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Abstract

Abstract of a thesis submitted in partial fulfilment of the 
requirements for the Degree of Doctor of Philosophy

Grazing personality genetics of beef cattle 
in New Zealand rangelands

by

Cristian Ańıbal Moreno Garćıa

The uneven distribution of grazing cattle on pastures and rangelands has been of concern to livestock

managers since the very early days of grassland science, not least because of the effects of grazing pat-

terns on ecosystem functions and the sustainability of farming systems. Mountainous terrain imposes

additional limitations for free-range grazing animals; which may avoid using vegetation at higher alti-

tudes, on steeper slopes, or at greater distance from drinking water. Consequently, areas that are more

easily accessible might be overgrazed, potentially leading to diminished ecological functions and re-

duced productivity. In recent years, animal personality theory has suggested that individual animals do

not behave in the same way, and instead display consistent and distinctive sets of behaviours or ‘per-

sonality’. Animal personality could explain the distinct grazing patterns reported for free-range cattle,

where individual animals have preference for certain habitats over others as a result of their behaviour.

Preliminary studies have also reported associations between cattle gene regions (i.e., quantitative trait

loci) and indexes that describe terrain use, suggesting the potential for genes that might explain varia-

tion in the grazing personality of beef cattle.

This thesis contains the following chapters:

A literature review about grazing behaviour and personality (Chapter 1). While grazing lands can of-

fer a diverse range of forages, individuals within herds appear to prefer to graze some habitats and not

others. They can have consistent differences in grazing patterns and occupy specific spatial domains,

whilst developing tactics and strategies for foraging that are individual specific. Accordingly, in this
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chapter, a new understanding of grazing personality was developed. This entailed the development of

a ‘grazing personality model’ (GP-model) that accounts for the personality of individual animals and

for the collective behaviour of herds. The GP-model postulates that the grazing personalities of rumi-

nants and other large herbivores are determined genetically and tempered epigenetically in interaction

with the social and biophysical environments of the cattle. They may also reflect the emotional state of

animals.

While the selection of one grazing personality may be adequate for homogeneous pastoral systems, the

design of herds with a range of grazing personalities that are matched to the habitat diversity may be

a better approach to improving the distribution of grazing animals, thus potentially enhancing ecosys-

tem services and maximizing productivity.

An investigation of whether the movement of cattle and potential measures of their grazing personali-

ties might be determined genetically, was undertaken in chapter 2. Genetic variation within the gluta-

mate metabotropic receptor 5 gene (GRM5 ), a ‘grazing gene’ candidate was investigated. Associations

between variation in that gene and variation in grazing personality behaviours (GP-behaviours) were

tested with mature cows (n = 303) under free-range management during winter grazing in the steep

and rugged rangelands of New Zealand. Grazing behaviours were calculated using data from global

positioning system (GPS) tracking collars and, satellite-derived data. Eight GP-behaviours were fit-

ted into mixed models to ascertain their associations with variant sequences and genotypes of GRM5 .

Three new GRM5 variants (A, B and C ) were discovered and six possible genotypes were identified in

the cattle studied. The mixed models revealed that A was associated (P < 0.05) with elevation range,

home range and movement tortuosity. Similarly, GRM5 genotypes were significantly associated (P <

0.05) with home range and movement tortuosity, while trends towards association (P < 0.1) were re-

vealed for elevation range and horizontal distance travelled. Most of the GP-behaviour models were

improved when corrected with the ‘cow age-class’ factor and the results suggested that grazing person-

ality might be stable when cows reached 4 years of age. Home range and movement tortuosity were not

only associated with GRM5 variation, but also negatively correlated with each other (r = -0.27, P <

0.001). Thus, there seems to be a genetically determined trade-off between home range and movement

tortuosity that may be useful in beef cattle breeding programmes that aim to improve the grazing dis-

tribution and utilisation of steep and rugged rangelands.

The results of Chapter 2 suggested that differences in grazing patterns are associated with nucleotide

sequence variation in GRM5 . Association analyses require large datasets to detect genotype-phenotype

associations, hence, most large-scale studies aiming to identify behavioural linkages with grazing genes

typically apply random sampling from existing setups without a priori control over the genotypic com-

position of the sample. This can lead to unbalanced experiments with over or under representation of

any given group analysed. An alternative approach (Chapter 3) was used to perform a discriminant

analysis of a balanced dataset that was generated by under-sampling the larger dataset (n = 303) de-

scribed in Chapter 2. In this analysis, a training dataset of mature cows (n = 80) that equally rep-

resented five of the six GRM5 genotypes and four farms were selected. The GP-behaviours were de-

rived from 5-min GPS relocations measured over 15 d and the analysis aimed to select a combination

of GP-behaviours that assist the identification of specific GRM5 genotypes, and to investigate be-

havioural differences between cows of various genotypes of this ‘grazing gene’. Two sets of grazing
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behaviours were selected to build quadratic discriminant models (QDMs) that achieved 87% of ac-

curacy in ascertaining GRM5 genotype with a training balanced dataset. An ‘exploration discriminant

model’ built with the GP-behaviours related to elevation, slope and exploration correctly predicted the

genotypes of 85% of the individuals of a testing dataset that were not included in the model’s train-

ing. MANOVA and ANOVA analyses highlighted the relative importance of GP-behaviours to discrim-

inate between GRM5 genotypes and showed behavioural differences between cows of various GRM5

genotypes. The results extend the list of key behaviours linked to GRM5 in agreement with genotype-

phenotype associations between GRM5 and GP-behaviours reported in chapter 2 and in the literature.

In conclusion, sets of key GP-behaviours might be useful for predicting the variation in putative ‘graz-

ing genes’ and QDMs applied to small-scale experiments with balanced designs seems to be a promis-

ing approach for behavioural genetics.

Overall, this research proposed a model for individual and collective grazing personalities for cattle.

The analysis suggested consistent differences between individuals associated with GRM5 variation.

Furthermore, linkages between bovine GRM5 and key grazing behaviours may characterise specific

genotypes and assist with their identification. The research provides a conceptual model of grazing

personality and experimental evidence suggesting possible applications of behavioural genetics to po-

tentially optimise the distribution of beef cattle in steep and rugged terrain. More research is however

needed to validate these findings.

Keywords: Animal personality, Beef cattle, Breeding programmes, Discriminant analysis, Genotype-

phenotype associations, Global positioning system tracking (GPS-tracking), Glutamate metabotropic

receptor 5 gene (GRM5 ), Grazing behaviour, Linear mixed models, Steep and rugged terrain
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Chapter 1

On the search for grazing

personalities: from individual to

collective behaviours

1.1 Introduction

We picture foraging animals distributed throughout grazing lands. Individually or in various sized

groups of one or more species, herbivores explore and graze a diverse range of habitats including ri-

parian areas, open flat plains, gentle or steep hills and mountainous lands. Even when considering

herds of one single species, individuals show divergent dietary tactics and foraging site preferences

resulting in consistently and regularly repeated grazing patterns, like for example in cattle or sheep

[8, 9, 10, 11].

Grazing has been described as a process composed of short-term ingestive tactics, and mid- and long-

term digestive strategies [12], and its pattern is defined as a cluster of decisions that lead to ingestive

actions and digestive strategies that are motivated by the interaction of both internal and external

stimuli [13]. Differences in grazing patterns are far from being trivial or random, with individual a-

nimals behaving consistently and adopting specific grazing strategies across situations and over time;

such that animals are said to display recognizable grazing personalities [14, 15, 16, 4]. The diversity of

grazing personalities within herds modulates the intensity and frequency of forage defoliation achieved

with recommended stocking rates, the fitness of animals and other production traits such as reproduc-

tion success, survival and live-weight changes [17, 7]. As a consequence, differences in grazing patterns

and personalities affect ecosystem functions such as speeding up nutrient cycling [18], increasing pro-

ductivity of grasslands [19] and preventing loss of plant diversity [20].

The concept of animal personality, also referred to as behavioural syndrome [4], copying style [21], and

temperament [22] among other closely related terms [23, 5], was developed by integrating correlated

traits of behaviour with other traits. For example, Carere and Maestripieri [24] defined animal persona-
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lity as correlated behavioural and physiological traits that differ among individuals of the same species,

and that are temporally stable across different contexts or situations. Gosling and John [25] suggested

this concept should not be restricted to differences observed within-species, but rather these are be-

haviours and patterns that are consistently displayed by individuals regardless of the species identity.

Some authors also argue that personality should include traits that account for consistent patterns of

feelings and thoughts that affect behaviour [26]. In this way, the concept of animal personality includes

emotional and cognitive traits, which can influence animal decision-making and wellbeing. In line with

Maderspacher’s [27] arguments and Biro and Post’s [28] speculations, we have chosen to include mor-

phological traits in our definition of grazing personality, as evidence showed correspondence between

behavioural polymorphisms and morphological polymorphisms. Accordingly, we define grazing perso-

nality for grazing ruminants and other large herbivores as ‘suites of traits of different nature (e.g., be-

havioural, cognitive, physiological and morphological), which are correlated and often concatenated, to

result in specific grazing patterns displayed consistently across contexts and over time’.

Regardless of the species identity, differences in grazing personalities are observed at the individual

[29, 30, 15, 25] and collective level; that is in groups, herds and populations of animals [31, 32]. Con-

sequently, we argue that grazing personalities are the result of evolutionary processes that filtered al-

leles and established allele frequencies of key genes related to behavioural patterns, tactics, strategies

and decision-making in the grazing process, hereafter referred to as ‘grazing genes’. In addition, inter-

actions with social and biophysical environments, the emotional state of animals and their experiences

early in life, might modify the epigenome of grazing genes, thereby modulating their expression.

We support the contention that grazing personalities are observable at individual and collective levels,

and suggest that divergent grazing personalities result in distinct grazing patterns and attributes; such

as the ability to explore, define a home-range, display a habitat preference and fragment into groups.

These all affect the ecological functioning of grazing systems.

We also propose a “grazing personality model” (GP-model). The purpose and context of the

GP-model is to represent the genetic elements, the regulatory systems and the phenotypic elements

that encompass individual and collective personalities in a context of herds of grazing ruminants and

other large herbivores. The objective of the GP-model is to further develop our understanding of dis-

tribution of grazing animals following the initial “Ecological-Hierarchical grazing model” [33] and the

additional concepts of the “Distribution Patterns and Mechanisms model” [34]. The GP-model repre-

sents grazing personalities, which are genetically determined (genotypic personality) and epigenetically

modulated through the systems that regulate the expression of grazing genes (personality plasticity)

via interactions with the social herd environment and the biophysical features of the grazing environ-

ment. The emotional state of animals influences the regulatory systems that modulate gene expression

and affects grazing decision-making. In this review, we first deal with grazing personalities at the level

of the individual animal, then we deal with collective personalities and finally we illustrate GP-model

implications based on movement ecology, genetics and animal personality.
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1.2 Individual grazing personalities

‘...from the population optimum perspective [. . . ] natural and sexual selection may favor

the evolution of multiple responses to environmental challenges, thus resulting in within-

population variation in the same behavioural trait, and in whole suites of behavioural traits.’

[35].

This section describes the GP-model at the individual level (Fig. 1.1, left side): from individual geno-

types of grazing personalities at the top, through regulatory systems that modulate the gene expression

and confers the personality plasticity in the middle, to individual phenotypic grazing personalities at

the bottom. Thus, in section 1.2.1 The genetics of behaviour and grazing related genes, we present ev-

idence about grazing genes and its heritability. We then investigate regulatory systems that modulate

the expression of grazing genes in variable responses to stimuli conferring the personality plasticity (see

section 1.2.2 The effect of personality plasticity and regulatory systems on grazing patterns). Finally,

in section 1.2.3 Grazing traits of individuals, we present examples of phenotypic grazing personalities

and traits at the individual level (Table 1.1).

Figure 1.1. The Grazing Personality Model (GP-model) for ruminants and other large herbivores des-
cribed by three main aspects: the genotypic personality (top), regulatory system conferring personality
plasticity (middle), and the phenotypic personality. In the example, three hypothetical combinations
of allele variants (I1, I2, and I3) applied to two grazing genes represented at the individual level (left
side). The genotype of individuals constitutes the gene pool and the relative allelic frequency (H1) of
grazing genes at the collective level (right side). Individual and collective grazing personalities (iGP
and cGP) are phenotypically represented with corresponding fitness. The example shows two grazing
genes in beef cattle (32): the glutamate metabotropic receptor 5 gene in chromosome 29 (hexagons)
and the mastermind-like 3 in chromosome 17 (diamonds). Allele variants specified by nucleobases ade-
nine [A], guanine [G], and thymine [T]. The interactions between genes and environment regulates the
expression of grazing genes and confers personality plasticity. Phenotypic grazing personalities of indi-
viduals (iGPs) may overlap (e.g., iGP1 and iGP2) or diverge (e.g., iGP3). A group of individuals co-
existing and displaying distinct grazing personalities constitutes a grazing herd with its own collective
grazing personality (cGP). Adapted from Bengston and Jandt [1]; with concepts from Koolhaas and
van Reenen [2], Robinson [3], and Sih [4].
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Individual animals exhibit repeatable differences in their grazing behaviour within populations, within

species and across species. These personality differences arise for many reasons, such as differences in

permanent environmental effects (e.g., familial, parental, and epigenetic contributions) and the effect of

genetic variation. In ruminants, personality differences can influence eating tactics and ingestive beha-

viors [16, 36]. For example, Gregorini et al. [16] studied a group of 16 dairy cows that were selected as

calves (6-8 months old) based on divergence in residual feed intake (i.e., having high and low residual

feed intakes) and measured their individual grazing behaviours, eating patterns and ingestion tactics as

milking cows. From a grazing behaviour viewpoint, low residual feed intake individuals prioritised gra-

zing and ruminating over idling. They typically took fewer steps when walking during grazing and had

a higher ratio of grazing to non-grazing steps when compared with cows with high residual feed intake.

From an ingestive viewpoint, low residual feed intake individuals masticated less, but ruminated more

intensively, and they had feces with 30% less quantity of large particles size than their counterparts

with high residual feed intake. Wesley et al. [37] also pre-classified 18 beef cattle heifers from within

80 animals in two consecutive years (n = 36) based on the rate of consumption of supplementary feed

(another trait related to the eating tactics). The authors reported divergent grazing behaviour and in-

gestion tactics; for example, cows with faster rates of consumption of supplement tended to spend less

time at water, cover larger areas and exhibit less concentrated grazing search patterns than cows with

slower consumption rates. These two studies speculated a link between the divergent phenotypic be-

haviours (i.e., eating tactics) displayed by the selected animals and their genotype. In the following

section, we present the genetics of behaviour and genes related to grazing patterns.

4



Table 1.1. List of examples used in this review with dichotomous and multiple classifications of animal behavioural types in grazing ruminants
(see [5, 6] for extensive list of studies with genetically-associated behaviours and [7] for examples of single personality dimension related to
fitness). Behavioural types, behavioural categorizing criteria, type of variable and if behaviour is explained genetically.

Species Behavioural types Behavioural categorizing
criteria

Continuous and categori-
cal variables

Genetically
explained

Reference

Beef cattle 1. Riparian areas users 1. Home-range fidelity Categorical
(dichotomous) and
continuous

Probably [9, 38]
2. Uplands users

Beef cattle Breeds better suited for
mountainous terrain

1. Slope % Continuous Probably [39]
2. Horizontal distance
3. Vertical distance

Beef cattle 1. Bottom dweller 1. Terrain-use indexes Continuous Probably [8]
2. Hill climber

Beef cattle 1. Dominant 1. Dominance Continuous No [40]
2. Subordinate

Beef cattle 1. Fast-eater 1. Supplement intake
rate

Continuous Probably [37]
2. Slow-eater

Beef cattle 1. Bottom dweller 1. Terrain-use indexes Continuous Yes [41]
2. Hill climber

Beef cattle 1. Bottom dweller 1. Terrain-use indexes Continuous Yes [42, 43]
2. Hill climber

Beef cattle 1. Favourable distribu-
tion

1. Terrain-use indexes Categorical (dichoto-
mous) and continuous

Yes [44]

2. Unfavourable distribu-
tion

Beef cattle 1. Highly exploratory/
bold

1. Response to novel ob-
ject

Categorical (dichoto-
mous) and continuous

No
discussed

[45]

2. Slow-exploratory/shy
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Continuation of Table 1.1. List of examples used in this review...

Species Behavioural types Behavioural categorizing
criteria

Continuous and categori-
cal variables

Genetically
explained

Reference

Beef cattle 1. Low residual 1. Residual feed intake Continuous Yes [16]
2. High-residual

Highland beef cattle 1. Initiator 1. Leadership [46]
2. Follower 2. Dominance

Multiple species (mice,
rats)

1. High-aggressive 1. Aggressiveness Categorical
(dichotomous) and
continuous

Yes [47]
2. Low (medium)-
aggressive

Multiple species
(simulated individual
foragers)

1a. Leader 1. Walking speed Categorical
(dichotomous) and
continuous

No
discussed

[48]
2a. Trailer 2. Accelerations to con-

specifics
1b. Speeder 3. Length of decision

zones2b. Laggards
4. Sense of orientation

Sheep No specified 1. Sagebush consump-
tion/dietary selection

Continuous Yes [10]

Sheep 1. Bold 1. Shyness-boldness Categorical
(dichotomous) and
continuous

No
discussed

[49]
2. Shy

Sheep 1. Bold 1. Shyness-boldness Categorical
(dichotomous) and
continuous

No
discussed

[50]
2. Shy

Beef cattle No specified Consumption of several
species of grasses and
forbs

Continuous Yes [11]

Beef cattle (Nellore) No specified 1. Crush score Categorical (nominal)
and continuous

Yes [17]
2. Flight speed
3. Movement score
4. Temperament score
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Continuation of Table 1.1. List of examples used in this review...

Species Behavioural types Behavioural categorizing
criteria

Continuous and categori-
cal variables

Genetically
explained

Reference

Deer Several combinations of
multiple dimensions

1. Boldness Categorical (nominal)
and continuous

No
discussed

[51]
2. Dominance
3. Flexibility

Multiple species
(foragers) with whole
spectrum of personality
types

1. Superficial ex-
plorer/bold/aggressive

1. Exploration strategy Categorical (dichoto-
mous) and continuous

Yes [52]

2. Thorough
explorer/shy/non-
aggressive

2. Boldness

3. Aggressiveness

Multiple species (cattle,
horses, pigs)

1. Proactive/bold 1. Coping style Categorical (dichotomous
and nominal) and
continuous

Yes [2]
2. Reactive/docile 2. Emotionality
3. Fifteen combinations
of three-dimensions per-
sonalities

3. Sociality

Multiple species of
foragers with whole
spectrum of personality
types)

1. Fast-explorer 1. Area-restricted search
(fractal movement)

Categorical
(dichotomous) and
continuous

No
discussed

[53]
2. Slow-explorer
3. Home range size and
structure

2. Sense of direction

4. Aggressiveness

Multiple species (African
elephant, Galapagos
tortoises, mule deer)

1. Central place foraging 1. Node-level (local) me-
trics

Continuous No
discussed

[31]

2. Migration 2. Graph-level (system)
metrics3. Nomadism
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1.2.1 The genetics of behaviour and grazing-related genes

Van Oers and Sinn [6] undertook a meta-analysis to quantify the heritability of animal personality in

wild, captive and domesticated populations. The statistical meta-analysis included 209 estimates of

heritability on 14 taxonomic groups such as Ruminantia, Equidae, Canidae and Hymenoptera, just to

mention a few. The authors reported an average heritability of 0.26 for animal personality traits with

a cumulative size effect (E = 0.18) significantly different from zero. The average heritability in wild

populations was 0.36 and in domesticated populations was 0.24, and unweighted heritability estimates

for exploration behaviour were 0.58 and 0.21, respectively. These authors concluded that selection of

animals based on their personality could be expected in wild populations.

Another meta-analysis of behavioural studies on non-human animals reported estimates of heritability

and repeatability of animal personalities [54]. After screening 306 relevant articles, they selected 10 re-

search studies and 71 pairs of estimates for analysis. Their analyses suggested that the repeatability of

behavioural responses has a substantive genetic component, with the study revealing that 52% of the

phenotypic variation in general behaviours such as aggression, antipredator, foraging, parental effort

and mating, was attributable to additive genetic variation (i.e., genotypic personality in the GP-model).

The authors also reported a greater and large mean heritability for animal personality (0.52) than for

behavioural variation (0.14). Animal personality heritability being inclusive of additive genetic vari-

ation, dominance genetic variation and permanent environmental effects, while behavioural variation

includes in addition the temporal environmental effects. If genetic dominance (i.e., non-additive genet-

ics) plays a minor role in determining animal personality [54], then one can potentially attribute about

half of personality variation to the effects of the social and biophysical environment (e.g., parental care

and vegetation characteristics, respectively) and to epigenetics. In the GP-model, these effects are re-

ferred to as the regulatory systems and the personality plasticity. However, it remains unclear how

much of the non-additive genetics (i.e., allelic interactions at the same locus [dominance] or at different

loci [epistasis]) can explain the phenotypic behavioural variation [55]. A summary of the above stud-

ies reported that non-additive effects could be as significant as the additive effects in explaining several

dimensions of human personalities [56].

Results of Dochtermann’s et al. [54] meta-analysis are promising but provisional and need to be taken

with caution. They also reported that foraging behaviours had a much weaker genetic component (<

0.2) than aggression and antipredator behaviours (up to 0.6).

Recent studies supported the premise of grazing personality being under genetic control. Howery and

Bailey [44] described both genome regions and gene markers associated with grazing distribution pat-

terns in beef cattle. As an example, using collared cows (n = 87) that carried global positioning sys-

tems (GPS), Bailey et al. [41] investigated the association of several quantitative trait locus (QTL) and

genetic markers with the phenotypic variation of grazing patterns of cattle displayed along gradients of

steep-sloping terrain, elevation and distance to water sources. These cows were grazed in mountainous

and extensive grasslands at five ranches in New Mexico, Arizona and Montana in the United States of

America (USA). A high-density single nucleotide polymorphism (SNP) array was used to genotype de-

oxyribonucleic acid (DNA) samples from these cows. The study then ascertained whether associations

existed between variation in the SNP markers and variation in grazing distribution based on indexes of
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terrain use. Two QTLs overlaying the glutamate metabotropic receptor 5 gene (GRM5 ) accounted for

up to 24% of the phenotypic variation in the use of vegetation patches on steep slopes and at high ele-

vations, while another QTL overlaying the mastermind-like 3 gene (MAML3 ) accounted for 23% of the

phenotypic variation (Fig. 1.1). These genes have been reported to be involved in locomotion, motiva-

tion, and spatial memory as well as in the regulation of neurogenesis, myogenesis, vasculogenesis and

other aspects of organogenesis.

Studies conducted by Pierce et al. [42, 43] validated the previously reported genotype-phenotype asso-

ciations between specific SNPs overlaying grazing genes and indexes of terrain use [41]. While these re-

sults are promising and point towards the possible integration of grazing personality into selection pro-

grams, Howery and Bailey [44] suggested these studies need to be replicated and/or extended to larger

number of animals of different origin and which are grazed in diverse environments, if robust and con-

clusive conclusions are to be reached. For example, the extended study of Pierce et al. [57] including

330 beef cows from 14 ranches in the western USA reported limited genotype-phenotype associations

and pointed towards different candidate genes.

There are two outstanding explanations for the correlation of behavioural traits defining grazing per-

sonalities. The first one is pleiotropy, in which one gene could act on two or more traits, which further

determine the displayed grazing patterns. If pleiotropy occurs, one single gene would effectively control

several traits simultaneously. For example, phenotypic studies corroborated the correlation of distinc-

tive grazing patterns (e.g., fast-explorer cows), growth rates and boldness within relatively small groups

of cattle (i.e., 16 and 33 individuals in Gregorini et al. [16] and Wesley et al. [37], respectively).

Kern et al. [58] suggested that pleiotropic effects could explain the correlations between personality,

morphological and performance traits on zebrafish (Danio rerio), but also did not confirm this possi-

bility. A study with bighorn sheep from Ram Mountain, Alberta, Canada could not find pleiotropic

effects at major locus because of the lack of genome-wide QTL overlap on genes related to docility and

boldness [59]. Instead, the authors concluded that small pleiotropic effects could have been missed and

therefore, results did not confirm pleiotropy. Future studies might give insights of pleiotropy controlling

grazing personality traits.

