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Abstract of a thesis submitted in partial fulfilment of the 

requirement~ for the Degree of M. Appl. Sc. 

FORAGING ECOLOGY AND MANAGEMENT OF BOMBUS SPP. (HYMENOPTERA: 

APIDAE) IN AGRICULTURAL LANDSCAPES 

by Mandy C. Barron 

Bumble bees (Bombus spp.) are important pollinators of agricultural crops such as red 

clover (Trifolium pratense L.) in New Zealand. However, there is a lack of knowledge 

about Bombus foraging behaviour and management at the landscape scale. This thesis 

evaluated habitat manipulation (i.e., provision of nest sites and floral resources) and 

shifting bumble bee colonies to a crop to enhance bumble bee numbers. Bumble bee flight 

distances from the nest and responses to different sized forage patches were also 

in vestigated. 

Habitat manipulation involved placing 80, four-unit bumble bee domiciles around 16 field 

margins, half of which had been sown with Phacelia tanacetifolia Benth.. The effects of 

the flowers on domicile occupancy could not be determined because most plots were 

destroyed by plant competition and grazing animals; however, in areas with high naturally-

occurring floral diversity, domicile occupancy was higher. Occupancy rates over the three 

years of the study were 0.31,4.06 and 8.12 % and the main occupant was B. hortorum L. 

(67.5 %). There was a positive association between domicile occupancy in one year and 

nest founding in the next. 

To supplement forager numbers, four commercially-obtained B. hortorum nests were 

shifted to a 4 ha red clover 'Pawera' seed crop. Foragers were marked with fluorescent 

pOWder. Reobservation rates within the crop ranged from 4-15 %. There was a virtual 

absence of marked foragers within 10m of the nest. Pollen analysis showed that most (85 

%) pollen collectors were visiting the red clover crop exclusively, although some were 

flying 200 m from the nest to forage on other species. The ratio of marked to unmarked B. 

hortorum foraging on the crop was 1 :43, suggesting that adding nests contributed little. 
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An experiment designed to evaluate whether bees foraged close to the nest showed there 

was no difference in the number of B. terrestris L. on pots of P. tanacetifolia at 20 and 200 

m from the nest. However, very low numbers of experimental bees were involved. More 

bees were observed on the P. tanacetifolia when the nest was downwind of the plants 

suggesting that upwind foraging took place; further experiments are needed to confirm this. 

Patches of potted Lavandula x intermedia Lois. were created to test the effects of patch 

size on the numerical and functional responses of B. terrestris. The number of B. terrestris 

visiting the lavender increased with patch size but this was less than proportional. The 

number of flowers visited per foraging bout increased with patch size but the proportion of 

available flowers visited decreased. Combining these two responses, the net visitation per 

flower was independent of patch size. 

Pollinator management in New Zealand is discussed. It is suggested that other bee species 

in addition to Apis mellifera L. should be used in New Zealand. Bumble bees are most 

promising alternative pollinators but the commercial stocking of field crops has not yet 

proved to be cost-effective. Habitat manipulation is therefore the recommended 

management option, because of the low inputs and the potential long-term benefits. 

Keywords: Bumble bees, pollinator management, Bombus terrestris, Bombus hortorum, 

Trifolium pratense, habitat manipulation, Phacelia tanacetifolia, pollen analysis, mark-

reobservation, foraging distances, Lavandula x intermedia, patch size. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background and development of the thesis 

One third of human food is derived from bee-pollinated plants (McGregor 1976). Bumble 

bees (Bombus spp.) are important pollinators of crops especially where honey bees (Apis 

mellifera L.) are ineffective pollinators or are limited by cool conditions (Corbet et al. 

1991). Chapters two and three of this thesis investigate bumble bee management 

techniques for crop pollination (habitat manipulation to enhance bumble bee numbers and 

adding bumble bee colonies to a crop). In Chapters four and five, the focus shifts from an 

applied to a theoretical perspective (foraging distances from the nest and density-dependent 

responses to flower patch size). Although this sequence may appear to be illogical, these 

theoretical questions arose from the results of preceding experiments and are therefore 

presented in the order in which they were conducted. 

The following introduction considers the value of bees, why bumble bees are important 

pollinators, what resources bumble bees need, the introduction of bumble bees into New 

Zealand and their use for field crop pollination. Bumble bee nomenclature follows Prys-

Jones & Corbet (1987). 

1.2 The importance of bees in agriculture 

1.2.1 Pollination, a, keystone process 

Many agricultural crops and wild flowers are entomophilous - dependent on insects for 

pollination. Pollination is a key step in the sexual reproduction of plants and is defined as 

the transfer of pollen from the anther of a flower to the stigma of the same (self pollination) 

or to a different flower (cross pollination) (Free 1993). Cross pollination is essential for 

seed set in self-incompatible species (e.g., Medicago sativa L., Trifolium spp.), for the 

production of hybrid seed, to increase the oil content of seeds (Helianthus annuus L.), to 

improve the quantity of seed set (Carum carvi L.), to increase the earliness and uniformity 

of seed set (Brassica napus L.) and to increase fruit quality when fruit size is dependent on 

the number of seeds (Fragaria x ananassa Duchesne, Cucumis melD L., Actinidia deliciosa 
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(A. Chev.) c.P. Laing et. AR. Ferguson) (Corbet etal. 1991; Free 1993). Even though 

well studied, the pollination requirements of most crops are still poorly understood. Those 

of wild flowers are even less well known (Kevan et ai. 1990; Corbet et ai. 1991). 

Because of the crucial role of pollination in the persistence and viability of plant 

populations (both wild and managed) it has been called a keystone process (Kevan et ai. 

1990; Kearns & Inouye 1997; Allen-Wardell et al. 1998). It has been predicted that the 

loss of a key pollinator could lead to a decrease in plant seed set, genetic diversity and 

ultimately to extinction, which in turn could affect other animals dependent on the plant for 

food and shelter (Kearns & Inouye 1997). The severity of this ecosystem disruption will 

depend on whether the plant is dependent on a single pollinator, the extent of self 

compatibility and the dependence of the plant on seed production. A good example of 

these linkages is between fig trees (Ficus spp., Moraceae) and their obligate wasp 

pollinators (Agaonidae) in tropical forests. A reduction in tree or wasp numbers due to 

habitat fragmentation could lead to negative feed back reducing the number of fig fruits 

which are the staple food of many forest vertebrates (La Salle & Gauld 1993). 

1.2.2 Bee-plant relationships 

The relationship between a plant and its pollinator is a mutualistic one: plants are 

dependent on pollinators for sexual reproduction and pollinators are dependent on plants 

for food. Bees (Apoidea), in particular honey bees and bumble bees, are most important 

pollinating insects (McGregor 1976; Free 1993). They have specialised mouthparts to 

collect nectar, their hairy bodies are well adapted for carrying pollen, which they collect in 

large amounts to feed their brood. Also, their systematic foraging patterns ensure that 

pollen is carried and deposited on compatible flowers (Kevan & Baker 1983; Free 1993). 

Bees and flowering plants have a long history of coevolution, beginning over 100 million 

years ago with the evolution of angiosperms (Kevan & Baker 1983). This partnership is 

manifested in the structure of flowers that are bee pollinated (collectively, these structures 

are called the pollination syndrome). Melittophilous or bee pollinated flowers are typically 

zygomorphic, yellow or blue in colour, have nectar guides, moderate quantities of 

concealed nectar, and a sweet odour (Faegri & van der Pijl 1979). Selective pressures on 
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the plant to attract reliable pollinators and increase precision of pollination yet exclude 

inefficient pollinators have resulted in complex floral morphologies. Correspondingly, the 

bees have evolved specialised behaviours and morphologies to access the hidden rewards. 

An understanding of these specialisations can aid in choosing the most efficient pollinators 

for a particular crop. A mismatch between the pollinator and crop species or cultivar can 

lead poor pollination and/or the pollinator gaining an inadequate reward from the flowers 

(Corbet 1991; Fairey 1993). 

1.2.3 The need to manage alternative pollinators 

In the past, honey bees have been used as the "default" pollinators for most agricultural 

crops because their management is well understood and they can be shifted in large 

numbers to a crop. However, recently there has been a growing awareness of the 

limitations of honey bees as crop pollinators and the need to diversify pollination strategies. 

This is because varroa mite (Varroajacobsoni Oudemans), tracheal mite (Acarapis woodi 

Rennie), invasion by Africanized honey bees (A. mellifera scutellata Lepeletier) and falling 

honey prices have reduced the viability of honey bee keeping in the Northern Hemisphere 

(Kevan et al. 1990; Allen-Wardell et al. 1998). In North America, honey bee numbers 

have decreased by 25 % in just six years (1990-1996) (Allen-Wardell et al. 1998). Also, 

honey bees remain in their hives during cool weather and are inferior pollinators of some 

crops (see section 1.2.4 for details) (Corbet et al. 1991; O'Toole 1993; Cane 1997). 

The reliance on just one insect species for crop pollination seems risky in light of its 

vulnerability to disease and its inefficiency in some crops. Therefore the management and 

enhancement of "alternative" (also called non-Apis, wild or native) bee populations is 

recommended (Parker et al. 1987; Torchio 1987; Kevan et al. 1990; O'Toole 1993; Allen-

Wardell et al. 1998). These bees are often more efficient pollinators than honey bees 

because they have specialised behavioural and morphological adaptations to the collection 

of their mutualist species' nectar and pollen rewards (Parker et al. 1987; Torchio 1987; 

O'Toole 1993). But wild bee populations are also declining, as a result of habitat alteration 

and loss (Williams 1982; Williams et al. 1991; Banaszak 1992; O'Toole 1993; Buchmann 

& N abhan 1996) 
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There are at least 30 000 bee species worldwide but fewer than 10 species are managed for 

agricultural pollination (Cane 1997Y. Wild bee populations provide an important 

background pollinator service, which is largely unrecognised and undervalued (Kevan et al. 

1990; Kearns & Inouye 1997. The importance of this free pollination service was 

illustrated to great effect in New Brunswick, Canada in the 1970s. Large areas of conifer 

forest were aerially sprayed with fenitrothion to control spruce budworm (Choristoneura 

fumiferana Clemens). But the insecticide also severely depleted populations of wild bee 

pollinators (Bomb us, Andrena, Colletes & Halictus spp.) of neighbouring lowbush 

blueberry (Vaccinium angustifolium Ait., V. myrtilloides Michx.) farms (Kevan & LaBerge 

1979). Berry yields fell markedly due to inadequate pollination; wild plant pollination in 

the area was also affected (Plowright & Thaler 1979). There is therefore a need to 

conserve wild bee popUlations, not only as a potential pollinator pool for management but 

also for the vital pollination services they already provide for wild and cultivated plants. 

1.2.4 Morphological, physiological and behavioural adaptations of bumble bees that 

make them important pollinators 

Bumble bees have been identified as alternative pollinators with considerable management 

potential. They are already widely used for pollination of tomatoes (Lycopersicon 

esculentum Mill), melons (c. melo), aubergines (Solanum melongena L.) and sweet 

peppers (Capsicum annuum L.) in greenhouses (Griffiths & Robberts 1996). This is 

because they are capable of "buzz pollination", a behaviour honey bees do not exhibit. -

Some Actinidiaceae, Boraginaceae, Ericaceae and Solanaceae species have poricidally 

dehiscent anthers which means they release pollen from small holes at the tip of the anther 

rather than splitting open to release pollen (Buchmann 1983). Bumble bees collect the 

pollen by clinging to the stamens and rapidly contracting the indirect flight muscles 

producing a strong vibration that shakes the pollen out of the anthers. Also, some flowers 

(e.g., tomato and aubergine) produce pollen only (no nectar) so they are generally avoided 

by honey bees. In addition, honey bees fly out of greenhouse vents when "scout bees" 

recruit foragers to flowering crops outside. Bumble bees do not communicate in this 

manner and so most individuals remain working in the greenhouse (Griffiths & Robberts 

1996). 
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Bumble bees are large robust insects so they can withstand the active tripping mechanism 

of flowers such as lucerne (M. sativa) and they will contact the stigmas of open flowers 

with widely separated styles and stamens such as kiwifruit (A. deliciosa) more often than 

do smaller bees. Bumble bees can also fly at lower ambient air temperatures than honey 

bees due to their superior thermoregulatory abilities (Corbet 1996). A bumble bee's 

thoracic temperature is maintained at 35 - 40°C for flight (Heinrich 1979a). Heat is 

generated by the shivering action of flight muscles (whilst uncoupled from the wings) and a 

heat producing substrate cycle; their hairy coat provides insulation to retain heat (Prys-

Jones & Corbet 1987). This ability to fly at low temperatures enables them to forage early 

in the morning and late evening and makes them more reliable pollinators than honey bees 

in cool climates. However, their large size also makes them vulnerable to overheating and 

this may explain why the numbers of bumble bees foraging often show a decline in the heat 

of the (mid) day (Alford 1975). 

Although most species of bumble bee forage on a wide variety of plant species, i.e., are 

generalists, they show preferences for different flower types. Different bumble bee species 

prefer different types of flowers and an important characteristic is the length of the flower 

corolla. Tongue length (commonly measured from the base of the prementum to the tip of 

the glossa (Harder 1982)) varies between bumble bee species and influences the type of 

flowers they visit for nectar (Heinrich 1979a; Corbet 1995a) Long-tongued bumble bees 

(LTBB) such as Bombus hortorum L. and B. pascuorum Scopoli can reach down the long 

corolla tubes of flowers such as red clover (Trifolium pratense L.) and broad bean (Vicia 

faba L.) and they forage more rapidly on this type of flower (Ranta 1983). Also, the nectar 

in these long corollae is inaccessible to short-tongued bees making the flowers 

energetically profitable for LTBB. Bumble bees such as B. terrestris L. and B. lucorum L., 

with shorter tongues, have faster working speeds on shallow or open flowers such as white 

clover (Trifolium repens L.) and willow (Salix spp.) (Ranta 1983; Plowright & Plowright 

1997). However, this correlation does not always hold true since some short-tongued 

bumble bees will bite holes in long-corolla flowers and rob the nectar (called "floral 

larceny"). These holes are then reused by other bumble bees or honey bees acting as 

secondary robbers (Prys-Jones & Corbet 1987). 
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Individual bumble bee workers often specialise on a particular flower species. Floral 

constancy is a type of temporal specialisation, whereby bumble bees sequentially visit 

flowers of a single plant species, whilst bypassing others (Waddington 1983). Pollinator 

constancy to a particular plant species enhances the quality and quantity of flower visits 

(Plowright & Laverty 1984). For the bee, learning to recognise and manipulate a particular 

flower species reduces flower handling times (Heinrich 1983b). A related behaviour is 

"majoring and minoring" (Heinrich 1976). This means that an individual bumble bee will 

visit mostly one species of flower but will also sample a number of different species in 

small amounts. An explanation for this behaviour is that the bees exploit the most 

profitable species available yet sample other species to track changing floral resources over 

time (Heinrich 1983b). They can then switch their foraging to take advantage of new or 

more abundant food sources. Site or patch fidelity is another behaviour pattern exhibited 

by bumble bees, whereby they return to a previously rewarding patch of flowers to forage, 

they may even visit clumps of flowers in the same sequence (Heinrich 1979a; Thomson et 

al. 1988). Floral constancy and site fidelity over time are desirable attributes in a crop 

pollinator, particularly if the crop has a long flowering period. 

1.3 Bumble bee habitat requirements 

1.3.1 Habitat resources 

In order to manage and conserve popUlations of bumble bees, an understanding of their 

habitat requirements is needed. Four key habitat resources have been identified for bumble 

bees. These are: 

nest sites 

forage (especially in early spring) 

courtship and mating sites 

hibernation sites. 

Of these resources, nest sites and forage are probably the most important and the most 

easily manipulated (Osborne et al. 1991). 
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1.3.2 Forage preferences 

Because of their large size, bumble bees have high energy demands for flight. Energy is 

also needed to generate heat to warm the nest and enable them to fly at low temperatures. 

The flowers they visit therefore must have sufficient nectar to supply their energy 

requirements (Heinrich 1979a). Perennial plants generally have larger flowers with higher 

nectar secretion rates than do annuals (Fussell & Corbet 1992a). Some exceptions to this 

include tansey leaf (Phacelia tanacetifolia Benth.) and borage (Borago officinaiis L.), 

annuals that have high nectar volumes and are very attractive to Bombus (Williams & 

Christian 1991). A survey of flowers visited by bumble bees throughout Britain showed a 

preference for perennials and biennials over annuals (Fussell & Corbet 1992a). A similar 

bumble bee preference for perennials has been shown in Norway (Dramstad & Fry 1995). 

Bumble bees are eusocial species with a long foraging season. They therefore require a 

season-long succession of suitable forage. Some crops such as oilseed rape provide 

abundant nectar resources, but because of their limited flowering time they cannot support 

a bumble bee colony over a whole season (Williams & Carreck 1994). Undisturbed 

patches of perennial vegetation such as field boundaries, road sides and hedgerows are 

important refuges for bumble bees in agricultural landscapes (Osborne et ai. 1991; Saville 

1993; Banaszak 1996). The higher floral diversity in such refuges supports a more diverse 

and more abundant Apoidea community (Banaszak 1992). As well as providing a 

continuous succession of forage, these undisturbed areas also provide nesting, 

overwintering and mating sites for bumble bees (Corbet et ai. 1994). 

1.3.3 Nest sites 

Natural nest sites favoured by Bombus spp. are characteristically open habitats with 

undisturbed vegetation, exposed to the sun for some part of the day and sheltered from the 

prevailing wind (Fussell & Corbet 1992b). There are, however, intraspecific differences. 

For example, B. terrestris, B. iucorum and B. lapidarius L. frequently nest underground, 

whilst B. ruderatus F. and B. hortorum tend to nest above ground (Donovan & Wier 1978; 

Prys-Jones & Corbet 1987). The main nest requirements are a dry, well insulated cavity 

with suitable bedding material (bumble bees generally do not import bedding material) 

(Prys-Jones & Corbet 1987). Abandoned small mammal and bird nests are popular nest 
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sites (Alford 1975) and the distribution of bumble bee nests may be closely related to the 

distribution of rodents' nests (Harder 1986). 

1.3.4 Threats to bumble bee abundance and diversity 

Agricultural intensification in most western countries over the last 50 years has resulted in 

large monoculture fields of annual crops with high agrochemical inputs. This has 

introduced three major threats to bumble bee abundance and diversity: pesticides, habitat 

removal and habitat fragmentation (Keams & Inouye 1997). Indiscriminate insecticide use 

kills bees; the use of fenitrothion in Canadian forests resulted in the decimation of native 

bee populations (Kevan & LaBerge 1979). Broad-spectrum herbicides eliminate the 

perennial plants bumble bees prefer and the use of fertilisers promotes the growth of rank 

weeds such as stinging nettle that have limited value as a bee resource (Corbet et al. 1994). 

Reclamation of wetlands and marginal land and the removal of hedgerows to facilitate 

mechanisation has resulted in more land being brought into cultivation and fewer nesting 

and forage sites for bumble bees. Williams (1982) identified the loss of habitat providing 

food plants as a key cause of the decline in bumble bees in England. Similar causes have 

been implicated in bumble bee declines in Belgium, northern France and East Germany 

(Peters 1972 and Rasmont 1988, both cited in Williams 1989). 

Fragmentation results in an agricultural landscape consisting of small patches of suitable, 

undisturbed bumble bee habitat dispersed among large tracts of unsuitable, cultivated areas. 

