
 
 

 
 
 
 
 
 

 
Lincoln University Digital Thesis 

 
 

Copyright Statement 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

This thesis may be consulted by you, provided you comply with the provisions of the Act 
and the following conditions of use: 

 you will use the copy only for the purposes of research or private study  
 you will recognise the author's right to be identified as the author of the thesis and 

due acknowledgement will be made to the author where appropriate  
 you will obtain the author's permission before publishing any material from the 

thesis.  

 



Effect of a Trichoderma bio-inoculant on ectomycorrhizal 

colonisation of Pinus radiata seedlings 

 

 

 

A thesis 

submitted in partial fulfilment 

of the requirements for the Degree of 

Master of Science 

 

at 

Lincoln University 

by 

R.F Minchin 

 

 

 

 

Lincoln University 

2010 

 



 ii

Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master of Science. 

Abstract 

Effect of a Trichoderma bio-inoculant on ectomycorrhizal colonisation of 

Pinus radiata seedlings 

 

by 

R.F Minchin 

 

Ectomycorrhizal colonisation potential of Pinus radiata seedlings inoculated with the 

commercially available Trichoderma species bio-inoculant, Arbor-Guard™, was investigated 

in a commercial containerised nursery setting and in a separate glasshouse experiment, which 

included the co-inoculation of specific ectomycorrhizal fungi. 

Application of Arbor-Guard™ to Pinus radiata seedlings in a containerised commercial 

nursery had no significant effect on the ability of the naturally occurring ectomycorrhizal 

(ECM) fungi to colonise the seedlings. Thelephora terrestris was the dominant 

ectomycorrhizal species colonising the P. radiata root tips and has been described as a species 

able to rapidly outcompete other ECM species colonisation, particularly in high organic 

matter media like that used at the containerised commercial nursery investigated. 

In a similar experiment run to augment the commercial experiment, specific ECM fungi 

identified as Rhizopogon roseolus, Suillus luteus, and Rhizopogon villosulus were co-

inoculated with Arbor-Guard™ to investigate the effect on the colonisation potential of the 

respective ECM species in combination with Trichoderma. The treatment effect of the 

addition of Arbor-Guard™ did not negatively impinge on the ECM species found, or the 

abundance of ECM root tips colonising the P. radiata seedlings. Ectomycorrhizal species in 

the Thelephoraceae family were the dominant species found colonising the P. radiata root 

tips. Of the inoculated ECM, S. luteus was the only detected species colonising the P. radiata 

root tips but was only found in low abundance. Non-conducive abiotic factors for optimum 

ECM colonisation were considered the most likely reason for the low colonisation of the 

inoculated ECM species. Any effect of the unintentional co-inoculation of the wood decaying 

fungi Hypholoma fasciculare and Lentinula edodes, due to misidentification, with the 

inoculated ECM species was unable to be resolved in this study. However, it was speculated 
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that H. fasciculare may have had a negative effect on the inoculated ECM species 

colonisation. 

In vitro dual culture assays were initiated to investigate the specific interactions between each 

of the candidate ECM fungi inoculated in the glasshouse experiment when challenged with 

each of the six Trichoderma isolates in Arbor-Guard™. Both competition for nutrients and/ or 

space were concluded to be the main antagonistic mechanisms potentially used by five of the 

Trichoderma isolates against all co-inoculated ECM species and L. edodes. Hypholoma 

fasciculare was not inhibited by the five Trichoderma isolates, however, one Trichoderma 

isolate (LU 663) competitively antagonised all inoculated ectomycorrhizal/ saprophytic 

species before the mycelial fronts converged. Agar diffusible secondary metabolites were 

speculated to be potential mechanism of antagonism expressed by LU 663 over volatile 

antibiotics such as 6-pentyl-α-pyrone. No direct correlation could be dervived from the in 

vitro dual culture assays and what was observed in the containerised in planta results. 

Overall the results indicated no negative impact of the Trichoderma bio-inoculant Arbor-

Guard™ on ectomycorrhizal colonisation of Pinus radiata seedlings in a containerised 

nursery system. 

 

Keywords: ectomycorrhiza, Pinus radiata, root tip, nursery, containerised, mycorrhization, 

Thelephora terrestris, Thelephoraceae 
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    Chapter 1 

Introduction 

1.1 Forestry industry in New Zealand 

The forestry industry is the third largest export earner, accounting for 3.1% of New Zealand’s 

gross domestic product (GDP) in 2004. Sustainably harvested wood products in 2004 equated 

to 21 million m3 (NZ $3.3 billion), while it is expected to exceed 40 million m3/ year in 2025, 

equating to an estimated income of $14 billion, which is >14% of GDP (Anonymous, 2004; 

MAF, 2004). The forestry industry directly employs 23,000 people with an estimated 100,000 

people indirectly employed (Anonymous, 2004).  

Globally, NZ is in the top 20 suppliers of timber products, supplying 1.1% of the world’s 

forestry products from just 0.05% of the world’s forest resource. By 2025 New Zealand’s 

global position is expected to be in the top 5 (Anonymous, 2004; MAF, 2004). 

The main forestry species planted in NZ is Pinus radiata D. Don, making up to 90% of the 

1.83 million hectares planted in forestry plantations (Burdon, 1992). 

1.1.1 Pinus radiata 

Pinus radiata D. Don is native to the Californian coast and was introduced to New Zealand in 

1859 (Burdon, 1992). Due to the fast growth of radiata pines and ease of silvicultural 

management from the nursery to the plantation, it has become one of the worlds’ major exotic 

commercial forestry trees of choice (Burdon, 1992). Pinus radiata’s capacity for fast growth 

in New Zealand, producing 200-250 m3 of wood per hectare in 25-30 years, can mainly be 

attributed to the temperate climate, thereby enabling growth throughout the whole year. Pinus 

radiata also has the capability of growing on a range of soil types and at different altitudes, 

permitting extensive areas in New Zealand to be planted (Burdon, 1992). Radiata pine can be 

processed into products such as sawn logs, pulp and paper, plywood, chipboards and particle 

board (Burdon, 1992). Other uses include erosion control, shelter, municipal firewood and 

recreation. 

1.1.2 Pinus radiata seedlings 

Successful forest establishment, when seedlings are planted out into plantations, is a critical 

phase in commercial forestry. Therefore, the production of high quality P. radiata seedlings is 

important, both for high survival rates and competitive early growth of trees planted into 
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plantations (Maclaren, 1993). Production of plantable P. radiata seedlings (ca. 25-30 cm tall) 

is done within 9 months from the initial sowing of seed. Seeds are planted from early October 

– November and harvested for planting out in early July - late August. 

The cost of breeding controlled-pollinated seeds is high ($3000-3500/ kg seed) as it is a very 

labour intensive process and there is a strong market demand for the improved seed 

(Anonymous, 2003). Coupled to this is the fact that trees are required to be a minimum of 5-

10 years old before mature seed is produced, and during this time only a small amount of seed 

is available (Burdon, 1992). Therefore, the production of genetically improved stock is 

expensive and takes time before any economic return is realised. For this reason, cuttings are 

also taken from stoolbed stock, or from field grown trees, in an attempt to supply the demand 

for genetically improved seedlings. This research, however, is going to focus on P. radiata 

seedlings grown from controlled-pollinated seed. 

Traditionally, nurseries were situated in close proximity to the forestry plantation in which 

they were planted (Chu-Chou and Grace, 1990). This close proximity allowed an 

ectomycorrhiza (ECM) inoculum bank within the nursery soil to develop as a result of spore 

dispersal from surrounding forestry plantations. 

Bare rooted seedlings, obtained from nurseries described above, are being increasingly 

replaced by containerised seedling production (Menzies et al., 2001). Seedlings raised in 

containers have several advantages over bare rooted seedlings, including, an extended 

planting season, less root disturbance from lifting through to transport and final planting, 

bestowing a higher establishment percentage due to less transplant shock (Anonymous, 2003). 

The plug of potting media encapsulating the root system provides this protective function, 

which increases pre-plant shelf life and reduces the potential of distorting roots while planting 

into plantations (Anonymous, 2003; Nelson, 1996). Indeed, Chavasse, (1980) stressed that 

successful seedling establishment depends on careful handling from the initial lifting (de-

plugging) to planting. Pinus radiata survival in the field is also improved using containerised 

seedlings as the seedlings have better development of tap roots, in turn reducing the threat of 

mortality in dry conditions (Anonymous, 2003). 

Containers used in propagating seedlings have evolved over the years from tall and thin, to 

the development of containers with a squat shape (the height of the container is >2.2 times the 

diameter of the top) that incorporate vertical slots allowing full lateral root-pruning, which is 

induced by the roots being exposed to the air (Nelson, 1996). Another positive function of the 

vertical slots is the elimination of roots coiling around the inside surface of the container 
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forming a “root cage” (Nelson, 1996). Full lateral air root-pruning allows seedlings to develop 

many new and healthy lateral roots, reducing poor root form that was induced by earlier 

container designs and bare-rooted seedlings, thus conforming to the trees innate pattern of 

root morphology (Nelson, 1996). Rapid generation of new roots into the soil after planting out 

is considered a crucial component of seedling survival and potential growth (Chavasse, 1980). 

Tap and lateral roots that develop in more than one plane have also been shown to increase 

the stability of seedlings planted out (Chavasse, 1980). Therefore, containers incorporating 

full lateral air root-pruning, as a result of side-slits on the wall, have proven to be far superior 

to traditional growth containers by creating many active root tips throughout the plug. More 

importantly, modern containers reduce the requirement for harsh root conditioning that bare-

rooted seedlings are subjected to in order to generate seedlings that are ready to be 

transplanted. However, the capital cost of producing containerised seedlings is higher than its 

bare-root counterparts. Apart from the extra cost of purchasing the trays they are also often 

suspended above the ground to increase the air flow around and through the trays.  This 

additional cost nevertheless is offset when high value genetic tree stocks are used. Seedlings 

of this calibre require a high survival and growth rate at planting to ensure an economic return 

on the initial investment. Containerised seedlings ensure a higher survival, once planted-out, 

over their bare-rooted counterparts. 

1.2 Mycorrhiza 

The term mycorrhiza denotes a mutualistic symbiosis between a soil fungus “myco” and the 

plant root, “rhiza” (Morgan et al., 2005). Mycorrhizal relationships are considered the normal 

state for the majority (>80%) of terrestrial plants under most ecological conditions, and is 

characterised by the bi-directional flow of nutrients (Smith and Read, 1997). 

Photosynthetically derived carbon from the plant is obtained by the mycorrhiza, and in return, 

nutrients originating from the soil are acquired and transferred by the mycorrhiza to the plant. 

There is widespread acceptance that the mycorrhizal association is extremely important, 

without which many plants would not survive, as the mycorrhiza effectively form the 

interface between plants roots and the soil.  

Seven different types of mycorrhizal associations have been defined, including arbuscular 

mycorrhiza, ectomycorrhiza, ectendomycorrhiza, ericoid, arbutoid, monotropoid, and orchid 

mycorrhiza. Out of these associations the first two, arbuscular mycorrhiza (AM) and 

ectomycorrhiza (ECM) form relationships with plants that are most agronomically important. 

Arbuscular mycorrhiza are the most common mycorrhizal symbiosis, forming in roots of a 

huge amount of plants, including the taxa, Angiosperms, Gymnosperms, Pteridophytes and 
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Bryophytes. The obligately symbiotic AM have characteristic structures, arbuscules, that 

penetrate root cortical cells, and vesicles, which can form within and between the cortical 

cells. Intracellular arbuscules function to exchange nutrients and carbon between the two 

symbionts. In contrast, the Hartig net of ECM, which carries out the same function as the 

arbuscules, is made up of an intercellular labyrinth of hyphae enveloping root cortical cells. In 

addition, a mantle sheath, which is made up of multiple layers of fungal tissue, encases plant 

lateral root tips and gives rise to the mycorrhizas “ecto” name, as it is a discernible feature of 

ECM visible to the naked eye. The fungal taxa that form ECM relationships are highly diverse 

and include Basidiomycetes (95%) and Ascomycetes (4.8%), with reports of Zygomycetes in 

rare cases (Taylor and Alexander, 2005). Ectomycorrhizas are mostly associated with woody 

perennials including members of the Pinaceae, Fagaceae, Betulaceae and Dipterocarpaceae 

generae. Ectomycorrhizas of the Pinaceae family, in particular Pinus radiata, are the focus of 

this research. 

1.2.1 Ectomycorrhiza 

A large number of fungal species (between 5000-6000) form ECM relationships, with the 

majority of them having a broad host range (Smith and Read, 1997). This gives rise to the 

large diversity found in ECM relationships. However, it has been traditionally thought that the 

amount of tree species supporting ECM symbiosis is relatively low, with approximately only 

3% of plant taxa forming ECM associations (Smith and Read, 1997). The low proportion of 

plant taxa forming ECM symbiosis, however, is incommensurate compared with the extensive 

terrestrial land area occupied by these woody perennials. This bestows an enormous 

ecological and economic importance on the ECM relationship. Nevertheless, the paradigm of 

thought is evolving, from only a few species of plants thought to form ECM relationships 

characteristic of the temperate and boreal forest regions, to a much larger appreciation of the 

previous underestimation of ECM host species in tropical regions (Taylor and Alexander, 

2005). 

1.2.2 Physiology of the ECM relationship 

Perhaps the most fundamentally important constituent of the ECM symbiosis is the 

extramatrical (extraradical) mycelium extending into the edaphic environment. The function 

of which is considered to be the primary site of nutrient and water uptake. It is here at the 

interface between the soil and mycelia where critically important interactions occur with soil 

micro- and meso-fauna, dubbed the “mycorrhizosphere effect” (Leake et al., 2004; 
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Linderman, 1988). The intricate interactions occurring in this region are also important in the 

inhibition of potential pathogens. 

1.2.3 Nutrient acquisition 

Extramatrical mycelial networks are major components of total soil microbial biomass, with 

their length and absorptive area very important for nutrient acquisition.  For every metre of 

root length there can be up to 1000-8000 metres of ECM hyphae (Leake et al., 2004). External 

mycelium in forest humus has been estimated to have seasonal growth rates of 820 kg ha-1 yr-1 

in some cases (Bomberg et al., 2003). Mycelia of many ECM grow in exploratory diffuse fans 

forming the advancing front. Here, fine hydrophilic hypha, with high surface area to volume 

ratios, extensively ramify into substrate enabling the efficient uptake of nutrients (Timonen 

and Sen, 1998). While most research has focused on the upper organic horizon, where root tip 

density is highest, ECM mycelia is not restricted to these profiles and has been shown to 

vertically descend into mineral soil (Dickie et al., 2002; Rosling et al., 2003). Overall, the 

increased surface area and extension of hypha into areas too small for roots, allows 

exploration of soil outside the nutrient depletive zone surrounding plant roots (Morgan et al., 

2005).  

Through this extensive network of hyphae, ectomycorrhiza release extracellular enzymes, low 

molecular weight organic acids and hydroxamate siderophores that in turn acquire essential 

nutrients such as N, P and Fe from inorganic as well as organic sources (Bending and Read, 

1995; Frey-Klett et al., 2005; Landeweert et al., 2001; Leake et al., 2004; Read et al., 2004; 

Timonen et al., 1998). Another very important function that the extramatrical mycelium 

performs is the dissemination of photosynthetically derived carbon, and hence energy into the 

soil environment (Chalot et al., 2002; Timonen et al., 1998). Undeniably this carbon supply to 

the microbial community is imperative for the energy demands of nutrient acquisition that is 

required in the multitrophic ectomycorrhizal complex (Morgan et al., 2005). This enables the 

ectomycorrhiza to structure, and to synergistically interact with the soil microorganism 

community (Chalot et al., 2002; Frey-Klett et al., 2005; Timonen et al., 1998). Indeed, it has 

been shown that ectomycorrhiza exert a strong selection pressure on the microbial community 

associated with the mycorrhizosphere, which in turn is very important in the nutrient 

acquisition dynamics of plants (Frey-Klett et al., 2005). The role ECM play in the 

biogeochemistry cycle is more complicated than first thought. Finlay, (2005) commented that 

there has been a “general evolution in thinking” that mycorrhiza extends, and passively 

absorbs inorganic nutrients for plants. However, this paradigm of thinking is changing, now 

acknowledging that mycorrhiza actively influences the abiotic and biotic soil environment, 
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mainly through mycorrhizosphere exudates, in effect coercing the biotic community structure 

allowing synergistic interactions to occur that are conducive to plant health and growth. 

1.2.4 Pathogen inhibition 

In conjunction with increased nutrient acquisition, ectomycorrhizal symbiotic relationships 

with trees are known to increase resistance to root and shoot pathogens (Duchesne, 1994; 

Morgan et al., 2005; Whipps, 2004). One of the mechanisms involved to counteract pathogen 

attack, is simply due to increased vigour of the host plant as a direct result of enhanced 

nutrient supply (Duchesne, 1994). While the superior nutrient immobilising qualities of ECM 

can effectively out compete pathogens for essential nutrients, both for propagule germination 

and growth (Duchesne, 1994). More direct mechanisms include the ECM mantle physically 

excluding potential pathogen attack as well as inducing the resistance of plants to pathogen 

attack (Duchesne, 1994; Morgan et al., 2005; Whipps, 2001). Antibiosis is another direct 

mechanism, whereby ECM are capable of producing both volatile and non-volatile antibiotics, 

both in the mantle and mycorrhizosphere, in turn antagonising soil pathogens (Duchesne, 

1994; Morgan et al., 2005; Slankis, 1974; Whipps, 2001). Niermi et al. (2000) showed the 

ability of the ectomycorrhizal fungus Laccaria proxima (Boud.) Pat. to protect P. sylvestris P. 

containerised seedlings from the infection of two uninucleate Rhizoctonia isolates (248 and 

264) one year after pathogen inoculation. 

1.3 Ectomycorrhiza and Pinus radiata 

Ectomycorrhiza species occurring in New Zealand forests of P. radiata of varying age (2, 5, 

10, and 17 years) of both the North and South islands include Rhizopogon rubescens Tul. & 

Tul., R. luteolus Fr., Suillus luteus (L.) Roussel., S. granulatus (L.) Roussel., Tuber sp., 

Endogone flammicorona Trappe & Gerd., Amanita muscaria (L.) Lam., Laccaria laccata 

(Scop.) Cooke., Inocybe spp., Tricholoma pessundatum (Fr.) Quel. and Thelephora terrestris 

Ehrh. (Chu-Chou and Grace, 1983; Chu-Chou and Grace, 1988). Species that are only found 

in the North Island include Hebeloma crustuliniforme (Bull.) Quel. and Scleroderma spp. 

Ectomycorrhizal species most commonly found in both islands were R. rubescens, S. luteus 

and L. laccata (Chu-Chou and Grace, 1988). While it has been concluded that Rhizopogon 

spp. are the dominant species making up the major component of ECM in most New Zealand 

forests of all ages (Chu-Chou, 1979). Overall, the ECM diversity of P. radiata in NZ is 

known to be depauperate compared with the potential number of species known to associate 

with radiata pine overseas (Chu-Chou and Grace, 1988; Walbert, 2008). 



 7

Not all species of ECM incur the same benefits to the health and growth of P. radiata trees 

(Dunabeitia et al., 1996; Perry et al., 1987). Significant functional diversity exists within 

ECM communities as well as habitat related differences in the functioning of ECM 

communities (Orlovich and Cairney, 2004). Habitat differences have been shown in New 

Zealand with certain species of ECM affiliated to certain nutrient environments. For example, 

R. rubescens was isolated from 7 year old P. radiata trees in a conventional low fertility 

forestry soil in high proportions (54-79%), relative to very low proportions (0-11%) when 

grown on farm land with high fertility (Chu-Chou and Grace, 1984; Chu-Chou and Grace, 

1987). Endogone spp. and Scleroderma spp. were not as efficient in promoting nutrient 

uptake and tree growth as compared with R. rubescens, and have been found to mostly 

colonise trees in high fertility sites (Chu-Chou and Grace, 1984; Chu-Chou and Grace, 1987). 

Suillus spp., and to a lesser extent Tuber sp., were also found to be dominant ECM species 

colonising seedlings in high fertility soils (Chu-Chou and Grace, 1987; Chu-Chou and Grace, 

1990). Dynamics of the ECM species colonising P. radiata trees have been shown to be 

complicated, with species colonising P. radiata roots seemingly changing to suit the 

environmental niche. Chu-Chou and Chu-Chou & Grace (1980; 1990) found S. luteus to be 

replaced by R. rubescens within 6 months of planting out into low fertility forests, this 

follows the pattern of colonisation described above. Along with R. rubescens, R. luteolus has 

also been shown to rarely colonise P. radiata roots in new nurseries established on former 

high fertility farm land (Chu-Chou and Grace, 1990). Analogously, R. luteolus sporocarps 

have been associated in large numbers in forestry plantations with soil of low fertility. This 

led Chu-Chou and Grace, (1990) to conclude that R. luteolus’s successful colonisation of P. 

radiata is related to nutrient fertility rather than soil type.  

Along with different ECM species suiting particular conditions, there has been speculation of 

the successional change of ECM species evolving during the life cycle of trees (Smith and 

Read, 1997). Successional change has been attributed to factors such as the changing quantity 

and quality of organic matter, and hence nutrient availability, in which the functional 

characteristics of the ECM community need to change to enable the acquisition of nutrients 

(Smith and Read, 1997). In P. radiata stands older than 5 years of age, both Suillus spp. and 

Inocybe spp. were frequently observed but were rarely seen in nurseries or stands younger 

than 5 years (Chu-Chou, 1979). Further, Amanita muscaria and Scleroderma verrucosum 

(Bull.) Pers. were at no time detected in seedlings or trees under 10 years old, however, they 

were abundant in P. radiata stands older than 15 years (Chu-Chou, 1979).  
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Later research carried out by Walbert, (2008) using a combination of morphological 

characterisation and molecular techniques of identification found A. muscaria a component of 

both the ECM root tips and above ground sporocarps in an 8 year old P. radiata forestry stand 

in the Kaingaroa forest, located in the North Island of New Zealand. 

1.3.1 Ectomycorrhiza and Pinus radiata seedlings 

Inoculation of nurseries with efficient ECM fungi, using forest duff originating from forest 

soils, fungal sporocarps or mycelia (Chu-Chou and Grace, 1990), is increasingly being done 

(El Karkouri et al., 2005), and considered desirable to do so if a new nursery is established or 

growing seedlings in potting substrates that are replaced annually (Chu-Chou and Grace, 

1990; Theodorou and Benson, 1983; Trappe, 1977). Aside from the selection of potential 

ECM-seedling associations just for seedling survival and growth, abiotic variables such as 

temperature ranges of the area that the nursery resides also need to be considered (Theodorou 

and Bowen, 1971). Nevertheless, the final evaluation of seedling survival and growth 

performance must be in the forest after planting out (Chavasse, 1980; Chu-Chou and Grace, 

1990; Trappe, 1977), thereby matching the ECM species being inoculated with seedlings to 

the areas where the seedlings will be finally planted. However, ECM species composition has 

been shown to change once P. radiata is planted out in forests from their original composition 

as seedlings (Chu-Chou and Grace, 1983; Chu-Chou and Grace, 1990; Walbert, 2008), with 

species diversity in forests generally higher than in nurseries (Chu-Chou and Grace, 1990; 

Walbert, 2008). Yet, dominant species established in nurseries, such as R. rubescens and its 

respective strains (Chu-Chou and Grace, 1983), and to a lesser extent R. luteolus, did not 

change once planted out into plantations (Chu-Chou and Grace, 1987; Chu-Chou and Grace, 

1990). This shows the possible “multi-stage” characteristics (Smith and Read, 1997), of both 

R. rubescens and R. luteolus, in that they are present throughout the life cycle of P. radiata. 

From field observations of sporocarps in New Zealand, Chu-Chou, (1979) noted that R. 

rubescens, R. luteolus, and L. laccata were numerous in nurseries and P. radiata stands 

through the ages of 3-5 years old, but in stands older than 10 years the sporocarps became an 

infrequent phenomenon. Hebeloma crustuliniforme formed abundant sporocarps in nurseries, 

however, they were not observed as much once planted out (Chu-Chou, 1979). These 

observations reveal some of the successional dynamics of ECM species emerging from early 

ECM colonisers of seedlings through to multi-stage or latter ECM colonisers. However, all 

the descriptions of ECM species colonising seedlings have been done on sporocarp surveys, 

and there is evidence that sporophore populations may not correlate with ECM species 

colonising the root tips of seedlings (Smith and Read, 1997; Walbert, 2008). Confounding this 
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problem is the fact that some species of ECM require special conditions in which to produce 

sporocarps. In particular, sporocarp production requires enormous amounts of nutrients 

(Taylor and Alexander, 2005), with nursery conditions precluding the ability for vast nutrient 

acquisition. While even if the sporocarps are present they can be easily missed, especially 

hypogeous sporocarps. As a result, ectomycorrhizal species identification and quantification 

has increasingly focused on directly observing the ECM root tips on seedlings. Unpublished 

work, looking at ECM root tips on P. radiata seedlings, has indicated that Wilcoxina sp. is an 

early coloniser that has not been identified by sporocarps in New Zealand nurseries (Walbert, 

2008). Observing root tips will give a better representation of actual ECM species present and 

offers other advantages such as being able to determine their relative importance.  

Root tip observation of ECM species colonising seedlings in containerised systems is 

required, as sporocarps are extremely rare in these systems. This is mainly due to potting 

media being replaced each year, therefore not allowing any ECM inoculum bank to 

accumulate. Further, ECM species colonising P. radiata roots in containerised systems in 

New Zealand have not been investigated. 

1.3.2 Ectomycorrhizal identification 

Ectomycorrhizal species colonising P. radiata seedling root tips can be identified by both 

morphological and molecular methods. Morphological identification of root tips is the 

traditional way of identifying ECM, as the mantles and any emanating mycelia and/ or 

rhizomorphs, colour, structure and surface texture are well conserved features (Agerer, 1991). 

However, morphological identification is a limited approach in that specific characteristics 

can change depending on the particular host species, and more importantly in this case, 

morphology can be expressed differently in contrasting environmental conditions. Coupled to 

this, is that many species of ECM in association with specific hosts remain morphologically 

unidentified due to most species being identified only by their fruiting structures alone (Bruns 

et al., 1998). With the advent of appropriate molecular techniques, such as polymerase chain 

reaction (PCR) and restriction fragment length polymorphism (RFLP), many of the 

identification problems associated with morphotyping alone have been circumvented. As a 

result, the deduction of ECM in symbiosis with P. radiata has been made more accurate. 