The second explanation for the correlation of traits as observed in grazing personalities is because of

a non-random association of alleles at different loci that produce a combination of traits that confers

advantage under a specific set of biophysical and social conditions, as is the case of linkage disequili-

brium. For example, individuals with certain association of alleles tend to achieve higher reproduction

rates than individuals with a different combination of traits. Such allele associations become common

and more frequent in a population than other combinations, although traits are controlled by alleles at

different loci [6].

Studies suggested that genetic variation might explain different eating tactics linked to distinctive gra-

zing behaviours exhibited in groups of beef heifers [37] and dairy cows [16]. For the latter example,

Davis et al. [60] previously confirmed the different genetic basis found on nearly 200 dairy cows that,

within a large herd of 3,359 milking cows, displayed extreme residual feed intakes. These genetically

tested cows were mother dams of the sixteen calves later on used on Gregorini’s et al. [16] research.

Future research on grazing personalities and its genetic variation might help to elucidate whether gra-
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zing traits are correlated because of genetic pleiotropy, or because of a linkage disequilibrium between

grazing traits, or because of both mechanisms acting simultaneously. Both, pleiotropy mechanisms as

well as linkage disequilibrium were represented in the hierarchical conceptual model for “Organization

of Behavioural Traits” [5] and have implications for the regulation and expression of grazing personali-

ties.

The discovery of genetic associations with grazing personalities and thus the identification of specific

grazing genes has the potential to assist in breeding programs. However, despite the high heritability

of grazing patterns found in cattle, there are other factors controlling them. For example, interactions

with the social herd environment (e.g., parental and familial effects), the biophysical environment, and

the emotional state as well as the large number of range management practices that influences such

interactions. In the next section, we discuss whether non-genetic factors can modulate the expression of

grazing genes and if such effects over gene expression are transferable to offspring.

1.2.2 The effect of personality plasticity and regulatory systems on grazing

patterns

The section 1.2.1 The genetics of behaviour and grazing related genes, and the section 1.3.1 Gene pools

and allele frequencies focused on alleles of grazing genes, their variation and frequency at two levels,

individual and collective, respectively. In the GP-model, allele attributes of grazing genes are the ul-

timate determinants of grazing personalities. These attributes constitute the individual and collec-

tive genomes respectively and account for the specific sequence of nucleobases of each gene; that is the

genome code. The gene products expressed into RNA and subsequent amino acids and proteins are

the ones executing the observed phenotypic traits, such as behavioural traits. In this section, we focus

on gene expression and regulatory systems that modulate the expression of behavioural genes related

to grazing personalities. Here, we present the ontogeny, the epigenetic inheritance system, and the a-

nimal emotional state as the main modulators of behavioural gene expression. These three components

of the GP-model create the interface between the genomic determination of grazing personalities and

the external and internal stimuli that modulate its gene expression. The expression of grazing genes is

variable and responds to changing environmental conditions and emotional states; regulatory systems

modulating the gene expression and thus conferring the personality plasticity of the GP-model.

Regulatory systems are an integral part of the pathways between grazing genes and the observed gra-

zing personalities. In the GP-model, grazing personality pathways originate from specific alleles of gra-

zing genes and result in specific phenotypic grazing patterns. Grazing personality pathways involve hie-

rarchical levels of intermediate and concatenated traits with multiple mechanisms that consistently res-

pond to external and internal stimuli modulating the observed grazing patterns. The “organization of

behavioural traits” [5] conceptualised genes-neurophysiology-behavioural pathways in a hierarchical

model where a few genes are involved in determining a few neurological, physiological and morpholo-

gical traits. These neurological, physiological and morphological traits further shape the expression of

a number of behavioural traits that ultimately result in biological functions, such as herbivore grazing

patterns. As the gene expression of intermediate traits is variable in response to stimuli, each adjusted

response of intermediate traits is added up and further transferred along pathways of grazing personali-

ty [5].
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The variable expression of grazing genes modulated by regulatory systems is referred to as grazing per-

sonality plasticity. The reaction norm of behavioural traits are examples of behavioural trait plasticity

changing along environmental gradients [61]. As the phenotypic response along environmental gradi-

ents differs from one individual to another, the grazing personality plasticity might be a trait by itself

and even have its own heritability [62]. However, even if environmental conditions stay unchanged, the

behaviour of an individual changes as it ages, which is known as ontogeny, and that leads to behavioral

development [63].

Ontogeny

Here we discuss two aspects of animal ontogeny related to grazing personalities. Firstly, the ontogeny

itself and the changes in behaviour observed in animals over their lifetime. Grazing personalities are

consistently observed across situations and over time. However, the behaviour of an animal changes

along its behavioural development or maturation. For example, Van Moorter et al. [64] conducted

a study at contrasting locations in France to compare the exploration behaviour of yearling (8 to 15

months old) roe deer (Capreolus capreolus) prior to the settlement phase of dispersal against the explo-

ration of adult individuals (> 2 year old). Young roe deer had larger exploration behaviour than adult

deer. The results proved that yearling roe deer leave their natal home range and display a period of ex-

ploration in spring and summer as part of their natural maturation process. Adult individuals settle

down later in life and explore smaller areas. The example above shows that individuals display changes

in grazing behaviours along their ontogenic development. Furthermore, within behavioural development

phases, behavioural differences among animals are maintained from early life and along their lifetime.

Finally, behavioural differences among individuals detected early in life can be used as predictors for

divergent grazing personalities displayed at mature life phases.

The second aspect regarding animal ontogeny affecting grazing personalities is the importance of envi-

ronments and emotional states experienced early in life (including experiences of predecessors in pre-

conception) to influence the gene expression of behavioural and personality traits. Maternal effects

early in life that induce changes in gene expression and thereby of phenotypic behaviour have been

documented in birds. For example, wild females of the altricial canary (Serinus domesticus) regulates

the use of androgens when laying eggs in a way that late born chicks have higher levels of testosterone

[65]. Thus, chicks from late laid eggs showed faster embryonic development, increased muscular deve-

lopment and more begging behaviour than chicks of early laid eggs. All these traits made the younger

chicks of the clutch to be more competitive than earlier born chicks. Different hormonal environment

experienced early in life can induce changes in the expression of genes controlling physiological and

behavioural traits, conferring a social hierarchy, which is maintained later during adulthood [65]. To

our knowledge, no study had documented changes of gene expression due to early-in-life experiences in

large herbivores (but see study of Candemir et al. [66] with mice).

In the following paragraphs, we explain and exemplify how adaptive responses to early life experiences

are determinant in shaping the gene expression of an individual and how such responses can be inheri-

ted epigenetically.
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Epigenetics

The epigenetic inheritance system of the GP-model is a set of mechanisms that modifies DNA arrange-

ment and that affects the expression of genes related to grazing personalities without causing altera-

tions to the nucleotide sequence. Epigenetic mechanisms stimulate, discourage or inhibit the expres-

sion of genes through DNA folding and transcriptional activities. Most known epigenetic mechanisms

are DNA methylation and histone alterations [67]. Such mechanisms mediate the interface between

the genomic control over grazing behaviours, and responses to stimuli such as the social and biophys-

ical environments and the emotional state of animals. Adaptive and maladaptive responses to stimuli

are reflected in the phenotypic grazing personality of individuals that undergo changes to their epi-

genetic state and thus modulate their gene expression. Thus, alterable epigenomes – i.e., facilitated

epigenotypes (probabilistically controlled by the genotype) and pure epigenotypes (not controlled by

the genotype outside the affected locus) – depend on stimuli signals and is modified according to each

individual’s experiences [68]. The transgenerational epigenetic inheritance is the transference to off-

spring and following generations of adopted epigenetic states in response to stimuli. Steroid hormones

mediate a particular case of epigenetic modifications in response to stress [68]. The study conducted

by Howery et al. [9] in an extensive grazing allotment in Idaho (USA) reported that the majority of in-

dividual beef cows (78%) showed high-fidelity to home range and habitats, returning to these feeding

areas in consecutive years. The study was carried on for another four years (1990-1993) to test if off-

spring and cross-fostered offspring maintained fidelity to the home range and habitats where they were

reared and whether grazing behaviour of dams and foster dams influenced their grazing behaviour [38].

These authors reported that home range and habitat fidelity was displayed by dams and foster dams as

well as by yearlings and cross-fostered yearlings. They concluded that grazing behaviours experienced

early in life conditioned the behaviour in adulthood, and this was observed independently from year-

lings being reared by their dams or by foster dams. Habitat fidelity decreased however with a severed

drought and in response to the grazing behaviour of other peers. These studies showed that grazing

behaviour was consistent over time and it was transferred to the progeny and foster-progeny. While

parental effects of dams and foster-dams were corroborated, at that time, genetic heritability of grazing

behaviour was not tested and remained unknown. The grazing behaviour of dams and yearlings was

affected by a severe drought in 1992, which illustrates the plasticity of grazing behaviours responding

to changing biophysical environment. Parental effects and peer effects modulated the grazing patterns

of yearlings accordingly to the social herd environment experienced early and in subsequent stages of

life. Howery and Bailey [44] attributed these results to a combination of nature (genetic) and nurture

(learned), although, the latter could also be attributed to epigenetic inheritance. In the following sec-

tion, we present examples showing how the emotional state of animals can induce changes on the ex-

pression of behavioural genes.

Emotional operating system

Conscious and unconscious internal states of the brain dictate the mental well-being of mammals. While

fulfilling their physiological needs, animals can react to external and internal stimuli to attempt to

minimize negative emotions and to seek positive emotions [69]. For example, grazing actions and reac-

tions of ruminants and foragers in general are conditioned by their current emotional state, past expe-

riences and expectations [70, 71]; referred to as cognitive mechanisms in the GP-model. Emotions mod-
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ulate the expression of grazing genes through epigenetic states (inheritable emotional states) and/or

affect the observed grazing behaviours directly (i.e., see the two arrows of emotional state in Fig. 1.1).

For instance, domestic chickens (Gallus gallus), under a social environment of intermittent isolation

early in life developed a lowered response to corticosterone, which restrained stress [72]. Using mi-

croarrays immediately after the treatment, treated chickens upregulated the function of stress genes.

Later in life, chickens treated with social isolation displayed a decreased reactivity of the hypothalamic-

pituitary-adrenal axis, increased growth and improved associative learning in comparison with chickens

that did not undergo the social isolation. The study provided evidence of transgenerational inheritance

triggered by the chickens’ emotional state. The emotions and the emotional state of animals affected

their immediate behaviours; also experiences early in life might have underpin lifetime “conditioning”

that altered the epigenetic environment of specific genes. Such effect was transferred to the progeny.

Negative and positive emotions may affect (non-heritable) and modulate (heritable) the behaviour of

animals. For example, among these emotions, stress has been studied extensively because of the rele-

vance to animal welfare, health and fitness. As individual animals display different coping styles while

facing stressful situations, their emotions, emotional state, and ultimately their welfare, depends upon

their individual personalities [47].

1.2.3 Grazing traits of individuals

On the one hand, quantitative and continuous traits are commonly used to describe grazing behaviours

along continuum gradients [41, 32]. On the other, grazing personalities as categorical attributes of con-

sistent behaviours may emerge because of the existence of trade-offs among correlated traits. Thus, an-

imals may adopt contrasting strategies [53] such as the contrasting proactive and reactive personalities,

sensu ‘life-history theory’ [52] or the fast and slow metabolisms, sensu ‘pace-of-life syndromes’ [73].

Behavioural studies on foraging animals are commonly limited to describe two types of grazing ani-

mals, which account for the extreme behaviours observed at the opposite ends of a continuum axis. For

example, the residual feed intake was estimated for nearly two thousand dairy cows and a continuous

gradient of this parameter was obtained. Then, individuals displaying the lowest and highest residual

feed intake within this gradient were selected for further research (i.e., 183 and 16 selected individuals

in Macdonald et al. [74] and Gregorini et al. [16], respectively). Similarly, animals of several species

have been classified into two contrasting types (Table 1.1). For example, ruminants have been cate-

gorised as either riparian or uplands users [9, 38], bold or shy explorers [50, 49], bottom-dwellers or

hill-climbers [8, 41, 42, 43].

Alternatively, a diverse range of discrete personalities can be depicted by integrating multiple beha-

vioral ‘dimensions’ (e.g., grazing traits) to describe and classify animals that show distinctive beha-

viors [22, 75]. A multi-dimensional approach applied to grazing behaviours allows the conceptualization

(and description) of consistent movement patterns both within species and across species. For exam-

ple, studies have investigated a large diversity of foraging species and thus clustered individuals into

four major types of so-called movement syndromes [29], movement strategies [30], or functional move-

ment classes [31]. These studies included, thirteen species of several vertebrate taxa of herbivores and

carnivores [29]; large herbivores such as the African elephant (Loxodonta africana), giant Galapagos

tortoise (Chelonoidis spp.) and mule deer (Odocoileus hemionus) [30]); and 92 species of marine life
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with feeding habits of carnivorous, zooplankton and algae feeders [31]. The four movement types of

these three studies were described and similarly named as: centered home-range, territorialists, nomads

and migrants under movement syndromes [29]; as resident, multi-patch, nomadic and migration under

movement strategies [30]); and as resident, occasional, irruptor and roamer under functional movement

classes[31]). The studies found four common movement patterns across several taxa that have different

modes of movement (e.g., terrestrial locomotion, swimming, flying) and different feeding habits. For

example, there were herbivores (e.g., African elephant, plains zebra [Equus quagga], springbok [Antidor-

cas marsupialis], mule deer and several algae feeding marine species) and carnivores (e.g., African wild

dog [Lycaon pictus] and several fish feeding marine species). Furthermore, the authors observed these

common movement patterns consistently across situations and over time, a condition for behavioural

personalities. We anticipate that grazing ruminants and other large herbivores consistently display such

common grazing patterns within herds, populations and species and even across species (i.e., regardless

of species identity).

Finally, another alternative would be if grazing patterns and behaviours of grazing ruminants and other

large herbivores are displayed as normally distributed variables and genetically independent traits that

show no phenotypic correlations [39, 76]. In such a case, conceptualizing categorical grazing personali-

ties might be challenging or even inappropriate.

1.3 Collective grazing personalities

‘[The social environment] interactions have a lifelong influence on what an animal eats and

where it goes [. . . ]. In herbivores, social organization leads to culture, which is the collec-

tive knowledge and habits acquired and passed from generation to generation about how to

survive in a particular environment’ [77].

In this section, we focused on the collective grazing personalities of the GP-model (Fig. 1.1, right side):

from collective genotypes (at the top), through regulatory systems modulating plastic responses (mid-

dle), to phenotypic grazing personalities as observed in herds of grazing ruminants and other large her-

bivores (at the bottom). In section 1.3.1 Gene pools and allele frequencies, we hypothesize that the

allelic variation and frequency of grazing genes determine the emergence of grazing personalities at col-

lective level. Section 1.3.2 The social environment of the herd describes the social environment of herds

as the main regulatory system that shapes grazing personalities at collective level. In section 1.3.3

Grazing traits of herds, we present examples and discuss the emergence of collective grazing patterns

as consistently observed across contexts and over time.

1.3.1 Gene pools and allele frequencies

The existence of divergent grazing personalities among individuals and the coexistence of divergent

personalities within populations (so-called behavioural polymorphic populations) are both products

of evolutionary processes. Selection acts over phenotype through differential fitness (e.g., individuals

achieving different rates of survival and reproduction), which is then reflected in the gene pool of the

group [7, 52]. Animals that achieve longer lives, and/or greater reproduction rates under certain social

and biophysical conditions, will produce more offspring. In this way, outperforming phenotypes with
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greater fitness get larger representation within the herd, making their alleles more common in the gene

pool. Inversely, phenotypes with lower fitness are less represented in the population and in turn, their

alleles become less common. Changes in social or biophysical environments may affect the fitness of

distinct grazing personalities and lead, over generations, to changes in the allele frequencies of genes.

Despite their lower performance, low fitness phenotypes still reproduce and therefore, their genes are

maintained [78]. Mating success of behaviourally distinct individuals would influences the allele fre-

quencies of the population. Populations may have different behavioural morphs that exist at specific

ratios. Here are two examples.

Lampert et al. [79] reported genetic associations with divergent behavioural strategies of mating in

panuco swordtail fish (Xiphophorus nigrensis). Divergent mating-strategy and morphs of panuco sword-

tail fish are genetically associated with specific alleles and therefore, these populations seems to be

genetically and phenotypically polymorphic. The small male morphs have relatively smaller swords,

have a female appearance and are less ornate than large males, which are gifted with larger swordtails

and are much more decorated. Females prefer mating with large males, which are territorial and court

them. The apparent reproductive disadvantage of small swordtail fish morphs does not stop them ma-

ting, and instead of undertaking courtship, small males chase and force females to copulate. By adop-

ting a different behavioural mating strategy, small fish morphs successfully passes their genes ensuring

the persistence of this morpho-behavioural phenotype. In the second example, Pruitt and Goodnight

[80] reported that natural populations of communal spider (Anelosimus studiosus) have behavioural

polymorphic individuals labeled as aggressive and docile. Populations of spiders growing under con-

trasting environmental conditions such as high and low availability of resources have different ratios of

the aggressive to docile phenotypes. The phenotype ratio largely explained the reproductive success of

the colony and determined the behavioural attributes of the colony. The authors concluded that ag-

gressive:docile behavioural ratio would ensure long-term survival at the collective level. The phenotype

ratio was site-specific and was the result of a collective-driven selection. On artificially made popula-

tions, switches of the phenotype ratio towards the ratio of spiders’ origin (and regardless of the envi-

ronmental conditions i.e., maladaptive responses) can be attributed to collectively controlled inheri-

tance.

To our knowledge, there have not been any studies looking at genotypic diversity, composition and re-

lative frequency of grazing genes in ruminant herds. Since the very beginning of animal domestication,

herders are selecting individual animals by their behaviour (e.g., docility). It was only in the last 30

years that scientists started to recommend culling individual animals that display undesired grazing

patterns [81, 9]. Certainly, the behavioural selection conducted in the past over domesticated herbi-

vores has shaped the gene pools of present-day herds. However, it is unknown how this selection has

affected their grazing patterns. Similarly, environmental changes, such as fragmentation of natural

ecosystems, limited animal migration or selective hunting, has affected the gene pools and relative fre-

quency of grazing genes of herds of wild animals and in that way, may have modified their collective

grazing personalities. This has been exemplified by the selective capturing of fish with nets over wild

fish populations [82]. As seen with the artificially-made colonies of communal spiders [80], we speculate

that the ratio of genotypic grazing personalities within a herd of ruminants might be regulated collec-

tively to ensure long-term survival of the group. As the ratio of genotypes within a herd might be site
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specific, it is possible to speculate that such collective traits are inherited epigenetically.

The recent discovery of nucleotide variation in grazing genes and their association with the grazing pat-

terns of individual animals opens the opportunity to search for an ideal grazer; one that displays the

“best” grazing personality [41, 42, 43, 57]. However, large herbivores do not graze alone but in herds

of interacting animals, where individuals display a range of distinct grazing personalities that shapes

the grazing personality of the herd. In this way, herds have unique attributes of grazing behaviour (see

section 1.3.3 Grazing traits of herds). At collective level, genetically similar herds may display different

personalities because of the plastic expressions of grazing patterns. This is discussed in the following

section.

1.3.2 The social environment of the herd

The interactions among conspecifics constitutes the social environment of herds. Such interactions es-

tablish the social status occupied and the behaviours adopted by each individual. For example, the

roles of leader and follower [46], dominant and submissive [40], and producer and scrounger [83], are

extensively documented in ruminants, birds and other foraging species. Socially responsive individu-

als adjust their behaviours according to the social context and within the limits of their personality

plasticity [84]. Thus, the social herd environment is a major factor of behavioural variation that affects

the phenotypic expression of grazing personality and its plasticity at the individual and collective level

[61]. In section 1.2.2 The effect of personality plasticity and regulatory systems on grazing patterns,

we provided examples of how the social environment (e.g., social isolation and parental care) affects

the behaviour of individuals. Similarly, the emergence of socially central individuals (e.g., leader and

dominant animals) conditions collective grazing behaviours. For example, in Highland cattle (Bos tau-

rus), Sueur et al. [46] reported that castrated mature males provided leadership and promoted group

cohesiveness to juvenile cattle. These authors suggested using trained matured castrated males to in-

crease grazing intensity of targeted areas. In another experiment with groups of fallow deer (Dama

dama), Stutz et al. [85] showed that high aggregation and cohesiveness working towards increasing

safety against predators have reduced the individual and collective exploitation of preferred and more

nutritious diets. Thus, the collective perceived risk of predators influences collective exploration and

utilization of feed sources. Another way to study the effects of collective behaviours is by replacing

(or removing) socially central individuals. Vital and Martins [86] removed the key individuals from a

group of zebrafish (Danio rerio) and reported reduced learning of foraging skills. In bottlenose dolphins

(Tursiops truncatus) the presence of certain individuals was crucial to maintain interactions between

subgroups [87]. However, in beef cattle the effects of socially central individuals might be only relevant

in small size herds, for example < 40 individuals, where the fidelity of individuals to the group they

belong to is relatively high; on the contrary, social bonds in larger herds are expected to be weaker

[88, 89]. In the collective context of colony living organisms, the social environment is crucial for the

survival and fitness of the group as well as for the relative success of each individual [1]; to a certain

extent, this is also the case for collective grazers such as grazing ruminants and other large herbivores.

The GP-model establishes that stimuli from the social and biophysical environments and the emotional

state of animal affects the displayed grazing personalities of individuals, which in turn are transferred

to the grazing patterns displayed collectively (see section 1.2.2 The effect of personality plasticity and
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regulatory systems on grazing patterns). Similarly to the case of individuals, the social environment

of the herd might influence the gene expression of collective grazing traits and therefore modulate the

phenotypic grazing personalities as observed collectively. However, until now, it is unknown whether

there are genes controlling collective behavioural traits in ruminants and, if so, whether the social en-

vironment controls its expression. A combination of social learning and a segregation of leader and fol-

lowers could also explain collective behaviours [86]. We posed these unresolved aspects using question

marks in the GP-model (Fig. 1.1). In the next section, however, there are examples of grazing traits

measured at collective level.

1.3.3 Grazing traits of herds

Based on behavioural genetics, Gross [90] described three main pathways to explain phenotypic poly-

morphism of behaviour displayed by individuals within animal populations. Firstly, the so-called “al-

ternative pathway” which considers a frequency-dependent selection of animals that maintains genet-

ically polymorphic populations with individuals displaying behavioural polymorphism and achieving

similar fitness. Secondly, the “mixed pathway” occurs in genetically monomorphic populations with in-

dividuals displaying mixed behavioural tactics. Finally, the so-called “conditional pathway” occurring

in genetically monomorphic populations where individuals display a set of behavioural tactics according

to state-dependent conditioning. For the GP-model and for any study of grazing herds in general, it is

crucial to bear in mind that herds of ruminants are phenotypically behaviourally polymorphic. Within

a herd of ruminants, individuals coexist displaying a range of distinctive grazing personalities. While

the alternative pathway attributes the phenotypic behavioural polymorphism to genotype variation

(i.e., personality genotype in the GP-model), mixed pathways and conditional pathways apply to pop-

ulations comprised by genetically monomorphic individuals. As previously presented in section 1.2.2

The effect of personality plasticity and regulatory systems on grazing patterns, the personality plas-

ticity at collective level accounts for the variable gene expression and therefore, different phenotypic

outcomes from genetically identical individuals may take place. We hypothesize that the mixed path-

way may correspond to variations attributable to the epigenetic system (heritable), and that the con-

ditional pathways may correspond to direct effects over the emotional state. For the previous, adopted

behaviours might be transferred to offspring and therefore show transgenerational epigenetic inheri-

tance; for the latter, behavioural polymorphism may be observable only in the animals that adopted

such behaviour as a direct response to their emotional states.