Large areas of cereal crops or of grazed or ploughed fields may act as barriers to bumble 

bee movement (Rathcke & Jules 1993). Patches of vegetation that are too far away from 

the nest or separated by barriers may not be visited because the energetic costs are too high. 

By altering the movement of foragers, fragmentation will affect pollinator visitation to 

plants in fragments. Pollen carryover and genetic diversity may thus be limited in these 

patches (Jennersten et ai. 1992). The effect of different patch sizes on pollinator visitation 

is investigated in Chapter 5 of this thesis. 
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1.3.5 Habitat manipulation 

Several authors (Bohart 1967; Corbet 1991; Williams et al. 1991; Kearns & Inouye 1997; 

Allen-Wardell et al. 1998) have recommended habitat manipulation as an effective low 

cost management tool for alternative pollinators. In essence, habitat manipulation involves 

supplementing a limiting resource to boost population numbers or alter their distribution. 

The biological control literature has many examples of using habitat manipulation to 

enhance predator numbers (see Wratten & van Emden 1995 for a review;Hickman & 

Wratten 1996). 

Examples of successful habitat manipulations in the pollinator literature include the 

provision of artificial nest sites for the solitary bees Megachile rotundata F. 

(Megachilidae) and Nomia melanderi Cockerell (Halictidae) to enhance their populations 

around lucerne crops (Bohart 1972; Hickman & Wratten 1996). M. rotundata nests readily 

in drilled woodblocks or polystyrene blocks set out in the field, whilst N. melanderi will 

nest densely in specially prepared soil beds. Habitat manipulations to enhance bumble bee 

populations are investigated in Chapter 2 of this thesis. The provision of nest sites and 

forage resources to enhance bumble bee numbers is often recommended in the literature 

(Holm 1966; Gurr 1974; McGregor 1976; Macfarlane et al. 1983; Williams et al. 1991; 

Fussell & Corbet 1992a). 

1.3.6 Resource distribution in time and space 

It is not enough simply to provide an abundance of resources; their distribution in time and 

space must also be considered. As mentioned before, the temporal succession of flowers 

must be maintained. This is because bumble bees do not store nectar reserves as honey 

bees do and are thus vulnerable to disruptions in their food supply (Prys-Jones & Corbet 

1987). Spring is a critical time for food resources. The newly emerged queens need a 

supply of pollen to mature their ovaries, and nectar to fuel their nest-searching activities 

(Alford 1975). The spatial availability of resources is also important. Habitat 

fragmentation may lead to partial habitats supplying only one or two of the resources 

required (Westrich 1996). Bumble bees are central place foragers (Plowright & Laverty 

1984) (nectar and pollen must be transported back to the nest) so foraging sites must be 
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within flight range of the nest. Therefore, an understanding of the spatial aspects of 

bumble bee foraging behaviour is also required for their management. 

1.3.7 Bumble bee movement 

An understanding of bee movement is important for both agricultural and conservation 

goals. For example, knowledge of a bee's foraging range can be used to calculate the 

minimum area of habitat to be conserved. In agroecosystems, flight range information can 

be used to answer management questions such as how far the bees move into the crop, 

where to place bee colonies, overlap of colony foraging areas, isolation distances and 

optimal location for refuge areas. The movement of bees from their nests is studied in 

Chapters 3 and 4 of this thesis. 

Most previous movement studies on bumble bees have focussed on within-flower, within-

patch or between-patch movements (but see Saville 1993; Dramstad 1996b; Osborne et al. 

1997; Schaffer 1997). These small-scale studies have described many important forager 

behaviour patterns such as traplining, majoring and minoring, area-restricted searching, 

patch fidelity and departure decision rules (see Heinrich 1976 for a review). But for a 

complete picture of bumble bee foraging behaviour, analysis at a larger scale needs to be 

included. Several authors (Bronstein 1995; Dramstad 1996b; Corbet 1997; Schaffer 1997) 

have advocated the study of bee movement at the landscape scale or community leveL 

This is because pollination is a landscape-scale process, performed by different but 

overlapping and interacting communities of plants and their pollinators. 

1.4 Bumble bees in New Zealand 

1.4.1 The importation of bumble bees 

In New Zealand, the majority of food and forage crops have been imported from the 

Northern Hemisphere. New Zealand native bees (Hymenoptera: Colletidae, Halictidae) are 

too small and few in number to pollinate introduced crops effectively (Gurr 1961). So the 

pollinators of introduced crops also had to be imported. Honey bees were introduced in 

1839 but did not raise seed yields of red clover to economic levels (Gurr 1961). The 
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importance of bumble bees as pollinators of red clover was recognised by Darwin (1951), 

so attempts to introduce bumble bees to New Zealand were begun in 1870 (Gurr 1961). 

The first successful introduction of bumble bees in 1885 saw the establishment of B. 

terrestris and B. ruderatus. Within 5 years of their introduction, populations had built up 

rapidly and yields of red clover seed had)ncreaseddramatically (Thomson 1922). But after 

a peak of 10 years, seed yields declined despite the introduction of another two bumble bee 

species (B. hortorum and B. subterraneus L. subsp. latreillellus Kirby) in 1906. This 

decrease in seed yields was attributed to a lack of pollination caused by a decline in bumble 

bee populations (Palmer-Jones et al. 1966). However, Gurr (1974) contended that no 

continuing long-term decline in seed yields had been demonstrated and that initial high 

yields did not persist because cropping was intensified, creating a 'dilution' effect on local 

bumble bee populations. For both sets of introductions no accurate records were kept of 

what species were liberated and there was confusion as to which species had established up 

until 1957 when Gurr (1957a) published a thorough review. Ironically, one of the first 

species to establish and subsequently become the most abundant and widespread species in 

New Zealand was the short-tongued bumble bee B. terrestris, which is a poor pollinator of 

red clover because of its nectar-robbing habit. 

1.4.2 Species and their distributions 

There are four species of bumble bees in New Zealand: B. hortorum, B. ruderatus, B. 

subterraneus and B. terrestris. The first three are referred to as long-tongued bumble bees 

(LTBB) with tongue lengths of 13.5, 9.3 and 7.9 mm respectively (Prys-Jones & Corbet 

1987; Clifford & Scott 1989). B. terrestris has a relatively short tongue, 5.4 mm long 

(Clifford & Scott 1989). 

B. terrestris is a widespread species found throughout the North, South, Stewart and 27 

other offshore islands (Macfarlane & Gurr 1995). B. ruderatus is also widespread 

throughout the North and South islands, but is less common in the North Island than B. 

terrestris and appears to be absent from the south-west of the South Island (Macfarlane & 

Gurr 1995). B. hortorum is present in Southland, Otago, Canterbury, Marlborough, Nelson 

(South Island), and Manawatu (North Island). In the last 35 years, it has increased its range 
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from Palmerston North to Lower Hutt but has not expanded into North Canterbury 

(Macfarlane & Gurr 1995). This failure to spread into North Canterbury is puzzling . 

because it is described as a "widespread ubiquitous species" in Britain (Williams 1989); B. 

hortorum may be somehow limited by droughts that are cornmon in early summer in North 

Canterbury (Macfarlane & Gurr 1995). The fourth species, B. subterraneus, is confined to 

inland Canterbury and Otago (Macfarlane & Gurr 1995). 

1.4.3 Life History 

Bumble bees are primitively eusocial and their colonies follow an annual life cycle. 

Fertilised queens hibernate in underground cavities throughout winter and emerge in spring 

when soil temperatures rise (Alford 1975). Upon emerging, queens search for a suitable 

nest site, lay their eggs, then incubate and tend the brood. The first batch of workers 

emerges after three to four weeks and the queen can then relinquish her foraging duties 

(Prys-Jones & Corbet 1987). There follows a period of colony growth, the 'ergonomic 

phase' (Plowright & Laverty 1984), as progressive batches of workers are produced and the 

size of the colony increases. Later, the colony switches from an ergonomic to termination 

phase (Plowright & Laverty 1984) with the rearing of reproductive bees (drones and 

queens). The new queens and drones leave the nest to mate and the colony eventually dies 

out. After mating, the new queens forage extensively to build up their fat reserves to 

sustain them through the winter hibernation. 

In New Zealand, B. terrestris queens are the first to emerge in September to November, 

followed by B. hortorum in October and November (Donovan & Macfarlane 1984). 

Colonies of B. ruderatus and B. subterraneus are founded later in late November and early 

December (Donovan & Macfarlane 1984). B. hortorum colonies mature four to five weeks 

after the emergence of the first workers and there is evidence that B. hortorum can have 

two, possibly three generations per year in New Zealand (Donovan & Macfarlane 1984). 

Because of New Zealand's mild temperate climate, nest founding can be prolonged in B. 

terrestris, B. ruderatus and B. hortorum and the presence of foraging queens in winter 

suggests some queens do not hibernate or may break hibernation (Donovan & Wier 1978). 

Some B. terrestris colonies also overwinter. In contrast, the marked seasonality in the 
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high country and competition from other bumble bee species ensures that B. subterraneus 

has a strictly annual cycle and complete hibernation (Donovan & Wier 1978). 

1.5 Management of bumble bees for red clover pollination 

1.5.1 Why use bumble bees? 

Red clover is a high-value forage plant in the family Leguminosae. It is a low growing 

herbaceous perennial identified by its fine leafy stems, hairy trifoliate leaves and crimson 

inflorescences (McGregor 1976). The inflorescence is composed of 50-200 florets which 

open from top to bottom over six to ten days (Free 1993). The flowers must be cross 

pollinated to set seed. Honey bees and bumble bees are the most important pollinators of 

red clover (McGregor 1976; Free 1993). The pollinating mechanism is a pistol type: when 

a bee lands on and exerts pressure against the standard and wing petals the stigma and 

anthers pop out (are "tripped") and contact the head of the visiting bee (Fig. 1.1). 

Standard 

Process 
of wing 

Filament Style 

INIIA~~ Ovary 

(A) 

. .:,......:l....-- Weight of insect 
depresses keel 

-I+--Keel 

(B) 

Figure 1.1. Flower of red clover (Trifolium pratense): a, longitudinal section; b, side view 

with keel depressed (from Free 1993). 
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Long-tongued bumble bees are the most efficient pollinators of red clover, particularly of 

the tetraploid varieties that have longer corollae than diploid varieties (Free 1993). This is 

because their long tongue enables them to access readily the nectar from the long corolla so 

they visit 2-3 times more flowers per minute than honey bees (Holm 1966). In addition, 

LTBB are more reliable pollinators because they work under adverse weather conditions, 

they collect both nectar and pollen from the flowers and they remain faithful to red clover. 

In contrast, honey bees tend to visit the crop for pollen only and often desert the crop for 

more attractive or accessible flowers. However, not all bumble bees are efficient red clover 

pollinators. Short-tongued bumble bees (STBB) such as B. terrestris andB.lucorum bite 

holes in the corolla to access the nectar, bypassing the pollinating mechanism. These holes 

are often re-used by honey bees acting as secondary nectar robbers. 

1.5.2 Previous studies and management recommendations 

There has been a long history of research into red clover pollination; Holm (1966), 

McGregor (1976) and Free (1993) provide thorough reviews. Their main conclusion was 

that, although bumble bees were more efficient pollinators than honey bees on an 

individual basis, their populations were too low and unpredictable to be relied upon, so 

they advocated the use of honey bee colonies to achieve maximum pollination. This 

advocacy was made in spite of the honey bees' limitations associated with their short 

tongue length and relatively high temperature activity threshold. Management 

recommendations also included: to ensure synchrony between bee and flower peaks, to 

keep crop sizes small, to provide and/or conserve forage and nesting sites for bumble bees, 

to plant crops in areas suitable for bumble bees, to keep competing crops to a minimum 

and to ensure plant nutrients and irrigation were adequate. 

In New Zealand, low red clover seed yields have been attributed to inadequate pollination 

(Clifford & Scott 1989). Stocking the crop with honey bees has met with variable results 

because they are inefficient pollinators of tetraploid varieties such as Pawera and desert the 

crop if alternative flowers are available nearby (Clifford & Anderson 1980). Hence a 

considerable amount of research has looked at ways of enhancing bumble bee numbers and 

their management for pollination of tetraploid red clover crops. Macfarlane et aI. (1983) 

listed three management options: 
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1. 

2. 

Collection of queens in spring from other localities for release near the crop. 

Placement of domiciles close to the crop for queens to found nests in. 

3. Colony introduction from outside the crop area. (To date, commercial rearing of 

LTBB is not possible, so these would have to be field collected.) 

Option 1 was studied by Clifford (1973), who found that introducing queens to an area in 

spring increased the summer bumble bee population densities threefold. These results have 

never been repeated and seem inconsistent with the theory that it is nest site and forage 

resources that limit bumble bee populations. Option two is more consistent with this 

theory and has had some success in New Zealand (Donovan & Wier 1978; Pomeroy 1981), 

and is considered in further detail in Chapter 2 of this thesis. Supplementing red clover 

crops with LTBB colonies (option 3) has been a successful strategy, in that increased 

LTBB colony densities have resulted in increased seed yields (Macfarlane & Griffin 1985; 

Macfarlane et al. 1991). However, the economic benefits of this practice have yet to be 

proven (see next section). 

1.5.3 Use of bumble bee colonies for field crop pollination 

Because of the small size and high cost of bumble bee colonies, the use of bumble bees for 

field crop pollination is limited to high value crops that are inefficiently pollinated by 

honey bees. Examples include: high and lowbush blueberries and cranberries (Vaccinium 

spp.), kiwifruit (A. deliciosa), almonds (Prunus dulcis (Miller) D.A. Webb), apples (Malus 

domestica Borkh), pears (Pyrus communis L.), melons (c. melo) (van Doorn 1993), red 

clover, lucerne and cicer milkvetch (Astragalus cieer L., Richards & Myers 1997). Their 

use is cost effective if the benefits (i.e., seed yields) outweigh the costs of colony purchase 

(Corbet 1991). But cost effectiveness analyses are often incalculable because there is 

uncertainty about the relationship between bee density and seed set and therefore the 

correct stocking rate to use. This lack of knowledge is reflected in the wide variety of 

honey bee stocking rate recommendations for a particular crop (Torchio 1987; Corbet et al. 

1991). 

Some field evaluations of crops supplemented with bumble bees may be incorrect because 

they have been based upon unproven assumptions of bumble bee foraging behaviour. For 
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instance, stocking rates are usually calculated from bee density and flower density 

assessments and assume that that x number of bees from a colony will result in y extra 

flowers being pollinated. R.c. Plowright (pers. comm.) suggested that the assumption that 

one bee visit results in one seed set is an overestimate because bumble bee foraging paths 

will overlap, so some flowers will be visited many times, others not at all. This estimate 

will be lowered further if a flower requires more than one visit to effect pollination or it is 

not receptive at the time of visitation or if the non-random foraging behaviour of bumble 

bees is taken into account. In fact the relationship between seed set and pollinator density is 

likely to be described as in fig. 2 (Plowright & Hartling 1981). The effect of 

supplementation on seed set will be modified by the background pollinator abundance. So 

at low pollinator densities, supplementation may enhance pollination but at higher 

densities, extra bees will add little to overall seed set. In New Zealand, low crop seed 

yields have been associated with low LTBB densities (Donovan & Wier 1978; Clifford & 

Anderson 1980; Macfarlane et ai. 1983; Read et ai. 1989), so in theory supplementation 

would be beneficial. 

Pollinator density 

Figure 1.2. Relationship between seed production and pollinator density for an obligate 

outcrossing entomophilous plant species (from Plowright & Hartling 1981). 

When evaluating the efficacy of bees shifted to a crop, researchers have often assumed that 

bumble bees observed on a patch of flowers are from nests placed or located nearby 

(Fussell 1992); or that a decline in bee densities in the centre of a crop (Braun et al. 1956; 

Bond & Pope 1974), or with increasing distance from the nest (Macfarlane et al. 1994), 

means that most bumble bees are foraging within a few hundred metres of their nest. 

However, Dramstad found high densities of B. terrestris foraging within 250 m of a 
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known B. terrestris nest, yet when she marked 77 of these bees, not one was seen returning 

to the nest. Conversely, reobservation rates of nest-marked bees at the forage patch were 

low. This suggests that most of the -bees observed foraging did not originate from the 

nearby nest and highlights the importance of marking bees to identify them conclusively as 

coming from a certain nest. Often observations of individuals are assumed to be 

representative of the colony as a whole. Schaffer (1997) found that most marked bees 

observed within a lucerne crop were foraging within 50 m of their nests. However, by 

calculating reobservation rates, it was found that this was not representative of where most 

(99 %) of the marked bees were·foraging. These examples highlight the need to include 

spatial data in any field trials of bumble bees for crop pollination. A spatial evaluation of 

B. hortorum shifted to a red clover clop is included in Chapter 3 of this thesis. 

1.6 Thesis objectives 

This thesis aimed to evaluate two bumble bee management techniques for field crop 

pollination: habitat manipulation to enhance local bumble bee populations and, stocking 

crops with commercially obtained bumble bee colonies. Because management practices 

are reliant on an understanding of bumble bee biology and behaviour, aspects of their 

foraging behaviour were also investigated. The main objectives of this thesis were: 

• To monitor the occupation of artificial nest sites by Bombus spp. and to determine if the 

provision of a floral resource enhances occupancy and nest productivity (Chapter 2). 

• To evaluate the usefulness of shifting B. hortorum colonies to a red clover crop by 

investigating their contribution to the total number of bumble bees foraging on the crop, 

their crop specificity, foraging behaviour on the crop, distribution within the crop and 

diurnal activity patterns (Chapter 3). 

• To test the hypothesis that bumble bees prefer to forage close to their nest (Chapter 4). 

• To test the effects of forage patch size on the numerical and functional responses of B. 

terrestris (Chapter 5). 
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CHAPTER 2: HABITAT MANIPULATION TO ENHANCE BUMBLE 

BEE NUMBERS BY PROVIDING NEST SITE AND FORAGE 

RESOURCES 

2.1 Introduction 

2.1.1 Habitat resources limit bumble bee numbers 

In New Zealand, there is a desire to increase bumble bee populations within 

agroecosystems to enhance pollination of field and orchard crops such as lucerne, red 

clover and kiwifruit. In order to manipulate bumble bee numbers it is necessary to identify 

the factors limiting their popUlations. In New Zealand, it is thought that two key habitat 

resources, nest sites and forage sites, are limiting bumble bee populations (Gurr 1957b; 

Gurr 1974). This hypothesis is based on indirect evidence from both New Zealand and 

Northern Hemisphere studies. First, high bumble bee abundance and diversity has been 

associated with areas such as undisturbed, uncultivated perennial vegetation that provide 

abundant nest and forage resources (Gurr 1957b; Clifford 1973; Williams 1982; Osborne et 

al. 1991; Banaszak 1992; Saville 1993; Macfarlane & Patten 1997). Therefore it is thought 

that the lack of critical habitat (nest sites and floral resources) in intensively managed 

agricultural landscapes limits bumble bee numbers. But queen overwintering and male 

patrolling sites (Saville 1993; Corbet et al. 1994), competition from other bee species (Gurr 

1957b; Clifford & Anderson 1980; Woodward 1990; Paton 1993), predators and parasites 

(Hobbs et ai. 1962; Alford 1975; Donovan & Macfarlane 1984; Schmid-Hempel & Durrer 

1991), insecticide based mortality (Kevan & LaBerge 1979; Osborne et at. 1991; Kearns & 

Inouye 1997) and climatic factors (Williams 1986; Macfarlane & Gurr 1995) may also be 

important. 