Molecular methods also require less time to perfect as they don’t require skilled taxonomic 

scrutiny. As a result, identification of ECM has taken on a combined approach of the initial 

screening of root tips using gross morphological characteristics, which are then further 

analysed with molecular methods to determine the mycorrhizal species. This methodological 

approach has the advantage of being able to deal with large numbers of samples, as initial 
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gross morphological characterisation is quick and subsequent samples can be freeze-dried or 

frozen in liquid nitrogen for further processing at a later stage (Bruns et al., 1998). 

The use of PCR to amplify specific regions of deoxyribose nucleic acid (DNA), which is then 

further digested by restriction endonucleases (PCR-RFLP), is a common method to identify 

ECM species colonising root tips (Bruns and Gardes, 1993; Gardes and Bruns, 1993). Nuclear 

encoded ribosomal DNA (rDNA) is the main gene cluster used for phylogenetic analysis of 

fungi (Bruns and Gardes, 1993; Gardes and Bruns, 1993). The rDNA is used because it is 

made up of well conserved genes that encode the ribosomal subunits 18S, 5.8S and 28S. 

While variable regions also exist within this DNA region, which can be used to differentiate 

between fungal species, and this includes the two non-coding internal transcribed spacer 

regions (ITS), ITS1 and ITS2, which separate the structural RNA subunits (Bruns and Gardes, 

1993; Gardes and Bruns, 1993; White et al., 1990). By designing primers that are 

complementary to sequences within the rDNA, the species variable non-coding ITS regions 

are amplified during PCR. The high copy number of rDNA in cells allow for small or dilute 

DNA samples to be amplified. While the relatively small size, between 600 to 800bp and 

hence readily amplified ITS regions are convenient for both PCR amplification and further 

restriction analysis or sequencing for ECM identification. 

1.4 Trichoderma 

Trichoderma spp. are ubiquitous soil dwellers in temperate and tropical soils. Concentrations 

of these cosmopolitan soil fungi range from 101 – 103 culturable propagules per gram of soil 

(Klein and Eveleigh, 1998). Trichoderma spp. are particularly dominant in the top organically 

rich soil horizons (F & H) of both deciduous and coniferous forests. Dominance in these soil 

horizons can mainly be attributed to the aggressive saprophytic nature of Trichoderma spp., 

as they have the ability to compete for and metabolise a wide range of carbon and nitrogen 

compounds, including some persistent recalcitrant compounds (Kubicek-Pranz, 1998). This 

innate ability enables some Trichoderma spp. to proliferate, compete and survive in complex 

ecosystems such as the plant rhizosphere (Harman et al., 2004). Strong rhizosphere 

competency, which is defined as the ability of organisms to colonise and grow rapidly in 

association with plant roots, is one mechanism employed by particular Trichoderma isolates 

in the bio-control of plant pathogens (Harman et al., 2004). Trichoderma hyphae in effect 

create a “living barrier” along the plant root, thus out competing and preventing pathogen 

incursion (Brimner and Boland, 2003). Trichoderma spp. have been described as avirulent 

plant symbionts, forming long lasting interrelations with plant roots which are considered 

Trichoderma’s ecological niche (Harman, 2000; Harman et al., 2004). 
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Trichoderma spp., in addition to competition and rhizosphere competency, also have other 

mechanisms of bio-control activity that either on their own, or in combination, are 

antagonistic to potential pathogens. 

1.4.1 Mycoparasitism 

Mycoparasitism is defined as the direct antagonism of one fungus on another. It is a complex 

process requiring four successive steps leading to an overall highly species specific 

mechanism (Chet et al., 1998). The steps include the chemotrophic growth of Trichoderma 

spp. towards the target fungi. A chemical gradient of amino acids and sugars released by the 

target fungi are thought to be the attractants, but at this stage there is no specific stimulus 

attracting Trichoderma spp. to any one host (Chet et al., 1998). This is followed by the second 

step, specific recognition, whereby lectins (sugar-binding glycoproteins) on the target fungus 

agglutinate to specific complementary carbohydrates on the cell wall of Trichoderma spp. 

(Chet et al., 1998; Harman et al., 2004). Trichoderma spp. attach themselves in the third step 

by forming appressorium like structures and coil around the target fungi (Chet et al., 1998; 

Hjeljord and Tronsmo, 1998). Then finally, the fourth step involves the secretion of specific 

lytic enzymes including, chitinases, β-glucanases and proteases, which degrade the host cell 

wall. 

1.4.2 Antibiosis 

Mycoparasitism by Trichoderma spp. is more often than not associated with the concomitant 

release of secondary metabolites with antifungal and/ or antibacterial activities. Trichoderma 

spp. are prolific producers of volatile or non-volatile secondary metabolites, these metabolites 

are comprised of a very large and diverse range of compounds in relation to structure and 

function. Six major groups have been defined including, polyketides, pyrones, terpenoids, 

isocyano derivatives (isonitiriles), diketopiperazines and peptaibols (Sivasithamparam and 

Ghisalberti, 1998). The two best known Trichoderma antibiotics, gliotoxin and gliovirin, are 

diketopiperazines, and function to prevent the resynthesis of cell walls (Brimner and Boland, 

2003). Antibiotics can also be involved in synergistic mechanisms with hydrolytic enzymes 

such as chitinases and β-glucanases (Di Pietro et al., 1993; Schirmbock et al., 1994). The 

concurrent release of antibiotics and hydrolytic enzymes would enable the lowering of the 

critical concentration of antibiotic required for pathogen inhibition. There is a high ecological 

relevance of this synergism due to two observations. One, the low effective doses of 

inhibitory compounds found in vivo and, two, the limited amounts of nutrients found in soil 

for antibiotic production. 
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1.4.3 Plant growth promotion and induced resistance 

Trichoderma spp. have been shown to enhance root growth and development, with the 

subsequent increase in the uptake of nutrients and overall crop productivity (Harman et al., 

2004). Along with the normal NPKS fertilisers, Trichoderma spp. can solubilise nutrients 

such as Cu2+, Mn2+ and Zn0 that are normally unavailable to plants, and produce siderophores 

that in turn chelate the very scarce resource iron (Harman et al., 2004; Whipps, 2001). 

Trichoderma spp. also have the ability to help plants tolerate abiotic stresses, such as the 

inactivation of toxic compounds in the rhizosphere (Harman et al., 2004). 

The biochemical elicitors produced by Trichoderma spp. and the act of root colonisation 

itself, is known to induce localised and systemic resistance in plants (Harman et al., 2004). 

Induced resistance is defined as “the process of active resistance dependant on the host plant’s 

physical or chemical barriers, activated by biotic or abiotic agents” (Whipps, 2001). Plants 

initiate plant defence responses such as increased peroxidase activity and the secretion of 

fungitoxic compounds such as chitinases into the rhizosphere once in contact with 

Trichoderma spp. (Howell, 2003). The plants are said to be potentiated, enabling them to 

react rapidly when attacked by pathogens as a direct result of the Trichoderma-plant 

interaction (Harman et al., 2004). 

Mechanisms such as these are the reason behind the use of Trichoderma spp. as a bio-control 

agent. Hence, commercial products have become available on the market for a variety of 

crops. Included in the commercial products available for pathogen antagonism in forestry 

trees is Arbor-Guard™. Arbor-Guard™ is a product marketed by PF Olsen and manufactured 

by Grow-chem NZ Ltd and contains an assortment of 6 different Trichoderma isolates found 

to increase P. radiata seedling growth and establishment. 

Inoculation of P. radiata seedlings with Arbor-Guard™, is currently being studied for control 

of pine root rot diseases such as Armillaria root rot (Hill, R., per comm.). Results at present 

are promising, with Armillaria root rot being suppressed at the important transitory stage of 

seedling planting into plantations, reducing tree mortality in the forest by 35% after two years, 

and what looks like similar levels of disease suppression up to fours years afterwards (Hill, 

2004/2005). Increased growth and establishment of P. radiata seedlings after inoculation with 

Arbor-Guard™ has also been shown in the nursery. Seedling height increases of up to 33%, 

and stem diameter increases up to 25% over the control have been recorded (Hill, 2004/2005). 
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1.5 Interactions between ECM and Trichoderma 

Biological control organisms have the potential to have negative effects on ECM colonisation 

and persistence within the rhizosphere (Brimner and Boland, 2003). This is attributed to bio-

control agents inherent capacities to control pathogenic organisms, particularly fungal 

pathogens, and hence the potential to suppress symbiotic mycorrhiza (Brimner and Boland, 

2003). As some strains of Trichoderma spp. are particularly aggressive rhizosphere competent 

fungi (Harman, 2000), their potential to out compete ECM for essential resources is highly 

probable. Also Trichoderma spp. are capable of colonising plant rhizospheres long term, so 

are not just a transitory phenomenon (Harman, 2000). These attributes in effect create a 

‘living barrier’ encapsulating the root, enabling bio-control agents such as Trichoderma to 

disrupt the rhizosphere soil community (Brimner and Boland, 2003). Indeed Trichoderma 

spp. can potentially replace or suppress endogenous fungi that form symbiotic relationships 

on plant root surfaces (Howell, 2003). However, despite all the potential interactions, from 

ECM inhibition to synergistic relations, and sometimes ECM antagonism towards bio-control 

agents, there are conflicting reports on the effect Trichoderma spp. have on mycorrhizal fungi 

(Hjeljord and Tronsmo, 1998). 

Both biochemical elicitors and root colonisation by Trichoderma spp. are known to induce 

localised and systemic resistance in plants (Harman et al., 2004). Indeed plants initiate 

defence responses such as increased peroxidase activity and the production of fungitoxic 

compounds such as chitinases into the rhizosphere (Howell, 2003). Plants are said to be 

potentiated, and to react rapidly when attacked by pathogens as a direct result of the 

Trichoderma-plant interaction (Harman et al., 2004). These plant reactions could potentially 

have an inhibitory effect on ECM colonisation (Brimner and Boland, 2003).  

Trichoderma spp. have been shown to enhance root growth and development, with the 

subsequent increase in the uptake of nutrients (Harman et al., 2004). Increased inorganic 

nutrient supply to plants by T. harzianum Rifai., due to its capacity to solubilize poorly 

soluble nutrients such as rock phosphate, has been confirmed (Harman, 2000). A 

Trichoderma-plant association such as this may have the potential to inhibit subsequent ECM 

colonisation due to the plant not requiring nutrition assistance. 

Primary ectomycorrhizal development of forest trees is reliant on growth or germination of 

hyphae and/ or spore propagules stimulated by root exudates (Marx and Krupa, 1978; Smith 

and Read, 1997). As Trichoderma spp. are excellent competitive saprophytes, any specific 
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seed exudates required for ECM propagule germination or hyphal growth may be 

metabolised, potentially preventing ECM colonisation (Harman et al., 2004; Howell, 2003). 

Werner et al., (2002) questioned the use of Trichoderma spp. as bio-control agents in forest 

nurseries, as a direct result of their antagonism towards ECM colonisation. The authors’ cause 

of concern was due to the heavy re-colonisation of Trichoderma spp. observed after soil 

fumigation, which subsequently eliminated establishment of the inoculated ECM in the P. 

sylvestris root system. Summerbell, (1987) showed the strongly antagonistic effect that T. 

viride Pers. Ex Gray. and to a lesser extent T. polysporum (Link) Rifai. had on Laccaria 

bicolor (Maire) P.D. Orton. mycorrhization of Black Spruce (Picea mariana (Mill.) Britton.) 

seedlings. The authors also let L. bicolor establish on the root system before the inoculation of 

T. viride and found that a small (4.4%) but significant increase in percentage colonisation 

could be achieved over the simultaneous inoculation of the two fungal species. Malyshkin, 

(1951; cited in Summerbell, 2005), showed that what was identified as Trichoderma lignorum 

(Tode) Harz. (probably T. harzianum or T. viride; (Summerbell, 2005)) stimulated the 

mycorrhization of oak seedlings in the field. In further work done by Malyshkin, (1955; cited 

in Summerbell, 2005), the author increased the mycorrhization of oak seedlings once again by 

approximately 100% using a “biological fertiliser” comprising of three microorganisms, 

Azotobacter chroococcum Beijerinck., Pseudomonas sp. and Trichoderma lignorum (later 

identified as T. viride (Summerbell, 2005)). Later Shemakhanova, (1962; cited in 

Summerbell, 2005), using the same three microogansims, this time separately, found that T. 

viride gave the greatest simulative response to ectomycorrhiza colonising pine seedlings in 

the field. Soil sterilisation has been shown to stunt P. radiata seedling growth (Chavasse, 

1980). Patchy distribution of ECM in the nursery was attributed to the seedlings growth being 

stunted, which was a direct result of Trichoderma populations successfully out competing the 

ECM. Trichoderma spp., due to their fast saprophytic growth characteristics, may simply out-

compete every ECM fungus engaged in the mycorrhization process (Taylor and Alexander, 

2005). Taylor and Alexander, (2005) highlighted that there is much to learn about the 

interactions between ECM and other soil microorganisms, and how these interactions 

determine the activity and success of the plant-ECM relationship and ultimately the terrestrial 

ecosystem. Bowen and Theodorou, (1979) suggested that the successful mycorrhization and 

persistence of ECM could be threatened by bio-control agents and resident soil rhizosphere 

organisms. The authors also went on to say that enhancing antagonistic interactions of soil 

pathogens by implementing appropriate management schemes should not be to the detriment 

of ECM colonisation and persistence. 
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However, the effect that Trichoderma spp. has on ECM colonisation of seedlings is not well 

understood. Nevertheless microbial interactions in the rhizosphere are very dynamic, with the 

potential for positive interactions amid Trichoderma spp. and ECM. In fact interactions 

between mycorrhiza and the bio-control species Trichoderma could be said to form a 

continuum, from inhibition of potential mycorrhizal symbiosis, through to mycorrhizal 

antagonism towards Trichoderma spp. Zadworny et al. (2004) demonstrated the 

mycoparasitic abilities of the ECM fungus L. laccata towards T. harzianum in the rhizosphere 

of 3-month-old P. sylvestris seedlings. Werner et al. (2002) in a similar experiment, showed 

the ability of L. laccata to mycoparasitise the bio-control fungus T. virens (Mill, Giddens & 

Foster.) Arx. in the rhizosphere of P. sylvestris seedlings. In a more recent study by Zadworny 

et al. (2007) the authors illustrated the use of cell wall lytic enzymes exuded by the ECM 

fungus Laccaria laccata in association with P. sylvestris seedlings when parasitising the cell 

walls of T. virens and T. harzianum. The authors showed the dissolution of β-1,3-glucan from 

the hyphal and spore cell walls of both soil saprophytes. Overall the conflicting results found 

from different authors confirm the little knowledge researchers have about the interaction 

between bio-control agents, in particular Trichoderma spp., and ECM fungi in the rhizosphere 

of seedlings (Zadworny et al., 2004). This calls for the much needed research into the 

rhizosphere interactions of specific Trichoderma isolates in bio-control inoculants with ECM 

colonising P. radiata seedlings. 

1.6 Research aims and objectives 

1.6.1 Aim and context 

Trichoderma isolates have been shown to improve P. radiata seedlings survival, particularly 

against Armillaria root rot, once planted into forestry plantations. However, the interactions 

between P. radiata seedlings, ectomycorrhiza and Trichoderma spp. are unknown. For 

seedling health, growth and survival, both in the nursery and after outplanting, the outcome of 

potential interactions needs to be established in order to produce sustainable commercial tree 

crops of high quality wood. 

The overall aim of this research is to establish the effect of a Trichoderma bio-inoculant, 

applied as the registered commercial product Arbor-Guard™, on the root colonisation of 

ECM fungi on Pinus radiata seedlings. 

The framework of this research will follow the commercial production of Pinus radiata 

seedlings at PF Olsen & Co Limited nursery, Waiuku, New Zealand. The research will be 

comprised of two components, each of which will be separate experiments. The first located 
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at the PF Olsen commercial nursery, and the second, a glasshouse pot experiment at Lincoln 

University. 

1.6.2 Hypothesis 

We premise that the application of Trichoderma isolates in the form of a commercial product, 

Arbor-Guard™, will have an effect on both the overall percentage colonisation and relative 

species diversity of ECM associated with P. radiata seedlings. 

1.6.3 Objectives 

Experiment 1 
To determine what effect Trichoderma spp. inoculation, in the form of Arbor-Guard™, has on 

indigenous ECM colonisation within the PF Olsen commercial nursery setting, the objectives 

are; 

Objective 1 
To identify the background ECM species colonising Pinus radiata seedlings at the PF Olsen 

commercial nursery without the application of the Trichoderma bio-inoculant, Arbor-

Guard™. 

Objective 2 
To determine the effect of Arbor-Guard™ inoculation at sowing, or after 3 months growth, on 

ECM species diversity and abundance colonising Pinus radiata seedlings in the PF Olsen 

commercial nursery. 

Experiment 2 
To determine what effect Arbor-Guard™ inoculation has on the colonisation of specific ECM 

species inoculated with the P. radiata seedlings at sowing at Lincoln University, the 

objectives are; 

Objective 3 
To inoculate Pinus radiata seedlings with specific ECM species to determine their 

colonisation potential. 

Objective 4 
To determine what effect Trichoderma spp., inoculated as the commercial product Arbor-

Guard™, have on the colonisation of inoculated ECM. 

Objective 5 

To undertake additional in vitro laboratory assays to assess potential interactions between 

individual Trichoderma isolates and the inoculated ectomycorrhizal species. 
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    Chapter 2 

Effect of Trichoderma species inoculation on indigenous 

ECM colonisation of Pinus radiata seedlings in a 

commercial nursery 

2.1 Introduction 

2.1.1 PF Olsen Nursery 

Pinus radiata trees are bred to suit a wide range of planting sites and match the particular end 

use market targeted by the grower. Controlled pollinated seedlots are ranked in a certification 

system according to their growth and form (GF Plus). Characteristics including wood density, 

Dothistroma resistance, spiral grain, growth, straightness and branching are given individual 

ratings in a scaling system. High number ratings, of any particular characteristic, correlate to 

the best genetic potential available at the particular time (Anonymous, 2003). As a result, any 

two seedlines that express different genetic potentials of specific traits can exude differing 

qualities and quantities of carbon compounds into the rhizosphere (Morgan et al., 2005). In 

turn this can have a major influence on the microbial community composition within the 

rhizosphere. Here lies the potential of genetically distinct trees coercing the rhizosphere 

environment in different ways, which can have a profound effect on potential symbiotic 

relationships with ECM species and Trichoderma interactions. In light of this, two seedlines 

with different wood and end use characteristics have been selected for comparative analysis. 

Their individual GF Plus ratings are outlined in Appendix A.1. 

Trichoderma spp. have the ability to out compete or destroy by parasitism/ antibiosis other 

indigenous soil fungi for resources, this may be true for the ECM/ Trichoderma interaction in 

the rhizosphere of P. radiata. Therefore, by staggering the Arbor-Guard™ inoculation, having 

one treatment inoculated at seed sowing while another treatment is inoculated after 3 months 

of seedling growth will reveal any potential competitive characteristics expressed by 

Trichoderma. A period of three months should give the ECM enough time to initiate 

colonisation with the P. radiata seedling and therefore not be out-competed by the applied 

Trichoderma spp. in Arbor-Guard™. Indeed, Hall and Perley, (2008) were successful in 

forming ECM root tips on Nothofagus seedlings three months after ECM inoculation, even 

when Nothofagus seedlings were considered a hard species to inoculate artificially. 
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2.2 Methods 

2.2.1 Experimental site 

PF Olsen nursery is situated approximately 45 minutes drive SW of Auckland, just outside the 

town of Waiuku and is owned and operated by P.F Olsen and Company Ltd. The nursery 

raises containerised seedlings of P. radiata either from cuttings or directly from seed in 

plastic Side-Slit trays (100 mL plug volume) supplied by BCC Sweden, which are designed to 

incorporate full lateral root pruning. Pinus radiata seeds are planted in spring (October-

November) in a 50:50 mix of peat and pine bark media and harvested 9 months later in June-

July. Seedlings are watered by an automatic irrigation system that aims to keep the potting 

media at field capacity throughout the 9 month period. Fertiliser is dispensed within the 

irrigation system (fertigation), along with a slow release fertiliser incorporated in the potting 

mix at sowing. The overall aim of fertiliser addition is to have a relatively high nitrogen rate 

after seedlings are planted in spring, followed by autumn applications of fertiliser with a high 

potassium to nitrogen ratio. Both spring and autumn fertiliser applications are designed to be 

in harmony with P. radiata’s natural growth curve. Fertigation is adjusted according to the 

amount of precipitation, therefore during high rainfall periods the amount of fertiliser applied 

to the seedlings is reduced. 

2.3 Experimental design 

A complete randomised block design was incorporated into the existing commercial practice 

at PF Olsen nursery. Six treatments were set up, including two genetically distinct seed-lines 

(see Appendix A.1) where each had a control, Arbor-Guard™ inoculation at sowing and 

Arbor-Guard™ inoculation after 3 months of seedling growth `(Table 2.1). Each treatment 

was made up of four trays in a row, each of which had 45 seedlings per tray (180 seedlings). 

Treatment rows were randomly assigned and replicated only once in each block, with five 

blocks in total. This gave a grand total of four trays per treatment by six treatments per block 

by five blocks, equalling a total of 120 trays. 
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Table 2.1  Outline of the six treatments applied to two P. radata seedlines (A + 
B) in the commercial nursery experiment at PF Olsen nursery. 

Treatments Description Seed line 

1 Control A 

2 Arbor-Guard™ at sowing 
 

3 Arbor-Guard™ at 3 months 
 

4 Control B 

5 Arbor-Guard™ at sowing 
 

6 Arbor-Guard™ at 3 months 
 

 

2.4 Silvicultural management and experimental setup 

As described in Section 1.1.2, trays are designed for lateral root pruning and made by BCC 

Sweden (http://www.bccab.com). The plastic trays are appropriately named Side-Slit trays 

and have 63 (arranged in rows of 7 x 9), 100 mL volume plugs for sowing seedlings. 

Seedlings are planted in two rows adjacent to one another, leaving an empty row before 

another two rows of seedlings. This configuration gives a plant density of 400 seedlings/ m2, 

which has been shown to produce P. radiata seedlings of good form and of maximum trunk 

diameter (5-7 mm) (Benenbroek. M. pers com.). As described in Section 1.1.2, the trays are 

cradled on wires 0.5 m above the ground to increase the efficacy of air pruning and are 

arranged in rows of four wide across the length of the nursery. 

 

 

 

 

 

 

 
Figure 2.1 BCC Side-Slit trays used at PF Olsen nursery with Pinus radiata 

seedlings cradled ½ metre above the ground (right picture) 

 



 20

The two pine seedlines, GF Plus A and B, obtained from P.F Olsen and Company Ltd, were 

sown. Prior to sowing the seeds were soaked in cold water for 48 h, drained then left on moist 

filter paper in a glass Petri dish and stratified at 4ºC for a further 32 days. On the day of 

sowing the seeds were coated with a bird repellent recipe, made up of 75 g Mezurole, ¾ cup 

PVA glue and ½ cup red spray indicator in 1 litre of water. Once coated the seeds were spread 

out over a suspended shade cloth to a depth of approximately 5 mm and dried with a hair 

dryer before being planted. 

Only the five rows to be planted of the seven within the Side-Slit trays were filled with 

premixed 50:50 peat: bark potting mixture by hand. This was to reduce potential weed 

pressure due to weeds growing in the non-planted rows at the latter stages of seedling growth. 

Seeds were then planted to a depth of 5-10 mm by hand after individual indentations in each 

cell were pressed on the surface of the potting mix by a plate with protruding forks. After 

sowing the trays were kept in the dark at 23ºC in an incubation room for 3 days before being 

moved to a glasshouse. Seedlings stayed in the glasshouse (>15ºC) for 3 months to allow 

protection from wind and birds before being moved outside to their permanent positions. 

During the seedlings occupancy in the glasshouse and once outside, the potting media was 

kept at field capacity by an automatic fertigation sprinkler system. 

2.5 Trichoderma application and assessement 

Trichoderma was applied as a 0.2 g L-1 Arbor-Guard™ (5 x 109 spores g-1; Arbor-Guard™) 

solution with a knapsack sprayer at a rate of 250 mL per tray (≈ 5.5 mL/ plug) immediately 

after sowing to treatments 2 and 5 (Table 2.1). All other non- Arbor-Guard™ treatments (1, 3, 

4 and 6) received water at 250 mL per tray immediately after sowing. The aim was to get a 

Trichoderma population base of 5.5 x 104 colony forming units (cfu) per gram of potting 

media (100 g potting media/ cell). This is only an approximate value, as an overall solution 

(10 L) was made up and applied by hand to each tray (40 trays in total). As a result, an 

assessment of the actual Trichoderma potting mix population was done 5 weeks after 

application to both seedline controls and the Arbor-Guard™ inoculated seedlings at sowing 

treatments (1, 2, 4 and 5). Three months after sowing, treatments 3 and 6 (Arbor-Guard™ at 3 

months) had the same rate of Arbor-Guard™ applied as described above, with a knapsack 

sprayer. However, to avoid disturbing the seedlings an assessment to determine the actual 

Trichoderma concentrations in the potting media was not carried out until final seedling 

harvest. 
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At the end of the experiment all the treatments were assessed for their Trichoderma 

populations as described below. 

For each Trichoderma assessment a composite sample of four randomly chosen plugs (one 

from each of the four trays) of each treatment were collected and stored at 4ºC until 

processing. Three 10 g sub-samples (field capacity) of each treatment composite sample were 

weighed out and shaken for 10 minutes in 90 mL of sterile 0.01% water agar. After standing 

for a further 10 minutes the sample was serially diluted down to 10-6, with 0.1 mL of each 

dilution factor (10-2, 10-3, 10-4, 10-5 & 10-6) plated out on three replicate plates of Trichoderma 

selective medium (TSM) (McLean et al., 2005) (Appendix A 2.1). A representative 10 g 

(fresh weight) sub-sample of each composite sample was dried at 105ºC for 24 hrs to 

determine water content. Plates were incubated for 10-14 days at 20ºC in the dark, followed 

by counting the number of Trichoderma spp. cfu and expressed relative to soil dry weight. 

