 4). The low efficacy of BCG and drug-resistant Mycobacterium 

tuberculosis strains require developing a more effective and safer vaccine. This research developed a 

conceptual framework that uses different bioinformatics approaches, such as comparative proteome 

analysis, reverse vaccinology, immunoinformatics, and structural vaccinology, to identify potential 

vaccine candidates and construct an epitope-based TB vaccine. We performed a comparative 

proteomic analysis among the 159 strains of Mycobacterium tuberculosis to cover the diversity and 

identify conserved proteins among those strains. We found that out of 3906 proteins of H37Rv, 1982 

proteins were conserved. Out of 1982 conserved proteins, 24 antigenic proteins with unique 

characteristics, such as signal peptides, membrane-spanning regions, lipoprotein signatures, adhesion 

probabilities and non-allergic proteins, were selected from the reverse vaccinology approach. From 24 

shortlisted proteins, an extensive immunoinformatics analysis provided highly immunogenic, non-toxic 

and non-allergenic 27 epitopes (CTL epitopes-14, HTL epitopes-5 and B-cell epitopes-8) required for 

three-dimensional structure construction of TB vaccine construct based on a new concept introduced 

in this research. Population coverage analysis showed 99.16% of the world's population is covered by 

the predicted CTL and HTL epitopes which strengthens the confidence in our strategy used to develop 

a universal TB vaccine. This extensive study analysing strains reported in the last 30 years identified 

the broadest coverage of effective epitopes to date. Finally, evaluating the interaction between the 

pathogen and host TLR and the immune response profile of our constructed TB vaccine helped in 

predicting the vaccine’s efficacy in generating a strong and specific humoral and cell-mediated immune 

response. The constructed epitope-based TB vaccine had a strong interaction inside the host, thus 

activating the macrophages, further leading to the production of B-cells, T-cells and cytokines and 

generating efficient cell-mediated and humoral immune responses. 

 

Conclusion: The generation of a strong and swift immune response that can prevent disease 

progression and transmission is a prerequisite for a TB vaccine. An in-depth understanding of the 

interaction of TB bacteria with its host, the host defence mechanism, bacterial survival strategies in 
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evading the host immune response helped develop an in-silico epitope-based TB vaccine using 

computational vaccinology.  The crucial features of the epitope-based TB vaccine constructed in this 

research include sequence conservancy, antigenicity, exclusion of self-peptides and multiple allelic 

interactions. The epitope-based TB vaccine is expected to be highly effective, safer and provide 

optimum protection against tuberculosis infection. 

 

Goal 3: The third goal of this research is to develop an epitope-based vaccine and identify drug targets 

for the treatment of bovine TB (Chapter 5). Currently, no effective treatment is available for treating 

bovine tuberculosis, and animal slaughtering is usually undertaken to reduce the burden of bovine 

tuberculosis in the environment. In our study, we used 11 strains of Mycobacterium bovis to cover 

their diversity and identify the conserved proteins among them. 1163 proteins were discovered to be 

conserved among 11 strains of Mycobacterium bovis. For designing the bovine TB vaccine, we used the 

holistic framework developed in chapter 4. Out of 1163 conserved proteins, a total of nine conserved, 

membrane-spanning, antigenic and non-allergic proteins were selected from the reverse vaccinology 

approach. Twenty-six epitopes (HTL epitopes-2, CTL epitopes-8 and B-cell epitopes-16) that were 

highly immunogenic, non-toxic and non-allergenic were shortlisted after extensive immunoinformatic 

analysis. The shortlisted epitopes were used for designing the bovine TB vaccine sequence. The strong 

interaction between the bovine TB vaccine construct, and the host TLRs showed that the designed 

vaccine could initiate a robust immune response inside the host (cattle). Next, for identifying the 

potential anti-bovine TB drug targets, we developed a conceptual method and tested the framework 

using bioinformatics tools to provide a solution for bovine TB treatment. The emergence of 

antimicrobial resistance in bacteria has reduced the efficacy of antibiotics in treating the disease. A 

novel subtractive proteomic approach was developed to identify bovine TB drug targets. Using the 

1163 conserved proteins, we performed a subtractive proteomics approach to identify drug targets 

that could further help investigate therapeutic drugs for the treatment of bovine TB. This approach 

helped identify nine drug targets that are conserved, essential, antigenic and have unique metabolic 

pathways in Mycobacterium bovis. Finally, the druggability potential of the shortlisted nine drug 

targets was predicted using DrugBank. The six proteins were termed druggable target proteins, and 

the remaining three proteins with no significant hits were considered novel target proteins. 

 

Conclusion: We proposed nine therapeutic drug targets and an epitope-based vaccine for treating 

bovine TB in this research. The in-silico epitope-based bovine TB vaccine developed in this research 

would be far more effective than the current BCG vaccine for bovine TB. The nine highly potential drug 

targets identified in the study could facilitate the development of novel drugs against Mycobacterium 

bovis. The holistic strategy developed in this research for identifying drug targets and vaccine 

candidates is generic and can be used for other zoonotic infectious diseases. 
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6.2 Contributions 

The first significant contribution of the study is the development of a conceptual framework for in-

depth understanding of the impact of drug resistant mutations of Mycobacterium tuberculosis and 

investigate drug resistance mechanisms and bacterial survival strategy. Specific contributions include:     

1) To our knowledge, this is the first study using systematic sorting and comprehensive in silico 

analysis of 821 non-synonymous mutations in first-line drug targets, based on five crucial 

factors - sequence conservation, distribution of mutations into three sites, function, structure 

stability and drug binding, to probe into drug resistance mechanisms and Mycobacterium 

tuberculosis strategies for survival. 

2) Development of a reliable catalogue of drug-resistant mutations that can be used as a 

reference standard for validating mutations identified in the genome of new drug-resistant TB 

strains when available. 

3) The more profound insight into Mycobacterium tuberculosis drug resistance mechanisms and 

survival strategies found in this study can significantly contribute to eradicating TB globally. 

This research can aid in developing novel diagnostic tools that can help in the early diagnosis 

of drug resistance TB, reducing the transmission rate and planning proper effective treatment 

for the patients. It can help develop effective and personalised treatment plans, develop new 

drugs and repurpose existing drugs for the frequent mutations worldwide.  

4) The ranking of mutations into four different categories can assist in developing inhibitors for a 

specific mutation or group of mutations and help develop personalized treatment plans for TB 

patients. 

The second significant contribution is the development of an in-silico epitope-based TB vaccine based 

on a deep understanding of host-pathogen interaction using computational vaccinology to provide a 

broad spectrum of protection against many Mycobacterium tuberculosis strains and drug resistance. 

The developed TB vaccine can significantly contribute to eliminating TB globally or drastically minimise 

its prevalence. Our research has addressed several challenges of TB vaccine development that include:  

1) Expensive, time-consuming and arduous experimental testing in developing a vaccine.  

2) Safety concerns while culturing the pathogen in a laboratory. 

3) Identification of surface-exposed, secreted, and adhesin proteins; extract conserved epitopes 

in highly variable or drug-resistant Mycobacterium tuberculosis; identification of 

immunodominant epitopes for inducing potent humoral and cell-mediated immune 

responses. 

4) Elimination of cross-reactive epitopes to avoid autoimmunity in the host.  
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The third significant contribution is the development of an epitope-based bovine TB vaccine to provide 

a broad spectrum of protection against many Mycobacterium bovis strains. The developed bovine TB 

vaccine can help achieve the long-term goal of prevention of bovine TB. The last contribution is the 

nine potential drug targets identified using new subtractive proteomic approach to answer 

pathogenicity and drug resistance against bovine TB. Our research can reduce the burden of significant 

loss of livestock and economic crisis due to bovine tuberculosis. 

6.3 Future directions 

The current research recommends the following future work: 

1) An atlas created in this research for drug resistant mutations in the targets of first-line TB drugs 

can be updated when a new mutation is identified, or the genome of new drug-resistant TB 

strains is available. 

2) The holistic frameworks developed in this research can study the nature and impact of 

mutations in other infectious diseases. Further, there is scope for introducing new steps in the 

method for improvement.  

3) The conceptual method developed in this research to study mutations can be used to train 

new computational models to predict positions in proteins with a higher tendency to acquire 

new mutations and their consequences. 

4) A laboratory trial in suitable in vitro and in vivo models is recommended for the proposed 

human TB and bovine TB vaccine candidates to validate our prediction's safety, efficacy, and 

immunogenicity. 

5) The nine highly potential bovine TB drug targets identified in the study facilitates the design 

and development of novel drugs against Mycobacterium bovis.  

 

We believe that the conceptual methods developed in this research and the results obtained by testing 

these methods would help accomplish the goal of reducing the burden of human and bovine 

tuberculosis globally. 
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Appendix A 

A. 149 publications selected for studying the impact of drug 

resistance on Mycobacterium tuberculosis 

Table A1: Published articles selected for study (149 studies on drug resistance with information on the 

country-of-origin isolate, drug used in a specific study, clinical isolates used in the research and 

resistant isolates for specific drug studied). Table A.1 includes: 

 

1- PMID: PubMed ID of the selected study 

2- Author: List of authors performed the selected study 

3- PY (publication year): Year in which the selected study was published 

4- YSC (year of sample collection): Final year of the sample collection; NS- Not Specified 

5- Country: the origin of the sample used in the study; Unknown- the origin of the sample not 

specified in the study 

6- Drug studied: Drug used in the specific study; INH- Isoniazid; RIF- Rifampicin; PZA-

Pyrazinamide; EMB- Ethambutol  

7- CIUS (clinical isolates used in the study): Number of clinical isolates used in the study for 

predicting first-line TB drug resistance 

8- RITG (resistant isolates in target gene): number of isolates showing resistance to first-line TB 

drugs in 149 studies 

 

Table A1: 149 publications selected for the study 

PMID Autor PY YSC Country Drug 
studied 

CIUS RITG 

7840574 Williams D L et al. 1994 NS Unknown RIF 122 rpoB-110 

8027320 Kapur V et al. 1994 1993 United States RIF 128 rpoB-121 

8585728 Rouse D A et al. 1995 NS United States INH 26 katG-20 

8878604 Marttila H J et al. 1996 1989-95 Finland INH 54 katG-13 

9003625 Kim B J et al. 1997 NS Korea RIF 58 rpoB-32 

9055989 Scorpio A et al. 1997 1992-95 United States PZA 38 pncA-33 

9056006 Sreevatsan S et al. 1997 NS United States PZA 118 pncA-67 

9210694 Haas W H et al. 1997 1980-88 South Africa INH 212 katG-124 

9257740 Sreevatsan S et al. 1997 NS Unknown EMB 118 embCAB-69 
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9431913 Matsiota-Bernard P 
et al. 

1998 1995-97 Greece RIF 17 rpoB-17 

9692180 Hirano K et al. 1997 NS Unknown PZA 168 pncA-135 

10068603 Cingolani A et al. 1999 1994-97 Itlay RIF, INH 71 KatG-17, 
rpoB- 8 

10074552 Pozzi G et al. 1999 NS Itlay RIF 37 rpoB-37 

10390239 Marttila H J et al. 1999 1994-97 Russia PZA 44 pncA-36 

10428945 Lee A S et al. 1999 1994-96 Singapore INH 160 katG-160 

10449496 Portugal I et al. 1999 1999 Portugal RIF 99 rpoB-45 

10471589 Mestdagh M et al. 1999 NS Unknown PZA 65 pncA-23 

10565894 Yuen LK et al. 1999 1990-97 Australia RIF 33 rpoB-33 

10639358 Ramaswamy S V et al. 2000 NS United States EMB 75 embCAB-38 

10645449 Escalante P et al. 1998 1995-96 Peru RIF, INH, 
PZA, EMB 

29 katG- 19, 
rpoB- 23, 
embB- 5, 
pncA- 8 

10681313 Cheng S J et al. 2000 1990-92 Canada PZA 57 pncA-53 

10813147 Hou L et al. 2000 1996-98 China PZA 65 rpoB, katG-
35 

10882091 Brown T J et al. 2000 1999 Turkey RIF, PZA 10 rpoB, pncA-
11 

10921994 Valim A R et al. 2000 1996-98 Brazil RIF 100 rpoB-38 

11179917 Harris K A Jr et al. 2000 1995-96 India RIF, INH 63 rpoB, katG-
32 

11474030 Mani C et al. 2001 NS India RIF 50 rpoB-44 

11641519 Lee K W et al. 2001 NS Korea PZA 95 pncA-92 

11796356 Siddiqi N et al. 2002 1995-98 India RIF, INH 126 rpoB- 94, 
katG- 74 

11854934 Lee H Y et al. 2002 NS Korea EMB 26 embB-21 

12654653 Ramaswamy S V et al. 2003 NS United States INH 124 katG-38 

12870687 El Baghdadi J et al. 2003 1996-2001 Morocco RIF 122 rpoB-37 

14598972 Agdamag D M et al. 2003 1999-2001 Philippines RIF 164 rpoB-50 

14638486 Morlock G P et al. 2003 NS Unknown INH 41 katG-15 

15195248 Post F A et al. 2004 1999-2003 South Africa RIF, INH, 
PZA, EMB 

13 katG- 6, 
rpoB- 14, 
pncA- 5, 
embB- 1 

15616332 Rodrigues Vde F et al.  2005 1998-2003 Brazil PZA 59 pncA-40 

15728936 Hillemann D et al. 2005 2001 Germany RIF, INH 113 rpoB, katG-
103 

15917515 Parsons L M et al. 2005 1998-2004 United States INH, EMB 157 katG, embB-
157 

16081898 Hillemann D et al. 2005 2001 Germany RIF, INH 143 rpoB, katG-
103 

16189082 Lavender C et al. 2005 2001-03 Australia INH 645 katG-52 

16672384 Park H et al. 2006 NS Korea RIF, INH 243 rpoB, katG-
119 

16789833 Gagneux S et al. 2006 1990-99 United States INH 2081 katG-152 



 200 

16870753 Hazbón M H et al. 2006 1990-2002 Unknown INH 1011 katG-402 

16972132 Srivastava S et al. 2006 2004 India EMB 23 embCB-23 

17360809 Chan R C et al. 2007 1994-2004 Hongkong RIF, INH, 
PZA, EMB 

250 katG-8, 
pncA- 5, 
rpoB- 17, 
embB- 15 

17539290 Khadka D K et al. 2007 NS Thailand INH 29 katG-29 

17596354 Sekiguchi J et al. 2007 2007 Unknown PZA 258 pncA-30 

18272712 Strauss O J et al. 2008 2001-04 South Africa RIF 429 rpoB-429 

18294243 Prammananan T et al. 2008 2003-05 Thailand RIF 267 rpoB-154 

18508939 Abe C et al.  2008 NS Japan INH 96 katG-30 

18573039 Perdigão J et al. 2008 2003 Portugal RIF, INH, 
PZA 

116 rpoB, katG, 
pncA-58 

18701663 Akpaka P E et al. 2008 2006-07 Caribbean RIF, INH 81 rpoB- 23, 
katG- 9 

18753350 Mphahlele et al. 2008 2001-02 South Africa PZA 71 pncA-42 

19010731 Srivastava S et al. 2009 NS India EMB 44 embCB-44 

19090721 Doustdar F et al. 2008 2005-06 Iran INH 73 katG-48 

19486070 Boonaiam S et al. 2010 2005-06 Thailand INH 170 katG-160 

19494067 Huang W L et al. 2009 2007-08 Taiwan RIF, INH 272 rpoB-231, 
katG- 198 

19520715 Hauck Y et al. 2009 NS France RIF 144 rpoB-119 

19547874 Zenteno-Cuevas R et 
al.  

2009 2007 Mexico RIF, INH 25 rpoB, katG-
20 

19673965 Garza-González E et 
al. 

2010 NS Mexico RIF 75 rpoB-33 

19715569 Miotto P et al. 2009 2008 Itlay RIF, INH 108 rpoB, katG-
46 

19800845 Plinke C et al. 2009 2002 Uzbekistan EMB 197 embB-39 

19832709 Ando H et al. 2010 2002 Japan PZA 36 pncA-19 

19900109 Pandey S et al. 2009 2000-06 New Zealand PZA 26 pncA-11 

20427375 Plinke C et al. 2010 2007 Germany EMB 152 embCAB-34 

20708497 Li G L et al. 2010 2007-08 China RIF, INH, 
EMB 

822 rpoB- 116, 
katG- 169, 
embB- 34 

20727143 Jonmalung et al.  2010 2005-07 Thailand PZA 150 pncA-52 

21396209 Imperiale B R et al. 2011 2004-09 Argentina RIF, INH 198 katG- 138, 
rpoB- 85 

21554227 Bostanabad S Z et al. 2011 2007-08 Iran INH 163 katG-42 

21562102 Huang W L et al. 2011 2008-09 China EMB 234 embB-91 

21911575 Ali A et al. 2011 2004-09 Pakistan RIF, INH 50 rpoB, katG-
50 

22325117 Jin J et al. 2011 2006-09 China RIF, INH 237 rpoB, katG-
149 

22325147 Tessema B et al. 2012 2009 Ethiopia INH, RIF, 
EMB 

260 katG- 35, 
rpoB- 15, 
embB- 8 

22507192 Greif G et al. 2012 2000-05 Uruguay INH 45 katG-20 
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22535987 Chakravorty S et al. 2012 NS Korea RIF 589 rpoB, katG-
44 

22646308 Feuerriegel S et al. 2012 2003-04 Sierra Leone RIF, INH, 
PZA, EMB 

97 katG- 32, 
rpoB- 16, 
pncA- 10, 
embB- 15 

22708343 Madania A et al. 2012 2007-10 Syria RIF, INH 160 rpoB- 69, 
katG- 72 

22747769 Yadav R et al. 2012 2008-10 India RIF, INH 61 rpoB- 29, 
katG- 35 

22825123 Stoffels K et al. 2012 1994-2008 Belgium PZA 138 pncA-60 

22863574 Rahim Z et al. 2012 2001-10 Bangladesh RIF, INH 218 rpoB, katG-
218 

22972833 Daum L T et al. 2012 2011 South Africa RIF, INH, 
PZA 

26 rpoB, pncA, 
katG-21 

22984115 Sun G et al. 2012 NS China RIF, INH, 
PZA, EMB 

7 rpoB, katG, 
pncA, embB-
6 

23146281 Poudel A et al. 2013 2007-10 Nepal RIF, INH 109 rpoB, katG-
13 

23321280 Cuevas-Córdoba B et 
al. 

2013 2007-10 Mexico PZA 127 pncA-42 

23453008 Escalante P et al. 2013 1997-2001 United States INH 79 katG28 

23467605 Maschmann Rde A et 
al. 

2013 2009-11 Brazil RIF, INH 68 rpoB, katG-
32 

23539241 Machado D et al. 2013 2009-11 Portugal INH 17 katG-1 

23561273 Jnawali H N et al. 2013 2009-10 Korea RIF, INH, 
PZA, EMB 

192 rpoB-159, 
katG- 67, 
pncA-107, 
embB- 127 

23770140 Bhuju S et al. 2013 2003-05 Brazil PZA 97 pncA-62 

24326341 Yu X L et al. 2014 2009-10 China RIF, INH 664 rpoB, katG-
67 

24670703 Huang Z K et al. 2014 2008-11 China RIF, INH 208 rpoB- 9, 
KatG- 15 

24855126 Jagielski T et al. 2014 2004 Poland INH 50 katG-50 

24867972 Aono A et al. 2014 NS Japan PZA 83 pncA-49 

24884632 Tekwu E M et al. 2014 2010-11 Cameroon RIF, INH, 
EMB 

725 rpoB, katG, 
embB-63 

25008819 Gupta A 2014 2008-10 India RIF, INH 101 katG, rpoB-
52 

25093512 de Freitas F A et al. 2014 1995-2003 Brazil RIF, INH 99 rpoB, katG-
99 

25182646 Cui Z et al. 2014 NS China EMB 767 embB-180 

25186245 Bhembe N L et al. 2014 2012-13 South Africa INH 190 pncA-140 

25336456 Miotto P et al. 2014 NS Unknown PZA 1950 pncA-843 

25427352 Htike Min P K et al. 2014 NS Thailand RIF 39 rpoB-36 

25574916 Akhmetova A et al. 2015 2011 Kazakhstan PZA 77 pncA-41 

25605360 Zhao L L et al. 2015 2008-10 China EMB 139 embCAB-79 

25673793 Witney A A et al.  2015 2008-14 United Kingdom RIF, INH, 
PZA, EMB 

16 rpoB, katG, 
pncA, 
embCAB-16 

25977398 Martinez E et al. 2015 2007-14 Australia RIF, INH, 
PZA, EMB 

15 pncA, rpoB, 
katG, embB-
15 
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26033726 Brossier F et al. 2015 2009-14 France RIF 131 rpoB-71 