Other indirect evidence of a lack of nesting habitat includes the low occupancy rates of 

artificial nest sites in a UK study (Fussell & Corbet 1992b) compared with the higher 

occupancy in a New Zealand study (Donovan & Wier 1978). Fussell & Corbet (1992b) 

considered this difference to indicate a lower nest site availability in New Zealand, 

probably due to a restricted fauna of small burrowing mammals. A high incidence of 
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bumble bee nest invasion in domiciles by queens of the same and other species (Donovan 

& Wier 1978; Richards 1978) also suggests that there is a limited supply of nest sites. 

Because bumble bee colonies store only small amounts of pollen and nectar (Shelly et ai. 

1991) their survival, growth and reproduction may be reduced if even short -term food 

shortages occur, so a continuous succession of flowers is required (Patten et ai. 1993; 

Carreck & Williams 1997). Bowers (1985) found that the persistence, ontogeny and 

reproduction of Bombus in meadow habitats was governed mainly by mid-late summer 

meadow floristics, suggesting that floral resources are limiting to Bombus. Because 

bumble bees are central-place foragers (Plowright & Laverty 1984), forage patches have to 

be near the nest; Macfarlane & Patten (1997) observed that small growing colonies readily 

fail if there is little food within 100 metres. 

To remedy this lack of bumble bee resources in agricultural landscapes, habitat 

manipulation techniques have been advocated (Bohart 1967; Gurr 1974; Macfarlane etai. 

1983; Banaszak 1992; Corbet et ai. 1994; Allen-Wardell et al. 1998). Habitat 

manipulation is a potentially effective, low-cost management technique (Corbet 1991) 

which, if maintained, can provide long-term positive effects on local bee populations 

because it directly rectifies the lack of resources. In contrast, moving bumble bee colonies 

to a crop is only a short-term option, and new inputs would be required annually. This is 

because factors contributing to the low numbers of bumble bees in the locality in the first 

place would also limit the success of any new queens produced from supplemented nests. 

Studies on other bee species (e.g., N. melanderi, M. rotundata, Osmia cornifrons 

Radoszkowski, 0. lignaria propinqua Cresson) have shown that modified spray 

programmes and the provision of resources such as nest sites and supplementary forage can 

enhance local populations (Parker et al. 1987; O'Toole 1993). For bumble bees, nest sites 

can be provided in the form of domiciles (nest boxes) (Holm 1960), and floral resources 

("bee forage") that provide a continuous supply of nectar and pollen can be purposely sown 

(Engels et ai. 1994; Carreck & Williams 1997). 

2.1.2 Artificial domiciles 

Bumble bees will readily nest in domiciles placed in the field, both in the Northern 

Hemisphere (UK, Canada, USA, Europe) (Sladen 1912; Frison 1926; Fye & Medler 1954; 
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Holm 1966; Richards 1978) and in New Zealand (Donovan & Wier 1978; Pomeroy 1981; 

Macfarlane et aI. 1983). Domicile acceptance rates in New Zealand range from 8-93 %, 

depending on immediate habitat characteristics, domicile design, domicile placement, local 

bumble bee populations and local availability of nest sites (Donovan & Wier 1978; 

Pomeroy 1981; Macfarlane et aI. 1983). The optimal domicile design satisfies the bees' 

requirement for a dry, well insulated nest cavity with fibrous nesting material to cover the 

growing colony (Donovan & Wier 1978). Abandoned small-mammal sites are frequently 

used by bumble bees for nest sites in their native northern-temperate habitat because they 

provide a ready made nest cavity· complete with bedding material (Fye & Medler 1954; 

Fussell & Corbet 1992b). The cues used by a queen bumble bee when searching for a 

suitable nest site are poorly understood. With abandoned mouse nests, it may be the cavity 

entrance and the presence of nesting material or mouse odour that prompts an investigatory 

response from the queen. The use of mouse nest material may be a simple technique to 

increase bumble bee nest-founding rates in domiciles. 

2.1.3 Supplementing forage resources 

The provision of spring forage has been recommended, in conjunction with the provision 

of domiciles (Macfarlane et al. 1983; Donovan & Macfarlane 1984). Gurr (1957b) 

regarded food availability in early spring as a critical factor in nesting success. Queens 

that emerge from hibernation need large quantities of protein from pollen to mature their 

ovaries, and nectar to fuel their nest-searching activities (Prys-Jones & Corbet 1987). The 

provision of floral resources at this critical time could increase nest-founding rates or 

increase nest productivity, but this has never been experimentally tested. For crops such as 

red clover that are generally late flowering, it is important to have a continuous source of 

forage to sustain bee populations over summer until the crop starts to flower. Field 

margins, in particular floristically diverse margins, can enhance beneficial insect 

population diversity and densities, for example, those of predatory arthropods (Dennis & 

Fry 1992; Cowgill et aI. 1993; Hickman & Wratten 1996) and pollinating insects (Lagerlof 

et al. 1992; Engels et at. 1994; Banaszak 1996). Field margins in Canterbury are 

characteristically low in floral abundance and diversity, because of the high use of 

herbicides and fertilisers, and cultivation up to the field edge (M.Barron pers. obs.). In this 

study, field margins were sown with P. tanacetifolia, a North American annual. P. 
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tanacetifolia was chosen because it is very attractive to bumble bees (Williams & Christian 

1991). It is also resistant to low temperatures and frost and may flower as early as October 

in Canterbury (Bowie etal.1995). 

The purpose of this study was to monitor the acceptance of domiciles along field margins 

and to evaluate the ability of P. tanacetifolia to attract Bombus spp. to field margins to 

increase occupancy rates in the domiciles. The effect of mouse odour or the presence of a 

mouse nest on domicile occupancy by bumble bees was also investigated. 

2.1.4 Objectives 

• To monitor the occupancy rates of domiciles placed in field margins. 

• To determine if the presence of P. tanacetifolia increases occupancy rates and 

productivity in domiciles. 

• To determine if there is an association between previous use of a domicile by mice or 

bumble bees and subsequent nest founding by bumble bee queens. 

2.2 Methods 

2.2.1 Definition of a nest 

This study follows Donovan & Wier (1978) and Pomeroy (1981) in defining a nest as 

occupied if any attempt at nest founding is made, even if no workers are produced. A 

breakdown of nest productivity and state at termination is presented in the results section 

2.3.2. 

2.2.2 1995/96 season 

Eighty bumble bee nest boxes were constructed from 4 mm plywood; the lids were covered 

in silver-coated rubber (Fig. 2.1). The boxes consisted of four compartments, each 

supplied with a piece of folded felted-fibre carpet underlay. 
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Figure 2.1. Diagram of a bumble bee domicile 

box off ground 

The units were placed along 16 field Inargins in Lincoln University farms (Fig. 2.2). Five 

domiciles were placed along each field Inargin, 15-25 m apart, depending on the 

availability of a 'suitable' site (e.g., the base of a tree). Placing the domicile against a 

landscape feature such as a tree or fence post aids bee orientation (Macfarlane et al. 1983). 

Eight of the 16 field Inargins were drilled in late October 1995 with a 100 In x 0.15 In strip 

of P. tanacet~f'olia at a rate of approximately 10 kg/ha (Plate 2.1, Fig. 2.2). 

Plate 2.1. A strip of Phaceli.a tanacetifolia with domicile in the background. 
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Figure 2.2. Map of domicile placement and Phacelia tanacetifolia strips around Lincoln University farms. 
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The domiciles were placed in the field on 25 & 26 November 1995. Domiciles were 

checked weekly for occupancy from 28 November 1995 to 18 March 1996. Mice and rats 

were controlled during the summer by placing Talon® (brodifacoum) baits in domiciles that 

showed signs of rodent occupancy. The number of bees visiting each site was determined 

by "bee walks" (Banaszak 1980). A 100 m transect was marked out at each field margin 

and the observer walked along the margin at a steady pace, recording the number, species 

and caste of bumble bees, what flowers they were visiting and whether they were foraging 

for nectar and/or pollen. The bee walks were conducted at each site 1-2 times a week when 

P. tanacetifolia was in flower (4 December 1995 - 22 January 1996). The number of P. 

tanacetifolia flower heads in three randomly selected 1 m strips was counted at each 

observation period. The number of bees visiting sites with or without Phacelia was 

compared using a Mann-Whitney rank sum test. 

2.2.3 1996/97 season 

In August 1996, domiciles with mouse nests in them were recorded. The carpet underfelt 

and mouse nests were removed from all domiciles and replaced with new underfelt. The 

number of bumble bee nests founded in domiciles with or without previous occupation by 

mice was compared with a Chi-squared test. 

In 1995, P. tanacetifolia started flowering too late (December) to influence the main nest-

founding period, which is October-November for B. hortorum and September-November 

for B. terrestris (Donovan & Macfarlane 1984). Therefore, in 1996, P. tanacetifolia was 

sown at eight sites between 21-28 August, so it would be in flower by October. 

Unfortunately, mowing, cows, herbicide drift or competition from grass destroyed five of 

the eight P. tanacetifolia sites. For this reason, the Phacelia versus no Phacelia 

comparison was abandoned and the domiciles were simply checked for occupancy on 16 

October 1996, 7 November 1996 and 3 March 1997. Mice and rats were controlled over 

the summer by the use of Talon® baits placed in the domiciles. 

24 



~ ___ ~_ ...... __ L._. 

2.2.4 1997198 season 

On 5 September 1997, only the wet-and fungus-colonised underfelt in the domiciles was 

replaced. Mice nests were left in the domiciles. A Chi-square analysis was used to test for 

association between the presence of a mouse nest and occupancy by bumble bees. The 

domiciles were checked for occupancy on three occasions: 27 October 1997, 15 January 

1998 and 23 March 1998. Mice and rats were not controlled. To test if there was any 

association between box occupancy by bumble bees in the previous season and occupancy 

in the current season a Chi-square test was used. 

2.3 Results 

2.3.1 Overall occupancy trends 

Occupancy was very low (0.31 %) in the first summer of this study but increased annually 

over the three seasons of monitoring (Table 2.1). Between November 1995 and March 

1998,40 (12.5 %) of the domiciles had bumble bee nests founded in them. Over all 

seasons, B. hortorum was the main occupant; founding 65 % of all recorded nests. There 

was a highly significant association between the presence of a bumble bee nest in a unit in 

the previous year and occupancy in the following year (Yates' corrected Chi-square; 
2 X =31.83, df=1, P<O.OOl). 

Table 2.1. Occupancy of field domiciles by bumble bees at Lincoln 1995-1998 (number of 

domiciles set out = 320 in units of four). 

Season Number of % % B. hortorum % B. terrestris % unidentified 
nests founded occuEanc~ nests nests nests 

1995/96 1 0.31 100 

1996/97 13 4.06 76.9 7.7 15.4 

1997/98 26 8.13 57.7 30.8 11.5 
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2.3.2 Colony cycle 

Only four out of 40 nests established produced new queens. Most (67.5 %) produced 

workers (Table 2.2). Nests observed in late October 1996 and 1997 already had workers 

present. As it takes approximately 1 month from nest foundation to worker emergence, 

and no nests were observed during August maintenance checks, these early nests must have 

been founded in mid September. For all seasons combined, 23 of 40 nests (57.5 %) were 

founded before the end of October. Five new B. hortorum nests were founded between 15 

January and 23 March 1998. 

Table 2.2. Number and state at termination of bumble bee (Bomb us spp.) nests founded in 

field domiciles 1995-1998 (n=40). 

Species Queen First First Fewer than More than 50 Number of 
cavity cocoons workers 50 worker/male nests 
& egg clump worker/male cocoons producing 

cocoons gueens 
B. hortorum 1 3 4 10 7 3 

B. terrestris 3 1 2 1 

Unknown 2 2 1 

2.3.3 Effect of P. tanacetifolia on domicile occupancy by bumble bees 

Because the Phacelia flowered too late in 1995 and only one nest was founded that season, 

its effect on occupancy rates could not be determined. Most of the Phacelia strips sown in 

1996 were destroyed, so again the effects on nest occupancy could not be assessed. 

2.3.4 Effect of P. tanacetifolia on bumble bee numbers, 1995/96 season 

There were significantly more bumble bees observed at field margins planted with 

Phacelia than at margins without (Fig. 2.3: Mann-Whitney; U=2398, df=53, P<O.OOl). 

There was a strong positive relationship between the number of Phacelia flower heads and 

the number of bumble bees observed per transect (Spearman rank; Rs=0.708, df=123, 

P<O.OOI) 
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Figure 2.3. The number of bumble bees observed along 100 m transects at sites with 

and without Phacelia tanacetifolia around Lincoln University farms, 

summer 1995/96 (means±SE). 

The first site at which flowering began was site 3, on 4 December 1995; all sites were in 

flower by 13 December 1995. Flowering lasted for approximately 4 weeks but some sites 

had shorter flowering periods; for example, flowering at sites 1 and 7 lasted only c. 2 

weeks, because of competition with grasses. Figure 2.4 shows the flowering phenology at 

site 8, with the numbers of bumble bees observed on transect walks. 

~ 180 ,. ' •. ,' Phacelia 12 
CII E 160 • QI 
U o 

. , 10 jj 
1110 140 • Bomb us §'C ct..-... 120 8 ..Q QI - QI - ~ 
0 c. 100 o QI 
... Ul 6 ... Ul 
QI'C 80 QI..Q 
.c III ..Q 0 
E1! 60 4 E Ul 

::::J QI 
::::J ... 40 c QI C QI 2 c.c 
C 3: 20 III III 0 QI QI- 0 0 := :=-

LO LO LO LO LO <0 <0 <0 <0 <0 
0> *I 0> 0> *I ~ 0> ~ ~ ~ C\i C\i C\i --~ ~ ~ ~ ~ 

~ ~ 

~ 
~ ~ Q Q ~ Q ~ -- 'M 0 --0> C\i LO co <0 

~ ~ C\I ~ ~ C\I 

Date 

Figure 2.4. Mean number of Phacelia tanacetifolia flower heads (left axis) and 

the number of Bombus (right axis) observed per 100 m transect, site 8. 
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2.3.5 Effect of mouse nests on nest founding by bumble bees 

No association was found between the presence of mouse nests in the domiciles and 

subsequent nest founding in the domiciles in 1996/97 (Yates' corrected Chi-square; 

X2=0.49, df=1, P=0.4840). There was also no association in 1997/98 (Yates' corrected 

Chi-square; X2=2.07, df=1, P=O.1500). 

2.4 Discussion 

2.4.1 Domicile occupancy trends 

There was an increase in domicile occupancy over the three nest-founding seasons. Frison 

(1926) and Donovan & Wier (1978) found a similar increase, which they attributed to both 

improved domicile design and placement to reduce dampness in the domiciles. In the 

present study, however, the boxes were left in the same location from year to year. 

Another explanation suggested by Donovan & Wier (1978) for annually increasing 

occupancy rates, was queen bumble bees returning to the vicinity of their maternal nest to 

found their own nests. This seems an unlikely explanation for the lO-fold increase in nest 

founding from the first to second season in this study, because no queens were produced 

from the one nest that was founded in the first year. Queens reared in domiciles in 1996/97 

may have returned to found nests in 1997/98, since a significant association between unit 

occupancy in the previous year and occupancy in the current year was found. Pomeroy 

(1981) found that overwintered queens visited their maternal nest site and D.Woodward 

(pers. comm.) found enhanced attraction and nest founding in laboratory and domicile trials 

when bumble bee nest odour was present. Alternatively, the weathering and increased 

camouflaging of domiciles with time possibly increased their acceptability to bumble bee 

queens. Richards (1978) speculated that the camouflaging of tunnel entrances to his 

domiciles by founding queens was a defence mechanism against inclement weather, social 

parasites and predators. 

Compared with other New Zealand studies (Donovan & Wier 1978; Pomeroy 1981; 

Macfarlane et ai. 1983), the occupancy rates in this study were low. This could be due to a 

number of factors: nest sites may not have been limiting, the domicile design or placement 

may not have been satisfactory, or local bumble bee populations may not have been as 
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large in previous studies. It is difficult to elucidate which factors were the most important. 

The low occupancy rates in the first season of the study were probably due to the fact that 

domiciles were not set out until late November, missing the main nesting period of B. 

terrestris and B. hortorum (Donovan & Macfarlane 1984). As most of the nests were 

founded before the end of October in subsequent years, this seems a likely explanation. 

The domiciles were of a similar design to those of Donovan & Macfarlane (1984) except 

that the present ones had four compartments. Most boxes remained dry throughout the 

three seasons and any wet bedding material was replaced each spring. Although some of 

Donovan & Wier's (1978) domiciles were set out in the same area as this study (Lincoln), 

they may have been placed in more favourable (undisturbed, floristically diverse) sites than 

in the present study, in which a range of, often floristically poor, field margins were 

utilised. The high incidence of nest invasion by other Bombus queens suggests that nest 

sites were limiting in some locations (see also Richards 1978). 

2.4.2 Species occupying the domiciles 

The main occupant of the domiciles was B. hortorum (65 %); this is similar to the 52.4 % 

of Donovan & Wier (1978). It also agrees with descriptions of nest sites in the European 

habitat of B. hortorum where it is predominantly a surface nest-builder (Prys-Jones & 

Corbet 1987). In contrast, B. terrestris is usually a subterranean nester (Prys-Jones & 

Corbet 1987) and preferentially occupies underground domiciles (Donovan & Macfarlane 

1984). The relatively high acceptance rate of domiciles by a long-tongued species of 

bumble bee is a promising result, because it is these species that are most useful for 

pollinating red clover (Free 1993). The founding of B. hortorum nests in late summer 

supports the finding of Donovan & Macfarlane (1984) that B. hortorum has a second 

generation in New Zealand. Although B. terrestris was the dominant species in the 

locality, it comprised only 20 % of the domicile occupants, indicating that the domiciles 

did not satisfy its nest site requirements. Richards (1978) found a similar situation in his 

field trials; the most locally abundant species was not the most numerous in the domiciles. 

In the present study, only two bumble bee species inhabited the domiciles. B. subterraneus 

was not expected as it is absent from the Lincoln area (Donovan & Wier 1978), but the 

absence of B. ruderatus is difficult to explain. Donovan & Wier (1978) found that 20.2% 

of their domiciles were occupied by B. ruderatus. Some B. ruderatus individuals are 
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completely black but the mOl-phs with yellow markings have a similar banding pattern to 

those of B. hortorum (Donovan & Macfarlane 1984). As it is difficult to distinguish 

banding patterns when a bee is flying, it is possible that some of the B. hortorum nests were 

misidentified and were in fact light-coloured morphs of B. ruderatus. 

2.4.3 Effect of mouse nests on bumble bee nest founding 

Although mouse nests are frequently used by bumble bees in the wild, they appear not to 

influence nest founding in domiciles (but see Fye & Medler 1954). This is probably 

because domiciles, such as the ones used in this study, already provide the necessary 

insulated cavity and nesting material, therefore mouse nests are not necessary to induce 

nesting (Hobbs et al. 1960; Fussell & Corbet 1992b). D. Woodward (pers. comm.) also 

found that the presence of mouse odour had no effect on nest founding by queen bumble 

bees. In addition, mice are predators of nests and in this study several nests were destroyed 

by them. 