2.6 Seedling harvesting and processing 

Five weeks after sowing a seedling emergence/ survival assessment was conducted on 

treatments 1, 2, 4 and 5, where each of the respective cells containing no seedlings were 

recorded. Treatments 3 and 6 were omitted from an emergence/ survival assessment due to 

these treatments (Arbor-Guard™ applied at 3 months) being the same as the untreated control 

at this stage. 

After nine months, seedlings were harvested by removing the whole seedling from its 

respective cell with an intact root system and associated potting media. A total of three 

seedlings per tray were randomly taken from the middle rows of each tray to reduce any 

boundary effects. Thereby each treatment had twelve seedlings (four trays/ treatment) 

randomly taken from each block, giving a grand total of 360 seedlings. Seedlings were 

transferred into pre-labelled plastic bags to reduce moisture loss and stored at 4ºC within 12 

hours of harvest. 

All of the 360 seedlings were subsequently processed by first measuring and recording the 

total length of the seedling from the potting media surface to the seedlings tip and measuring 

the trunk diameter at the root collar with a tape measure and digital callipers, respectively. 

After which the seedling tops were cut off from the root system approximately 1 cm from the 

potting media surface and stored in paper bags for drying (oven dried for 48 h at 65ºC), while 

the root systems were put back in the original plastic bags with enough water added via a 

spray bottle to soak the potting media and stored at 4oC until further processing. 
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2.7 Ectomycorrhizal analysis 

A combined approach of separating morphologically discrete ECM under a dissecting 

microscope, followed by the further identification by molecular methods was the method used 

in this project (see Section 1.3.2). 

2.7.1 Root processing 

Individual seedling roots and associated potting mix (50:50 peat and pine bark) were soaked 

in water overnight. The seedlings root systems were then carefully cut with scissors at 25 mm 

increments along the plugs length (750 mm) giving a total of three segments. The respective 

segments were then carefully washed with running tap water over a series of nested sieves 

ranging in aperture size from 4 mm – 0.85 mm (4, 1.4, 1.18 and 0.85 mm) to remove the 

majority of adhering potting media. Any roots longer than 25 mm were subsequently cut with 

a scalpel on a cutting board and transferred to a hyaline plastic tray (36 x 24 cm) filled to 1 

cm with water. The base of the plastic tray was divided into a gridline of 100 squares (3.6 x 

2.4 cm) for subsequent sub-sampling. Any clumps of potting media/ root system that could 

not be separated macroscopically were transferred to a Petri dish filled with water for the 

subsequent removal of the potting media under a dissecting microscope (0.8 – 8× 

magnification) using fine tweezers, paintbrushes and fine metal needles (Brundrett et al., 

1996). Each of the sieves contents were further analysed for root segments and mycorrhizal 

laterals by suspending the contents in a plastic tray filled to 1 cm with water and any root 

samples or ECM root tips found were transferred to the root collection tray. 

2.7.2 Ectomycorrhizal quantification 

A 10% sub-sample of the whole root system was taken by evenly suspending the segmented 

roots over the whole plastic tray area and transferring the contents of 10 randomly (derived 

from a random number table) chosen squares to one of two 14 cm round glass Petri dishes 

that were again divided into squares (1 cm x 1 cm). Total root length was then determined 

using the gridline intersect method described by (Brundrett et al., 1996). This method entails 

dispersing roots into a 9 cm Petri dish filled with water that has a 14/11 mm gridline drawn on 

the base of the dish. By counting all the roots that intersect both the horizontal and vertical 

lines an estimate of total root length in centimetres can be obtained. Because the Petri dish 

size and the gridline proportions used in this experiment was different from that of the 

original a calibration was required. This was done by randomly dispersing a 1 m piece of 

string cut into 25 mm segments over the Petri dish and counting the intersects as per the 

original method. A total of 10 individual counts were done after randomly dispersing the 
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string segments for each count to determine the length of the string, after which a calibration 

factor (total length x 0.79) was determined enabling the data to be expressed in the required 

units of centimetres.  

After root length was determined each individual ECM root tip was counted and recorded into 

their respective morphotypes under the dissecting microscope (Nikon SMZ 1000) for both 

glass Petri dish samples. Any non-mycorrhizal root tips were also recorded. 

2.7.3 Ectomycorrhizal morpological characterisation 

Under a dissecting microscope (0.8 – 8× magnification), ECM root tips from each seedlings 

root system were classified into separate morphotypes following the criteria set out by 

(Agerer, 1987-2002; Agerer, 1991; Ingleby et al., 1990). Morphotypes were separated into 

discrete categories according to differences in mantle colour and texture, which can range 

from smooth surfaces through to a warty texture. The mantles size and extent of ramification, 

whether being unramified, pinnate, pyramidal, dichotomous, coralloid or had tuberculate 

structures were included in the overall description (Agerer, 1987-2002). Other features such 

as emanating rhizomorphs and/ or hyphae were used if necessary to differentiate ECM root 

tips. 

Colour digital photos (Olympus DP12 digital camera) were taken under a dissecting 

microscope (Olympus SZX12 stereomicroscope) to catalogue discrete ECM morphotypes and 

allow correlations to be made from subsequent molecular identification. The photos were 

taken with a black background and the ECM root tip completely submerged in water to 

eliminate any light reflections (Agerer, 1987-2002). 

After morphological identification and cataloguing, a sample of five ECM root tips from each 

morphologically distinct ECM structure per seedling were dried by pressing between paper 

towels and quick frozen in a mortar filled with liquid nitrogen, then transferred into 1.5 mL 

plastic centrifuge tubes and stored at -80oC for DNA extraction. 

2.8 Molecular methods for ECM identifcation 

Morphological characterisation of root tips followed by RFLP profiling is a known method in 

the literature to identify ECM fungi. The aim of this experiment was to follow the same 

methodology. However, after sequencing a sample of root tips previously characterised by 

their morphological description it was found that there was only one dominant ECM 

detectable so no further RFLP analysis was undertaken. 
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2.8.1 DNA extraction 

DNA was extracted using the PowerSoil® DNA isolation kit (MoBio laboratories, USA) as 

per instructions. This kit is designed to extract and purify DNA from environmental samples 

that are high in PCR inhibitory compounds, such as humic acids, that are commonly found in 

high organic matter soils, particularly peat, which is paramount in this case. The extreme tip 

of a liquid nitrogen frozen mycorrhizal root tip (1 mm) was sampled using two sterile 1 mL 

pipette tips under a dissecting microscope and transferred to the PowerSoil® vial. 

Two replicate root tips (frozen with liquid nitrogen, see Section 2.7.3) for each single 

representative morphotype were randomly taken from the control and ‘AborGuard at sowing’ 

treatments for DNA extraction. 

2.8.2 PCR amplification 

The ITS region of rDNA was amplified using the previously described PCR primers, ITS1F 

(5` CTTGGTCATTTAGAGGAAGTAA 3`), a fungal-selective primer (Gardes and Bruns, 

1993), and ITS4 (5` TCCTCCGCTTATTGATATGC 3`) (White et al., 1990). These primers 

amplify the ITS region of both basidiomycete and ascomycete fungi from a mixture of other 

plant and bacterial DNA (Bruns and Gardes, 1993; Gardes and Bruns, 1993; White et al., 

1990). To each 25 µl amplification reaction, 10x HotMaster® Taq Buffer (15 mM Mg2+, pH 

8.5), 50 mM KCL, 200 µM each of dATP, dTTP, dCTP and dGTP, 5 pmols of each primer 

and 1 U HotMaster™ Taq DNA polymerase (Eppendorf, Hamburg, Germany) were added. 

Template DNA (10 ng; quantified using NanoDrop®) was amplified using a BIO-RAD 

iCycler thermal cycler (96 well x 0.2 mL) with the initial denaturation set at 94oC for 3 min 

followed by 30 – 35 cycles of 94ºC for 30 s, annealing at 55ºC for 30 s and extension at 68ºC 

for 30 s, with a final extension of 68ºC for 7 min. Negative controls (template DNA replaced 

by an equal volume of distilled water) were run for every PCR amplification to test for the 

presence of DNA contamination from the reaction mixture/ procedure. 

Amplified products were separated by electrophoresis in 1.5% agarose gels at 70 V for 1.5 h 

submerged in 1 ×TAE (Tris-acetate EDTA buffer) with the subsequent staining and washing 

with ethidium bromide (0.5 µg mL-1) for 30 min and water for 15 min, respectively. Bands 

were visualised using a VersaDoc™ model 3000 imaging system (BIO-RAD). 

2.8.3 Sequencing reactions 

Single band PCR products were first purified with BIO-RAD Quantum Prep® PCR Kleen 

Spin Columns to remove excess dNTPs, primers and primer-dimers. Methodology followed 
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that of the manufacture apart from the 10 mM Tris-HCl, 1 mM EDTA, pH 7.4 elution buffer 

being replaced with double distilled water following the manufacturer’s instructions. Briefly, 

three 500 µl aliquots of double distilled water were centrifuged (Eppendorf 5810R centrifuge) 

separately at 735 × g for 30 s with the resultant eluted water/ buffer subsequently discarded in 

order to wash the original elution buffer out of the Spin Column. 

The purified PCR products (20 ng of DNA, as determined by the low molecular weight 

ladder) were further amplified in a 10 µl sequencing reaction with 1 µl ITS 4 (5 pmol), 2 µl 

5× BigDye®  Terminator v3.1 5x sequencing buffer and 0.5 µl ABI PRISM® BigDye® 

Terminator v3.1 (Applied Biosystems, USA). The sequencing reaction was carried out in a 

BIO-RAD iCycler thermal cycler (96 well x 0.2 mL) with an initial denaturation of 96ºC for 1 

min followed by 25 cycles of 96ºC for 10 s, annealing at 50ºC for 5 s and extension at 60ºC 

for 4 min. After which a post sequencing reaction clean up using an Agencourt CleanSEQ+ 

Sequencing Reaction Clean-up system (USA) was carried out to remove unincorporated dyes, 

nucleotides, salts and contaminants. Sequencing products were separated on an ABI Prism 

3100-Avant Genetic Analyser installed with a 4 capillary 80 cm array using Performance 

Optimized Polymer 4 (POP4). 

DNA sequences were edited and aligned with Sequencher version 4.7 software and ECM 

identities were determined by the Basic Local Alignment Search Tool (BLAST) using the 

online nucleotide database, GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

For positive identification to species level a query sequence match of ≥97% was required, 

while query sequence identities ≤96% were considered only a genus level identification. 

2.9 Statistical analysis 

Root tips, expressed as root tips/ cm root length for each of the respective ECM species, were 

subjected to analysis of variance (ANOVA) and analysed as a complete randomised block 

design with 5 replicates per treatment using Genstat 8.2 (Lawes Agricultural Trust, 

Rothamsted Experimental Station) software. Log10 transformed Trichoderma cfu data and the 

seedling parameters were also analysed using ANOVA. Treatment means for all assessments 

were separated using Fisher’s Protected least significant difference (LSD) tests at the P<0.05 

level. 
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2.10 Results  

2.10.1 Total ECM root tips 

Overall there were no significant differences between treatments or seedlines in the total 

number of ECM root tips per centimetre root length of the seedling (Figure 2.2). Seedline B, 

however, tended to have a higher abundance of ECM root tips relative to seedline A 

throughout the treatments apart from Arbor-Guard™ applied at 3 months (Figure 2.2). 
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Figure 2.2 Number of ECM root tips/ cm root length at harvest for the 
control, Arbor-Guard™ applied at sowing (AG (sow)) and after 3 months 
(AG (3 mths)) for both seedlines A and B, respectively. Treatment means 
sharing the same letter are not significantly different from each other as 
determined by Fisher’s Protected LSD (p= 0.05). 

 

2.10.2  ECM root tips as discriminated by morphotype 

Three broad ECM morphotype categories as discriminated by their level of ramification 

including unramified, dichotomous and multi-dichotomous, were observed/ classified (Figure 
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2.3). Apart from the differences in the level of ramification, each morphotype followed a 

similar description (Table 2.2) 

Table 2.2  Macroscopic description of the three morphotypes found. 

Morphotype Description 

Unramified Light brown, smooth, white apex 

Dichotomous Light brown, smooth, white apices 

Multi - dichotomous Light – dark brown, smooth, white apices, tortuous irregular branching 

 

   

Figure 2.3 The three morphotype categories as discriminated by their level of 
ramification. Unramified (A), Dichotomous (B) and Multi-dichotomous (C). 

 

No significant differences were observed between either the seedlines or the treatments within 

each morphotype (Figure 2.4). Overall, there were significantly more dichotomous/ multi - 

dichotomous morphotypes within each treatments seedline except for Arbor-Guard™ applied 

at three months within seedline A, where a significantly higher proportion of root tips of the 

total were made up of multi – dichotomous morphotypes relative to dichotomous 

morphotypes (Figure 2.4). The abundance of unramified root tips, although not significantly 

different from multi – dichotomous morphotypes, was very low and only occurred in the 

control (seedline A) and Arbor-Guard™ applied at three months (seedline A) treatments. 

 

 

A B C
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ECM morphotypes
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Figure 2.4 Number of ECM root tips/ cm root length for the control, Arbor-
Guard™ applied at sowing (AG (sow)) and after 3 months (AG (3 mths)) for 
both seedlines A and B, respectively categorised in to dichotomous, multi-
dichotomous and unramified morphotypes. Means are separated using 
Fisher’s protected LSD (p= 0.05). 

After a thorough macroscopic evaluation of the root tips across all treatments and subsequent 

DNA sequencing analysis of two root tips/ level of ramification it was concluded that 

Thelephora terrestris was the most dominant ECM detectable (Table 2.3; Appendix C.1). 

Table 2.3  Sequence results for the GenBank queries of ECM root tips 
identified as Thelephora (Th.) terrestris classified by levels of ramification at 
PF Olsen. 

Ramification Sequence 
# 

Sequence 
length (bp) 

GenBank 
Accession No. 

Organism GenBank 
score 

e - value Maximum 
identity (%) 

Unramified 
1 

2 

640 

635 

DQ068970.1 

DQ068970.1 

Th. terrestris 

Th. terrestris 

1166 

1146 

0.00 

0.00 

100 

99 

Dichotomous 
1 

2 

619 

615 

DQ068970.1 

DQ068970.1 

Th. terrestris 

Th. terrestris 

1118 

1103 

0.00 

0.00 

99 

99 

Multi-
dichotomous 

1 

2 

638 

643 

DQ068970.1 

DQ068970.1 

Th. terrestris 

Th. terrestris 

1122 

1171 

0.00 

0.00 

98 

100 
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2.10.3 Non-mycorrhizal root tips 

A notable significant difference appears within seedline B between the different treatments, 

where there is a decrease in non-mycorrhizal root tips relative to both the control and Arbor-

Guard™ applied at sowing when Arbor-Guard™ was applied at 3 months (Figure 2.5). 
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Figure 2.5 Number of non-mycorrhizal root tips found for the control, Arbor-
Guard™ applied at sowing (AG (sow)) and after 3 months (AG (3 mths)) for 
both seedlines A and B, respectively. Treatment means sharing the same 
letter are not significantly different from each other as determined by 
Fisher’s Protected LSD (p= 0.05). 

 

2.11 Trichoderma counts (5 weeks) 

Five weeks after sowing of the seed an assessment of the Trichoderma populations in the 

potting mix for Arbor-Guard™ applied at sowing and the respective controls was conducted 

(Fig 2.6A). As illustrated in Figure 2.6A, there were no significant differences between the 

Trichoderma populations (cfu g-1 soil) between seedline A or B within the control or the 
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Arbor-Guard™ treatments, however, the application of Arbor-Guard™ significantly increased 

the Trichoderma population within seedline B. 

2.12 Trichoderma counts (harvest) 

A significant difference, although only small, was observed between seedlines A and B for 

Arbor-Guard™ applied at sowing (Figure 2.6B). Trichoderma cfu was significantly less 

relative to the control for both Arbor-Guard™ applied at sowing and after 3 months 

treatments in seedline A. This trend was observed for seedline B, although the significant 

reduction in cfu numbers was only evident for Arbor-Guard™ applied after 3 months as 

Arbor-Guard™ applied at sowing was not significantly different from the control. 
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Figure 2.6 Trichoderma cfu/ g soil (log10 transformed) five weeks after sowing 
the Pinus radiata seed (graph A) and at final harvest (graph B) for the 
control, Arbor-Guard™ applied at sowing (AG (sow)) and after 3 months 
(AG (3 mths)) for both seedlines A and B, respectively. Treatments sharing 
the same letter (within graphs) are not significantly different as defined by 
Fisher’s Protected LSD (p= 0.05). 

 

2.13 Seedling parameters 

Emergence data were obtained 5 weeks after seed sowing when the seedlings were 

approximately 5 cm tall. The percentage emergence was significantly higher for seedline A 

relative to seedline B in the control treatments. While this trend was also shown in the Arbor-

Guard™ treatment the values were not significantly different (Table 2.4). No significant 

A B
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differences were observed within the seedlines between the control and Arbor-Guard™ 

treatments (Table 2.4). Overall, the Arbor-Guard™ application reduced the differences 

between seedline A and B, in effect converging the relative emergence profiles of the two 

seedlines. 

Height differences between the control, Arbor-Guard™ applied at sowing and after 3 months 

(within seedlines) showed no significant differences for both seedlines A and B. While, 

seedline A overall had significantly taller seedlings relative to seedline B within all treatments 

apart from when the Arbor-Guard™ was applied at 3 months, where although trending higher, 

the values were not significant (Table 2.4). 

Diameters of the respective seedlings at the root collar of the trunk showed no significant 

differences between treatments or seedlines. However, the data obtained did show a definite 

inverse relationship between the height of the seedlings and diameter parameters as illustrated 

by the height to diameter ratio (Table 2.4). Seedline A had a significantly higher height to 

diameter ratio than seedline B within treatments for the control and Trichoderma at sowing 

treatments. This trend was observed for the Trichoderma applied at 3 months, however, not 

significant. Overall, there was no significant difference between the treatments within the 

seedlines. 

Above ground dry weight of the seedlings reflected the seedling height data with seedline A 

tending, however not significant, to have heavier seedlings (Table 2.4). 
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Table 2.4  Effect of the six treatments consisting of control, Arbor-Guard™ 
applied at sowing (sow) and Arbor-Guard™ applied after 3 months (3mth), 
which were further divided by the two seedlines (A and B) on the seedling 
parameters assessed 5 weeks after seed sowing or at harvest. Treatment 
means within a row followed by the same letter are not significantly different 
as analysed by Fisher’s Protected LSD p=0.05 

Treatments 

Control Arbor-Guard™ (sow) Arbor-Guard™ (3mth) 

Seedling parameters A B A B A B (3) LSD 

(1)Emergence (%) 96.4 A 91.8 B 95.1 AB 92.7 B NA NA 3.71 

(2)Height (cm) 44.5 CD 41.2 A 45.4 D 42.3 AB 43.5 BCD 42.7 ABC 2.12 

(2)Diameter (mm) 4.8 A 5.0 A 4.8 A 5.0 A 4.8 A 4.9 A NSD 

(2)Height : diameter 9.5 D 8.4 A 9.7 D 8.7 AB 9.3 CD 8.8 ABC 0.51 

(2)Above ground D. wt (g) 4.6 AB 4.1 AB 4.7 AB 4.1 A 4.9 B 4.4 AB 0.79 

(1) Assessed after 5 weeks (n=900), (2) Assessed at 9 months (n=60), (3) Fisher’s protected LSD (0.05), NA = Not 
applicable, NSD = no significant difference 

 

2.14 Discussion 

Overall the application of Trichoderma spp. in the commercially available product Arbor-

Guard™ either at sowing or after 3 months did not negatively impact on ECM colonisation of 

P. radiata seedlings. What sets this experiment apart from other work is the observation of 

what effect the inoculation of six Trichoderma species, in the form of a commercially 

available product, both at seed sowing and after 3 months growth, into a working non-

sterilised containerised nursery, has on indigenous ECM colonisation. Some work showing 

the interaction of Trichoderma on ECM colonisation in a field situation was carried out by 

Malyshkin, (1951) and Shemakhanova, (1962), both cited in (Summerbell, 2005). In the 

authors’ work they found a positive effect of adding one Trichoderma species on ECM 

colonisation of oak seedlings. In contrast, more recent work carried out by Chavasse, (1980) 

in a nursery situation found that the inoculation of Trichoderma was detrimental to ECM 

colonisation and subsequent growth of P. radiata seedlings. However, in this situation the 

nursery bed had been previously sterilised and as a result it was noted that the Trichoderma 

successfully outcompeted the ectomycorrhizal fungus before mycorrhization was able to take 

place. Sterilisation of the nursery bed as in the case of Chavasse, (1980) is not considered best 
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practice and experimental work on the effect of Trichoderma on ECM colonisation in un-

sterilised potting media is required. 

Most other work has focussed on in vitro interactions, either looking at interactions between 

non-mycorrhizal and/ or ectomycorrhizal fungi and Trichoderma (Mucha et al., 2007; Mucha 

et al., 2008; Werner et al., 2002; Zadworny et al., 2004; Zadworny et al., 2007; Zadworny et 

al., 2008). In these studies it was concluded that Trichoderma had no negative impact on the 

ectomycorrhizal fungal species, instead the Trichoderma species tested were themselves 

antagonised. In contrast to this Summerbell, (1987) found in vitro that Trichoderma was 

strongly antagonistic towards mycorrhizal colonisation and growth in the rhizosphere of 

Laccaria bicolor seedlings, even after the mycorrhizal relationship was given time to 

establish (9 days) before Trichoderma inoculation. It is well documented that results of in 

vitro studies, although beneficial in many cases, are not necessarily able to be extrapolated out 

into field conditions and often results are not repeatable in the field (Whipps, 1987). 

Thelephora terrestris was the only predominant ectomycorrhizal fungus detected in 

association with the P. radiata seedlings in this experiment. Nursery systems, especially 

containerised seedlings, could potentially impose selective pressures on the ECM species able 

to colonise seedlings, which in turn could decrease the ectomycorrhizal diversity (Karkouri et 

al., 2005). Other ECM fungal species will be present but their abundance will be low. It could 

therefore be save to assume that Th. terrestris will not only be the dominant species 

colonising the P. radiata root tips but will probably be the most functionally important. If a 

more intensive molecular analysis was undertaken other ECM species could be detected. 

However, the quantification of these species would be limited to the morphological 

characterisation because all the ECM observed, of which on average there were 830 root tips/ 

seedling analysed, appeared to have the same gross morphological characteristics. Therefore, 

one would need to do a large number of DNA extractions followed by RFLP profiling to 

ascertain the proportion of root tips the other species occupy. This was outside the scope of 

the current experiment. 

Thelephora terrestris has been shown to do well in high fertility environments and in high 

organic matter substrates such as peaty soils (Chu-Chou and Grace, 1990). This experiment is 

in agreement with Chu-Chou and Grace, (1990) findings where Th. terrestris is the dominant 

ectomycorrhizal fungus found in high fertility/ organic matter sites as a result of the 

containerised system employed at the nursery. This observation is further backed up by recent 

work completed by Walbert, (2008) who did not find Th. terrestris in a soil bed nursery 

system where the soil was derived from volcanic parent material. High levels of nutrients by 
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fertigation as applied to the nursery seedlings in this experiment have been reported to have 

detrimental impacts on ectomycorrhizal colonisation (Hall and Perley, 2008). However, Th. 

terrestris has been described as tolerant to high levels of nitrogen (Hilszczanska and Sierota, 

2006) and as a result would have a competitive advantage in heavily fertilised nurseries as is 

the case in this nursery. Indeed Aspray et al., (2006) noted that Thelephora and Tomentella 

species are common environmental species found in the glasshouse environment in their work 

looking at mycorrhiza helper bacteria (MHB). While Hall and Perley, (2008) noted that Th. 

terrestris was a common inhabitant in nurseries growing P. radiata, and the authors further 

pointed out that there was no proof that this ECM was beneficial to the seedlings outside the 

nursery environment. However, Th. terrestris has been recently observed in P. radiata stands 

between 8 and 15 years old in the Kaingaroa forest, New Zealand but there was no correlation 

as to the respective health of the tress (Walbert, 2008). 

Fungicide use may also put a selection pressure within the nursery environment conducive to 

tolerant species of fungi as they too have been shown to be detrimental to ECM colonisation 

(Hall and Perley, 2008). Although no fungicides were applied to our experiment they were 

routinely applied at the nursery in the immediate environment surrounding the test seedlings 

and as a result could lower ectomycorrhizal inoculum levels that otherwise would be present. 

Indeed Pawuk et al., (1980) found the fungicide “benomyl” to increase the mycorrhizal 

colonisation of both Pisolithus tinctorius (Mont.) Fisch. and Thelephora terrestris on 

container grown P. palustris Miller. seedlings. This result could be the result of benomyl 

inhibiting soil Ascomycetes species that compete against the mycobionts (Summerbell, 2005). 

Any sterilisation of nursery containers could also lead to a selection pressure conducive to 

early colonising ECM species (Karkouri et al., 2005). In the case of this experiment it is 

unknown as to whether the trays that were used had any sterilisation procedure pre seed 

sowing. 

Thelephora terrestris has also been shown to naturally inhabit root systems without the 

inoculation of any ECM fungi (Bogeat-Triboulot et al., 2004). When Bogeat-Triboulot et al., 

(2004) inoculated P. pinaster Aiton. seedlings with the ectomycorrhizal symbiont Hebeloma 

cylindrosporum Romagn., a specialised ECM that especially increases the root hydraulic 

conductance of seedlings under high moisture stress, they found Th. terrestris was a major 

contaminant (colonising up to 50% of root tips) of the non-inoculated control seedlings. 

Further, Th. terrestris was much less suited to the health of the seedlings due to the reduced 

ability of water conductance relative to Hebeloma cylindrosporum.  This primary colonising 
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characteristic of Th. terrestris has also been found in other work and was even considered a 

“weed species” in some systems (Hall and Perley, 2008). 

It has been hypothesised that the Th. terrestris inoculum comes from the surrounding 

environment via spores being transported in the air currents (Bogeat-Triboulot et al., 2004). 

Air currents are the likely source of Th. terrestris inoculum in our experiment. Hall and 

Perley, (2008) found that Th. terrestris fruited abundantly in late summer through the slots of 

the side – slit trays growing Nothofagus seedlings. If this happened in the PF Olsen nursery 

this would be inevitability be the source of inoculum that would effectively form an inoculum 

bank that could further contaminate more seedlings. Another source could be the pine bark 

that makes up 50% of the potting mix. However, the pine bark is composted before use which 

should eliminate any ECM inoculum, or again this could exert a selective pressure towards 

more thermo-tolerant ECM species. 