26117709 Thirumurugan R et al. 2015 2011-13 India INH 127 katG-90 

26124153 Cuevas-Córdoba B et 
al. 

2015 2007-14 Mexico EMB 110 embB-61 

26369965 Rueda J et al. 2015 2000-13 Colombia INH 64 katG-57 

26786485 Qazi O et al. 2014 NS Pakistan RIF 1080 rpoB-24 

26787207 Rosales-Klintz S et al 2012 1994-2009 Unknown RIF, INH 120 rpoB, katG-
117 

26792466 Georghiou S B et al. 2016 2014 India RIF, INH 79 katG-22, 
rpoB- 12 

27096759 Ahmad S et al. 2016 2006-10 Kuwait RIF, INH, 
EMB 

70 rpoB, katG, 
embB-24 

27530852 Aung H L et al. 2016 NS Myanmar RIF, INH, 
PZA, EMB 

14 rpoB- 14, 
katG- 14, 
pncA- 6, 
embB- 8 

27671062 Li Y et al. 2016 2014 China EMB 280 embB-62 

28053915 Desikan P et al. 2016 2012-13 India RIF, INH 720 rpoB, katG-
269 

28404672 Georghiou S B et al. 2017 2012-13 Unknown RIF, INH 451 katG- 203, 
rpoB- 158 

28438132 Chen J et al. 2017 2014-15 China RIF, INH 186 rpoB, katG-
51 

28627432 Shah Y et al. 2017 2008-13 Nepal RIF, INH 601 rpoB, katG-
47 

28697808 Sengstake S et al. 2017 2012-13 Georgia PZA 67 pncA-33 

28716625 Sakhaee F et al 2017 2013-16 Iran RIF, INH, 
EMB 

395 katG- 24, 
rpoB- 21, 
embB- 32 

28780247 Tam K K et al. 2017 2015-16 Hongkong RIF, INH 187 rpoB-18, 
katG- 25 

28839308 Bashir A et al. 2017 2015-16 Pakistan INH 163 katG-79 

28947708 Naidoo C C et al. 2017 NS South Africa RIF, INH, 
PZA, EMB 

10 katG, rpoB, 
pncA, 
embCAB-10 

29084750 Sun Q et al. 2017 NS China EMB 125 embB- 68, 
embA- 15, 
embC- 2   

29110640 Pang Y et al. 2017 2014-16 China PZA 133 pncA-83 

29171560 Ahmad B et al. 2017 2015-16 Pakistan RIF, INH, 
EMB 

794 rpoB- 56, 
embB- 31, 
pncA- 16 

29310751 Bainomugisa A et al. 2018 2012-15 Papua New 
Guinea 

RIF, INH, 
PZA, EMB 

100 rpoB, katG, 
pncA, embB-
100 

29486710 Oudghiri A et al. 2018 2010-12 Morocco RIF, INH 703 rpoB, katG-
90 

29523326 Giri A et al. 2018 2011-15 India EMB 360 embCAB-29 

29559115 Bwalya P et al. 2018 2013-15 Zambia PZA 131 pncA-32 

29610587 Rezaei F et al. 2017 2010-14 Iran EMB 20 emb-19 

29847567 Kigozi E et al. 2018 NS Uganda RIF, INH 97 katG- 50, 
rpoB- 45 

30061294 Jagielski T et al. 2018 2004-13 Poland RIF 115 rpoB-65 

30082293 Kandler J L et al. 2018 NS United States INH 52 katG-52 
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30130640 Roa M B et al. 2018 2009-11 Philippines RIF, INH, 
PZA, EMB 

10 katG-7, 
rpoB-6, 
pncA-2, 
embCAB- 6 

30157763 Xu Y et al. 2018 2017-18 China RIF, INH, 
PZA, EMB 

18 pncA, rpoB, 
katG, embB-
18 

30455227 Andres S et al. 2019 2016-17 Germany PZA, EMB 85 pncA-49, 
embCAB- 42 

30513056 Franco-Sotomayor G 
et al. 

2018 2006-12 Ecuador RIF, INH 152 katG- 28, 
rpoB- 35 

30583880 Daum L T et al. 2019 2016 Ukraine PZA 98 pncA-91 

30881063 Khosravi A D et al. 2019 2016-17 Iran EMB 307 embB-10 

31086215 Luo D et al. 2019 2014-16 China RIF, INH 1063 rpoB, katG-
157 

141* Marttila H A et al. 1998 1993-95 Russia RIF, INH 27 katG- 26, 
rpoB- 22 

142* Ying X et al. 2011 2003-06 China INH 100 katG-50 

143* Chiu Y c et al. 2011 2007-09 Taiwan PZA 66 pncA-36 

144* Ramasubban et al. 2015 NS India RIF, INH 354 rpoB, katG-
18 

145* 
 

Zhang et al. 2018 2016 China RIF, INH 671 rpoB-178, 
katG- 177 

146* Yoon J H et al. 2012 2005-08 Korea RIF, INH, 
EMB 

80 rpoB-41, 
katG- 52, 
embB- 45 

147* Xu Y et al. 2015 2009 China EMB 1048 embCAB-109 

148* Jaiswal I et al. 2017 NS India INH 70 katG-50 

149* Bakula Z et al. 2013 2004 Poland EMB 50 embB-17 

 

‘*’- PMID not known 
141- A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant 

Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia 

142- An epidemiological study of resistant tuberculosis in Chongqing, China 

143- Characteristics of pncA mutations in multidrug-resistant tuberculosis in Taiwan 

144- Detection of novel and reported mutations in the rpoB, katG and inhA genes in multidrug-

resistant tuberculosis isolates- A hospital-based study 

145- GeneChip analysis of resistant Mycobacterium tuberculosis with previously treated tuberculosis 

in Changchun 

146- Molecular characterization of drug-resistant and -susceptible Mycobacterium tuberculosis 

isolated from patients with tuberculosis in Korea 

147- Mutations Found in embCAB, embR, and ubiA Genes of Ethambutol-Sensitive and -Resistant 

Mycobacterium tuberculosis Clinical Isolates from China 

148- Mutations in katG and inhA genes of isoniazid-resistant and -sensitive clinical isolates of 

Mycobacterium tuberculosis from cases of pulmonary tuberculosis and their association with minimum 

inhibitory concentration of isoniazid 

149- Mutations in the embB Gene and Their Association with Ethambutol Resistance in Multidrug-

Resistant Mycobacterium tuberculosis Clinical Isolates from Poland 
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Appendix B 

B. Atlas of first-line TB drug resistant mutations and single mutation 

frequency 

Appendix B includes six tables. Tables B.1, B.2, B.3, B.4, B.5 and B.6 show the atlas of first-line drug 

resistant mutations in Mycobacterium tuberculosis and single mutation frequency for each mutation. 

Table B.1, B.2, B.3, B.4, B.5 and B.6 include: 

1- Codon number or mutation position within a drug target 

2- Amino acid substitution 

3- Phenotypically resistant clinical isolates sequenced for a specific target or position 

4- Mutation count  

5- single amino acid mutation frequencies 

Table B.1: Single mutation frequency for catalase-peroxidase (katG) 

Table B.2: Single mutation frequency for Pyrazinamidase (pncA) 

Table B.3: Single mutation frequency for β-subunit of RNA polymerase (rpoB) 

Table B.4: Single mutation frequency for arabinosyltransferase A (embA) 

Table B.5: Single mutation frequency for arabinosyltransferase B (embB) 

Table B.6: Single mutation frequency for arabinosyltransferase C (embC) 

Table B1: Single mutation frequency for catalase-peroxidase (katG) 

Codon number Amino acid Substitution INH Resistant isolate Mutation count Single mutation frequency 

315 S/T 5667 3433 60.5788 

463 R/L 2400 330 13.75 

315 S/N 5667 167 2.94689 

315 S/R 5667 41 0.72349 

315 S/I 5667 34 0.59996 

337 Y/C 2884 20 0.69348 
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138 N/D 2088 20 0.95785 

264 A/T 2158 19 0.88044 

345 K/T 2884 18 0.62413 

394 T/A 2326 18 0.77386 

104 R/Q 2187 18 0.82305 

106 A/V 2187 18 0.82305 

107 W/R 2187 18 0.82305 

109 A/V 2187 18 0.82305 

229 Y/F 2123 18 0.84786 

143 K/T 2088 18 0.86207 

573 D/N 2088 18 0.86207 

728 W/C 2088 18 0.86207 

735 D/N 2088 18 0.86207 

316 G/S 2957 16 0.54109 

315 S/G 5667 9 0.15881 

275 T/A 2257 8 0.35445 

155 Y/C 2088 8 0.38314 

280 P/H 2257 7 0.31015 

85 T/P 2187 7 0.32007 

251 T/M 2158 7 0.32437 

121 G/C 2088 7 0.33525 

162 A/T 2088 7 0.33525 

607 E/K 2088 7 0.33525 

322 T/A 3189 5 0.15679 

326 T/M 2928 5 0.17077 

141 L/F 2088 5 0.23946 

315 S/D 5667 4 0.07058 

317 I/L 2928 4 0.13661 

300 W/G 2883 4 0.13874 

309 G/V 2870 4 0.13937 

110 A/V 2187 4 0.1829 

328 W/C 3192 3 0.09398 

305 G/A 2870 3 0.10453 

309 G/S 2870 3 0.10453 

311 D/F 2870 3 0.10453 

406 D/A 2400 3 0.125 

98 Y/S 2187 3 0.13717 

172 A/V 2088 3 0.14368 

328 W/R 3192 2 0.06266 

322 T/N 3189 2 0.06272 

295 Q/P 3008 2 0.06649 

321 W/S 2928 2 0.06831 

329 D/G 2884 2 0.06935 

336 L/R 2884 2 0.06935 

300 W/C 2883 2 0.06937 

309 G/A 2870 2 0.06969 

311 D/G 2870 2 0.06969 

311 D/E 2870 2 0.06969 
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397 W/Y 2400 2 0.08333 

409 A/D 2400 2 0.08333 

428 G/R 2400 2 0.08333 

463 R/H 2400 2 0.08333 

248 I/M 2303 2 0.08684 

270 H/A 2257 2 0.08861 

271 T/V 2257 2 0.08861 

275 T/P 2257 2 0.08861 

279 G/D 2257 2 0.08861 

101 L/P 2193 2 0.0912 

94 D/N 2187 2 0.09145 

261 E/K 2158 2 0.09268 

261 E/Q 2158 2 0.09268 

234 G/R 2123 2 0.09421 

218 N/K 2103 2 0.0951 

587 L/P 2101 2 0.09519 

138 N/H 2088 2 0.09579 

138 N/S 2088 2 0.09579 

155 Y/S 2088 2 0.09579 

172 A/T 2088 2 0.09579 

315 S/A 5667 1 0.01765 

315 S/L 5667 1 0.01765 

328 W/L 3192 1 0.03133 

328 W/S 3192 1 0.03133 

322 T/M 3189 1 0.03136 

316 G/D 2957 1 0.03382 

303 S/W 2949 1 0.03391 

317 I/V 2928 1 0.03415 

318 E/V 2928 1 0.03415 

318 E/G 2928 1 0.03415 

321 W/R 2928 1 0.03415 

321 W/L 2928 1 0.03415 

321 W/G 2928 1 0.03415 

324 T/P 2928 1 0.03415 

308 T/P 2899 1 0.03449 

312 A/V 2892 1 0.03458 

312 A/R 2892 1 0.03458 

312 A/G 2892 1 0.03458 

314 T/N 2892 1 0.03458 

299 G/C 2889 1 0.03461 

331 S/C 2884 1 0.03467 

335 I/T 2884 1 0.03467 

335 I/V 2884 1 0.03467 

336 L/P 2884 1 0.03467 

341 W/S 2884 1 0.03467 

344 T/P 2884 1 0.03467 

350 A/S 2884 1 0.03467 

357 D/H 2884 1 0.03467 
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357 D/N 2884 1 0.03467 

379 A/V 2884 1 0.03467 

380 T/I 2884 1 0.03467 

384 L/R 2884 1 0.03467 

385 R/P 2884 1 0.03467 

300 W/R 2883 1 0.03469 

302 S/R 2870 1 0.03484 

307 G/R 2870 1 0.03484 

309 G/C 2870 1 0.03484 

309 G/F 2870 1 0.03484 

311 D/Y 2870 1 0.03484 

424 A/G 2560 1 0.03906 

408 F/L 2400 1 0.04167 

415 L/P 2400 1 0.04167 

442 V/G 2400 1 0.04167 

446 S/R 2400 1 0.04167 

449 L/F 2400 1 0.04167 

454 E/R 2400 1 0.04167 

463 R/W 2400 1 0.04167 

471 Q/R 2400 1 0.04167 

485 G/V 2400 1 0.04167 

490 G/C 2400 1 0.04167 

490 G/D 2400 1 0.04167 

496 R/L 2400 1 0.04167 

498 R/H 2400 1 0.04167 

491 G/C 2394 1 0.04177 

388 P/S 2346 1 0.04263 

388 P/L 2346 1 0.04263 

274 K/R 2321 1 0.04308 

505 W/S 2301 1 0.04346 

11 T/A 2261 1 0.04423 

12 T/P 2261 1 0.04423 

35 N/D 2261 1 0.04423 

61 A/T 2261 1 0.04423 

63 D/E 2261 1 0.04423 

68 V/G 2261 1 0.04423 

74 D/Y 2261 1 0.04423 

74 D/G 2261 1 0.04423 

269 G/T 2257 1 0.04431 

280 P/S 2257 1 0.04431 

285 G/R 2257 1 0.04431 

285 G/C 2257 1 0.04431 

285 G/D 2257 1 0.04431 

289 E/D 2257 1 0.04431 

291 A/V 2257 1 0.04431 

291 A/T 2257 1 0.04431 

291 A/P 2257 1 0.04431 

117 D/A 2239 1 0.04466 
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257 M/I 2195 1 0.04556 

84 M/I 2187 1 0.04572 

91 W/G 2187 1 0.04572 

91 W/R 2187 1 0.04572 

93 A/T 2187 1 0.04572 

94 D/G 2187 1 0.04572 

105 M/I 2187 1 0.04572 

108 H/D 2187 1 0.04572 

108 H/Q 2187 1 0.04572 

118 G/A 2187 1 0.04572 

515 R/C 2182 1 0.04583 

525 Q/P 2175 1 0.04598 

529 N/D 2162 1 0.04625 

241 P/S 2158 1 0.04634 

262 T/R 2158 1 0.04634 

230 V/A 2123 1 0.0471 

232 P/R 2123 1 0.0471 

232 P/A 2123 1 0.0471 

232 P/S 2123 1 0.0471 

234 G/E 2123 1 0.0471 

236 N/T 2123 1 0.0471 

191 W/R 2103 1 0.04755 

194 D/Y 2103 1 0.04755 

195 E/K 2103 1 0.04755 

206 G/D 2103 1 0.04755 

217 E/G 2103 1 0.04755 

700 S/P 2101 1 0.0476 

121 G/V 2088 1 0.04789 

125 G/V 2088 1 0.04789 

125 G/C 2088 1 0.04789 

127 Q/P 2088 1 0.04789 

128 R/Q 2088 1 0.04789 

128 R/P 2088 1 0.04789 

131 P/R 2088 1 0.04789 

131 P/Q 2088 1 0.04789 

138 N/T 2088 1 0.04789 

142 D/N 2088 1 0.04789 

146 R/W 2088 1 0.04789 

161 W/Q 2088 1 0.04789 

161 W/R 2088 1 0.04789 

169 G/S 2088 1 0.04789 

176 M/I 2088 1 0.04789 

186 G/V 2088 1 0.04789 

573 D/G 2088 1 0.04789 

611 L/R 2088 1 0.04789 

629 G/S 2088 1 0.04789 

636 A/E 2088 1 0.04789 

652 S/A 2088 1 0.04789 
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653 L/P 2088 1 0.04789 

705 R/L 2088 1 0.04789 

717 Q/P 2088 1 0.04789 

735 D/A 2088 1 0.04789 

 

Table B.2: Single mutation frequency for pyrazinamidase (pncA) 

Codon number Amin acid substitution PZA resistant isolate Mutation count Single mutation frequency 