2.4.4 Effect of a floral resource on bumble bee populations 

Because of problems in maintaining the Phacelia strips, the effect of a spring forage 

resource on occupancy rates and nest production could not be tested. Circumstantial 

evidence that the provision of floral resources increases domicile occupancy is provided by 

comparing the occupancy of domiciles in the Biological Husbandry Unit (BHU) at Lincoln 

University (33.3 %) with occupancy rates of the remaining sites (7.7 %), The BHU 

manages its orchards and crops in accordance with organic principles and has a policy of 

floral diversification to augment beneficial insect populations (R.Crowder pers. comm.). In 

spring, tree lucerne (Chamaecytisus palmensis (Christ), Phacelia (P. tanacetifolia), cow 

parsley (Anthriscus sylvestris L.), mustard (Sinapis alba L.), fruit trees (Prunus spp., M. 

domestica) are in flower and provide nectar and pollen for emerging bumble bee queens. 

Phacelia attracted bumble bees to the field margins and there was a close correlation 

between flower abundance and bee numbers. The most abundant bumble bee visitor was 

B. terrestris, which constituted 99 % of all Bombus observed. Williams & Christian 

(1991) also found a close dependency of bumble bee numbers on flower density and a 
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dominance of B. terrestris on Phacelia patches. The dominance of B. terrestris is likely to 

be due to two factors: B. terrestris is the most abundant species in rural Lincoln (Donovan 

& Wier 1978), and short-tongued bumble bees preferentially visit flowers with shorter 

corollae (such as Phacelia), whereas for long-tongued species the opposite is true 

(Plowright & Plowright 1997). 

2.4.5 Choice of floral resource 

The Phacelia in this study performed poorly compared with other studies; it flowered for 

only c. 4 weeks compared with the 8 weeks recorded by Williams & Christian (1991) and 

Bowie et ai. (1995). This is because it was smothered by vigorously growing grasses and 

was probably water-stressed (irrigation was impractical because of access problems). A 

longer-flowering, more competitive and drought resistant species is required to provide a 

continuous floral resource. Engels et ai. (1994) developed a mix of annual species ("The 

Tiibingen mix") to provide a continuous succession of floral resources for bees in 

Germany. But when tested under UK conditions, Phacelia dominated the mixture, so was 

of little advantage over sowing Phacelia alone (Carreck & Williams 1997). Development 

of a similar mix for Canterbury conditions would require the assessment of the agronomy 

and flowering phenology of the component species under the prevailing climate and soil 

conditions (see Bowie et al. 1995) The constituent species in an annual mix would require 

resowing every 1-2 years, which would mean continuing financial and labour inputs. Also, 

regularly ploughing the field margins could facilitate the invasion of arable annual weeds 

(Corbet et ai. 1994). A longer-term option would be to plant nectar- and pollen-rich 

perennial plants or trees and shrubs such as clovers (Trifolium spp.), bergamot (Monarda 

fistuiosa L.), lavender (Lavanduia spp.), rosemary (Rosmarius officinalis L.), and tree 

lucerne (c. paimensis). Perennial and biennial plants are 'preferred' by bumble bees over 

annual species (Fussell & Corbet 1992a), and can suppress annual weeds and would 

require less maintenance once established (Corbet et al. 1994). In the UK, set-aside 

schemes, where arable land is taken out of food production, have great potential to be 

managed as bumble bee habitat (Williams & Carreck 1994). Although annually ploughed 

rotational set-aside and conservation headlands can provide abundant nectar and pollen 

sources, they tend to redistribute local populations rather than enhance them (Corbet 

1995b). Therefore non-rotational set-side offers greater scope for the enhancement of bee 
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numbers and diversity because the lack of cultivation means nest sites are not disturbed and 

a diverse perennial vegetation develops with time (Corbet 1995b). 

2.4.6 Practical Implementation 

As a means of enhancing pollination via increased bumble bee populations, the setting out 

of domiciles has variable success. In this study, occupancy rates were low compared with 

other studies. This was probably because in this study sub-optimal habitats, e.g., 

floristically poor paddock edges, were utilised. For the amount of money and time spent 

building the 320 units, the results (low occupancy) did not justify the effort. However, for 

a red clover grower with just one or two paddocks the number of domiciles required would 

be much lower. If shelhe could adapt containers already at hand (e.g., nail boxes), then 

outlay could be minimised. The number of bumble bee colonies occupying the domiciles 

should build up over the years. The seeding of domiciles with pieces of old bumble bee 

nest is recommended as means to attract bumble bee to the domiciles. The prospects for 

enhancing bumble bee populations in New Zealand are promising, because many of their 

natural enemies, for example, cuckoo bumble bees (Psithyrus spp.), conopid flies (Diptera: 

Conopidae), badgers (Meles meles L.), and shrews (Sorex spp.), are absent from New 

Zealand (Holm 1966; Donovan & Wier 1978; Fussell & Corbet 1992b). 

The choice of an appropriate pollen and nectar source for the field margin is difficult; the 

flowering phenology, agronomy, weed status, ease and cost of establishment and 

management, nectar and pollen availability and bumble bee preferences all must be 

considered (Patten et al. 1993; Carreck & Williams 1997). Also, the companion plant 

could draw pollinators away from the crop if both are flowering at the same time. Mowing 

the margin when the crop starts to flower could prevent this. Another option would be to 

place domiciles and to plant bee forage in a area of undisturbed, uncultivated land, then 

shift occupied domiciles to the crop when required. 

These habitat manipulation techniques have been recommended for many years (see Gurr 

1957b) but it is not known whether farmers actually practise them. Some growers put out 

domiciles and approximately 30-80 B. hortorum nests are sold to red clover growers in the 

South Island each year, but exact details of grower practices are not known (B. Donovan 
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pers. comm.). In this study, the relationship between the number of bumble bee nests in 

field margins and seed yields was not investigated but other studies have shown that bees 

from domiciles adjacent to a crop, move into the crop (Chapter 3, this thesis) and the 

number of domiciles supplied to a crop has been positively correlated with seed yields 

(Macfarlane et al. 1983; Macfarlane et al. 1991). 
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CHAPTER 3: FORAGING BEHAVIOUR OF BOMBUS HORTORUM 

WITHIN A RED CLOVER SEED CROP 

3.1 Introduction 

3.1.1 Red clover seed production in New Zealand 

Red clover (T. pratense) is self incompatible and therefore reliant on insects (primarily 

honey bees and bumble bees) to cross pollinate its flowers. Bumble bees were introduced 

to New Zealand from England in 1885, specifically for red clover pollination (see section 

1.4.1). Initial high seed yields following the first introduction of bumble bees did not last, 

probably because local bumble bee populations were spread more thinly when more and 

more acreage was put into seed production (Gurr 1974). 

A verage seed yields of red clover in New Zealand are low compared with those of the 

Northern Hemisphere, and this is thought to be due to inadequate pollination (Gurr 1974). 

The seed yields of tetraploid clovers are even lower than those of diploidcultivars; 150 

kg/ha compared with 200 kg/ha (P. Clifford pers. comm.). A significant reason for lower 

seed yields in tetraploids is that they have longer corolla tubes than diploids, making it 

difficult for bees with short tongues to reach the nectar and hence pollinate the flowers 

(Holm 1966; Free 1993). Red clover is a valuable seed crop, worth $5-7/kg for diploid 

cultivars and $11-12/kg for tetraploids (P. Clifford pers. comm.), so the incentive for 

increasing yields is great. 

3.1.2 Management of long-tongued bumble bees 

It is generally agreed that long-tongued bumble bees (LTBB) such as B. hortorum and B. 

ruderatus are the best pollinators for tetraploid red clover crops (Clifford & Scott 1989; 

Free 1993) because of their fast working speeds, their preference for flowers with long 

corollae and their ability to work under adverse weather conditions (Donovan & 

Macfarlane 1984). The problem with using LTBB as pollinators is that their natural 

populations in New Zealand are low and fluctuate widely (Donovan & Macfarlane 1984). 
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It is not yet possible to rear B. hortorum colonies commercially, so natural populations 

have to be relied upon for pollination. One option is to transfer nests to the crop from other 

localities. There are few stocking nites of bumble bees for field crops in the literature: 

Macfarlane et al. (1994) used 10 colonies per ha of B. occidentalis Greene for cranberry 

bogs and Richards & Myers (1997) recommended more than five colonies per ha of B. 

occidentalis for cicer milkvetch fields. Recommendations for managing bumble bee 

colonies for New Zealand red clover crops include placing the nests as close to the crop as 

possible (Macfarlane et al. 1983) and supplying them at a stocking rate of six colonies per 

hectare (Macfarlane et al. 1991)\ Macfarlane et al. (1991) calculated this stocking rate 

from estimates of the number of flowerslha needing pollination each day and the number of 

flowerslha pollinated each day by the average number of beeslha observed on different 

crops. 

To evaluate the effectiveness of bumble bee nests shifted to field crops, an understanding 

of where individual bees, and the colony as a whole, forage in relation to their nest site is 

also necessary. This introduces the spatial component of bumble bee foraging behaviour 

that has hitherto been ignored in studies of bumble bee field-crop pollination (but see 

Schaffer 1997). This spatial information is needed to answer fundamental management 

questions such as: where and how far apart should nests be placed; how far into the crop do 

the bees forage; do the bees visit the crop exclusively or do they forage on competing 

plants? 

3.1.3 Bumble bee movement from the nest 

It has generally been accepted that bumble bees prefer to forage as close to their nests as 

possible, because of energy and time constraints on foraging (Alford 1975; Heinrich 1976; 

Bowers 1985). These observations have been only anecdotal, not explicitly tested for in 

the experimental design and the shorter foraging distances observed may have been an 

artefact of small sampling areas (see Dramstad 1996a for review). Butler (1951) 

concluded that most foraging flights from a B. agrorum F. nest adjacent to a red clover 

paddock were within 18.3 m of the nest. However, no methodology for calculating this 

result was presented. Often researchers assume that high bumble bee densities observed on 

flowers near a known nest site are a result of bumble bees foraging close to their nest 
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.- .... -_ .. -,.; ~., (Braun et ai. 1956; Bond & Pope 1974; Macfarlane et al. 1994). This assumption may be 

flawed since Dramstad (1996a) found that none of the bees she marked foraging near « 
250 m) a known nest were seen entering the nest and very few of the bees she marked 

leaving the nest were seen foraging in the area. In the present study, B. hortorum foragers 

were marked with a fluorescent powder to identify them positively in the red clover crop. 

Marking the bees also distinguished them from wild bees, so the contribution of the 

introduced bees to the total pollinator community can be assessed. To see if observations 

of marked individuals represent the whole colony, reobservation rates must be calculated 

(Schaffer 1997). In the current study, video recordings were also used to estimate the 

number of bees from a particular nest that were foraging, and hence calculate reobservation 

rates. Records of nest activity can also be used to determine peak activity periods and 

duration of foraging throughout the day. 

3.1.4 Pollen analysis 

Inspection of pollen loads can be used as an indirect method of determining where pollen-

collecting bees have been foraging (Waddington 1983). Whidden (1996) successfully used 

pollen load analysis to show that Bombus impatiens (Cresson) foragers were faithful to 

lowbush blueberry (V. angustifolium) crops, but he looked at pollen collection over only a 

two-day period. By analysing pollen loads, the specificity of the bumble bees to the crop 

over time can be assessed. This may change with flowering intensity of the crop or when 

other plants in the locality come into flower. 

3.1.5 Study design 

'Grasslands Pawera' is a New Zealand tetraploid red clover cultivar that has good herbage 

characteristics and is a valuable seed crop. A small number of bomibculturalists in the 

South Island supply B. hortorum and B. ruderatus nests specifically for red clover 

pollination. Four such nests were purchased for this study from Donovan Scientific Insect 

Research. Four nests at approximately $65 each was considered to be the outlay a grower 

would initially be prepared to pay for each paddock (R. MacCarthy, pers. comm). This 

study was carried out on a 4 ha crop of red clover, which has the advantage of being a 

realistic area for this seed crop (~ 5 ha is the recommended paddock size for red clover 
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seed crops) (Clifford & Anderson 1980). Many other studies have been carried out on very 

small experimental crops (e.g., Brown 1989,0.36 ha; Fussell 1992, 0.17 ha; Schaffer 1997, 

0.24 ha), the results of which may not extrapolate to a larger crop area, due to 'dilution' of 

pollinator numbers. Because the crop was an abundant source of nectar and pollen and 

because of the well-documented preference of B. hortorum for red clover, the null 

hypothesis was that most bees from the supplied nests would visit the crop. 

3.1.6 Objectives 

• To quantify the population density, species composition and foraging behaviour of 

bumble bees present on the red clover crop. 

• To compare the number of nest-marked bees reobserved at different distances (10, 50, 

100 & 200 m) into the crop. 

• To use time-lapse video recordings of bumble bee nest traffic to determine diurnal 

activity patterns and to estimate the number of marked bees foraging (this estimate will 

be used to calculate reobservation rates of nest-marked bees within the crop). 

• To use pollen analysis to determine bumble bee specificity to the crop and to see if this 

changes over time. 

• To evaluate the usefulness of bumble bee nests placed on the edge of field crops by 

investigating their contribution to the total number of bumble bees foraging on the 

crop, their crop specificity, foraging behaviour on the crop and nest productivity. 
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3.2 Methods 

3.2.1 Study area 

The study area was a 4 ha tetraploid red clover crop (T. pratense cv. Pawera) at Tai Tapu, 

Canterbury, New Zealand. The crop was grazed until 13 December 1996 when it was 

closed for seed production; it began flowering around 10 January 1997. It was bounded by 

a hawthorn hedge (Crataegus monogyna Jacq.) and a ditch to the west, a Macrocarpa spp. 

hedge to the north and a river along its south-east boundary (Fig. 3.1). 

50m Tai Tapu River 

200 m transect 

Macrocarpa hedge--· 
100m 

50m 

10m 
hawthorn hedge --e~=f:::;:::$~¥::::3~ 

Figure 3.1. Diagram of Tai Tapu study site and location of transects. 

Four B. hortorum nests were moved to the crop edge on 15 January 1997. The nests were 

sourced from the Lincoln area where they had been founded in artificial domiciles placed 

in the field. These domiciles were a standard wooden type with a metal-covered roof (see 

Donovan & Macfarlane 1984 for design details). The nests were placed along the western 

edge of the field against the hawthorn hedge, affording them some shelter from the sun and 

the prevailing north-west wind. The boxes were placed 30-40 m apart, exploiting where 
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possible a distinct landscape feature such as a tree trunk or fence post, to aid bee 

orientation to the box (Macfarlane et al. 1983; Plowright et al. 1995). 

3.2.2 Marking 

The bees were tTIarked at the nest entrance using a fluorescent powder tTIm-king systetTI 

designed by M. Schaffer (Schaffer 1997). Marking tunnels were used, which consisted of a 

plastic PET soft drink bottle painted black, with corrugated cardboard lining the inside and 

a costTIetics brush projecting into the narrow end of the bottle. The wide end of the bottle 

was screwed on the nest entrance and the narrow end rested on a foam "landing pad" (Plate 

3.1). As a bee left the nest, its legs and ventral surface became coated with fluorescent 

powder in the grooves of the cardboard. When the bee walked out of the entrance hole its 

dorsal surface was doused with powder from the cosmetics brush. Four colours of "Day 

Gl0 TM" fluorescent powder were used: nest 1 - saturn yellow (yellow); nest 2 - signal green 

(green); nest 3 - strong magenta (red) ; and nest 4 - strong orange (orange)_ The lTIarking 

tunnels were filled with c. 5 cc of fluorescent powder, shaken vigorously and attached to 

the nest one hour before each observation session, to allow time for all active foragers to be 

tum-ked. 

Plate 3.1. Fluorescent-powder tnarking tunnel attached to bumble bee domicile. 
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The efficiency of the marking tunnels was tested by an observer sitting outside the nest for 

15,30 or 60 mins and recording the number of marked and unmarked bees leaving and 

entering the nest. 

3.2.3 Transect walks 

Transect walks, 100 m long, were used to estimate bee numbers (Banaszak 1980). 

Transect walks were carried out at distances of 10, 50, 100 and 200 m from the bumble bee 

nests (Fig. 3.1). The observer w.alked down the transect at a steady pace, looking 1.5 m to 

either side, recording the bumble bee species, caste, markings, foraging behaviour and 

presence and colour of pollen loads. The number of honey bees was also recorded on the 

transect walks until 18 February 1997, when their numbers became large and counting 

them slowed the observer too much. 

Bee activity can be affected directly by microclimate fluctuations and indirectly through the 

production of nectar and pollen (Free 1993). At the beginning of each transect walk, 

temperature (standard dry bulb thermometer), humidity (sling psychrometer), radiation 

intensity (INS DX-100 digital lux meter), wind direction and wind speed (anemometer) 

were recorded at crop height (approx. 0.5 m). 

Transect walks were carried out between 15:00 and 18:00 h (NZ Summer Time), a time of 

high bumble bee activity (Fussell 1992; Schaffer 1997; section 3.3 this Chapter). It took 

approximately two hours to complete the set of four transects. Thirteen sets of transect 

walks were carried out between 20 January and 13 March 1997. The transect order was 

reversed each time a new set was started. 

3.2.4 Flowering intensity 

The number of red clover inflorescences in 10 randomly placed 0.5 m2 quadrats was 

counted each time a set of transect walks was completed. At peak flowering, a random 

sample of 30 inflorescences was taken and the number of florets per inflorescence was 

counted. 
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3.2.5 Nest traffic 

To calculate reobservation rates, an-estimate of the number of bees foraging is required. 

This was done using time-lapse video recording. A black and white JVC camera (model 

SR-L900E) with a 50 mm macro lens was connected to a JVC time .. lapse recorder (model 

TK-S240) and powered by a 12 v Portalac battery. Because of technical difficulties, 

including such things as battery failure and loose connections, the timing of recordings was 

sporadic; for a list of recorded dates and times see Appendix 3.1. Five of the recordings 

were of the green nest and one ~as of the orange nest. When replayed, the video 

recordings were viewed in contiguous IS-minute segments, tallying the number of bees 

entering and leaving the nest in each IS-minute period. The number entering was 

subtracted from the number that had left, to give an estimate of the number of bees out of 

the nest at the end of that IS-minute recording period. This total was carried over to the 

next IS-minute period, from which the number of entries was subtracted and the number of 

exits added, to give a cumulative total of the number of bees foraging throughout the day. 

To emulate the temperature a bee experiences, a thermocouple was inserted into a "black-

globe" (Corbet 1990), made of 20 mm diameter ball of Blu-tack ball painted black. 

"Black-globe" temperature was measured in conjunction with video recordings using a 

Tiny-talk® data logger, but all but one day was lost whilst down-loading the data. 

3.2.6 Intensive searches 

Because of the low number of marked bumble bees found in the crop, two intensive 

searches of the crop were carried out with a team of workers. On 27 February 1997, six 

observers systematically searched the whole crop for marked bumble bees. Standing 4 m 

apart, they made their way back and forth across the crop on a north-south axis looking 2 m 

to either side of them. The numbers of marked and unmarked B. hortorum were recorded. 

A similar search was carried out on 12 March 1997 but only four observers were present 

and only one quarter of the crop was covered. 
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3.2.7 Pollen analysis 

Pollen samples were taken from worker bees returning to their nests. Pollen was collected 

at least once a week from the yellow nest (starting 20 January 1997) and at least twice a 

week from the green nest (starting 21 January). Pollen was initially collected from the 

yellow and green nests only, but the bees in the yellow nest stopped collecting pollen 

around 17 February 1997, so some additional pollen samples were taken from the red and 

orange nests (see Appendix 3.2 for a list of collection dates and number of samples taken). 