The low diversity of ECM species colonising the seedlings at PF Olsen nursery could be as a 

direct result of its location as it is not close to any significant forestry stands. As a result the 

potential of wind dispersed ECM from forestry stands is significantly reduced, which in turn 

will lower the potential ECM diversity of seedlings. Indeed, Dickie and Reich, (2005) 

expressed that the lack of an established ectomycorrhizal stand of trees as a source of 

inoculum would limit the ectomycorrhizal infection of seedlings. Compounding this is the use 

of a soilless potting mix that is replaced annually in the containerised system at PF Olsen. 

More traditional soil bed nurseries are based close to the forestry stands where the seedlings 

will be eventually planted for logistical reasons. So ECM inoculum via wind dispersal in 

these systems has a higher chance of forming ECM relationships on nursery seedlings. 

Further to this, and probably more importantly, the soil bed over time will build up a diverse 

species composition of ECM fungi that are able to readily colonise seedlings (Walbert, 2008). 

Three dominant morphotypes (Figure 2.4) of Th. terrestris were characterised as described in 

Table 2.2 into their respective level of ramification. The three morphotypes shared the same 

GenBank accession number (Table 2.3) and when the sequences were cross compared had 

99% similarity (Appendix C.1). This would suggest that the ECM root tips analysed are more 

than likely to have come from the same origin. Overall the only difference was the root tip 

morphology, however, this observation was not a treatment effect (Figure 2.4). The obvious 

reasoning behind this could simply be the age of root tips when assessment took place, after 

the seedlings were 9 months old. This reasoning explains the pattern of morphotypes found, 

with the relative abundances of the low levels of unramified root tips followed by the most 

abundant dichotomous morphotypes and finally the less numerous multi-dichotomous. The 
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changing colour, from light brown to dark brown, of the multi-dichotomous morphotypes also 

suggests an aging effect.  

Any indication that the application of Arbor-Guard™ had any effect on ECM morphology is 

highlighted in the Arbor-Guard™ applied at 3 months (seedline A) treatment. Here, relative to 

all other treatments, the total proportion of multi – dichotomous to dichotomous root tips was 

not significantly different (Figure 2.4). This result may indicate that the 3 month delay of 

Arbor-Guard™ inoculation onto seedline A could have led to stimulatory effects conducive to 

higher levels of ramification of the root tips. By letting the potential fungal mutualist form a 

mycorrhizal association before Arbor-Guard™ inoculation this would provide an inoculum 

base of ECM fungi within the rhizosphere to further colonise new root tips, either by hyphal 

acropetal growth or from hyphal remnants on the root surface (Marks and Foster, 1973). This 

inoculum base may be at a threshold level high enough for any antagonistic/ competitive 

interaction not to impede colonisation. Indeed Marks and Foster, (1973) stated that if there is 

already mycorrhizal infection the chances of secondary infection are greatly increased. 

Summerbell, (1987) allowed mycorrhization to take place in a Laccaria bicolor – Black 

spruce complex before the inoculation of T. viride and found a small but significant increase 

of 4.4% ECM colonisation above the simultaneous inoculation of the two fungal species. The 

T. viride isolate used in Summerbell, (1987) experiment was very antagonistic towards L. 

bicolor, reducing percentage mycorrhization by 100% relative to the controls and other co-

inoculated indigenous fungal species isolated from the washed mycorrhizal roots of Black 

spruce. This further shows evidence that the delaying of Arbor-Guard™ inoculation by three 

months could provide enough time for ECM mycorrhization and therefore increase the 

abundance of multi – dichotomous morphotypes. 

To my knowledge there is no literature on rhizospheric fungi having any effect, either 

stimulatory or negative, on root tip architecture. Two isolates of mycorrhiza helper bacteria 

(MHB) Paenibacillus sp. and Burkholderia sp. were shown to influence, although not 

quantitatively, the dichotomous root tip architecture of a Lactarius rufus (Scop.) Fr. - Pinus 

sylvestris ectomycorrhizal symbiosis (Aspray et al., 2006). The authors acknowledged that 

changes in root architecture induced by MHB could be an important assessment parameter 

that is commonly overlooked; however, there was no corresponding discussion on how the 

change in root architecture influenced seedling growth/ health. Therefore this raises the 

question of the biological relevance of multiple branching/ ramification in ECM. Zheng and 

Wu, (2008) found no correlation between the ECM tip morphology of Rhizopogon luteolus, 

Pisolithus tinctorius and Boletus edulis Bull. with regard to growth of P. thunbergii Parl. 
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seedlings. Vinceti et al., (1998) looked at root tip ramification as one possible factor in the 

decline in health of a Norway Spruce (Picea abies (L.) Karst.) stand of trees in the Italian 

alps. The authors found a correlation that the less healthy trees tended to have a less complex 

level of ramification relative to the healthy trees, however, they concluded that the 

aboveground decline in tree health was not attributed to the below ground conditions. Aspray 

et al., (2006) noted in their work with MHB that changes in root tip architecture could be just 

plant host or bacterial/ fungal species specific. It has been well documented in past literature 

that ECM root architecture can be plant/ ECM species specific and that it can be influenced 

by environmental conditions such as temperature (Marks and Foster, 1973). 

The results indicate that the indigenous population of Trichoderma in the potting mix was 

high; thereby adding more Trichoderma in the form of Arbor-Guard™ to the media would not 

necessarily increase the population size. Instead it is more likely to change the dynamics of 

the rhizosphere, giving change to the species present and the overall proportion of species 

occupying the rhizosphere. This study only quantified the total Trichoderma population and 

unfortunately an analysis of the actual Trichoderma species present was not undertaken. 

Therefore, the data does not reveal if the applied Arbor-Guard™ isolates survive or out 

competed the indigenous Trichoderma species present. Hohmann, P. (unpublished) showed 

that the addition of selected Trichoderma isolates can change the Trichoderma species 

composition in the rhizosphere in P. radiata seedlings. This was shown by either the total 

displacement of the indigenous species population or, on the contrary, the inoculated 

Trichoderma species were totally absent after 20 weeks. Further, Hohmann, P. (unpublished) 

found that particular isolates were dominant in the rhizosphere of P. radiata seedlings while 

others had a preference for the bulk soil environment. These results further illustrate the 

dynamic interface of the rhizosphere environment. By restricting the assessment of ECM 

colonisation to only looking at two fungal groups, as was done in this experiment, will not 

reveal the inherent shift in population dynamics of other rhizosphere species that probably 

have a significant impact on microbial community structure.  

Overall, a more comprehensive assessment of Trichoderma cfu numbers to species level is 

required for any delineation of the potential impacts of Arbor-Guard™ inoculation on ECM 

colonisation. Further treatments inoculated with the individual Arbor-Guard™ isolates would 

be helpful in assessing specific ECM/ Trichoderma interactions, while also giving an insight 

in to the dynamics of the indigenous Trichoderma community. This would reveal any impact, 

either as a direct result of a particular isolate or as an indirect influence due to the 

manipulation of the rhizosphere community, the addition of Trichoderma has on the 
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colonisation of ECM. Another added advantage to approaching the assessment in this way 

would be the elucidation of what the preferential community structure of Trichoderma species 

is in the rhizosphere for optimum ECM colonisation. 

There was a general and sometimes significant decline in Trichoderma cfu numbers relative 

to their respective controls from the initial 5 week assessment to the harvest assessment 

(Figures 2.6A and 2.6B, respectively). Although the difference between the highest and 

lowest values (control; seedline A and Arbor-Guard™ applied at 3 months; seedline B 

respectively) in Figure 2.6B is statistically different, this does not automatically confer that 

this range is biologically relevant. The species or strain of Trichoderma present is more 

important than the ‘total numbers’ per se. Trichoderma spp. dynamics in the 

mycorrhizosphere over time is not well understood. One report indicated that both 

Trichoderma spp. and Fusarium spp. were characteristic to non-mycorrhizal pine roots and 

less common in mycorrhizal roots in Russia (Summerbell, 2005). Another report suggested 

that young germinating seedlings of Pinus kesiya Royle. ex Gordon. favoured the growth of 

Trichoderma spp. (including Verticillium) in the rhizosphere, however, after mycorrhizal 

formation they were excluded from the rhizosphere (Summerbell, 2005). Although 

Trichoderma was not totally excluded, our experimental results do follow the same pattern. 

This pattern could be explained by the successional changes of saprophytic fungi during 

ectomycorrhzial colonisation. Root exudate quality and quantity is known to change when 

ectomycorrhiza colonise root tips, which in turn could confer a selection pressure on 

rhizosphere community structure (Frey-Klett et al., 2005) and in this case prevent 

Trichoderma accessing vital nutrients for rhizosphere colonisation. 

An increase in root exudates from the ECM and the ability of ectomycorrhiza to structure, and 

synergistically interact with the soil microorganism community (Chalot et al., 2002; Frey-

Klett et al., 2005; Timonen et al., 1998) could also explain the relative increase in 

Trichoderma cfu numbers from the initial 5 week assessment to the harvest assessment in the 

controls (Figure 2.6A and 2.6B, respectively). 

Another possible reason for the high levels of Trichoderma found in the control seedlings 

could be from cross contamination via water splash, as the first assessment of Trichoderma 

cfu took place 5 weeks after Arbor-Guard™ inoculation. Trichoderma species are known to 

be competitive primary colonisers of potting mix (Leandro et al., 2007), and as a result would 

rapidly colonise the control potting media substrate if contamination occurred. Contamination 

could either occur as described above or originate from the high background concentration of 

Arbor-Guard™ species in the nursery environment due to the routine application of Arbor-
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Guard™. The likely hood of cross contamination during the setup of the experiment is small 

due to the control trays of seeds being planted first and taken out of the general area before 

the Arbor-Guard™ treatments were inoculated. 

Unfortunately there was potential in misdiagnosing between Trichoderma and Penicillium 

species on the TSM plates, thereby incorporating Penicillium into the cfu counts. This could 

have been particularly prevalent in the assessment of the control plates due to the dynamics of 

microbes within the rhizospheres between control seedlings and Arbor-Guard™ treatments 

potentially being different. Bourguignon, (2008) observed that a decrease in Trichoderma 

numbers in the rhizosphere of vegetable systems was strongly associated with an increase in 

Penicillium numbers. Therefore it is feasible that where there was no addition of Trichoderma 

(i.e. control plants) the population of Penicillium could be high relative to where the 

treatments had Arbor-Guard™ added. Summerbell, (2005) revealed the pre-1985 literature 

stating that Penicillium was a common fungus associated within the ectomycorrhizosphere 

and it was postulated that the high concentrations of tannins and phenolics exuded in the 

rhizosphere of woody plants generated a selective pressure towards Penicillium inhabitants, 

which have the ability to degrade these recalcitrant/ refractory molecules. Penicillium spp. 

were also considered to be stimulated by ectomycorrhizal fungal for their ability to dissolve 

inorganic phosphates (Summerbell, 2005). Indeed, Rambelli, (1973) found the dominating 

presence of Penicillium spp. in the mycorrhizosphere of ECM in association with P. radiata 

throughout four seasons. With the level of mycorrhization in the control seedlings being 

equivalent to the Arbor-Guard™ treatments in our experiment (Fig 2), and with the potential 

misdiagnoses of Penicillium on the TSM plates, it is highly likely that total Trichoderma 

numbers would be misrepresented in the control plates. 

There was no seedling growth promotion of adding Arbor-Guard™ as previously found in 

other experiments (Hill, 2004/2005) (Table 2.4). Any growth promotion response could 

however be obscured due to the very uneven watering of seedlings at the early stages of 

growth within the glasshouse (Figure 2.7). Aside from the watering, any increased growth 

rates could be masked by leaving the seedlings too long before data collection, as the high 

application rate of fertiliser to the seedlings over time would counteract the slow start. An 

intermediate seedling analysis, of around 3 to 4 months of age could have given more robust 

growth promotion data. 
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Figure 2.7 Difference in Pinus radiata seedling height due to uneven watering. 
A; Greener larger seedlings versus B; lighter coloured stunted seedlings 
(arrows indicate the average height of seedlings) 

 

In retrospect, data was required for root dry weights. However, the sampled root length for 

root tip analysis, which was a 10% sample of the whole root system, should have given an 

indication of the relative root masses. No significant differences in total root lengths between 

treatments or seedlines were observed. 

The time taken to assess the ECM was initially underestimated with many more replicates 

being set up in the experiment. The low number of seedlings assessed for each treatment is 

reflected by the statistical variation in the results. The only way to reduce the variation would 

be to increase the replicates assessed and this could only be done if a less intensive 

assessment was undertaken due to time constraints. However, this would reduce the overall 

resolution, so at the time of sampling the decision was made to intensively record a smaller 

number of replicates to reduce the overall variation. In hindsight a less intensive and more 

extensive assessment should have been undertaken to increase the replicate number as it has 

been shown that there are always inherent variations in results when working with growth-

stimulating non-symbiotic microorganisms (Bowen and Rovira, 1961; cited in Summerbell, 

2005). An earlier assessment when the seedlings were 4 to 5 months old may have yielded 

better results. At this stage of growth the seedlings root systems would not have been 

occupying the whole cell of the Side-Slit tray which would make the sampling, processing 

and quantification of ECM root tips much easier and quicker. This would have the advantage 

over leaving the seedlings to their full 9 month term that more seedlings would have been able 

to be assessed and therefore reduce the variation in results. 

A B 
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An earlier assessment would allow for the differentiation between rhizosphere competent 

Trichoderma spp. inhabitants and species more prevalent in the bulk soil environment due to 

the root system not taking up the whole cell. Therefore actual Trichoderma species colonising 

the rhizosphere could be elucidated and enumerated. 

The PF Olsen commercial experiment was limited at the outset to natural ECM colonisation 

of Pinus radiata seedlings from the surrounding environment. As a result the ECM species 

diversity was limited to only one predominant species, Thelephora terrestris and any effect of 

Arbor-Guard™ inoculation on ECM colonisation cannot be delineated out of these results 

alone. Therefore a more comprehensive assessment of how Arbor-Guard™ effects the 

colonisation of a known species composition of ECM is required to achieve the overall 

objective of this study and this is investigated in Chapter 3. 
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    Chapter 3 

Effect of Trichoderma spp. inoculation on colonisation 

of Pinus radiata by specific ECM species 

3.1 Introduction 

The aim of this experiment was to look at the effect of Trichoderma spp. inoculation on the 

colonisation of known ECM that have been identified as early colonisers of P. radiata 

seedlings. To accommodate for the inoculation of known ECM species into an experimental 

setup it was necessary to run an additional experiment at Lincoln University. The Lincoln 

experiment was designed to augment the PF Olsen commercial experiment with the additional 

ECM inoculation treatments and to address objectives 3 and 4. 

Initial results that were obtained from the commercial experiment (PF Olsen experiment) 

revealed that there was no significant differences between the seedlines A and B, and that 

Arbor-Guard™ inoculation timing had no significant effect on ECM root tip numbers. As a 

result the Lincoln experiment was designed to include only seedline A due to its better tree 

harvesting qualities (see Appendix A.1), while Arbor-Guard™ inoculation at sowing was 

chosen over the 3 month inoculation as this is the management system used in the commercial 

nursery. Also, if there is any effect of Trichoderma application on ECM colonisation it would 

be more likely to see an effect when the inoculation was at seed sowing. 

3.2 Methods 

3.2.1 Experimental design 

A glasshouse pot experiment was setup in a split plot design using 200 mL capacity plastic 

pots with 4 treatments, (Table 3.1) at Lincoln University. Treatments in this experiment 

included the inoculation of six ECM species both with and without Arbor-Guard™ into the 

potting media prior to sowing (Table 3.1). The split block design allowed for the inclusion of 

a time parameter, thus it gave enough time for a subset of each treatment to be harvested and 

completely analysed, in turn keeping the samples fresh, while any temporal variation could be 

statistically accounted for. This was achieved by splitting each block, of which there was five, 

into four split-plots. All 4 treatments were replicated and randomly assigned a position within 

each of the four split-plots. All four split-plots were also randomly assigned a sampling time 

within each block. Thereby, at sampling time 1, each of the 4 treatments were replicated five 

times (1 from each block) giving a final number of 4 treatments x 5 blocks x 4 split-plots 
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equalling 80 seedlings in total (20 replicates for each treatment). Including a time parameter 

into the design gave the advantage that the seedlings could be processed immediately after 

harvesting, thereby ECM were fresh. 

Table 3.1  Outline of the 4 treatments applied to the P. radiata seed (seedline 
A) in the Lincoln glasshouse experiment. 

Treatment No. Description 

1 Control 

2 Arbor-Guard™ at seed sowing 

3 ECM inoculation 

4 ECM inoculation plus Arbor-Guard™ at seed sowing 

 

3.3 Silvicultural management and experimental setup 

Sowing of the P. radiata seed (GF Plus A), followed the procedure of experiment 1 (Section 

2.4) with the major exception that the potting media mixture was a 50:50 (v/v) mixture of peat 

and coarse vermiculite. Coarse vermiculite was chosen over finer mixes to give maximum 

aeration to the root system and to mimic the size of bark material in the commercial 

experiment. Although the individual 200 mL plastic pots (TEKU square pot 7 x 7x 8 cm) used 

in the Lincoln experiment were different than the Side-Slit trays in the commercial 

experiment, they were filled to the same volume of 100 mL. Pots were assigned their 

respective positions on self draining plastic trays according to the split block design, with the 

trays placed on tables ¾ metre off the concrete floor of the glasshouse. The application of the 

bird repellent was omitted in this experiment to reduce factors that could potentially influence 

ECM colonisation. 

Seedlings remained in the glasshouse for the duration of the experiment (9 months) with 

water applied to keep the potting media at field capacity. No fertiliser was applied to the 

seedlings at sowing or during the growing period, the reasoning behind this decision was to 

help the induction of ECM colonisation as it has been well documented that ECM 

colonisation is inversely related to the nutritional state of the soil (Meyer, 1973). 

3.4 ECM inoculation 

3.4.1 Source and maintenance of ECM fungi 

Pure cultures of the ectomycorrhizal species Rhizopogon luteolus (isolate 1812), R. parksii 

Sm. (isolate 246), Rhizopogon spp. (isolate 262), Suillus luteus (isolate 253), S. granulatus 

(isolate 244), and Scleroderma bovista Fr. (isolate 1813) were sourced from Ensis, Rotorua.  
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These cultures were chosen because of their availability in pure cultures, while being 

recognised as early ECM colonisers (Walbert K. pers com.). 

Cultures were isolated from either sporocarp tissue or directly from ECM root tips in pine 

plantations. Each of the ectomycorrhizal species was stored on Modified Melin Norkrans 

(MMN, Appendix A2.2) as slopes at 4ºC, and routinely sub-cultured every 6 months onto 

MMN agar, incubated at 20ºC (24hr dark), before being re-subbed onto new slopes if the 

cultures were free of contamination. 

Malt extract agar (MEA), Difco™ was used for all experimental purposes in the experiment 

unless stated otherwise. 

3.4.2 Inoculum production 

All six species of ectomycorrhiza fungi described above were grown individually in a peat 

and vermiculite mix in 2 L Erlenmeyer flasks in aseptic conditions using a modified method 

of Aspray et al (2006). Two hundred millilitres of a sieved (2 mm) 1:4 (v/v) peat:vermiculite 

mix, combined with 95 mL of malt extract (20 g L-1) for an energy source, was used as the 

inoculum substrate. Flasks were autoclaved twice for 15 min at 121ºC, once before the 

addition of malt extract and again after the addition of malt extract. A foam bung covered 

with tin foil kept the axenic cultures from contamination and allowed for the passive transfer 

of respiratory gases. Each flask received 10, 5 mm hyphal plugs that were taken with a cork 

borer from the outside edge of actively growing ECM fungal colonies on MEA. Flasks were 

subsequently incubated for a period of 2 months in the dark at 20ºC with periodic mixing by 

shaking the flasks to help fungal colonisation of the media. 

After the incubation period, 20 random samples (≈2 mm diameter) of the inoculum substrate 

were aseptically removed from each respective ECM flask. Each piece was aseptically plated 

out on MEA, five pieces per agar plate, and incubated at 20ºC in the dark and assessed after 

14 days for hyphal growth of the respective ECM isolates. This allowed the inoculum 

potential of the substrate to be determined. 

3.4.3 Pot inoculation 

All six flasks containing the individual ECM species were combined together and thoroughly 

mixed into 5 L of potting media to give a final inoculum concentration of 19.35% (v/v) 

(approx 3.2% for each ECM species). To avoid contamination, both the thorough hand mixing 

of the ECM inoculum substrate in the potting mix prior to sowing and subsequent potting up 
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into pots was carried out after the non-ECM treatments (treatments 1 and 2, respectively) 

were potted up. 

3.4.4 Pure culture species identification 

Extraction of DNA with the subsequent sequencing of the PCR product was required to 

confirm ECM identities of the pure cultures received from Ensis and to enable the identity of 

the ECM root tips to be compared to that of the cultures used for inoculation. 

This was achieved by inoculating three discs (5 mm) cut from pure cultures of each ECM 

species growing on MMN agar into separate 100 mL Erlenmeyer flasks containing 20 mL of a 

static MMN broth. The cultures were incubated at 20ºC for 2 weeks or until the outwardly 

growing mycelia reached ≈10 mm from each plug. Samples of the mycelia were aseptically 

taken with disposable 10 µl inoculating loops, dried by pressing between sterile Miracloth and 

frozen in liquid nitrogen ready for DNA extraction. 

DNA was extracted using a BIO-RAD 5% Chelex®100 Molecular Biology Grade Resin 

(200-400 mesh). A sample of mycelia (approx 4 mm2) from each ECM fungal isolate was 

suspended in 100 µl of pre-warmed 5% Chelex®100 resin. The tube was then incubated at 

92ºC for 20 minutes in a BIO-RAD iCycler thermal cycler (96 well x 0.2 mL). After which 

the samples were frozen at -20ºC, thawed at room temperature and then spun at 13,000 rpm 

(≈7558 x g) for 2 minutes in a bench top microcentrifuge. The top aqueous layer was then 

removed avoiding the pellet and the resulting solution was stored in a -20ºC freezer ready for 

PCR amplification. All of the respective ECM species DNA was extracted this way except for 

Rhizopogon parksii (isolate 246) DNA where the PowerSoil® extraction kit was used as 

described in Section 2.8.1. Extraction was done by this method after the repeated failed 

attempts with the Chelex®100 DNA extraction procedure, probably due to co-extracted 

products inhibiting the PCR reaction. 

DNA was amplified as described in Section 2.8.2 with the subsequent sequencing of the PCR 

products after purification with the PCR Kleen Spin Column as described in Section 2.8.3. 

3.5 Trichoderma application and assessment 

An Arbor-Guard™ (5 x 109 spores g-1; Arbor-Guard™) suspension was prepared and applied 

at the same concentration (0.2 g L-1) as in the commercial experiment (Section 2.5). Although 

the application of the Arbor-Guard™ solution (5.5 mL/ pot) was done with a 10 mL pipette, 

instead of a knapsack, with the aim to applying 5.5 x 104 Trichoderma cfu g-1 potting media 



 46

(100 g potting media/ pot). Both the control and ECM treatments (1 and 3, respectively) had 

5.5 mL of water applied. 

To establish the actual number of Trichoderma spp. propagules applied to the treatments at 

sowing, the Arbor-Guard™ solution just prior to application was serially diluted onto TSM as 

described in Section 2.5. 

At the conclusion of the Lincoln experiment the Trichoderma spp. population was again 

determined by serial dilution of the potting media and subsequent plating out onto TSM, as 

described in Section 2.5 for all the four treatments (Table 3.1). Briefly, a composite potting 

mixture sample of four randomly selected seedlings per treatment were processed (removal of 

seedling root system) and homogenised. From this three 10 g sub-samples were shaken for 10 

minutes in 90 ml of sterile 0.01% water agar, left to settle for a further 10 minutes, then 

serially diluted to 10-6 with each dilution factor plated onto TSM. Each dilution factor plated 

onto TSM was replicated three times. 

3.6 Seedling harvesting and processing 

All four treatments and their respective replicates were assessed for emergence 4 weeks after 

seed sowing. Seedlings were collected and processed 9 months after seed sowing as outlined 

for the commercial experiment in Section 2.6 apart from some exceptions described below. 

During harvest one respective replicate for all four treatments was selected from each of the 

main blocks using the pre-determined random sampling times (split blocks) derived from the 

split block design. At the time of harvest the seedling root systems were immediately 

destructively sampled as described for the commercial experiment (Section 2.6) with height 

and basal trunk diameter recorded. 

3.7 Ectomycorrhizal analysis 

3.7.1 Root processing 

The Lincoln experiment seedlings root systems were easier to process than those of the 

commercial experiment as there were less overall roots and the majority of the roots/ root tips 

had accumulated at the base of the pot where there was access to air. Practically this meant 

that the root system of the Lincoln experiment was not a dense cluster like that of the PF 

Olsen commercial experiment and could be disassembled and concurrently cut up into 25 mm 

segments without soaking the root system overnight. Washing of any tightly adhering potting 

media off the root system was carried out over sieves or teased apart microscopically as 

described in Section 2.7.1. 
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3.7.2 Ectomycorrhizal quantification 

A 20% sub-sample of the whole root system was taken as described in Section 2.7.2, except 

that a plastic tray of half the dimensions was used, therefore the tray was dissected into 50 

squares and 10 squares were randomly assessed (c.f. 100 for the commercial experiment, 

Section 2.7.2). Using a smaller plastic tray was done because the total quantity of the Lincoln 

experiment’s roots was approximately half that of the PF Olsen commercial experiment, thus 

this allowed the sub-sampling to closely resemble that of the commercial experiment’s root 

density. 

3.7.3 Ectomycorrhizal morphological characterisation 

Morphological characterisation followed the procedure outlined in Section 2.7.3. 

3.8 Molecular methods for ECM identification 

The molecular methods from DNA extraction through to sequencing were carried out as 

described in Sections 2.8.1 – 2.8.3, respectively. 