10 Q/P 2608 38 1.457055 

68 W/R 2608 27 1.035276 

103 Y/D 2608 27 1.035276 

141 Q/P 2608 25 0.958589 

12 D/A 2608 23 0.881902 

133 I/T 2608 23 0.881902 

68 W/G 2608 22 0.843558 

57 H/R 2608 21 0.805215 

140 R/S 2608 21 0.805215 

57 H/D 2608 20 0.766871 

125 V/G 2608 20 0.766871 

172 L/P 2608 20 0.766871 

7 V/G 2608 18 0.690184 

159 L/R 2608 17 0.65184 

85 L/P 2608 16 0.613497 

120 L/P 2608 16 0.613497 

132 G/D 2608 16 0.613497 

8 D/G 2608 15 0.575153 

58 F/L 2608 15 0.575153 

76 T/P 2608 15 0.575153 

96 K/E 2608 15 0.575153 

97 G/S 2608 15 0.575153 

135 T/P 2608 15 0.575153 

47 T/A 2608 14 0.53681 

51 H/Q 2608 14 0.53681 

14 C/R 2608 13 0.498466 

54 P/L 2608 13 0.498466 

10 Q/R 2608 12 0.460123 

94 F/L 2608 12 0.460123 

139 V/A 2608 12 0.460123 

139 V/G 2608 11 0.421779 

175 M/I 2608 11 0.421779 

71 H/D 2608 10 0.383436 

142 T/M 2608 10 0.383436 

1 M/T 2608 9 0.345092 

12 D/G 2608 9 0.345092 

35 L/R 2608 9 0.345092 

49 D/A 2608 9 0.345092 

62 P/L 2608 9 0.345092 
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175 M/V 2608 9 0.345092 

31 I/S 2608 8 0.306748 

46 A/V 2608 8 0.306748 

51 H/P 2608 8 0.306748 

68 W/C 2608 8 0.306748 

103 Y/H 2608 8 0.306748 

155 V/G 2608 8 0.306748 

8 D/E 2608 7 0.268405 

8 D/N 2608 7 0.268405 

12 D/E 2608 7 0.268405 

51 H/R 2608 7 0.268405 

94 F/C 2608 7 0.268405 

97 G/D 2608 7 0.268405 

102 A/V 2608 7 0.268405 

130 V/G 2608 7 0.268405 

132 G/S 2608 7 0.268405 

139 V/L 2608 7 0.268405 

142 T/K 2608 7 0.268405 

146 A/T 2608 7 0.268405 

63 D/G 2608 6 0.230061 

72 C/R 2608 6 0.230061 

82 H/R 2608 6 0.230061 

134 A/V 2608 6 0.230061 

140 R/P 2608 6 0.230061 

171 A/E 2608 6 0.230061 

177 T/P 2608 6 0.230061 

43 H/P 2608 5 0.191718 

49 D/G 2608 5 0.191718 

51 H/Y 2608 5 0.191718 

54 P/Q 2608 5 0.191718 

57 H/Y 2608 5 0.191718 

67 S/P 2608 5 0.191718 

71 H/Y 2608 5 0.191718 

94 F/S 2608 5 0.191718 

104 S/R 2608 5 0.191718 

136 D/Y 2608 5 0.191718 

137 H/P 2608 5 0.191718 

142 T/A 2608 5 0.191718 

154 R/G 2608 5 0.191718 

172 L/R 2608 5 0.191718 

3 A/E 2608 4 0.153374 

7 V/F 2608 4 0.153374 

17 G/D 2608 4 0.153374 

31 I/T 2608 4 0.153374 

57 H/P 2608 4 0.153374 

59 S/P 2608 4 0.153374 

63 D/A 2608 4 0.153374 

69 P/R 2608 4 0.153374 
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76 T/I 2608 4 0.153374 

85 L/R 2608 4 0.153374 

96 K/T 2608 4 0.153374 

96 K/N 2608 4 0.153374 

128 V/G 2608 4 0.153374 

138 C/R 2608 4 0.153374 

139 V/M 2608 4 0.153374 

151 L/S 2608 4 0.153374 

155 V/A 2608 4 0.153374 

162 G/D 2608 4 0.153374 

165 A/T 2608 4 0.153374 

3 A/P 2608 3 0.115031 

4 L/S 2608 3 0.115031 

6 I/T 2608 3 0.115031 

8 D/Y 2608 3 0.115031 

9 V/G 2608 3 0.115031 

10 Q/K 2608 3 0.115031 

13 F/L 2608 3 0.115031 

19 L/P 2608 3 0.115031 

27 L/P 2608 3 0.115031 

34 Y/D 2608 3 0.115031 

68 W/L 2608 3 0.115031 

69 P/L 2608 3 0.115031 

96 K/Q 2608 3 0.115031 

120 L/R 2608 3 0.115031 

121 R/P 2608 3 0.115031 

135 T/N 2608 3 0.115031 

137 H/R 2608 3 0.115031 

146 A/V 2608 3 0.115031 

155 V/M 2608 3 0.115031 

160 T/P 2608 3 0.115031 

164 S/P 2608 3 0.115031 

4 L/W 2608 2 0.076687 

13 F/S 2608 2 0.076687 

14 C/W 2608 2 0.076687 

14 C/Y 2608 2 0.076687 

26 A/G 2608 2 0.076687 

34 Y/S 2608 2 0.076687 

35 L/P 2608 2 0.076687 

45 V/A 2608 2 0.076687 

46 A/E 2608 2 0.076687 

47 T/P 2608 2 0.076687 

49 D/N 2608 2 0.076687 

54 P/S 2608 2 0.076687 

54 P/T 2608 2 0.076687 

71 H/R 2608 2 0.076687 

71 H/T 2608 2 0.076687 

72 C/Y 2608 2 0.076687 
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72 C/W 2608 2 0.076687 

78 G/D 2608 2 0.076687 

82 H/D 2608 2 0.076687 

87 T/M 2608 2 0.076687 

94 F/P 2608 2 0.076687 

96 K/R 2608 2 0.076687 

97 G/A 2608 2 0.076687 

100 T/A 2608 2 0.076687 

100 T/P 2608 2 0.076687 

103 Y/S 2608 2 0.076687 

108 G/R 2608 2 0.076687 

114 T/A 2608 2 0.076687 

116 L/V 2608 2 0.076687 

125 V/F 2608 2 0.076687 

130 V/A 2608 2 0.076687 

132 G/A 2608 2 0.076687 

132 G/C 2608 2 0.076687 

132 G/R 2608 2 0.076687 

136 D/N 2608 2 0.076687 

138 C/Y 2608 2 0.076687 

148 R/S 2608 2 0.076687 

160 T/A 2608 2 0.076687 

161 A/P 2608 2 0.076687 

171 A/V 2608 2 0.076687 

172 L/A 2608 2 0.076687 

180 V/G 2608 2 0.076687 

180 V/F 2608 2 0.076687 

182 L/S 2608 2 0.076687 

1 M/I 2608 1 0.038344 

3 A/S 2608 1 0.038344 

3 A/Q 2608 1 0.038344 

5 I/T 2608 1 0.038344 

5 I/S 2608 1 0.038344 

6 I/S 2608 1 0.038344 

6 I/L 2608 1 0.038344 

7 V/A 2608 1 0.038344 

7 V/I 2608 1 0.038344 

7 V/D 2608 1 0.038344 

8 D/A 2608 1 0.038344 

8 D/H 2608 1 0.038344 

9 V/A 2608 1 0.038344 

9 V/S 2608 1 0.038344 

10 Q/H 2608 1 0.038344 

12 D/H 2608 1 0.038344 

12 D/N 2608 1 0.038344 

13 F/V 2608 1 0.038344 

17 G/S 2608 1 0.038344 

18 S/P 2608 1 0.038344 
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19 L/R 2608 1 0.038344 

21 V/G 2608 1 0.038344 

23 G/A 2608 1 0.038344 

23 G/V 2608 1 0.038344 

25 A/E 2608 1 0.038344 

27 L/R 2608 1 0.038344 

28 A/V 2608 1 0.038344 

28 A/D 2608 1 0.038344 

41 Y/H 2608 1 0.038344 

44 V/G 2608 1 0.038344 

45 V/G 2608 1 0.038344 

46 A/S 2608 1 0.038344 

47 T/S 2608 1 0.038344 

49 D/H 2608 1 0.038344 

49 D/V 2608 1 0.038344 

51 H/N 2608 1 0.038344 

51 H/D 2608 1 0.038344 

53 D/A 2608 1 0.038344 

54 P/R 2608 1 0.038344 

57 H/Q 2608 1 0.038344 

57 H/L 2608 1 0.038344 

59 S/F 2608 1 0.038344 

62 P/H 2608 1 0.038344 

62 P/T 2608 1 0.038344 

62 P/Q 2608 1 0.038344 

64 Y/D 2608 1 0.038344 

66 S/P 2608 1 0.038344 

68 W/D 2608 1 0.038344 

68 W/S 2608 1 0.038344 

69 P/A 2608 1 0.038344 

71 H/Q 2608 1 0.038344 

71 H/P 2608 1 0.038344 

71 H/N 2608 1 0.038344 

71 H/E 2608 1 0.038344 

73 V/F 2608 1 0.038344 

76 T/A 2608 1 0.038344 

79 A/T 2608 1 0.038344 

79 A/G 2608 1 0.038344 

80 D/E 2608 1 0.038344 

80 D/N 2608 1 0.038344 

81 F/S 2608 1 0.038344 

82 H/L 2608 1 0.038344 

83 P/R 2608 1 0.038344 

93 V/M 2608 1 0.038344 

99 Y/D 2608 1 0.038344 

102 A/T 2608 1 0.038344 

103 Y/C 2608 1 0.038344 

105 G/R 2608 1 0.038344 
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112 N/Y 2608 1 0.038344 

114 T/P 2608 1 0.038344 

116 L/R 2608 1 0.038344 

118 N/T 2608 1 0.038344 

119 W/L 2608 1 0.038344 

119 W/G 2608 1 0.038344 

119 W/R 2608 1 0.038344 

119 W/C 2608 1 0.038344 

125 V/D 2608 1 0.038344 

125 V/L 2608 1 0.038344 

130 V/L 2608 1 0.038344 

131 V/F 2608 1 0.038344 

134 A/S 2608 1 0.038344 

135 T/A 2608 1 0.038344 

136 D/H 2608 1 0.038344 

136 D/G 2608 1 0.038344 

137 H/D 2608 1 0.038344 

138 C/T 2608 1 0.038344 

138 C/W 2608 1 0.038344 

138 C/S 2608 1 0.038344 

140 R/H 2608 1 0.038344 

142 T/P 2608 1 0.038344 

143 A/P 2608 1 0.038344 

143 A/G 2608 1 0.038344 

143 A/T 2608 1 0.038344 

146 A/P 2608 1 0.038344 

146 A/E 2608 1 0.038344 

148 R/C 2608 1 0.038344 

154 R/T 2608 1 0.038344 

155 V/L 2608 1 0.038344 

157 V/G 2608 1 0.038344 

159 L/P 2608 1 0.038344 

160 T/K 2608 1 0.038344 

162 G/A 2608 1 0.038344 

163 V/A 2608 1 0.038344 

168 T/P 2608 1 0.038344 

168 T/N 2608 1 0.038344 

171 A/T 2608 1 0.038344 

171 A/P 2608 1 0.038344 

175 M/T 2608 1 0.038344 

175 M/R 2608 1 0.038344 

184 C/Y 2608 1 0.038344 
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Table B.3: Single mutation frequency for β-subunit of RNA polymerase (rpoB) 

Codon number Amin acid substitution RIF resistant isolate Mutation count Single mutation frequency 

450 S/L 5143 2916 56.69843 

445 H/Y 5143 412 8.010889 

435 D/V 5143 334 6.494264 

445 H/D 5143 233 4.53043 

445 H/R 5143 160 3.111025 

435 D/Y 5143 128 2.48882 

452 L/P 5143 109 2.119386 

450 S/W 5143 107 2.080498 

445 H/L 5143 96 1.866615 

441 S/L 5143 84 1.633288 

430 L/P 5025 79 1.572139 

435 D/G 5143 67 1.302742 

445 H/N 5143 45 0.874976 

445 H/C 5143 28 0.544429 

432 Q/K 5025 27 0.537313 

432 Q/P 5025 24 0.477612 

445 H/P 5143 24 0.466654 

432 Q/L 5025 19 0.378109 

450 S/F 5143 17 0.330546 

434 M/I 5143 16 0.311102 

413 N/H 798 10 1.253133 

435 D/E 5143 10 0.194439 

450 S/Q 5143 9 0.174995 

445 H/S 5143 8 0.155551 

451 A/D 5143 8 0.155551 

430 L/R 5025 7 0.139303 

437 N/T 5143 7 0.136107 

448 R/L 5143 7 0.136107 

424 F/V 1899 6 0.315956 

435 D/F 5143 6 0.116663 

441 S/F 5143 6 0.116663 

424 F /L 1899 5 0.263296 

428 S/R 3978 5 0.125691 

429 Q/H 3978 5 0.125691 

435 D/H 5143 5 0.09722 

441 S/Q 5143 5 0.09722 

447 R/P 5143 5 0.09722 

454 P/S 5095 5 0.098135 

430 L/K 5025 4 0.079602 

434 M/V 5143 4 0.077776 

435 D/A 5143 4 0.077776 

437 N/Y 5143 4 0.077776 

437 N/H 5143 4 0.077776 

438 N/K 5143 4 0.077776 

444 T/P 5143 4 0.077776 
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445 H/Q 5143 4 0.077776 

431 S/T 5025 3 0.059701 

432 Q/H 5025 3 0.059701 

437 N/I 5143 3 0.058332 

441 S/N 5143 3 0.058332 

441 S/W 5143 3 0.058332 

445 H/T 5143 3 0.058332 

445 H/G 5143 3 0.058332 

454 P/H 5095 3 0.058881 

491 I/F 981 3 0.30581 

170 V/F 798 2 0.250627 

426 G/D 2982 2 0.067069 

428 S/T 3180 2 0.062893 

431 S/C 5025 2 0.039801 

431 S/I 5025 2 0.039801 

431 S/R 5025 2 0.039801 

431 S/M 5025 2 0.039801 

432 Q/E 5025 2 0.039801 

435 D/T 5143 2 0.038888 

436 Q/L 5143 2 0.038888 

437 N/D 5143 2 0.038888 

442 G/W 5143 2 0.038888 

445 H/A 5143 2 0.038888 

446 K/N 5143 2 0.038888 

446 K/Q 5143 2 0.038888 

448 R/Q 5143 2 0.038888 

450 S/A 5143 2 0.038888 

452 L/E 5143 2 0.038888 

452 L/V 5143 2 0.038888 

455 G/D 5095 2 0.039254 

460 E/G 1091 2 0.183318 

480 I/V 1091 2 0.183318 

483 P/L 981 2 0.203874 

427 T/P 3133 1 0.031918 

427 T/S 3133 1 0.031918 

428 S/Q 3180 1 0.031447 

428 S/G 3180 1 0.031447 

428 S/I 3180 1 0.031447 

430 L/V 5025 1 0.0199 

430 L/M 5025 1 0.0199 

431 S/N 5025 1 0.0199 

431 S/G 5025 1 0.0199 

433 F/L 5025 1 0.0199 

433 F/V 5025 1 0.0199 

434 M/T 5143 1 0.019444 

435 D/N 5143 1 0.019444 

435 D/P 5143 1 0.019444 

435 D/K 5143 1 0.019444 
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436 Q/P 5143 1 0.019444 

437 N/S 5143 1 0.019444 

439 P/S 5143 1 0.019444 

440 L/M 5143 1 0.019444 

440 L/P 5143 1 0.019444 

441 S/P 5143 1 0.019444 

445 H/E 5143 1 0.019444 

446 K/R 5143 1 0.019444 

446 K/E 5143 1 0.019444 

447 R/H 5143 1 0.019444 

448 R/P 5143 1 0.019444 

448 R/G 5143 1 0.019444 

450 S/Y 5143 1 0.019444 

450 S/G 5143 1 0.019444 

450 S/C 5143 1 0.019444 

452 L/R 5143 1 0.019444 

452 L/M 5143 1 0.019444 

453 G/A 5095 1 0.019627 

453 G/W 5095 1 0.019627 

453 G/V 5095 1 0.019627 

457 L/R 1091 1 0.091659 

481 E/G 1091 1 0.091659 

482 T/P 1091 1 0.091659 

487 N/S 981 1 0.101937 

488 I/V 981 1 0.101937 

493 S/L 821 1 0.121803 

507 E/G 821 1 0.121803 

 

Table B.4: Single mutation frequency for arabinosyltransferase A (embA) 

Codon number Amin acid substitution EMB resistant isolate Mutation count Single mutation frequency 

4 D/N 71 2 2.816901 

5 G/S 71 2 2.816901 

913 P/S 6 2 33.33333 

5 G/V 71 1 1.408451 

105 L/V 130 1 0.769231 

122 V/G 130 1 0.769231 

125 V/G 130 1 0.769231 

200 G/S 115 1 0.869565 

201 A/T 115 1 0.869565 

206 V/M 115 1 0.869565 

331 A/T 115 1 0.869565 

343 V/L 115 1 0.869565 

350 G/D 115 1 0.869565 

380 R/P 115 1 0.869565 

468 V/A 6 1 16.66667 

554 G/D 6 1 16.66667 
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576 A/T 6 1 16.66667 

639 P/S 6 1 16.66667 

769 P/T 6 1 16.66667 

838 P/L 6 1 16.66667 

 

Table B.5: Single mutation frequency for arabinosyltransferase B (embB) 

Codon number Amin acid substitution EMB resistant isolate Mutation count Single mutation frequency 

306 M/V 1765 515 29.17847 

306 M/I 1765 318 18.017 

406 G/A 1592 75 4.711055 

497 Q/R 1247 72 5.773857 

306 M/L 1765 65 3.68272 

406 G/D 1592 54 3.39196 

497 Q/K 1247 30 2.405774 

354 D/A 1395 24 1.72043 

406 G/S 1592 22 1.38191 

378 E/A 1390 15 1.079137 

319 Y/C 1522 14 0.919842 

497 Q/P 1247 11 0.882117 

334 Y/H 1477 10 0.677048 

328 D/G 1556 9 0.578406 

281 A/V 1222 8 0.654664 

296 N/H 1222 7 0.572831 

406 G/P 1592 6 0.376884 

328 D/Y 1556 6 0.385604 

319 Y/S 1522 6 0.394218 

330 F/L 1477 6 0.406229 

406 G/C 1592 5 0.31407 

246 G/R 1132 5 0.441696 

504 E/D 1041 5 0.480307 

360 V/A 1390 4 0.28777 

404 P/S 1390 4 0.28777 

299 D/E 1267 4 0.315706 

507 R/K 1041 4 0.384246 

1024 D/N 927 4 0.431499 

319 Y/D 1522 3 0.197109 

354 D/N 1395 3 0.215054 

358 G/V 1390 3 0.215827 

368 E/Q 1390 3 0.215827 

397 P/T 1390 3 0.215827 

402 L/V 1390 3 0.215827 

448 G/V 1199 3 0.250209 

460 R/C 1199 3 0.250209 

347 S/C 1583 2 0.126342 

328 D/H 1556 2 0.128535 

356 A/F 1390 2 0.143885 
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359 L/I 1390 2 0.143885 

368 E/D 1390 2 0.143885 

374 G/V 1390 2 0.143885 

377 V/G 1390 2 0.143885 

380 S/R 1390 2 0.143885 

384 Y/N 1390 2 0.143885 

412 S/P 1281 2 0.156128 

431 A/T 1281 2 0.156128 

482 M/I 1202 2 0.166389 

50 V/A 927 2 0.21575 

74 L/R 927 2 0.21575 

565 S/G 927 2 0.21575 

1002 H/R 927 2 0.21575 

306 M/F 1765 1 0.056657 

306 M/T 1765 1 0.056657 

406 G/K 1592 1 0.062814 

406 G/R 1592 1 0.062814 

347 S/T 1583 1 0.063171 

345 D/G 1583 1 0.063171 

347 S/I 1583 1 0.063171 

328 D/V 1556 1 0.064267 

309 V/A 1522 1 0.065703 

309 V/G 1522 1 0.065703 

310 A/R 1522 1 0.065703 

311 D/R 1522 1 0.065703 

311 D/F 1522 1 0.065703 

311 D/G 1522 1 0.065703 

311 D/H 1522 1 0.065703 

312 H/R 1522 1 0.065703 

315 Y/L 1522 1 0.065703 

316 M/I 1522 1 0.065703 

317 S/F 1522 1 0.065703 

317 S/T 1522 1 0.065703 

318 N/H 1522 1 0.065703 

318 N/S 1522 1 0.065703 

318 N/K 1522 1 0.065703 

319 Y/N 1522 1 0.065703 

320 F/L 1522 1 0.065703 

322 W/C 1522 1 0.065703 

322 W/R 1522 1 0.065703 

330 F/I 1477 1 0.067705 

330 F/V 1477 1 0.067705 

331 G/R 1477 1 0.067705 

332 W/R 1477 1 0.067705 

354 D/T 1395 1 0.071685 

356 A/S 1390 1 0.071942 

356 A/V 1390 1 0.071942 

357 A/S 1390 1 0.071942 
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357 A/T 1390 1 0.071942 

357 A/V 1390 1 0.071942 

360 V/M 1390 1 0.071942 

366 S/L 1390 1 0.071942 

366 S/P 1390 1 0.071942 

367 R/P 1390 1 0.071942 

368 E/A 1390 1 0.071942 

369 V/L 1390 1 0.071942 

369 V/A 1390 1 0.071942 

370 L/R 1390 1 0.071942 

371 P/R 1390 1 0.071942 

375 P/A 1390 1 0.071942 

377 V/M 1390 1 0.071942 

377 V/E 1390 1 0.071942 

378 E/K 1390 1 0.071942 

379 A/T 1390 1 0.071942 

379 A/D 1390 1 0.071942 

380 S/N 1390 1 0.071942 

380 S/G 1390 1 0.071942 

380 S/D 1390 1 0.071942 

388 A/G 1390 1 0.071942 

393 T/A 1390 1 0.071942 

395 W/R 1390 1 0.071942 

395 W/C 1390 1 0.071942 

397 P/R 1390 1 0.071942 

397 P/Q 1390 1 0.071942 

398 F/H 1390 1 0.071942 

398 F/Y 1390 1 0.071942 

399 N/T 1390 1 0.071942 

399 N/I 1390 1 0.071942 

399 N/D 1390 1 0.071942 

399 N/H 1390 1 0.071942 

400 N/P 1390 1 0.071942 

400 N/K 1390 1 0.071942 

401 G/S 1390 1 0.071942 

404 P/A 1390 1 0.071942 

405 E/D 1390 1 0.071942 

405 E/P 1390 1 0.071942 

412 S/L 1281 1 0.078064 

423 M/T 1281 1 0.078064 

426 S/N 1281 1 0.078064 

430 P/L 1281 1 0.078064 

435 V/G 1281 1 0.078064 

436 V/G 1281 1 0.078064 

437 T/A 1281 1 0.078064 

298 S/A 1267 1 0.078927 

298 S/W 1267 1 0.078927 

304 L/V 1267 1 0.078927 
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497 Q/H 1247 1 0.080192 

497 Q/F 1247 1 0.080192 

281 A/S 1222 1 0.081833 

282 V/G 1222 1 0.081833 

288 L/V 1222 1 0.081833 

293 I/T 1222 1 0.081833 

296 N/I 1222 1 0.081833 

296 N/K 1222 1 0.081833 

297 S/A 1222 1 0.081833 

465 I/D 1202 1 0.083195 

469 R/P 1202 1 0.083195 

471 R/P 1202 1 0.083195 

446 P/H 1199 1 0.083403 

450 I/M 1199 1 0.083403 

452 V/L 1199 1 0.083403 

454 A/T 1199 1 0.083403 

459 G/A 1199 1 0.083403 

460 R/L 1199 1 0.083403 

461 P/S 1199 1 0.083403 

239 L/P 1132 1 0.088339 

240 D/H 1132 1 0.088339 

257 R/W 1132 1 0.088339 

507 R/G 1041 1 0.096061 

505 A/V 1024 1 0.097656 

13 N/S 927 1 0.107875 

128 V/G 927 1 0.107875 

557 M/I 927 1 0.107875 

602 V/A 927 1 0.107875 

624 N/D 927 1 0.107875 

642 T/A 927 1 0.107875 

643 T/I 927 1 0.107875 

745 G/D 927 1 0.107875 

1000 M/R 927 1 0.107875 

 

Table B.6: Single mutation frequency for arabinosyltransferase C (embC) 

Codon number Amino acid substitution EMB resistant isolate Mutation count Single mutation frequency 

270 T/I 69 31 44.92754 

981 V/L 69 30 43.47826 

738 R/Q 69 5 7.246377 

213 S/C 69 2 2.898551 

251 L/R 69 2 2.898551 

254 A/G 69 2 2.898551 

297 I/L 69 2 2.898551 

394 N/D 69 2 2.898551 

150 P/S 69 1 1.449275 

244 A/T 69 1 1.449275 
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247 A/P 69 1 1.449275 

272 G/S 69 1 1.449275 

285 H/Y 69 1 1.449275 

287 V/F 69 1 1.449275 

288 G/W 69 1 1.449275 

288 G/V 69 1 1.449275 

296 Y/H 69 1 1.449275 

296 Y/S 69 1 1.449275 

297 I/T 69 1 1.449275 

300 M/R 69 1 1.449275 

302 R/G 69 1 1.449275 

303 V/G 69 1 1.449275 

305 E/D 69 1 1.449275 

307 A/T 69 1 1.449275 

308 G/D 40 1 2.5 

309 Y/N 40 1 2.5 

310 M/K 40 1 2.5 

325 G/S 40 1 2.5 

326 W/R 40 1 2.5 

327 Y/N 40 1 2.5 

329 D/E 69 1 1.449275 

378 A/V 69 1 1.449275 

406 I/L 69 1 1.449275 

426 A/T 69 1 1.449275 

451 V/I 69 1 1.449275 

707 P/L 69 1 1.449275 

725 Q/R 69 1 1.449275 

987 V/A 69 1 1.449275 
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Appendix C 

C. Number of amino acid substitutions in the mutated position in 

the first-line drug targets 

Appendix C includes six tables. Tables C.1, C.2, C.3, C.4, C.5 and C.6 show the number of amino acid 

substitutions (hotspot mutations) occurring at each mutated position of the first-line TB drug target in 