Pollen presentation schedules (the time of day anthers dehisce and/or flowers open) and 

hence insect activity can vary throughout the day (Free 1993). Therefore, pollen was 

collected within the same time period on each collection date: between 10:00 and 12:00 h 

(yellow and orange nests) (NZ Summer Time) and between 14:00 and 16:30 h (green and 

red nests). Pollen was collected over a one-hour period with a maximum of six samples 

taken per hour. Pollen collection was avoided on days that transect walks were made, in 

case pollen removal affected foraging behaviour. However, sometimes both types of 

sampling were done on the same day because of poor weather. One hundred and five 

pollen samples were taken between 20 January and 12 March 1997 when bees in the last 

nest still collecting pollen (orange) ceased collecting. 

Pollen was collected from workers by catching the bees in a net, transferring them to a 

holding tube and removing a single corbiculum pollen load with a needle. The pollen was 

then transferred to a 5 ml centrifuge tube containing approximately 3 ml of 70% ethanol. 

The needle was cleaned with ethanol between collections to avoid cross contamination of 

pollen. Pollen samples in the centrifuge tubes were placed in a Vortis™ mixer to blend the 

layers of pollen. The samples were then centrifuged for 5 mins at 6000 rpm and the 

ethanol was evaporated over a hot-plate. A square (approx. 5 mm2
) of glycerine jelly 

stained with saffranin (Erdtman 1943) impaled on a needle was used to pick up the pollen 

grains in the tube. The jelly and attached pollen grains were then transferred to a slide. 

This procedure was repeated to pick up any remaining pollen grains in the centrifuge tube. 

The slides were then warmed on a hot plate to melt the glycerine jelly, the pollen was 

stirred in and coverslips applied. 
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Pollen grains were identified and counted in six different, non-overlapping fields of view at 

400x magnification. Preliminary observations showed that this number of fields of view 

was sufficient to detect all pollen types present on a slide. Pollen grains were identified 

with the aid of reference slides, reference books (Erdtman 1943, Sawyer 1981) and the help 

of a pollen taxonomist (Neville Maar, Landcare Research). Although red clover pollen is 

quite distinctive, some other pollen types could be identified only to the family level (e.g., 

Rosaceae). 

3.2.8 Data analysis 

Because of the non-normality and heteroscedasticity of the data gathered in this study, it 

was analysed by non-parametric methods. Spearman rank correlations were used to test for 

associations between forager numbers and climate variables and a Kruskal-Wallis ANOVA 

was used to test for differences in the proportions of red clover pollen collected over time. 

There were too many zeros in the data to perform even a non-parametric test on the 

numbers of marked B. hortorum found at different distances from the nest. 
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3.3 Results 

3.3.1 Red clover flowering phenology 

The crop began flowering on approximately 10 l.anuary 1997 and the number of flowering 

inflorescences reached a maximum on 18 February 1997 (Fig. 3.2). At peak flowering, 

there were 2220(xx) (± 190555 SE) inflorescences per hectare and the mean number of 

florets per inflorescence was 115 (± 3.7 SE). The crop was harvested in late April 1997 

and yielded 245 kg/ha of dressed seed (980 kg total) (R. McCarthy, pers. comm.). The 

numbers of B. terrestris observed on the crop were strongly correlated with the density of 

red clover inflorescences (Spearman rank; Rs=0.817, df=12, P=0.0007); there was no such 

correlation with B. hortorum numbers (Spearman rank; Rs=O.296, df=12, P=O.326). 
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Figure 3.2. Estimated number of Trifolium pratense 'Pawera' inflorescences per hectare 

on a 4 ha crop at Tai Tapu, 1997 (means ± SE). 
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3.3.2 Bees foraging on the crop 

Three bumble bee species were observed foraging on the crop: B. hortorum, B. terrestris 

and B. ruderatus. Only one B. ruderatus was observed, during an intensive search on 27 

February 1997. B. terrestris was the main bumble bee species on the crop, comprising 76 

% of all Bombus observed on the transectwalks. B. terrestris numbers peaked on 26 

February 1997 (Fig. 3.3), and the number of B. hortorum foraging on the crop peaked later, 

around 9 March 1997 (Fig 3.3). Mean density of B. hortorum (excluding intensive search 

data) was 80 bees/ha (range: 17-.258 bees/ha) and for B. terrestris was 258 bees/ha (range: 

75-483 bees/ha). The average ratio of marked to unmarked B. hortorum foraging on the 

crop was 1 :43 (range: 2: 1-1: 152). All castes of bumble bees were observed foraging on the 

crop, although B. hortorum males were not observed until 9 March 1997 . 
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Figure 3.3. Number of bumble bees observed on transect walks within a 4 ha Trifolium 

pratense 'Pawera' crop, Tai Tapu, 1997. 

All the B. hortorum individuals observed on the crop were visiting flowers through the 

front of the floret (64 % for pollen, 36 % for nectar only), contacting the anthers and 

stigmas. However, only 24 % of B. terrestris visits to the red clover were of this type. 

Most B. terrestris (76 %) were nectar-robbing, biting holes in the base of the corolla tube 

to obtain nectar. Most of the honey bees observed (90%) were secondarily nectar robbing, 

i.e., taking nectar through holes made by B. terrestris. 
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3.3.3 Climatic factors 

Microclimate variables did not differ much between transect observation periods, although 

26 February 1997 and 9 March 1997 had low relative humidity and light intensity (Fig. 

3.4). The wind was mostly north-easterly. The number of B. terrestris observed on the 

crop was positively correlated with temperature (Spearman rank; Rs=0.634, df=ll, 

P=0.027). The number of B. hortorum foraging on the crop was negatively correlated with 

light intensity (Spearman rank; Rs=-0.681, df=ll, P=0.015), and with relative humidity 

(Spearman rank; Rs=-0.713, df:::) 1, P=0.009). 
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Figure 3.4. Microclimate data recorded during each transect walk (means ± SE presented). 

Left axis: temperature (DC), relative humidity, and wind speed (mph). Right 

axis: light intensity (lux). 

3.3.4 Efficiency of marker tunnels 

Records of nest activity, 1 h after recharging the marker tunnels, showed that on average 

82% (range 11-100 %) of the bees leaving the nest were clearly marked with fluorescent 

powder. The powder was clearly visible in the field and 5 cc of powder was sufficient to 

mark bees leaving the nest for 3 h. 

46 



3.3.5 Transect walk reobservation data 

In total, 125 B. hortorum were recorded on transect walks; 10 (8 %) were marked bees. 

Two yellow-, three green- and five orange-marked bees were reobserved; but no red-

marked individuals were seen. Using an estimate of the number of bees foraging (from 

video records) on 28 January 1997 and 27 February 1997, reobservation rates of 3.82 % 

and 5.41 % respectively were calculated. No marked bees were reobserved at the 10 m 

transect (Fig. 3.5) and reobservations were too few to compare statistically the mean 

number of marked bees observe<;l at each transect. No marked bees were observed during 

casual searches on the weeds (Malva sylvestris L., Symphytum officinale L., Taraxum spp., 

Carduus spp.) surrounding the crop. 
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Figure 3.5. Number of Bombus hortorum observed on transect walks in a Trifolium 

pratense 'Pawera' crop over 13 observation sessions 24 January - 13 March 

1997. 

3.3.6 Intensive search reobservation data 

On 27 February 1997, the whole crop was searched and 453 B. hortorum bees were 

observed, of which 14 (3.1 %) were marked. Five yellow-, two green-, two red- and five 

orange-marked bees were reobserved. The reobservation rate of marked bees calculated 

from video recording data was 6.67 %. There was a peak of marked B. hortorum at 150-

199 m and unmarked at 200-249 m from the nests (Fig 3.6). 

On 12 March 1997 the western end of the crop up to 75 m in from the hawthorn hedge was 

intensively searched. B. hortorum numbers were very high that day and 613 were observed. 

Four of these (0.7 %) were marked and all were from the orange nest. The reobservation 
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rate was 14.8 %. The marked bees were found at distances of approximately 5, 15,50 and 

60 m from their nest. 
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Figure 3.6. Number of marked and unmarked Bombus hortorum foraging on a 4 ha 

Trifolium pratense cv. Pawera crop with increasing distance from four 

B. hortorum nests. 

3.3.7 Diurnal patterns of foraging activity 

Video records showed that the number of B. hortorum foraging increased steadily 

throughout the day and peaked between 15:00 and 16:00 h (NZ Summer Time) (Fig 3.7). 

No mid-day decline in bee activity was evident. Black globe temperature was positively 

correlated with the number of bees foraging (Spearman rank; Rs=0.583, df=27, P=O.OOI). 

Bees from the study nests were active for at least 14 h per day. 
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Figure 3.7. Foraging activity of a Bombus hortorum nest throughout the day. 
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3.3.8 Pollen analysis 

Most B. hortorum from the four nests were collecting red clover pollen (Table 3.1); this 

was assumed to be collected from the adjacent crop because there were no other red clover 

crops within a 2 km radius. Most red clover pollen loads (84 %), were 'pure' [sensu Free 

(1970) who classified 'pure' as >98 % of one type of pollen]. Nest four (orange) was an 

exception; over half the pollen loads sampled from this nest were collected from other than 

red clover (Table 3.1). Over all nests, twelve pollen types were identified (see Appendix 

3.3). The percentage of red clover pollen collected by nest two (green) changed over time 

(Kruskal Wallis: H=24.011, P=0.02, df=12) but this was not biologically important since 

the percentage of red clover in pollen loads ranged only from 94.12 - 100%. 

Table 3.1. Pollen loads collected by workers from four Bombus hortorum nests adjacent to 

a red clover crop. 

N No. of loads with> 98% red No of pollen Mean % of red clover 
clover Eollen (%) t~Ees Eollen Eer load 

All Nests 105 89 (84.8 %) 12 90.4 

Nest 1 14 14 (100 %) 2 99.6 

Nest 2 67 63 (94.0 %) 6 99.5 

Nest 3 3 3 (100 %) 2 99.7 

Nest 4 21 9 (42.9 %) 9 53.7 
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3.3.9 Nest productivity 

Nests were variable in their size and productivity. Nest 4 (orange) was the largest and 

survived the longest (Table 3.2). 

Table 3.2. Dimensions (mm) and productivity of four Bombus hortorum nests shifted to a 

red clover crop on 15 January 1997. 

Nest Marking Nest size at Nest size at Approx. date Approx. date Queens 
colour 17/01/97 7104/98 bees stopped all bees dead produced? 

ht diam ht diam collecting Eollen 
1 yellow 80 150 100 190 17/02/97 9/03/97 Yes 

2 green 100 200 140 220 3/03/97 25/03/97 Yes 

3 red 70 100 80 130 10/03/97 15/03/97 No 

4 orange 80 180 150 240 12/03/97 6/04/97 Yes 

3.4 Discussion 

3.4.1 Bee densities 

Mean densities of B. hortorum (80 bees/ha) were similar to those found in early New 

Zealand studies on diploid clover (Forster & Hadfield 1958~ Palmer-Jones et ai. 1966), but 

were low compared with more recent New Zealand studies on tetraploid red clover, which 

reported densities of 1250-7300 LTBB/ha (Clifford 1973; Macfarlane & Griffin 1985; 

Brown 1989; Clifford & Scott 1989; Macfarlane et ai. 1991). Most of these higher 

densities can be explained by a concentration effect on bumble bee popUlations by the 

much smaller field sizes (Clifford 1973,0.8 ha; Brown 1989,0.36 ha; Clifford & Scott 

1989,0.8 ha; Macfarlane et al. 1991,0.36 ha) compared with those in the current study (4 

ha). However, in commercial-sized crops supplemented with similar stocking rates of 

LTBB (c. 1 colony/ha), average LTBB densities were still higher at 365 and 465 LTBB/ha 

(Macfarlane & Griffin 1985) than in this study. This difference could be due to many 

factors such as differences in local bumble bee populations, inflorescence density (Clifford 

& Scott 1989), yearly bumble bee popUlation fluctuations (Forster & Hadfield 1958) or the 

time of day that observations were made (Clifford & Scott 1989). B. terrestris densities 
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were three times as high as those of B. hortorum in this study; Clifford & Scott (1989) 

suggested that when local populations of B. terrestris are high, they compete through 

exploitation (i.e., nectar removal) w-ith LTBB on red clover. 

Peak densities of bumble bees occurred at a later date than the peak of red clover 

inflorescences per hectare. Most red clover seed is produced from the early and main 

flowering heads (Clifford & Anderson 1980) so, for optimal pollination, it is recommended 

that the peaks of crop flowering and bumble bee populations are synchronised (Holm 1966; 

Free 1993). That was not so in the current study thus seed yields may have been limited. 

3.4.2 Foraging behaviour 

The foraging behaviour of the different bee species on the crop was markedly different. 

All observed visits by B. hortorum were through the front of the flower and hence would 

have tripped the flower's pollinating mechanism. Marked B. hortorum did not display any 

difference in their foraging behaviour on the crop compared with unmarked bees. Most B. 

terrestris (76 %) were not effecting pollination as they were robbing nectar through holes 

in the side of the corollae. This is slightly lower than the 93-100% reported by other 

workers studying tetraploid red clover crops in New Zealand (Forster & Hadfield 1958; 

Palmer-Jones et al. 1966; Clifford 1973; Clifford & Scott 1989; Fussell 1992). This 

difference may be due to the high numbers of B. terrestris queens observed; these have 

longer tongues than workers, enabling them to extract nectar legitimately through the front 

of the flower. The holes bitten in the corolla of red clover flowers by robber bumble bees 

do not affect the ability of the flower to set seed if they are subsequently visited by a 

legitimate pollinator (Free 1993). The impact of nectar robbers on crop pollination has yet 

to be quantified. Free (1993) described two possible scenarios: 1. The holes bitten by 

STBB may attract large numbers of honey bees (acting as secondary robbers), some of 

which will enter the flowers and pollinate them; or 2. the activities of robber bees may 

reduce the number of legitimate pollinators visiting the crop by depleting the amount of 

nectar available to them. Despite this 'dishonest' behaviour, B. terrestris may be a 

significant pollinator of red clover crops because of its sheer numbers (Hawkins 1956; 

Forster & Hadfield 1958; Gurr 1961). In this study, an estimated average of 61 B. 

terrestris per hectare were legitimately visiting the red clover (24% of 258 bees/ha); this is 
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similar to the average density of B. hortorum on the crop. Also, B. terrestris numbers were 

at their peak earlier and were therefore available to pollinate the high seed-setting early and 

main flowering heads. 

Honey bees were present in large numbers on the crop (mean density of 1157 bees/ha) but 

most (90%) were robbing the nectar through holes bitten by B. terrestris. Benedek ( 1976, 

cited in Free 1993) and Macfarlane & Griffin (1985) found that the percentage of 

pollinating honey bees declined 'as red clover flowering proceeded because of an influx of 

robbing nectar-collecting honey bees. A similar trend is suggested in this study but honey 

bee numbers were not recorded throughout the whole flowering period. Again, the high 

numbers of honey bees may make them important pollinators of red clover in spite of their 

robbing behaviour (Forster & Hadfield 1958; Palmer-Jones et al. 1966; Free 1993). 

However, they are generally regarded as inefficient pollinators of tetraploid red clover 

because of their tendency to switch to alternative forage sources, their slow working 

speeds, their limited ability to work at low temperatures, and their highly fluctuating 

numbers on the crop, both throughout the day and over the crop flowering period 

(Macfarlane & Griffin 1985; Clifford & Scott 1989; Free 1993). 

3.4.3 Climatic effects on bumble bee foraging 

Climatic variables were not very useful in explaining differences in bumble bee densities 

among observation periods. This is probably because climatic variables did not differ 

markedly between observation periods as transect walks were deliberately carried out on 

fine sunny days. The negative correlation of B. hortorum and B. terrestris numbers with 

light intensity was probably coincidental because two high lux measurements were 

recorded at the start of crop flowering when bumble bee densities were low. However, 

high radiation can lower B. subterraneus numbers (Clifford & Scott 1989). Bumble bees 

tolerate strong winds; gusts of up to 20 kph were recorded in this study, yet bumble bee 

densities were not correlated with wind speed. On two occasions (11 and 20 February 

1997) densities of both bumble bee species dropped significantly. Relative humidity 

recordings were high on those days. The number of B. hortorum observed was negatively 
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correlated with relative humidity, yet B. terrestris numbers were not. Whether a real effect 

of microclimate on bumble bee densities was demonstrated or if it was simply a spurious 

result cannot be determined. If relative humidity did have an effect it would probably be 

indirectly through nectar concentration and pollen presentation rather than via a direct 

effect on insect activity itself (Kearns & Inouye -1993). Temperature affects bumble bee 

activity directly (Clifford & Scott 1989; Corbet et al. 1993) and in this study the numbers 

of B. terrestris were positively correlated with temperature. 

3.4.4 Diurnal foraging patterns 

Video records showed that nests were active for long periods each day (at least 14 hours on 

fine sunny days). The ability of bumble bees to regulate their body temperature enables 

them to forage for these extended periods and gives them an advantage over honey bees, 

which are more limited by temperature and have shorter foraging days (Macfarlane et al. 

1991; Fussell 1992; Corbet et al. 1993). Video records did not reveal the midday lull in 

bumble bee activity reported by other authors (Alford 1975; Clifford & Scott 1989; Fussell 

1992). This may be because midday peaks of radiation intensity and temperature or 

densities of honey bees (Clifford & Scott 1989; Fussell 1992; Schaffer 1997) were not 

sufficiently high to depress bumble bee numbers. Black globe temperatures, recorded in 

conjunction with video recordings, were positively correlated with the cumulative number 

of bees foraging, again illustrating the strong effects of temperature on foraging activity 

(Corbet et al. 1993). Although not measured in this study, diurnal patterns of floret 

opening and nectar production could affect nest activity. The peak in the rate of floret 

opening between 1200 hand 1500 h (Clifford & Scott 1989; Fussell 1992) and peak nectar 

rewards in early evening (Fussell 1992) could account for the peak in B. hortorum activity 

in late afternoon. Video recordings showed that transect walks were done at an optimal 

time for reobservation of nest-marked bees. 
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3.4.5 Was B. hortorum visiting the crop? 

Reobservation rates in the current study (4.6 %) were higher than those reported by Saville 

et ai. (1996: 0.148 %) and Schaffer (1997: 0.9 %). However, it was not known where over 

95 % of the bees were foraging. Reobservation rates may have been higher than in 

previous studies because more bees were actually visiting the crop due to the strong 

preference of B. hortorum for red clover and because the 4 ha crop was a considerably 

larger resource compared with the small patches of flowers studied by Saville et al. (1996) 

and Schaffer (1997). Reobserv~tion rates may have been low for a variety of reasons: the 

bees were visiting the crop but were not detected, the bees were in the crop but did not 

have markings on them, or most bees were not visiting the crop. Transect walks are not the 

ideal method for detecting nest-marked bees because, when two intensive searches were 

carried out, the reobservation rates rose from 4.6 % to 6.67 and 14.8 %. The fluorescent 

marking tunnels were a reliable method of marking most (82 %) of the foragers, so it can 

be assumed that this was not the reason for low reobservation rates. No marked bumble 

bees were observed foraging on weed species surrounding the crop. 