We set the GP-model using an individual-based approach of grazing personalities to explain distribu-

tional grazing patterns as observed in real herds of ruminants. Gueron et al. [48] presented a model

that simulated distributional patterns of grazing herds based on a set of behavioural traits that were

applied to individual agents. The authors applied a hierarchical decision-making algorithm, with rules-

of-thumb establishing individual sensitiveness to crowding and attraction to conspecifics that applied

respectively according to a repulsion zone (animals getting too close), an attraction zone (animals get-

ting too far) and an intermediate buffer zone called neutral zone without response. Simulations were

ran for a thousand time-steps of individuals that displayed different behavioural traits, such as walk-

ing speed and sense of orientation towards a targeted direction. Gueron’s model showed differences in

herds distribution and fragmentation as it happens in real herds. The model showed that integrating

behavioural, physiological and individual decision-making traits could reproduce attributes of interac-
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ting ‘grazing’ animals. From individual differences in grazing traits emerged collective behaviours of

herd fragmentation and distributional patterns.

Gueron’s [48] mechanistic simulations were later tested and validated in a similar model using groups

of sheep of variable number (two, four, six or eight sheep) of either exclusively bold individuals or ex-

clusively shy individuals [91]. In support of individual-based approaches, the findings of these authors

showed that the grazing patterns observed in interacting animals derive from individual behavioural

traits and interaction rules; however, behavioural traits at the group level, such as the strength of so-

cial attraction, seems to control emergent decision-making mechanisms at collective level. A further

step to better simulate grazing herds was achieved by Spiegel et al. [53]. These authors simulated gra-

zing agents with divergent movement traits in variable contexts of vegetation patchiness. With some

similarity to the simulations done by Gueron et al. [48], Spiegel and colleagues allocated divergent be-

havioural traits to grouped individuals ‘grazing’ along increasing levels of vegetation patchiness, from

uniformly distributed, through randomly distributed resources, to discrete patches of nine different ve-

getation resources. Comparing divergent personalities such as slow and fast explorers, these authors

concluded that under low patchiness, fast explorers would achieve higher foraging efficiency than slow

explorers. This would be reversed however in grazing lands with discrete vegetation patches. Such re-

sults are consistent with real experiments in dairy cows [16]. Spiegel’s et al. [53] scenarios showed that

seasonal dynamics of vegetation would alternatively benefit one or another grazing personality at dif-

ferent times of the year, highlighting the temporal variation of animal performance in support of the

existence of herds with behavioural polymorphism. Finally, these authors pointed out the emergence

of a complex group-level structure displaying collective grazing patterns with its own attributes (e.g.,

clustering of similar phenotypes, home range size and structure), which changed along environmen-

tal gradients (e.g., vegetation patchiness). Interestingly, individual-based simulation models set be-

havioural rules and traits to be repeated over time (i.e., 1,000 and 2,000 time steps in Gueron et al.

[48] and Spiegel et al. [53], respectively) and even across different contexts such as a gradient of veg-

etation patchiness [53]. By allocating different values of behavioural traits to individuals that coexist

and interact with each other, simulation models recreated real ruminant herds as mixed behaviours

displayed consistently over time and across situations; therefore complying with conditions of grazing

personalities used in the GP-model.

Individuals displaying divergent personalities comprise herds of ruminants, which are recognised and

described as extended families that maintain cohesiveness and display unique identities [77]. So, how

can we characterize and compare the unique identities of ruminant herds (i.e., collective grazing per-

sonalities)? One way to value behaviours at collective level is by using grazing traits measured in in-

dividuals while performing within the herd and by integrating these individual values into an aver-

aged and/or weighted value. Additionally, the statistical dispersion of behavioural traits (e.g., coef-

ficient of variation) within herds can be used for comparisons among herds. To our knowledge, there

are not many studies with such examples. Partially, this might be because of the challenge of measur-

ing grazing behaviours in all members of the herd while grazing as a herd. However, this might be also

because of the lack of conceptualizing collective measurements of grazing behaviours, although, this

has been proposed for other social living animals such as foraging insects [1]. Sueur et al. [46] stud-

ied leadership within four Highland cattle groups (groups ranging from 8 to 21 individuals), but did
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not compare collective behaviours among groups. Rudin et al. [92] compared behavioural traits on two

groups of over 500 Australian field crickets (Telogryllus oceanicus) growing under contrasting social en-

vironments of ‘silent’ or ‘signing’ individuals. Based on statistical differences in the mean value and

standard error on distance travelled and speed measured in individuals, these authors concluded that

the social environment significantly affected ‘the repeatable aspect of behaviour (i.e., personality)’,

and that behavioral changes were heritable. However, Rudin et al. [92] measured traits in individuals

pulled apart from the group rather than on individuals performing within a group. Several studies in

the past compared distinct behaviours displayed in ruminants [41, 16, 37] and authors commonly con-

clude that “individuals” pertaining to a certain group behave differently to “individuals” pertaining

to another group rather than assessing collective behaviours. We advocate for comparisons of different

groups that display collective grazing personalities with their unique attributes.

Another way applicable to certain scenarios and for certain traits is by representing collective grazing

behaviours with monitoring the behaviour of one or a few animals of the herd. For example, Liao et al.

[32] studied the grazing behaviour of twenty herds of beef cattle in five different study sites of Southern

Ethiopia. These authors derived collective behavioural traits such as herd allocation of time to travel,

grazing and resting along the day by averaging the behaviour measured in three cows of each herd with

global position system collars. Pastoral people herded their animals to daily foraging areas and brought

them back to their camps for overnight. The herd was moved as a relatively compact group, thus, mo-

nitoring of any three cows of each herd would be sufficient to provide comparative information among

herds. These authors reported different daily patterns of grazing behaviour of monitored herds and

provided insights on the different foraging habitats used by different herds with details on greenness,

elevation and terrain slope.

Here, we mention attributes of ruminant herds and grazing traits relevant to collective grazing perso-

nalities. For example, home range was defined as the spatial expression of behaviours [that individual]

animals perform to survive and reproduce [93] in a defined timescale [94]. Thus, a certain number of

individuals that comprise a herd occupies, needs or is allocated to an area with features of size, shape

and biophysical conditions. Similarly, one could compute the area utilised by a herd, for example, on

a daily basis. Fragmentation [48], cohesiveness [95] and assortativity [96, 53] are examples of group-

level traits that in a future can be used to study collective and individual grazing attributes as well as

the impact of grazing herds to ecosystem functions of grazing lands or to animal welfare. For example,

Foister et al. [97] used phenotypic attributes of social interactions measured at group-level (i.e., social

network properties) to predict consistent aggressive events (i.e., a personality dimension) among pigs

reared as a group in pens. In beef cattle, the centrality of individuals as a specific collective measure-

ment rather than the number of individuals determined the group composition and affected the social

stability and stress of the herd [98].

1.4 Illustrations and implications

Figure 1.1 presents a hypothetical example with individuals (left side) differing in the allelic variations

of two grazing genes, which comprise a herd of ruminants (right side). Grazing personality pathways

between an individual’s genotype (Ix) and its displayed grazing personality (iGPx) involve several in-
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termediate and concatenated traits, which have a regulatory system of the gene expression. Following

the GP-model, we described this example starting on the individual genotype (top left), going through

stimuli that influence the expression of grazing genes (middle left) to yield in the phenotypic grazing

personality of individual grazers (bottom left). As ruminants graze in herds, individual genotypes were

aggregated into the collective gene pool (top right), then, we discuss the modulation of the gene ex-

pression at group level (middle right) and finally describe the collective personality of the herd.

1.4.1 Grazing personality genotype

Individuals with allelic variations I1 and I2 display shy grazing personalities named iGP1 and iGP2, re-

spectively. Individuals with shy personalities occupy relatively small home ranges, stay at relatively

short distances from one another and prefer grazing flat terrain in low altitude habitats. As perso-

nalities are phenotypically plastic, under certain conditions, iGP1 and iGP2 cannot be differentiated

because of phenotypic overlap. Individuals with allelic variation I3 are associated with animals dis-

playing a bold grazing personality named iGP3. Such herbivores show relatively large home ranges,

they graze alone or at relatively large distance from one another and show grazing preference for steep

slope terrain in high altitude habitats. Regardless of conditions, IGP3 always display discernible gra-

zing patterns from the previously described personalities. For example, iGP1 and iGP2 could be similar

to bottom dweller cattle and, iGP3 to hill climber cattle, which display divergent indexes of landscape

use and exhibit divergent grazing patterns [8]. These cattle have genetic associations to gene markers

overlaying the glutamate receptor 5 gene (GRM5 ) and the mastermind-like 3 gene (MAML3 ) [41]. In

the example, these genes are represented with hexagon and triangle shapes in Fig. 1.1. For simplici-

ty, only two of the five genes reported by Bailey et al. [41] are represented in the GP-model. Apply-

ing individual-based models, grazing patterns of herbivores can be simulated by using traits such as

walking speed and sense of direction towards a preferred habitat and by applying variable responses to

stimuli such as to vegetation patchiness, like variable walking acceleration or proximity to conspecifics

[48, 91, 53]. In our example, iGP1 and iGP2 have equal allelic variation as I1 GRM5 [A] = I2 GRM5 [A].

This genotype determines animals to have low concentrations of blood cortisol that makes them to dis-

play low walking speed and travel relatively short distances [99, 100, 37]. For this example, we esta-

blish that GRM5 [A] animals prefer grazing in flat terrains. Walking acceleration and attraction zone to

conspecifics are also similar (iGP1 ≈ iGP2) making them quickly accelerate towards conspecifics that

get away and to do so at relatively short distances. These personalities differ in their allelic variation I1

MAML3 [T] ̸= I2 MAML3 [G], responsible of sense of orientation towards preferred areas. For example,

MAML3 [T] animals display a high sense of orientation and MAML3 [G] express a low sense of orien-

tation (iGP1 > iGP2). I3 animals differ from both previous genotypes by having GRM5 [G], which is

phenotypically expressed with a high blood cortisol concentration. GRM5 [G] animals display fast walk-

ing speed, and therefore I3 animals travel relatively long distances. For this example, we establish that

GRM5 [G] animals prefer grazing in steep slope terrain in high altitudes. iGP3 walking acceleration is

low and attraction zone to conspecifics is long, therefore, iGP3 individuals accelerate slowly towards

conspecifics that get away and do so when conspecifics are relatively far away. iGP3 has equal allelic

variation to iGP2 animals for the sense of orientation trait (I2 MAML3 [G] = I3 MAML3 [G]), therefore

show low sense of orientation towards its preferred mountainous terrain.

In a herd of ruminants, allelic diversity is defined as the number of different alleles of a grazing gene
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present when accounting for all individuals. Allelic composition refers to which alleles in particular are

represented. Finally, relative allelic frequency refers to the proportion of each allelic variant of grazing

genes. While these two previous attributes do not necessarily depend of the number of members but on

their genotype, the latter, depends on combining the genotype of members and their proportional rep-

resentation. Finally, the total size of the herd, at equal proportion of individual grazing personalities,

affects the collective personality (not considered in this example). In our example in Fig. 1.1, two graz-

ing genes, GRM5 and MAML3 , are shown in three grazing personalities I1, I2 and I3 that comprise

herd one (H1). Each gene has two variants. Therefore, the allelic diversity for either of these genes in

H1 is two. The allelic composition of GRM5 is Adenine and Guanine, while for MAML3 is Thymine

and Guanine. Note that the total existing allelic variation for these genes is much larger than in our

example; Bailey et al. [41] reported four possible nucleobases (adenine, cytosine, thymine and guanine)

at six different positions in GRM5 , and the nucleobases thymine and guanine for MAML3 . In Fig. 1.1,

we did not specify the number of individuals of each genotype nor total number of individuals com-

prising the herd. However, we represented the relative allelic frequency of grazing genes GRM5 and

MAML3 establishing equal number of individuals (n = 10) of each genotype. For example: If I1 n =

10; I2 n = 10; I3 n = 10, then the relative allelic frequency in H1 would be:

GRM5 x2[A]: x1[G]; MAML3 x1[T]: x2[G].

1.4.2 Personality plasticity

Despite the differences in cortisol concentrations in blood in individual animals, which might be ge-

netically controlled [101], it has also been revealed that it may be affected by other stimuli, such as

during experiments involving social isolation (see Goerlich et al. [72] in section 1.2.2 The effect of per-

sonality plasticity and regulatory systems on grazing patterns). For example, regardless of an animal’s

genotype, the use of low-stress herding techniques might reduce cortisol concentration in the blood of

ruminants and foster the use of targeted areas because of emotional state of lower predation risk, as

compared to animals managed under ‘traditional’ herding techniques [102]. However, cortisol levels are

believed to be affected by an animal’s environment and its emotional state [103], which may result in

variable behavioural responses observable phenotypically and despite genetic control. In our example,

low concentrations of cortisol in blood is established to reduce walking speed and also daily travelled

distance. We represented personality plasticity on the phenotype of the hypothetical individuals. In

Fig. 1.1, iGP1 and iGP2 overlap each other and under certain conditions it will not be possible to dis-

tinguish them by simple phenotypic observation of behaviours. On the other end, iGP3 is separated

towards the right of the GP-model and representing therefore that differences in grazing personalities

are phenotypically observable.

1.4.3 Grazing personality phenotype

The GP-model as shown in Fig. 1.1 represents genetically polymorphic individuals (i.e., individuals

with different alleles) that comprise the collective gene pool and relative allelic frequency of grazing

genes of a herd. Phenotypically, in such a herd coexist individuals that display distinct grazing perso-

nalities. iGP1 and iGP2 individuals display slow walking speed and travel short distances. As soon as

conspecifics move away a relatively short distance, these individuals will accelerate and reduce distance

to conspecifics. These grazing personalities prefer flat and low altitude habitat, where they graze more
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intensively and spend more time than on steep slopes located in high altitude habitats. iGP1 indivi-

duals will return quicker and more often to vegetation patches of their preferred habitat than iGP2, be-

cause of the lower sense of orientation of the latter. Therefore, iGP1 tends to utilize its preferred habi-

tat for a longer time. Herds comprised purely of either iGP1 or iGP2 individuals are less fragmented,

move slowly and have smaller home ranges (slow-explorer sensu Spiegel et al. [53]). In grazing lands

where patches of vegetation are small and homogeneously distributed, these two personalities may dis-

play similar grazing patterns because the sense of orientation would not make a difference in distribu-

tion where non-conspicuous patches of vegetation exist. In grazing lands where significantly big patches

of vegetation are heterogeneously distributed, iGP1 will utilize more intensively its preferred habitat,

taking advantage of its better sense of orientation in comparison with iGP2 individuals. Herds com-

prised purely of iGP3 individuals are highly fragmented, move faster, and individuals graze at greater

distances from one another. iGP3 individuals graze alone or in relatively small groups that occupy

larger home ranges than iGP1 or iGP2 individuals. iGP3 individuals prefer steep slope areas in high

altitude habitats and have low sense of orientation. As per their low sense of orientation, these animals

will show similar grazing patterns in homogeneous and heterogeneous grazing lands.

1.4.4 Implications

The GP-model proposes a novel understanding of social foragers: grazing is a social activity performed

by herds of interacting ruminants that display collective grazing personalities with their own distinc-

tive attributes. Individuals that display distinct grazing personalities comprise behavioural polymor-

phic herds of ruminants. Grazing personalities of ruminants are controlled by their genetic composition

and are modulated by their epigenetic states in response to the social herd environment, biophysical

environment and the emotional state. Adaptive and inheritable epigenetic states confers plasticity to

grazing personalities at individual and collective levels.

Selecting for grazing personality

Farmers, ranch managers and breeders may adopt the concept of grazing personalities and select for

animals according to the desired and needed distinctive behaviours. By so doing, we forecast a ge-

netic gain on herds to address major challenges faced by the pastoral livestock production industry.

The identification of grazing personality genotypes and the development of the corresponding genetic

markers can be used to determine the grazing personality composition of herds and to further assist in

applying goal-oriented selection of animals using a relatively simple and inexpensive genetic test such

as single-strand conformation polymorphism (SSCP) [104, 105].

Enhancing the expression of grazing personalities

The GP-model establishes that grazing personalities of ruminants and other large herbivores are plas-

tically displayed in response to stimuli (e.g., social herd environment, biophysical environment and ani-

mals’ emotional states). Such responses might be adopted and shown for the entire lifespan of animals

and, can be farther transferred to their progeny through transgenerational epigenetic inheritance. This

is particularly relevant for experiences occurred early in life. Exposing grazing ruminants and other

large herbivores to the biophysical environmental conditions where they are targeted to perform may

trigger epigenetic mechanisms and regulatory systems that foster the expression of grazing genes to-
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wards desired behaviours of individual grazers and herds. As per the GP-model, the social context in

which an animal and its predecessor grow (i.e., the social herd environment) modulates the expression

of grazing genes and therefore the displayed grazing personalities. For example, social environments of

isolation, crowdedness, threats and fearfulness, as well as the aggressiveness of herds, affect the emo-

tional states and modulates the individual and collective grazing behaviours and associated decision-

making. Similarly, the biophysical environment might shape the expression of grazing genes.

Influencing grazing personalities through emotions

Grazing management practices such as fasting, supplementation or herding techniques alter animal in-

ternal states (e.g., hunger, emotions), influence animal decision-making and ultimately, modify their

grazing patterns.

Designing behaviour-customised herds

The composition and relative frequency of grazing personalities of domesticated ruminant herds has

been manipulated and shaped for millennia to produce docile and manageable individuals and herds

suitable for living alongside and under management of humans. The GP-model proposes to apply be-

havioral-based selection for the design of ruminant herds matching the spatial diversity and the tem-

poral variety of forages, foodscapes and landscapes. Pastoral livestock production systems are hetero-

geneous in space and time. Despite efforts to create “simple and homogeneous” systems, individualities

and collective attributes of grazing patterns emerge. Herds are comprised of a mix of individuals dis-

playing distinctive grazing personalities. Therefore, grazing patterns of ruminant herds can be manip-

ulated through designing and deciding the relative frequency of individual grazing personalities along

with the adoption of grazing management practices that foster the desired behaviours.

1.5 Conclusions

The GP-model proposes that genetic effects (alleles, allelic variation and the frequency of alleles) and

epigenetic modulation (via regulatory systems that modulate the gene expression) conditions grazing

behaviours of ruminants and other large herbivores, so that, animals display grazing personalities at

individual and collective levels. The interactions with the social herd environment and the biophysical

environment shape the phenotypic grazing personalities of individuals. Collective grazing personali-

ties emerge from the social interaction of individuals and their grazing personalities. The social herd

environment mediates between the individual and the collective grazing personalities. This is because

interacting individuals constitute the herd and creates its environment. And in turn, the social herd

environment influences both, the grazing personality of individuals and the grazing personality of the

herd.

The allelic composition and the relative allelic frequency of grazing genes characterize the collective

genotypic of grazing personalities and, therefore, there is the opportunity to develop breeding programs

aiming to influence grazing patterns of ruminant herds applying behavioural selection. Because of the

genetic basis of grazing behaviour, animal selection maybe a useful tool to improve grazing distribu-

tion of habitat-heterogeneous livestock systems. The displayed grazing personality of herds of rumi-

nants and other large herbivores results from their genome and their personality plasticity. Grazing
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management, herding techniques, feeding strategies and rearing practices that affect animal welfare and

the gene expression of grazing traits have the potential to foster desirable grazing personalities. Mana-

gers that account for the variety of individual grazing personalities naturally displayed in ruminants,

and that manipulate its proportion, can enhance ecosystem services and improve animal welfare while

maintaining the productivity of livestock production systems.

The need for further investigation into key areas of behavioural genetics emerged from this review.

From an animal personality perspective, there is a need to recognise sets of correlated grazing behaviours

measured over time and across contexts with the ultimate objective of identifying distinctive grazing

personalities in large herbivores. The neuro-physio-morphological pathways of grazing behaviours re-

main largely unknown. Studies with relatively coarse genetic markers (e.g., QTL) suggested possible

candidate genes which may be associated with grazing patterns. However, research with finer resolu-

tion and with larger datasets could discover new genes and variant sequences thereof and provide more

certainty about the genetic control of grazing behaviours. This may result in the identification of spe-

cific gene markers for animal selection programmes. It is also unknown if grazing behaviours are con-

trolled by pleiotropic gene(s), through combined effects, or by both.

The novelty and uniqueness of the GP-model lies in the role that social environmental factors play in

modulating the genetic expression of grazing personalities and in highlighting the collective nature of

large herbivores and foragers in general. However, there is still very little knowledge about the genetic

control of grazing behaviours and personalities at the collective level, and hence the GP-model might

remain less robust until research into that is undertaken. We still need to identify and develop robust

metrics to measure collective grazing behaviours and also design studies that aim to detect behavioural

differences at the collective level in large herbivores.

The grazing personality model presented here further develops our understanding of the distribution

of ruminants and large herbivores by integrating discoveries from the past few decades into models of

grazing distribution and behaviour [33, 34]. The GP-model was inspired from and supported with sci-

entific works conducted with a diverse range of taxa from the animal kingdom, namely bees, birds, ma-

rine species, large herbivores, ruminants and other ungulates. Future research on grazing personalities

at the individual and collective levels may confirm the hypotheses posed in our ‘grazing personality

model’ and thus contribute to a better understanding of livestock production systems, grassland science

and animal behaviour.
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Chapter 2

The glutamate metabotropic

receptor 5 gene (GRM5 ) is

associated with beef cattle home

range and movement tortuosity

2.1 Introduction

The selection and breeding of animals with desirable morphological and physiological characteristics

has led to greater fitness and productivity in livestock farming systems. During the domestication of

these animals and the establishment of livestock systems, behavioural characteristics have been equally

or even more important than other production characteristics because of the close interaction with hu-

mans [78], yet measuring behaviour and objectively quantifying differences among individuals remains

a challenge.

While the selection for animals with sets of behaviours suitable for safe handling and production has

been practiced along the animal domestication [78]; the realisation, conceptualisation and acceptance

of animal personality is rather new [24]. This stated, similar (and probably) more accepted concepts

such as temperament and behavioural syndromes [5, 4] have been around for longer. Regardless, we

have limited knowledge of how individual personalities affect livestock production systems, the welfare

of non-human animals, and the ecological functions and services associated with livestock production,

such as the carbon cycle, nutrient redistribution and the quality of water.

The evidence shows that animal personality varies among individuals and that it affects livestock pro-

duction and animal fitness [17, 7]. It can also be stated that to some extent, heritable factors deter-

mine behavioural characteristics and even personalities [26, 55, 106]. Thus, animal personality is be-

coming an important criterion in livestock breeding programmes [107, 108].

25



The concept of animal personality in foragers [109, 37] is rather novel. It is therefore not surprising

that there are few reports describing genetic effects in the grazing personality of cattle [110], as well as

a lack of candidate genes that might control such behaviours (but see [41, 57]). However, in one sug-

gested model of grazing personalities (the GP-model; [109]) it is postulated that distinctive grazing

personalities might be determined by variations in ‘grazing-related genes’. What-is-more, these genes

could be modulated by epigenetic mechanisms that control their activities through interactions with

the social and biophysical environments, with this ultimately affecting the animal’s behaviour.

Genetic models are useful tools for the identification and study of candidate genes related to the phys-

iology, behaviour and cognitive abilities. For example, Bakker and Oostra [111] studied the Drosophila

model for fragile-X syndrome and found individuals with arrhythmic and erratic patterns of locomo-

tor activities and abnormal circadian behaviour, which were regulated by the glutamate metabotropic

receptor 5 protein (GRM5). Subsequently, Jew et al. [112] suggested that GRM5 controlled neural

synaptic plasticity, and that in turn this modulated the locomotor reactivity of mice to novel envi-

ronments. Jew’s et al. results showed direct association between GRM5 and locomotor reactivity to

a novel environment, increased and decreased exploratory behaviour and, activity levels of mice. Sub-

sequently, Wu et al. [113] reported that GRM5 in the forebrain GABAergic neurons of mice modu-

lated locomotor activity, and in this way it affected their horizontal and vertical distances travelled and

the time spent moving. These authors reported that mice with genotypic variation in the glutamate

metabotropic receptor 5 gene (GRM5 ) displayed different levels of activity in familiar and unfamiliar

environments.

The glutamate metabotropic receptors (GRMs) are G-protein coupled receptors that have been cate-

gorised into three groups according to their sequence similarity and intracellular signalling mechanisms.