3.9 Statistical analysis 

Root tips, expressed as root tips/ cm root length for each of the respective ECM species, were 

subjected to analysis of variance (ANOVA) and analysed as a split block design with a total 

of 8 replicates per treatment using Genstat 8.2 (Lawes Agricultural Trust, Rothamsted 

Experimental Station) software. Log10 transformed Trichoderma cfu data and the seedling 

parameters were also analysed using ANOVA. Treatment means for all assessments were 

separated using Fisher’s Protected least significant difference (LSD) tests at the P<0.05 level. 

3.10 Results 

A significant majority (66%) of the seedlings in block 5 died due to unforeseen circumstances 

and as a result block 5 was omitted from analysis. Furthermore, only the first two sampling 

times (two out of four split-blocks for each of the four main blocks) were assessed due to time 

constraints, meaning that a total of 32 seedlings were assessed (8 replicates per treatment). 

3.11 Total ECM root tips 

Overall there were no significant differences between the four treatments with respect to total 

numbers of ectomycorrhizal root tips per centimetre root length (Figure 3.1).  Arbor-Guard™ 

inoculation tended to decrease the total number of root tips relative to the control, while 

ectomycorrhizal inoculation on its own tended to increase the total number of root tips. 
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However, when the ectomycorrhizal symbionts were co-inoculated with Arbor-Guard™ the 

total number of root tips tended to increase relative to all treatments (Figure 3.1). 
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Figure 3.1 Total ECM root tips/ cm root length for the control, Arbor-
Guard™ application, ectomycorrhizal (ECM) species inoculation and ECM/ 
Arbor-Guard™ species co-inoculation. Means are separated using Fisher’s 
Protected LSD (p=0.05). 

 

After a thorough macroscopic evaluation of the total number of root tips across the four 

treatments, with subsequent DNA sequencing analysis (representative sequences presented in 

Table 3.2; Appendix C.2), it was concluded that an endogenous ECM species within the 

Thelephoroid family was the dominant ECM detectable (Table 3.2 & Figure 3.3). Suillus 

luteus, one of the inoculated ECM species was also identified but made up a significantly 

smaller proportion of the total root tips relative to the Thelephoroid species (Figure 3.3). The 

Suillus luteus species extracted from the root tips (Table 3.2) was confirmed through 

sequencing to be 100% identical (669 bp) to the inoculated S. luteus (Appendix C.2.4 and 

C.3.4 respectively).
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Table 3.2  Sequence results for the GenBank queries of ECM root tips classified by levels of ramification at Lincoln 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Representative samples of the root tips at Lincoln University including the Thelephoid species morphotypes unramified 
(A); dichotomous (B); and multi-dichotomous (C) morphotypes and Suillus luteus multi-dichotomous (D). 

 

ECM species Morphotype Description Sequence 

length 

GenBank Accession  

# 

GenBank 

score 

e- 

value 

Maximum 

Identity (%) 

Thelephoraceae Unramified Light brown, smooth, white apex 643 AY748885.1 1103 0.00 97 

Thelephoraceae Dichotomous Light brown, smooth, white apex 644 AY748885.1 1168 0.00 99 

Thelephoraceae Multi–dichotomous Light – dark brown, smooth, white apices, tortuous irregular branching 644 AY748885.1 1168 0.00 99 

Suillus luteus Multi-dichotomous Metallic purple, velvety surface, white apices, short dichotomous 
branching, hyphal fans 

670 DQ068969.1 1210 0.00 99 

A B C D
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Figure 3.3 Total ECM root tips/ cm root length for the control, Arbor-
Guard™ application, ectomycorrhizal (ECM) species inoculation and ECM/ 
Arbor-Guard™ species co-inoculation, as split by the two dominant detected 
ECM species in the Thelephoraceae family and Suillus luteus. Means are 
separated by Fisher’s Protected LSD (p=0.05). 

 

3.12 Inoculated ECM species identification 

Sequencing of the pure ECM species (described in Section 3.4.4) obtained from Ensis, 

Rotorua (Section 3.4.1) was done post inoculation into each of the respective treatments. The 

results of the sequencing analysis (Table 3.3; Appendix C.3) revealed that not all species were 

what they were first identified as. Of the six fungal species received, only four turned out to 

be actual ECM species after DNA sequencing analysis. The remaining two were the 

saprophytic fungal species Hypholoma fasciculare (Huds.) Kumm. and Lentinula edodes 

(Berk.) Pegler., which were described on inoculum delivery as Suillus granulatus and 

Rhizopogon spp. respectively. Of the ECM species Scleroderma bovista and Suillus luteus 

were described correctly, while Rhizopogon luteolus and R. parksii were identified as R. 

roseolus (Corda.) Th. Fr. and R. villosulus Zeller. after sequencing, respectively. 
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Table 3.3  Fungal species received from Ensis, Rotorua and their actual species identity as identified from pure culture DNA 
extraction followed by sequencing. 

ECM species (Ensis) Sequence length 
(bp) 

GenBank 
accession # Actual fungal species GenBank score e-value Maximum 

identity (%) Fungal grouping 

Rhizopogon luteolus  (1812) 677 DQ068965.1 Rhizopogon roseolus 1074 0.00 97 ECM 

Rhizopogon parksii  (246) 675 AF058310 Rhizopogon villosulus 1170 0.00 99 ECM 

Rhizopogon spp. (262) 734 DQ49707.1 Lentinula edodes 1341 0.00 99 Saprophytic (Shiitake mushroom) 

Suillus luteus (253) 669 DQ068969.1 Suillus luteus 1205 0.00 99 ECM 

Suillus granulatus (244) 671 DQ320134.1 Hypholoma fasciculare 1164 0.00 98 Saprophytic 

Scleroderma bovista (1813) 634 AB19517 Scleroderma bovista 1120 0.00 98 ECM 
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3.12.1 Pure species inoculum potential 

Scleroderma bovista (isolate 1813) was the only ECM species that did not have any mycelial 

growth extending from the peat: vermiculite inoculum substrate after plating onto MEA. For 

all of the other five fungal species all inoculum samples gave rise to colonies indicating 100% 

colonisation of the peat : vermiculite inoculum. 

3.13 ECM root tips as discriminated by morphotype 

Again the dominant ECM species had three distinct morphologies that could be discriminated 

by their level of ramification as described in Section 2.10.2, while Suillus luteus always had a 

multi-dichotomous morphology (Figure 3.2). 

Significantly more multi-dichotomous Thelephoroid morphotypes were observed relative to 

the less ramified morphotypic structures between all treatments (Figure 3.4). No significant 

differences were observed between treatments within each of the morphotype descriptions of 

the Thelephoroid species (Figure 3.4), although the relative proportions of root tips/ cm root 

length between each treatment was different within the three morphotypes (Figure 3.4). 

Sequence analysis between the three Thelephoroid morphotypes revealed that they were 

99.7% similar (Appendix C.2).  

Suillus luteus was only detected in low proportions relative to the Thelephoroid species in the 

ECM inoculated treatments as a multi-dichotomous morphotype (Figure 3.4). 
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Figure 3.4 Relative proportions of dichotomous (D), Multi-dichotomous (MD) 
and unramified (U) ECM root tips/ cm root length for the control, Arbor-
Guard™ application, ectomycorrhizal (ECM) species inoculation and ECM/ 
Arbor-Guard™ species co-inoculation as split by species found in the 
Thelephoraceae family and Suillus luteus. Means are separated using 
Fisher’s Protected LSD (p=0.05). 

 

3.14 Morphotype change over time 

A significant increase in the proportion of multi-dichotomous ECM root tips relative to the 

less ramified morphologies was apparent between sampling time one and two, c.f. 3 weeks 

(Figure 3.5). Un- ramified root tips significantly dropped between the two sampling times, 

while dichotomous morphologies decreased in abundance between sampling times but not 

significantly (Figure 3.5). 
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Figure 3.5 Relative proportions of total ECM root tips/ cm root length of 
dichotomous (D), Multi-dichotomous (MD) and unramified (U) morphotypes 
from the first set of assessments (Time 1) to the second set of assessments 
(Time 2). Means separated by Fisher’s Protected LSD (p=0.05). 

 

3.15 Non-mycorrhizal root tips 

No significant differences were observed between any of the treatments with respect to non-

mycorrhizal root tips (Figure 3.6). Ectomycorrhiza/ Arbor-Guard™ co-inoculation tended to 

increase the total number of non-mycorrhizal root tips relative to all the treatments, while both 

Arbor-Guard™ and ectomycorrhizal inoculation treatments on their own tended to lower the 

total number of non-mycorrhizal root tips relative to the control, respectively (Figure 3.6). 
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Figure 3.6 Total non-mycorrhizal root tips/ cm root length for the control, 
Arbor-Guard™ application, ectomycorrhizal (ECM) species inoculation and 
ECM/ Arbor-Guard™ species co-inoculation. Means separated by Fisher’s 
Protected LSD (p=0.05). 

 

3.16 Trichoderma counts 

The Arbor-Guard™ inoculum suspension applied at sowing was assessed for the actual 

Trichoderma cfu by serial dilution onto TSM. After two weeks incubation at 20ºC the total 

count confirmed that there were 5 x 109 cfu per gram of Arbor-Guard™ applied to the 

respective treatments. 

At harvest, all four treatments (Table 3.1) were analysed for Trichoderma cfu after log10 

transformation with the results illustrated in Figure 3.7. The Arbor-Guard™ inoculated 

treatments had significantly higher Trichoderma populations by two orders of magnitude than 

treatments without Arbor-Guard™ applied. ECM inoculated on its own had significantly 

higher Trichoderma cfu counts relative to the untreated control. 
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Figure 3.7 Log10 transformed Trichoderma cfu means for the control, Arbor-
Guard™ application, ectomycorrhizal (ECM) species inoculation and ECM/ 
Arbor-Guard™ species co-inoculation. Treatment means are separated from 
each other as determined by Fisher’s Protected LSD (p= 0.05). 

 

3.17 Seedling parameters 

No significant differences were observed between any of the treatments in the seedlings 

height, diameter or shoot dry weights at harvest (Table 3.4). Similarly no significant 

differences were observed in the height : diameter ratio. Seedling emergence was 100% 

across all treatments. 
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Table 3.4  Lincoln seedling parameters (seedline A) measured at final harvest 
for the control, Arbor-Guard™ application, ectomycorrhizal (ECM) species 
inoculation and ECM/ Arbor-Guard™ species co-inoculation. All results 
within rows were non-significant (NSD) as determined by Fisher’s Protected 
LSD (p=0.05). 

Treatments 

Seedling parameters Control Arbor-Guard™ ECM Arbor-Guard™ / ECM LSD 

Height (cm) 11.19 11.81 11.12 10.88 NSD 

Diameter (mm) 1.95 2.10 1.94 1.85 NSD 

Height : diameter 57.60 57.60 57.60 59.60 NSD 

Shoot dry weight (g) 0.492 0.505 0.479 0.417 NSD 

 

3.18 Discussion 

Overall the addition of Arbor-Guard™ did not negatively impact on ECM colonisation in 

glasshouse grown P. radiata seedlings. These results confirm the PF Olsen nursery findings. 

The Lincoln experiment was originally designed to augment the PF Olsen commercial 

experiment with the co-inoculation of ECM species known to colonise P. radiata seedlings in 

a system designed to be a compromise between an in vitro axenic bio-assay and the more 

realistic nursery conditions. 

The dominant ECM fungi colonising the root tips of the P. radiata seedlings were identified 

as belonging to the Thelephoraceae family. Again, as discussed in the PF Olsen experiment, 

there could be other ECM species colonising the root tips but the overall proportion will be 

low. On average 780 root tips were analysed per seedling for the Lincoln experiment and of 

these only three main morphotypes, along with the prominent S. luteus morphotype, were 

characterised. Each of three Thelephoraceae morphotypes characterised (Table 3.2) shared 

99.7% sequence similarity between them (Appendix C.2.), which means that is more than 

likely to be the same species. On average the consensus ITS region sequence of the three 

Thelephoraceae morphotypes was 85% homologous to the six Th. terrestris ITS sequences 

outlined in Table 2.3 (Appendix C.2 and C.1, respectively for sequences). Therefore, the only 

conclusion that can be drawn from the sequence results is that the ECM colonising the root 

tips of the seedlings at Lincoln are not the same species as from PF Olsen but could be the 

same genera. 
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The main genera within the Thelephoraceae family that are most likely to form a mycorrhizal 

relationship with P. radiata seedlings and have been shown overseas to be abundant ECM 

genera include Tomentella, Pseudotomentella and Thelephora (Gardes and Bruns, 1996; 

Koljalg et al., 2000; Tammi et al., 2001). One could only speculate as to the actual genera 

observed at Lincoln, however, what is known from our results is that the ECM colonising the 

seedlings within the Thelephoroid family share very similar morphological and ecological 

characteristics to Th. terrestris observed at the PF Olsen nursery. Similarities such as this 

have been found else where, Tammi et al., (2001) after sequencing the ITS region of a 

previously morphotyped Th. terrestris ECM found it shared the same sequence as T. radiosa 

(Karst.) Rick. Tomentella radiosa has been reported in the literature to be a resupinate form of 

Th. terrestris (Koljalg et al., 2000). Indeed Th. terrestris is closely related phylogenetically to 

the tomentelloid fungal symbionts Tomentella and Pseudotomentella spp. (Koljalg et al., 

2000). Koljalg et al., (2000) went further to suggest that the delimitation between Tomentella 

and Thelephora spp. is not as distinct as earlier studies have reported, both in genetic analysis 

and morphological identification. In fact T. sublilacina (Ellis & Holw.) Wakef., a common 

ECM of pine, is a sister species of Th. terrestris (Koljalg et al., 2000).  

From an ecological perspective the Thelephoroid species identified in the Lincoln experiment 

share a similar competitive ability with respect to the early colonisation of peat based 

environments (Koljalg et al., 2000; Tammi et al., 2001; Taylor and Bruns, 1999) as Th. 

terrestris did in the PF Olsen nursery. One could imply from these observations that the 

Thelephoroid species could have very similar functional characteristics to Th. terrestris. With 

this in mind the Thelephoroid species could be considered a weed species in nursery 

environments. Our data is consistent with this hypothesis, as the pattern is similar to the PF 

Olsen experiment where the total ECM root tip numbers were not significantly different 

between the control and ECM inoculation. The ability of Thelephoroid species to also out 

compete other ECM species could be the decisive factor contributing to the failed recovery of 

the majority of inoculated ECM species in the Lincoln experiment. As found with Th. 

terrestris, the Thelephoroid species could have the ability to out compete other ECM species 

colonisation by competitive exclusion, which has been documented in the literature in other 

systems and termed the “priority effect” (Kennedy et al., 2009). Kennedy et al., (2009) found 

that the first colonising species of Rhizopogon was not displaced after the inoculation of a 

second species of Rhizopogon three months later on P. muricata D. Don. seedlings. While 

Marx and Bryan, (1975) observed that the addition of Pisolithus tinctorius as basidiospores to 

2 month old P. taeda L. seedlings could not displace the already colonised Th. terrestris. 

Dunabeitia et al., (2004) attributed the reduction of Rhizopogon luteolus, R. roseolus and 
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Scleroderma citrinum Pers. mycorrhization due to Th. terrestris and Lactaria sp. having 

already colonised P. radiata seedlings and competitively excluding any other species from 

colonisation.  

The competitive ability of Thelephoroid species to out compete other ECM could be 

representative of nursery grown seedlings in peat based potting media. Walbert, (2008) in a 

soil based nursery did not find any Thelephoroid species colonising the root tips of P. radiata. 

Species including Pseudotomentella tristis (Karst.) Larsen., P. sp., Tomentella sp. and Th. 

terrestris were only recorded by Walbert, (2008) after P. radiata trees matured to eight years 

old in the Kaingaroa forest. 

Of the four known ECM species received from Ensis for ECM inoculum (Table 3.3), 

Rhizopogon roseolus, Suillus luteus and Scleroderma bovista are the only known ECM 

species able to colonise P. radiata seedlings (Chu-Chou, 1979). The remaining potential 

ECM, Rhizopogon villosulus, however, has not been reported to be an ECM on P. radiata 

(Molina and Trappe, 1994). Further, R. villosulus, Section Villosuli, were only found to 

colonise Douglas fir (Pseudotsuga menziesii (Mirb.) Franco.) seedlings (Massicotte et al., 

1994) and form non-functional (no Hartig net) ECM symbiosis with species of pine in pure-

culture axenic conditions (Molina and Trappe, 1994). Therefore the likelyhood of an 

ectomycorrhizal symbiosis of R. villosulus with the P. radiata seedlings in our experiment 

would be low. Unfortunately the viability test for all the ECM fungal species was done on the 

morning of inoculation into the potting mix for the P. radiata seedlings. This meant that the 

inoculum from S. bovista was included in the ECM mix, however, from the inoculum 

potential assay performed it was concluded that it was not viable and therefore Scleroderma 

bovista is unlikely to have become mycorrhizal with the P. radiata seedlings. In retrospect the 

viability of the ECM inoculum should have been done earlier. This would have meant that S. 

bovista would not have been included in the ECM mix, which would have been advantageous 

as it would have reduced any associated variables that could potentially influence treatment 

effects. Therefore only two respective ECM species, Rhizopogon roseolus and Suillus luteus, 

could be counted on as viable inoculum in the Lincoln experiment and go on to form 

functional ectomycorrhiza with P. radiata seedlings. As a result, the low number of total root 

tips observed in the ECM inoculated treatment relative to the control (Figure 3.1) could be 

simply attributed to the reduced numbers of ECM propagules actually inoculated (6.45% 

instead of 19.35% v/v). Also, the total number of ECM species was reduced from six to two; 

therefore this would have reduced the probability of ECM establishment. Confounding the 
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problem was the co-inoculation of both Hypholoma fasciculare and Lentinula edodes into the 

ECM inoculum mix due to the DNA sequencing analysis carried out post inoculation. 

One could premise that the co-inoculation of the two saprophytic fungi could antagonise both 

R. roseolus and S. luteus mycorrhization onto the seedlings, which in effect could have 

resulted in lower overall number of root tips being colonised. Mucha et al., (2008) found that 

Hypholoma fasciculare inhibited Suillus bovinus (Pers.) Roussel. in co-culture, however, 

hyphal damage was not observed. In Vasiliauskas et al., (2007) work they showed that H. 

fasciculare was able to be isolated from the internal root tip tissue of surface sterilised healthy 

Picea abies and Pinus sylvestris seedlings. Consequently in the same work, another 

saprophytic fungus Phlebiopsis gigantea (Fr.) Julich., was shown to form a mycelial mantel 

on Picea abies seedlings in vitro. This shows the complexity of potential interactions in the 

rhizosphere between litter decomposing fungi and ectomycorrhizal fungal species and raises 

the question on how saprophytic fungi compete for space/ nutrients in the rhizosphere 

(Vasiliauskas et al., 2007). In this experiment we can not rule out the potential negative 

interaction of H. fasciculare on the inoculated ECM species. There is no literature on possible 

interactions, with respect to ECM colonisation, of Lentinula edodes and ectomycorrhizal 

symbionts but again this cannot be ruled out. The competitive saprophytic ability of both 

Hypholoma fasciculare and Lentinula edodes could have detrimentally impacted on the pre-

symbiotic ECM fungi. Our results support the potential negative impact of both, or either co-

inoculated saprophytic fungi over riding the potential negative impacts of Arbor-Guard™ 

inoculation. This is illustrated in Figure 3.1, where ECM inoculation on its own was tending 

to have lower colonisation than the co-inoculation of Arbor-Guard™ and ECM. 

The Thelephoroid species was not able to completely inhibit S. luteus colonisation of P. 

radiata seedlings, although the abundance of S. luteus was low. It could be assumed that S. 

luteus was able to colonise the root tips before the Thelephoroid species, or was more 

competitive in the rhizosphere environment. Conversely S. luteus could have colonised more 

root tips at the early stages of seedling growth and then replaced by the Thelephoraceae 

species. However, our trend in data does not show this as there were more root tips colonised 

by S. luteus found on the second analysis (Figure 3.5). A further step to control the potential 

Thelephoroid dominance over the inoculated ECM species could have been to grow the 

seedlings in a sterile media. However, keeping the media sterile for the duration of seedling 

growth before transplanting requires a lot of resources and in this case was not feasible for the 

size of the experiment. Further, sterile potting media would provide excellent growing 

conditions, particularly in this case for the high organic layer loving Trichoderma and 
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Thelephoroid species (Leandro et al., 2007; Taylor and Bruns, 1999 respectively) and any 

other more pathogenic soilborne microorganisms that have the ability to rapidly colonise the 

sterile media once exposed to the non-sterile glass house environment. Nall, V. (un-

published), following similar protocols to the current experiment, successfully inoculated R. 

roseolus via mycelial inoculum onto transplanted P. radiata seedlings. However, the 

seedlings were kept under sterile conditions for the duration of the experiment by growing 

them individually under cover using transparent plastic bags that were able to allow 

respiratory gas exchange while stopping any spore contamination. 

Rhizopogon is a known to be a good coloniser of P. radiata seedlings in nurseries both in 

New Zealand (Chu-Chou, 1979) and overseas (Molina and Trappe, 1994) but failed to 

colonise in our experiment irrespective of treatment. Most natural ecosystems inoculum 

arrives either as spores or from live extramatrical mycelium already colonised to roots. A 

possible explanation as to the increased colonisation potential of Suillus luteus relative to 

Rhizopogon spp. in our experiment could be the type of inoculum. Interestingly Theodorou 

and Bowen, (1987) found basidiospores of S. luteus to be less conducive to germination in the 

rhizosphere of P. radiata relative to basidiospore germination of R. luteolus. Theodorou and 

Bowen, (1987) went on further to say that germination of basidiospores and mycelial growth 

probably respond to different root exudate compounds. Therefore, one could conclude from 

our experiment that S. luteus is better suited to mycelial inoculum and that the Rhizopogon 

spp. are more suited to basidiospore inoculum as found by Theodorou and Bowen, (1987) and 

as a result were competitively excluded by the Thelephoroid species. Indeed Molina and 

Trappe, (1994) in their work had difficulty in obtaining ECM colonised seedlings when they 

inoculated Rhizopogon spp. as mycelial inoculum to Pinus spp., instead basidiospores isolated 

from sporocarp tissue was the preferred method of inoculation. This observation was made 

even after the authors acknowledged that Rhizopogon spp. would be prime candidates, due to 

their comparative ease of pure culture isolation and fast growth, for mycelial inoculations. 

Massicotte et al., (1994) also found basidiospores the preferred method of delivery in to a 

peat/ vermiculite substrate when they inoculated five species of seedlings with eleven 

different Rhizopogon spp. to test host-fungus specificity. Basidiospores were inoculated at 

least 18 weeks after seedling planting and were found to germinate in the rhizosphere and 

colonise seedlings well (Massicotte et al., 1994). In more recent work Chavez et al., (2009) 

measured the mycorrhization potential of three ECM inoculation systems including spore, 

solid state mycelia and a liquid suspension of mycelia on P. radiata seedlings under 

controlled nursery conditions. After 11 months Chavez et al., (2009) found R. luteolus and S. 

luteus gave the best results using the solid and liquid state mycelium inoculum over the spore 
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suspensions, while S. bellinii (Inzenga.) Watling. performed just as well with all three 

inoculation systems. It was acknowledged that the success of mycorrhization between 

different species of ECM was dependant on the inoculum system used (Chavez et al., 2009). 

In our experiment it was assumed that each ECM species had the same potential to form 

mycorrhizal relationships with the P. radiata seedlings irrespective of the type of inoculum 

used. From Chavez et al., (2009) findings this assumption is likely to be wrong. Hall et al., 

(2003) expressed the importance of the right abiotic and biotic conditions required to have 

successful colonisation of root tips from an inoculated ECM species. They went on to say that 

there is a big difference between simply applying the ECM inoculum and having healthy well 

colonised root systems of the inoculated species. Not enough attention to detail was 

administered in our experiment with respect to ECM inoculation and as result could have 

confounded problems.  

Whether or not the inoculated ECM species died before establishment is not known, as apart 

from analysing ECM root tips at final harvest, no other post inoculation isolations were made. 

The glasshouse environment was not controlled enough as at times the temperature got up to 

30ºC for a number of hours. This could have a detrimental effect on non-symbiotic ECM 

inoculum prior to colonisation. Confounding this would be the relative humidity of the potting 

media during pulses of high temperature being too low. Rincon et al., (1999) controlled the 

glass house temperature between 20 – 25ºC and maintained >40% humidity when they 

inoculated P. pinea L. seedlings in a similar system to our experiment. 

 

The age of seedling roots has been shown to influence the mycorrhization potential with 

respect to timing of ECM inoculation of different ECM species. Theodorou and Bowen, 

(1987) found that R. luteolus mycorrhization was more rapid on older (21 days old) than 

younger (4 days old) P. radiata seedlings root systems. These results used R. luteolus 

basidiospores, however, in an earlier study Theodorou, (1980) found the same results, 

irrespective of whether or not basidiospores or mycelial inoculum was used. Application of 

the ectomycorrhizal inoculum at seed sowing therefore might have been too early. It would 

have been better to apply the inoculum once secondary laterals had started to form on the 

roots (Hall and Perley, 2008). Since we didn’t have enough time or resources to produce spore 

suspensions it may have been better to transplant 3 – 4 week old P. radiata seedlings into 

fresh vegetative ECM inoculum rather than incorporating it in at the time of seed sowing. 

Rincon et al., (1999) successfully formed ectomycorrhizas using a peat/ vermiculite mycelial 

inoculum with 8 ECM genera, including Rhizopogon roseolus and Suillus spp., when they 
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transplanted P. pinea emergent seedlings in glasshouse conditions. Rhizopogon roseolus had 

the highest colonisation rates, 63 – 89% of short roots colonised, while Suillus luteus failed to 

colonise the P. pinea seedlings (Rincon et al., 1999). However, Rincon et al., (1999), did 

attribute their success in forming R. roseolus ECM seedlings to the high inoculation rate (1:4 

v/v) of inoculum to the peat/ vermiculite potting substrate. Bogeat-Triboulot et al., (2004) also 

had successful mycorrhization after inoculation of Pinus pinaster seedlings four weeks after 

seed germination with a mycelial concentrate of the ECM symbiont Hebeloma 

cylindrosporum. Marx and Bryan, (1975) compared the colonisation potential of P. taeda 

seedlings when inoculated with Pisolithus tinctorius either by vegetative mycelium in a peat/ 

vermiculite media at seed sowing, or by basidiospore application after 2 months growth of the 

seedlings. After 8 months growth it was found in the vegetative inoculum delivery treatment 

that 92% of feeder roots were colonised by P. tinctorius, whereas in the basidiospore method 

of application only 23% of the roots formed P. tinctorius ectomycorrhiza. Therefore 

inoculating ECM via vegetative mycelia at the time of seed sowing in this system was 

markedly better than basidiospore inoculation after plants had established. These results 

indicate the importance of tailoring a particular inoculum system to the species of both ECM 

and plant, with respect to timing of ECM inoculation. In retrospect an axenic bio-assay testing 

the ability of each respective inoculated ECM species to colonise sterile P. radiata seedlings 

would have been helpful to ascertain their colonisation potential. This bio-assay could have 

helped with identifying reasons as to why all inoculated ECM species but S. luteus did not 

colonise the P. radiata seedlings in the glasshouse, while optimising the timing and type of 

ECM inoculation. 