Using mark-reobservation methods alone did not give a good indication of where most of 

the bumble bees were foraging. Pollen analysis was a much more direct method for 

detecting where the bumble bees had been foraging. This showed that most of the pollen-

collectors were 'majoring' (Heinrich 1979a) on the red clover pollen. They were unlikely 

to be foraging elsewhere because there were no other red clover crops within a 2 km radius. 

Only two of the marked bees observed on the crop were collecting pollen, yet most pollen-

collectors from the nest were collecting red clover pollen and, at the height of pollen 

collection, 80-91 % of the foragers were returning with pollen loads. These results suggest 

that the nectar-collecting bees were also targeting red clover but were not detected by the 

observation methods. A better method of detecting where nectar-collectors are foraging is 

required. Spencer-Booth (1965) showed that pollen from flowers from which bumble bees 

are collecting nectar accumulates in the proboscidial fossa. This method could be used to 

study the foraging of nectar-collecting bees in future studies, but this method also has 

limitations. For example, pollen would not accumulate in the mouthparts of nectar 

robbers. 
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The transect observation method used in this study was not optimal for reobservation of 

nest-marked bees. This was probably because the area covered by the transects was too 

small to detect the few marked bees-foraging in a large crop area. Rates of reobservation 

may have been affected by the tendency of bees to follow traplines and/or show forage 

patch fidelity (Saville et al. 1996) or by the decreased probability of detecting a bee the 

further away it is from the nest due to the distance/area relationship (Schaffer 1997). 

Strong winds may have also interfered with observations on some days, because the 

moving plants made it difficult to detect bees. Intensive searches gave good results but 

much labour was needed. 

3.4.6 Bumble bee movement from the nest 

Because the transect walks and intensive searches used different search methods and effort, 

the results cannot be pooled, so they will be discussed separately. The low numbers of 

marked bees reobserved during transect walks meant that no statistical analyses could be 

performed on bee numbers at different distances from the nest. Over all transect walk 

observation periods, no marked bees were observed at the 10m transect, yet the number of 

unmarked B. hortorum at this transect was high. Casual searches within 10m of the nest 

on three occasions failed to reveal any marked bumble bees. This suggests that B. 

hortorum from the supplied nests was generally not foraging within 10 m of the nest. It has 

been suggested that because bees collect a pollen load more quickly than a nectar load, 

there is a tendency for pollen collectors to forage closer to the colony (Free 1993); 

reobservation rates in the current study were too low to detect this. 

The intensive search of the whole crop on 27 February revealed that most marked bumble 

bees on the crop were foraging within 200 m of their nest. Only one marked B. hortorum 

was observed further than 300 m from the nest. However, most unmarked bees were also 

found in this area of the crop and because of the irregular shape of the field, the areas of 

each transect were different, so no valid comparisons can be made. The intensive search 

on 12 March was the only time a marked bumble bee was found within 10 m of its nest. 
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This bee came from the nest (orange) that was not collecting the majority of its pollen from 

the red clover crop; the orange nest was also the largest nest of the four. The bees from the 

orange nest would have to fly at least 200 m to collect the Rosaceae and Ericaceae pollen 

types present in their pollen loads. Dramstad (, 1996 #213]) and Schaffer (1997) also 

found that bumble bees did not necessarily visit the neighbouring forage resource and 

instead foraged some distance away. Dramstad (1996a) suggested that this was because 

bumble bees evolved not to forage close to their nest. The low reobservation rates in 

current and other studies (Dramstad 1996a; Saville et al. 1996; Schaffer 1997) suggest that 

earlier findings on bumble bee foraging distances (Butler 1951; Free & Butler 1959; Alford 

1975; Macfarlane et al. 1994) may be suspect because the bees under observation were not 

marked and/or reobservation rates were not calculated. Because no definite conclusions 

could be reached with this experiment, the question of how far bumble bees fly from the 

nest to forage is further explored in Chapter 4 of this thesis. 

3.4.7 Evaluation of B. hortorum nests as pollinators of tetraploid red clover crops 

From the pollen load study it may be concluded that the pollen-collecting bumble bees 

from nests adjacent to the red clover were faithful to the target crop. Pollen-collecting bees 

are reputed to have faster working speeds (Skovgaard 1952) and a greater pollinating 

efficiency than nectar collectors (Free & Williams 1972). Of the B. hortorum that visited 

the crop, all were potential pollinators (both nectar- and pollen-collectors) because they 

were foraging through the front of the flower and therefore would have tripped the flower's 

pollinating mechanism. It was expected that all four nests would collect similar types and 

proportions of pollen because of their proximity to each other and their similar access to 

forage resources, but this was not the case. This phenomenon of different exploitation of 

available resources is commonly reported in the literature for both bumble bees (Free 1970) 

and honey bees (Free 1993) when nests are placed along one crop edge. Therefore it 

cannot be assumed that all nests shifted to a crop .or all foragers from a nest will visit the 

target crop and this must be taken into account when calculating stocking rates. The bees 

will also be less constant to red clover than indicated by pollen analysis alone, because 

pollen-collectors may forage on many different species throughout the day and the flower 

types visited by nectar-collectors cannot be deduced. 

56 



The mark-reobservation data showed that the marked bees were moving at least 200 minto 

the crop to forage, so there should have been no 'cold spots' of inadequate pollination in 

the centre of the crop. 

The ratio of marked to unmarked B. hortorum foraging on the crop was 1 :43, suggesting 

that the extra four colonies supplemented the natural B. hortorum population by only 2 %. 

If other pollinating bees were included, this percentage would be even lower. The nests 

were within the normal size range of naturally occurring nests (Donovan & Wier 1978) so 

the number of foragers from eaeh placed nest would have been typical of a natural B. 

hortorum nest. This suggests that very high numbers of colonies would have to be moved 

to a crop to significantly enhance bumble bee numbers foraging on the crop. At 

approximately $65 per nest, this could be expensive. Donovan (unpub. data) estimated that 

a single B. hortorum nest can produce 126.65 kilograms of seed and at $10 per kg is worth 

$1266.54. It is unlikely in this study that the nests contributed this much to the yields, 

given their very low proportion of the pollinator population. 

The relationship between seed set and pollinator density can be described by a hyperbola 

and is therefore governed by the law of diminishing returns (Fig. 1.2, Chapter 1) (Plowright 

& Hartling 1981). Palmer-Jones et al. (1966) found that caging very high concentrations 

of honey bees and LTBBs caused no further increases in pollination compared with that in 

the surrounding crop. The supplementation of natural populations with four B. hortorum 

nests may have added little to the resulting seed yields because the existing pollinator 

population was sufficiently high to adequately pollinate the crop. The reSUlting seed yield 

in this study (245 kg/ha) was higher than the national average (150 kglha, P.Clifford pers. 

comm.) suggesting that pollination was adequate. However, much higher tetraploid seed 

yields have been reported in New Zealand (Macfarlane et al. 1991,528 kg/ha; Clifford & 

Anderson 1980,600 kglha), and given the lower densities of LTBB compared with those in 

other New Zealand studies, it can be inferred that the crop in this situation was not near the 

asymptote of the seed set/pollinator abundance curve described by Plowright & Hartling 

(1981). 

An important point in comparing yields between different crops is that pollination is not 

the sole determinant of seed set; other factors such as soil moisture, soil nutrients, plant 
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row spacing, seed contamination, closing date and timing of harvest can affect yields 

(Clifford & Anderson 1980). Harvest losses of seed may also be significant; they were 

over 50 percent for the crop in this study (R.McCarthy pers. comm.) which is similar to the 

mean of 49 % reported by Macfarlane et ai. (1991). Therefore it may be meaningless to 

compare yields and try to relate them to pollinator densities when agronomic conditions 

differ widely. 

3.4.8 Management of colonies 

This study has shown that when placed near a red clover crop, most pollen-collecting bees 

from a B. hortorum nest will visit the crop and remain faithful to it as flowering 

progresses. Weed species such as mallow (Malva spp.) and thistle (Carduus spp.) were not 

major competitors for foragers' attention, but flowering shrubs and trees attracted some 

bees from one nest away from the crop. 

The colonies should be shifted to the crop when it has just begun to flower so that the bees 

are available to work it when the early and main inflorescences are in flower, to maximise 

yields. This is especially important when local LTBB populations do not peak until late in 

the flowering period, as occurred in this study. Free (1959) and Free et al. (1960) found 

that shifting honey bees to a crop when it had just started flowering resulted in the bees' 

collecting more of the target pollen than when they were shifted before flowering or at its 

peak. 

Colony placement is not critical in small fields because the bees will move at least 200 m 

into the crop. Nests should be placed on the edge of the crop that is downwind of the 

prevailing wind (Chapter 4). Placement should be modified to some extent with respect to 

the location of shelter for the nests as overheating can be a problem in summer (Chapter 4). 

Data from this study suggest that the bumble bees did not forage close to their nests (within 

10 m) but the concentration of naturally occurring bumble bee populations at the edges 

more than compensated for this. 

A stocking rate of B. hortorum colonies is difficult to calculate because it depends on the 

existing natural populations of both B. hortorum and other bee species plus their 
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interactions with each other; ideally, these should be monitored before deciding on a 

stocking rate. Supplementation may not significantly increase pollinator numbers or seed 

yields and therefore would not warrant the $65+ outlay per nest. Macfarlane et al. (1991) 

recommended a stocking rate of six LTBB colonies per hectare for maximum seed set 

based on flower and bee density counts. For the crop in this study that would cost $1560, 

and would need an extra 141 kg in seed to pay for the colonies alone. The relationship 

between B. hortorum and red clover seed set has been estimated (Donovan unpub. data), 

but this considered B. hortorum in isolation; its interactions with other pollinators and 

other floral resources were not considered. Existing knowledge on the quantitative 

relationship between seed set and pollinator abundance is meagre (but see Plowright & 

Hartling 1981). In the future, more complex models incorporating the temporal and spatial 

dynamics of B. hortorum foraging behaviour could be constructed to better estimate 

stocking rates and to aid pollinator management. 

B. hortorum is a very effective pollinator of tetraploid red clover but, because of the high 

cost per bee, purchasing bumble bee colonies for pollinating field crops has not yet proven 

to be cost effective. Purchase may be warranted when natural populations are low or 

asynchronous with crop flowering, or when increasing the crop area. If local pollinator 

populations are adequate, a low-cost management technique such as provision of forage 

and shelter resources (see Chapter 2) would be the best option. 
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CHAPTER 4: FORAGING DISTANCES OF BOMBUS TERRESTRIS 

FROM THE NEST 

4. 1 Introduction 

4.1.1 Background 

Optimal foraging theory predicts that bumble bees will minimise flight distances between 

the nest and flowers to maximise their net rate of energy intake (Heinrich 1975). 

Consequently, the prevailing view in the literature has been that "As long as food is locally 

abundant it is probable that the bumble bees forage close to the hive, specialising on the 

local flora." (Heinrich 1976, pg 126 ). However, there are many examples of bumble bees 

forsaking presumably rewarding patches of flowers close to their nest and flying further 

afield to forage (Hobbs et al. 1961; Dramstad 1996a; Saville et al. 1996; Schaffer 1997, J. 

Osborne pers. comm., Chapter 3) . These results suggest that the bees prefer to forage at 

greater distances from the nest than those predicted by energetic models. 

4.1.2 Bumble bee foraging distances from the nest 

Dramstad (1996a) reviewed the literature and presented results of three mark-reobservation 

studies that suggested bumble bees tended not to forage close (within 50 m) to their nest. 

She concluded that they 'prefer' to forage some distance from their nest and she suggested 

reduced predation risk and intraspecific competition/depletion of resources as explanations 

for this behaviour. A study designed to test this hypothesis involved placing three B. 

lucorum nests directly adjacent to a 2 m x 210 m strip of P. tanacetifolia, carrying out 

mark-reobservations, then relocating the nests to over 200 m away and repeating 

observations (Drams tad 1996b). The mean number of bumble bees foraging on Phacelia 

before the nests were moved was 11.5, but this rose to 18.3 when the nests were over 200 

m away. This result was regarded as supporting the hypothesis that bumble bees 'prefer' 

to forage at some distance from their nest. However, this result could have been 

confounded by time; over time the Phacelia may have become more attractive or more 

bees may have encountered it. Similarly, other studies have been confounded by the 

differential distribution of resources in space (Dramstad 1996a; Saville et al. 1996) or were 
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merely anecdotal observations within other studies (Hobbs et al. 1961). To test whether 

this avoidance of foraging close to the nest is a real phenomenon, it is necessary to remove 

the confounding effects of floral quality, floral density and spatial arrangement, and the 

presence of competing floral resources. In this study, competing floral resources were 

minimised by conducting the experiment in grazed paddocks and floral rewards were 

standardised in time and space by using pots of P. tanacetifolia. 

4.1.3 Bumble bee flight distances 

Bumble bees are capable of flying long distances from the nest; distances of at least 2.4 km 

have been reported (Rau 1924). However, it is probable that like honey bees, most bumble 

bee foragers will range an average distance from the hive (Visscher & Seeley 1982; Roubik 

1989; Buchmann 1991) and for the purposes of crop pollination, it is important to know 

where most bees forage most of the time. To find this out, observations must be repeated 

over time to see if the bees are consistently flying a certain distance. Also, an estimate of 

reobservation rate must be calculated to see if the observed behaviour is representative of 

the whole nest. Some previous studies (Butler 1951; Free & Butler 1959; Macfarlane et ai. 

1994) failed to fulfil these requirements and thus the validity of their findings is 

questionable. Also, Schaffer (1997) suggested that the leptokurtic distribution (many bees 

close to the nest, tailing off with increasing distance) found by some workers may be an 

artefact of their sampling method. This is because as linear distance from the nest 

increases, the area available for a bee to forage in increases disproportionately (by the 

square factor), hence there is a reduced probability of encountering a bee with increasing 

distance from the nest. The full 200 m radius foraging area was not covered in this study, 

but an attempt was made to correct for this problem. Ten times as many pots were placed 

at the furthest distance from the nest, giving a bee an equal probability of encountering a 

flower pot and also an equal probability of being observed if equal search effort is allocated 

per pot. 

4.1.4 Objective 

• To compare the number of nest-marked bees foraging at 20 and 200 m from their nest. 
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4.2 Methods 

4.2.1 Experimental design 

The study site was two 4 ha pastures on the Lincoln University sheep breeding unit. These 

paddocks were heavily grazed before the experiment. A commercially-reared B. terrestris 

nest (Zonda Resources Ltd.) was placed at one end of the paddock and pots of P. 

tanacetifolia were placed at distances of 20 and 200 m from it. As a bee moves further 

from its nest, the probability of it encountering a flower pot decreases because of the 

radius/circumference relationship (2m). Therefore, to correct for this, more pots of 

Phacelia were placed at the 200 m distance (20 pots) than at 20 m from the nest (2 pots) 

(Fig. 4.1). The nests were left to acclimatise for two days before any observations were 

made. After three-four days of observations the orientation of the experiment was reversed 

i.e., the nest and pots were shifted to opposite ends. The experiment was repeated twice in 

different fields with a different nest and pots of Phacelia but the last replicate (number 

three) was abandoned because both the Phacelia and the bees were killed by excessive 

heat. 

············r •• • • • • • 
Pots of Phacelia tanacetifo/ia 

c. 8 m apart 

200m 

.. , 
20m 

Bombus terrestris nest-ll l 

Figure 4.1. Diagram of the experimental design within a 4 ha paddock. 
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4.2.2 Study plant: P. tanacetifolia 

P. tanacetifolia is a very attractive floral resource for bumble bees, especially B. terrestris 

(Williams & Christian 1991) and is often used in 'bee pasture' floral mixtures (Engels et 

al. 1994). P. tanacetifolia was sown in potting mix in 20 litre plastic plant tubs and 

thinned at the seedling stage to eight plants per pot. The pots were shifted to the field one 

day after flowering began. The pots of Phacelia were watered every day. The number of 

flowers per pot was estimated every second day of observations by counting the number of 

flowering stalks per pot, then cqunting the number of open flowers per stalk on five 

randomly selected stalks. 

4.2.3 Mark-reobservations 

The bees were marked at the nest using a marking tube (Kwak 1987) and a water-based 

paint. Some workers from unknown nests were marked with a numbered tag while 

foraging on the Phacelia. Marking was done in the morning and observations were 

generally carried out in the afternoon between 1400 hand 1800 h (NZ Summer Time), a 

time of high bumble bee activity (Fussell 1992; Schaffer 1997). Observations consisted of 

making 10 second counts of the number of bumble bees and honey bees foraging on each 

pot. The presence of markings, the species and caste of bumble bee and the type of 

foraging behaviour were also recorded. When a field assistant was available, counts at the 

20 m and 200 m distance were made simultaneously, but most of the time one observer 

covered all the pots. The order of observation of the pots was reversed for each recording 

session. Counts were made over three-four days for each site/orientation combination and 

at six-ten times per day. Observations for replicate one were made between 27 November-

11 December 1997, and for replicate two, between 17 December - 31 December 1997. 

Microclimate measurements (temperature, humidity, wind speed and light intensity) were 

recorded before the start of each observation session. 

Video recordings were to be used to estimate the number of bees foraging from the nest but 

only one recording was made before the recorder broke down. Instead, exits and entries 

from the nest were monitored for 30 min each day between observation sessions. 
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4.2.4 Pollen analysis 

Because of the low reobservation rate of marked bees, pollen samples were taken from 

worker bees returning to the nest at the second replicate to determine what flowers they had 

been visiting as well as Phacelia. Methods followed those given in Chapter 3. Forty 

pollen load samples were taken over nine days between 17 December and 31 December, 

1997. 

4.2.5 Data analysis 

The mean number of marked bees per pot was calculated for each walk by dividing the 

number of marked bees observed at 20 m by two, and at 200 m by 20. Because the data 

were highly skewed they were log-transformed (log (x+ 1» before being analysed by 

ANOV A. A two-sample (-test was used to test for differences in the mean number of 

flowers per pot between pots at 20 and 200 m from the nest. 
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4.3 Results 

4.3.1 Foraging distance from the nest 

There was no significant difference between the mean number of marked bees reobserved 

at 20 and 200 m from their nest (Fig. 4.2: ANaVA; F=0.285, df=l, P=0.631). The mean 

number of marked bees observed on Phacelia was low, 0.028 (95 % CL=0.004-0.053) and 

0.040 (95 % CL=0.029-0.050) bees per pot for 20 and 200 m, respectively. 

'C 
GI 0.07 > .. 
GI 0.06 U/ .c 
0 0.05 U/ 
GI 
GI 0.04 .c -0 0.03 .. 
GI .c 0.02 E 
::I c 0.01 c 
III 0 GI 
~ 20m 200m 

Distance from nest 

Figure 4.2. Mean number of marked Bombus terrestris per pot foraging on Phacelia 

tanacetifolia at 20 and 200 m from the nest (means ± 95 % CI). 

4.3.2 Mark-reobservation 

The mean percentage of bees entering or leaving the nest that had markings was 76.8 and 

82.2 % for replicate one and two, respectively. Over the whole study, the ratio of marked 

to unmarked B. terrestris foraging on the Phacelia was 1:7. Reobservation rates of 0.049 

and 0.032 were calculated for replicate one and two, respectively. The number of nest-

marked bees observed on Phacelia was greater when the nest was at the south end of the 

paddock compared with when it was at the north end (Mann-Whitney rank sum; U=0.5, 

df=l, P=0.005). 
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4.3.3 Phacelia flowering 

The Phacelia flowered for approximately 4 weeks, 3 weeks, and 6 days for the first, second 

and third replicates respectively. There was no significant difference (t-test; 1=1.984, 

df=19.8, P=0.061) between the mean number of flowers per pot at 20 m (mean=263.9, 

SE=20.17) and 200 m (mean=222.3, SE=5:65) from the nest, for replicates one and two 

combined. 