The GRMs 1 (GRM1) and 5 (GRM5) are members of receptor group 1, which couple with phospholi-

pase C and have similar functions or effects. Bossi et al. [114] reported GRM5 interactions with GRM1

that affected the motor coordination of mutant mice, and in a recent study, Gray et al. [115] concluded

that the stimulation of GRMs Group 1 increased the activity of Cav2.3 R-type voltage gated Ca2+-

channels in hippocampal neurons. This led to hyperactivity at the neural synapses and aberrant cal-

cium spiking in both male and female, and it caused deficient short-term memory, increased activity,

and increased exploratory behaviour.

Earlier work with GRM5 -knockout mice also suggested effects related to spatial cognitive ability. For

example, Lu et al. [116] observed impairment in the acquisition and use of spatial information and

persistent strengthening of neural synapses (i.e., long-term potentiation). Such results were consistent

with Bliss and Collingridge’s findings [117], which linked neural potentiation with memory and spa-

tial learning. Taken together, the literature would suggest that GRM5 may either directly or indirectly

control animal activity and cognitive behaviours related to the exploration and use of space.

In 2015, Bailey et al. [41] conducted a study seeking genetic associations with the grazing behaviour

of beef cows recorded using GPS-tracking collars on five farms in the United States of America (USA).

The cattle were screened to identify quantitative trait loci (QTL) related to terrain-use indices. Two of

the QTLs overlapped GRM5 on bovine chromosome 29, and these explained 18% and 24% of the total

variation in the study’s so-called ‘rough’ grazing index. The reported associations between a QTL over-
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lapping GRM5 and the rough index made GRM5 a candidate gene to explain the phenotypic variation

in GP-behaviours of beef cattle.

Accordingly, for this study, we hypothesize that nucleotide sequence variation in bovine GRM5 may be

associated with behaviours that underpin the grazing personalities displayed by beef cattle, and hence

research was undertaken to ascertain whether genetic variation exists in GRM5 , and if it existed, to

explore its association with grazing personality behaviours in beef cattle.

2.2 Materials and methods

2.2.1 Cattle investigated and phenotypic data collection

The Lincoln University Animal Ethics Committee approved all procedures before sampling and han-

dling animals for this research (AEC 2018-16, AEC 2018-16 extension and AEC 2020-02).

The cows studied (n = 306) ranged in age from three to ten years, and they were categorised into three

age groups: ‘class 1’ (under four-years of age), ‘class 2’ (four to five-years of age) and ‘class 3’ (six or

more years of age). They were either Hereford cattle (n = 224) or Angus x Hereford cross cattle (n =

82), with the crosses only present on two farms. For the Hereford cattle, most of the cows were from

registered studs, and pedigree information (i.e., sire and dam identities) could be gathered from pu-

blicly available sources [118], or directly from the farmer. For cows with unknown pedigree (n = 82),

three ‘notional sire’ identities were allocated in three of the fourteen mobs (i.e., cattle groups between

and within farms and sampling years) to avoid redundancy among herds (i.e., cattle groups within a

given farm), farms (n = 4) or years (n = 2).

For the 2019 sampling, fifteen cows were selected within the existing breeding herds at four farms and

GPS-tracked. This was undertaken with modified tracking collars that contained i-gotU GT-600 GPS

data loggers (Mobile Action Technology Incorporated, Taipei, Taiwan) and additional rechargeable bat-

teries to prolong running time in the field. Subsequently, in 2020, ninety cows were selected within a

single herd from each farm for GPS-tracking and the tracking collar deployments were carried out, one

farm after the other, during the grazing season. Due to failure of some GPS devices, several deploy-

ments did not yield usable data (see details below).

Grazing behaviour was recorded in steep and rugged rangelands of Canterbury, New Zealand, over the

autumn and winter period (approximately between April and August). As is commonly practiced on

New Zealand commercial farms, mated cows were moved to graze higher rangelands immediately af-

ter weaning (in April). They remained in these uplands until commencement of the calving season in

spring (August-September), and were grazed in a ‘free-range’ system, on the relatively large (average

size 34.5 ha) and uncultivable paddocks of the so-called ‘New Zealand hill country’ (see Tozer et al.

[119] for terrain description). The data set for statistical analysis comprised 303 cows (except for re-

sults in Table 2.3) from four farms, sampled over two years that sum up to fourteen mobs (i.e., differ-

ent herds within and between farms and years) from 73 sires and five GRM5 genotypes (genotype AA

excluded).

For each collar deployment, individual cow trajectories for the duration of the grazing period were cre-
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ated using the R package ‘adehabitatLT’, which contains functions capable of dealing with the analysis

of animal movement [120]. In these analyses, a combination of turning angle and speed between geolo-

cations was used to identify GPS outliers [121], and then the trajectories excluding the outliers were

recalculated. The Shuttle Radar Topography Mission digital elevation model (DEM) raster of New

Zealand (16 metres (m) resolution) was downloaded from Land Information New Zealand [122] and

additional rasters were created for slope and aspect using the 3D Analyst toolbox of ArcMapTM [123].

The annotation with data of elevation, slope and aspect for each GPS data point was obtained by ex-

tracting values using the R package ‘raster’ [124].

With assistance from the R package ‘dplyr’ [125], a number of behaviours describing grazing person-

alities (GP-behaviours) were calculated for each cow. First, they were calculated on a daily basis, but

days with a recording rate under 75% (i.e., less than 216 data points recorded out of 286, for locations

recorded at a 5-min intervals) were not included. Next, the mean of each GP-behaviour was calculated

across the days for each cow. The GP-behaviours included: the daily horizontal distance travelled,

the daily vertical distance travelled, the daily three-dimensional distance travelled, the daily elevation

range, the daily elevation gain, the relative elevation mean, the relative elevation 85th quantile, the rel-

ative elevation range, the daily slope 85th quantile, the daily home range (using the minimum convex

polygon method) and the daily movement tortuosity (using the spatial search pattern [37, 126]). See

2.1 for a detailed descriptions of GP-behaviours.
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Table 2.1. List of grazing personality behaviours with abbreviations, units, data transformations and description of calculations.

Grazing personality be-
haviours

Abbrevia-
tions

Units Transfor-
mation

Description

Daily horizontal distance
travelled

dist ho m/d Log Distance calculated as the sum of distances between consecutive GPS1 data points per
day using two dimensions (i.e., Easting and Northing) of the UTM2 projection

Daily vertical distance
travelled

dist ve m/d Log Distance calculated as the sum of the absolute difference in elevation between consecutive
GPS data points per day using a DEM3

Daily three-dimensional
distance travelled

dist 3D m/d Log Distance calculated as the sum of distances between GPS data points per day using three
dimensions (i.e., Easting and Northing (UTM) and elevation difference (DEM)

Daily elevation range ele range m Log Range of elevation computed as calculated as the difference between the daily maximum
and minimum elevation

Daily elevation gain ele gain m/d Log Sum of positive changes of elevation between consecutive GPS data points as depicted
from a DEM

Relative elevation mean rel ele mean 0-1
scale

In any given day, ratio between the cows’ mean elevation minus the minimum elevation of
the herd and the elevation range of the herd

Relative elevation 85th

quantile
rel ele85 0-1

scale
In any given day, ratio between the cows’ 85th quantile of the elevation minus the mini-
mum elevation of the herd and the elevation range of the herd

Relative elevation range rel ele range 0-1
scale

In any given day, ratio between the cows’ elevation range and the elevation range of the
herd

Daily slope 85th quantile slope85 Percen-
tage

85th quantile of the slope across GPS data points per day as depicted from a DEM

Daily home range hr mcp ha/d Log Explored area estimated by calculating the minimum convex polygon depicted from all
GPS data points per day using the R package ’adehabitatHR’

Daily movement tortuo-
sity

sp tortuositym/ha Log Movement tortuosity estimated as the ratio between daily horizontal distance and daily
home range

1 GPS: Global Positioning System fixes recorded with i-gotU GT-600, Mobile Action.
2 UTM: Universal Transverse Mercator.
3 DEM: Digital Elevation Model with a 16 m x 16 m spatial resolution.
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A minimum of 7 days (d) of GPS tracking data were deemed sufficient to represent consistent graz-

ing behaviours, thus any cow with six or fewer days of data collection was excluded from the study.

For each cow, the first seven to 28 daily trajectories recorded were analysed from the start of GPS de-

ployment, when herds grazed in rolling or steeper rangeland terrain (i.e., when the median daily slope

for the relocations of the herd was greater than eight degrees) based on slope classes for New Zealand

[127]. Overall, GP-behaviours for 303 cows were analysed. GPS data deposited under Movebank ID

1321429570 and Movebank ID 1321461925.

2.2.2 Blood sampling and polymerase chain reaction-single strand confor-

mation polymorphism (PCR-SSCP) analysis of GRM5

Individual blood samples from the nicked ears of the cattle were collected onto TFN paper (Munktell

Filter AB, Sweden), and genomic deoxyribonucleic acid (DNA) used for polymerase chain reaction

(PCR) amplification was purified from the dried blood spot using a two-step procedure described by

Zhou et al. [128].

Human GRM5 was first described as having nine coding exons, with lengths ranging from 96 to 940

base pairs (bp) [129]. Based on this, a human GRM5 -202 (ENST00000305447.5) sequence was analysed

to ascertain which region of bovine GRM5 may be suitable for further molecular analysis. Exon V (247

bp) (hereafter referred to as exon 5) was chosen for analysis, as this exon encodes part of the receptor-

binding region [129] and has more sequence variation described in Ensembl (ENSBTAG00000048061)

than other regions of the gene.

A pair of PCR primers were then designed to amplify the GRM5 exon 5 region based on the sequence

ENSBTAG00000048061. These primer sequences were 5’-AGAATCCATAAAGAGCTACAG-3’ and 5’-

GATCAGGCTCTGGTGTCTAG-3’, and the primers were synthesised by Integrated DNA Technolo-

gies (Coralville, IA, USA).

The PCR amplifications with these primers were performed in a 15-µL reaction. These contained the

DNA of one punch of TFN paper, 150 µmol of each deoxyribonucleoside triphosphate (dNTP) (Bioline,

London, United Kingdom), 0.25 µmol of each primer, 0.5 U of Taq DNA polymerase (Qiagen, Hilden,

Germany), 2.5 mmol Mg2+, 1× reaction buffer supplied with the enzyme and distilled water to make

up volume. The thermal profile for amplification consisted of 2 min at 94 Celsius degrees (℃), followed

by 35 cycles of 30 seconds (s) at 94 ℃, 30 s at 60 ℃, and 30 s at 72 ℃, with a final extension of 5 min

at 72 ℃.

The PCR amplicons were screened for sequence variation using single strand conformation polymor-

phism (SSCP) analysis. Each amplicon (0.7 µL) was mixed with 7 µL of loading dye (98% formamide,

10 mmol EDTA, 0.025% bromophenol blue, and 0.025% xylene cyanol). After denaturation at 95 ℃ for

5 min, the samples were rapidly cooled on wet ice and then, electrophoresed in 16 cm × 18 cm, 14%

acrylamide: bisacrylamide (37.5:1) (Bio-Rad) gels in 0.5× TBE buffer at 6 ℃ and 370 Volts (V) for 19

hours (h). The gels were silver-stained according to the method of Byun et al. [130].
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2.2.3 Sequencing of variants and sequence analysis

PCR amplicons representing different SSCP banding patterns from cattle that appeared to be homozy-

gous were sequenced in both directions using Sanger sequencing at the Lincoln University DNA Se-

quencing Facility (Lincoln University, Canterbury, New Zealand). Nucleotide sequence alignments and

translation to amino acid sequences were undertaken using DNAMAN (version 5.2.10, Lynnon BioSoft,

Vaudreuil, QC, Canada).

2.2.4 Statistical analyses

Statistical analyses were conducted using R [131]. For data aggregated at the daily level, skewness,

kurtosis and normality were graphically evaluated by plotting histograms with their corresponding the-

oretical normal distribution curves and with Q-Q plots. When needed, logarithmic transformation was

utilised to better fit the data into a normal distribution. Overall, the dataset comprised 6142 daily-

aggregated observations.

For data aggregated at the cow level (i.e., averaged across 7-28 d of records), Pearson correlation coef-

ficients were calculated between the eleven GP-behaviours using ‘rcorr()’ from the R package ‘Hmisc’

[132]. The correlations were calculated based on data from the 303 cows (three cows with GRM5 geno-

type AA excluded from analysis), except for home range and movement tortuosity (n = 299) because

of missing values.

Linear mixed models (LMM) and generalised linear mixed models (GLMM) were fitted to the

GP-behaviours to assess their associations with GRM5 variants and genotypes using the R package

‘lme4’ [133, 134]. The LMMs were fitted to GP-behaviours with a Gaussian distribution (e.g., daily

horizontal distance traveled), whereas the GLMMs were used with bounded GP-behaviours (i.e., those

scaled between 0 and 1, e.g., relative elevation mean) set with binomial distributions, which apply a

logit transformation. The GLMM-binomial distribution was preferred over using beta distribution [135],

in order to correct for random factors.

Unbalanced repeated measurements were nested into a cow identity factor. The effects of farm, sam-

pling year, mob, sire and genotype were tested as potential random explanatory factors. Breed effect

(i.e., Hereford vs Angus x Hereford cross) was not independently assessed because the number of An-

gus x Hereford cattle was small (n = 82) and some of the genotypes were rare, and whilst breed might

be affecting the various phenotypic measures the cattle studied cannot be claimed to be representative

of the breed as a whole. There were 29 half-sister cows that shared the same sire but were part of dif-

ferent mobs.

For each GP-behaviour, the random and fixed explanatory factors were selected in two steps. First

twelve models were run with several combinations of random factors only (i.e., cow identity, farm, sam-

pling year, mob, and GRM5 genotype). The model with the best compromise of statistics (i.e., least

degrees of freedom, lowest Akaike information criterion (AIC) [136], lowest Bayesian information crite-

rion (BIC) and lowest factor significance evaluated using the ‘anova()’ function), was selected for fur-

ther evaluation. In a second step, the random factor selected models were then fitted with the corres-

ponding fixed factors, i.e., presence/absence of the variants or GRM5 genotype (the predictor variables
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under evaluation), to create variant and genotype models respectively, and with cow age-class. Using

the same criteria as above to reach the best compromise of AIC, BIC and ANOVA, a final model with

or without the cow age-class factor was fitted.

To carry out the comparison of models, the maximum likelihood method was used. Once the random

and fixed factors were set, models were fitted using restricted maximum likelihood procedures [137].

The suitability of the selected models was assessed with plots of residual versus fitted data, and with

the criteria of accepting models with up to 5% of scaled residuals beyond the ± 3 limits. Associations

of fixed factors (variants, genotypes and cow age-classes) were assessed with the Satterthwaite’s method

using the R package ‘emmeans’ [138], and post-hoc analyses (pairwise comparisons) were undertaken

using the Benjamini-Hochberg method [139, 140] in ‘emmeans’. Groups that were different at P < 0.05

were labelled with different letters using the ‘multcompView’ package in R [141].

Dominance models were fitted by testing the effect of the presence/absence of variants and genotype

models were fitted with the identified genotypes. Cows with low genotype frequency in the cattle stud-

ied (i.e., <5%) were excluded from the various statistical analyses.

2.3 Results

Eleven grazing personality behaviours were derived by combining GPS DEM-annotated data from free-

ranging cows grazing rangeland. These were calculated on a daily basis, and subsequently averaged

across 7-28 d for each individual cow.

2.3.1 Correlation of grazing personality behaviours

The Pearson correlation coefficients (r) between the grazing personality behaviours are summarised in

Table 2.2.
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Table 2.2. Pearson correlation coefficients for the grazing personality behaviours (GP-behaviours).

GP-behaviours1 dist ho dist ve dist 3D ele range ele gain rel ele mean rel ele85 rel ele range slope85 hr mcp
dist ve 0.70***2

dist 3D 1.00*** 0.72***
ele range 0.07 0.41*** 0.08
ele gain 0.70*** 1.00*** 0.72*** 0.41***
rel ele mean - 0.13* 0.19** 0.00* 0.68*** 0.19**
rel ele85 - 0.14* 0.11* - 0.13* 0.71*** 0.11 0.97***
rel ele range 0.41*** 0.12* 0.40*** 0.28*** 0.12* 0.18** 0.36***
slope85 - 0.26*** 0.38*** - 0.23*** 0.60*** 0.38*** 0.43*** 0.42*** -0.09
hr mcp 0.32*** - 0.13* 0.30*** -0.09 - 0.12* - 0.24*** -0.08 0.54*** - 0.27***
sp tortuosity 0.48*** 0.56*** 0.49*** -0.07 0.55*** -0.03 - 0.15* - 0.17** -0.04 - 0.27***
1 Daily horizontal distance travelled (dist ho), daily vertical distance travelled (dist ve), daily three-dimensional distance travelled (dist -
3d), daily elevation range (ele range), daily elevation gain (ele gain), relative elevation mean, relative elevation 85th quantile (rel ele85),
relative elevation range (rel ele), 85th quantile of daily slope (slope85), daily home range (hr mcp) and daily movement tortuosity (sp -
tortuosity).

2 Bolded values indicate moderate (r = 0.3 - 0.5) and strong (r > 0.5) correlations. *P < 0.05, **P < 0.01, ***P < 0.001.33



Daily horizontal distance travelled, daily three-dimensional distance travelled, daily vertical distance

travelled and daily elevation gain were highly positively correlated with each other, and they had po-

sitive correlations that ranged between r = 0.48 and r = 0.56 with daily movement tortuosity. Mo-

derate positive correlations were found between the daily horizontal distance travelled and the daily

home range (r = 0.32) and the daily three-dimensional distance travelled and the daily home range

(r = 0.30). The daily horizontal distance travelled was moderately positively correlated with relative

elevation range (r = 0.41) and the daily three-dimensional distance travelled was moderately positively

correlated with relative elevation range (r = 0.40). The daily vertical distance travelled had a mode-

rate positive correlation (r = 0.38) with the 85th quantile of daily slope, and the daily elevation range

and daily elevation gain were also positively correlated with the 85th quantile of daily slope (r = 0.60

and r = 0.38 respectively).

When looking at ‘relative’ GP-behaviours (i.e., those calculated by comparing the individual behaviour

with the mean behaviour displayed by animals of the same herd), strong positive correlations were re-

vealed between daily elevation range and relative elevation mean (r = 0.68), as well as with the 85th

quantile of relative elevation (r = 0.71). Similarly, the 85th quantile of daily slope correlated positively

(r = 0.43 and r = 0.42 respectively) with relative elevation mean and the 85th quantile of elevation.

Finally, the daily home range was strongly correlated (r = 0.54) with the relative elevation range.

2.3.2 Genetic variation in GRM5 exon 5

The nucleotide sequence variation in exon 5 of GRM5 was investigated in 306 adult cows, albeit only

303 of these were subject to further statistical analyses. After PCR-SSCP analyses of the GRM5 exon

5 region, three distinctive banding patterns corresponding to homozigous variants named A, B and C )

were identified. Fig. 2.1 shows the three homozygous and several heterozygous banding patterns.

Figure 2.1. Banding patterns of GRM5 genotypes. Banding patterns of various genotypes of the
bovine glutamate metabotropic receptor 5 gene (GRM5 ) exon 5 region obtained from Polymerase
Chain Reaction – Single Strand Conformation Polymorphism (PCR-SSCP) analyses.

DNA sequencing of the PCR products of these three variants revealed three new and different nucleotide

sequences (GenBank accessions numbers OK078019, OK078020 and OK078021) with two previously re-

ported nucleotide substitutions (rs43744222 and rs210610001). These substitutions, if expressed, would

not change the amino acid sequence.

The six possible genotypes of the three variants were all identified (Table 2.3). Genotype AA was the

least common, and across the four farms was present in only 1% (n = 3) of the cows. Genotypes BC
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and CC were the most common, with frequencies of 36% and 35% respectively, and together these

genotypes accounted for 65-79% of cows on any given farm.

Table 2.3. Number of cows (and percentage frequency) per farm of each GRM5
genotype of four beef farms in the Canterbury Region of New Zealand.

Genotype
Farm

Total
1 2 3 4

AA 0 (0%) 1 (2%) 1 (1%) 1 (1%) 3 (1%)
AB 4 (5%) 3 (5%) 4 (5%) 7 (9%) 18 (6%)
AC 11 (13%) 6 (10%) 5 (6%) 9 (12%) 31 (10%)
BB 5 (6%) 3 (5%) 20 (24%) 10 (13%) 38 (12%)
BC 36 (43%) 23 (38%) 25 (30%) 25 (32%) 109 (36%)
CC 27 (33%) 25 (41%) 29 (35%) 26 (33%) 107 (35%)
Total 83 61 84 78 306

2.3.3 Selecting random explanatory factors for the linear mixed models

For each GP-behaviour, twelve different combinations of random factors were assessed, and the best

combination of the lowest AIC (Table S1) and BIC (not shown), lowest number of degrees of freedom

(Table S1) and those that were statistically significant by an ANOVA comparison of models (results

not shown) was selected. The selected combination of random factors for each GP-behaviour are indi-

cated with bolded and underlined AIC values (Table S1). The models for horizontal distance travelled

and three-dimensional distance travelled were ‘best’ corrected using sampling year as a random factor

(i.e., 2019 or 2020) and within each year of the farm (farm: sampling year) (RF4 in Table S1). Models

for vertical distance travelled, relative elevation, 85th quantile of relative elevation and 85th quantile of

slope were ‘best’ corrected with the factor mob, and for the remaining five GP-behaviours a combina-

tion of mob and sire was the selected random factor correction.

Nearly 75% of the cows tracked in this study were Herefords and the rest Angus x Hereford crosses

mostly from farm 2 (16%). Thus, farm effects could have been confounded with breed effects if the

crossbred cows actually differed from the purebred cows. However, since purebred cows dominated the

dataset, differences in breed are considered small in our dataset (in comparison to other factors such as

the farm effect) and therefore negligible for the correction of models. The models were therefore cor-

rected for farm effects only and breed was not included as factor. As such, the results chiefly represent

variability within Hereford cattle.

Selected genotype models were assessed by plotting residuals versus fitted values. All models had less

than 1% of the scaled residuals exceeding the ±3 limits and the residuals were mostly randomly dis-

tributed (Figs. S1 and S2).

2.3.4 Cow age-class as a fixed explanatory factor

Tables 2.4 and S2 reveal summaries for correcting the GRM5 variant and genotype models respectively

with cow age-class as a fixed explanatory factor. Out of eleven variant and genotype models and for

the same GP-behaviours, seven were improved by correcting for cow age-class: horizontal and 3D dis-

tances, relative elevation, 85th quantile of relative elevation, 85th quantile of daily slope, home range

and movement tortuosity.
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For any given GP-behaviour, the three GRM5 variant models showed similar results, with an explana-

tory factor correcting all three models, or none of them. P -values ranged between 0.01 and 0.05 for

horizontal and 3D-distance travelled, relative mean elevation, relative 85th quantile elevation and 85th

quantile slope (Table 2.4). For home range and movement tortuosity, P -values were below 0.01 (Table

2.4). The significance level for each GP-behaviour was similar for the variant and the genotype models.

Table 2.4. Associations between bovine variants of the glutamate
metabotropic receptor 5 (GRM5 ) and grazing personality behaviours
(GP-behaviours).

GP-behaviours1 Cow age
class

(P -value)2

GRM5
vari-
ant

Marginal
mean3

(standard error)

P -value4

dist ho
(m/d)

0.038 A 3837 (±1120) 0.847
0.039 B 3843 (±1120) 0.741
0.037 C 3874 (±1130) 0.213

dist ve
(m/d

0.697 A 566 (±76) 0.461
0.701 B 557 (±74) 0.638
0.703 C 555 (±73) 0.916

dist 3D
(m/d)

0.044 A 3900 (±1141) 0.870
0.044 B 3903 (±1139) 0.749
0.043 C 3935 (±1149) 0.223

ele range
(m)

0.413 A 71.0 (±9.0) 0.008
0.407 B 66.3 (±8.4) 0.833
0.402 C 66.3 (±8.4) 0.729

ele gain
(m/d)

0.697 A 283 (±38) 0.452
0.699 B 279 (±37) 0.485
0.704 C 277 (±37) 0.963

rel ele mean
(0-1)

0.018 A 0.42 (±0.06) 0.212
0.017 B 0.44 (±0.05) 0.263
0.018 C 0.46 (±0.05) 0.556

rel ele85
(0-1)

0.006 A 0.67 (±0.05) 0.934
0.006 B 0.67 (±0.05) 0.274
0.006 C 0.68 (±0.05) 0.749

rel ele range
(0-1)

0.286 A 0.51 (±0.09) 0.354
0.266 B 0.50 (±0.09) 0.610
0.277 C 0.50 (±0.09) 0.971

slope85
(0-1)

0.023 A 0.47 (±0.08) 0.138
0.026 B 0.44 (±0.08) 0.848
0.025 C 0.43 (±0.08) 0.205

hr mcp
(ha/day)

0.008 A 7.86 (±0.83) 0.021
0.008 B 7.22 (±0.74) 0.285
0.008 C 7.39 (±0.75) 0.273

sp tortuosity
(m/ha)

0.006 A 556 (±74) 0.003
0.006 B 611 (±79) 0.139
0.007 C 598 (±77) 0.476

1 See GP-behaviours abbreviations and details in Table 2.1.
2 Significance level of ANOVA test for comparison of models with and without
cow age class as fixed factor. Values below 0.05 indicated with bold font.