With respect to timing of ECM inoculation, different types of ECM inoculum types have their 

own advantages and disadvantages. Basidiospore inoculation has the advantage of being able 

to be inoculated at any stage of seedling establishment. Seed inoculation of Rhizopogon 

luteolus by coating basidiospores onto P. radiata has been successfully done in large scale 

nursery systems (Theodorou and Bowen, 1973; Theodorou and Benson, 1983). The inherent 

ability of basidiospores to survive adverse conditions and germinate only when specific root 

exudates from the host are present probably allows this system of delivery (Bowen, 1994; 

Theodorou and Bowen, 1987). A disadvantage to basidiospore inoculation is the germination 

rates can be determinant on whether or not the particular ECM species is a primary (pioneer) 

or later coloniser of roots (secondary or third stage colonisers) (Bowen, 1994; Ishida et al., 

2008). However, the major disadvantage of basidiospore inoculum based delivery systems, 

particularly in the case of this experiment, is basidiospores can not be cultured in vitro. 

Instead gathering inoculum is dependent on retrieving fresh sporocarps from mature stands of 
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trees. This is dependant on the time of year for sporocarp production, which is often erratic 

and sometimes requires collection and storage when the sporocarps are abundant (Rossi et al., 

2007). This was outside the scope of this experiment so basidiospore inoculation could not be 

employed as a deliverly system. 

Withholding ECM inoculation until the seedlings root system is established would also 

increase the chances of successful ECM colonisation as the roots would have a receptive 

mycorrhizal infection zone (Marks and Foster, 1973). Both basidiospore inoculation and/ or 

administering the ECM inoculum via a mycelial slurry are options. Flores et al., (2005) using 

a mycelial slurry obtained mycorrhizal colonisation 25 days post inoculation when they 

inoculated five Neotropical species of pine seedlings with two species of Lactarius indigo 

(Schwein.) Fr. Both a mycelial slurry and basidiospore inoculation also has the added benefit 

of multiple inoculations over time to be administered to increase the chances of ECM 

colonisation. In the case of this experiment a mycelial slurry would be a feasible option and in 

hindsight a better delivery system of ECM. 

It could be concluded that ectomycorrhizal inoculation in this experiment does not 

significantly alter the Arbor-Guard™ species populations within the rhizosphere of P. radiata 

(Figure 3.7). This result follows that of the literature with respect to ectomycorrhizal species 

generally having no direct influence on Trichoderma. Only a few reports have indicated ECM 

species having antagonistic impacts on Trichoderma. Zadworny et al., (2007) concluded that 

the ECM fungus Laccaria laccata could parasitise hypha and condida of T. virens and T. 

harzianium in co-culture and in the rhizosphere of Scots pine when the authors assessed the 

role of cell wall lytic enzymes in mycoparasitism. Zadworny et al., (2008) showed the 

increased translocation of 32P from conidia of T. virens to P. sylvestris seedlings colonised 

either by Suillus bovinus or Laccaria laccata compared to non-mycorrhizal control seedlings 

of 4.15 and 15.57%, respectively.  

An underlying parameter with the inoculation of ECM species was the co-inoculation of the 

two saprophytic fungi Lentinula edodes (Shiitake mushroom) and Hypholoma fasciculare, 

which in turn could influence Trichoderma populations. The probability that Lentinula edodes 

would have any detrimental effect on Trichoderma survival is very low due to the well 

documented negative effects that Trichoderma spp. (green mould disease) have on Lentinula 

edodes in co-culture (Miyazaki et al., 2009). Hypholoma fasciculare on the other hand is 

known to be an aggressive cord forming soil saprophyte (Boddy, 2000), and as with 

Trichoderma spp. have the potential to be bio-control agents against wood-decaying fungi in 

forestry (Boddy, 2000; Nicolotti and Varese, 1996). Hypholoma fasciculare, when challenged 
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with T. harzianum, T. pseudokoningii Rifai. and T. viride isolates in dual agar – based culture 

experiments, was shown to have the highest competitive ability relative to 16 other wood-

decaying mushroom species (Badalyan et al., 2004). However, our results reveal that any 

potential negative interaction between H. fasciculare and Trichoderma spp. are not being 

expressed as there is not any significant difference between the Trichoderma populations 

between the Arbor-Guard™ applied on its own and when Arbor-Guard™ is co-inoculated 

with the mycorrhizal species mix (containing H. fasciculare). 

From the results it could be concluded that the addition of the ECM inoculum had a direct 

impact on the indigenous Trichoderma population as there is a significant increase in 

Trichoderma cfu relative to the control (Figure 3.7). This effect could be attributed to the fact 

that the control did not receive any peat:vermiculite mix, which would contain, along with the 

respective fungal species, all their corresponding metabolites. Not to add a peat: vermiculate 

mix to the control in hindsight was probably a mistake, however, the only way for this to 

happen would be to add an extra control comprising of a sterilised mix of the ECM inoculum. 

This in itself would not be a perfect control because there is an extra source of energy 

introduced in the form of dead/ lysed fungal mycelia from the ECM cultures which isn’t 

present in the treatment mix. Indeed, the addition of fungal structures has shown to be a 

nutrient source for ECM (Zadworny et al., 2008). Mucha et al., (2007) also showed the 

increased proteolytic activity of several ectomycorrhizal fungi when associated with mycelia 

of autoclaved saprotrophic fungi. 

Seedling growth was not influenced by the addition of Arbor-Guard™, however, no nutrients 

were applied to the seedlings as the experiment was set up to induce ECM colonisation. This 

was considered to be an important factor, as supported by previously stated literature, to 

support the mycorrhization of the inoculated ECM species. Further, the aim of this work was 

not to measure the impacts of Arbor-Guard™ addition on seedling growth/ health, as this has 

already been described elsewhere (Hill, 2004/2005). As a result the seedlings growth was 

stunted due to nutrient limitation, which would completely take out any positive effects of 

seedling growth induced by Trichoderma addition as found by (Hill, 2004/2005). 
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    Chapter 4 

In vitro laboratory assays 

In order to enumerate any potential interactions between the inoculated ECM species in 

Chapter three and the Trichoderma spp. in the Arbor-Guard™ formulation, additional in vitro 

dual co-culture laboratory assays were conducted. These controlled dual culture assays 

allowed work to be done in axenic conditions to permit potential interactions between specific 

fungal species to be recorded. Three in vitro assays were run to address objective five, 

including a co-culture assay observing the physical interaction at the macro level of each 

individual ECM species inoculated in the Lincoln mixture with each Trichoderma isolate in 

Arbor-Guard™. A similar second co-culture assay was also run, this time on glass slides to 

observe any potential antagonistic interactions, for instance mycoparasitism, at the 

microscopic level. While a third in vitro assay, to assess whether there is ECM inhibition due 

to the potential liberation of inhibitive volatile organic compounds (VOC) from each of the 

Trichoderma isolates, was undertaken. Dual culture assays have been used widely in the 

literature as they are useful in the detection of specific mechanisms (detailed in Section 1.4) 

enabling antagonists such as Trichoderma spp. to be understood, which may relate to the 

mode(s) of action operating in field conditions (Whipps, 1997). 

As this experiment was initated and completed before the formal identification of each of the 

fungal species inoculated in the Lincoln ECM mixture, all five (not including Scleroderma 

bovista due to it not being inoculated) fungal isolates were tested due to the assumption that 

they were ECM. 

4.1 Methods 

4.1.1 Co-culture interaction assay 

Individual isolates of the Trichoderma species in Arbor-Guard™, the three asymbiotically 

growing ectomycorrhizal species (R. roseolus, S. luteus and R. villosulus) and the two 

saprophytic fungal species (H. fasciculare and L. edodes) used in the Lincoln experiment 

ECM mixture were grown in co-culture plate assays to determine macro hyphal interactions. 

The six Trichoderma isolates used were T. harzianum LU686 and the T. atroviride Bissett. 

isolates LU655, LU659, LU660, LU661 and LU663. Each of the five fungal species in the 

ECM mixture were co-inoculated with each one of the six Trichoderma isolates via a 5 mm 

MMN (¼ strength; Appendix A.2.2) agar plug taken from the actively growing edge of the 
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respective colonies growing on MMN (¼ strength) agar plates. Each 5 mm plug of inoculum 

was then placed opposite to one another, 2 cm from the edge of a 9.0 cm Petri dish containing 

MMN (¼ strength) agar. Control plates consisted of each ectomycorrhizal species being co-

inoculated together on one plate containing MMN agar (¼ strength). Six replicate plates for 

each interaction was set up. The plates were incubated in the dark at 20ºC for around 10 days, 

or until no further interaction was observed. Growth rates of both Trichoderma and 

ectomycorrhizal fungi were assessed daily by measuring the distance travelled of the 

respective hyphal fronts along a previously drawn transect line on the reverse side of the 9.0 

cm Petri dish.  

Any inhibition, over growth of colonies or colour change was noted and described by the 

following critera adapted from (McLean, 2001): 

A Hyphae of the two colonies intermingle but remain clearly distinguishable. 

B Advancing mycelial fronts meet; the candidate fungi are inhibited and overgrown by 

the Trichoderma followed by sporulation. 

C The mycelial fronts of the two fungi approach one another and stop growing. 

D Growth of the candidate fungi is inhibited at a distance with a clear zone of inhibition 

between the co-inoculated species. 

Due to the known relatively fast in vitro growth of Trichoderma, each ectomycorrhizal 

species was allowed to establish a hyphal front before one of the six Trichoderma isolates was 

inoculated on the opposite side of the agar dish. The aim was to have the colonies of both 

species of fungi meet in the middle of the agar plate at the same time, thus having equal 

hyphal mass. The relative growth rates of each respective Trichoderma and ectomycorrhizal/ 

saprophytic species/ isolates were predetermined on MMN (¼ strength) agar prior to the 

commencement of the experiment, thereby allowing the approximate inoculation time to be 

known. Actual inoculation timing of each Trichoderma isolate relative to the candidate fungal 

species inoculation timing is outlined in Table 4.1. 
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Table 4.1  Number of days each candidate ECM and saprophytic species 
respectively were grown on ¼ strength MMN agar before each respective 
Trichoderma isolate was co-inoculated in the co-culture and antibiosis 
interaction in vitro assays 

ECM species Saprophytic species 

Trichoderma spp. 

LU No. 
Rhizopogon 
roseolus 

Suillus 
luteus 

Rhizopogon 
villosulus 

Hypholoma 
fasciculare 

Lentinula 
edodes 

655 26 28 28 13 39 

659 26 28 28 13 39 

660 26 28 28 13 39 

661 26 28 28 13 39 

663 9 7 7 9* 15 

686 26 28 28 13 39 

* LU 663 was inoculated 9 days before Hypholoma fasciculare 

4.1.2 Microscope interaction assay 

To determine the interactions at the advancing hyphal front at the microscopic scale, another 

experiment was conducted, this time on microscope slides using a modified method of Berry 

et al., (1993). Sterile cover slips (22 x 50 mm) were dipped into molten MMN agar (¼ 

strength) and then put on the surface of a Petri dish with ¼ strength MMN agar to dry. Each 

of the ectomycorrhizal/ saprophytic species in the Lincoln ECM mixture was co-inoculated 

with one of the six Trichoderma isolates via a 5 mm hyphal plug taken from the actively 

growing edge of an axenic culture growing on ¼ strength MMN agar. The plugs were put at 

opposite ends of the cover slip, allowing only 2 mm in from the cover slip edge to the edge of 

the 5 mm plug. Again as described in Section 4.1.1, species of fungi in the ECM mixture were 

inoculated first until they had a sufficient hyphal front to meet the relatively fast growing 

Trichoderma species in the middle of the cover slip. As the two fungal species began to 

converge, the cover slip was aseptically removed by tweezers from the Petri dish and placed 

up-side down on a sterile standard glass slide (26 x 76 mm). The depth of the two 5 mm agar 

plugs separated the glass slide and cover slip from one another and allowed room for un-

hindered hyphal growth. The cover slip was subsequently sealed to the glass slide by 

squeezing pre-warmed petroleum jelly from a 25 mL syringe around the cover slip/ glass slide 

edge. This reduced moisture loss from the system and stopped any contamination. Three 

replicate slides for each interaction were set up, with the control slides being two 

ectomycorrhizal/ saprophytic 5 mm plugs of the same species co-inoculated onto one cover 
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slip. The respective hyphal interactions were observed under a compound microscope (40× 

magnification) within a day of inverting the cover slip onto the glass slide, this in turn limited 

the time that the two fungal species remained between the glass slides before any 

observations. If more time was required for the interactions to proceed the same slides were 

incubated in the dark at 20ºC with subsequent observations of the interactions being made as 

soon as the hyphae met, which was usually the following day. 

4.1.3 Volatile antibiosis 

To test for the potential production of inhibitory volatile antibiotics being released by the 

Trichoderma isolates, a dual plate bio-assay was conducted on MMN (¼ strength) agar. Both 

fungal species were kept physically separated by inoculating the 5 mm plugs obtained from 

actively growing fronts of the respective fungal species cultures onto individual 9.0 cm Petri 

plate bottoms. Each plug of agar was placed 2 cm from the edge of its respective plate. A 

previously drawn transect line on the reverse side of the plates allowed for agar plug 

placement and hyphal growth measurements to be made during the experiment. Joining of the 

two plates and inoculation of the Trichoderma plugs was done after the ectomycorrhizal/ 

saprophytic species had grown to approximately 25 mm radius, again allowing for the 

relatively slow growth of the species in the ECM mixture (see Table 4.1 for inoculation 

timing). The plates with the ectomycorrhizal and saprophytic species were inverted and sealed 

to the Trichoderma plates using cling wrap and incubated in the dark at 20ºC. Each treatment 

was replicated four times and the Trichoderma plates were always in the upright position to 

reduce contamination from any condensation dropping Trichoderma spores onto the 

ectomycorrhizal/ saprophytic cultures. 

4.2 Results 

4.2.1 Co-culture interaction assay 

Each of the five candidate fungal species interaction with the co-inoculated Trichoderma 

isolates was qualitatively characterised into one of the four categories outlined in Section 

4.1.1 with the results outlined in Table 4.2. All three positively identified ECM species were 

consistently overgrown by five of the Trichoderma isolates followed by sporulation (category 

B; Table 4.2, Figure 4.1). Trichoderma isolate LU 663 was the exception, as this isolate 

inhibited the radial growth to a larger extent relative to the other Trichoderma isolates 

towards both the ECM and saprophytic species. However, LU 663 rarely grew or sporulated 

over the co-inoculated ectomycorrhizal or saprophytic fungal cultures (category D; Table 4.2, 

Figure 4.1). Suillus luteus in co-culture with all six Trichoderma isolates had a yellow 
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discolouration on the advancing mycelial front that was not apparent in the respective control 

plates (discolouration most apparent in the category B picture, Figure 4.1). The radial growth 

of most of the Trichoderma isolates, with the exception of LU 663, in co-culture with 

Hypholoma fasciculare stopped with no clear indication of any positive or negative 

interaction (category C; Table 4.2, Figure 4.1). Trichoderma isolate LU 663 clearly inhibited 

the radial growth of H. fasciculare. None of the Trichoderma isolates sporulated over H. 

fasciculare (category C; Table 4.2, Figure 4.1). 

Lentinula edodes did not grow well (slow diffuse hyaline hyphal growth) on MMN agar and 

as a result the qualitative assessment was omitted because no conclusions could be dervived 

with respect to the interaction. 

 

Table 4.2  Qualitative interaction observations of each Arbor-Guard™ 
Trichoderma isolate in MMN agar co-culture with each respective candidate 
fungal species inoculated into the ECM mixture at Lincoln University (n=6). 

ECM species Saprophytic species 

Trichoderma spp. 

LU No. 
Rhizopogon 

roseolus 
Suillus 
luteus * 

Rhizopogon 
villosulus 

Hypholoma 
fasciculare 

Lentinula 
edodes 

655 B B B C n/a 

659 B B B C n/a 

660 B B B C n/a 

661 B B B C n/a 

663 D D D D D 

686 B B B C n/a 

B Advancing mycelial fronts meet; the candidate fungi are inhibited and overgrown by the Trichoderma 
followed by sporulation.  

C The mycelial fronts of the two fungi approach one another and stop growing. 
D Growth of the candidate fungi is inhibited at a distance with a clear zone of inhibition between the co-

inoculated species. 
* Suillus luteus had a yellowing mycelial front on hyphal contact with each Trichoderma species that was 

not seen in the control plates. 
n/a Not assessed
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Figure 4.1 Representative co-culture interaction pictures of the sporulating 
Trichoderma species (right plug) interacting with each candidate ECM species (left 
plug) (B); Interaction with Trichoderma (LU 663) for each of the species included in 
the ECM mixture (includes saprophytic species) (D); Representative picture of 
interaction between Hypholoma fasciculare and each Trichoderma species (C). Letters 
(B, D and C) represent each category outlined in Table 4.2.

Rhizopogon roseolus Suillus luteus Rhizopogon villosulus Hypholoma fasciculare Lentinula edodes 

B 

D 

C 

Category 

ECM species Saprophytic species 
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4.2.2 Microscopic assay 

Hyphae of all co-inoculated species grew into each other and intermingled, however, no 

Trichoderma hyphal coiling, hyphal penetration or degradation of the respective candidate 

species in the ECM mixture was observed in the microscopic slide interaction assay. 

4.2.3 Antibiosis assay 

Radial growth measurements were ceased after 7 days due to each of the Trichoderma isolates 

hyphal growth reaching the outer edge of the Petri dish and extending up the walls of the Petri 

dish, in turn contaminating each of the test fungal species. Most fungal species radial growth 

rate was inhibited to a certain extent by each Trichoderma isolate relative to their respective 

control plates radial growth (Table 4.3). Between the ECM species, Rhizopogon roseolus on 

average tended to be inhibited the most relative to it respective control (19% growth rate 

inhibition) than S. luteus (11%) and R. villosulus (1%), respectively across all Trichoderma 

isolates. Radial growth rates of Hypholoma fasciculare were inhibited by the Trichoderma 

isolates to the same extent (12% inhibition) relative to its respective control as the ECM 

growth rates. However, no statistical analysis was conducted between each ectomycorrhizal/ 

saprophytic species, only within a species, so no robust conclusions can be drawn from this 

observation.  

Table 4.3  Radial growth rate (mm day-1) of each candidate fungal species 
when grown without physical contact in the same atmosphere with each 
Trichoderma isolate in the antibiosis assay. Asterisk within rows indicate 
significantly different radial growth rate relative to the control as determined 
using unrestricted LSD p=0.05 

 
Mean radial growth rate (mm day-1) n=4 

  

Trichoderma LU No.    

Fungal species 655 659 660 661 663 686 Control LSD F. pr 

R. roseolus 0.61 0.57 0.61 0.50 0.75 0.61 0.75 0.35 0.70 

S. luteus 1.09 1.07 1.02* 1.09 1.02* 1.11 1.20 0.13 0.15 

R.villosulus 0.80 0.72 0.84 0.65 0.79 0.79 0.76 0.27 0.84 

H. fasciculare 1.16* 1.31* 1.38 1.44 1.48 1.31* 1.53 0.19 0.01 
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4.3 Discussion 

Due to the relatively fast growth rates of the Trichoderma isolates in the co-culture assay, no 

growth measurement analysis of the respective candidate fungal species in the Lincoln 

mixture was able to be carried out as was originally planned. On average the three ECM 

cultures only grew 4 mm from the time each Trichoderma isolate was inoculated to the time 

the mycelial fronts converged. This made any quantitative delineation of the growth rates 

relative to the controls unable to be statistically derived. Therefore only qualitative 

observations could be assessed with any certainty (Table 4.2 and Figure 4.1). 

Qualitatively, the co-inoculation interaction assay across all Trichoderma species, apart from 

LU 663, yielded similar results. Each of the five Trichoderma isolates (LU 655, 659, 660, 661 

and 686) overgrew and sporulated over each of the three ECM species (category B; Table 4.2, 

Figure 4.1).  Summerbell, (1987) also had a similar result when T. viride came into contact 

with Laccaria bicolor in agar co-culture. Nutrient competition was probably the cause of the 

reduction in growth of the ECM species at the zone of interaction, while the concurrent 

competition for space illustrates the aggressive nature of the Trichoderma isolates and is 

probably the main mechanism of antagonism in the current experiment. It was also observed 

that the abundance of sporulating areas covering the mycelia of R. roseolus was more relative 

to the amount over S. luteus. Further, it was noted that R. roseolus grew at a slower rate than 

S. luteus in the antibiosis assay. These results were consistent for each of the Trichoderma 

isolates apart from LU 663 and could be a reason as to why R. roseolus ECM root tips were 

not recovered in the Lincoln experiment whereas S. luteus ECM root tips were recovered all 

be it in low numbers. Mycoparasitism was not observed in the microscope interaction assay in 

the current experiment. Summerbell, (1987) also observed no evidence of T. viride 

mycoparasitising colonies of Laccaria bicolor growing on agar even though the 

ectomycorrhizal colony stopped growing after initial hyphal contact and was overgrown by 

the T. viride isolate. However, these results are not uncommon as it is well known that 

parasitism is a highly species specific mechanism (Chet et al., 1998; Harman et al., 2004). 

Mycoparasitism involves a number of steps from the initial recognition of specific lectins on 

the target host through to appressoria formation and finally lytic enzymes being released for 

cell penetration  (Chet et al., 1998; Harman et al., 2004). Further, agar media containing 

normal nitrogen levels tend to suppress mycoparasitism therefore making observations in 

artificial media hard to conduct (Summerbell, 1987). 

From the clear zone of inhibition observed on the co-culture plates it is unlikely that 

Trichoderma isolate LU 663 suppressed the growth of any candidate fungi it came up against 
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using mycoparasitism as the mode of antagonism. Although the growth rate of LU 663 was on 

average four times slower than the other Trichoderma isolates, it showed consistent inhibitive 

interactions across all three ECM species and the two saprophytic species (category D; Table 

4.2, Figure 4.1). Interestingly LU 663 inhibited the growth of Hypholoma fascicular in 

particular relative to all other candidate species in the ECM mixture. This observation is 

augmented by the observation that all the other five Trichoderma isolates did not overgrow or 

sporulate over Hypholoma fascicular (category C; Table 4.2, Figure 4.1). It has been 

documented that antibiotics can inhibit the growth of fungi, however, this antagonistic effect 

can be very Trichoderma species specific (Howell, 1998). If antibiosis is responsible for the 

decline in fungal growth then one would assume that LU 663 would show the greatest 

reduction in growth for all the candidate fungal species concerned due to the consistent 

inhibitory interactions (category D) observed in Figure 4.1. All of the candidate fungal species 

in category D had their growth inhibited before the hyphal fronts converged. However, the 

results indicate (Table 4.3) that relative to the other Trichoderma isolates LU 663 did not 

suppress the growth of the fungal species considerably more, with the exception of S. luteus. 

These observations are in favour of agar diffusible secondary metabolites inhibiting the 

respective fungal species and not VOC compounds. Further, H. fascicular was least affected 

by LU 663 relative to the other five Trichoderma isolates in the antibiosis assay (Table 4.3). 

Yet H. fascicular was inhibited in the co-inoculated interaction assay to the same extent, 

although not significant, as the other fungal species (Figure 4.1). So one could deduce from 

these results that volatile antibiosis is not the mechanism of antagonism observed with LU 

663 in the co-inoculation interaction assay. 

Due to cross-contamination issues the antibiosis assay was restricted to the amount of time the 

Trichoderma isolates took to reach the outside margin of the Petri plate. No absolute 

conclusions can be drawn from the data in Table 4.3 as the growth rates of the Trichoderma 

isolates were too fast. This indicates that there was no nutrient limitation and therefore the 

likelihood of secondary metabolite production would be low due to most antibiotics being 

produced only when Trichoderma species are under stress or growing in media with a high 

carbon to nitrogen ratio (Howell, 1998; Howell and Stipanovic, 1984). On average the total 

growth of each fungal species in the ECM mixture was only 6.6 mm over the seven days of 

measurements. This in turn reduced the resolution of the data making it hard to deduce any 

differences, which is reflected in the high error values associated with each candidate species. 

Therefore, drawing the conclusion from the data to confidently state that antibiosis is a 

mechanism of antagonism used against the fungal species in the current experiment should be 

approached with caution. 
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Further, the reduced radial growth rates of the fungal species in the ECM mixture can only be 

speculated to be caused by inhibitive VOC’s as there was no analysis of the head space gas 

composition. Reduced growth rates relative to each respective candidate species control could 

just be the result of the higher respiration rate of the actively growing Trichoderma species 

relative to the slow growth of each candidate fungal species, in turn depleting the oxygen and 

increasing the partial pressure of carbon dioxide. The closed chamber method used in the 

current experiment will also tend to build up any respiratory gases or VOC’s in the head space 

so any effect could be actually a false positive not able to be transferred to the field situation. 