4.3.4 Bees foraging on the Ph·acelia . c 

Most (453; 98.7 %) bumble bees foraging on Phacelia were B. terrestris; only six (1.3 %) 

B. hortorum were observed. B. terrestris foraged for both pollen (53 %) and nectar (47 %) 

from Phacelia. On average, 5.6 (±0.4) B. terrestris were observed on each walk. 

The number of honey bees foraging on Phacelia was variable (range 0-37 per walk) and 

most (97 %) were foraging only for nectar. There was no correlation between the number 

of bumble bees and honey bees foraging on Phacelia (Spearman rank; Rs=0.23, df=80, 

P=0.04). 

4.3.5 Pollen analysis 

Only two pollen loads from the 40 samples contained Phacelia pollen (5 %). Most pollen 

loads contained a mixture of predominantly pasture legumes such as white clover (T. 

repens), lucerne (M. sativa) and lotus (Lotus comiculatus L.), with a small amount of 

arable weed pollen such as Taraxacum and Carduus spp. White clover was the 

predominant pollen in 55 % of the samples collected. One pollen load contained mostly 

cornflower (Centaurea cyan us L.) pollen; this was presumed to have come from a domestic 

garden approximately 500 m away. 
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4.4 Discussion 

4.4.1 Preferred foraging distance from the nest 

There was no significant difference between the number of marked bees foraging at 20 or 

200 metres from the nest. However, the number of marked bees reobserved overall was 

very low. Because it was not known how far from the nest over 95 % of the bees were 

foraging, no conclusions on the 'preferred' foraging distance can be drawn. Instead most 

bees appeared to be foraging on the surrounding pasture, as shown by pollen load analysis. 

It was hoped that by conducting the experiment in a recently grazed paddock, competing 

floral resources could be kept to a minimum. However, there were still white clover 

flowers scattered throughout the surrounding paddocks. Casual surveys of the number of 

white clover flower heads in the experimental and surrounding paddocks revealed densities 

of 0-25 flower heads/m2. The dispersed white clover flowers appeared to be more 

attractive than the clumps of Phacelia flowers. 

B. terrestris foragers from other nests in the area were consistently foraging on Phacelia, 

so it is not known why B. terrestris from the supplied nest were not visiting it. The blue 

Phacelia flowers would have been highly visible in the field, making a stark contrast to the 

surrounding largely brown paddocks. The bumble bees from the commercially-reared nest 

were natve foragers so they would not have had any learned floral preferences that 

influenced their subsequent foraging. Bumble bee visitation is sensitive to the nectar 

volume and nectar secretion rates of P. tanacetifolia (Williams 1997). Perhaps the local 

populations of bumble bees and honey bees reduced the floral rewards to a level where they 

were not profitable for nest bees to visit, i.e., some kind of exploitative competition may 

have been operating. Some B. terrestris individuals foraging for nectar on the Phacelia had 

brown pollen loads typical of white clover, suggesting that they 'preferred' white clover 

pollen over Phacelia pollen. 

4.4.2 Forager behaviour 

Repeated reobservation of individually marked bumble bees as the observer walked down 

the line of Phacelia suggested that they were regularly visiting the same sequence of pots, a 

type of trap-lining behaviour described by Heinrich (1979a). Another interesting 
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behaviour evident in the current study was the increase in the number of marked bumble 

bees observed when the orientation of the experimental design was reversed. In both 

replicates, there were more nest-marked bees observed when the nest was at the southern 

end and the Phacelia at the northern end of the paddock. It was first thought that these 

were workers that had been left behind when the nest was shifted but closer examination 

revealed that some were collecting pollen from Phacelia. Pollen collection would be 

unlikely if they had lost the nest and were foraging for their own needs so they probably 

were returning to the nest. 

The prevailing wind throughout this experiment was from the north-west; this can be a 

very strong Fohn wind in Canterbury with gusts up to 37 kmlh recorded during this study. 

It would be energetically efficient for a bee to fly into the wind when leaving the nest to 

forage, thereby having a tail wind behind it when returning laden with pollen and/or nectar. 

Also, the scent of the flowers would travel downwind attracting the bees to them. Wenner 

et al. (1991) found an upwind colony foraging bias in honey bees that they attributed to the 

bees using odour to locate their food sources. Brian (1952) found that most bees from a B. 

agrorum nest foraged in five distinct trajectories away from the nest but their direction 

with respect to the prevailing wind was not known. Direction of foraging paths from the 

nest warrants closer inspection in future studies. An alternative explanation for the 

increase in the number of nest-marked bees observed could be that over time the bumble 

bees increased their foraging area, as has been found with honey bees (Free 1993) 

4.4.3 Limitations of the study 

Although this experiment did not show any 'preference' by bumble bees for foraging at the 

greater distance from the nest, it does not mean the phenomenon does not exist. The 

number of marked individuals observed was too low to detect any trends, but it is evident 

that at least some individuals were foraging 500 m away from the nest. Perhaps the 

distinction between the 'near' and 'far' distance was not great enough to detect any 

difference in behaviour. It was planned also to have pots of Phacelia at 400 m from the 

nest but there was difficulty.in finding a large enough paddock or two adjacent empty 

paddocks in which to place them. Future studies should look at a wider range of flight 

distances from the nest. The relatively new technique of using harmonic radar (Riley et al. 
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1996) to track bumble bee movement should shed further light on how far most bumble 

bee fly from the nest to forage. Early reports suggest flights in the 200-300 m range are 

common in agricultural landscapes (J. Osborne unpub. data). It is thought that the 

opportunity cost (time not spent foraging), rather than the energy spent flying, limits the 

distance flown from the nest to forage (Heinrich 1979a). If it is assumed that a bumble bee 

flies at 5 mls (Brian 1954), then it would take 4 s to fly to the pots of Phacelia at 20 m and 

40 s to fly 200 m. Would this 36 s loss in foraging time have any great effect on the bees' 

energy budget? A new quantitative model predicts that when nectar rewards are meagre, 

an outward flight of 2-4 km is nbt a significant energetic cost to the bee because the greater 

distance covered increases the bee's probability of encountering a more rewarding nectar 

patch (J. Cresswell pers. comm.). Heinrich (l983b) warned against viewing bumble bee 

behaviour solely in terms of optimising nectar rewards because these insects are not 

governed by energetics alone; other conflicting constraints such as pollen collection 

(Rasheed & Harder 1997) and predation aversion (Dramstad 1996a) could be operating. 
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CHAPTER 5: EFFECTS OF PATCH SIZE ON BOMBUS 

TERRESTRIS ABUNDANCE AND BEHAVIOUR 

5.1 Introduction 

5.1.1 Background and significance of the work 

Floral density has profound effects on the abundance, composition and behaviour of 

pollinators visiting a patch of flowering plants (Heinrich 1979b; Roubik 1982; Thomson 

1982; Rathcke 1983; Campbell & Motten 1985; Sih & Baltus 1987; Jennersten et al. 

1992). For entomophilous plants, dependent on insect visitation for pollen movement, 

these density effects on pollinator behaviour can alter the pollen carry-over and hence the 

genetic structure of plant populations (Real 1983). Habitat fragmentation is a common by-

product of agricultural intensification worldwide (Fry 1989; Krebs 1994), resulting in 

disparate patches of vegetation of differing sizes. By quantifying the effects of patch size 

on pollinator abundance and behaviour, the consequences of fragmentation on plant-

pollinator systems can be predicted. For example, in small isolated populations of 

Phyteuma nigrum FW Schmidt (Campanulaceae) in the Netherlands, seed set may be 

reduced due to low pollinator visitation andlor heterospecific pollen transfer (Kwak et ai. 

1991). There is some evidence that the viability of plant populations is reduced super-

proportionately with a decline in their size due to fragmentation effects upon their 

pollinators' behaviour and abundance (the "Allee effect": Lamont et ai. 1993). 

5.1.2 Competition and facilitation 

Interactions between plants (both inter- and intraspecific) may affect their reproductive 

success. A patch composed of two or more plant species may compete for pollination via 

pollinator preference (one plant attracts pollinators away from another) and interspecific 

pollen transfer (the pollinator switches between plant species as it forages) (Waser 1983). 

Interspecific pollen transfer (IPT) can reduce a plant's reproductive success through a loss 

of donor pollen, a loss of receptive stigmatic surface to the recipient and possibly the 

production of inviable or sterile hybrids (Waser 1983). Interspecific pollen transfer is 

believed to be the more common form of the two mechanisms of competition and is 

70 



thought to select for divergence in floral traits such as floral morphology, reward systems 

and flowering times (see Waser 1983 for a review). 

Facilitation (sometimes called mutualism) may also occur, whereby the presence of another 

species increases pollinator visitation by the attraction of, and energetic support (provision 

of nectar) for shared pollinators ( see Rathcke 1983 for a review). The adaptive 

significance of facilitation is not well understood and may be an incidental rather than an 

adaptive feature of plant-pollinator systems. For example, the effective mutualistic support 

of hummingbird populations by· sequential flowering of Delphinium nelsonii Greene 

(Ranunculaceae) and Jpomopsis aggregata (Pursh) V.Grant (Polemoniaceae) is most likely 

to be a result rather than a cause of divergence in flowering times (Waser & Real 1979). 

Competition and facilitation may operate at the same time (Rathcke 1983). This was 

illustrated by the work of Campbell & Motten (1985) who found that the presence of 

Claytonia virginica L. enhanced the pollinator visitation rate to Stella ria pubera Michaux 

(Caryophyllaceae) but reduced its seed set due to the loss of S. pubera pollen by 

interspecific pollen transfer. Most studies have focussed on interspecific interactions, but 

intraspecific interactions may also be important (Rathcke 1983; Sih & Baltus 1987; 

Jennersten et al. 1992). By studying patches composed of a single plant species, density 

effects can be examined in isolation, without the intrinsic differences between plant species 

confounding pollinator behaviour. 

5.1.3 Pollinator responses to floral density 

The response of a pollinator to variation in patch size can be likened to predator-prey 

interactions (Holling 1959 ), where the pollinator is the 'predator' and the flowers the 

·prey'. Two types of response can be identified: a functional response where more prey 

items are consumed with increased prey density, and, an aggregative numerical response 

where there is an increase in predator density with increased prey density. A reproductive 

numerical response can also occur, but this is outside the scope ofthe current study. For a 

factor to act in a density-dependent manner, a super-proportional response to increased 

prey density is required. 

71 



-'-:-:"'-'.':;.--

-' .. '.-.",.',,-

For plant-pollinator interactions, a larger patch of flowers may receive more visitors 

(aggregative numerical response) and have more flowers visited (functional response) than 

smaller patches. In terms of plant reproductive, success it is the balance of these two 

responses, the net visitation rate per flower, that is important. Rathcke (1983) proposed a 

parabola-shaped relationship between flower visitation rates and flower density (Fig. 5.1). 

At low floral densities, visitation rates are disproportionately low, but as flower density 

increases so too does the visitation rate due to enhanced attraction and support of 

pollinators. At very high floral densities, the visitation rate declines, due to saturation of 

the available pollinator population. Thus plant-plant interactions may shift between 

facilitation and competition, depending on floral density. 

... 
Q) 

3: o ;: ... 
Q) c.. 
(fj -'iii 
:> 
~ 
2~====~ __________________________ __ 

low Floral density high 

Figure 5.1. Model of the relationship between floral density and pollinator visitation (from 

Rathcke 1983). 

Only one paper has explicitly tested this theoretical model to see if visitation rate is 

dependent on floral density. Sih & Baltus (1987) found that there were density-dependent 

effects of catnip (Nepeta cataria L., Labiatae) flowers on visitation rate but they differed 

over time and with different pollinator species. Further experiments are needed to 

determine if these patterns of behaviour are common among plant-pollinator systems. 

The purpose of this study was to quantify the effects of flower density on pollinator 

abundance and flower visitation rates. The hybrid lavender Lavandula x intermedia Lois. 

cv. Grosso (Labiatae) was used. This plant was chosen for its attractiveness to bees (pers. 

obs.; Free 1993) and its ability to tolerate hot, dry conditions. Also, all plants were from 
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the same genetic source (grown from cuttings), negating any genetic differences in their 

physiology and morphology that might affect pollinator behaviour. 

5.1.4 Objectives 

• To determine if bees show a numerical aggregative response to increased floral density. 

• To determine if bees show a functional response to increased floral density. 

• To determine if the overall effect of the above responses on flower visitation is density-

dependent. 

5.2 Methods 

5.2.1 Study plant 

L. x intermedia cv. Grosso is a hybrid of Lavandula angustifolia Mill. and Lavandula 

latifolia Medik. and is sometimes referred to as lavandin. It is grown commercially for the 

production of essential oils. Flowers of L. angustifolia and L. latifolia are readily visited 

by bees for nectar and pollen (Herrera 1989; Free 1993). Lavandin plants showed a 16-20 

% increase in their essential oil content when visited by bees (Barbier 1958, cited in Free 

1993). For this experiment, 31 plants of Grosso lavender were each planted in separate 300 

mm diameter plastic tubs (Plate 5.1). The lavender plants were approximately 150 mm 

high. The plants were watered every second day. 

5.2.2 Experimental design 

Three different sized patches of lavender were created using the above pots. These patches 

were designated as small (one plant), medium (five plants) and large (25 plants). The three 

patches were placed approximately 150 m apart in an organic pasture at the Biological 

Husbandry Unit, Lincoln University. 
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Plate 5.1 Medium sized 'patch' of Lavandula x intermedia cv. Grosso. 

Despite a lack of replication in space, the confoundi g effects of location were relTIoved by 

rotating the patches daily (keeping the same groups of pots together) so over three days 

(19-21 February 1998), each position was occupied once by each patch size (Fig. 5.2). The 

'patches' were then shifted to new sites in the paddock and this rotational process was 

repeated over another three days (25-27 February 1998) (Fig 5.2). On each observation 

day, the number of flowers per patch was counted directly in the small and mediulTI 

patches. The number of flowers was estimated in the large patch by counting the number 

of flowering inflorescences and multiplying this by the mean number of flowers per 

inflorescence from 10 randomly selected inflorescences. 
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50m 

o = small patch (1 plant) 

~ = medium patch (5 plants) 

e = large patch (25 plants) 

N-... 

Number refers to the day of 

observation .... 

1=19 Feb 1998 

2=20 Feb 1998 

4=25 Feb 1998 

5=26 Feb 1998 

3=21 Feb 1998 6=27 Feb 1998 

Figure 5.2. Experimental layout of artificial Lavandula x intermedia cv. Grosso patches 

within a 4.5 ha organic paddock, Biological Husbandry Unit, Lincoln 

University. 

5.2.3 Forager behaviour 

The abundance of bumble bees and honey bees foraging on each patch was estimated by 

making 'instantaneous' (approx. 5 sec) counts of the number of bees per patch. This 

method was chosen because preliminary observations showed that it was impossible for 

one or two observers to keep track of the number of bees arriving and departing from the 

large patch within a defined observation period. Instantaneous counts were made 10-14 

times throughout the day, between 0900 and 1700 h (NZ Summer Time). The foraging 

bouts of individual B. terrestris were recorded using a stopwatch to time bout length and a 

hand-held counter to record the number of flowers visited per bout. A bout was considered 

to be finished when a bee left the patch and did not return within 5 s. The foraging bouts of 

25,29 and 31 individual B. terrestris were recorded on the small, medium and large sized 

patches respectively over the 6 days of the experiment. Also, over the course of this 

experiment, 27 B. terrestris were collected while foraging on the lavender and were 
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individually marked by placing them in a marking tube (Kwak 1987) then gluing a honey 

bee queen number tag (Opalith-PHittchen) to their thorax. The foraging bouts of these 

marked individuals were recorded o-nly once to avoid pseudoreplication in the flower visit 

data. 

5.2.4 Analysis 

Because of the low number of honey bees and B. hortorum visiting the lavender, analysis 

was confined to the B. terrestri~ data. Numerical and functional relationships were 

estimated using regression analysis (linear and log-linear models). Data was log-

transformed to improve normality and homogeneity of variances and randomised block 

ANOV As were used to partition the effects of day/location and patch size on pollinator 

abundance and behaviour. 

5.3 Results 

5.3.1 B. terrestris on L. x intermedia cv. Grosso 

B. terrestris was the dominant bee species visiting the lavender, comprising 96.6 % of all 

bees observed. Individually marked bees showed site loyalty, returning to forage on the 

lavender throughout the day and between days (even though the patch size and the plants 

had changed). B. terrestris was often observed visiting the same flower twice or more 

during a foraging bout, especially on the small patches. This was also evident by records 

of flower visits per bee, which exceeded the number of lavender flowers available. 

5.3.2 Aggregative numerical responses 

Patch size had a significant effect on the number of B. terrestris visiting the patch 

(ANOVA on log-transformed data; F=69.3, df=2, P<O.OOl) and the day of 

observation/patch location had no effect on B. terrestris abundance (F=2.3, df=5, 

P=O.120). There was a strong positive relationship between the number of B. terrestris 

visiting the patch and patch size (linear regression; R=O.850, P=<O.OOl, y=O.336+0.002x; 

Fig. 5.3). 
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Figure 5.3. Relationship between Bombus terrestris abundance and Lavandula x 

intermedia cv. Grosso patch size (data points are means for each day of 

observation). 

However, this numerical response was not super-proportional; patch size was not a good 

predictor of the number of bees per flower (best fit was log-linear; R=0.20S, P=O.066, 

y=0.007-0.001 *log(x); Fig. S.4). 
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Figure 5.4. Relationship between the number of Bombus terrestris per 1000 flowers and 

Lavandula x intermedia cv. Grosso patch size (data points are means for each 

day of observation). 
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5.3.3 Functional responses 

There was a significant positive relationship between the number of flowers visited within 

each patch and patch size (log-linear regression; R=OA27, P=O.003, y=-314.8+78.5*log(x); 

Fig. 5.5). The mean proportion of flowers visited by B. terrestris was calculated by 

dividing the mean number of flowers visited per patch by the number of flowers available 

per patch. When this variable was regressed against patch size there was a significant but 

weak decline in the proportion of flowers visited with increasing patch size (log-linear 

regression; R=O.364, P=O.008, ¥=1.2-0.13*log(x); Fig. 5.6), i.e., an inverse density-

dependent relationship. 
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III ... 400 CI) 

== 0 300 ;:: • - 200 0 ... • • • CI) 100 .c •• E 0 :I 

\ • 
•• 

Z 0 500 1000 1500 2000 

Number of flowers per patch 

Figure 5.5. Relationship between the number of flowers visited per foraging bout by 

Bombus terrestris and Lavandula x intermedia cv. Grosso patch size (data 

points are means for each day of observation). 
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Figure 5.6. Relationship between the proportion of flowers visited per foraging bout by 

Bombus terrestris and Lavandula x intermedia cv. Grosso patch size (data 

points are means for each day of observation). 
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Patch size had a significant effect on the time spent by individual B. terrestris foraging on 

the patch; more time was spent on the largerpatches (ANOY A on log-transformed data; 

F=25.27, df=2, P=<O.OOl; Fig 5.7).- However, the number of flowers visited per second 

(flower handling time) was similar over all patch sizes (ANOYA; F=0.31, df=2, P=0.736). 