3 Marginal mean for variant presence in measured units (back-transformed from
the log scale as required).

4 Significance level for Satterthwaite’s method t-test of presence/absence of vari-
ant. Values below 0.05 indicated with bold font.
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2.3.5 Association of GRM5 variants and genotypes with grazing personali-

ty behaviours

Using linear mixed models, associations between the presence/absence of the GRM5 variants and

GP-behaviours were investigated. The presence of variant A was associated with elevation range, home

range and movement tortuosity (Table 2.4). Trends to association (P > 0.2) were found for variant A

and the 85th quantile of slope (P = 0.138) and for variant B with movement tortuosity (P = 0.136).

No associations were detected with variant C.

The GRM5 genotype models (Table S2) revealed associations with home range and movement tortu-

osity (see below genotypes post-hoc analysis). Trends suggesting association (P < 0.1) were found be-

tween the GRM5 genotypes and elevation range, as well as with the horizontal distance travelled and

three-dimensional distance travelled. Overall, this suggested a high degree of consistency between the

variant presence/absence models and the genotype models.

The effect of the fixed factors was consistent in the variant and genotype models. Thus, if cow age-

class had an effect in the variant presence/absence models, this effect was observed in the correspond-

ing genotype model. Similarly, when genetic associations were revealed in the variant models, such ge-

netic effects were reflected in the genotype models too.

2.3.6 Post-hoc comparisons of GRM5 genotypes and cow age-class

The GRM5 genotypes associations with home range and movement tortuosity (Table S2) were related

to cow age-class. For these two GP-behaviours, an analysis of the main effect of genotype across cow

age-class and post-hoc analyses were conducted. Results of post-hoc analyses revealed significant differ-

ences in the combined effects of GRM5 genotypes and cow age-classes for both GP-behaviours (Table

2.5).
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Table 2.5. Post-hoc comparisons between groups of GRM5
genotypes and cow age classes that had significant associa-
tion with grazing personality behaviours (GP-behaviours)

GRM5
genotype

Cow
age
class

Marginal
mean1

(standard
error)

Degrees
of

freedom

BH2

(P <0.05)

Home range (ha/day)

AB

1

9.74 (±1.52) 62 a
AC 9.67 (±1.48) 55 a
BB 8.16 (±1.26) 57 bcd
BC 8.96 (±1.32) 50 ab
CC 9.01 (±1.34) 51 ab

AB

2

7.43 (±0.83) 23 abc
AC 7.37 (±0.77) 18 ab
BB 6.22 (±0.65) 18 de
BC 6.83 (±0.67) 14 bcd
CC 6.87 (±0.68) 14 bcd

AB

3

6.77 (±0.80) 29 bcd
AC 6.72 (±0.76) 24 bcd
BB 5.67 (±0.64) 24 e
BC 6.23 (±0.66) 20 cde
CC 6.26 (±0.67) 20 cde

Movement tortuosity (m/ha)

AB

1

434 (±73) 35 j
AC 456 (±75) 33 ij
BB 534 (±89) 34 cdefgh
BC 495 (±80) 31 ghi
CC 484 (±79) 31 hij

AB

2

595 (±81) 17 efghi
AC 626 (±83) 15 cdefgh
BB 732 (±97) 15 ab
BC 679 (±88) 14 abcd
CC 663 (±86) 14 abcdef

AB

3

610 (±86) 19 dfghi
AC 641 (±88) 17 bcdefg
BB 751 (±103) 17 a
BC 696 (±93) 16 abce
CC 680 (±91) 16 abcdef

1 Response marginal mean in measured units (back-transformed from
the log scale as needed).

2 Different letters indicate significantly different groups calculated
with a pairwise comparison using the Benjamini-Hochberg method
(P < 0.05).

Home range

Here is presented the selected linear mixed model for home range:

Response variable: log(hr mcp)

Fixed factors: GRM5 genotype + cow age class +
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Random factors: (1|cow id) + (1|mob id) + (1|sire id)

Where hr mcp refers to home range and id denotes the identifier.

The main effects of cow age and genotype were assessed with a mean comparison using the Benjamini-

Hochberg method for the adjustment of P -values. When the daily home range by cow age (i.e., home

ranges averaged over genotype levels) was analysed, cows younger than four years of age (class 1) ex-

plored larger areas (9.09 hectares per day (ha/d)) than cows of 4-5 years of age (class 2; 6.93 ha/d; P

= 0.039) and older cows of six or more years of age (class 3; 6.32 ha/d; P = 0.014). The daily home

range explored by the 4-5 years old cows was also larger than that of the older cows (P = 0.046). The

main effects of genotype in daily home range across cow age-classes (i.e., home ranges averaged over

levels of cow age-class) was not significant (P > 0.05), but it tended to decrease, with AB and AC be-

ing greater than CC and BC, which were greater than BB (7.88 ha/d, 7.82 ha/d, 7.29 ha/d, 7.25 ha/d

and 6.60 ha/d, respectively).

The results of the combined effects of genotype and cow age revealed that the daily home range of an

individual cow calculated with the minimum convex polygon method ranged between 5.67 ha/d (geno-

type BB, cow age-class 3) and 9.74 ha/d (genotype AB, cow age-class 1) (Table 2.5). Cows with geno-

type BB displayed among the lowest daily home ranges in age-classes 2 and 3, but for the cows under

four-years of age (class 1), genotype BB cows had similar daily home ranges to the BC and CC geno-

type cows, but significantly smaller daily home ranges than the AB (P = 0.047) and AC cows (P =

0.032). Young cows (class 1) with genotypes AB and AC had larger daily home ranges than cows of

any other genotype of age-classes 2 and 3; and within cow age-class 1, the daily home ranges of the

AB and AC cows were larger than BB cows (see above). For age-classes 1, 2 and 3, cows of genotype

AC displayed slightly smaller, but statistically similar daily home ranges to AB cows (P = 0.933, P

= 0.933 and P = 0.933, respectively). Cows with genotypes BC and CC had intermediate values for

their daily home ranges.

Movement tortuosity

Here is presented the selected linear mixed model for movement tortuosity:

Response variable: log(sp-tortuosity)

Fixed factors: GRM5 genotype + cow age class +

Random factors: (1|cow id) + (1|mob id)

Where sp tortuosity refers to movement tortuosity and id denotes the identifier.

Analysis of the main effects of genotype and cow age on daily movement tortuosity, revealed that cows

in class 3 (six-years and older) displayed similar tortuous trajectories (674 metres per hectare (m/ha)

to those shown by the middle-aged cows (class 2; 657 m/ha; P = 0.517). Younger cows of class 1 (less

than four-years of age) had less tortuous trajectories (479 m/ha) than cows in both of the older age-

classes (P = 0.005). The genotype main effects averaged by cow age-class revealed that cows with the
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genotype BB had the most tortuous trajectories (665 m/ha). This was followed by cows with geno-

types BC and CC (616 m/ha; not significant P = 0.123, and 602 m/ha; a trend at P = 0.061, respec-

tively). Cows with the genotypes AC (578 m/ha) and AB (540 m/ha) had straighter trajectories than

BB genotypes (P = 0.021 and P = 0.012, respectively). Differences in movement tortuosity between

cows of AC and AB genotype were trending towards a difference (P = 0.061).

When accounting for the combined effects of genotype and age, daily movement tortuosity estimated

with the spatial search pattern ranged from 434 m/ha (genotype AB, age-class 1) to 751 m/ha (geno-

type BB, age-class 3) (Table 2.5). Cows of genotype BB and age-classes 2 and 3 displayed among the

largest daily movement tortuosity, but having the BB genotype did not lead to much distinction in

the young cows (age-class 1). In turn, young BB cows displayed similar movement tortuosity to other

genotypes in age-classes 2 and 3, as well as to cows with genotypes BC and CC in age-class 1.

Cow age-class as main factor

Results presented above showed some of the differences among age-classes when computed as main fac-

tor. For example, home range significantly (P < 0.05) decreased from cow age-class 1 (9.09 ha/d) to

classes 2 (6.93 ha/d) and 3 (6.32 ha/d). Movement tortuosity was significantly (P < 0.01) smaller for

cows age-class 1 (479 m/ha) than both older classes suggesting that trajectories of the youngest class

was straighter. Differences on movement tortuosity were not significant between cows of age-classes 2

(657 m/ha) and 3 (674 m/ha), albeit values tended to increase. This lack of difference might be largely

explained by the significantly (P < 0.05) shorter horizontal distance travelled by cows in class 3 (3689

m/d) compared to cows in class 2 (3941 m/d) and, in lesser extent, by their difference in home range.

On the contrary, the slope 85th quantile significantly (P < 0.01) increased from the youngest cow age-

class 1 having 37.5% (17 °(angular degrees)) to age-class 2 with 45.8% (21 °) while even steeper 85th

quantile slope was recorded in cows of age-class 3, which reached 52.9% (24 °).

2.4 Discussion

2.4.1 Sets of correlated grazing personality behaviours

Senft et al. [142] provided clues about which grazing personality behaviours were relevant to describe

grazing patterns and predict the distribution of cattle. Accordingly, eleven behaviours related to the

grazing personality of beef cattle were measured or calculated in this study. In some cases, these be-

haviours were correlated and provide insights into behavioural ‘trade-offs’ that could be affected by

genetics. In other cases, the correlations between behaviours might be explained with other reasons or

factors, and might not have their roots in behaviour or animal personality.

In the following paragraphs, we discuss in detail some examples of such correlations. We report corre-

lations that do suggest behavioural trade-offs and even concatenated behaviours that ultimately might

resemble differences in grazing personality. For example, cows that travelled longer distances on a daily

basis (i.e., both horizontal distance travelled and three-dimensional distance travelled) had increased

daily elevation gains and displayed more tortuous trajectories. Longer distances travelled travelled (i.e.,

horizontal distance travelled and three-dimensional distance travelled) were moderately and positively

correlated with daily movement tortuosity (r = 0.48 and r = 0.49, respectively in Table 2.2), while
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daily vertical distance travelled had an even stronger correlation (r = 0.56) with daily movement tortu-

osity, meaning more twisted trajectories when elevation gains (and losses) increased. It was also found

that cows that travelled longer distances (i.e., horizontal distance travelled and three-dimensional dis-

tance travelled), typically had larger daily home ranges (r = 0.32 and r = 0.30, respectively in Table

2.2). In contrast, cows with greater vertical distance travelled (i.e., the sum of elevation gain and loss),

typically explored smaller home ranges (r = -0.13 in Table 2.2). Despite this, the daily horizontal and

vertical distances travelled were positively correlated, and increased in both of these behaviours with

larger or smaller home ranges, respectively. This suggests a trade-off between the size of the area ex-

plored and the extent of elevation change. Similarly, the negative correlation (r = - 0.27 in Table 2.2)

between the daily home range and daily movement tortuosity suggests another trade-off, where the

smaller the area explored, the more crooked the trajectories.

Browning et al. [126] analysed the grazing behaviour of mature Angus x Hereford cross cows grazing

in the northern Chihuahuan Desert (NM, USA). They reported that as pasture regrew, the movement

tortuosity estimated during grazing activity periods (75.3 m/ha) tended to increase (r = 0.62), while

home range decreased (r = -0.38). These results agree with our findings and further support the exis-

tence of a trade-off between the extent of the home range and the nature of the movement tortuosity.

It does however need to be noted that there was a marked difference between the land being grazed in

the two studies. Browning’s et al. [126] experiment was set up on flat desert land with a mean distance

travelled of 6100 m/d and explored areas of 81.1 ha/d, versus our study, which was conducted in steep

and rugged terrain where the average distance travelled was 3700 m/d and cattle explored 12.77 ha/d.

Overall, the study undertaken here, revealed an average daily home range of nearly 13 ha/d, with a no-

tably higher movement tortuosity of 629 m/ha, eight-fold larger than the value of 75.3 m/ha reported

in Browning et al. [126]. Another difference between these studies is that Browning’s et al. [126] mea-

surements accounted exclusively for grazing time, while our study used the total daily movement re-

gardless of activity, (i.e., it was not just time spent grazing). Additionally, given the difference in lati-

tude of these two studies, the effect of day-time and night-time temperatures in the areas being grazed

may also affect grazing behaviour, albeit unfortunately this variable was not measured.

Another study conducted in central New Mexico (NM, USA) by Wesley et al. [37] studied the grazing

behaviours of free-ranging beef cows. Based on their findings, two contrasting grazing personality types

were described: type 1 cows, which used larger areas and displayed less twisted trajectories (21 ±0.3

ha/d, 264 ±8.9 m/d, respectively); and type 2 cows, which covered smaller areas and exhibited more

tortuous trajectories (17 ±2 ha/d, 314 ±2.6 m/d, respectively). These results exemplified the home

range versus movement tortuosity trade-off. It is noteworthy that the values reported by Wesley et al.

[37] were closer to the values we recorded, than to those in the study of Browning et al. [126]. This

may be because Wesley et al. [37] included all-of-day movement trajectories (as we did), instead of the

grazing-time movement trajectories described by Browning et al. [126].

A similar analysis was also reported by Pauler et al. [143] for Swiss alpine pastures grazed with three

different breeds of beef cattle. They observed that what are considered to be the more productive breeds

(Braunvieh and Angus x Holstein cross cattle), took many more steps and covered longer distances but

in much smaller areas, with this suggesting greater movement tortuosity. In contrast, the less produc-

tive Highland cattle appeared to explore larger areas but with fewer steps and shorter distance travel-
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led, suggesting reduced movement tortuosity. While the grazing pattern of productive breeds suggested

much greater grazing intensity (sensu Pauler et al. [143]) and therefore a high movement tortuosity, it

also implied a much smaller portion of the accessible land was utilized, and probably high selectivity

to graze a preferred and small area. The grazing pattern associated with the ‘less productive breed’ re-

flected individuals that explored a larger proportion of the available land, but with fewer steps. This

suggests lower movement tortuosity and, as Pauler et al. [143] described, a much greater ‘evenness’

(i.e., on average all accessible vegetation patches were visited with similar frequency) denoting lower

selectivity within the accessible land. The findings reported by Pauler et al. [143] suggest once again

a trade-off between home range and movement tortuosity between breeds that displayed distinctive

GP-behaviours.

Given the differences in experimental conditions between Browning et al. [126] and Wesley et al. [37],

Pauler et al. [143] and the study here presented, it is notable that there are apparently similar trade-

offs between home range and movement tortuosity. Furthermore, the genetic associations revealed here

suggest that such trade-offs might be genetically controlled.

We acknowledge that some correlations between GP-behaviours might not have purely behavioural

roots, but can instead be explained by other things such as through being mathematically related or

being related through some environmental effect. For example, it is not surprising that the daily ho-

rizontal distance travelled and the daily three-dimensional distance travelled were highly correlated,

because the former accounts for distance between two points in the same plane (a two-dimensional

measure) and the latter accounts for changes in elevation as well as horizontal movement (a three-

dimensional measure) by using the hypotenuse of the relocations. Equally, the vertical distance tra-

velled is the sum of both elevation gains (ascent) and losses (descent), which while perhaps not equal,

were nevertheless very similar in absolute values. Accordingly, the correlation of either with vertical

distance travelled should be close to 100%. Additionally, in hill country rangelands steeper slopes occur

at higher elevations, which is an environmental preconditioning for an animal grazing at higher eleva-

tion and steeper slopes as it is reflected with moderately positive correlations between the 85th quantile

of slope and relative elevation as well as between the daily slope 85th quantile and the 85th quantile of

relative elevation. Overall, it could be concluded that not all correlations between GP-behaviours are

necessarily meaningful from a behavioural viewpoint.

From an animal personality perspective, it is important to validate the correlation between grazing per-

sonality behaviours because this is a key premise to comply with the definition of animal personality

[144]. Our results included correlation between several GP-behaviours measured on 303 individual cows

over time (i.e., 7 to 28 d of recording GPS positions) and across contexts (i.e., different paddocks fol-

lowing the grazing rotation established by each farmer). Correlations among GP-behaviours have been

reported in the past in beef cattle [145, 143, 37], dairy cattle [146, 147, 148], sheep [91, 49] and other

domesticated livestock [23] and all support our findings. There is also evidence of the temporal consis-

tency of such correlations in livestock [81, 107, 149, 150]. Changes in GP-behaviours have been also re-

ported in dairy cattle [151], where they have been called personality developments and which are likely

explained by regulating mechanisms such as animal maturity [150]. It might be concluded then that

the behaviours investigated here comply with a definition of animal personality and might therefore

be useful permanent descriptors of grazing personality for beef cattle and other foragers (see Moreno
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Garćıa et al. [109]). However, further investigation of behaviours that describe key traits of grazing

personality (GP-traits) also seem to be warranted [22, 144, 152].

2.4.2 Variation in the bovine GRM5 gene

Investigation of the variation revealed in bovine GRM5 exon 5 resulted in the discovery of three vari-

ant sequences, which were the result of two ‘silent’ nucleotide substitutions registered previously (

rs43744222 and rs210610001). The presence of three synonymous single nucleotide polymorphisms

(SNPs) that do not change the amino acid coding in GRM5 exon 5 does not mean these changes in

nucleotide sequences are benign or innocuous, but rather they might lead to deleterious outcomes as

exemplified with other genes [153]. Such silent substitutions might affect an animal’s functioning by

a number of means that have been well described by Hurst [153]. For example, the nucleotide change

might affect the rate of transcription and translation, and hence the folding of the peptide produced

into a three-dimensional structure, which in turn may affect its function. Additionally the nucleotide

changes may be linked to sequence variation elsewhere in the gene that has functional effect, or se-

quence variation in another closely linked gene that has a functional effect, given the linear arrange-

ment of genes on chromosomes. Alternatively, nucleotide changes can affect the splicing and proces-

sing of the primary transcript, and thus modify the mRNA (and thus amino acid sequence produced at

translation) or the regulation of translation. In the behavioural context, Fu et al. [154] illustrated that

the effects of silent mutations on Drosophila’s circadian rhythm and thus, its potential implications on

the regulation of animal daily and seasonal behaviours in general, which could apply to free-range cat-

tle in steep and rugged terrain [155]. Considering the previously reported associations of GRM5 with

behaviour, movement and cognitive abilities in several animal species [41, 111, 114, 115, 112, 113], the

variants of bovine GRM5 reported here are notable, because of their potential for use in cattle selec-

tion programmes that could target particular grazing patterns and cattle distribution in rangelands.

The proportion of genotypes was asymmetrical (Table 2.3) reflecting the low frequency of GRM5 vari-

ant A. The AA genotype was only present in three cows from three different farms, and this did not al-

low any sensible comparison with others genotypes as any analysis is likely biased by the small sample-

size. Moreover, as might be expected AB and AC were among the less common genotypes with fre-

quencies of approximately 6% and 10%, respectively. These proportions were similar across the four

farms, with this suggesting that in Hereford herds in New Zealand, natural or breeding-mediated fac-

tors had led to selection away from variant A.

Phenotypically, the AB and AC cows tended to explore larger areas in a slighter wider range of eleva-

tions, while displaying straighter trajectories (see Tables 2.5 and S2). From a genetic viewpoint, vari-

ant A was associated with elevation range, home range and movement tortuosity (Table 2.4); hence

selection for more A in herds could result in changes to grazing patterns. It could then be further hy-

pothesized that selecting for A at the expense of cattle with B (which had the largest daily movement

tortuosity), would lead to differences in collective grazing personalities. Taking the above-mentioned

example from Pauler et al. [143], selecting towards A could therefore increase the proportion of the

‘Highland cattle-like’ grazing pattern. However, to confirm the changes of grazing patterns for entire

herds (i.e., collective grazing personality sensu Moreno Garćıa et al. [109]), the genetic associations

and trends towards association with phenotypic behaviours reported here need to be further investi-
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gated in larger populations and with better balance introduced into the design to insure all the possible

genotypes were evenly represented. It must also be acknowledged that other variants might be found as

cattle of differing breed and larger herds are studied.

2.4.3 Genotype-phenotype effects on grazing patterns

The most important results arising from this study are probably the discovery of genetic effects over

consistently displayed grazing patterns in cattle and its potential for selecting individuals and designing

herds based on desired grazing behaviours. The potential for genetic associations were investigated for

simple behaviours (e.g., daily horizontal distance travelled, daily elevation gain and daily home range)

as well as with a variable (daily movement tortuosity) that was constructed from the daily horizontal

distance travelled and the daily home range. Associations were also investigated with so-called ‘rela-

tive’ behaviours, which express the grazing behaviour of an individual cow relative to the average be-

haviour of the herd. While associations were revealed with the simple GP-behaviours, no associations

were found with relative behaviours. This latter approach attempts to fairly compare cows tracked un-

der different conditions (e.g., on different farms and for different years), albeit the need to have an un-

biased comparison was addressed in this study by correcting the mixed models with explanatory fac-

tors.

Interestingly, our results revealed trends for association and associations between GRM5 variation and

horizontal distance travelled and home range, respectively (Tables S2 and 2.5). Furthermore, we dis-

covered stronger genetic association with daily movement tortuosity (Table 2.5), in part confirming

the validity of the genetic effects on horizontal distance travelled and home range. Previous studies of

GRM5 genetic associations with indexes of terrain use in cattle have yielded contradicting results with

Bailey et al. [41] describing associations, but Pierce et al. [57] failing to find associations. We hypothe-

size that one reason for the failure to detect genetic associations by Pierce et al. [57] could be their use

of created or synthetic indexes that integrated two or more simple GP-behaviours, but in a normalized

and averaged manner that rank individual cows according to the behaviours measured. This would be

consistent with the lack of associations with the relative behaviours reported in the present study. It

is unknown whether the simple behaviours chosen by Pierce et al. [57] (with or without normalization

and centring) would have shown any signs towards genetic association. In this study, no association

was revealed between GRM5 variation and the 85th quantile of daily slope, which is consistent with

Pierce et al. [57]. Overall, it could be concluded that the reporting of trends toward genetic association

(i.e., when P < 0.1) for simple variables is required to investigate and better understand potentially

stronger associations with constructed variables that denote behavioural patterns, such as those ob-

served in cattle grazing personality.

This study revealed GRM5 exon 5 associations with daily home range and daily movement tortuosity

(Table 2.5), which were age-dependent and that implied variation in grazing patterns among genoty-

pes. Homozygous BB cows displayed the smallest daily home range and the most tortuous trajectories,

while AB and AC cows had among the largest home ranges and straighter trajectories. Such observa-

tions applied well for four-year-old and older cows, but were not obvious for younger cows where BB

individuals displayed similar home ranges and movement tortuosity to the BC and CC genotypes (Ta-

ble 2.5). Behaviour changes during an animal’s lifetime are known as personality ‘development’ and
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may occur for a variety of intrinsic reasons including genetic and epigenetic regulation, neurological

and hormonal effects, among others [156] and may be affected by external reasons such as the social

environment [109], for example. In dairy cattle, Neave et al. [150] studied the behavioural reactivity to

novelty over the maturation of individuals from 1 month of age to 30 months. The experiment involved

two longitudinal observations of ≈ 32 female Holstein cattle each, where individuals were evaluated

with three personality tests (i.e., response to a novel environment, a novel human and a novel object),

which were conducted on consecutive days at four defined times of development (i.e., pre-weaning,

post-weaning, puberty and first lactation). Some behaviours were consistent between the pre-weaning

and post-weaning stages, as well as between puberty and the first lactation; but the consistency was

absent when behaviours were compared before and after cows’ sexual maturity (i.e., behaviours mea-

sured either in pre-weaning or post-weaning were inconsistent to measurements conducted later on over

lactation). The authors concluded that personality traits became more consistent after sexual matu-

ration and pointed out the need for studies beyond the first lactation [150]. Because the phenotypic

expression of the BB genotype seems to be expressed in four-year-old and older cows in this study, it

suggests that grazing personality is still developing in younger cattle, and supports the notion that an

animal’s maturity affects grazing personality.