Mycobacterium tuberculosis. Table C.1, C.2, C.3, C.4, C.5 and C.6 include: 

1- Codon number or mutation position within a drug target 

2- Amino acid  

3- Amino acid substitution occurring at a particular site 

4- Number of different types of substitution 

Table C1: Hotspot mutation count for catalase-peroxidase (katG) 

Table C.2: Hotspot mutation count for pyrazinamidase (pncA) 

Table C.3: hotspot mutation count for β-subunit of RNA polymerase (rpoB) 

Table C.4: Hotspot mutation count for arabinosyltransferase A (embA) 

Table C.5: Hotspot mutation count for arabinosyltransferase B (embB) 

Table C.6: Hotspot mutation count for arabinosyltransferase C (embC) 

Table C.1: Hotspot mutation count for catalase-peroxidase (katG) 

katG Codon 
number 

Amino acid at that position Amino acid 
substitution 

Number of different 
types of substitution 

315    S R, T, N, G, A, D, L, I, 8 

309    G C, S, V, A, F 5 

138    N H, D, S, T 4 

311    D Y, F, G, E 4 

321    W R, L, G, S 4 

328    W L, R, S, C 4 

232    P R, A, S 3 
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285    G R, C, D 3 

291    A V, T, P 3 

300    W C, R, G 3 

312    A V, R, G 3 

322    T A, N, M 3 

463    R W, H, L 3 

74    D Y, G 2 

91    W G, R 2 

94    D N, G 2 

108    H D, Q 2 

121    G C, V 2 

125    G V, C 2 

128    R Q, P 2 

131    P R, Q 2 

155    Y S, C 2 

161    W Q, R 2 

172    A T, V 2 

234    G E, R 2 

261    E K, Q 2 

275    T A, P 2 

280    P S, H 2 

316    G S, D 2 

317    I L, V 2 

318    E V, G 2 

335    I T, V 2 

336    L R, P 2 

357    D H, N 2 

388    P S, L 2 

490    G C, D 2 

573    D G, N 2 

735    D N, A 2 

11    T A 1 

12    T P 1 

35    N D 1 

61    A T 1 

63    D E 1 

68    V G 1 

84    M I 1 

85    T P 1 

93    A T 1 

98    Y S 1 

101    L P 1 

104    R Q 1 

105    M I 1 

106    A V 1 

107    W R 1 

109    A V 1 

110    A V 1 
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117    D A 1 

118    G A 1 

127    Q P 1 

141    L F 1 

142    D N 1 

143    K T 1 

146    R W 1 

162    A T 1 

169    G S 1 

176    M I 1 

186    G V 1 

191    W R 1 

194    D Y 1 

195    E K 1 

206    G D 1 

217    E G 1 

218    N K 1 

229    Y F 1 

230    V A 1 

236    N T 1 

241    P S 1 

248    I M 1 

251    T M 1 

257    M I 1 

262    T R 1 

264    A T 1 

269    G T 1 

270    H A 1 

271    T V 1 

274    K R 1 

279    G D 1 

289    E D 1 

295    Q P 1 

299    G C 1 

302    S R 1 

303    S W 1 

305    G A 1 

307    G R 1 

308    T P 1 

314    T N 1 

324    T P 1 

326    T M 1 

329    D G 1 

331    S C 1 

337    Y C 1 

341    W S 1 

344    T P 1 

345    K T 1 
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350    A S 1 

379    A V 1 

380    T I 1 

384    L R 1 

385    R P 1 

394    T A 1 

397    W Y 1 

406    D A 1 

408    F L 1 

409    A D 1 

415    L P 1 

424    A G 1 

428    G R 1 

442    V G 1 

446    S R 1 

449    L F 1 

454    E R 1 

471    Q R 1 

485    G V 1 

491    G C 1 

496    R L 1 

498    R H 1 

505    W S 1 

515    R C 1 

525    Q P 1 

529    N D 1 

587    L P 1 

607    E K 1 

611    L R 1 

629    G S 1 

636    A E 1 

652    S A 1 

653    L P 1 

700    S P 1 

705    R L 1 

717    Q P 1 

728    W C 1 

 

Table C.2: Hotspot mutation count for pyrazinamidase (pncA) 

pncA Codon 
number 

Amino acid at that position Amino acid 
substitution 

Number of different 
types of substitution 

71    H Q, Y, P, D, N, R, T, E 8 

8    D E, A, G, H, N, Y 6 

51    H N, Y, P, R, D, Q 6 

57    H D, Y, P, Q, R, L 6 

68    W R, D, C, G, S, L, 6 
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7    V G, A, F, I, D 5 

12    D E, H, G, A, N 5 

49    D A, N, H, V, G 5 

54    P Q, S, R, T, L 5 

96    K R, E, Q, T, N 5 

132    G A, C, R, D, S 5 

138    C R, T, W, S, Y 5 

3    A E, S, Q, P 4 

10    Q H, P, K, R 4 

62    P H, T, Q, L 4 

94    F C, S, L, P 4 

103    Y D, H, S, C 4 

119    W L, G, R, C 4 

125    V D, F, L, G 4 

136    D Y, N, H, G 4 

139    V M, L, G, A 4 

142    T P, A, K, M 4 

146    A P, E, T, V 4 

155    V M, G, L, A 4 

171    A V, T, P, E 4 

175    M T, R, I, V 4 

6    I S, T, L 3 

9    V A, G, S 3 

13    F V, L, S 3 

14    C R, W, Y 3 

46    A E, S, V 3 

47    T A, P, S 3 

69    P A, R, L 3 

72    C R, Y, W 3 

76    T P, A, I 3 

82    H D, R, L 3 

97    G A, S, D 3 

130    V L, A, G 3 

135    T A, N, P 3 

137    H P, D, R 3 

140    R P, H, S 3 

143    A P, G, T,  3 

160    T K, A, P 3 

172    L P, R, A 3 

1    M I, T 2 

4    L W, S 2 

5    I T, S 2 

17    G S, D 2 

19    L P, R 2 

23    G A, V 2 

27    L R, P 2 

28    A V, D 2 

31    I T, S 2 
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34    Y D, S 2 

35    L R, P 2 

45    V G, A 2 

59    S F, P 2 

63    D A, G 2 

79    A T, G 2 

80    D E, N 2 

85    L R, P 2 

100    T A, P 2 

102    A V, T 2 

114    T A, P 2 

116    L V, R 2 

120    L R, P 2 

134    A S, V 2 

148    R C, S 2 

154    R T, G 2 

159    L P, R 2 

162    G A, D 2 

168    T P, N 2 

180    V G, F 2 

18    S P 1 

21    V G 1 

25    A E 1 

26    A G 1 

41    Y H 1 

43    H P 1 

44    V G 1 

53    D A 1 

58    F L 1 

64    Y D 1 

66    S P 1 

67    S P 1 

73    V F 1 

78    G D 1 

81    F S 1 

83    P R 1 

87    T M 1 

93    V M 1 

99    Y D 1 

104    S R 1 

105    G R 1 

108    G R 1 

112    N Y 1 

118    N T 1 

121    R P 1 

128    V G 1 

131    V F 1 

133    I T 1 
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141    Q P 1 

151    L S 1 

157    V G 1 

161    A P 1 

163    V A 1 

164    S P 1 

165    A T 1 

177    T P 1 

182    L S 1 

184    C Y 1 

 

Table C.3: Hotspot mutation count for β-subunit of RNA polymerase (rpoB) 

rpoB Codon 
Number 

Amino acid present at that 
position 

Amino acid substitution Number of different 
types of substitution 

445 H Y, D, R, L, N, C, P, S, Q, T, G, A, 
E 

13 

435 D V, Y, G, E, F, H, A, T, N, P, K 11 

450 S L, W, F, Q, A, Y, G, C 8 

431 S T, C, I, R, M, N, G 7 

437 N T, Y, H, I, D, S 6 

441 S L, F, Q, N, W, P 6 

428 S R, T, Q, G, I 5 

430 L P, R, K, V, M 5 

432 Q K, P, L, H, E 5 

452 L P, E, V, R, M 5 

446 K N, Q, R, E 4 

448 R L, Q, P, G 4 

434 M I, V, T 3 

453 G A, W, V 3 

424 F V, L 2 

427 T P, S 2 

433 F L, V 2 

436 Q L, P 2 

440 L M, P 2 

447 R P, H 2 

454 P S, H 2 

170 V F 1 

413 N H 1 

426 G D 1 

429 Q H 1 

438 N K 1 

439 P S 1 

442 G W 1 

444 T P 1 

451 A D 1 

455 G D 1 

457 L R 1 
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460 E G 1 

480 I V 1 

481 E G 1 

482 T P 1 

483 P L 1 

487 N S 1 

488 I V 1 

491 I F 1 

493 S L 1 

507 E G 1 

 

Table C.4: Hotspot mutation count for arabinosyltransferase A (embA) 

embA Codon 
number 

Amino acid at that 
position 

Amino acid 
substitution 

Number of types of 
different substitution 

5    G S, V 2 

4    D N 1 

105    L V 1 

122    V G 1 

125    V G 1 

200    G S 1 

201    A T 1 

206    V M 1 

331    A T 1 

343    V L 1 

350    G D 1 

380    R P 1 

468    V A 1 

554    G D 1 

576    A T 1 

639    P S 1 

769    P T 1 

838    V L 1 

913    P S 1 

 

Table C.5: Hotspot mutation count for arabinosyltransferase B (embB) 

embB Codon 
number 

Amino acid at that 
position 

Amino acid 
substitution 

Number of different types 
of substitution 

406    G P, S, C, K, R, D, A 7 

306    M L, V, F, I, T 5 

497    Q P, H, F, R, K 5 

311    D R, F, G, H 4 

319    Y N, D, C, S 4 

328    D Y, G, H, V 4 

380    S R, N, G, D 4 

399    N T, I, D, H 4 
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296    N H, I, K 3 

318    N H, S, K 3 

330    F I, L, V 3 

347    S T, C, I 3 

354    D N, T, A 3 

356    A F, S, V 3 

357    A S, T, V 3 

368    E Q, D, A 3 

377    V M, E, G 3 

397    P T, R, Q 3 

281    A S, V 2 

298    S A, W 2 

309    V A, G 2 

317    S F, T 2 

322    W C, R 2 

360    V A, M 2 

366    S L, P 2 

369    V L, A 2 

378    E A, K 2 

379    A T, D 2 

395    W R, C 2 

398    F H, Y 2 

400    N P, K 2 

404    P A, S 2 

405    E D, P 2 

412    S P 2 

460    R C, L 2 

507    R G, K 2 

13    N S 1 

50    V A 1 

74    L R 1 

128    R G 1 

239    L P 1 

240    D H 1 

246    G R 1 

257    R W 1 

282    V G 1 

288    L V 1 

293    I T 1 

297    S A 1 

299    D E 1 

304    L V 1 

310    A R 1 

312    H R 1 

315    Y L 1 

316    M I 1 

320    F L 1 

331    G R 1 
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332    W R 1 

334    Y H 1 

345    D G 1 

358    G V 1 

359    L I 1 

367    R P 1 

370    L R 1 

371    P R 1 

374    G V 1 

375    P A 1 

384    Y N 1 

388    A G 1 

393    T A 1 

401    G S 1 

402    L V 1 

423    M T 1 

426    S N 1 

430    P L 1 

431    A T 1 

435    V G 1 

436    V G 1 

437    T A 1 

446    P H 1 

448    G V 1 

450    I M 1 

452    V L 1 

454    A T 1 

459    G A 1 

461    P S 1 

465    I D 1 

469    R P 1 

471    R P 1 

482    M I 1 

504    E D 1 

505    A V 1 

557    M I 1 

565  S G 1 

602    V A 1 

624    N D 1 

642    T A 1 

643    T I 1 

745    G D 1 

1000    M R 1 

1002    H R 1 

1024    D N 1 
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Table C.6: Hotspot mutation count Arabinosyltransferase C (embC) 

embC Codon number Amino acid Substitution Number of different types of 
substitution 

288    G W, V 2 

296    Y H, S 2 

297    I L, T 2 

150    P S 1 

213    S C 1 

244    A T 1 

247    A P 1 

251    L R 1 

254    A G 1 

270    T I 1 

272    G S 1 

285    H Y 1 

287    V F 1 

300    M R 1 

302    R G 1 

303    V G 1 

305    E D 1 

307    A T 1 

308    G D 1 

309    Y N 1 

310    M K 1 

325    G S 1 

326    W R 1 

327    Y N 1 

329    D E 1 

378    A V 1 

394    N D 1 

406    I L 1 

426    A T 1 

451    V I 1 

707    P L 1 

725    Q R 1 

738    R Q 1 

981    V L 1 

987    V A 1 
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Appendix D 

D. Conservation score, domain region and functional site of 

mutations in the first-line TB drug targets 

 

Appendix D includes six tables. Tables D.1, D.2, D.3, D.4, D.5 and D.6 summarise sequence conservation 

prediction using ConSurf. ConSurf grades conservation score from a scale of 1-9 where 1-3 are 

variable, 4-6 are average, and 7-9 represent highly conserved amino acid residue in a protein. The 

tables also provide information on the presence of the mutation in the protein domain region and 

distribution of mutated sites in site-1, 2 and 3 for each first-line TB drug target in Mycobacterium 

tuberculosis. Table D.1, D.2, D.3, D.4, D.5 and D.6 include: 

1- Codon number or mutation position within a drug target 

2- Amino acid  

3- Consurf score 

4- Presence of mutation in the domain region 

5- Distribution of mutant site: site-1, 2 and 3 

 

Table D1: Conservation score, domain region and functional site of mutations for catalase-peroxidase 

(katG) 

Table D.2: Conservation score, domain region and functional site of mutations for pyrazinamidase 

(pncA) 

Table D.3: Conservation score, domain region and functional site of mutations for β-subunit of RNA 

polymerase (rpoB) 

Table D.4: Conservation score, domain region and functional site of mutations for 

arabinosyltransferase A (embA) 

Table D.5: Conservation score, domain region and functional site of mutations for 

arabinosyltransferase B (embB) 

Table D.6: Conservation score, domain region and functional site of mutations for 

arabinosyltransferase C (embC) 



 235 

Table D.1: Conservation score, domain region and functional site of mutations 
for Catalase-peroxidase (katG) 

Codon 
number 

Amino 
acid 

ConSurf 
Score 

Domain Mutant 
site 

11 T 1 X site-3 

12 T 1 X site-3 

35 N 9 X site-3 

61 A 5 X site-3 

63 D 9 X site-3 

68 V 4 X site-3 

74 D 1 X site-3 

84 M 6 √ site-3 

85 T 5 √ site-3 

91 W 8 √ site-3 

93 A 9 √ site-3 

94 D 9 √ site-3 

98 Y 8 √ site-3 

101 L 4 √ site-1 

104 R 9 √ site-1 

105 M 9 √ site-2 

106 A 6 √ site-3 

107 W 8 √ site-1 

108 H 9 √ site-2 

109 A 9 √ site-3 

110 A 9 √ site-3 

117 D 9 √ site-3 

118 G 8 √ site-3 

121 G 8 √ site-3 

125 G 8 √ site-3 

127 Q 9 √ site-3 

128 R 9 √ site-3 

131 P 8 √ site-3 

138 N 9 √ site-3 

141 L 8 √ site-3 

142 D 9 √ site-3 

143 K 6 √ site-3 

146 R 9 √ site-3 

155 Y 4 √ site-3 

161 W 8 √ site-3 

162 A 9 √ site-3 

169 G 8 √ site-3 

172 A 9 √ site-2 

176 M 9 √ site-2 

186 G 8 √ site-3 

191 W 8 √ site-3 

194 D 6 √ site-3 

195 E 5 √ site-3 

206 G 3 √ site-3 
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217 E 6 √ site-3 

218 N 6 √ site-3 

229 Y 8 √ site-1 

230 V 9 √ site-1 

232 P 8 √ site-1 

234 G 8 √ site-2 

236 N 6 √ site-3 

241 P 8 √ site-3 

248 I 6 √ site-1 

251 T 9 √ site-2 

257 M 9 √ site-2 

261 E 9 √ site-3 

262 T 9 √ site-2 

264 A 9 √ site-3 

269 G 8 √ site-1 

270 H 9 √ site-1 

271 T 6 √ site-3 

274 K 9 √ site-1 

275 T 9 √ site-1 

279 G 8 √ site-3 

280 P 5 √ site-3 

285 G 8 √ site-3 

289 E 9 √ site-3 

291 A 9 √ site-3 

295 Q 6 √ site-3 

299 G 8 √ site-3 

300 W 8 √ site-3 

302 S 6 √ site-3 

303 S 3 √ site-3 

305 G 8 √ site-3 

307 G 8 √ site-3 

308 T 1 √ site-3 

309 G 8 √ site-3 

311 D 9 √ site-3 

312 A 9 √ site-3 

314 T 5 √ site-1 

315 S 1 √ site-1 

316 G 8 √ site-2 

317 I 4 √ site-1 

318 E 9 √ site-2 

321 W 8 √ site-1 

322 T 9 √ site-3 

324 T 9 √ site-3 

326 T 9 √ site-3 

328 W 8 √ site-2 

329 D 5 √ site-3 

331 S 1 √ site-3 

335 I 1 √ site-3 
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336 L 8 √ site-3 

337 Y 8 √ site-3 

341 W 8 √ site-3 

344 T 9 √ site-3 

345 K 9 √ site-3 

350 A 9 √ site-2 

357 D 9 √ site-3 

379 A 2 √ site-3 

380 T 6 √ site-1 

384 L 1 √ site-2 

385 R 9 √ site-3 

388 P 8 √ site-3 

394 T 9 √ site-3 

397 W 8 √ site-3 

406 D 1 √ site-3 

408 F 4 √ site-1 

409 A 9 √ site-3 

415 L 8 √ site-2 

424 A 3 √ site-3 

428 G 8 √ site-3 

442 V 5 √ site-3 

446 S 1 √ site-3 

449 L 8 √ site-3 

454 E 2 √ site-3 

463 R 1 √ site-3 

471 Q 9 √ site-3 

485 G 1 √ site-3 

490 G 8 √ site-3 

491 G 8 √ site-3 

496 R 9 √ site-3 

498 R 9 √ site-3 

505 W 8 √ site-3 

515 R 1 √ site-3 

525 Q 9 √ site-3 

529 N 9 √ site-3 

573 D 9 √ site-3 

587 L 8 √ site-3 

607 E 9 √ site-3 

611 L 1 √ site-3 

629 G 8 √ site-3 

636 A 6 √ site-3 

652 S 1 √ site-3 

653 L 8 √ site-3 

700 S 6 √ site-3 

705 R 9 √ site-3 

717 Q 1 X site-3 

728 W 8 X site-3 

735 D 9 X site-3 
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Table D.2: Conservation score, domain region and functional site of mutations 
for pyrazinamidase (pncA) 