Of the abundant array of potential antagonistic volatile antifungal compounds Trichoderma 

species are known to produce, quantification of the relative amounts of a pyrone, 6-pentyl-α-

pyrone (PAP), has been previously described for all of the six isolates in the present study 

(Dodd-Wilson, 1996). It is unkown whether PAP has any activity against any of the ECM/ 

saprophytic species used in this study, however, previous work has shown PAP to have 

antifungal activity against a wide distribution of fungal plant pathogens (reviewed in Dodd-

Wilson, 1996). However, from the relative levels of PAP produced in pure culture analysis on 

MEA plates from Dodd-Wilson’s, (1996) results (Table 4.4), one could safely conclude that 

PAP is not produced by LU 663, the most probable isolate to use antibiosis as a potential 

mechanism in our results. One could also conclude from our results that none of the other five 

Trichoderma isolates were using PAP as a volatile antibiotic, even though LU 660 was found 

to be the highest producer of PAP (8 mg plate-1) out of all 50 isolates tested in Dodd-

Wilson’s, (1996) work. However, this is only one secondary metabolite out of the myriad of 

other antagonistic metabolites known to be produced by Trichoderma spp. So the only 

conclusion that can be drawn from our results is that PAP is most probably not an influencing 

volatile antibiotic produced by any of the six Trichoderma isolates under the conditions in our 

experimental design. This is not to say that PAP will not be produced, particularly by 

Trichoderma isolate LU 660, as an antagonistic secondary metabolite against any of the 

candidate fungal species in the ECM mixture under different conditions.   
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Table 4.4  Relative amounts of PAP produced (mg/ plate) by each 
Trichoderma isolate from Dodd-Wilson’s (1996) work relative to the average 
level of inhibition found across all fungal species inoculated in the ECM 
mixture at Lincoln University 

Trichoderma LU No. 

 655 659 660 661 663 686 

Inhibition (%)A 12 13 8 16 4 9 

PAP: mg/ plate (±S.E.)B 3.6 (±0.8) 4.6 (±1.1) 8.0 (±3.4) 4.1 (±1.3) <0.01 <0.01 

A Mean overall percentage inhibition that each Trichoderma isolate had over all 4 fungal species tested in the 
antibiosis assay in Table 4.3  

B Values taken directly from the PhD thesis written by Dodd-Wilson, (1996) 

 

From our results one could conclude that nutrient and/ or space competition is the most 

probable mode of any antagonism expressed by the Trichoderma isolates, except LU 663, 

against the fungal candidates inoculated in the ECM mixture. The evidence suggests that LU 

663 could produce other agar diffusible secondary metabolites that in turn could inhibit the 

growth of all the co-inoculated fungal species. Although in vitro dual culture assays have been 

extensively used in the literature, especially in biological control, to test for potential 

antagonistic interactions between candidate microorganisms the results need to be approached 

with caution (Merriman and Russell, 1990). Whipps, (1997) went further to add that in vitro 

agar plate studies do not resemble the environmental or microbiological dynamics 

experienced in the field. Indeed, results obtained from any laboratory based media assays 

should be approached with caution and will never replace studying in vivo rhizosphere 

interactions (Bowen and Theodorou, 1979). However, Whipps, (1997) did state that if one 

understands the limitations of in vitro assays the results can still be an important indication of 

potential interactions in the field. 

Unfortunately the saprophytic species H. fasciculare and L. edodes were not challenged with 

the ECM species in the Lincoln mixture due to the assumption that they were in fact ECM 

species at the time the assays were carried out. Dual co-culture assays of this kind may have 

given an insight into the low recovery of the inoculated ECM species in the Lincoln 

experiment (Chapter 3). While also given an insight into the relative dynamics observed with 

respect to the total number of root tips recovered tending to be lower in the ECM mixture on 

its own than the ECM/ Arbor-Guard™ treatment (Figure 3.1). In particular the interaction 

between H. fasciculare and the ECM species R. roseolus and S. luteus, respectively would 

have been pertinent to deduce any potential antagonistic interactions. 
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    Chapter 5 

Concluding discussion 

Results from the current work do not support our original hypothesis (Section 1.6.2) of Arbor-

Guard™ having an effect on the overall colonisation of ectomycorrhiza on containerised 

Pinus radiata seedlings, as there was no measured impact of the addition of Arbor-Guard™ 

on ECM colonisation in either the commercial or Lincoln experiments. However, this 

statement can only be qualified under the provision that the Trichoderma isolates in Arbor-

Guard™ were viable at the time of inoculation in the commercial experiment, which was not 

determined at the time. However, the same Arbor-Guard™ formulation was used later to 

inoculate the Lincoln experiment and it was shown that Trichoderma spp. viability was at 109 

cfu g-1, which was the concentration stipulated by the manufacturer. While the unfortunate 

inoculation of saprophytic and un-viable ECM fungi in the Lincoln experiment makes it hard 

to delineate any potential effect, whether positive or negative, that Arbor-Guard™ had on 

ECM colonisation.  

Dual culture in vitro assays conducted showed a level of inhibition towards the inoculated 

ECM species in the Lincoln experiment when challenged with the Trichoderma isolates in 

Arbor-Guard™. Trichoderma isolate LU 663 was the most antagonistic Trichoderma isolate 

in the in vitro assays towards all candidate fungi challenged. However, the antagonistic 

relationships expressed in vitro were not reflected in the in planta Lincoln experiment where 

there was not any real correlation of the total number of ECM root tips found in the control 

relative to the Arbor-Guard™ inoculated treatments. These results could be a simple case of 

the Trichoderma isolates not surviving during the course of the experiment as the actual 

determination of Trichoderma spp. to isolate level was not done. 

Overall the results are restricted to the finding that the ECM diversity was low with members 

of the Thelephoroid family being the dominant species family found. The dominance of the 

ECM within the Thelephoroid family is not surprising as these species have been recorded 

elsewhere in the literature as ubiquitous ECM genera in the Pinus family (Taylor and Bruns, 

1999), particularly in high organic matter environments (Koljalg et al., 2000). For instance 

Thelephora terrestris has been well documented to be an ECM of P. radiata (Bowen and 

Theodorou, 1979), being prevalent in P. radiata nurseries (Chu-Chou, 1979) and mature 

forests (Dunstan et al., 1998). These findings confirm the multi-stage characteristics of Th. 

terrestris, which has also been documented with Tomentella spp., another genus within the 
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Thelephoroid family (Taylor and Bruns, 1999). However, the sheer abundance of 

Thelephoroid species found colonising P. radiata does not necessary confirm that this 

association is beneficial to the seedlings. For instance Pinus taeda (Loblolly pine) seedlings 

colonised by the naturally occurring ECM Th. terrestris only produced half the amount of 

biomass as seedlings colonised by the introduced ECM Pisolithus tinctorius (Marx and 

Bryan, 1975).  

It has been successfully shown that the “controlled” inoculation of selected ECM species that 

provide benefits tailored to the specific environmental conditions and species of tree into 

nurseries can perform better after transplanting than leaving the seedlings to be naturally 

colonised by the native ECM (Garbaye, 1990; cited in Rossi et al., 2007) . Although in the 

current experiment the “controlled mycorrhization” (Rossi et al., 2007) did not work as well 

as anticipated this does not immediately confer that members of the Thelephoroid family will 

always outcompete any other ECM species colonisation of P. radiata seedlings. Hall and 

Perley, (2008) showed that the inoculation of ECM fungi, of which Coenococcum sp. was 

documented, onto Nothofagus menziesii (Hook.) Oerst. (Silver beech) seedlings were able to 

successfully outcompete Thelephora colonisation even though the latter ECM was dominant 

in the uninoculated seedlings. In Hall and Perley’s, (2008) experiment the successful 

colonisation of inoculated ECM was probably due to the “priority effect” discussed in Chapter 

3 as the authors noted that there was extensive mycorrhization on the inoculated seedlings 

after 6 months, whereas the uninoculated seedlings only became mycorrhizal with the 

Thelephora species two months later. Indeed the success of any controlled mycorrhization of 

ECM fungi is not an easy task and is probably one of the reasons why there are not many 

commercial ECM inoculum products on the market (Rossi et al., 2007). Hall et al., (2003) 

stressed the importance of the correct ecological conditions required for successful ECM 

colonisation to proceed and continue. Low colonisation of the inoculated ECM in our 

experiment at Lincoln University is most probably as of a consequence of the abiotic 

conditions in the glasshouse not being conducive to ECM colonisation and/ or growth. This, 

and the fact that the commercial experiment was also not appropriately tuned for conditions 

conducive to ECM colonisation, for instance using a soilless potting media that most probably 

was depauparate in both the abundance of mycorrhizal propagules and species diversity (Hall 

and Perley, 2008), means that drawing any conclusions from our work on the effect of 

Trichoderma spp. inoculation on ECM mycorrhization is difficult. One can only speculate the 

effect of Trichoderma spp. inoculation, in the form of Arbor-Guard™, will have on the 

establishment of other species of ECM fungi either specifically selected for their beneficial 

characteristics or innately found in bare rooted nursery systems.  
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Our findings are not able to be necessarily translated into other nursery systems, such as bare 

rooted propagation, used to grow P. radiata seedlings. Further, our experiment was a 

relatively simplistic model, with respect to using a containerised system, in comparison to 

bare rooted nursery systems. Containerised systems are more easily manipulated compared to 

bare root systems where edaphic conditions will be a major influencing factor outside the 

control of the nursery manager. However, this opens up a valued opportunity with respect to 

the relative ease of being able to artificially inoculate beneficial ECM over the bare rooted 

system. Further, the ECM species inoculated not only could be selected specifically for the 

containerised system but more importantly could be tailored to the specific site where the 

seedlings will be eventually planted out (Trappe, 1977). So the ability to segregate areas of 

seedlings inoculated with different ECM fungi is another major advantage of containerised 

systems besides their added value to the seedlings already described in Section 1.1.2. 

Therefore the artificial inoculation of appropriate ECM into containerised propagation 

systems, as successfully described by Hall and Perley, (2008) above, is definitely warranted 

and should be integrated into all nursery systems as a standard practise (Hall and Perley, 

2008; Trappe, 1977). With the change in focus from raising bare rooted seedlings to more 

seedlings being propagated in containerised systems (Menzies et al., 2001), there should be a 

concurrent paradigm shift to artificially inoculate specific ECM fungal species. Therefore, this 

calls for more research to be conducted on the potential effects of Trichoderma species bio-

inoculants on ECM colonisation inoculated into commercial nurseries. 

Although there was no impact of Arbor-Guard™ inoculation on the mycorrhization of 

containerised P. radiata seedlings, further research of the on going interactions after the 

seedlings are transplanted out into forestry stands is necessary. Summerbell, (1987) made the 

point in their research that any microorganism that may impede mycorrhization may also 

influence the absorptive capacity of the extramatrical mycelium, in turn reducing the 

functional characteristics of the mycorrhizal relationship with regard to nutrient and water 

uptake. Although our research did not find any negative effects of adding Arbor-Guard™ to 

the potential mycorrhization of containerised P. radiata seedlings, the ongoing interactions 

with respect to the colonised ectomycorrhizas functional ability to increase seedling health 

and productivity once transplanted needs to be investigated. What is known is that the 

Trichoderma spp. inoculated in Arbor-Guard™ do have a residual effect on the seedlings 

after transplanting, as Arbor-Guard™ inoculation has been shown to reduce the incidence of 

Armillaria novae-zelandiae (Stev.) Boesew. infection after the first eight years of seedling 

transplant (Hill, R., per comm.). From these results one can assume that some or all of the 

Trichoderma isolates in Arbor-Guard™ are active within the rhizosphere or are endophytic 
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within the root. In fact, it has been repeatedly shown that Trichoderma spp. are avirulent plant 

symbionts that are able to induce localised systemic responses and increase nutrient uptake 

(Harman et al., 2004). These results indicate that what could be considered as a positive effect 

of increased seedling growth and health induced by the ECM fungi in the field could actually 

be as a result of the Trichoderma spp. Which raises the question; how long will this positive 

interaction last or is it just transient phenomenon? We know that species within the Pinus 

family are particularly dependant on ECM colonisation for optimum growth and development 

under natural conditions (Smith and Read, 1997). So if the Trichoderma isolates inoculated in 

Arbor-Guard™ effectively fill the ECM niche or coerce what species of ECM colonise the 

seedling during the early stages of seedling development after transplanting how will this 

impinge on ECM functionality in the long term? However, the long term effects could be 

negligible due to the known successional dynamics of ECM colonisation of P. radiata trees in 

North Island forestry plantations in New Zealand (Walbert, 2008). Indeed Walbert, (2008) 

showed the dramatic succession of ECM root tip species within the first few years of 

transplanting out into a plantation forest. What is not known, however, is what effect the 

inoculation of Arbor-Guard™ has on ECM succession. This is another area of research in 

need of attention to fully delineate the effect of Trichoderma species bio-inoculants on ECM 

dynamics. 

The current experiment only looked at two fungal groups and did not take into account the 

myriad of other potential synergistic, neutral or antagonistic interactions of the rhizospheric 

microbial community on mycorrhization. A review written by Summerbell, (2005) on the pre-

1980 literature summarised the large variation in results, either synergistic or antagonistic, 

found from a bulk of work completed looking at mycorrhizosphere microorganisms. In the 

authors review he pointed out, for instance, that fluorescent pseudomonads were natural 

antagonists of any root-colonising fungi. Indeed Bowen and Theodorou, (1973; cited in 

Summerbell, 2005) attributed a 20-50% reduction of mycorrhizal formation in part to the 

presence of pseudomonad species.  Yet the closely related Pseudomonas spp. are also known 

to be synergistic to the mycorrhization process and dubbed mycorrhiza helper bacteria (MHB) 

(Bowen and Theodorou, 1979; Garbaye and Bowen, 1987). Indeed the mycorrhizosphere is 

made up of a complex diversity of organisms each functioning at different tropic levels that 

either directly or indirectly influence the dynamics of mycorrhization. As this experiment 

didn’t quantify any other microorganisms their presence goes un-detected and therefore any 

potential antagonistic impacts can only be assumed to be from the inoculated Trichoderma 

isolates, or in the case of the Lincoln experiment, from the co-inoculated saprophytic fungi 

Hypholoma fasciculare and Lentinula edodes. On the contrary any microorganisms such as 
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MHB will not be recognised as the potential controlling microorganisms synergistic to the 

mycorrhization process. 

Future research priorities 

Future work needs to address the potential effect of Arbor-Guard™ inoculation on specific 

ECM species colonisation potential of P. radiata seedlings in more detail. In particular the 

focus should be directed on ECM species such as Rhizopogon and Suillus spp. that could 

potentially be commercially inoculated into containerised and bare rooted nursery systems. 

A more methodological approach into what effect each particular Trichoderma species/ 

isolate in Arbor-Guard™ has on each individual ECM species colonisation potential needs to 

be conducted. This research needs each of the Trichoderma species to be able to be traced in 

planta to assess both the survival of Trichoderma and the corresponding functionality that 

each species expresses upon ECM colonisation. 

Research needs to be directed into what effect Arbor-Guard™ inoculation into nurseries has 

on any potential successional changes of ECM species colonising the P. radiata seedlings 

after out planting into commercial forestry stands. This research will give valuable 

information into whether or not a change, if any, in ECM diversity has a negative impact on 

functionality or whether or not there is a level of functional redundancy within ECM species. 
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     Appendix A 

A.1 Seedline parameters 

 

A.2 Agar recipes 

A.2.1 Trichoderma selective agar (TSM) 

To make 1 L: 
 
20.0 g agar 
3.0 g  glucose 
1.0 g ammonium nitrate 
0.9 g dipotassium hydrogen orthophosphate trihydrate (K2HPO4.3H2O) 
0.2 g magnesium sulphate 7 hydrate (MgSO4.7H2O) 
0.15 g potassium chloride (KCl) 
0.2 g Terrachlor 75WP fungicide* (quintozene 750 g/kg a.i.) 
0.15 g Rose Bengal 
 
1 mL chloramphenicol stock solution: 
 - 250 mg of chloramphenicol in 100 mL of absolute (96%) ethanol. 
 
1 mL salt stock solution: 
 1.0 g iron sulphate  (Ferrous sulphate) 7 hydrate (FeSO4.7H2O) 
 0.65 g manganous sulphate tetrahydrate (MnSO4.4H2O) 
 0.9 g zinc sulphate (ZnSO4.7H2O) 
  preparation: dissolve all three ingredients in 1 L distilled water 
 
Make up to 1 L and autoclave at 121 °C for 15 minutes. 

 
Seedling GF plus ratings 

Seedline description/ No. Growth Straightness Branching Dothistroma 
resistance Wood density Spiral grain 

A (268.323 x 875.066)    21.2 23.5 23.6 17.6 21.1 21.4 

B (268.539 x 875.242) 26.0 21.1 23.4 20.3 16.2 18.2 



 93

A.2.2 Modified Melin Norkrans medium (MMN) 

(Marx, D. H. (1969), Phytopathology 59 153 – 163.) 

Ingedients:   Full strength:   ¼ strength (for experiments): 

 
CaCl2 2H2O   0.05 g (1 mL stock)  0.05 g (0.25 mL stock)  
NaCl    0.025 g (1 mL stock)  0.025 g (0.25 mL stock) 
(NH4)2HPO4   0.25 g (1 mL stock)  0.25 g (0.25 mL stock) 
MgSO4.7H2O   0.15 g (1 mL stock)  0.15 g (0.25 mL stock) 
KH2PO4   0.50 g (8 mL stock)  0.50 g (2.0 mL stock) 
FeNaEDTA (2% soln)  1.2 mL    0.30 mL 
Thiamine HCL (1% soln) 1.0 mL    0.25 mL 
Glucose   2.5 g    0.625 g 
Malt extract   10 g    Omitted as it is undefined 
Agar    15 g    15 g 
Distilled water   1 L    1 L 
 
Agar suspension adjusted to pH 4.7 using 1 M HCl 
 
Stocks (full strength): 
 
CaCl2 2H2O (0.05 g L-1 agar) 

5 g in 100 mL distilled water (add 1 mL L-1 agar) 
 
NaCl (0.025 g L-1 agar) 

2.5 g in 100 mL distilled water (add 1 mL L-1 agar) 
 
(NH4)2HPO4 (0.25 g L-1 agar) 

25 g in 100 mL distilled water (add 1 mL L-1 agar) 
 
MgSO4.7H2O (0.15 g L-1 agar) 

15 g in 100 mL distilled water (add 1 mL L-1 agar) 
 
KH2PO4 (0.5 g L-1 agar) 

12.5 g in 200 mL distilled water (add 8 mL L-1 agar) 
 
FeNaEDTA (2% solution) 

2 g in 100 mL distilled water (add 1.2 mL L-1 agar) 
 
Thiamine HCl (1% v/v solution) 

1 g in 100 mL distilled water (add 1 mL L-1 agar) 
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     Appendix B 

B.1 Chapter 2 ANOVA tables 

B.1.1 Analysis of variance (ANOVA) table for the overall total ECM root tips/ cm root 
length enumerated at the PF Olsen nursery (Figure 2.2) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 
 

B.1.2 Analysis of variance (ANOVA) table for the total number of ECM root tips/ cm 
root length categorised into their respective morphotypes (Figure 2.4) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 
 

B.1.3 Analysis of variance (ANOVA) table for the total non-mycorrhizal root tips 
enumerated (Figure 2.5) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 

 

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 4 11.344 2.836 1.21   

Treatment 5 13.824 2.765 1.18 0.353 

Residual 20 46.811 2.341     

       

Total ECM root 
tips 

Total 29 71.979       

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 4 3.781 0.945 0.42   

Treatment 5 4.608 0.922 0.41 0.839 

ECM 2 174.925 87.463 39.08 <.001 

Treatment.ECM 10 8.127 0.813 0.36 0.958 

Residual 68 152.206 2.238     

       

ECM root tips/ 
cm root length 

split into 
morphotypes 

Total 89 343.648    

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 4 0.002556 0.000639 2.06   

Treatment 5 0.003776 0.000755 2.43 0.071 

Residual 20 0.006209 0.000311     

       

Non-
mycorrhizal 

root tips 

Total 29 0.012541    
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B.1.4 Analysis of variance (ANOVA) table for the Trichoderma cfu populations found 5 
weeks after sowing and at harvest for figures 2.6 A & B, respectively. 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 
 

B.1.5 Analysis of variance (ANOVA) table for each of the tree seedling parameters 
measured (Table 2.4) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 

Analysis Assessment 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Treatment 3 1.9786 0.6595 1.83 0.146 

Residual 104 37.4578 0.3602   Seed sowing 

Total 107 39.4365    

Treatment 5 0.45262 0.09052 3.9 0.002 

Residual 156 3.62468 0.02324     

Log10 
Trichoderma 

cfu 
Harvest 

Total 161 4.0773    

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 4 91.6 22.9 0.66   

treatment 3 278.52 92.84 2.69 0.053 

Residual 72 2488.15 34.56     

Seedling 
emergence 

Total 79 2858.27    

Block stratum 4 986.22 246.55 7.1   

Treatment 5 692.52 138.5 3.99 0.002 

Residual 342 11881.27 34.74     
Seedling height 

Total 351 13551.59    

Block stratum 4 10.6826 2.6707 3.47   

Treatment 5 2.7937 0.5587 0.73 0.605 

Residual 342 263.5625 0.7707     

Seedling 
diameter 

Total 351 276.8977    

Block stratum 4 34.761 8.69 4.36   

Treatment 5 74.841 14.968 7.52 <.001 

Residual 342 680.961 1.991     

Seedling height 
: diameter ratio 

Total 351 789.861    

Block stratum 4 45.437 11.359 3.52   

Treatment 5 20.408 4.082 1.26 0.28 

Residual 230 742.74 3.229     

Seedling above 
ground D. wt 

Total 239 808.585       
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B.2 Chapter 3 ANOVA tables 

B.2.1 Analysis of variance (ANOVA) table for the total ECM root tips/ cm root length 
enumerated in the Lincoln experiment (Figure 3.1) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 
 

B.2.2 Analysis of variance (ANOVA) table for the total ECM root tips as split by the 
dominant species enumerated (Figure 3.3) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 3 2.818 0.939 0.71   

Treatment 3 2.457 0.819 0.62 0.609 

Residual 25 33.071 1.323     

       

Total ECM root 
tips 

Total 31 38.345    

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 3 1.4089 0.4696 2.15   

      

Time 1 0.651 0.651 2.98 0.183 

Residual 3 0.6545 0.2182 0.27   

      

Treatment 3 1.2284 0.4095 0.51 0.683 

Time.Treatment 3 0.6864 0.2288 0.28 0.837 

Residual 18 14.5436 0.808 1.65   

      

ECM 1 94.8234 94.8234 193.26 <.001 

Time.ECM 1 0.3553 0.3553 0.72 0.403 

Treatment.ECM 3 2.6054 0.8685 1.77 0.18 

Time.Treatment.E
CM 3 1.3109 0.437 0.89 0.46 

Residual 24 11.7758 0.4907     

      

Total ECM root 
tips split by 

ECM species 

Total 63 130.0435    
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B.2.3 Analysis of variance (ANOVA) table for the relative proportions of morphotypes 
found, expressed as total ECM root tips/ cm root length (Figure 3.4), and the 
change in total ECM root tips/ cm root length from the first assessment to the 
second assessment, also split into each respective morphotype (Figure 3.5). 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 
 

B.2.4 Analysis of variance (ANOVA) table for the total non-mycorrhizal root tips 
(Figure 3.6) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 

 

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 3 0.7045 0.2348 2.15   

      

Time 1 0.3255 0.3255 2.98 0.183 

Residual 3 0.3272 0.1091 0.27   

      

Treatment 3 0.6142 0.2047 0.51 0.683 

Time.Treatment 3 0.3432 0.1144 0.28 0.837 

Residual 18 7.2718 0.404 1.13   

      

ECM 3 45.9648 15.3216 42.82 <.001 

Time.ECM 3 10.7783 3.5928 10.04 <.001 

Treatment.ECM 9 4.4821 0.498 1.39 0.208 

Time.Treatment.E
CM 9 3.4661 0.3851 1.08 0.391 

Residual 72 25.7625 0.3578     

      

ECM root tips 
split by ECM 
morphotypes 

and time 

Total 127 100.0402    

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 3 5.43E-05 1.81E-05 0.12  

      

Time 1 3.61E-05 3.61E-05 0.23 0.662 

Residual 3 0.000465 0.000155 1.18  

      

Treatment 3 0.000104 3.46E-05 0.26 0.851 

Time.Treatment 3 0.000355 0.000119 0.9 0.46 

Residual 18 0.002367 0.000132   

      

Non-
mycorrhizal 

root tips 

Total 31 0.003382    
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B.2.5 Analysis of variance (ANOVA) table for the total Trichoderma cfu population 
enumerated at harvest (Figure 3.7) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 
 

B.2.6 Analysis of variance (ANOVA) table for each of the seedling parameters 
measured (Table 3.4) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 

 

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 3 15.469 5.156 4.24   

Treatment 3 383.728 127.909 105.18 <.001 

Residual 137 166.61 1.216     

       

Log10 
Trichoderma 
cfu at harvest 

Total 143 565.808       

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

Block stratum 3 5.688 1.896 0.72   

Treatment 3 3.812 1.271 0.49 0.696 

Residual 25 65.5 2.62     
Seedling height 

Total 31 75    

Block stratum 3 1.22594 0.40865 6.26   

Treatment 3 0.25844 0.08615 1.32 0.29 

Residual 25 1.63281 0.06531     

Seedling 
diameter 

Total 31 3.11719    

Block stratum 3 489.26 163.09 3.47   

Treatment 3 25.71 8.57 0.18 0.908 

Residual 25 1176.33 47.05     

Height : 
diameter 

Total 31 1691.3    

Block stratum 3 0.05041 0.0168 0.91   

Treatment 3 0.03613 0.01204 0.65 0.59 

Residual 25 0.46238 0.0185     

Shoot dry 
weight 

Total 31 0.54892    
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B.3 Chapter 4 ANOVA tables 

B.3.1 Analysis of variance (ANOVA) table for the radial growth rates of each of the 
respective fungal species in the in vitro lab assays (Table 4.3) 

NB: d.f = degrees of freedom; s.s =sums of squares; m.s = mean square; v.r = variance ratio; F pr. = F probability 

Analysis 
Source of 
variation d.f. s.s. m.s. v.r. F pr. 