Regardless GRM5 genotype, in our study, older cows displayed smaller home ranges and reached steeper

terrain than younger cows (see section Cow age-class as main factor). This suggests that younger cows

were able to graze larger areas displaying untwisted trajectories because they use gentler terrain, which

contradicts the effects of cow age on the use of steep and rugged terrain previously reported [39, 157].

Are there potential opportunities in selecting cattle based on GRM5 genotypes? With the informa-

tion collected, one cannot be certain about the impact of selecting based on GRM5 variation, but an

estimate of the size of the effect can be ascertained from the differences in the marginal means in the

GLMMs. Within a given cow age-class, differences in the marginal means for genotypes with the lowest

and highest values of home range and movement tortuosity were 19% and 23%, respectively (section

Cow age-class as main factor). For home range, the BB cows had the lowest marginal mean while the

highest was for AB cows. Inversely, the lowest marginal mean of movement tortuosity was modelled

for the AB genotype and the highest for BB (i.e., same genotypes but in opposite ends), which is sup-

ported by the negative correlation between the two GP-behaviours. We speculate that such differences

could be higher if cows with genotype AA were well represented in cattle herds and therefore could be

included in the comparisons. Even with these results, a change of roughly 20% in daily home range and

approximately 23% of movement tortuosity over the explored area could make a notable difference in

rangeland use, ecological functioning and eventually in cattle production. Further research is encour-

aged to elucidate the benefits of applying grazing personality in cattle selection programmes.

2.5 Conclusion

Our study revealed the association of glutamate metabotropic receptor 5 gene (GRM5 ) variation with

home range and movement tortuosity that could possibly be used in cattle breeding programmes to im-

prove rangeland utilisation and grazing distribution. There appeared to be a genetically determined

trade-off between the daily home range and daily movement tortuosity. Our research also showed a
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widespread association between cow age-classes and most behaviours of grazing personality with two

interesting implications. Firstly, grazing personality development occurs beyond a cow reaching her

sexual maturity and it appears to stabilise in 4-year-old cows. Secondly, cows of younger age classes

grazed larger but gentler areas, while displayed straighter trajectories than their counterparts older

cows. In this study, three novel sequence variants of GRM5 exon 5 were revealed, and these had dif-

ferent frequencies in the Hereford cattle. The asymmetric occurrence of GRM5 variation offers the op-

portunity to shape the grazing patterns of beef cattle through selection.

2.6 Supplementary material

Fig. S1. Residuals versus fitted values (Part A). Plots of scaled residuals versus fitted values of linear

mixed models of six (A-F) grazing personality behaviour. Residual outliers are values beyond ±3.

Fig. S2. Residuals versus fitted values (Part B). Plots of scaled residuals versus fitted values of linear

mixed models of five (A-E) grazing personality behaviour. Residual outliers are values beyond ±3.

Table S1. Akaike Information Criterion (AIC) for linear mixed models of grazing personality behaviours

(GP-behaviours) fitted with twelve combinations of random factors.

Table S2. Associations between genotypes of the glutamate metabotropic receptor 5 gene (GRM5 ) and

grazing personality behaviours (GP-behaviours).
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Chapter 3

Key grazing behaviours of beef

cattle identify specific genotypes of

the glutamate metabotropic receptor

5 gene (GRM5 )

3.1 Introduction

Grazing personalities of foraging animals were defined as ‘suites of traits of different nature (e.g., be-

havioural, cognitive, physiological, and morphological), which are correlated and often concatenated,

to result in specific grazing patterns displayed consistently across contexts and over time’ [109]. In this

context, the consistent expression of distinctive grazing personalities might be at least in part under-

pinned by specific grazing genes [109]. The social and biophysical environments as well as the animal’s

experiences and emotional states likely also affect grazing behaviours at the individual and collective

level.

The social and biophysical environments are strong drivers of grazing behaviours in herbivores [158, 33,

159], which are further shaped by the cognitive condition of animals. Yet, behavioural genes and their

expression are also intrinsic determinants of behaviours that are passed inter-generationally. Meta-

analyses of animal personality in wild and domestic animal populations provides estimates of such

inter-generational genetic effects. For example, van Oers and Sinn, [6] reported animal personality trait

heritability ranging from 0.24 in domestic populations to 0.36 in wild populations after a metaanalysis

of 75 studies of animal personality. Similarly, Dochtermann et al. [54] targeted publications on animal

personality with estimates of repeatability and heritability of animal behaviours. These authors con-

cluded that despite the often moderate to low heritability of behaviour, repeated behaviours pertaining

to animal personalities had much higher heritability with an estimated 52% of its variation explained

by genetic variation. In cattle while grazing behaviours has been attributed to animal personality [160],
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its genetic basis seems to be poorly understood.

Studies by Bailey et al. [41] and Pierce et al. [57] pioneered the use of whole genome screening of free-

range management cattle to attempt to identify genetic regions associated with terrain use indexes.

These were derived from key grazing behaviours, such as a cow’s movement relative to elevation, slope,

and distance to water sources. While these studies reported promising genetic associations that sug-

gested potential quantitative trait loci (QTL) and candidate genes, the sample size in the Bailey et

al. [41] study was small (n = 87) suggesting the need for a larger investigation. Pierce et al. [57] had

a larger sample size (n = 321), but their results were not consistent with Bailey et al. [41], and they

reported only weak associations, possibly because of still only having a moderate sample size, and be-

cause of the heterogeneity of their grazing data.

Moreno Garćıa et al. [161] targeted the glutamate metabotropic receptor 5 gene (GRM5 ) studying

variation in the exon 5 region and reported genetic associations between genotypes and grazing be-

haviours such as home range and movement tortuosity, and with a trend towards association with el-

evation range and horizontal distance travelled. Their findings, together with the early study of Bailey

et al. [41], and studies that have associated GRM5 expression with activity levels and exploratory be-

haviours in animal models [111, 112, 113], support the relevance of GRM5 as a predictor of grazing

personality behaviours in beef cattle.

Moreno Garćıa’s et al. [161] analyses were performed with a mensurative approach and without control

over the representation of GRM5 genotypes in the sampled cattle. This forced the authors to exclude

from analysis a rare genotype present in just 1% of the cattle investigated and apply their modelling to

an unbalanced dataset of five GRM5 genotypes, where two genotypes accounted for 71% of the sam-

pled cows. Haixiang et al. [162] describe the problems encountered by classification algorithms when

dealing with unbalanced datasets, and among other solutions discuss ‘dataset under sampling’ (i.e.,

randomly discarding cases of the majority classes) to obtain better balanced datasets that equally rep-

resent all classes under investigation. The use of a more balanced dataset might revealing hitherto hid-

den differences that would otherwise be undetected. Accordingly, in this study, a quasi -manipulative

experiment design was set by under sampling to investigate bovine GRM5 genotypes and grazing be-

haviours in the beef cattle.

On the basis that grazing genes and their expression precede the development of individual and collec-

tive grazing personalities [109] in the following study it was hypothesized that a combination of consis-

tent grazing behaviours might reveal specific GRM5 genotypes in beef cattle under free-range manage-

ment. It was further hypothesized that genetic variation of GRM5 would result in differences among

cows for simple grazing personality behaviours. The aims were therefore to identify a combination of

grazing behaviours that assist in discriminating GRM5 genotypes in beef cattle and to assess the be-

havioural differences that might exist between different GRM5 genotypes. A further aim was to ascer-

tain if temporal consistency is needed for selecting grazing behaviours that assist in the distinction of

GRM5 genotypes.
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3.2 Materials and methods

The Lincoln University Animal Ethics Committee approved all procedures involving animal handling

and sampling (AEC 201816, AEC 201816 extension and AEC 202002).

The investigation was conducted using a selected subsample of the cattle described in the previous

chapter and Moreno Garćıa et al. [109], to create a quasi -manipulative experiment where GRM5 geno-

type was the treatment, farm was a block effect and individual cows of four and five years of age (i.e.,

cow age class 2 in previous chapter and in Moreno Garćıa et al. [161] were the experimental unit [163]).

We combined the under-resampling method (the random discard of samples from the major classes)

and the exclusion of possible outlier individuals (detected with the ‘aq.plot()’ function of the R pack-

age ‘mvoutlier’ [164, 165]) to build a balanced dataset. This was expected to improve the accuracy of

discriminant models instead of using unbalanced data, which can compromise the performance of clas-

sification algorithms [162].

Two separate datasets were selected, a fully balanced training dataset and a ‘testing’ set. The training

dataset included four cows for each GRM5 genotype present at greater than a 5% threshold (i.e., AB,

AC, BB, BC, and CC ) from each of the four farms (n = 80 cows in total) and thus evenly represented

the five common GRM5 genotypes with 16 cows per genotype. The testing dataset included the same

five GRM5 genotypes, but with unbalanced representation (i.e., AB, AC, BB, BC, and CC ; with n =

7, 16, 13, 16, and 16 cows respectively). These cows were still present on all four farms (n = 68).

The training dataset was purposely balanced to evenly represent the GRM5 genetic variation as well as

the four farms involved in the original study. However, in the testing dataset, there was unbalanced

representation of the five genotypes on all four farms, with fewer cows that were AB and BB, than

were AC, BC and CC (i.e., ≈ 11%, ≈ 23%, ≈ 19%, ≈ 23% and ≈ 23%, respectively).

Age-based variation in the data was minimized by selecting only cows of 4-5 years of age, which were

expected to display the ‘stable grazing behaviours’ of mature animals [109].

3.2.1 Study sites and cattle

For a detailed description of the methods, refer to the previous chapter and Moreno Garćıa et al. [161].

Briefly, the study involved four private farms located in the steep and rugged hill country terrain of

Canterbury, New Zealand. The cows studied were randomly selected from existing commercial herds.

The location of the grazing cows was at elevations ranging between 200 and 1,000 metres (m) above

sea level in relatively large and undeveloped paddocks of an average size of 34.5 hectares (ha). All the

paddocks had at least one water supply (natural springs and streams were sometimes present).

The cows were tracked with home-made GPS units in tracking collars (modified i-gotU GT-600 loggers;

Mobile Action) deployed over winter months (April-August) of 2019 and 2020 seasons. From each cow

deployment, a trajectory including free-range grazing was created with the ‘adehabitatLT’ R package

[120]. GPS outliers were excluded based on turning angles and the speed of consecutive geolocations

[121] and trajectory parameters were recalculated. Geolocations were annotated for elevation, slope

and aspect using the ‘raster’ R package [124] and derived rasters (3D Analyst toolbox; ArcMapTM,

[123]) from digital elevation models of New Zealand (16 m resolution; the shuttle radar topography
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mission, Land Information New Zealand [122]).

3.2.2 Grazing behaviours

The trajectories of the cows were used to calculate variables related to cattle grazing patterns and

grazing distribution in free-range systems as descriptors of grazing personality behaviours (Table 3.1).

The broad array of 35 variables were chosen based on their use in previous studies [81, 166, 126, 167,

158, 142, 168]. Over the 15 consecutive days of GPS-based, the individual cow measurements were ag-

gregated into daily mean values and coefficient of variation (CV) using the ‘summary()’ function of

‘dplyr’ R package [125]. Variables that were not normally distributed were excluded from further anal-

ysis. Table 3.1 presents a summary of the calculations and data transformation used.
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Table 3.1. List of grazing personality behaviours with abbreviations, units, data transformations and description of calculations.

Grazing personality be-
haviours

Abbrevia-
tions

Units Transfor-
mation

Description

Daily horizontal distance
travelled

dist ho m/d Square
root

Distance calculated as the sum of distances between consecutive GPS1 data points per
day using two dimensions (i.e., Easting and Northing) of the UTM2 projection

Daily vertical distance
travelled

dist ve m/d Log Distance calculated as the sum of the absolute difference in elevation (i.e., dimension z)
between consecutive GPS data points per day using a DEM3

Daily elevation range ele range m Range of elevation computed as the difference between the daily maximum and minimum
elevation

Daily elevation gain ele gain m/d Square
root

Sum of positive changes of elevation between consecutive GPS data points as depicted
from a DEM

Daily mean elevation cen-
tred per farm

ele mean farm m For any given cow of a farm, the mean elevation across GPS data points per day as de-
picted from a DEM minus the mean elevation for that farm calculated across all days and
cows included in the analysis

Daily elevation 85th

quantile centred per farm
ele85 farm m For any given cow of a farm, the 85th quantile of elevation across GPS data points per day

as depicted from a DEM minus the mean elevation for that farm calculated across all days
and cows included in the analysis

Daily elevation 15th

quantile centred per farm
ele15 farm m For any given cow of a farm, the 15th quantile of elevation across GPS data points per day

as depicted from a DEM minus the mean elevation for that farm calculated across all days
and cows included in the analysis

Daily slope mean slope mean ° Square Mean slope across GPS data points per day as depicted from a DEM

Daily slope maximum slope max ° Cube
root

Maximum slope registered in any given day across GPS data points as depicted from a
DEM

Daily slope 85th quantile slope85 ° Cube
root

85th quantile of the slope across GPS data points per day as depicted from a DEM

Daily slope 15th quantile slope15 ° Cube
root

15th quantile of the slope across GPS data points per day as depicted from a DEM

Daily home range hr mcp ha/d Log Explored area estimated by calculating the minimum convex polygon depicted from all
GPS data points per day using the R package ’adehabitatHR’

Daily movement tortuo-
sity

sp tortuosity m/ha Log Movement tortuosity using the spatial search pattern estimated as the ratio between daily
horizontal distance and daily home range
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Continuation of Table 3.1 List of GP-behaviours...

Grazing personality be-
haviours

Abbrevia-
tions

Units Transfor-
mation

Description

Adjusted daily horizontal
distance travelled

adj dist ho m/d In any given day, the cow’s horizontal distance minus the minimum horizontal distance
recorded in the herd plus 3500 (i.e., roughly the mean daily horizontal distance for all
cows and days)

Adjusted daily elevation
mean

adj ele mean m Square In any given day, the cow’s mean elevation minus the minimum elevation recorded for
the same day in the herd plus 350 (i.e., roughly the mean daily elevation for all cows and
days)

Relative elevation range rel ele range 0-1
scale

Cube
root

In any given day, theratio between the cows’ elevation range and the elevation range of
the herd

Relative elevation mean rel ele mean 0-1
scale

Cube
root

In any given day, ratio between the cows’ mean elevation minus the minimum elevation of
the herd and, the elevation range of the herd

Relative slope range rel slope range 0-1
scale

Log In any given day, ratio between the cows’ slope range (i.e., maximum minus minimum
slope) the slope range of the herd

CV4 of daily horizontal
distance travelled

dist ho cv 0-1
scale

Coefficient of variation of dist ho

CV of daily vertical dis-
tance travelled

dist ve cv 0-1
scale

Log Coefficient of variation of dist ve

CV of daily elevation
range

ele range cv 0-1
scale

Log Coefficient of variation of ele range

CV of daily elevation
gain

ele gain cv 0-1
scale

Log Coefficient of variation of ele gain

CV of daily elevation
85th quantile centred per
farm

ele85 farm cv 0-1
scale

Log Coefficient of variation of ele85 farm

CV of daily elevation
15th quantile centred per
farm

ele15 farm cv 0-1
scale

Log Coefficient of variation of ele85 farm

CV of daily slope mean slope mean cv 0-1
scale

Log Coefficient of variation of slope mean
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Continuation of Table 3.1 List of GP-behaviours...

Grazing personality be-
haviours

Abbrevia-
tions

Units Transfor-
mation

Description

CV of daily slope maxi-
mum

slope max cv 0-1
scale

Log Coefficient of variation of slope max

CV of daily slope 85th

quantile
slope85 cv 0-1

scale
Log Coefficient of variation of slope85

CV of daily slope 15th

quantile
slope15 cv 0-1

scale
Log Coefficient of variation of slope15

CV of daily home range hr mcp cv 0-1
scale

Log Coefficient of variation of hr mcp

CV of daily movement
tortuo-sity

sp tortuosity -
cv

0-1
scale

Log Coefficient of variation of sp tortuosity

CV of adjusted daily hor-
izontal distance travelled

adj dist ho cv 0-1
scale

Log Coefficient of variation of adj dist ho

CV of adjusted daily ele-
vation mean

adj ele mean -
cv

0-1
scale

Cube
root

Coefficient of variation of adj ele mean

CV of relative elevation
range

rel ele range -
cv

0-1
scale

Log Coefficient of variation of rel ele range

CV of relative elevation
mean

rel ele mean -
cv

0-1
scale

Cube
root

Coefficient of variation of rel ele mean

CV of relative slope
range

rel slope range -
cv

0-1
scale

Log Coefficient of variation of rel slope range

1 GPS: Global Positioning System fixes recorded with i-gotU GT-600, Mobile Action.
2 UTM: Universal Transverse Mercator.
3 DEM: Digital Elevation Model with a 16 m x 16 m spatial resolution.
4 CV: Coefficient of variation.
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The analysis included days with more than a 75% fix rate for a frequency set at 5 min (i.e., at least

216 out of a maximum of 288 data points per day). Any days that included collar deployment, delibe-

rate herding and stock movement, and general animal handling were excluded, so the data only rep-

resented periods of ‘free-range’ grazing for the cows. The grazing days were recorded in hill and high

country grasslands, which were labelled as such when the median daily slope of the herd was greater

than 8 degrees (°) (i.e. rolling or steeper slope classes in New Zealand grasslands [127]). Finally, only

cow deployments with seven or more days of behavioural data were used for analysis, as this was deemed

sufficient to represent consistent behaviours.

3.2.3 Statistical analysis

Statistical analyses were conducted with R [131]. For data wrangling, several functions of the following

R packages were used, including ‘Reshape’ [169], ‘dplyr’ [125], and ‘data.table’ [170]. Skewness, kur-

tosis, and normality of grazing behaviours per GRM5 genotype were evaluated with histograms against

corresponding normal distribution curves and with Q-Q plots. When needed, data transformations

were applied to better-fit raw values into normal distributions. The Shapiro-Wilk test of normality was

performed using ‘stat.desc()’ function from the ‘pastecs’ R package [171].

Linear discriminant analyses (LDA) were performed with the R packages ‘MASS’ [172] and ‘DiscriM-

iner’ [173] in a backward stepwise iteration that started with all grazing behaviours. Initially grazing

behaviours were selected based on pooled discriminant scores and on the discriminant accuracy rate

achieved by each model. Variables were further selected to avoid multi-collinearity with the variance

inflation factors (VIF) threshold of < 10 calculated with the R package ‘car’ [174]. Homogeneity of

covariance was assessed with Box’s M-test ( ‘heplots::boxM()’ R function [175]) and a final model ap-

plying quadratic discriminant analysis (QDA) was built with ‘MASS’ and the ‘DiscriMiner’ packages.

Multivariate analyses of variance (MANOVA) were performed with the R package ‘PERMANOVA’

[176] to graphically identify variable redundancies and importance in the MANOVA map, and to assess

the amount of total variation explained by the selected combination of variables. Test of multivariate

normality per genotype was performed using ‘byf.shapiro()’ function from the R package ‘RVAide-

Memoire’ [177].

Two-way analyses of variance (ANOVA analyses were performed with GRM5 genotypes or with GRM5

variants’ presence/absence as main effects and with farm id as covariate (block effect) using the ‘aov()’

function of R. Equality of variance among GRM5 genotypes was tested with the ‘leveneTest()’ func-

tion from the R package ‘car’ [174].

Inter-class correlation coefficients (ICCs) for each variable were calculated with the training dataset

using the R package ‘psych’ [178, 179]. For all ICC, LDA, QDA and MANOVA analyses, transformed

data was used when needed (Table 3.1) and missing values were imputed using the ‘imputeMFA()’

function ( ‘missMDA’ R package [180]).
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3.3 Results

3.3.1 Discriminant model for GRM5 genotypes

Based on the mean value and the coefficient of variation (CV) of several grazing behaviours calculated

from 15-days repeated measurements, 35 grazing behaviours variables were assessed as candidates for

a discriminant model of the GRM5 genotypes. Several iterations of linear discriminant analyses were

run with the training dataset (n = 80, four individuals per genotype [n = 5, i.e., AB, AB, BB, BC,

and CC ] and per farm [n = 4]). The relevance of each behavioural variable was assessed using their

pooled linear discriminant scores. Furthermore, the misclassification rates obtained with each combina-

tion of variables in the corresponding discriminant models were compared (data not presented) and

variables either were kept (increased accuracy) or discarded (diminished accuracy) from the model.

The combination of variables was then fitted into regression models to assess their multi-collinearity

with the variance inflation factor (VIF). Thus, a first quadratic discriminant model (QDM) was built

with the combination of eleven grazing behaviours with highest discriminant scores and that showed

non-collinearity (see top of Table 3.2). A second model was generated with a selection of high-scored

variables, which were excluded from the first model because of multi-collinearity (bottom of the Table

3.2).

Table 3.2. List of selected grazing personality behaviours (GP-behaviours) used in two quadratic dis-
criminant models (QDMs) of GRM5 1 variation and their associated descriptive statistics

Grazing person-

ality behaviours2

VIF3 LDA4

pooled

scores

ICC25

(Mean

CV6)

MANOVA7

per geno-

type

(P -value)

ANOVA8

per geno-

type (P -

value)

ANOVA8 per

GRM5 variant

(presence/absence)

(P -value)

A B C

slope mean 10.59 4.66 0.34 0.657 0.463 0.394 0.337 0.406

rel ele mean 6.16 3.89 0.26 0.272 0.120 0.241 0.089 0.398

rel ele mean cv 3.34 3.42 (-0.71)5 0.223 0.132 0.314 0.489 0.144

ele range 5.82 3.08 0.31 0.183 0.004 0.102 0.004 0.001

ele gain 4.23 2.98 0.45 0.086 0.053 0.063 0.054 0.064

rel ele range cv 2.19 2.76 (-1.06)5 0.036 0.057 0.003 0.564 0.300

ele85 farm cv 3.94 2.61 (-0.74)5 0.577 0.253 0.309 0.112 0.113

slope15 8.17 2.58 0.29 0.486 0.135 0.240 0.493 0.471

sp tortuosity 3.23 1.66 0.30 0.341 0.207 0.063 0.695 0.488

ele85 farm 3.43 1.41 0.25 0.210 0.239 0.476 0.058 0.058

slope mean cv 2.17 0.86 (-1.55)5 0.957 0.887 0.513 0.630 0.588

dist ho 8.73 3.49 0.65 0.837 0.542 0.310 0.135 0.220

slope mean 7.01 3.26 0.34 0.657 See above

slope max 5.65 3.15 0.22 0.417 0.403 0.699 0.206 0.051

sp tortuosity 9.38 2.90 0.30 0.341 See above

rel ele mean cv 2.39 2.83 (-0.71)5 0.223 See above
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Continuation of Table 3.2. List of selected grazing personality behaviours.

Grazing person-

ality behaviours1

VIF2 LDA3

pooled

scores

ICC24

(Mean

CV5)

MANOVA6

per geno-

type

(P -value)

ANOVA7

per geno-

type (P -

value)

ANOVA8 per

GRM5 variant

(presence/absence)

(P -value)

A B C

hr mcp 9.14 2.68 0.16 0.251 0.251 0.386 0.160 0.068

adj dist ho 2.56 2.39 0.35 0.009 0.002 0.026 0.057 0.003

rel ele range cv 2.15 2.28 (-1.06)5 0.036 See above

ele85 farm cv 2.90 1.96 (-0.74)5 0.577 See above

ele range 3.12 1.55 0.31 0.183 See above

slope mean cv 2.21 1.12 (-1.55)5 0.957 See above

1 GRM5 = glutamate metabotropic receptor 5 gene exon five region with five genotypes (i.e., AB, AC, BB, BC and

CC ) and three variant sequences (i.e., A, B and C ).

2 See GP-behaviours abbreviations and details in Table 3.1. Bold indicate exclusive variable for the discriminant

model.