Codon 
number 

Amino 
acid 

ConSurf 
Score 

Domain Mutant 
site 

1 M 9 X site-3 

3 A 9 √ site-3 

4 L 1 √ site-3 

5 I 9 √ site-3 

6 I 9 √ site-3 

7 V 9 √ site-3 

8 D 9 √ site-1 

9 V 9 √ site-3 

10 Q 9 √ site-3 

12 D 9 √ site-3 

13 F 8 √ site-1 

14 C 7 √ site-3 

17 G 7 √ site-3 

18 S 9 √ site-3 

19 L 8 √ site-2 

21 V 9 √ site-2 

23 G 7 √ site-3 

25 A 9 √ site-3 

26 A 9 √ site-3 

27 L 8 √ site-3 

28 A 9 √ site-3 

31 I 9 √ site-3 

34 Y 8 √ site-3 

35 L 8 √ site-3 

41 Y 8 √ site-3 

43 H 9 √ site-3 

44 V 9 √ site-3 

45 V 9 √ site-3 

46 A 9 √ site-3 

47 T 9 √ site-2 

49 D 9 √ site-1 

51 H 9 √ site-1 

53 D 9 √ site-3 

54 P 8 √ site-2 

57 H 1 √ site-1 

58 F 8 √ site-2 

59 S 9 √ site-3 

62 P 8 √ site-3 

63 D 9 √ site-3 

64 Y 8 √ site-3 

66 S 9 √ site-3 

67 S 9 √ site-3 
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68 W 7 √ site-2 

69 P 8 √ site-3 

71 H 9 √ site-1 

72 C 7 √ site-2 

73 V 9 √ site-3 

76 T 9 √ site-3 

78 G 7 √ site-3 

79 A 9 √ site-3 

80 D 9 √ site-3 

81 F 8 √ site-3 

82 H 9 √ site-3 

83 P 8 √ site-3 

85 L 8 √ site-3 

87 T 1 √ site-3 

93 V 9 √ site-3 

94 F 8 √ site-3 

96 K 9 √ site-2 

97 G 7 √ site-2 

99 Y 8 √ site-3 

100 T 9 √ site-3 

102 A 9 √ site-1 

103 Y 8 √ site-3 

104 S 9 √ site-3 

105 G 7 √ site-3 

108 G 7 √ site-3 

112 N 9 √ site-3 

114 T 9 √ site-3 

116 L 8 √ site-3 

118 N 9 √ site-3 

119 W 7 √ site-3 

120 L 8 √ site-3 

121 R 9 √ site-3 

125 V 9 √ site-3 

128 V 9 √ site-3 

130 V 9 √ site-3 

131 V 9 √ site-3 

132 G 1 √ site-3 

133 I 9 √ site-2 

134 A 9 √ site-3 

135 T 9 √ site-3 

136 D 9 √ site-3 

137 H 9 √ site-3 

138 C 7 √ site-3 

139 V 9 √ site-3 

140 R 9 √ site-3 

141 Q 9 √ site-3 

142 T 1 √ site-3 

143 A 9 √ site-3 
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146 A 9 √ site-3 

148 R 9 √ site-3 

151 L 8 √ site-3 

154 R 1 √ site-3 

155 V 1 √ site-3 

157 V 1 √ site-3 

159 L 1 √ site-3 

160 T 1 √ site-3 

161 A 1 √ site-3 

162 G 7 √ site-3 

163 V 1 √ site-3 

164 S 1 √ site-3 

165 A 1 √ site-3 

168 T 1 √ site-3 

171 A 1 √ site-3 

172 L 1 √ site-3 

175 M 1 √ site-3 

177 T 1 √ site-3 

180 V 1 √ site-3 

182 L 8 √ site-3 

184 C 1 √ site-3 

 

Table D.3: Conservation score, domain region and functional site of mutations 
for β-subunit of RNA polymerase (rpoB) 

Codon 
number 

Amino 
acid 

ConSurf 
Score 

Domain Mutant 
site 

170 V 9 √ site-3 

413 N 9 √ site-3 

424 F 9 X site-3 

426 G 9 X site-3 

427 T 9 X site-3 

428 S 9 X site-3 

429 Q 9 X site-3 

430 L 9 X site-3 

431 S 9 X site-3 

432 Q 9 √ site-1 

433 F 9 √ site-3 

434 M 9 √ site-3 

435 D 1 √ site-3 

436 Q 9 √ site-3 

437 N 9 √ site-3 

438 N 9 √ site-3 

439 P 9 √ site-3 

440 L 9 √ site-3 

441 S 9 √ site-3 

442 G 9 √ site-3 

444 T 9 √ site-3 
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445 H 9 √ site-2 

446 K 9 √ site-3 

447 R 9 √ site-1 

448 R 9 √ site-3 

450 S 1 √ site-3 

451 A 9 √ site-3 

452 L 1 √ site-3 

453 G 9 √ site-3 

454 P 9 √ site-3 

455 G 9 √ site-3 

457 L 9 √ site-3 

460 E 9 √ site-3 

480 I 9 √ site-3 

481 E 9 √ site-3 

482 T 9 √ site-3 

483 P 9 √ site-1 

487 N 1 √ site-1 

488 I 9 √ site-3 

491 I 9 √ site-1 

493 S 9 √ site-3 

507 E 9 X site-3 

 

Table D.4:  Conservation score, domain region and functional site of mutations 
for arabinosyltransferase A (embA) 

Codon 
number 

Amino 
Acid 

ConSurf 
Score 

Domain Mutant 
site 

4    D 1 X site-3 

5    G 3 X site-3 

105    L 8 √ site-3 

122    V 5 √ site-3 

125    V 2 √ site-3 

200    G 5 √ site-3 

201    A 1 √ site-3 

206    V 6 √ site-3 

331    A 6 √ site-3 

343    V 6 √ site-3 

350    G 5 √ site-3 

380    R 9 √ site-3 

468    V 1 √ site-3 

554    G 7 √ site-3 

576    A 4 √ site-3 

639    P 8 √ site-3 

769    P 6 √ site-3 

839    V 9 √ site-3 

913    P 4 √ site-3 
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Table D.5: Conservation score, domain region and functional site of mutations 
for arabinosyltransferase B (embB) 

Codon 
number 

Amino 
acid 

ConSurf 
Score 

Domain Mutant 
site 

13 N 2 X site-3 

50 V 1 √ site-3 

74 L 1 √ site-3 

128 R 8 √ site-3 

239 L 4 √ site-3 

240 D 8 √ site-3 

246 G 5 √ site-3 

257 R 8 √ site-3 

281 A 5 √ site-3 

282 V 3 √ site-3 

288 L 4 √ site-3 

293 I 6 √ site-3 

296 N 1 √ site-3 

297 S 6 √ site-3 

298 S 9 √ site-3 

299 D 8 √ site-3 

304 L 6 √ site-3 

306 M 1 √ site-3 

309 V 5 √ site-3 

310 A 9 √ site-3 

311 D 2 √ site-3 

312 H 4 √ site-3 

315 Y 8 √ site-3 

316 M 6 √ site-3 

317 S 3 √ site-3 

318 N 9 √ site-3 

319 Y 8 √ site-3 

320 F 5 √ site-3 

322 W 4 √ site-3 

328 D 4 √ site-3 

330 F 8 √ site-3 

331 G 4 √ site-3 

332 W 7 √ site-3 

334 Y 3 √ site-3 

345 D 4 √ site-3 

347 S 5 √ site-3 

354 D 4 √ site-3 

356 A 3 √ site-3 

357 A 9 √ site-3 

358 G 2 √ site-3 

359 L 5 √ site-3 

360 V 5 √ site-3 

366 S 9 √ site-3 

367 R 8 √ site-3 



 243 

368 E 2 √ site-3 

369 V 8 √ site-3 

370 L 8 √ site-3 

371 P 8 √ site-3 

374 G 7 √ site-3 

375 P 4 √ site-3 

377 V 8 √ site-3 

378 E 1 √ site-3 

379 A 4 √ site-3 

380 S 6 √ site-3 

384 Y 1 √ site-3 

388 A 4 √ site-3 

393 T 5 √ site-3 

395 W 7 √ site-3 

397 P 8 √ site-3 

398 F 8 √ site-3 

399 N 9 √ site-3 

400 N 9 √ site-3 

401 G 7 √ site-3 

402 L 8 √ site-3 

404 P 8 √ site-3 

405 E 9 √ site-3 

406 G 3 √ site-3 

412 S 4 √ site-3 

423 M 5 √ site-3 

426 S 5 √ site-3 

430 P 8 √ site-3 

431 A 9 √ site-3 

435 V 3 √ site-3 

436 V 5 √ site-3 

437 T 5 √ site-3 

446 P 8 √ site-3 

448 G 7 √ site-3 

450 I 9 √ site-3 

452 V 5 √ site-3 

454 A 5 √ site-3 

459 G 4 √ site-3 

460 R 8 √ site-3 

461 P 4 √ site-3 

465 I 6 √ site-3 

469 R 5 √ site-3 

471 R 4 √ site-3 

482 M 6 √ site-3 

497 Q 9 √ site-3 

504 E 9 √ site-3 

505 A 6 √ site-3 

507 R 8 √ site-3 

557 M 4 √ site-3 
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565 S 1 √ site-3 

602 V 4 √ site-3 

624 N 9 √ site-3 

642 T 1 √ site-3 

643 T 1 √ site-3 

745 G 4 √ site-3 

1000 M 5 √ site-3 

1002 H 4 √ site-3 

1024 D 4 √ site-3 

 

Table D.6: Conservation score, domain region and functional site of mutations 
arabinosyltransferase C (embC) 

Codon 
number 

Amino 
acid 

ConSurf 
Score 

Domain Mutant 
site 

150    P 3 √ site-3 

213    S 5 √ site-3 

244    A 5 √ site-3 

247    A 5 √ site-3 

251    L 8 √ site-3 

254    A 4 √ site-3 

270    T 1 √ site-3 

272    G 1 √ site-3 

285    H 9 √ site-3 

287    V 6 √ site-3 

288    G 7 √ site-3 

296    Y 8 √ site-3 

297    I 5 √ site-3 

300    M 5 √ site-3 

302    R 8 √ site-3 

303    V 8 √ site-3 

305    E 4 √ site-3 

307    A 5 √ site-3 

308    G 7 √ site-3 

309    Y 8 √ site-3 

310    M 5 √ site-3 

325    G 4 √ site-3 

326    W 7 √ site-3 

327    Y 8 √ site-3 

329    D 5 √ site-3 

378    A 2 √ site-3 

394    N 9 √ site-3 

406    I 6 √ site-3 

426    A 9 √ site-3 

451    V 5 √ site-3 

707    P 8 √ site-3 

725    Q 2 √ site-3 

738    R 6 √ site-3 
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981    V 6 √ site-3 

987    V 5 √ site-3 
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Appendix E 

E. Results of prediction of functional change and structural stability 

change in Mycobacterium tuberculosis drug resistant mutations 

 

Appendix E includes six tables. Tables E.1, E.2, E.3, E.4, E.5 and E. 6 summarise the prediction of 

functional change by Polyphen-2, PROVEAN and SIFT and structure stability change by I-MUTANT 3.0 

and mCSM for each first-line TB drug target in Mycobacterium tuberculosis. Table E.1, E.2, E.3, E.4, E.5 

and E.6 include: 

1- Drug resistant mutation 

2- PolyPhen-2: B- Benign, PSD- Possibly Damaging, PD- Probably Damaging 

3- PROVEAN: N-Neutral, D- Deleterious 

4- SIFT: T-Tolerated/Neutral, D- Deleterious (Affect Function) 

5- I-MUTANT 3.0: Increase- structure stability increases, Decrease- Structure stability decreases 

6- mCSM: ST-Stabilizing, HST- Highly Stabilizing, DT- Destabilizing, HDT- Highly Destabilizing 

 

Table E.1: Functional change and structural stability change for catalase-peroxidase (katG) 

Table E.2: Functional change and structural stability change for pyrazinamidase (pncA)  

Table E.3: Functional change and structural stability change for β-subunit of RNA polymerase (rpoB)  

Table E.4: Functional change and structural stability change for arabinosyltransferase A (embA)  

Table E.5: Functional change and structural stability change for arabinosyltransferase B (embB)  

Table E.6: Functional change and structural stability change for arabinosyltransferase C (embC)  

Table E.1: Functional change and structural stability change for catalase-
peroxidase (katG) 

MUTATION PolyPhen-2 PROVEAN SIFT I-MUTANT 3.0 mCSM 

T11A B N T Decrease - 

T12P B N T Increase - 

N35D PD D D Increase DT 

A61T B N T Decrease DT 
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D63E B D T Increase DT 

V68G PD D D Decrease HDT 

D74Y B D T Increase DT 

D74G B D T Increase DT 

M84I PSD N D Decrease DT 

T85P PSD D D Decrease DT 

W91G PD D D Decrease HDT 

W91R PD D D Decrease DT 

A93T PD D D Decrease DT 

D94N PD D D Decrease DT 

D94G PD D D Decrease DT 

Y98S PD D D Decrease HDT 

L101P PD D D Decrease DT 

R104Q PD D D Decrease DT 

M105I PD D D Decrease DT 

A106V PD D D Decrease DT 

W107R PD D D Decrease HDT 

H108D PD D D Decrease DT 

H108Q PD D D Decrease DT 

A109V PSD N D Decrease DT 

A110V PD D D Decrease DT 

D117A PD D D Increase DT 

G118A PD D D Increase DT 

G121C PD D D Decrease DT 

G121V PD D D Decrease DT 

G125V PD D D Increase DT 

G125C PD D D Decrease DT 

Q127P PD D D Decrease ST 

R128Q PD D D Decrease DT 

R128P PD D D Decrease DT 

P131R PD D D Decrease DT 

P131Q PD D D Decrease DT 

N138H PD D D Decrease DT 

N138D PD D D Decrease HDT 

N138S PD D D Decrease HDT 

N138T PD D D Decrease DT 

L141F PD N D Decrease DT 

D142N PD D D Decrease DT 

K143T PD D D Decrease DT 

R146W PD D D Decrease DT 

Y155S PD D D Decrease HDT 

Y155C PD D D Increase DT 

W161Q PD D D Decrease HDT 

W161R PD D D Decrease HDT 

A162T PD D D Decrease DT 

G169S PD D D Decrease DT 

A172T PD D D Decrease HDT 

A172V PD D D Increase DT 
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M176I PD D D Decrease DT 

G186V PD D D Decrease DT 

W191R PD D D Decrease DT 

D194Y PD D D Increase ST 

E195K B D D Decrease DT 

G206D B D N Decrease HDT 

E217G PSD D D Decrease DT 

N218K B D D Decrease DT 

Y229F PD D D Decrease DT 

V230A PD D D Decrease HDT 

P232R PD D D Decrease DT 

P232A PD D D Decrease DT 

P232S PD D D Decrease DT 

G234E PD D D Decrease HDT 

G234R PD D D Decrease DT 

N236T B D D Increase ST 

P241S PD D D Decrease HDT 

I248M PD D N Decrease DT 

T251M PD D D Decrease DT 

M257I PD D D Decrease DT 

E261K PD D D Decrease DT 

E261Q PD D D Decrease DT 

T262R PD D D Decrease DT 

A264T PD D D Decrease DT 

G269T PD D D Decrease ST 

H270A PD D D Decrease DT 

T271V PD D D Increase DT 

K274R PD D N Decrease DT 

T275A PD D D Decrease DT 

T275P B D N Decrease DT 

G279D B D N Decrease DT 

P280S B D N Decrease DT 

P280H B D D Decrease DT 

G285R PD D D Increase DT 

G285C PD D D Decrease DT 

G285D PD D D Decrease DT 

E289D B D N Decrease DT 

A291V PD D D Increase DT 

A291T PD D D Decrease DT 

A291P PD D D Increase DT 

Q295P PSD D D Decrease ST 

G299C PD D D Decrease DT 

W300C PD D D Decrease DT 

W300R PD D D Decrease DT 

W300G PD D D Decrease HDT 

S302R PD D D Increase DT 

S303W PD D D Increase DT 

G305A B D D Decrease DT 
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G307R PD D D Decrease DT 

T308P B N N Decrease DT 

G309C PD D D Decrease DT 

G309S PD D D Decrease DT 

G309V PD D N Decrease ST 

G309A B D D Decrease DT 

G309F B D D Decrease DT 

D311Y PSD D D Increase DT 

D311F PD D D Decrease DT 

D311G PSD D D Decrease DT 

D311E B D D Increase DT 

A312V PSD N D Increase DT 

A312R PD D D Decrease DT 

A312G PSD D D Decrease DT 

T314N PD D N Decrease DT 

S315R PD D D Increase DT 

S315T PD D D Increase DT 

S315N PD D D Increase DT 

S315G PD D D Decrease DT 

S315A B D D Decrease DT 

S315D PD D D Increase ST 

S315L PSD D D Increase DT 

S315I PSD D D Increase DT 

G316S PD D D Decrease DT 

G316D PD D D Decrease HDT 

I317L B N N Decrease DT 

I317V B N D Decrease DT 

E318V PD D D Increase ST 

E318G PD D D Decrease DT 

W321R PD D D Decrease DT 

W321L PD D D Decrease HDT 

W321G PD D D Decrease HDT 

W321S PD D D Decrease HDT 

T322A PD D D Decrease DT 

T322N PSD D D Decrease DT 

T322M PD D D Decrease DT 

T324P PSD D D Decrease DT 

T326M PD D D Decrease ST 

W328L PD D D Decrease DT 

W328R PD D D Decrease HDT 

W328S PD D D Decrease HDT 

W328C PD D D Decrease DT 

D329G B D N Decrease DT 

S331C PD D D Decrease DT 

I335T B N N Decrease HDT 

I335V B N N Decrease DT 

L336R PD D D Decrease HDT 

L336P PD D D Decrease DT 
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Y337C B N N Decrease DT 

W341S PD D D Decrease HDT 

T344P PSD D D Decrease DT 

K345T B D D Decrease DT 

A350S PD D D Decrease DT 

D357H B D D Increase ST 

D357N B N N Increase ST 

A379V B N N Increase DT 

T380I PD D D Decrease DT 

L384R PD D D Decrease HDT 

R385P PD D D Decrease DT 

P388S PD D D Decrease DT 

P388L PD D D Decrease DT 

T394A B N N Decrease DT 

W397Y B N N Decrease HDT 

D406A B D N Increase DT 

F408L PD D D Decrease DT 

A409D PD D D Decrease DT 

L415P PD D D Decrease DT 

A424G B N D Decrease DT 

G428R PD D D Increase DT 

V442G PD D D Decrease DT 

S446R B N N Increase DT 

L449F B D N Decrease DT 

E454R PSD D D Decrease ST 

R463W PD N D Decrease DT 

R463H PSD N D Decrease DT 

R463L B N N Decrease DT 

Q471R B D D Decrease DT 

G485V PSD D D Decrease DT 

G490C PD D D Decrease DT 

G490D PD D D Decrease DT 

G491C PD D D Decrease DT 

R496L PD D D Decrease DT 

R498H PD D D Decrease DT 

W505S PD D D Decrease HDT 

R515C PSD N D Decrease DT 

Q525P PSD D D Decrease ST 

N529D B D N Decrease DT 

D573G PD D D Increase DT 

D573N PD D D Increase DT 

L587P PSD N N Decrease DT 

E607K PD D D Decrease ST 

L611R PD D D Decrease HDT 

G629S PD D D Decrease DT 

A636E PD D D Decrease HDT 

S652A B N N Decrease DT 

L653P PD D D Decrease DT 



 251 

S700P PD D D Increase DT 

R705L PD D D Decrease DT 

Q717P B D D Decrease ST 

W728C PD D D Decrease DT 

D735N PD D D Decrease DT 

D735A PD D D Decrease DT 

 

Table E.2: Functional change and structural stability change for pyrazinamidase 
(pncA)  

MUTATION PolyPhen-2 PROVEAN SIFT I-MUTANT 3.0 mCSM 

M1I PD N D Decrease DT 

M1T PD N D Decrease DT 

A3E PD D N Decrease HDT 

A3S PD D N Decrease HDT 

A3Q PD D N Decrease DT 

A3P PD D N Decrease DT 

L4W PD D D Decrease HDT 

L4S PD D D Decrease HDT 

I5T PD D D Decrease HDT 

I5S PD D D Decrease HDT 

I6S PD D D Decrease HDT 

I6T PD D D Decrease HDT 

I6L B N N Decrease DT 

V7G PD D D Decrease HDT 

V7A PD D D Decrease HDT 

V7F PD D D Decrease DT 

V7I PD D D Decrease DT 

V7D B N D Decrease HDT 

D8E PD D D Increase DT 

D8A PD D D Decrease DT 

D8G PD D D Decrease DT 

D8H PD D D Decrease DT 

D8N PD D D Decrease DT 

D8Y PD D D Decrease DT 

V9A PD D D Decrease HDT 

V9G PSD D D Decrease HDT 

V9S B N N Decrease HDT 

Q10H PD D D Decrease DT 

Q10P PD D D Decrease DT 

Q10K PD D D Decrease DT 

Q10R PD D D Decrease DT 

D12E PD D D Increase DT 

D12H PD D D Decrease DT 

D12G PD D D Decrease ST 

D12A PD D D Decrease ST 

D12N PD D D Decrease DT 
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F13V PD D D Decrease HDT 