 Trich_spp 6 0.203 0.034 0.63 0.701 

R. roseolus Residual 21 1.117 0.053     

 Total 27 1.32    

 Trich_spp 6 0.085316 0.014219 1.81 0.145 

S. luteus Residual 21 0.164731 0.007844     

 Total 27 0.250047    

 Trich_spp 6 0.087 0.015 0.44 0.844 

R. villosulus Residual 21 0.694 0.033     

 Total 27 0.782    

 Trich_spp 6 0.375 0.062 3.82 0.01 

H. fasciculare Residual 21 0.343 0.016     

 Total 27 0.718    
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     Appendix C 

C.1 Table 2.3; Internal transcribed spacer (ITS) region sequences 

C.1.1 Thelephora terrestris; unramified, sequence 1 (640 bp) 

1      CTACCTGATT TGAGATCGAA CGTTAAAAAA GCTGTCCTCG CTGAGGAGAG 
51     ACATCTGTGA GCTCCAGCAA ACCTTTGTGA CCAAAGGTTA CCTGGCAGAC 
101    AACAGCGAGC GTAGATATTT ATCACACCCG TGATGCCACC AAACACTGGG 
151    AGGCTGATTA ATTTGAGAGG AGCCGACCAC AGGCCAGCAA AACCCCCAGA 
201    GTCCAACTCA TCATGGCAAA CCATGAGAGT TGAGGTGTTC ATGATACTCA 
251    AACAGGCATG CCCCTCGGAA TAGCCAAGGG GCGCAAGGTG CGTTCAAAGA 
301    TTCGATGATT CACTGAATTC TGCAATTCAC ATTACTTATC GCATTTCGCT 
351    GCGTTCTTCA TCGATGCGAG AGCCAAGAGA TCCGTTGCTG AAAGTTGTAT 
401    TGTATTGCGT TAGACGCGAT GTACATTCCA TAAAACTTTA TTACAGTGTG 
451    TGTGTAAAGA CGTAGAACCA CAGAAGGAAG ACAGGGTCCC CCAGACCATA 
501    GAACTACAGA GGGTGCACAG GTGTGAGTGG ATGTGTAAAC AGAGCGTGCA 
551    CATGCCCCCT ATGAGGGCCA GCAACAACCC GTTTGACAAT TCAGTAATGA 
601    TCCTTCCGCA GGTTCACCTA CGGAAACCTT GTTACGACTT 

C.1.2 Thelephora terrestris; unramified, sequence 2 (635 bp) 

1      AGTCCTACCT GATTTGAGAT CGAACATTAA AAAAGCTGTC CTCGCTGAGG 
51     AGAGACATCT GTGAGCTCCA GCAAACCTTT GTGACCAAAG GTTACCTGGC 
101    AGACAACAGC GAGCGTAGAT ATTTATCACA CCCGTGATGC CACCAAACAC 
151    TGGGAGGCTG ATTAATTTAA GAGGAGCCGA CCACAGGCCA GCAAAACCCC 
201    CAGAGTCCAA CTCATCATGG CAAACCATGA GAGTTGAGGT GTTCATGATA 
251    CTCAAACAGG CATGCCCCTC GGAATAGCCA AGGGGCGCAA GGTGCGTTCA 
301    AAGATTCGAT GATTCACTGA ATTCTGCAAT TCACATTACT TATCGCATTT 
351    CGCTGCGTTC TTCATCGATG CGAGAGCCAA GAGATCCGTT GCTGAAAGTT 
401    GTATTGTATT GCGTTAGACG CGATGTACAT TCCATAAAAC TTTATTACAG 
451    TGTGTGTGTA AAGACGTAGA ACCACAGAGG GAAGACAGGG TCCCCCAGAC 
501    CATAGAACTA CAGAGGGTGC ACAGGTGTGA GTGGATGTGT AAACAGAGCG 
551    TGCACATGCC CCCTATGAGG GCCAGCAACA ACCCGTTTGA CAATTCAGTA 
601    ATGATCCTTC CGCAGGAGTC ACCTACGGAA ACCTT 

C.1.3 Thelephora terrestris; dichotomous, sequence 1 (619 bp) 

1      ACGTTAAAAA GCTGTCCTCG CTGAGGAGAG ACATCTGTGA GCTCCAGCAA 
51     ACCTTTGTGA CCAAAGGTTA CCTGGCAGAC AACAGCGAGC GTAGATATTT 
101    ATCACACCCG TGATGCCACC AAACACTGGG AGGCTGATTA ATTTGAGAGG 
151    AGCCGACCAC AGGCCAGCAA AACCCCCAGA GTCCAACTCA TCATGGCAAA 
201    CCATGAGAGT TGAGGTGTTC ATGATACTCA AACAGGCATG CCCCTCGGAA 
251    TAGCCAAGGG GCGCAAGGTG CGTTCAAAGA TTCGATGATT CACTGAATTC 
301    TGCAATTCAC ATTACTTATC GCATTTCGCT GCGTTCTTCA TCGATGCGAG 
351    AGCCAAGAGA TCCGTTGCTG AAAGTTGTAT TGTATTGCGT TAGACGCGAT 
401    GTACATTCCA TAAAACTTTA TTACAGTGTG TGTGTAAAGA CGTAGAACCA 
451    CAGAAGGAAG ACAGGGTCCC CCAGACCATA GAACTACAGA GGGTGCACAG 
501    GTGTGAGTGG ATGTGTAAAC AGAGCGTGCA CATGCCCCCT ATGAGGGCCA 
551    GCAACAACCC GTTTGACAAT TCAGTAATGA TCCTTCCGCA GGTTCACCTA 
601    CGGAAACCTT GTTACGACT 
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C.1.4 Thelephora terrestris; dichotomous, sequence 2 (615 bp) 

1      AAAAAGCTGT CCTCGCTGAG GAGAGACATC TGTGAGCTCC AGCAAACCTT 
51     TGTGACCAAA GGTTACCTGG CAGACAACAG CGAGCGTAGA TATTTATCAC 
101    ACCCGTGATG CCACCAAACA CTGGGAGGCT GATTAATTTG AGAGGAGCCG 
151    ACCACAGGCC AGCAAAACCC CCAGAGTCCA ACTCATCATG GCAAACCATG 
201    AGAGTTGAGG TGTTCATGAT ACTCAAACAG GCATGCCCCT CGGAATAGCC 
251    AAGGGGCGCA AGGTGCGTTC AAAGATTCGA TGATTCACTG AATTCTGCAA 
301    TTCACATTAC TTATCGCATT TCGCTGCGTT CTTCATCGAT GCGAGAGCCA 
351    AGAGATCCGT TGCTGAAAGT TGTATTGTAT TGCGTTAGAC GCGATGTACA 
401    TTCCATAAAA CTTTATTACA GTGTGTGTGT AAAGACGTAG AACCACAGAA 
451    GGAAGACAGG GTCCCCCAGA CCATAGAACT ACAGAGGGTG CACAGGTGTG 
501    AGTGGATGTG TAAACAGAGC GTGCACATGC CCCCTATGAG GGCCAGCAAC 
551    AACCCGTTTG ACAATTCAGT AATGATCCTT CCGCAGGTTC ACCTACGGAA 
601    ACCTTGTTAC GACTT 

C.1.5 Thelephora terrestris; multi-dichotomous, sequence 1 (638 bp) 

1      CCTGATTTGA GATCGAACGT TAAAAATGCT GTCCTCGCTG AGGAGAGACA 
51     TCTGTGAGCT CCAGCAAACC TTTGTGACCA AAGGTTACCT GGCAGACAAC 
101    AGCGAGCGTA GATATTTATC ACACCCGTGA TGCCACCAAA CACTGGGAGG 
151    CTGATTAATT TGAGAGGAGC CGACCACAGG CCAGCAAAAC CCCCAGAGTC 
201    CAACTCATCA TGGCAAACCA TGAGAGTTGA GGTGTTCATG ATACTCAAAC 
251    AGGCATGCCC CTCGGAATAG CCAAGGGGCG CAAGGTGCGT TCAAAGATTC 
301    GATGATTCAC TGAATTCTGC AATTCACATT ACTTATCGCA TTTCGCTGCG 
351    TTCTTCATCG ATGCGAGAGC CAAGAGATCC GTTGCTGAAA GTTGTATTGT 
401    ATTGCGTTAG ACGCGATGTA CATTCCATAA AACTTTATTA CAGTGTGTGT 
451    GTAAAGACGT AGAACCACAG AAGGAAGACA GGGTCCCCCA GACCATAGAA 
501    CTACAGAGGG TGCACAGGTG TGAGTGGATG TGTAAACAGA GCGTGCACAT 
551    GCCCCCTATG AGGGCCAGCA ACAACCCGTT TGACAATTCA GTAATGATCC 
601    TTCCGCAGGT TCACCTACGG AAACCTTGTT ACGACTTT 

C.1.6 Thelephora terrestris; multi-dichotomous, sequence 2 (643 bp) 

1      GTCCTACCTG ATTTGAGATC GAACGTTAAA AAAGCTGTCC TCGCTGAGGA 
51     GAGACATCTG TGAGCTCCAG CAAACCTTTG TGACCAAAGG TTACCTGGCA 
101    GACAACAGCG AGCGTAGATA TTTATCACAC CCGTGATGCC ACCAAACACT 
151    GGGAGGCTGA TTAATTTGAG AGGAGCCGAC CACAGGCCAG CAAAACCCCC 
201    AGAGTCCAAC TCATCATGGC AAACCATGAG AGTTGAGGTG TTCATGATAC 
251    TCAAACAGGC ATGCCCCTCG GAATAGCCAA GGGGCGCAAG GTGCGTTCAA 
301    AGATTCGATG ATTCACTGAA TTCTGCAATT CACATTACTT ATCGCATTTC 
351    GCTGCGTTCT TCATCGATGC GAGAGCCAAG AGATCCGTTG CTGAAAGTTG 
401    TATTGTATTG CGTTAGACGC GATGTACATT CCATAAAACT TTATTACAGT 
451    GTGTGTGTAA AGACGTAGAA CCACAGAAGG AAGACAGGGT CCCCCAGACC 
501    ATAGAACTAC AGAGGGTGCA CAGGTGTGAG TGGATGTGTA AACAGAGCGT 
551    GCACATGCCC CCTATGAGGG CCAGCAACAA CCCGTTTGAC AATTCAGTAA 
601    TGATCCTTCC GCAGGTTCAC CTACGGAAAC CTTGTTACGA CTT 
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C.2 Table 3.2; Internal transcribed spacer (ITS) region sequences 

C.2.1 Thelephoraceae; unramified (643 bp) 

1      TCCTACCTGA TTTGAGATCG AACGTTCAAA GTTGTCCTCG CCGAGGAGAG 
51     ACGTTTATGA GCTCCAATGA ACCTTCATTG CTGAGGGTTA CCTGGCAGAC 
101    GACCGCGAGC GTAGATAGTT ATCACACCCG TGATGCCACC AAACACTGGC 
151    AAGCTGATTC ATTTGAGAGG AGCCGGCCGC AGGGCCAGCA AACCCCCAAA 
201    GTCCAAGCTC ATCACGGAAG ACCGTGAGAG TTGAGGTGTT CATGATACTC 
251    AAACAGGCAT GCTCCAAGGA ATAACCAAGG GGCGCAAGGT GCGTTCAAAG 
301    ATTCGATGAT TCACTGAATT CTGCAATTCA CATTACTTAT CGCATTTCGC 
351    TGCGTTCTTC ATCGATGCGA GAGCCAAGAG ATCCGTTGCT GAAAGTTGTA 
401    TTGTATCGCG TTAAACGCAT AAAAACATTC CATGAGACAT CGCTACGGCG 
451    TGTGTGTAAA GACGTAGAGC TACAGAAGGA AGACGGGGTC TTCCGAACCA 
501    TAGGACTACA GAGGGTGCAC AGGTGTGAGT GGATGCGTAA ACAGAGCGTG 
551    CACATGCCCC GTTCGGGAGG CCAGCAACAA CCCGTGTTTG ACGATTCGGT 
601    AATGATCCTT CCGCAGGTTC ACCTACGGAA ACCTTGTACG ACT 

C.2.2 Thelephoraceae; dichotomous (644 bp) 

1      CCTACCTGAT TTGAGATCGA ACGTTCAAAG TTGTCCTCGC CGAGGAGAGA 
51     CGTTTATGAG CTCCAATGAA CCTTCATTGC TGAGGGTTAC CTGGCAGACG 
101    ACCGCGAGCG TAGATAGTTA TCACACCCGT GATGCCACCA AACACTGGCA 
151    AGCTGATTCA TTTGAGAGGA GCCGGCCGCA GGGCCAGCAA ACCCCCAAAG 
201    TCCAAGCTCA TCACGGAAGA CCGTGAGAGT TGAGGTGTTC ATGATACTCA 
251    AACAGGCATG CTCCAAGGAA TAACCAAGGG GCGCAAGGTG CGTTCAAAGA 
301    TTCGATGATT CACTGAATTC TGCAATTCAC ATTACTTATC GCATTTCGCT 
351    GCGTTCTTCA TCGATGCGAG AGCCAAGAGA TCCGTTGCTG AAAGTTGTAT 
401    TGTATCGCGT TAAACGCATA AAAACATTCC ATGAGACATC GCTACGGCGT 
451    GTGTGTAAAG ACGTAGAGCT ACAGAAGGAA GACGGGGTCT TCCGAACCAT 
501    AGGACTACAG AGGGTGCACA GGTGTGAGTG GATGCGTAAA CAGAGCGTGC 
551    ACATGCCCCG TTCGGGAGGC CAGCAACAAC CCGTGTTTGA CGATTCGGTA 
601    ATGATCCTTC CGCAGGTTCA CCTACGGAAA CCTTGTTACG ACTT 

C.2.3 Thelephoraceae; multi-dichotomous (644 bp) 

1      CCTACCTGAT TTGAGATCGA ACGTTCAAAG TTGTCCTCGC CGAGGAGAGA 
51     CGTTTATGAG CTCCAATGAA CCTTCATTGC TGAGGGTTAC CTGGCAGACG 
101    ACCGCGAGCG TAGATAGTTA TCACACCCGT GATGCCACCA AACACTGGCA 
151    AGCTGATTCA TTTGAGAGGA GCCGGCCGCA GGGCCAGCAA ACCCCCAAAG 
201    TCCAAGCTCA TCACGGAAGA CCGTGAGAGT TGAGGTGTTC ATGATACTCA 
251    AACAGGCATG CTCCAAGGAA TAACCAAGGG GCGCAAGGTG CGTTCAAAGA 
301    TTCGATGATT CACTGAATTC TGCAATTCAC ATTACTTATC GCATTTCGCT 
351    GCGTTCTTCA TCGATGCGAG AGCCAAGAGA TCCGTTGCTG AAAGTTGTAT 
401    TGTATCGCGT TAAACGCATA AAAACATTCC ATGAGACATC GCTACGGCGT 
451    GTGTGTAAAG ACGTAGAGCT ACAGAAGGAA GACGGGGTCT TCCGAACCAT 
501    AGGACTACAG AGGGTGCACA GGTGTGAGTG GATGCGTAAA CAGAGCGTGC 
551    ACATGCCCCG TTCGGGAGGC CAGCAACAAC CCGTGTTTGA CGATTCGGTA 
601    ATGATCCTTC CGCAGGTTCA CCTACGGAAA CCTTGTTACG ACTT 
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C.2.4 Suillus luteus; multi-dichotomous (670 bp) 

1      CCTACCTGAT TTGAGGTCAA CGTCAATGAG GAAGACGCCC CTAGACGGCG 
51     TCGACGCATT AGAGGCACGG GACCATTCTG TCTTGCACTT CGGCGAACGG 
101    CGATCATTAT CACGCCAAAG GCCTTGTCAT GCAAAGTCGA AAGTCGACCG 
151    CGAGCCGATT CATTTAAGAG GAGCCCGAGT CCTGGACGAA TCCAGTGTCT 
201    CCGGCAGCCC CCAACATCCA AGCACCCGCT CGAAGCAAAT CGAGAGGGGT 
251    TGAGAATTTA CTGACACTCA AACAGGCATG CTCCTCGGAA CACCGAGGAG 
301    CGCAAGGTGC GTTCAAAGAT TCGATGATTC ACTGTAGATC TGCAATTCAC 
351    ATTACATATC GCGATTCGCT GCGTTCTTCA TCGATGCGAG AGCCAAGAGA 
401    TCCGTTGCTG AAAGTTGTAA TAACTTTTTT CTCAAAGAAT CGCGTCTCCT 
451    AGAAGTCGCG ACTCGATGAT GGTAAAACAT TCAAAGACTT TCTACACGAA 
501    GAGGTATATG AAGACGCGGG TCGCCCCGCG CCCATACGGC GAAAGGTCCG 
551    GAAGAGAGCG TGCACATGCC CCTGGAGGCC AGCTACAACT CTCCGCCTTT 
601    CCCCTCGCCG GATTATAATT TCATTAATGA TCCTTCCGCA GGTTCACCTA 
651    CGGAAACCTT GTTACGACTT 

C.3 Table 3.3; Internal transcribed spacer (ITS) region sequences 

C.3.1 Rhizopogon roseolus; (677 bp) 

1      CCTACCTGAT TTGAGGTCAA AGTCAATAAG GAAGACCGTT AAGTCGACGC 
51     ATTAGAGGCA CGGAACCTTC ATTCATGCGC TTCAGCGAAC GGCGATCATT 
101    ATCACGCCGA AAGCCTTGTC GCGCAAAGTC GAAAGTCGAC CGCAAGCCGA 
151    TGCATTTAAG GAGAGCCCGA GTCCAGGACG AGTCCTAGTC TCCGGCAGCC 
201    CCCACCATCC AAGCTCCCCC TCGAAACAAA TCGAGAGGGG TTGAGAATTT 
251    ACTGACACTC AAACAGGCAT GCTCCTCGGA ACACCGAGGA GCGCAAGGTG 
301    CGTTCAAAGA TTCGATGATT CACTGTAGAT CTGCAATTCA CATTACATAT 
351    CGCTTTTCGC TGCGTTCTTC ATCGATGCGA GAGCCAAGAG ATCCATTGCT 
401    GAAAGTTGTA ATTAACTTTT ATCTCAAAAG ATTCGCGTCT CCTAGAAGTC 
451    GCGACTCTCT GATAGTAAAC ATTCTAAGAC TTTCTACACG AAGAGGTATA 
501    TGAAGACATA GGTCCCCCCT CCCGAAAGAG GAGCATCCTA CATTAGGTGC 
551    ACGGGTGAGT TGTGAAAAAC AGAAGAGCGT GCACATGCGT CGTTTCCGAA 
601    GCCAGCTACA ACCCCTCCGA ATTATATTCG TTAATGATCC TTCCGCAGGT 
651    TCACCTACGG AAACCTTGTT ACGACTT 

C.3.2 Rhizopogon villosulus; (675 bp) 

1      CCTACCTGAT TTGAGGTCAA AGTCAATAAA GAAGACCTTT TCTCTCCTAA 
51     GAGATAATAA GAGTCGACGT ATTAGAGGCG CGTAACCTTC ATTCATGCAC 
101    TTCAGCGAAC GGCGATCATT ATCACGCCGA AAGCCTTGTC GCGCATAGTC 
151    GAAAGTCGAC CGCAAGCCGA TGCATTTCAG GAGAGCCCGA GTCAAAAAGT 
201    CTCCGGCAAA CCCCCACTAT CCAAACTCCC TCAATCAAGA GGGGTTGAGA 
251    ATTTACTGAC ACTCAAACAG GCATGCTCCT CGGAACACCG AGGAGCGCAA 
301    GGTGCGTTCA AAGATTCGAT GATTCACTGT AGATCTGCAA TTCACATTAC 
351    ATATCGCTTT TCGCTGCGTT CTTCATCGAT GCGAGAGCCA AGAGATCCAT 
401    TGCTGAAAGT TGTAATAACT TTTATCTCAC AGATTCGCGT CTCCTAGAAG 
451    TCGCGACTCT ATGATAGTAA ACATTCTAAG ACTTTCTACA CGGAGATGTA 
501    TATGAAGACA TAGGTCCCCT CTCCCTAAGG AAAGGCATCC TACATTAGGT 
551    TCACAGGTGA GAAATTTATG AAACACGGTC GGCGTGCACA TGCCCGAAGG 
601    CCAGCGACAG CTTTCCCGAT TTATATTCGT TAATGATCCT TCCGCAGGTT 
651    CACCTACGGA AACCTTGTTA CGACT 
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C.3.3 Lentinula edodes; (734 bp) 

1      TCCTACCTGA TTTGAGGTCA GCAAATAAGT TATATATAGT CAATCAAGAC 
51     AGTTAGAAAG CAGAACTTCC CTTTTTCTCC AATGAATAGA ACAGATTGAG 
101    CAAACTAAAT GCAACAACCC AAACCAATAG AGCTTTATTA TTGTAAGGTT 
151    CCACCAAAAT GTAGATAATT ATCACACCAA GGTTAGAACT AACAAAACAG 
201    GGTTCCCACT AATAAATTTA AGAGGAGCTG ACAAACGCCT GCAAGCCTCC 
251    AACATCCAAG CTTTAATAAG TAAAAACTTA TAAAGTTGAG AATTTAATGA 
301    CACTCAAACA GGCATGCCCT CCGGAATACC AGAGGGCGCA AGGTGCGTTC 
351    AAAGATTCGA TGATTCACTG AATTCTGCAA TTCACATTAC TTATCGCATT 
401    TCGCTGCGTT CTTCATCGAT GGGAGAGCCA AGAGATCCGT TGCTGAAAGT 
451    TGTATTAAGT TTAAAGGGTC AATAAAGTCC CAATAACAAG ATCATTCTAT 
501    AACATACTTC AATGGTTTAT AAGAACATAG AAGCCTTGTC AACTAGTCTT 
551    TTCAAGTAAC TCATAATGAG CACCTTCAAA AACCCGATGA AAGAACTCCT 
601    ACAAAAAGTG CACAGGTGGA TGAATAGAAA TCGGAGGAGG ATGTGCACAT 
651    ACCCAAAGGC CAGCAACAAT CCACCACCAA AAAATTCAAT AATGATCCTT 
701    CCGCAGTTCA CCTACGGAAA CCTTGTTACG ACTT 

C.3.4 Suillus luteus; (669 bp) 

1      CTACCTGATT TGAGGTCAAC GTCAATGAGG AAGACGCCCC TAGACGGCGT 
51     CGACGCATTA GAGGCACGGG ACCATTCTGT CTTGCACTTC GGCGAACGGC 
101    GATCATTATC ACGCCAAAGG CCTTGTCATG CAAAGTCGAA AGTCGACCGC 
151    GAGCCGATTC ATTTAAGAGG AGCCCGAGTC CTGGACGAAT CCAGTGTCTC 
201    CGGCAGCCCC CAACATCCAA GCACCCGCTC GAAGCAAATC GAGAGGGGTT 
251    GAGAATTTAC TGACACTCAA ACAGGCATGC TCCTCGGAAC ACCGAGGAGC 
301    GCAAGGTGCG TTCAAAGATT CGATGATTCA CTGTAGATCT GCAATTCACA 
351    TTACATATCG CGATTCGCTG CGTTCTTCAT CGATGCGAGA GCCAAGAGAT 
401    CCGTTGCTGA AAGTTGTAAT AACTTTTTTC TCAAAGAATC GCGTCTCCTA 
451    GAAGTCGCGA CTCGATGATG GTAAAACATT CAAAGACTTT CTACACGAAG 
501    AGGTATATGA AGACGCGGGT CGCCCCGCGC CCATACGGCG AAAGGTCCGG 
551    AAGAGAGCGT GCACATGCCC CTGGAGGCCA GCTACAACTC TCCGCCTTTC 
601    CCCTCGCCGG ATTATAATTT CATTAATGAT CCTTCCGCAG GTTCACCTAC 
651    GGAAACCTTG TTACGACTT 

C.3.5 Hypholoma fasciculare; (671 bp) 

1      CTACCTGATT TGAGGTCAAT TGTCATATAT TGTCTGAATG AACAGACGAT 
51     TATAAGCAGT GCTATAAACG GCAAGTAGCC CACGGCGTAG ATAATTATCA 
101    CACCAATAGA CATGTTTGCA CAAGGCAACC AGCTAATGCA TTTCAGGGGA 
151    GTTTATTTCA ATGAAGAAAC CAACATGCCC CCACTTCCAA TCCACTTACT 
201    AACCAAAAAG TTAATAAAGG TTGAGAATTT AATGACACTC AAACAGGCAT 
251    GCTCCTCGGA ATACCAAGGA GCGCAAGGTG CGTTCAAAGA TTCGATGATT 
301    CACTGAATTC TGCAATTCAC ATTACTTATC GCATTTCGCT GCGTTCTTCA 
351    TCGATGCGAG AGCCAAGAGA TCCGTTGCTG AAAGTTGTAT ATAGTTTATA 
401    AGGCAATTAA GCCTAATAAT GACATTCTGT TACATTCGTA AGGTGTATAT 
451    GAAAACATAG CCCTGGAAAC GAACAAGGAA AGCCTATTAA GCAACTCCTC 
501    ACAACCGAGT TTCCTCGGAA AGTTGAATCC AGGTCTACAA AAGGTGCACA 
551    GGTGGAGATA TAAAGATGAC CAGGTGTGCA CATGTCTCCG AAAAGACCAG 
601    CATCAACCAA GCCAGATTTA TTCAATAATG ATCCTTCCGC AGGTTCACCT 
651    ACGGAAACCT TGTTACGACT T 
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C.3.6 Scleroderma bovista; (634 bp) 

1      CCTACCTGAT TTGAGGTCAG CTTCGATAAC ACGCGGCCGG ACGGACCGGG 
51     CTCGCAGAGT TGGAGAGCGA CGGGCATCTA CGATCCACGC ACTTCCAGCC 
101    CACGACGGTC ATTATGACGT CGAAGAGGCC GTGCCACGCG AGGCTCGCAC 
151    CCAACGCTAA TGCTTTTGAG GAGAGCCGAC GTCCCCCCGA CGGGAGGTTC 
201    GCCCGCAGAC TCCCATAAGT CCAAACCGAG CTCCGACGAG GTCGAAAGCT 
251    TCGATCTGAT GTTTCGATGA CACTCAAACA GGCATGCTCC TCGGAATACC 
301    AAGGAGCGCA AGGTGCGTTC AAAGATTCGA TGATTCACGG AAAATCTGCA 
351    ATTCACATTA CTTATCGCGA TTCGCTGCGT CCTTCATCGA TGCGAGAGCC 
401    AAGAGATCCA TTGCTGAAAG TTGTATTAGG TTTCCTGTGA CCGAGGTCAC 
451    GGACGACATT CTGTAGACAT GCGAGTTCGA AGAAGACATA GGTCCCTAAG 
501    GACCTACAGT GGGTGCACAC AGGTGTTAGA GGGCTGAAGC CTCGAAAGGG 
551    TTCGGGAAGC CCTCCCCCTC CCAGAGGTTC GATCTCGATA ATGATCCTTC 
601    CGCAGGTTCA CCTACGGAAA CCTTGTTACG ACTT 

 