3 VIF = Variance inflation factor.

4 LDA pooled scores = Sum of the four absolute linear discriminant scores in the final selection of variables.

5 ICC2 = Inter-class correlation coefficient in two-way random-effects model, where cows and GPS-tracking collars

were randomly allocated.

6 Mean CV = Mean of the coefficient of variation of a GP-behaviour across all cows.

7, 8 (MANOVA) and ANOVA = P-values of (multivariate) analysis of variance between genotypes and variants,

respectively. Variants’ presence/absence comparisons. P < 0.1 in italic and P < 0.05 in bold.

The first discriminant model exclusively included variables related to elevation (elevation gain [ele gain],

the 85th quantile of elevation centred per farm [ele85 farm], relative elevation mean [rel ele mean]) and

the 15th quantile of slope [slope15]) (Table 3.2). The second model exclusively included horizontal dis-

tance travelled (dist ho), home range (hr mcp), maximum slope (slope max) and the adjusted hori-

zontal distance travelled. Both models shared seven behavioural variables: mean slope (slope mean)

and slope mean CV, elevation range (ele range), CV of the relative elevation range (rel ele range CV),

rel ele mean CV, ele85 farm CV and movement tortuosity (sp tortuosity)(Table 3.2).

Other variables with high discriminant scores but not used in either model were vertical distance trav-

elled (dist ve), mean elevation centred per farm (ele mean farm), 15th quantile of elevation centred per

farm (ele15 farm), 85th quantile of slope (slope85), adjusted elevation (adj ele mean), relative elevation

range (rel ele range) and relative slope range (rel slope range). Most CV variables had low discrimi-

nant scores and were excluded from further analysis, except those included in both discriminant models

(i.e., CV of relative mean elevation [rel ele mean cv], relative elevation range [rel ele range cv], 85th

quantile of elevation centred per farm [ele85 farm cv] and mean slope [slope mean cv]).

The first model had VIF below 6.5 for most variables (9 out of 11), except slope15 (VIF = 8.2) and

slope mean (VIF = 10.6), which were considered acceptable and without multi-collinearity (Table 3.2).

The combination of variables selected (Table 3.2, top) showed heteroscedasticity as per the Box’s M-

test (P < 0.001) and therefore, a quadratic discriminant analysis (QDA) was preferred over a linear
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discriminant analysis (LDA) because QDA assumes different variance matrix for each dependable vari-

able. This model achieved 86% accuracy to ascertain genotype (GRM5 genotype AB = 69%, AC and

CC = 87%, BB and BC = 94%) with the training data, which dropped to 46% when used for predict-

ing the cow’s genotype from cows not used in training the model. Thus, true classifications for cows of

the testing dataset were AB = 43%, AC = 50%, BB = 54%, BC = 56% and, CC = 31%. The GRM5

genotype mean discriminant scores of the first model are presented at the top of Table 3.3.

Table 3.3. Mean discriminant scores1 of glutamate metabotropic recep-
tor 5 gene (GRM5 ) genotypes for two quadratic discriminant models2

(QDMs)

Grazing personality

behaviours3

GRM5 genotype

AB AC BB BC CC

slope mean -0.1512 0.3386 -0.0311 -0.0289 -0.1274

rel ele mean4 -0.2191 0.4792 0.0241 -0.1923 -0.0918

rel ele range cv -0.4999 -0.3079 0.2075 0.1304 0.4698

ele range -0.1339 0.4217 -0.4278 0.0608 0.0792

ele gain -0.1274 0.5912 -0.3583 -0.0130 -0.0925

rel ele mean cv -0.1582 -0.0859 -0.1979 0.5272 -0.0852

ele85 farm cv 0.1484 -0.3569 0.1854 0.0072 0.0159

slope15 -0.1446 0.3750 0.0031 0.0063 -0.2398

sp tortuosity 0.1399 0.3051 0.0378 -0.0769 -0.4058

ele85 farm -0.2858 0.4805 -0.2281 -0.0045 0.0379

slope mean cv 0.0668 0.0702 0.0486 -0.0118 -0.1737

dist ho -0.0366 0.2287 -0.1877 -0.0467 0.0423

slope mean -0.1512 0.3386 -0.0311 -0.0289 -0.1274

slope max -0.3518 0.2472 -0.1590 0.1721 0.0915

sp tortuosity 0.1399 0.3051 0.0378 -0.0769 -0.4058

rel ele mean cv -0.1582 -0.0859 -0.1979 0.5272 -0.0852

hr mcp -0.1893 -0.0499 -0.3095 0.1124 0.4363

adj dist ho -0.4296 -0.1473 -0.3275 0.2542 0.6502

rel ele range cv -0.4999 -0.3079 0.2075 0.1304 0.4698

ele85 farm cv 0.1484 -0.3569 0.1854 0.0072 0.0159

ele range -0.1339 0.4217 -0.4278 0.0608 0.0792

slope mean cv 0.0668 0.0702 0.0486 -0.0118 -0.1737

1 Mean discriminant scores of QDMs per GRM5 genotype for the corresponding

grazing personality behaviours (GP-behaviours). QDMs built with scaled data (i.e.,

centred by their mean using the R function ‘scale()’).

2 The top of the table lists GP-behaviours used in the ‘elevation discriminant model’.

The bottom of the table list GP-behaviours of the ‘exploration discriminant

model’.

3 See GP-behaviours abbreviations and details in Table 3.1

4 GP-behaviours exclusive for each corresponding model are in bold.
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The second model had VIF values below 6 for 8 variables and no variable exceeded 10 meaning there

were no issues of multi-collinearity. Heteroscedasticity was detected with the Box’s M test and QDA

was applied to build a discriminant model. For the training dataset, the second model achieved 87.5%

accuracy, which dropped to 85% when predicting genotypes of the testing dataset. The addition (or

suppression) of home range in this model did not modified the model’s accuracy for the training data

but increased its prediction accuracy from 81% to 85% with the testing dataset. Refer to the bottom of

Table 3.3 for the mean discriminant scores of the second model.

3.3.2 Differences among GRM5 genotypes and variants

Combined behaviours (multivariate analysis)

Plots of the MANOVA analyses are presented in Fig. 3.1A and 3.1B for the first model and in Fig.

3.1C and 3.1D for the second model. Figs. 3.1A and 3.1C shows GRM5 genotypes ellipses of confi-

dence regions calculated with the Bonferroni method. Grazing behaviour variables of each respective

model are presented in Figs. 3.1B and 3.1D.

The first two axes of MANOVA accounted for 83.0% and 81.3% of the total behavioural variation in

the first and second model, respectively. For the first model, along the axis 1 (horizontal), AC and

BC were paired towards the left end (negative values), BB occupied the opposite end towards the

right side (positive values), and AB and CC were located approximately in the centre. Genotypes

AB, AC and BB were slightly above the origin of the axis 2 (vertical), BC was located slightly be-

low zero and CC occupied the lowest position. Differences among genotypes on the axis 1 were mostly

explained by grazing behaviours related to elevation such as elevation gain (ele gain), elevation range

(ele range), 85th quantile of elevation centred per farm (ele85 farm), the coefficients of variation of the

relative mean elevation (rel ele mean cv) and of the 85th quantile of elevation (ele85 farm cv) (Fig.

3.1B). Differences along axis 2 were largely explained by the trade-off between the CV of relative el-

evation range (rel ele range cv) and movement tortuosity (sp tortuosity) (Fig. 3.1B). Relative mean

elevation (rel ele mean) and slope-related behaviours (i.e., CV of mean slope (slope mean cv), mean

slope (slope mean) and 15th quantile of slope (slope15) split their contribution between axes 1 and 2.
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Figure 3.1. MANOVA biplots of two sets of grazing personality behaviours (GP-behaviours). Mul-
tivariate analysis of variance (MANOVA) plots of GP-behaviours from the ‘elevation discriminant
model’ (Figs. 3.1A, 3.1B) and the ‘exploration discriminant model’ (Figs. 3.1C, 3.1D) with axis 1
(horizontal) and axis 2 (vertical). Figures 3.1A and 3.1C show ellipses of confidence regions (Bonfer-
roni method) of genotypes for the glutamate metabotropic receptor 5 gene (GRM5 ). Figures 3.1C and
3.1D show selected variables used in the corresponding quadratic discriminant models. Figures coordi-
nates were rescaled to optimal matching.
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For the second model, axis 1 revealed that genotype CC had the lowest values at approximately -1, BB

near -0.5 and genotypes AB, AC and BC with similar values around 0.5. Along axis 2, BC occupied

the lower end, AC and CC were central, and BB and AB took the upper end.

In the ellipses of both models (Figs. 3.1A and 3.1C), CC had the least overlap of confidence region,

sharing a relatively small area with BB and BC. BB ’s confidence ellipse overlaps with with AB, AC

and CC (Fig. 3.1A). In both graphs, there is relatively large overlap of confidence ellipses between AC

and BC, and between AC and AB.

The MANOVA analysis of the first model resulted in a trend towards a difference for ele gain, where

the major contribution is in axis 1 and significant differences for rel ele range cv corresponding to axis

2 variation (Table 3.2, top). For the second model, significant differences were detected for the adjusted

horizontal distance (adj dist ho) and rel ele range cv with contributions split in both MANOVA’s axes

(Table 3.2, bottom).

Individual behaviours (univariate analysis)

Two-way ANOVA analyses among the GRM5 genotypes revealed differences and trends towards dif-

ferences between GRM5 genotypes for elevation range, elevation gain and adjusted horizontal distance

travelled as well as for the CV of the relative elevation range (Table 3.2). No differences were revealed

for genotype comparisons of ele85 farm (see variant comparisons below). The two-way ANOVA re-

vealed a farm effect for all grazing behaviours except ele gain and ele range, but no farm effect for

ele85 farm and rel ele range cv. No interactions between genotypes and farms were detected.

Figure 3.2 presents box plots of selected grazing behaviours per genotype produced with the original

data (unscaled and untransformed), therefore, reflects the actual measured values for each genotype.

Figures 3.2A-D correspond to behaviours with differences (ANOVA P < 0.1,) and Figs. 3.2E-H show

behaviours without detected differences (ANOVA P > 0.1,) in measured values.
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Figure 3.2. Grazing personality behaviours (A-H) box plots per genotype of the glutamate metabotropic receptor 5 gene (GRM5 ).
ANOVA analyses in Table 3.2 indicated trends to differences (Fig. 3.2A) and differences (Figs. 3.2B, 3.2C and 3.2D). No further differences were detected. Boxes
indicate the 50th (median line), 25th and 75th quantiles. The lower and upper whiskers indicate the smallest and largest values within 1.5x inter-quantile range.
Empty circles display possible outliers.
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For elevation gain (Figs. 3.2A, 3.2B) cows with genotype AC displayed the highest values (250 m me-

dian ele gain), while the other genotypes had lower and approximately similar values (AB = 226 m,

BB = 203 m, BC = 209 m, and CC 204 m). For ele range, AC had a median of 89 m, AB and BB

displayed the lowest values of 74 m. Genotype BC (84 m) and CC (81 m) were higher, likely due to a

few cows with extremely high scores (possible outliers shown with open circles).

The CV of the relative elevation range (rel ele range cv, Fig. 3.2C) revealed a pattern where genotypes

with A variant (AB, AC ) had the lowest values, most with B variant (BB, and BC, but not AB) had

medium values, and the homozygous CC displayed the highest CV of elevation range.

Adjusted horizontal distance travelled (adj dist ho) and home range (hr mcp) had similar patterns

where genotypes AB, AC and BB had about the lowest and similar medians (≈ 4300 m/d; ≈ 9.8 ha/d),

BC was higher (4621 m/d; 10.4 ha/d) and CC had the highest median (4854 m/d; 11.7 ha/d). Simi-

lar patterns (but opposite in values) were revealed for movement tortuosity (sp tortuosity)(Fig. 3.2F)

where CC cows had the lowest tortuosity (399 m/ha) while AB, AC and BB had higher medium scores

(453 m/ha, 472 m/ha and 462 m/ha respectively), while BC displayed the highest tortuosity (498 m/ha).

Figures 3.2G, 3.2H show the mean slope and the 15th quantile slope, respectively. In this case, AB

(20.1 °, 12.0 °) and CC (19.4 °, 11.7 °) had the gentlest slopes, AC (21.7 °, 14.7 °) and BB (21.9 °, 13.9

°) had the steepest slopes and BC (21.2 °, 13.1 °) showed medium values.

3.3.3 Differences among GRM5 variant sequences

The ANOVA results for the presence/absence of GRM5 variants were congruent with those results pre-

sented for the genotypes in the above section. For example, ele range were significant for variants B

and C, while the three variants had trends to differences (P < 0.1) for ele gain. Similarly, adj dist ho

had differences for variants A and C, while a trend was reported for variant B. The variant ANOVAs

also revealed differences that were not observed for the comparisons between genotypes. For example,

differences and trends to differences were revealed for rel ele mean (variant B), hr mcp (variant C ),

sp tortuosity (variant A), ele85 farm (variants B and C ) and slope max (variant C ) (Table 3.2).

Bar plots of grazing behaviour variables per GRM5 variant sequences, based on the measured data,

are presented in Fig. 3.3. For elevation-related behavioural variables such as ele gain, ele range and

ele85 farm (Figs. 3.3A, 3.3B and 3.3C), variant B had the lowest values, while A and C displayed ap-

proximately similar higher values. For example, ele gain was 264 m and 256 m for variants A and C

respectively, while B had an elevation gain of 226 m. Similarly, the elevation range of A and C was 88

m/d and was 80 m/d for B. These differences between GRM5 variant sequences might be due to the

high values corresponding to the AC genotype (Figs. 3.2A, 3.2B and 3.2C), rather than to the contri-

bution of the remaining genotypes, which had similar lower values (i.e., AB for variant A; and BC, CC

for variant C ).

The C variant cattle had the greatest home range (11 ha/d) and lower home ranges were calculated for

variants A and B (10 ha/d). The movement tortuosity decreased from the highest value for variant A

(610 m/ha) to B (549 m/ha), and slightly lower again for C (531 m/ha).
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Figure 3.3. Bar plots of grazing behaviours per variant sequence of the glutamate metabotropic receptor 5 gene (GRM5 ). The error bars represent the mean val-
ues for the presence of the variant and the lower and upper whiskers indicate the standard deviation.
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3.3.4 The temporal consistency of grazing behaviours

Inter-class correlation coefficients in two-way random effects model (ICC2) were calculated for grazing

behaviour variables of the training data using the 15-day-periods of repeated measurements. The ICC2

ranged from a minimum of 0.16 (P < 0.001) for relative slope range and home range to a maximum

of 0.65 (P < 0.001) for the horizontal distance travelled (dist ho) (Table 3.2). dist ho had the highest

ICC2 (0.65) followed by the 15th quantile of elevation centred by farm (ele15 farm; 0.48), vertical dis-

tance travelled (dist ve; 0.47), elevation gain (ele gain; 0.45), and the adjusted elevation (adj ele mean;

0.40). Two of these grazing variables with high ICC2 were included in the discriminant models (ele gain

in the first model and dist ho in the second one), while the others remained unselected because they

caused multi-collinearity problems.

3.4 Discussion

We combined cattle relocation GPS data and satellite data to calculate 19 grazing behaviours in 15-day

repeated measurements. Data was then aggregated into means with calculated CVs and tested for nor-

mality within groups (i.e., genotypes). Next 35 aggregated grazing behaviours were assessed for their

suitability to discriminate between GRM5 genotypes, and two discriminant models were built with se-

lected behaviours. Further analyses were conducted (i.e., MANOVA, ANOVA) to detect differences be-

tween genotypes on grazing behaviours of discriminant models. Finally, the ICC was used to estimate

the temporal consistency of grazing behaviours across cows.

The results revealed a selection of seven grazing behaviours used in two discriminant models plus four

behaviours used in our elevation discriminant model and another four in the exploration discriminant

model. Both models yielded accuracy above 86% for the training dataset, but only the latter proved

high accuracy (85%) in predicting cow genotype with the testing dataset. We discuss these findings

in the context of previously reported associations between GRM5 variation and animal behaviours.

We then focus our discussion on comparing the performance of the discriminant models presented here

with other behavioural models in the literature.

3.4.1 Behavioural discrimination of GRM5 genotypes

Most of the coefficients of variation (CV) for the grazing behaviours had low discriminant scores, but

four of them had higher discriminant scores and were therefore included in our models. These were

the CV of relative mean elevation and relative elevation range, CV of 85th quantile of elevation cen-

tred per farm, and CV of mean slope. The mean grazing behaviours used in both models included the

mean slope, elevation range and movement tortuosity. The first model also utilised elevation-related

behaviours (i.e., elevation gain, 85th quantile of elevation centred per farm and relative mean eleva-

tion) and therefore, it is referred to as the ‘elevation discriminant model’. The second model added

exploration-related behaviours (i.e., horizontal distance travelled, adjusted horizontal distance travelled

and home range), so it is called the ‘exploration discriminant model’.

In a paired comparison, Watanabe et al. [181] tracked the behaviour of a Holstein cow and a Japanese

black cow under barn and pasture grazing conditions (respectively) using three-axis accelerometers de-

ployed under the animal’s jaw. They calculated the mean, variance, and inverted CV of the accelera-
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tion of under-jaw movement per min by aggregation of 1-s frequency measurements and for each of the

three accelerometer axes. Metrics were also computed for the resultant axis, making a total of twelve

variables. The authors tested several combinations of the twelve variables to build QDMs of cows’ ac-

tivities (i.e., eating, ruminating, and resting), which were determined by observing time-synchronized

video recordings. The QDMs achieved ≈ 95% accuracy with the training dataset (the models’ accuracy

were not evaluated with other cows) when they included the eight means and inverse CVs variables

(i.e., excluding variance variables) or all twelve variables.

In comparison, the discriminant models described here also included aggregated metrics of means and

CVs from repeated measurements, but achieved ≈ 86% accuracy, which were roughly 10% less than the

Watanabe’s et al. [181] discriminant model. The lower accuracy of the discriminant models created

here might be attributable to a larger behavioural overlap between GRM5 genotypes than between

individual cow activities, and likely explained by the larger grazing personality plasticity of GRM5 -

controlled behaviours than activity-related behaviours. Another reason for the reduced accuracy in

the discriminant models created here might be because of the variables themselves, (i.e., grazing be-

haviours derived from GPS and satellite data versus accelerometer-derived data), that raise the ques-

tion of whether there might be more suitable behavioural metrics to discriminate GRM5 genotypes.

Other factors that might cause decreased model accuracy are the level of control imposed by GRM5

over grazing behaviours (i.e., to what extent does GRM5 variation determine grazing behaviours?) and

the interaction of GRM5 with other gene(s) that might affect grazing behaviours (are there polygenic

and/or pleiotropic effects on GRM5 -controlled grazing behaviours?).

Brennan et al. [182] reported accuracies ranging from 80% to 92% for QDMs of yearling steer graz-

ing activity using accelerometer- and GPS- derived metrics measured over three-month periods and

three summer seasons (2016-2018) in native grasslands of South Dakota, USA. Grazing activity was

crosschecked with direct visual observations. The authors attributed the lower accuracy achieved in

their experiment to the use of longer tracking periods and the large paddocks (between 51-74 ha) com-

pared to reports elsewhere. The accuracy performance of ≈ 86% for the models presented here that

were built with the aggregation of 15 days of data are comparable to those reported by Brennan et al.

[182]. The higher 96% accuracy of Watanabe’s et al. [181] model correspond to much shorter measure-

ment periods (two to four sessions of 3-4 hours) in agreement with Brennan’s argument. This seems to

align well with the conclusions of Dochtermann’s et al. [54] meta-analysis that pointed out the decrease

from a mean heritability of 0.52 to a behavioural variation of 0.14, where the latter accounted for the

effect of temporal variation. In this regard, we suspect that the reason for a decreased accuracy of dis-

criminant models using long periods of behavioural measurements might be the generalized low tempo-

ral consistency suggested by low ICCs of most GP-behaviours. For example, in our experiment, most

grazing behaviours rated ICCs below 0.35. Such low ICC are indicative of ‘poor’ consistency [183]. Al-

though this interpretation depends of the measurement under evaluation, ICC scores would suggest a

low temporal consistency in selected grazing behaviours. Rather than questioning whether animals ex-

hibit repeated grazing behaviours, it might be better to develop behavioural metrics that can capture

the repeatability and individual differences of grazing behaviours in an animal personality sense.

The accuracy of our first model dropped to 46% when predicting genotypes of cows from the testing

dataset, while the second model remained at a higher value of 85%. The loss of accuracy in the first
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model might question the feasibility of predicting GRM5 genotypes of cows other than those used to

build the model itself, thus suggesting strongly that an elevation discriminant model needs to be tested

on other cattle. On the other hand, the exploration discriminant model that included three grazing be-

haviours previously reported by (Moreno Garćıa et al. [161]) that were associated with GRM5 geno-

types (i.e., home range, movement tortuosity and elevation range) yielded promising results on the

ability to discriminate genotypes through grazing behaviours and to predict cow genotypes. The dis-

criminant analyses presented do reinforce the previous findings on GRM5 associations and highlight

the possibility of hidden associations that have not been detected because of the limitations of the

mensurative experiment. Future research with manipulative experiments could target predicting GRM5

genotype of non-genotyped cows and assess the effect of GRM5 genotype on the grazing behaviour of

individual animals and collectively in herds. The use of data and new metrics derived from GPS, ac-

celerometers [182, 181] and gyroscopes [184] as well as the annotation with external data sources (e.g.

satellite- or drone- captured data) might then assist to build more robust discriminant models with

higher classification accuracy.

3.4.2 Grazing behaviours linked to GRM5

In the elevation discriminant model, the behavioural variation among GRM5 genotypes was primarily

driven by a first axis of elevation-related behaviours (i.e., ele gain, ele range, ele85 farm, rel ele mean cv,

and ele85 farm cv) and a second axis characterized by the movement tortuosity (sp tortuosity) and the

variability in elevation range per cow relative to the elevation range of the herd (rel ele range cv) (Fig.

3.1B). Slope-related metrics (i.e., mean slope and its 15th quantile) contributed to the variation in both

the above-mentioned axes, with a larger effect on the second one (Fig. 3.1B). On the other hand, the

axis of highest behavioural variation in the exploration discriminant model (axis 1) was primarily ex-

plained by the opposite effects of rel ele range cv and sp tortuosity (Fig. 3.1D), which resembles axis

2 of the elevation discriminant model (Fig. 3.1B). Adjusted horizontal distance travelled (adj dist ho)

and home range (hr mcp) had large, but split contributions to axes 1 and 2 of the exploration model.

These two behaviours along with the CV of relative elevation mean (rel ele mean cv), maximum slope

(slope max) and elevation range (ele range), were the main drivers of variation in axis 2. The large and

opposing effects of sp tortuosity and rel ele range cv were observed in both models (Fig. 3.1B axis 1

and Fig. 3.1D axis 2), suggesting a trade-off between these two behaviours. Furthermore, axis 2 of the

exploration model showed opposite effects of sp tortuosity towards the positive side, and hr mcp and

adj dist ho towards the negative end of the axis. This is in agreement with the trade-off between move-

ment tortuosity and home range described by Moreno Garćıa et al. [161] and further supported with

research by Browning et al. [126] and Pauler et al. [143].

Among the high-scoring grazing behaviours (but excluded from both discriminant models) were vertical

distance travelled, 85th quantile of slope, mean and 15th quantile of elevation, which although relevant,

might be redundant with other behaviours already included in the models. Some of the so-called rel-

ative behaviours (i.e., metrics comparing behaviours of individual cows versus behaviours of the herd)

were also among the high-scored grazing behaviours not included in discriminant models. For example,

adjusted daily elevation mean, relative elevation range and relative slope range. Most CV behaviours

scored low in the initial discriminant analysis and might only have reduced importance in discriminat-

ing between the GRM5 genotypes.
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In the original study from where the subset of the present study was taken, Moreno Garćıa et al. [161]

revealed associations between GRM5 sequence variation and home range and movement tortuosity, as

well as trends for association with elevation range and horizontal distance travelled. These discoveries

were produced using a dataset derived from the movement of 303 mature cows randomly selected from

existing commercial herds. In that experimental design, the genotypic frequency of GRM5 was the re-

sult of artificial selection (as part of the management of the cattle for production purposes) and natu-

ral random effects occurring on those commercial farms. This led to an under-representation of variant

A in the cattle. Perhaps unsurprisingly, given the same cows were analysed, the original study supports

the findings presented here, but better-balanced dataset chosen for analysis also revealed possible link-

ages with elevation and the slope-related behaviours.