F13L PD D D Decrease DT 

F13S PD D D Decrease HDT 

C14R PD D D Decrease DT 

C14W PD D D Decrease DT 

C14Y PD D N Decrease DT 

G17S PD D N Decrease DT 

G17D PD D N Decrease DT 

S18P PD D N Increase DT 

L19P PD D D Decrease DT 

L19R PD D D Decrease DT 

V21G PD D D Decrease DT 

G23A PD D N Decrease DT 

G23V PD D N Decrease DT 

A25E B D N Decrease DT 

A26G B N N Decrease DT 

L27R PSD D D Decrease DT 

L27P B D D Decrease DT 

A28V PD D N Decrease DT 

A28D PD D D Decrease HDT 

I31T PD D D Decrease HDT 

I31S PD D D Decrease HDT 

Y34D B D N Decrease DT 

Y34S PSD D N Decrease HDT 

L35R PD D D Decrease DT 

L35P PSD D D Decrease DT 

Y41H B D N Increase DT 

H43Y B D N Increase ST 

V44G PD D D Decrease HDT 

V45G PD D D Decrease HDT 

V45A PSD D D Decrease HDT 

A46E PD D N Decrease DT 

A46S PD D N Decrease DT 

A46V PSD D N Increase ST 

T47A PD D D Decrease DT 

T47P PSD D N Decrease DT 

T47S B D N Decrease HDT 

D49A PD D D Decrease DT 

D49N PD D D Decrease HDT 

D49H PD D D Decrease DT 

D49V PD D D Increase DT 

D49G PD D D Decrease DT 

H51N PD D D Decrease HDT 

H51Y PD D D Increase ST 

H51P PD D D Increase DT 

H51R PD D D Increase DT 

H51D PD D D Increase HDT 

H51Q PD D D Decrease DT 
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D53A B D D Decrease DT 

P54Q PD D D Decrease DT 

P54S PD D D Decrease HDT 

P54R PD D D Decrease DT 

P54T PD D D Decrease DT 

P54L PD D D Decrease DT 

H57D PD D D Decrease DT 

H57Y PD D D Increase ST 

H57P PD D D Increase DT 

H57Q PD D D Decrease DT 

H57R PD D D Decrease DT 

H57L PD D D Increase DT 

F58L B D N Decrease DT 

S59F PSD D D Decrease DT 

S59P B D D Decrease DT 

P62H PD D N Decrease DT 

P62T PD D N Decrease DT 

P62Q PD D N Decrease DT 

P62L PSD D N Decrease DT 

D63A B D N Decrease DT 

D63G B D N Decrease DT 

Y64D PSD D N Decrease DT 

S66P PSD N N Decrease DT 

S67P B D N Increase DT 

W68R PD D D Decrease DT 

W68D PD D D Decrease HDT 

W68C PD D D Decrease DT 

W68G PD D D Decrease HDT 

W68S PD D D Decrease HDT 

W68L PD D D Decrease HDT 

P69A PD D N Decrease DT 

P69R PD D N Decrease DT 

P69L PD D N Decrease DT 

H71Q PD D D Decrease HDT 

H71Y PD D D Increase DT 

H71P PD D D Increase DT 

H71D PD D D Decrease HDT 

H71N PD D D Decrease HDT 

H71R PD D D Decrease DT 

H71T PD D D Decrease HDT 

H71E PD D D Increase HDT 

C72R PD D D Decrease DT 

C72Y PD D D Decrease DT 

C72W PD D D Decrease DT 

V73F PD D D Decrease DT 

T76P PD D D Increase DT 

T76A PSD D N Decrease DT 

T76I PSD D D Increase DT 
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G78D PD D D Decrease HDT 

A79T PD D N Decrease DT 

A79G B D N Decrease DT 

D80E B N N Increase DT 

D80N PSD D N Decrease DT 

F81S PSD D D Decrease HDT 

H82D B D N Decrease DT 

H82R B D N Decrease DT 

H82L B D N Increase ST 

P83R PD D N Decrease ST 

L85R PD D D Decrease DT 

L85P PD D D Decrease DT 

T87M B D N Increase DT 

V93M PD D D Decrease DT 

F94C PD D D Decrease DT 

F94S PD D N Decrease HDT 

F94L PD D D Decrease DT 

F94P B D N Decrease DT 

K96R PD D D Decrease DT 

K96E PD D D Decrease HDT 

K96Q PD D D Decrease DT 

K96T PD D D Decrease DT 

K96N PD D D Decrease DT 

G97A PD D D Decrease DT 

G97S PD D D Decrease DT 

G97D PD D D Decrease HDT 

Y99D PD D D Decrease ST 

T100A B N N Decrease DT 

T100P B N N Decrease DT 

A102V B D N Increase DT 

A102T PSD D N Decrease DT 

Y103D PD D D Decrease ST 

Y103H PD D D Decrease ST 

Y103S PSD D D Decrease ST 

Y103C PSD D D Decrease ST 

S104R PD D D Increase DT 

G105R PD D D Decrease DT 

G108R PD D N Decrease DT 

N112Y PSD D N Increase DT 

T114A B D N Decrease DT 

T114P B D D Decrease DT 

L116V PD D D Decrease DT 

L116R PD D N Decrease DT 

N118T B N N Decrease DT 

W119L PD D N Decrease HDT 

W119G PD D N Decrease HDT 

W119R PSD D N Decrease HDT 

W119C B D N Decrease HDT 
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L120R PD D D Decrease HDT 

L120P PD D D Decrease DT 

R121W PD D D Decrease DT 

V125D PD D D Decrease HDT 

V125F PD D N Decrease DT 

V125L B N N Decrease DT 

V125G PD D D Decrease HDT 

V128G PD D D Decrease HDT 

V130L PD D N Decrease DT 

V130A PD D D Decrease HDT 

V130G PD D D Decrease HDT 

V131F PD D N Decrease DT 

G132A PD D D Decrease DT 

G132C PD D D Decrease DT 

G132R PD D D Decrease DT 

G132D PD D D Decrease HDT 

G132S PD D D Decrease DT 

I133T PD D D Decrease HDT 

A134S PD D D Decrease DT 

A134V PD D D Decrease DT 

T135A PD D N Decrease DT 

T135N PD D N Increase DT 

T135P B D D Decrease ST 

D136Y PD D D Increase DT 

D136N PD D D Increase ST 

D136H PD D D Decrease DT 

D136G PD D D Increase ST 

H137P PSD D N Increase ST 

H137D PD D N Decrease ST 

H137R PSD D N Decrease DT 

C138R PD D D Increase DT 

C138T PD D D Increase ST 

C138W PD D D Increase DT 

C138S PD D D Decrease DT 

C138Y PD D D Decrease DT 

V139M PD D D Decrease DT 

V139L PD D D Decrease DT 

V139G PD D D Decrease HDT 

V139A PD D D Decrease DT 

R140P PSD D D Decrease DT 

R140H PD D D Decrease DT 

R140S B D D Decrease DT 

Q141P PSD D N Decrease ST 

T142P PD D D Decrease DT 

T142A PD D D Decrease DT 

T142K PD D D Decrease DT 

T142M PD D D Decrease DT 

A143P PD D N Decrease DT 
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A143G PD D N Decrease DT 

A143T PD D N Decrease HDT 

A146P PD D D Increase DT 

A146E PD D D Decrease DT 

A146T PD D D Decrease DT 

A146V PD D D Decrease DT 

R148C PD D D Decrease DT 

R148S B N N Decrease DT 

L151S PSD D N Decrease HDT 

R154T B D N Decrease DT 

R154G B D N Decrease DT 

V155M PD D D Decrease DT 

V155G PD D D Decrease HDT 

V155L B D N Decrease DT 

V155A PD D D Decrease HDT 

V157G B D N Decrease DT 

L159P PD D N Decrease DT 

L159R PD D N Decrease DT 

T160K PD D N Decrease DT 

T160A B D N Decrease DT 

T160P PD D N Decrease DT 

A161P B D N Increase DT 

G162A B D N Decrease DT 

G162D PD D N Decrease DT 

V163A B D N Decrease DT 

S164P PSD D N Increase DT 

A165T B N N Decrease DT 

T168P PD D N Decrease ST 

T168N PSD D N Increase DT 

A171V PD D N Decrease DT 

A171T PD D N Decrease DT 

A171P PD D N Increase DT 

A171E PD D N Decrease HDT 

L172P PD D N Decrease DT 

L172R PSD D N Decrease DT 

L172A PSD D N Decrease HDT 

M175T PD D D Decrease DT 

M175R PD D D Decrease DT 

M175I PSD N N Decrease DT 

M175V PSD N N Decrease DT 

T177P B N N Decrease DT 

V180G PD D D Decrease HDT 

V180F PSD D N Decrease DT 

L182S PD D D Decrease HDT 

C184Y B N D Decrease DT 
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Table E.3: Functional change and structural stability change for β-subunit of 
RNA polymerase (rpoB)  

MUTATION PolyPhen-2 PROVEAN SIFT I-MUTANT 3.0 mCSM 

V170F B N D Decrease DT 

N413H PD D D Decrease DT 

F424V PD D D Decrease DT 

F 424L PD D D Decrease DT 

G426D PD D D Decrease ST 

T427P PD D D Decrease DT 

T427S PD D N Decrease DT 

S428R PD D D Increase DT 

S428Q PD D D Increase DT 

S428G PD D N Decrease DT 

S428T PD D D Decrease DT 

S428I PD D D Increase DT 

Q429H PD D D Decrease DT 

L430P PD D D Decrease DT 

L430V PD D D Decrease DT 

L430R PD D D Decrease DT 

L430M PD N D Decrease DT 

L430K PD D D Decrease DT 

S431C PD D D Decrease DT 

S431T PD D D Decrease DT 

S431I PD D D Increase DT 

S431N PD D D Increase DT 

S431R PD D D Increase DT 

S431G PD D D Decrease DT 

S431M PD D D Increase DT 

Q432L B D D Increase ST 

Q432K PD D D Increase DT 

Q432E PD D D Increase DT 

Q432P PD D D Decrease DT 

Q432H PD D D Decrease DT 

F433L PSD D D Decrease DT 

F433V PD D D Decrease DT 

M434V PSD D D Decrease DT 

M434T B N N Decrease DT 

M434I B N N Decrease DT 

D435Y PD D D Increase DT 

D435G PD D D Decrease ST 

D435V PD D D Increase ST 

D435N PD D D Decrease DT 

D435H PD D D Decrease DT 

D435E PSD D D Increase DT 

D435A PD D D Decrease ST 

D435P PD D D Decrease ST 

D435K PD D D Increase DT 
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D435T PD D D Decrease DT 

D435F PD D D Increase DT 

Q436P PD D D Increase ST 

Q436L PD D D Increase HST 

N437Y PD D D Increase ST 

N437T B D N Increase ST 

N437S PSD D D Decrease ST 

N437I PD D D Increase ST 

N437H PD D D Decrease ST 

N437D PD D N Decrease HDT 

N438K PD D D Decrease DT 

P439S PD D D Decrease HDT 

L440M PD N D Decrease DT 

L440P PD D D Decrease DT 

S441L PD D D Increase ST 

S441F PD D D Increase DT 

S441Q PD D D Decrease DT 

S441P PD D D Increase ST 

S441N PD D D Increase DT 

S441W PD D D Increase DT 

G442W PD D D Decrease DT 

T444P PD D D Decrease DT 

H445D PSD D D Increase DT 

H445C PD D D Increase DT 

H445L PD D D Increase DT 

H445N PD D D Decrease DT 

H445Y PD D D Increase ST 

H445T PD D D Decrease DT 

H445S PD D D Decrease DT 

H445G PD D D Decrease DT 

H445A PD D D Decrease DT 

H445R PD D D Decrease DT 

H445E PD D D Increase DT 

H445P PD D D Increase DT 

H445Q PD D D Decrease DT 

K446N PD D D Decrease HDT 

K446R PD D D Decrease DT 

K446E PD D D Decrease DT 

K446Q PD D D Decrease DT 

R447H PD D D Decrease HDT 

R447P PD D D Decrease DT 

R448P PD D D Decrease DT 

R448Q PD D D Decrease DT 

R448G PD D D Decrease DT 

R448L PD D D Decrease DT 

S450Q PD D D Decrease DT 

S450W PD D D Increase DT 

S450L PD D D Increase DT 
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S450A PD D D Decrease DT 

S450Y PD D D Increase DT 

S450F PD D D Increase DT 

S450G PD D D Decrease DT 

S450C PD D D Decrease DT 

A451D PD D D Increase DT 

L452P PD D D Decrease DT 

L452R PD D D Decrease DT 

L452E PD D D Decrease DT 

L452V PD D D Decrease DT 

L452M PD N D Decrease DT 

G453A PD D D Decrease DT 

G453W PD D D Decrease DT 

G453V PD D D Decrease DT 

P454S PSD D D Decrease DT 

P454H PD D D Decrease DT 

G455D PD D D Decrease DT 

L457R PD D D Decrease DT 

E460G PD D D Decrease DT 

I480V B N N Decrease DT 

E481G PD D D Decrease ST 

T482P PD D D Decrease DT 

P483L PD D D Decrease DT 

N487S PD D N Increase DT 

I488V PD N D Decrease DT 

I491F PD D D Decrease DT 

S493L PD D D Decrease ST 

E507G PD D D Decrease DT 

 

Table E.4: Functional change and structural stability change for 
arabinosyltransferase A (embA)  

MUTATION PolyPhen-2 PROVEAN SIFT I-MUTANT 3.0 

D4N B N N Decrease 

G5S B N N Decrease 

G5V PSD N D Decrease 

L105V PSD D D Decrease 

V122G PD D N Decrease 

V125G PSD N N Decrease 

G200S B N N Decrease 

A201T B N N Decrease 

V206M PD N D Decrease 

A331T PD D N Decrease 

V343L B N D Decrease 

G350D B N D Decrease 

R380P PD D D Decrease 

V468A B D N Decrease 
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G554D PD D D Decrease 

A576T PSD N N Decrease 

P639S PD D D Decrease 

P769T PD D N Decrease 

P838L PD D D Decrease 

P913S PSD D N Decrease 

 

Table E.5: Functional change and structural stability change for 
arabinosyltransferase B (embB)  

MUTATION PolyPhen-2 PROVEAN SIFT I-MUTANT 3.0 

N13S B N N Decrease 

V50A B N N Decrease 

L74R PSD N N Decrease 

R128G PSD D D Decrease 

L239P PD D D Decrease 

D240H PD D D Decrease 

G246R B N N Increase 

R257W PSD N D Decrease 

A281S B N N Decrease 

A281V B N N Increase 

V282G B D N Decrease 

L288V B N N Decrease 

I293T PSD D D Decrease 

N296H PD D N Decrease 

N296I PD D D Increase 

N296K PD D N Decrease 

S297A PSD D D Decrease 

S298A PD N N Decrease 

S298W PD D D Increase 

D299E PD D D Increase 

L304V PSD N D Decrease 

M306L PD D D Decrease 

M306V PD D N Decrease 

M306F PD D D Decrease 

M306I PSD D N Decrease 

M306T PSD D N Decrease 

V309A B N N Decrease 

V309G PSD D D Decrease 

A310R PSD D D Decrease 

D311R B D N Decrease 

D311F PD D D Decrease 

D311G B N N Decrease 

D311H B D N Decrease 

H312R B D N Decrease 

Y315L PD D D Increase 

M316I PSD D N Decrease 
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S317F PSD D D Increase 

S317T B N N Decrease 

N318H PD D D Decrease 

N318S PD D D Decrease 

N318K PD D D Decrease 

Y319N PD D D Decrease 

Y319D PD D D Decrease 

Y319C PD D D Decrease 

Y319S PD D D Decrease 

F320L PD D D Decrease 

W322C PD D D Decrease 

W322R PD D D Decrease 

D328G PD D N Decrease 

D328V PSD N N Decrease 

D328H PD N N Decrease 

D328Y PSD N N Increase 

F330I PD D D Decrease 

F330L PD D D Decrease 

F330V PD D D Decrease 

G331R PD D D Decrease 

W332R PD D D Decrease 

Y334H PSD D N Decrease 

D345G PSD N N Decrease 

S347T PSD D D Increase 

S347C PD D N Decrease 

S347I PSD D N Increase 

D354N PSD N N Decrease 

D354T PD N N Decrease 

D354A B N N Decrease 

A356F PSD N D Decrease 

A356S B N N Decrease 

A356V B N N Increase 

A357S B N N Decrease 

A357T PSD N N Decrease 

A357V B N N Increase 

G358V PD D D Decrease 

L359I B N N Decrease 

V360A B N N Decrease 

V360M PSD N N Decrease 

S366L PD D D Decrease 

S366P PD D D Increase 

R367P PD D D Decrease 

E368Q PD D N Decrease 

E368D PSD D N Decrease 

E368A PSD N N Decrease 

V369L PD D D Decrease 

V369A PSD D D Decrease 

L370R PD D D Decrease 
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P371R PD D N Decrease 

G374V PD D D Decrease 

P375A B N N Decrease 

V377M PD D D Decrease 

V377E PD D D Decrease 

V377G PD N N Decrease 

E378A B N N Decrease 

E378K B N N Decrease 

A379T B N N Decrease 

A379D B N N Decrease 

S380R PSD D N Increase 

S380N PSD N N Increase 

S380G PSD N N Decrease 

S380D B N N Increase 

Y384N B N N Increase 

A388G B N N Decrease 

T393A B N N Decrease 

W395R PD D D Decrease 

W395C PD D D Decrease 

P397T PD D D Decrease 

P397R PD D D Decrease 

P397Q PD D D Decrease 

F398H PD D D Decrease 

F398Y B N N Decrease 

N399T B D N Increase 

N399I PSD D D Increase 

N399D PD D D Decrease 

N399H PD D D Decrease 

N400P PD D D Increase 

N400K PD D D Decrease 

G401S PD D D Decrease 

L402V PD D D Decrease 

P404A PD D D Decrease 

P404S PD D D Decrease 

E405D PD D D Decrease 

E405P PD D D Increase 

G406P PD N N Decrease 

G406S PSD N N Decrease 

G406C B N N Decrease 

G406K PSD N N Decrease 

G406R PD N N Decrease 

G406D B N N Decrease 

G406A B N N Decrease 

S412L B N N Decrease 

S412P PSD N N Increase 

M423T B N D Decrease 

S426N B N N Increase 

P430L PD D D Decrease 
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A431T PSD D N Decrease 

V435G B D D Decrease 

V436G B D D Decrease 

T437A B N N Decrease 

P446H PD D D Decrease 

G448V PD D D Decrease 

I450M PD N N Decrease 

V452L PSD N N Decrease 

A454T PSD D N Decrease 

G459A B N N Decrease 

R460C PD D N Decrease 

R460L PSD D N Decrease 

P461S PSD D N Decrease 

I465D PD D D Decrease 

R469P PD D D Decrease 

R471P B D N Decrease 

M482I B N N Decrease 

Q497P PD D D Decrease 

Q497H PD D D Decrease 

Q497F PD D D Increase 

Q497R PD D D Decrease 

Q497K PD D D Increase 

E504D PD D N Decrease 

A505V PD D D Decrease 

R507G PSD D N Decrease 

R507K B D N Decrease 

M557I B N N Decrease 

S565G B N N Decrease 

V602A PSD D D Decrease 

N624D PD D D Decrease 

T642A B N N Decrease 

T643I B N N Decrease 

G745D PD D N Decrease 

M1000R B N D Decrease 

H1002R PD D N Decrease 

D1024N B N N Decrease 

 

Table E.6: Functional change and structural stability change for 
arabinosyltransferase C (embC)  

MUTATION PolyPhen-2 PROVEAN SIFT I-MUTANT 3.0 

P150S PD N N Decrease 

S213C PD D D Decrease 

A244T B N N Decrease 

A247P PD D D Increase 

L251R PD D D Decrease 

A254G B N N Decrease 
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T270I B N N Decrease 

G272S B N N Decrease 

H285Y B D N Increase 

V287F B N D Decrease 

G288W PD D D Decrease 

G288V PD D D Decrease 

Y296H PD D D Decrease 

Y296S PD D D Decrease 

I297L PD D N Decrease 

I297T B N N Decrease 

M300R PD D D Decrease 

R302G PD D D Decrease 

V303G PSD D D Decrease 

E305D PD N N Decrease 

A307T PSD N D Decrease 

G308D PSD D D Decrease 

Y309N PD D D Decrease 

M310K PD D D Decrease 

G325S PD D N Decrease 

W326R PD D D Decrease 

Y327N PD D D Decrease 

D329E PD N N Increase 

A378V PSD N N Increase 

N394D PD D D Decrease 

I406L PSD N N Decrease 

A426T PD D D Decrease 

V451I PD N N Decrease 

P707L PD D D Decrease 

Q725R B N N Decrease 

R738Q B N N Decrease 

V981L PD D D Decrease 

V987A PD N N Decrease 
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Appendix F 

F. Lethal, moderate, mild and neutral mutations in first-line TB drug 

targets identified from comprehensive bioinformatics analysis 

Appendix F includes six tables. Tables F.1, F.2, F.3 and F4 summarise the mutations with a lethal, 

moderate, mild and neutral impact on each first-line TB drug target in Mycobacterium tuberculosis. 

Table F.1, F.2, F.3 and F4 include: 

Table F.1: Mutations with lethal impact on catalase-peroxidase (katG), pyrazinamidase (pncA), β-

subunit of RNA polymerase (rpoB), arabinosyltransferase A (embA), arabinosyltransferase B (embB) 

and arabinosyltransferase C (embC)  

Table F.2: Mutations with moderate impact on catalase-peroxidase (katG), pyrazinamidase (pncA), β-

subunit of RNA polymerase (rpoB), arabinosyltransferase A (embA), arabinosyltransferase B (embB) 

and arabinosyltransferase C (embC)  

Table F.3: Mutations with mild impact on catalase-peroxidase (katG), pyrazinamidase (pncA), β-subunit 

of RNA polymerase (rpoB), arabinosyltransferase A (embA), arabinosyltransferase B (embB) and 

arabinosyltransferase C (embC)  

Table F.4: Mutations with a neutral impact on catalase-peroxidase (katG), pyrazinamidase (pncA) and 

arabinosyltransferase B (embB). No neutral mutations were found in the β-subunit of RNA polymerase 

(rpoB), arabinosyltransferase A (embA), and arabinosyltransferase C (embC)  

Table F.1: Mutations with lethal impact on catalase-peroxidase (katG), 
pyrazinamidase (pncA), β-subunit of RNA polymerase (rpoB), 
arabinosyltransferase A (embA), arabinosyltransferase B (embB) and 
arabinosyltransferase C (embC)  

Catalase-peroxidase 
(katG)  

Pyrazinamidase 
(pncA) 

β-subunit of RNA 
polymerase 
(rpoB)  

Arabinosyltransfer
ase A (embA)  

Arabinosyltransfer
ase B (embB)  

Arabinosyltransfer
ase C (embC)  

Mutation Muta
nt site 

Mutati
on 

Muta
nt 
site 

Mutati
on 

Mutan
t site 

Mutatio
n 

Mutan
t site 

Mutatio
n 

Mutan
t site 

Mutatio
n 

Mutan
t site 

R104Q site-1 D8A site-1 Q432P site-1 L105V site-3 V128G site-3 L215R site-3 

W107R site-1 D8G site-1 Q432H site-1 R380P site-3 D240H site-3 G288W site-3 

Y229F site-1 D8H site-1 R447H site-1 G554D site-3 A310R site-3 G288V site-3 

V230A site-1 D8N site-1 R447P site-1 P639S site-3 N318H site-3 Y269H site-3 

P232R site-1 D8Y site-1 P483L site-1 P838L site-3 N318S site-3 Y269S site-3 
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P232A site-1 F13V site-1 I491F site-1 
  

N318K site-3 R320G site-3 

P232S site-1 F13L site-1 H445N site-2 
  

Y319N site-3 V330G site-3 

G269T site-1 F13S site-1 H445T site-2 
  

Y319D site-3 G380D site-3 

H270A site-1 D49A site-1 H445S site-2 
  

Y319C site-3 Y390N site-3 

T275A site-1 D49N site-1 H445G site-2 
  

Y319S site-3 W362R site-3 

W321R site-1 D49H site-1 H445A site-2 
  

F330I site-3 Y372N site-3 

W321L site-1 D49G site-1 H445R site-2 
  

F330L site-3 N349D site-3 

W321G site-1 H51N site-1 H445Q site-2 
  

F330V site-3 A462T site-3 

W321S site-1 H51Q site-1 N413H site-3 
  

W332R site-3 P770L site-3 

M105I site-2 H71Q site-1 F424V site-3 
  

S366L site-3 
  

H108D site-2 H71D site-1 F 424L site-3 
  

R367P site-3 
  

H108Q site-2 H71N site-1 G426D site-3 
  

V369L site-3 
  

A172T site-2 H71R site-1 T427P site-3 
  

V369A site-3 
  

M176I site-2 H71T site-1 S428T site-3 
  

L370R site-3 
  

G234E site-2 L19P site-2 Q429H site-3 
  

G374V site-3 
  

G234R site-2 L19R site-2 L430P site-3 
  

V377M site-3 
  

T251M site-2 V21G site-2 L430V site-3 
  

V377E site-3 
  

M257I site-2 T47A site-2 L430R site-3 
  

W395R site-3 
  

T262R site-2 P54Q site-2 L430K site-3 
  

W395C site-3 
  

G316S site-2 P54S site-2 S431C site-3 
  

P397T site-3 
  

G316D site-2 P54R site-2 S431T site-3 
  

P397R site-3 
  

E318G site-2 P54T site-2 S431G site-3 
  

P397Q site-3 
  

W328L site-2 P54L site-2 F433V site-3 
  

F398H site-3 
  

W328R site-2 W68R site-2 F433L site-3 
  

N399D site-3 
  

W328S site-2 W68D site-2 M434I site-3 
  

N399H site-3 
  

W328C site-2 W68C site-2 N437H site-3 
  

N400K site-3 
  

A350S site-2 W68G site-2 N437S site-3 
  

G401S site-3 
  

L415P site-2 W68S site-2 N438K site-3 
  

L402V site-3 
  

W91G site-3 W68L site-2 P439S site-3 
  

P404A site-3 
  

W91R site-3 C72R site-2 L440P site-3 
  

P404S site-3 
  

A93T site-3 C72Y site-2 S441Q site-3 
  

E405D site-3 
  

D94N site-3 C72W site-2 G442W site-3 
  

P430L site-3 
  

D94G site-3 K96R site-2 T444P site-3 
  

P446H site-3 
  

Y98S site-3 K96E site-2 K446N site-3 
  

G448V site-3 
  

A110V site-3 K96Q site-2 K446R site-3 
  

Q497P site-3 
  

G121C site-3 K96T site-2 K446E site-3 
  

Q497H site-3 
  

G121V site-3 K96N site-2 K446Q site-3 
  

Q497R site-3 
  

G125C site-3 G97A site-2 R448P site-3 
  

N624D site-3 
  

Q127P site-3 G97S site-2 R448Q site-3 
      

R128Q site-3 G97D site-2 R448G site-3 
      

R128P site-3 I133T site-2 R448L site-3 
      

P131R site-3 I5T site-3 G453A site-3 
      

P131Q site-3 I5S site-3 G453W site-3 
      

N138H site-3 I6S site-3 G453V site-3 
      

N138D site-3 I6T site-3 P454H site-3 
      

N138S site-3 V7G site-3 P454S site-3 
      

N138T site-3 V7A site-3 G455D site-3 
      

D142N site-3 V7F site-3 L457R site-3 
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R146W site-3 V7I site-3 E460G site-3 
      

W161Q site-3 V9A site-3 E481G site-3 
      

W161R site-3 V9G site-3 T482P site-3 
      

A162T site-3 Q10H site-3 S493L site-3 
      

G169S site-3 Q10P site-3 E507G site-3 
      

G186V site-3 Q10K site-3 
        

W191R site-3 Q10R site-3 
        

P241S site-3 D12H site-3 
        

E261K site-3 D12G site-3 
        

E261Q site-3 D12A site-3 
        

A264T site-3 D12N site-3 
        

G285C site-3 C14R site-3 
        

G285D site-3 C14W site-3 
        

A291T site-3 L27R site-3 
        

G299C site-3 A28D site-3 
        

W300C site-3 I31T site-3 
        

W300R site-3 I31S site-3 
        

W300G site-3 L35R site-3 
        

G307R site-3 L35P site-3 
        

G309C site-3 V44G site-3 
        

G309S site-3 V45G site-3 
        

D311F site-3 V45A site-3 
        

D311G site-3 S59F site-3 
        

A312R site-3 V73F site-3 
        

A312G site-3 G78D site-3 
        

T322A site-3 F81S site-3 
        

T322M site-3 L85R site-3 
        

T322N site-3 L85P site-3 
        

T324P site-3 V93M site-3 
        

T326M site-3 F94C site-3 
        

L336R site-3 F94L site-3 
        

L336P site-3 Y99D site-3 
        

W341S site-3 Y103D site-3 
        

T344P site-3 Y103H site-3 
        

R385P site-3 Y103S site-3 
        

P388S site-3 Y103C site-3 
        

P388L site-3 G105R site-3 
        

A409D site-3 L116V site-3 
        

G490C site-3 L120R site-3 
        

G490D site-3 L120P site-3 
        

G491C site-3 R121W site-3 
        

R496L site-3 V125D site-3 
        

R498H site-3 V125G site-3 
        

W505S site-3 V128G site-3 
        

Q525P site-3 V130A site-3 
        

E607K site-3 V130G site-3 
        

G629S site-3 A134S site-3 
        

L653P site-3 A134V site-3 
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R705L site-3 D136H site-3 
        

W728C site-3 C138S site-3 
        

D735N site-3 C138Y site-3 
        

D735A site-3 V139M site-3 
        

  
V139L site-3 

        

  
V139G site-3 

        

  
V139A site-3 

        

  
R140H site-3 

        

  
R140P site-3 

        

  
A146E site-3 

        

  
A146T site-3 

        

  
A146V site-3 

        

  
R148C site-3 

        

  
L182S site-3 

        

 

Table F.2: Mutations with moderate impact on catalase-peroxidase (katG), 
pyrazinamidase (pncA), β-subunit of RNA polymerase (rpoB), 
arabinosyltransferase A (embA), arabinosyltransferase B (embB) and 
arabinosyltransferase C (embC)  

Catalase-peroxidase 
(katG)  

Pyrazinamidase 
(pncA) 

β-subunit of RNA 
polymerase 
(rpoB)  

Arabinosyltransfer
ase A (embA)  

Arabinosyltransfer
ase B (embB)  

Arabinosyltransfer
ase C (embC)  

Mutation Muta
nt site 

Mutati
on 

Mutan
t site 

Mutati
on 

Mutan
t site 

Mutatio
n 

Mutant 
site 

Mutatio
n 

Mutant 
site 

Mutatio
n 

Mutant 
site 

L101P site-1 D8E site-1 Q432K site-1 V122G site-3 L239P site-3 S213C site-3 

K274R site-1 D49V site-1 Q432E site-1 G200S site-3 R257W site-3 H285Y site-3 

T275P site-1 H51Y site-1 Q432L site-1 V206M site-3 I293T site-3 M300R site-3 

S315G site-1 H51P site-1 H445C site-2 A331T site-3 S297A site-3 M310K site-3 

T380I site-1 H51R site-1 H445L site-2 V343L site-3 S298W site-3 V981L site-3 

F408L site-1 H51D site-1 H445Y site-2 G350D site-3 S298A site-3 
  

A172V site-2 H57D site-1 H445E site-2 A576T site-3 D299E site-3 
  

E318V site-2 H57Q site-1 H445P site-2 P769T site-3 M306L site-3 
  

L384R site-2 H57R site-1 H445D site-2 P913S site-3 M306F site-3 
  

N35D site-3 H71Y site-1 V170F site-3 
  

V309G site-3 
  

D63E site-3 H71P site-1 T427S site-3 
  

D311F site-3 
  

V68G site-3 H71E site-1 S428R site-3 
  

Y315L site-3 
  

T85P site-3 A102T site-1 S428Q site-3 
  

F320L site-3 
  

A106V site-3 A102V site-1 S428I site-3 
  

W322C site-3 
  

A109V site-3 T47P site-2 S428G site-3 
  

W322R site-3 
  

D117A site-3 T47S site-2 L430M site-3 
  

G331R site-3 
  

G118A site-3 F58L site-2 S431I site-3 
  

A357S site-3 
  

G125V site-3 M1I site-3 S431N site-3 
  

A357T site-3 
  

L141F site-3 M1T site-3 S431R site-3 
  

G358V site-3 
  

K143T site-3 A3E site-3 S431M site-3 
  

S366P site-3 
  

Y155S site-3 A3S site-3 M434T site-3 
  

P371R site-3 
  

E217G site-3 A3Q site-3 M434V site-3 
  

V377G site-3 
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G279D site-3 A3P site-3 D435G site-3 
  

F398Y site-3 
  

G285R site-3 L4W site-3 D435N site-3 
  

N399T site-3 
  

E289D site-3 L4S site-3 D435H site-3 
  

N399I site-3 
  

A291V site-3 I6L site-3 D435A site-3 
  

N400P site-3 
  

A291P site-3 V7D site-3 D435P site-3 
  

E405P site-3 
  

Q295P site-3 V9S site-3 D435T site-3 
  

A431T site-3 
  

G305A site-3 D12E site-3 Q436P site-3 
  

I450M site-3 
  

G309V site-3 C14Y site-3 Q436L site-3 
  

R460C site-3 
  

G309A site-3 G17S site-3 N437Y site-3 
  

R460L site-3 
  

G309F site-3 G17D site-3 N437I site-3 
  

I465D site-3 
  

D311Y site-3 S18P site-3 N437T site-3 
  

R469P site-3 
  

D311E site-3 G23A site-3 N437D site-3 
  

Q497F site-3 
  

A312V site-3 G23V site-3 L440M site-3 
  

Q497K site-3 
  

S331C site-3 A25E site-3 S441L site-3 
  

E504D site-3 
  

Y337C site-3 A26G site-3 S441F site-3 
  

A505V site-3 
  

K345T site-3 L27P site-3 S441P site-3 
  

R507G site-3 
  

D357H site-3 A28V site-3 S441N site-3 
  

R507K site-3 
  

T394A site-3 Y34D site-3 S441W site-3 
  

V602A site-3 
  

W397Y site-3 Y34S site-3 S450Q site-3 
      

G428R site-3 Y41H site-3 S450A site-3 
      

V442G site-3 H43Y site-3 S450G site-3 
      

L449F site-3 A46E site-3 S450C site-3 
      

E454R site-3 A46S site-3 A451D site-3 
      

Q471R site-3 A46V site-3 L452P site-3 
      

G485V site-3 D53A site-3 L452R site-3 
      

N529D site-3 S59P site-3 L452E site-3 
      

D573G site-3 P62H site-3 L452V site-3 
      

D573N site-3 P62T site-3 I480V site-3 
      

L587P site-3 P62Q site-3 I488V site-3 
      

L611R site-3 P62L site-3 
        

A636E site-3 D63A site-3 
        

  
D63G site-3 

        

  
Y64D site-3 

        

  
S66P site-3 

        

  
S67P site-3 

        

  
P69A site-3 

        

  
P69R site-3 

        

  
P69L site-3 

        

  
T76A site-3 

        

  
T76P site-3 

        

  
T76I site-3 

        

  
A79T site-3 

        

  
A79G site-3 

        

  
D80N site-3 

        

  
H82D site-3 

        

  
H82R site-3 

        

  
H82L site-3 

        

  
P83R site-3 
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F94S site-3 

        

  
F94P site-3 

        

  
T100A site-3 

        

  
T100P site-3 

        

  
S104R site-3 

        

  
G108R site-3 

        

  
N112Y site-3 

        

  
T114A site-3 

        

  
T114P site-3 

        

  
L116R site-3 

        

  
N118T site-3 

        

  
W119L site-3 

        

  
W119G site-3 

        

  
W119R site-3 

        

  
W119C site-3 

        

  
V125L site-3 

        

  
V125F site-3 

        

  
V130L site-3 

        

  
V131F site-3 

        

  
G132A site-3 

        

  
G132C site-3 

        

  
G132R site-3 

        

  
G132D site-3 

        

  
G132S site-3 

        

  
T135A site-3 

        

  
T135P site-3 

        

  
T135N site-3 

        

  
D136Y site-3 

        

  
D136N site-3 

        

  
D136G site-3 

        

  
H137D site-3 

        

  
H137R site-3 

        

  
H137P site-3 

        

  
C138R site-3 

        

  
C138T site-3 

        

  
C138W site-3 

        

  
R140S site-3 

        

  
Q141P site-3 

        

  
T142P site-3 

        

  
T142A site-3 

        

  
T142K site-3 

        

  
T142M site-3 

        

  
A143P site-3 

        

  
A143G site-3 

        

  
A143T site-3 

        

  
A146P site-3 

        

  
R148S site-3 

        

  
L151S site-3 
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V155M site-3 

        

  
V155G site-3 

        

  
V155A site-3 

        

  
G162A site-3 

        

  
G162D site-3 

        

  
M175T site-3 

        

  
M175R site-3 

        

  
V180G site-3 

        

 

Table F.3: Mutations with mild impact on catalase-peroxidase (katG), 
pyrazinamidase (pncA), β-subunit of RNA polymerase (rpoB), 
arabinosyltransferase A (embA), arabinosyltransferase B (embB) and 
arabinosyltransferase C (embC)  

Catalase-peroxidase 
(katG)  

Pyrazinamidase 
(pncA) 

β-subunit of RNA 
polymerase 
(rpoB)  

Arabinosyltransfer
ase A (embA)  

Arabinosyltransfer
ase B (embB)  

Arabinosyltransfer
ase C (embC)  

Mutation Muta
nt site 

Mutati
on 

Mutan
t site 

Mutati
on 

Mutan
t site 

Mutatio
n 

Mutant 
site 

Mutatio
n 

Mutant 
site 

Mutatio
n 

Mutan
t site 

I248M site-1 H57Y site-1 N487S site-1 D4N site-3 N13S site-3 P150S site-3 

T314N site-1 H57P site-1 D435Y site-3 G5S site-3 V50A site-3 A244T site-3 

S315A site-1 H57L site-1 D435V site-3 G5V site-3 L74R site-3 A247P site-3 

S315R site-1 T87M site-3 D435K site-3 V125G site-3 A281S site-3 A254G site-3 

S315T site-1 R154T site-3 D435F site-3 A201T site-3 V282G site-3 T270I site-3 

S315N site-1 R154G site-3 D435E site-3 V468A site-3 L288V site-3 G272S site-3 

S315D site-1 V155L site-3 S450W site-3 
  

N296I site-3 V287F site-3 

S315L site-1 V157G site-3 S450L site-3 
  

N296H site-3 I297T site-3 

S315I site-1 L159P site-3 S450Y site-3 
  

N296K site-3 I297L site-3 

I317L site-1 L159R site-3 S450F site-3 
  

L304V site-3 E305D site-3 

I317V site-1 T160K site-3 L452M site-3 
  

M306V site-3 A307T site-3 

T11A site-3 T160A site-3 
    

M306I site-3 G325S site-3 

A61T site-3 T160P site-3 
    

M306T site-3 D329E site-3 

D74Y site-3 A161P site-3 
    

V309A site-3 A378V site-3 

D74G site-3 V163A site-3 
    

D311G site-3 I406L site-3 

M84I site-3 S164P site-3 
    

D311R site-3 V451I site-3 

Y155C site-3 A165T site-3 
    

D311H site-3 Q725R site-3 

D194Y site-3 T168P site-3 
    

H312R site-3 R738Q site-3 

E195K site-3 T168N site-3 
    

M316I site-3 V987A site-3 

G206D site-3 A171V site-3 
    

S317F site-3 
  

N218K site-3 A171T site-3 
    

S317T site-3 
  

N236T site-3 A171E site-3 
    

D328Y site-3 
  

T271V site-3 A171P site-3 
    

D328V site-3 
  

P280S site-3 L172P site-3 
    

D328H site-3 
  

P280H site-3 L172R site-3 
    

D328G site-3 
  

S302R site-3 L172A site-3 
    

Y334H site-3 
  

S303W site-3 M175I site-3 
    

D345G site-3 
  

T308P site-3 M175V site-3 
    

S347T site-3 
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D329G site-3 T177P site-3 
    

S347C site-3 
  

I335T site-3 V180F site-3 
    

S347I site-3 
  

I335V site-3 C184Y site-3 
    

D354N site-3 
  

D406A site-3 
      

D354T site-3 
  

A424G site-3 
      

D354A site-3 
  

R463W site-3 
      

A356F site-3 
  

R463H site-3 
      

A356S site-3 
  

R463L site-3 
      

L359I site-3 
  

R515C site-3 
      

V360A site-3 
  

S652A site-3 
      

V360M site-3 
  

S700P site-3 
      

E368A site-3 
  

Q717P site-3 
      

E368Q site-3 
  

        
E368D site-3 

  

        
P375A site-3 

  

        
E378A site-3 

  

        
E378K site-3 

  

        
A379T site-3 

  

        
A379D site-3 

  

        
S380R site-3 

  

        
S380N site-3 

  

        
S380G site-3 

  

        
A388G site-3 

  

        
T393A site-3 

  

        
G406P site-3 

  

        
G406S site-3 

  

        
G406C site-3 

  

        
G406K site-3 

  

        
G406R site-3 

  

        
G406D site-3 

  

        
G406A site-3 

  

        
S412P site-3 

  

        
S412L site-3 

  

        
M423T site-3 

  

        
V435G site-3 

  

        
V436G site-3 

  

        
T437A site-3 

  

        
V452L site-3 

  

        
A454T site-3 

  

        
G459A site-3 

  

        
P461S site-3 

  

        
R471P site-3 

  

        
M482I site-3 

  

        
M557I site-3 

  

        
S565G site-3 

  

        
T642A site-3 

  

        
T643I site-3 

  

        
G745D site-3 

  

        
M1000R site-3 
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H1002R site-3 

  

        
D1024N site-3 

  

 