Bailey et al. [41] tested genotype-to-phenotype associations between the whole genome (i.e., ≈ 778

thousand SNPs single nucleotide polymorphisms) using an Illumina BovineHD BeadChip to analyse

mature beef cows, and indexes of terrain use derived from cow GPS relocation data (25-112 days recorded,

and 96-288 GPS fixes per day). The cattle in the study of Bailey et al. [41] included a relatively small

group (n = 87) of lactating and non-lactating cows of various breeds (i.e., Angus, Angus x Hereford

cross, Brangus, Limousin, and Simmental-crosses) under free-range grazing on five ranches in Arizona,

Montana and New Mexico, USA. Terrain was purposely chosen to be diverse, including having rolling

and mountainous areas with gentle to moderate slopes as well as undulating plains. The analysis of

Bailey et al. [41] revealed associations between genetic variation of QTL overlapping GRM5 and a

ranking index that combined slope and elevation (called the ‘rough index’). Their results support the

findings described here, where axis 1 of the elevation discriminant model were mainly explained by ele-

vation and slope behaviours (Fig. 3.1B).

Another index with reported associations to GRM5 genotypes in the Bailey et al [41] study combined

elevation, slope, and distance to water (i.e., ’rolling index’). The latter could not be calculated in the

current study, because the paddocks commonly had several sources of water, rendering such calculation

inappropriate. However, other proxy behaviours of grazing exploration such as the horizontal distances

travelled, adjusted horizontal distance travelled and home range were main components of the explo-

ration discriminant model (Fig. 3.1D). The importance of elevation-, slope- and exploration-related be-

haviours that emerged from discriminant models is consistent with the genetic associations reported by

Bailey et al. [41] and they are also consistent with associations reported for GRM5 mice models (e.g.,

associations to horizontal and vertical distances [113], locomotor reactivity [112, 113] and trajectory

patterns [111].

3.4.3 Different grazing patterns of GRM5 genotypes

The two-way ANOVA (Table 3.2) revealed differences and trends to differences between GRM5 geno-

types and variant sequences (presence/absence models) for GP-behaviours such as ele gain, ele range,

rel ele range cv and ele85 farm (only in variants B and C )( see Table 3.2 and Figs. 3.2 and 3.3). In

contrast, ANOVA analyses failed to reveal differences for home range (data not shown) and sp tortuosity.

Moreno Garćıa et al. [161] reported differences between GRM5 genotypes, where 4-5 years of age cows

with BB genotype showed the smallest home range and the largest movement tortuosity. While the

mensurative analysis revealed differences for hr mcp and sp tortuosity, the manipulative analysis did
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not, although, it highlighted the importance of both measurements to differentiate among GRM5 geno-

types.

3.4.4 A quasi -manipulative experiment

The original study conducted by Moreno Garćıa et al. [161] analysed grazing behaviours of cows with

the proportion of GRM5 genotypes given by the experiment conditions, i.e. mensurative experiment

as suggested by Hurlbert [163]. Here, cows from the most numeric classes were excluded to build a

quasi -manipulative experiment with a dataset that equally represents the five GRM5 genotypes and

the four farms. Our quasi -manipulative experiment therefore allowed GRM5 genotype to be used as a

‘treatment’ and the farm factor as a covariate. Despite there being no associations between the bovine

GRM5 variation and elevation- or slope- related behaviours in Moreno Garćıa et al. [161] and Pierce et

al. [57] studies, the importance of such behaviours are highlighted with the elevation and exploration

discriminant models. We argue that such results support the ability of statistical algorithms to cap-

ture true positive results, when applied to balanced datasets [162, 163], and overall, the results from

the elevation and exploration discriminant models are supported by research in other animal mod-

els [41, 111, 112, 113]. What-is-more, larger-scale experiments (e.g., 300 to 600 individuals) with bal-

anced representation of GRM5 genotypes may also improve the statistical ability to identify GRM5 -

controlled grazing behaviours.

3.5 Conclusion

We used discriminant analyses to select combinations of key grazing personality behaviours

(GP-behaviours) that discriminated specific genotypes of the glutamate metabotropic receptor 5 gene

GRM5 , a potential ‘grazing gene’. One quadratic discriminant model QDMs built with eleven key

GP-behaviours related to elevation, slope and exploration correctly predicted the specific genotype

of more than 85% of the free-grazing cows investigated in steep and rugged terrain of New Zealand.

These results highlight the importance of behavioural genetics, animal personality and repeated mea-

surement data to detect differences between individual herbivores grazing in steep and rugged terrain.

The design of experiments with balanced genotypic variation might be an alternative to using more ex-

tensive experimental setups.
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Chapter 4

General discussion, conclusions, and

future directions

This research aimed to investigate the problem of uneven grazing distribution of beef cattle in livestock

systems in hill and high-country grasslands of New Zealand.

The high-quality forage of hill and high-country grasslands growing during spring and summer has typ-

ically been utilised by grazing sheep. However, at the end of the growing season, these grasslands have

often accumulated standing plant biomass, or what is colloquially known as taggy grass. This is less

palatable for sheep, but if unremoved, the excessive biomass might prevent the grasslands thriving in

the next spring, reducing its productivity.

Beef cattle can take advantage of the standing forage, especially in winter months after the weaning of

the previous season’s calf, when their nutritional requirements are relatively low. The benefits of this

so-called ‘pasture grooming’ of beef cattle in hill and high-country grasslands are well known in New

Zealand [185] and applied extensively by farmers across the country. However, the uneven distribution

of cattle in steep and rugged terrain can result in the beneficial grazing or over-grazing of preferred

areas, while leaving standing biomass on the rest of the land.

The main hypothesis was that large herbivores show sets of grazing behaviours that are consistent over

time and across contexts, and that such behaviours differ between individuals and groups. Further-

more, it was hypothesized that consistent grazing behaviours may be genetically controlled. If correct,

the selection of animals displaying an array of distinctive, yet consistent grazing behaviours could in-

crease the utilization of less preferred areas and increase grazing ‘evenness’.

In this research, I therefore investigated:

• The grazing behaviours of beef cattle in steep and rugged terrain in the South Island of New

Zealand.

• Sequence variation in a potential ‘grazing gene’, the glutamate metabotropic receptor 5 gene

(GRM5 ).
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• Genotype-phenotype associations between grazing behaviours and GRM5 variation.

• Key grazing behaviours linked to GRM5 .

Based on a literature review (Chapter 1 [109]), a model of grazing personalities (GP-model) was devel-

oped, which proposes that cattle display grazing behaviours that are consistent over time and across

contexts. These grazing personalities differ between individuals and between groups (i.e., individual

and collective grazing personalities). These personalities are genetically determined, epigenetically

modulated via interactions with the social and biophysical environments such as those imposed by

range management, and ultimately influenced by the animals’ emotional states.

Knowledge gaps in our understanding of animal personality as applied to grazing emerged from this re-

search. For example, there is limited knowledge about sets of correlated grazing behaviours that could

lead to identifying genetically associated grazing personalities in large herbivores. It is even less well

understood as to how neurophysiological pathways might link genes with grazing behaviours. Genome

wide association studies using QTLs have suggested possible candidate genes associated with grazing

patterns, but there is a lack of studies targeting specific genes, and which could provide greater cer-

tainty about the genetic control of grazing behaviours. Other areas for future research are the investi-

gation of possible pleiotropic effects, multi-gene control of grazing behaviour and the genomic regula-

tion of those effects.

The GP-model added two key concepts to grazing behavioural genetics, the collective nature of for-

agers and the social environment of the group as modulating factor via the genetic expression of graz-

ing personalities. However, it remains largely unknown as to whether there is genetic control over col-

lective grazing behaviours and personalities. We still need to identify and develop reliable metrics to

measure collective grazing behaviours and design studies aiming to detect behavioural differences at

the collective level in large herbivores.

In Chapter 2 [161] genetic variation in GRM5 was described, including the definition of three nucleotide

sequence variants and six genotypes in the exon 5 region. These were asymmetrically represented in

beef cattle herds. Upon analysis, modelling approaches revealed associations between variation in GRM5

and home range and movement tortuosity. A trend towards association was observed for elevation

range and horizontal distance travelled. Inter-genotype differences for these behaviours ranged roughly

between 20% and 25% for the marginal means estimated from linear mixed models.

Using a quasi -manipulative experiment (Chapter 3), key grazing behaviours were identified as useful

metrics to discriminate and predict cows’ GRM5 genotypes such as elevation-, slope- and exploration-

related grazing behaviours. Moreover, differences and trends towards significant differences between

genotypes were detected for elevation range, elevation gain, the coefficient of variation of the relative

elevation range and the adjusted horizontal distance travelled.

The research here presented filled some of the above-mentioned gaps in our knowledge. For example,

correlations between several grazing behaviours and even a trade-off (negative correlation) between

home range and movement tortuosity were identified. These two behaviours were associated with the

GRM5 variation suggesting there is genetic control over the home range versus movement tortuosity
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trade-off.

While it was not directly investigated, the possible pathways by which GRM5 affects grazing behaviours

are hinted at by the literature. For example, in mouse models there is the suggestion that neurological

mechanisms link GRM5 with activity level and exploration. Cow-age class was identified as a likely

factor in the size of the effect size of GRM5 on associated behaviours. These findings should be further

investigated. Finally, the research shortlisted key grazing behaviours that were associated with GRM5

variation, and which were used to build two discriminant models with over 86% accuracy at detecting

GRM5 genotypes and one model with 85% correct genotype prediction.

There are several questions that remain unknown and that might feed the agenda of future research.

This includes the following: Poor inter-class correlation coefficients suggested low behavioural consis-

tency. How consistent are grazing behaviours? Are there more appropriate behavioural metrics?

if cattle’s daily exploration is consistent, yet different between GRM5 genotypes, does the expenditure

of energy invested in exploration vary between GRM5 genotypes? Does the acquisition of energy in-

gested during grazing differs between GRM5 genotypes, and if so, is there differences in energy balance

associated with GRM5 variation?

Are there differences in the forage harvested by grazing cattle in the hill and high-country? If so, are

these differences associated with GRM5 variation? What plant communities and forage species are be-

ing grazed by cattle with different GRM5 genotypes? Are there differences in habitat selection?

Differences in grazing behaviours between individuals have been associated with GRM5 variation, but:

How big is the overlap of explored areas between GRM5 genotypes? How big is the explored area ex-

clusively used by different GRM5 genotypes?

Beef cattle and many other large herbivores are collective foragers, does the GRM5 genotype compo-

sition determine the collective grazing personality of the herd? Specifically, is it possible to change the

exploration of beef cattle hers by changing the proportion of GRM5 genotypes? How is this affected by

range management practices (e.g., stocking rate, grazing system, paddock design, water availability)?

Finally, can we incorporate a grazing personality approach into the management of livestock systems

to enhance production, the utilisation of feed, and to potentially change the use of New Zealand’s steep

and rugged grasslands?

This research proposed a genetic-based model of individual and collective grazing personalities for large

herbivores and foragers [109]. The analysis of grazing behaviours of beef cattle measured over time and

across situations suggested consistent differences between individuals associated with GRM5 variation

[161]. Linkages between bovine GRM5 and key grazing behaviours may characterise specific genotypes

and assist with their identification. Future research might elucidate and quantify the effect size and

impact of behavioural genetics on grasslands ecology and livestock production. There is potential in

applying the grazing personality model to New Zealand’s livestock systems in steep and rugged terrain

aiming to spread out the grazing distribution of beef cattle.
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[35] N. J. Dingemanse and D. Réale, “What Is the Evidence that Natural Selection Maintains Vari-

ation in Animal Personalities?,” in Animal Personalities: Behavior, Physiology, and Evolution,

pp. 201–220, University of Chicago Press, 2013.

[36] P. Gregorini, J. J. Villalba, P. Chilibroste, and F. D. Provenza, “Grazing management: setting

the table, designing the menu and influencing the diner,” Animal Production Science, vol. 57,

no. 7, pp. 1248–1268, 2017.

[37] R. L. Wesley, A. F. Cibils, J. T. Mulliniks, E. R. Pollak, M. K. Petersen, and E. L. Fredrickson,

“An assessment of behavioural syndromes in rangeland-raised beef cattle,” Applied Animal Be-

haviour Science, vol. 139, no. 3-4, pp. 183–194, 2012.

[38] L. D. Howery, F. D. Provenza, R. E. Banner, and C. B. Scott, “Social and environmental fac-

tors influence cattle distribution on rangeland,” Applied Animal Behaviour Science, vol. 55, no. 3,

pp. 231–244, 1998.

[39] D. W. Bailey, D. D. Kress, D. C. Anderson, D. L. Boss, and E. T. Miller, “Relationship between

terrain use and performance of beef cows grazing foothill rangeland,” Journal of Animal Science,

vol. 79, pp. 1883–1891, 2001.
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[59] J. Poissant, D. Réale, J. Martin, M. Festa-Bianchet, and D. Coltman, “A quantitative trait locus

analysis of personality in wild bighorn sheep,” Ecology and Evolution, vol. 3, no. 3, pp. 474–481,

2013.

76



[60] S. Davis, K. Macdonald, G. Waghorn, and R. Spelman, “Residual feed intake of lactating

Holstein-Friesian cows predicted from high-density genotypes and phenotyping of growing

heifers,” Journal of Dairy Science, vol. 97, no. 3, pp. 1436–1445, 2014.

[61] N. J. Dingemanse and Y. G. Araya-Ajoy, “Interacting personalities: behavioural ecology meets

quantitative genetics,” Trends in Ecology & Evolution, vol. 30, no. 2, pp. 88–97, 2015.

[62] L. E. Kruuk, J. Slate, and A. J. Wilson, “New Answers for Old Questions: The Evolutionary

Quantitative Genetics of Wild Animal Populations,” Annual Review of Ecology, Evolution, and

Systematics, vol. 39, no. 1, pp. 525–548, 2008.

[63] T. B. Rodenburg, “The role of genes, epigenetics and ontogeny in behavioural development,” Ap-

plied Animal Behaviour Science, vol. 157, pp. 8–13, 2014.

[64] B. Van Moorter, J.-M. Gaillard, A. Hewison, S. Said, A. Coulon, D. Delorme, O. Widmer, and

B. Cargnelutti, “Evidence for exploration behaviour in young roe deer (Capreolus capreolus)

prior to dispersal,” Ethology Ecology & Evolution, vol. 20, no. 1, pp. 1–15, 2008.

[65] D. Gil, “Golden eggs: maternal manipulation of offspring phenotype by egg androgen in birds,”

Ardeola, vol. 2, pp. 281–294, 2003.

[66] E. Candemir, A. Post, U. S. Dischinger, R. Palme, D. A. Slattery, A. O’Leary, and A. Reif, “Lim-

ited effects of early life manipulations on sex-specific gene expression and behavior in adulthood,”

Behavioural Brain Research, vol. 369, pp. 1–11, 2019.

[67] E. J. Richards, “Inherited epigenetic variation — revisiting soft inheritance,” Nature Reviews Ge-

netics, vol. 7, no. 5, pp. 395–401, 2006.

[68] P. Jensen, “Behaviour epigenetics – The connection between environment, stress and welfare,”

Applied Animal Behaviour Science, vol. 157, pp. 1–7, 2014.

[69] A. Boissy and H. W. Erhard, “How Studying Interactions Between Animal Emotions, Cognition,

and Personality Can Contribute to Improve Farm Animal Welfare,” in Genetics and the Behavior

of Domestic Animals (T. Grandin and M. J. Deesing, eds.), pp. 81–113, Elsevier, 2014.

[70] C. Ginane, M. Bonnet, R. Baumont, and D. K. Revell, “Feeding behaviour in ruminants: a con-

sequence of interactions between a reward system and the regulation of metabolic homeostasis,”

Animal Production Science, vol. 55, no. 3, pp. 247–260, 2015.

[71] M. Mangel and C. W. Clark, “Towards a Unified Foraging Theory,” Ecology, vol. 67, no. 5,

pp. 1127–1138, 1986.

[72] V. C. Goerlich, D. Nätt, M. Elfwing, B. Macdonald, and P. Jensen, “Transgenerational effects

of early experience on behavioral, hormonal and gene expression responses to acute stress in the

precocial chicken,” Hormones and Behavior, vol. 61, no. 5, pp. 711–718, 2012.

[73] P.-O. Montiglio, M. Dammhahn, G. Dubuc Messier, and D. Réale, “The pace-of-life syndrome
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[98] S. O. Sosa, M. Pelé, E. Debergue, C. Kuntz, B. Keller, F. Robic, F. Siegwalt-Baudin, C. Richer,

A. Ramos, and C. Sueur, “Impact of Group Management and Transfer on Individual Sociality in

Highland Cattle (Bos taurus),” Frontiers in Veterinary Science, vol. 6, pp. 1–16, 2019.
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Figure S1. Residuals versus fitted values (Part A). Plots of scaled residuals versus fitted values of linear mixed models of grazing personality behaviour. Residual
outliers are values beyond ±3.
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Figure S2. Residuals versus fitted values (Part B). Plots of scaled residuals versus fitted values of linear mixed models of grazing personality behaviour. Residual
outliers are values beyond ±3.
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Supplementary Tables
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Table S1. Akaike Information Criterion (AIC) for linear mixed models of grazing personality behaviours (GP-behaviours) fit-
ted with twelve combinations of random factors.

Random
Factors1

Degrees of
freedom2

dist -
ho3

dist -
ve

3D -
dist

ele -
range

ele -
gain

Rel -
ele

Rel -
ele85

Rel -
ele -
range

slope85 hr -
mcp

sp tor-
tuosity

(Ga) (Bi) (Ga) (Ga) (Ga) (Ga) (Ga) (Bi) (Bi) (Bi) (Bi) (Ga) (Ga)

(1 | cow id) 3 2 898 5051 797 9820 5880 7815 7359 7915 7906 15781 13861

(1|cow id )+
(1|farm id)

4 3 816 5050 717 9703 5879 7728 7269 7892 7881 15719 13863

(1|cow id) +
(1|sampling year) +
(1|farm id)

5 4 509 4892 405 9705 5723 7730 7270 7889 7883 15697 13597

(1|cow id) +
(1|sampling -
year/farm id)

5 4 4654 4878 366 9693 5709 7727 7273 7802 7833 15597 13538

(1|cow id) +
(1|farm id/sampling -
year)

5 4 470 4886 371 9693 5717 7726 7270 7802 7833 15597 13546

(1|cow id) +
(1|mob id)

4 3 478 4757 380 9538 5591 7717 7265 7704 7724 15573 13527

(1|cow id) +
(1|sire id)

4 3 692 5006 593 9771 5836 7777 7322 7898 7903 15695 13795

(1|cow id) +
(1|mob id) +
(1|sire id)

5 4 479 4758 381 9540 5592 7718 7267 7700 7726 15570 13529

(1|cow id) +
(1|mob id) +
(1|sire id) +
(1|GRM5 genotype)

6 5 481 4760 383 9542 5594 7720 7269 7702 7728 15571 13527
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Continuation of Table S1. Akaike Information Criterion (AIC) for linear mixed models of grazing personality behaviours... .

Random
Factors1

Degrees of
freedom2

dist -
ho3

dist -
ve

3D -
dist

ele -
range

ele -
gain

Rel -
ele

Rel -
ele85

Rel -
ele -
range

slope85 hr -
mcp

sp tor-
tuosity

(Ga) (Bi) (Ga) (Ga) (Ga) (Ga) (Ga) (Bi) (Bi) (Bi) (Bi) (Ga) (Ga)

(1|cow id) +
(1|farm id) +
(1|sampling year) +
(1|GRM5 genotype)

6 5 511 4894 407 9706 5724 7732 7272 7891 7885 15699 13599

(1|cow id) +
(1|sampling -
year/farm id)
+ (1|GRM5 geno-
type)

6 5 467 4880 368 9695 5711 7729 7275 7804 7835 15595 13535

(1|cow id) +
(1|sampling -
year/farm id)
+ (1|sire id)

6 5 465 4878 366 9690 5709 7727 7727 7800 7835 15585 13535

1 Random factors presented with the notation of the ’lme4r’ R package for cow identity (cow id, n = 303), farm (farm id, n = 4), year of sampling
(sampling year, n = 2), herd per farm and per year (mob id, n = 14), sire identity (sire id, n = 73), GRM5 genotype (GRM5 genotype, n = 5).

2 Models set with Gaussian (Ga) or Binomial (Bi) distribution according to the distribution of each variable.
3 See GP-behaviours abbreviations and details in Table 2.1.
4 Bolded AIC values indicate the combination of random factors selected to fit models with fixed factors.
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Table S2. Associations between bovine GRM5 genotypes and
grazing personality behaviours (GP-behaviours)

GP-behaviours1Cow age
class
(P -
value)2

GRM5
geno-
type

Marginal
mean3

(standard error)

P -value4

dist ho
(m/day)

0.043 AB 3655 (±1071) -5

AC 3950 (±1154) 0.085
BB 3818 (±1115) 0.319
BC 3885 (±1131) 0.117
CC 3842 (±1119) 0.199

dist ve
(m/day

0.692 AB 540 (±75) -
AC 583 (±79) 0.265
BB 558 (±75) 0.614
BC 561 (±74) 0.527
CC 542 (±72) 0.952

3D dist
(m/day)

0.049 AB 3713 (±1089) -
AC 4015 (±1174) 0.084
BB 3881 (±1134) 0.316
BC 3946 (±1150) 0.120
CC 3901 (±1137) 0.204

ele range
(m)

0.427 AB 72 (±9) -
AC 71 (±9) 0.797
BB 65 (±8) 0.070
BC 66 (±8) 0.095
CC 65 (±8) 0.064

ele gain
(m/day)

0.699 AB 272 (±38) -
AC 291 (±39) 0.336
BB 280 (±38) 0.645
BC 281 (±37) 0.593
CC 270 (±35) 0.889

rel ele
(0-1)

0.017 AB 0.40 (±0.07) -
AC 0.43 (±0.06) 0.606
BB 0.46 (±0.06) 0.316
BC 0.44 (±0.06) 0.426
CC 0.48 (±0.06) 0.132

rel ele85
(0-1)

0.006 AB 0.66 (±0.07) -
AC 0.68 (±0.06) 0.725
BB 0.67 (±0.06) 0.835
BC 0.66 (±0.05) 0.978
CC 0.69 (±0.05) 0.527

rel ele -
range (0-1)

0.280 AB 0.50 (±0.09) -
AC 0.50 (±0.09) 0.854
BB 0.48 (±0.09) 0.649
BC 0.48 (±0.08) 0.650
CC 0.48 (±0.08) 0.747

slope85
(0-1)

0.020 AB 0.44 (±0.09) -
AC 0.49 (±0.09) 0.323
BB 0.48 (±0.09) 0.412
BC 0.43 (±0.08) 0.718
CC 0.43 (±0.08) 0.764

hr mcp
(ha/day)

0.008 AB 7.88 (±0.91) -
AC 7.82 (±0.86) 0.917
BB 6.60 (±0.73) 0.015
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Continuation of Table S2. Associations between bovine
GRM5 genotypes and GP-behaviours.

GP-behaviours1Cow age
class
(P -
value)2

GRM5
geno-
type

Marginal
mean3

(standard error)

P -value4

BC 7.25 (±0.75) 0.189
CC 7.29 (±0.76) 0.223

sp -
tortuosity
(m/ha)

0.008 AB 540 (±75) -
AC 568 (±77) 0.436
BB 665 (±90) 0.001
BC 616 (±81) 0.019
CC 602 (±80) 0.053

1 See GP-behaviours abbreviations and details in Table 2.1.
2 Significance level of ANOVA tests for comparison of mod-
els with and without cow age class as a fixed factor. Bold
letters indicate significance (P < 0.05).

3 Response marginal mean in measured units (back-
transformed from the log scale as needed).

4 Significance level for Satterthwaite’s method t-tests. Ital-
icised values indicate trend to significance (P < 0.1) and
bolded values indicate significance (P < 0.05).

5 Model intercepts set with genotype AB and cow age class
1
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