Table F.4: Mutations with a neutral impact on catalase-peroxidase (katG), 
pyrazinamidase (pncA) and arabinosyltransferase B (embB). No neutral 
mutations were found in the β-subunit of RNA polymerase (rpoB), 
arabinosyltransferase A (embA), and arabinosyltransferase C (embC)  

Catalase peroxidase (katG) Pyrazinamidase (pncA) Arabinosyltransferase B (embB) 

Mutation Mutant site Mutation Mutant site Mutation Mutant site 

T12P site-3 D80E site-3 G264R site-3 

D357N site-3 
  

A218V site-3 

A379V site-3 
  

A365V site-3 

S446R site-3 
  

A375V site-3 
    

S308D site-3 
    

Y348N site-3 
    

S462N site-3 
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Appendix G 

G. List of 159 Mycobacterium tuberculosis strains selected for 
identification of human TB vaccine candidates 

 
Table G.1 provides information on the 159 Mycobacterium tuberculosis strains selected for 

identification of vaccine candidates for human tuberculosis. The complete proteome sequence of 159 

different Mycobacterium tuberculosis strains were downloaded from the NCBI Genome FTP site. Table 

G.1 includes: 

 

1- Strain number 

2- Mycobacterium tuberculosis isolate 

3- Taxon ID 

4- INSDC (international nucleotide sequence database collaboration) 

5- GenBank assembly accession 

Table G.1: 159 strains of Mycobacterium tuberculosis 

Strain  Strain Name Taxon ID Accession Assembly 

Strain1 Mycobacterium tuberculosis H37Rv complete genome 83332 AL123456.3 GCA_000195955.2 

Strain2 Mycobacterium tuberculosis CDC1551 83331 AE000516.2 GCA_000008585.1 

Strain3 Mycobacterium tuberculosis F11 336982 CP000717.1 GCA_000016925.1 

Strain4 Mycobacterium tuberculosis KZN 1435 478434 CP001658.1 GCA_000023625.1 

Strain5 Mycobacterium tuberculosis str. Haarlem 395095 CP001664.1 GCA_000153685.2 

Strain6 Mycobacterium tuberculosis KZN 4207 478433 CP001662.1 GCA_000154585.2 

Strain7 Mycobacterium tuberculosis KZN 605 478435 CP001976.1 GCA_000154605.2 

Strain8 Mycobacterium tuberculosis W-148 659019 CP012090.1 GCA_000193185.2 

Strain9 Mycobacterium tuberculosis CTRI-2 707235 CP002992.1 GCA_000224435.1 

Strain10 Mycobacterium tuberculosis CCDC5180 443150 CP001642.1 GCA_000270365.1 

Strain11 Mycobacterium tuberculosis H37Rv 83332 CP003248.2 GCA_000277735.2 

Strain12 Mycobacterium tuberculosis 7199-99 1138877 HE663067.1 GCA_000331445.1 

Strain13 Mycobacterium tuberculosis str. Erdman = ATCC 
35801 DNA 

652616 AP012340.1 GCA_000350205.1 

Strain14 Mycobacterium tuberculosis str. Beijing/NITR203 1306400 CP005082.1 GCA_000364825.1 

Strain15 Mycobacterium tuberculosis EAI5/NITR206 1310115 CP005387.1 GCA_000389945.1 

Strain16 Mycobacterium tuberculosis CCDC5079 443149 CP002884.1 GCA_000400615.1 

Strain17 Mycobacterium tuberculosis EAI5 1306414 CP006578.1 GCA_000422125.1 

Strain18 Mycobacterium tuberculosis HKBS1 1010834 CP002871.1 GCA_000572125.1 

Strain19 Mycobacterium tuberculosis BT2 1010835 CP002882.1 GCA_000572155.1 

Strain20 Mycobacterium tuberculosis BT1 1010836 CP002883.1 GCA_000572175.1 
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Strain21 Mycobacterium tuberculosis CCDC5180 443150 CP002885.1 GCA_000572195.1 

Strain22 Mycobacterium tuberculosis K 1249615 CP007803.1 GCA_000698475.1 

Strain23 Mycobacterium tuberculosis Korean Strain KIT87190 1773 CP007809.1 GCA_000706665.1 

Strain24 Mycobacterium tuberculosis ZMC13-264 1773 CP009100.1 GCA_000738445.1 

Strain25 Mycobacterium tuberculosis ZMC13-88 1773 CP009101.1 GCA_000738475.1 

Strain26 Mycobacterium tuberculosis 96075 1773 CP009426.1 GCA_000756525.1 

Strain27 Mycobacterium tuberculosis strain 96121 1773 CP009427.1 GCA_000756545.1 

Strain28 Mycobacterium tuberculosis 49-02 1427516 HG813240.1 GCA_000786505.1 

Strain29 Mycobacterium tuberculosis H37RvSiena 1437856 CP007027.1 GCA_000827085.1 

Strain30 Mycobacterium tuberculosis str. Kurono DNA 1445606 AP014573.1 GCA_000828995.1 

Strain31 Mycobacterium tuberculosis H37Rv, TMC 102 83332 CP009480.1 GCA_000831245.1 

Strain32 Mycobacterium tuberculosis strain SCAID 187.0 1773 CP012506.2 GCA_001275565.2 

Strain33 Mycobacterium tuberculosis strain F28 1773 CP010330.1 GCA_001544705.1 

Strain34 Mycobacterium tuberculosis strain 22115 1773 CP010337.1 GCA_001544955.1 

Strain35 Mycobacterium tuberculosis strain 22103 1773 CP010339.1 GCA_001545015.1 

Strain36 Mycobacterium tuberculosis strain SCAID 320.0 1773 CP016794.1 GCA_001702435.1 

Strain37 Mycobacterium tuberculosis strain SCAID 252.0 1773 CP016888.1 GCA_001708265.1 

Strain38 Mycobacterium tuberculosis strain Beijing 1773 CP011510.1 GCA_001750865.1 

Strain39 Mycobacterium tuberculosis strain 1458 1773 CP013475.1 GCA_001855255.1 

Strain40 Mycobacterium tuberculosis strain TB282 1773 CP017920.1 GCA_001870145.1 

Strain41 Mycobacterium tuberculosis strain I0004241-1 1773 CP018303.1 GCA_001895765.1 

Strain42 Mycobacterium tuberculosis strain M0018684-2 1773 CP018305.1 GCA_001895785.1 

Strain43 Mycobacterium tuberculosis strain I0004000-1 1773 CP018302.1 GCA_001895805.1 

Strain44 Mycobacterium tuberculosis strain I0002801-4 1773 CP018301.1 GCA_001895825.1 

Strain45 Mycobacterium tuberculosis strain I0002353-6 1773 CP018300.1 GCA_001895845.1 

Strain46 Mycobacterium tuberculosis strain M0002959-6 1773 CP018304.1 GCA_001895865.1 

Strain47 Mycobacterium tuberculosis strain DK9897 1773 CP018778.1 GCA_001922485.1 

Strain48 Mycobacterium tuberculosis strain MTB1 1773 CP020381.2 GCA_002072775.2 

Strain49 Mycobacterium tuberculosis strain Beijing-like/35049 1773 CP017593.1 GCA_002116755.1 

Strain50 Mycobacterium tuberculosis strain Beijing-like/36918 1773 CP017594.1 GCA_002116775.1 

Strain51 Mycobacterium tuberculosis strain Beijing-like/38774 1773 CP017595.1 GCA_002116795.1 

Strain52 Mycobacterium tuberculosis strain Beijing/391 1773 CP017596.1 GCA_002116815.1 

Strain53 Mycobacterium tuberculosis strain Beijing-like/50148 1773 CP017597.1 GCA_002116835.1 

Strain54 Mycobacterium tuberculosis strain Beijing-like/1104 1773 CP017598.1 GCA_002116855.1 

Strain55 Mycobacterium tuberculosis strain MTB2 1773 CP022014.1 GCA_002208235.1 

Strain56 Mycobacterium tuberculosis DNA, complete genome, 
strain: NCGM946K2 

1773 AP017901.1 GCA_002356015.1 

Strain57 Mycobacterium tuberculosis DNA, complete genome, 
strain: HN-024 

1773 AP018033.1 GCA_002356255.1 

Strain58 Mycobacterium tuberculosis DNA, complete genome, 
strain: HN-205 

1773 AP018034.1 GCA_002357935.1 

Strain59 Mycobacterium tuberculosis DNA, complete genome, 
strain: HN-321 

1773 AP018035.1 GCA_002357955.1 

Strain60 Mycobacterium tuberculosis DNA, complete genome, 
strain: HN-506 

1773 AP018036.1 GCA_002357975.1 
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Strain61 Mycobacterium tuberculosis strain CSV4519 1773 CP023573.1 GCA_002446875.1 

Strain62 Mycobacterium tuberculosis strain CSV4644 1773 CP023574.1 GCA_002446895.1 

Strain63 Mycobacterium tuberculosis strain CSV5769 
chromosome 

1773 CP023575.1 GCA_002446915.1 

Strain64 Mycobacterium tuberculosis strain CSV10399 
chromosome 

1773 CP023576.1 GCA_002446935.1 

Strain65 Mycobacterium tuberculosis strain CSV11678 1773 CP023577.1 GCA_002446955.1 

Strain66 Mycobacterium tuberculosis strain LE486 chromosome 1773 CP023578.1 GCA_002446975.1 

Strain67 Mycobacterium tuberculosis strain LE492 1773 CP023579.1 GCA_002446995.1 

Strain68 Mycobacterium tuberculosis strain LN180 1773 CP023580.1 GCA_002447015.1 

Strain69 Mycobacterium tuberculosis strain LN2358 1773 CP023581.1 GCA_002447035.1 

Strain70 Mycobacterium tuberculosis strain LN3756 1773 CP023582.1 GCA_002447055.1 

Strain71 Mycobacterium tuberculosis strain MDRDM260 1773 CP023583.1 GCA_002447075.1 

Strain72 Mycobacterium tuberculosis strain MDRDM627 1773 CP023584.1 GCA_002447095.1 

Strain73 Mycobacterium tuberculosis strain MDRDM1098 1773 CP023585.1 GCA_002447115.1 

Strain74 Mycobacterium tuberculosis strain MDRMA2491 1773 CP023586.1 GCA_002447135.1 

Strain75 Mycobacterium tuberculosis strain ME1473 1773 CP023587.1 GCA_002447155.1 

Strain76 Mycobacterium tuberculosis strain TBDM425 1773 CP023588.1 GCA_002447175.1 

Strain77 Mycobacterium tuberculosis strain TBV5000 1773 CP023589.1 GCA_002447195.1 

Strain78 Mycobacterium tuberculosis strain TBV5362 1773 CP023590.1 GCA_002447215.1 

Strain79 Mycobacterium tuberculosis strain TBV5365 1773 CP023591.1 GCA_002447235.1 

Strain80 Mycobacterium tuberculosis strain SLM036 1773 CP023592.1 GCA_002447255.1 

Strain81 Mycobacterium tuberculosis strain SLM040 1773 CP023593.1 GCA_002447275.1 

Strain82 Mycobacterium tuberculosis strain SLM056 1773 CP023594.1 GCA_002447295.1 

Strain83 Mycobacterium tuberculosis strain SLM060 1773 CP023595.1 GCA_002447315.1 

Strain84 Mycobacterium tuberculosis strain SLM063 1773 CP023596.1 GCA_002447335.1 

Strain85 Mycobacterium tuberculosis strain SLM088 1773 CP023597.1 GCA_002447355.1 

Strain86 Mycobacterium tuberculosis strain SLM100 1773 CP023598.1 GCA_002447375.1 

Strain87 Mycobacterium tuberculosis strain CSV383 1773 CP023599.1 GCA_002447395.1 

Strain88 Mycobacterium tuberculosis strain CSV3611 1773 CP023600.1 GCA_002447415.1 

Strain89 Mycobacterium tuberculosis strain CSV9577 1773 CP023601.1 GCA_002447435.1 

Strain90 Mycobacterium tuberculosis strain LE13 1773 CP023602.1 GCA_002447455.1 

Strain91 Mycobacterium tuberculosis strain LE63 1773 CP023603.1 GCA_002447475.1 

Strain92 Mycobacterium tuberculosis strain LE76 1773 CP023604.1 GCA_002447495.1 

Strain93 Mycobacterium tuberculosis strain LE79 1773 CP023605.1 GCA_002447515.1 

Strain94 Mycobacterium tuberculosis strain LE103 1773 CP023606.1 GCA_002447535.1 

Strain95 Mycobacterium tuberculosis strain LE371 1773 CP023607.1 GCA_002447555.1 

Strain96 Mycobacterium tuberculosis strain LE410 1773 CP023608.1 GCA_002447575.1 

Strain97 Mycobacterium tuberculosis strain LN55 1773 CP023609.1 GCA_002447595.1 

Strain98 Mycobacterium tuberculosis strain LN317 1773 CP023610.1 GCA_002447615.1 

Strain99 Mycobacterium tuberculosis strain LN763 1773 CP023611.1 GCA_002447635.1 

Strain100 Mycobacterium tuberculosis strain LN2978 1773 CP023612.1 GCA_002447655.1 

Strain101 Mycobacterium tuberculosis strain LN3584 1773 CP023613.1 GCA_002447675.1 
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Strain102 Mycobacterium tuberculosis strain LN3588 1773 CP023614.1 GCA_002447695.1 

Strain103 Mycobacterium tuberculosis strain LN3589 1773 CP023615.1 GCA_002447715.1 

Strain104 Mycobacterium tuberculosis strain LN3668 1773 CP023616.1 GCA_002447735.1 

Strain105 Mycobacterium tuberculosis strain LN3672 1773 CP023617.1 GCA_002447755.1 

Strain106 Mycobacterium tuberculosis strain LN3695 1773 CP023618.1 GCA_002447775.1 

Strain107 Mycobacterium tuberculosis strain LN1100 1773 CP023619.1 GCA_002447795.1 

Strain108 Mycobacterium tuberculosis strain LN1856 1773 CP023620.1 GCA_002447815.1 

Strain109 Mycobacterium tuberculosis strain LN2900 1773 CP023621.1 GCA_002447835.1 

Strain110 Mycobacterium tuberculosis strain MDRDM827 1773 CP023622.1 GCA_002447855.1 

Strain111 Mycobacterium tuberculosis strain MDRMA203 1773 CP023623.1 GCA_002447875.1 

Strain112 Mycobacterium tuberculosis strain MDRMA701 1773 CP023624.1 GCA_002447895.1 

Strain113 Mycobacterium tuberculosis strain MDRMA863 1773 CP023625.1 GCA_002447915.1 

Strain114 Mycobacterium tuberculosis strain MDRMA1565 1773 CP023626.1 GCA_002447935.1 

Strain115 Mycobacterium tuberculosis strain MDRMA2019 1773 CP023627.1 GCA_002447955.1 

Strain116 Mycobacterium tuberculosis strain MDRMA2082 1773 CP023628.1 GCA_002447975.1 

Strain117 Mycobacterium tuberculosis strain MDRMA2260 1773 CP023629.1 GCA_002447995.1 

Strain118 Mycobacterium tuberculosis strain MDRMA2441 1773 CP023630.1 GCA_002448015.1 

Strain119 Mycobacterium tuberculosis strain TBDM1506 1773 CP023631.1 GCA_002448035.1 

Strain120 Mycobacterium tuberculosis strain TBDM2189 1773 CP023632.1 GCA_002448055.1 

Strain121 Mycobacterium tuberculosis strain TBDM2444 1773 CP023633.1 GCA_002448075.1 

Strain122 Mycobacterium tuberculosis strain TBDM2487 1773 CP023634.1 GCA_002448095.1 

Strain123 Mycobacterium tuberculosis strain TBDM2489 1773 CP023635.1 GCA_002448115.1 

Strain124 Mycobacterium tuberculosis strain TBDM2699 1773 CP023636.1 GCA_002448135.1 

Strain125 Mycobacterium tuberculosis strain TBDM2717 1773 CP023637.1 GCA_002448155.1 

Strain126 Mycobacterium tuberculosis strain TBV4766 1773 CP023638.1 GCA_002448175.1 

Strain127 Mycobacterium tuberculosis strain TBV4768 1773 CP023639.1 GCA_002448195.1 

Strain128 Mycobacterium tuberculosis strain TBV4952 1773 CP023640.1 GCA_002448215.1 

Strain129 Mycobacterium tuberculosis strain GG-111-10 1773 CP025593.1 GCA_002886145.1 

Strain130 Mycobacterium tuberculosis strain GG-5-10 1773 CP025594.1 GCA_002886165.1 

Strain131 Mycobacterium tuberculosis strain GG-20-11 1773 CP025595.1 GCA_002886195.1 

Strain132 Mycobacterium tuberculosis strain GG-90-10 1773 CP025601.1 GCA_002886335.1 

Strain133 Mycobacterium tuberculosis strain GG-129-11 1773 CP025604.1 GCA_002886405.1 

Strain134 Mycobacterium tuberculosis strain GG-134-11 1773 CP025605.1 GCA_002886505.1 

Strain135 Mycobacterium tuberculosis strain GG-229-10 1773 CP025608.1 GCA_002886585.1 

Strain136 Mycobacterium tuberculosis strain GG-37-11 1773 CP025598.1 GCA_002886685.1 

Strain137 Mycobacterium tuberculosis strain GG-121-10 1773 CP025603.1 GCA_002886775.1 

Strain138 Mycobacterium tuberculosis strain GG-186-10 1773 CP025607.1 GCA_002886865.1 

Strain139 Mycobacterium tuberculosis strain GG-27-11 1773 CP025596.1 GCA_002886945.1 

Strain140 Mycobacterium tuberculosis strain GG-36-11 1773 CP025597.1 GCA_002887065.1 

Strain141 Mycobacterium tuberculosis strain GG-45-11 1773 CP025599.1 GCA_002887145.1 

Strain142 Mycobacterium tuberculosis strain GG-109-10 1773 CP025602.1 GCA_002887255.1 
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Strain143 Mycobacterium tuberculosis strain GG-137-10 1773 CP025606.1 GCA_002887335.1 

Strain144 Mycobacterium tuberculosis CCDC5079 443149 CP001641.1 GCA_000270345.1 

Strain145 Mycobacterium tuberculosis RGTB327 1091500 CP003233.1 GCA_000277085.1 

Strain146 Mycobacterium tuberculosis RGTB423 1091501 CP003234.1 GCA_000277105.1 

Strain147 Mycobacterium tuberculosis str. Haarlem/NITR202 1304279 CP004886.1 GCA_000389905.1 

Strain148 Mycobacterium tuberculosis CAS/NITR204 1310114 CP005386.1 GCA_000389925.1 

Strain149 Mycobacterium tuberculosis strain Beijing-like 1773 CP010873.1 GCA_000954155.1 

Strain150 Mycobacterium tuberculosis strain F1 1773 CP010329.1 GCA_001544675.1 

Strain151 Mycobacterium tuberculosis strain 2242 1773 CP010335.1 GCA_001544895.1 

Strain152 Mycobacterium tuberculosis strain 2279 1773 CP010336.1 GCA_001544935.1 

Strain153 Mycobacterium tuberculosis strain 37004 1773 CP010338.1 GCA_001544985.1 

Strain154 Mycobacterium tuberculosis strain 26105 1773 CP010340.1 GCA_001545055.1 

Strain155 Mycobacterium tuberculosis strain Beijing2014PNGD 1773 CP022704.1 GCA_002895185.1 

Strain156 Mycobacterium tuberculosis UT205 1097669 HE608151.1 GCA_000304555.1 

Strain157 Mycobacterium tuberculosis 18b 1452723 CP007299.1 GCA_000835125.1 

Strain158 Mycobacterium tuberculosis strain PR08 1773 CP010895.1 GCA_000934585.1 

strain159 Mycobacterium tuberculosis strain PR10 1773 CP010968.1 GCA_001584745.1 
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Appendix H 

H. Python scripts used for homology modelling 

H.1: MODELLER v9.23 python script for template-target alignment- “catp-
1sj2.py” 

 

from modeller import * 

env = environ() 

aln = alignment(env) 

mdl = model(env, file='1sj2', model_segment=('FIRST:A','LAST:A')) 

aln.append_model(mdl, align_codes='1sj2A', atom_files='1sj2.pdb') 

aln.append(file='catp.ali', align_codes='catp') 

aln.align2d() 

aln.write(file='catp-1sj2A.ali', alignment_format='PIR') 

aln.write(file='catp-1sj2A.pap', alignment_format='PAP') 

 

H.2: MODELLER v9.23 python script for model building- “catp_model.py” 

 

from modeller import * 

from modeller.automodel import * 

#from modeller import soap_protein_od 

env = environ() 

a = automodel(env, alnfile='catp-1sj2A.ali', 

              knowns='1sj2A', sequence='catp', 

              assess_methods=(assess.DOPE, 

                              #soap_protein_od.Scorer(), 

                              assess.GA341)) 

a.starting_model = 1 

a.ending_model = 10 

a.make() 
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