The mean (±SE) flower handling time was 0.658 (±0.031), 0.652 (±0.04), and 0.679 

(±0.036) flowers per second for the small, medium and large patches respectively. 
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.5.!!! 150 
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lij i 100 
~ ~ 50 
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small medium 

Patch size 

large 

Figure 5.7. Mean time spent by individual Bombus terrestris foraging on different sized 

patches of Lavandula x intermedia cv. Grosso (back-transformed means and 

95 % confidence intervals shown). 

5.3.4 Net visitation per flower 

The effects of patch size on pollinator abundance and the number flowers visited can be 

combined to estimate the net visitation rate per flower (Rathcke 1983; Dafni 1992). In the 

current study, instantaneous counts of bee abundance were made, so the calculation of a 

rate of visitation would be invalid because the number of bees arriving per unit time was 

not known. Instead an index of visitation (IY) per flower was calculated: 

IV = (B*Fy)lFa 

where B is the mean B. terrestris abundance per patch, Fy is the mean number of flowers 

visited per patch and Fa the number of flowers available per patch. When the index of 

visitation was plotted against patch size, no relationship could be found (best fit was log-

linear; R=0.112, P=0.174, y=-0.252+0.122*log(x); Fig. 5.8). 
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Figure 5.8. The relationship be{tween visitation per flower by Bombus terrestris and patch 

size of Lavandula x intermedia cv. Grosso (data points are means for each 

day of observation). 

5.4 Discussion 

5.4.1 Pollinator responses to floral density 

In this simple plant-pollinator system, the number of consumers showed a positive linear 

function with resource density. This increase was less than proportional; the number of 

bees per flower was not directly related to flower density. Therefore the aggregati ve 

numerical response was density-independent. The number of flowers visited on a foraging 

bout increased with patch size, but the proportion of flowers visited declined with patch 

size (inverse density-dependence). Flower handling time was not reduced at higher floral 

densities. Therefore, the number of flowers visited (irrespective of patch size) was 

probably limited by honey crop and/or corbiculae load capacities. The possible 

consequence of this for the flowers is that at higher floral densities there will be 

intraspecific competition between flowers for a limited number of individual pollinator 

visits. 

The net effect of these functional and numerical responses to the flower (as measured by 

the visitation index) was to cancel each other out, i.e., the presence of more flowers in·a 

patch attracted more bumble bees but decreased the probability of a flower being visited, so 

the IV was similar over a wide range of patch sizes. This contrasts with the work of Sih & 

Baltus (1987), who found that there was a density-independent aggregative numerical 

response and density-dependent functional response of bumble bees to increased catnip 
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flower density, resulting in an overall density-dependent effect on visitation rates at larger 

patch sizes. The aggregative numerical response detected by instantaneous counts in the 

current study could have been driven by the functional response of pollinators spending 

more time on larger patches and/or an increased rate of pollinator visitation to the patch, 

i.e., more pollinators arriving per unit time on larger patches. An increased rate of 

pollinator arrivals could have been caused by the bigger stimulus (flower density, colour 

and odour) and enhanced detection by pollinators of larger patches of flowers. Patch 

retention times were measured in the current study but visitor arrival rates were not (for 

logistical reasons, see Methods section). It is possible that visitor arrival rates were higher 

at larger patches (as Sih & Baltus 1987 found) and that some undetected density-dependent 

effects were operating. 

5.4.2 Limitations of the data 

Regression analyses require the dependent variable values to be independent of each other 

(Zar 1984), but this was not the case in the current study. Data points were measurements 

of the same patches over different days and in different locations (repeated measures). 

Ohashi & Yahara (1998) found that although the shape of the functional relationship 

between pollinator visits and flower number was similar between observation days the 

magnitude of the response differed. Thus the plant-pollinator relationships in the current 

study could have been confounded by environmental effects due to different locations or 

days of observation. 

There was no evidence of the type ofrelationship proposed by Rathcke (1983) (Fig. 5.1), 

but visitor arrival rates were not measured. The relationship between IV and floral density 

may have been clearer in this study if a greater range of patch sizes had been used. There 

was a gap in the 500-1000 flower patch size range and one can only speculate whether IV 

would have peaked in this range as in Rathcke's (1983) model. 
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5.4.3 Other factors affecting visitation 

It must be stressed that this study was very limited in its scope, looking at only one bee and 

one plant species. Visitation with regard to patch size was examined in isolation but many 

other variables will affect pollinator behaviour, such as microclimate conditions, isolation 

of patches, nectar volumes and distribution, other flowering plants in the area, location of 

pollinator nest sites and competition with other pollinators. Density-dependence in time as 

well as in space can also occur, where the visitation rate is higher at peak flowering 

(Thomson 1982; Campbell198~; Sih & Baltus 1987). 

Waser (1983) concluded that visitation is only one component of pollination success, 

pollinator quality also being important. Pollinator quality can also be affected by patch 

size. Jennersten et al. (1988) found that seed set was lower in smaller patches of Viscaria 

vulgaris (Bernh.) than in large patches, even though the visitation rate by bumble bees was 

the same. He suggested that this was due to the 'major and minor' foraging patterns 

exhibited by bumble bees (Heinrich 1979a). In larger patches, the bumble bees were 

probably 'majoring' on V. vulgaris resulting in high conspecific pollen transfer, whereas in 

small patches V. vulgaris would have been a minor species and would have received more 

interspecific pollen thereby reducing its seed set. Thus in small isolated populations of 

plants, small patch size may cause two negative effects on pollination success; reduced 

pollinator visitation and increased interspecific pollen transfer (Rathcke & Jules 1993). 

The plant used in this study was chosen for its availability and agronomic characteristics; it 

may be more relevant to use a species with a higher economic or conservation status in 

future studies. However L. x intermedia was chosen to withstand the exceptionally high 

temperatures of the New Zealand 1997/98 summer, P. tanacetifolia not having met this 

need (see Chapter 4). The experiment should be repeated with a greater range of patch 

sizes to test the hypothesis of Rathcke (1983). The next step would be to measure pollen 

movement and pollination success to determine if pollination is limited in different sized 

patches and what the mechanisms are (Campbell 1985; Campbell & Motten 1985) 

provided a thorough methodology for doing this). 
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CHAPTER SIX: GENERAL DISCUSSION AND CONCLUSIONS 

6.1 Introduction 

This thesis has looked at bumble bee management options for crop pollination and spatial 

aspects of their foraging behaviour. It has highlighted some of the problems with their 

management and the need for a better understanding of their biology and ecology. In 

particular, bumble bee movement in the landscape is poorly understood. Where and how 

far bumble bees forage in relation to their nest has important implications for both 

agricultural and conservation applications and warrants further study. The development of 

harmonic radar technology offers a greatly improved method to track bumble bee 

movement (Riley et ai. 1996). 

Pollination ecology is a multi-discipline science, practised by botanists, apiculturists, 

entomologists, ecologists, physiologists, plant breeders, ethologists, horticulturists and 

geneticists (Torchio 1987). As a result, there are many independent studies at many 

different levels of analysis but few studies actually link the behaviour of the pollinator to 

pollen movement to fruit set in the 'plant (Rathcke 1992). The failure of most studies 

(including this one) to elucidate these linkages is a major obstacle to the understanding of 

such a critical ecological process. Because pollination is a landscape scale process, studies 

of plant-pollinator "communities", "guilds" or "functional groups" are recommended 

(Bronstein 1995; Cane 1997; Corbet 1997). Conservation of these pollinator guilds is 

desirable and can be thought of as an insurance policy for pollination - if one species 

undergoes a population crash, another species may provide compensatory pollination 

services (Cane 1997). 

There is a need for standardised methods and terminology (Inouye et ai. 1994) so 

comparisons may be made between the relative efficacies of different pollinators (Torchio 

1987). A problem with such comparisons, however, is that insect numbers and behaviour 

vary greatly over time and space as a result of multiple extrinsic and intrinsic variables, so 

such studies are likely to be site- and time-specific. The use of plant-pollinator models 

(e.g., Plowright & Hartling 1981; Ingvarsson & Lundberg 1995) that incorporate these 

multi-variates are thus likely to become more important in the future. 
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Below is a review of the conclusions of each experimental chapter and a discussion within 

the broader context of pollination ecology, as well as an analysis of the problems 

encountered and ideas for future work. Pollinator management in New Zealand is also 

discussed. 

6.2 Provision of nest and forage sites to enhance bumble bee numbers 

• Domicile occupancy rates increased substantially over three years as the domiciles 

became more attractive and/or were discovered with time. 

• There was no association between previous use by mice and subsequent occupancy by 

bumble bees. 

• There was a positive association between the presence of a bumble bee nest in one year 

and occupancy in the following year and the "seeding" of domiciles with pieces of old 

bumble bee nests is recommended to enhance occupancy rates. 

• The provision of Phacelia attracted bumble bees to field margins but its effect on 

occupancy rates and nest productivity could not be ascertained. However, areas with 

higher floral diversity and abundance (Le., the Biological Husbandry Unit) had higher 

domicile occupancy rates. 

This experiment highlighted the logistical problems of habitat manipulation at a landscape 

scale; better communication and coordination with land mangers is essential for the 

establishment and maintenance of habitat refuges. The experiment rested on the 

assumption that nest sites and forage were limiting bumble bee populations. Although not 

explicitly tested, the results of this and other studies (Donovan & Wier 1978; Pomeroy 

1981) suggest that this is a valid assumption. The choice of plants for habitat refuges is 

important; it is recommended that hardy perennials or shrubs are used. This is because 

perennial plants are preferred over annuals by bumble bees, they require less maintenance 

and once established are more resistant to grazing and competition from grasses. Future 

studies could repeat this experiment (with a different forage plant) to determine if the 

provision of a forage resource increases occupancy and nest productivity. The next step 
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would be to see if bumble bees move from habitat refuges into crops and what size refuge 

is needed to support the desired bumble bee population. 

Habitat manipulation is a low-cost, low-input management-technique but it may take some 

years for bumble bee populations to build up. Torchio (1987) expressed doubts about the 

viability of habitat management programmes in very large, intensively managed 

agricultural areas because of high agrochemical inputs, asynchrony between crops and 

pollinators, costs of management and the possibility of refuges acting as pest reservoirs. 

However, farming in New Zealand is not as large scale as in the western USA, so habitat 

management is a more practicable option here. The potential of habitat refuges to harbour 

pest and weed populations should be investigated further. However, Corbet (1995b) 

argued that the abundance of insect pests and annual weeds is low in an established 

perennial sward and a floristically diverse vegetation also supports other beneficial insects 

such as parasitoids and predators of insect pests (Root 1973; Altieri 1991). 

6.3 Foraging behaviour of Bombus hortorum within a red clover seed crop 

• All B. hortorum observed foraging on the crop were pollinating the flowers. Most B. 

terrestris and Apis mellifera were nectar robbing, but their densities were three and 14 

times greater respectively than those of B. hortorum. 

• Pollen analysis showed most pollen-collecting bees from the supplied nests were 

visiting the crop and this did not change as flowering progressed. 

• Reobservation rates of nest-marked bees were too low to compare statistically numbers 

at different distances from the nest but most were observed over 50 m away from their 

nests. Bees from one nest were flying over 200 m from the nest to forage on non-crop 

flowers. 

• Supplementation with one B. hortorum nest per hectare increased the number of B. 

hortorum foraging on the crop by only 2 %. Supplied nests may therefore be cost-

effective only if natural populations are low or out of synchrony with crop flowering. 

One of the aims of this study was to find out where and how far bumble bees from 

supplied bests were foraging. This was achieved to a limited extent by pollen analysis 
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and mark-reobservation, but these methods had their limitations. Research on the 

foraging ecology of bumble bees is often restricted to observations of individual 

behaviour, studies on whole colony foraging are scarce; this may berelated to the ease 

of gathering data for individuals compared with colonies. In honey bees, the waggle 

dance of scout bees may be correlated with the location of forage patches to which they 

recruit other foragers (Visscher & Seeley 1982). Because bumble bees have no 

recruitment communication, this method cannot be used and correspondingly, because 

bumble bees are individual foragers, they are likely to be more randomly dispersed over 

an area. Piecing together information about whole colony foraging will therefore 

require a range of methods. Possibilities include radioactive isotopes (Lecomte & 

Pouvreau 1968), magnetic tags (Gary et al. 1972), genetic markers (Kennet 1995), 

harmonic radar (Riley et al. 1996) as well as pollen analysis and mark-reobservation. 

An interesting observation in this and other studies (Synge 1947; Brian 1951; Free 1970; 

Free & Williams 1974; Waddington et al. 1994) is that bee colonies in the same area 

utilise the available resources in different ways. Waddington et al. (1994) hypothesised 

that this phenomenon in honey bee colonies was due to incomplete sampling of 

resources, different nutritional needs of the colonies or competition from other bees 

making some patches not profitable. Competition was probably not important on the 

experimental crop because bee densities were not as high as have been reported 

elsewhere for tetraploid red clover. Michener (1974, cited in Visscher & Seeley 1982) 

found there was a positive correlation between colony size and foraging range. The 

colony not collecting red clover pollen was the largest and at a different growth phase 

from the other three nests, so colony size and nutritional status could have some affect 

and could be experimentally tested in the future. 

In retrospect, nectar quantities and seed set should have been measured within the crop 

to provide some information about the relationships between resource availability, 

pollinator densities and seed yields. The calculation of a stocking rate relies on such 

information. The low percentage that the supplied nests contributed to the total 

pollinator population suggests that some previous calculations on the value of supplied 

nests may be misleading because they overestimate the number of supplemented bees 

likely to be working on the crop. R.C. Plowright (pers. comm.) suggested that it is 
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better to consider the marginal value (i.e., economic benefit to the grower) of each 

supplemented colony to the crop. To do this the gross value of a bee colony placed on a 

particular crop is calculated from-bee working speed, foraging trip duration and forager 

number data (assuming there are no other pollinators present, i.e., an "empty field"). 

The pollination deficit is calculated from difference between maximum possible yields 

under perfect pollination and actual realised yields in the field. These two values 

(empty field value and pollination deficit) are multiplied together to give the marginal 

value of a bumble bee colony, which can then be reconciled with the cost of the colony. 

Hence the value of supplied nests is conditional on bee densities already present. A 

different approach was suggested by N. Pomeroy (pers. comm.) who compared the 

economic value of one "pollination unit" (in this case a red clover seed) to the cost of 

generating one "pollination event". Both approaches are likely to give more realistic 

estimates of the profitability of using bumble bee colonies for field crop pollination than 

simplistic flower/bee density counts. 

6.4 Foraging distances of Bombus terrestris from the nest 

• There was no difference between the number of marked bees foraging at 20 or 200 m 

from their nest; however, it was not known where more than 95 % of the bees were 

foraging. 

• Colonies for field crop pollination should be placed upwind of the target crop. 

This experiment did not achieve its aim because the pots of Phacelia did not attract 

enough bees andlor the differences between the distances (20 vs 200 m) were too small 

for the bee to discriminate energetically between. Mean outgoing flight distances of 

foragers from two B. terrestris nests recorded using harmonic radar were 339 (±26.2) m 

and 201 (±18.7) m from the nest, but these data did not include bees flying over 650 m, 

i.e., beyond the range of the radar (1. Osborne unpub. data). These are larger distances 

than the often quoted " ... within a few hundred metres from their nest..." (Alford 1975, p. 

88) and include cases where patches of apparently rewarding flowers close to the nest 

are 'passed over'. These observations do not fit those predicted by optimality models 

which state flight distances should be minimised. 
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Bumble bee optimality models us~ rat~~f e!1ergy (nectar) gain as the 'currency' of 

fitness because nectar is their safe source of energy, it is easily quantified and when 

foraging for nectar, bees are not distracted by other 'constraints' such as predator 

avoidance or finding a mate. However, pollen is essential to brood rearing, only pollen 

is collected from some flowers and at the height of colony growth a large proportion of 

foragers are collecting it. Therefore, quantification of nectar-only forager energetics 

would not be representative of colony foraging as a whole. Heinrich (1983a) criticised 

the application of a theory designed to answer evolutionary (ultimate) questions to 

provide proximate mechanisms for bumble bee behaviour and says that in an attempt to 

provide post-hoc explanations of already observed phenomena, they often ignore other, 

simpler mechanisms. He suggested that if the primary goal is to understand an animal's 

behaviour, researchers should concentrate on investigating proximate mechanisms, 

rather than worrying if the bees' behaviour is optimal or not according to criteria 

predetermined by the researcher. 

Roubik (1989) was the first to take a mechanistic approach (as opposed to a functional 

approach) to honey bee colony foraging distances. He fitted a probability density 

function to the flight data of Visscher & Seeley (1982) and Vergara (1983, cited Roubik 

1989). Wenner et ai. (1991) argued that data from these and other studies were better 

described by a log-normal distribution, although this would be modified by wind 

direction and forage density and distribution (Meade 1991; Schneider & McNally 1993). 

Given that a lognormal distribution represents a random distribution of bees from their 

colony, then bumble bee colonies would be expected to exhibit this pattern. However, 

problems associated with training bumble bees to visit feeding stations make it difficult 

to test this hypothesis. 

The higher re-observation rate of bees when pots of Phacelia were upwind of the nest 

was an unexpected outcome of this experiment. Wenner et al. (1991) documented a 

similar phenomenon in feral honey bees on Santa Cruz Island, USA; most bees were 

foraging upwind of the colony regardless of the type or quality of forage downwind. As 

Wenner et al. (1991) stated, it is surprising that that this phenomenon has not been 
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studied further given that it is grounded on two indisputable facts: flower odour acts as a 

signalling cue for pollinators and odour can travel only downwind. 

6.5 Effects of patch size on Bombus terrestris abundance and behaviour 

• The number of B. terrestris visiting the lavender increased with patch size but this 

increase was less than proportional (a density-independent aggregative numerical 

response). 

• The number of flowers visited per foraging bout increased with patch size but the 

proportion of available flowers visited decreased with patch size (an inverse-density 

dependent functional response). 

• Combining these two responses, the net visitation per flower was independent of patch 

size. 

Floral resources are patchily distributed in nature and it is important to recognise how the 

spatial distribution of these affects pollinator behaviour and pollinator-mediated gene flow. 

It is important for conservation goals to predict the effects of fragmentation on plant-

pollinator communities. In agriculture, this information can be used to determine plant 

spacings, seed isolation distances, and the geometry of habitat refuges for crop pollinators. 

This experiment used a simple, one-to-one, plant-pollinator relationship to investigate 

density dependent foraging in B. terrestris. Both functional and numerical responses were 

examined but no density dependent effects were operating. A wider range of patch sizes 

should be used in future studies to provide more information on the relationship between 

patch size and pollinator abundance and behaviour. Density dependence may not have 

been detected because the visitation rate could not be measured directly and instead was 

calculated from bee abundance and foraging bout parameters. This method can introduce 

temporal errors because bee abundance and bee foraging rates will vary with time (Osborne 

1994). However, measurements of these parameters were done within quick succession of 

each other so this temporal heterogeneity would have been minimal. The use of this 

method also meant that rejections (in which the bee approaches a flower but does not visit 

it) were not recorded. Other studies have shown that bees can assess patch/flower quality 
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remotely (Corbet 1984; Marden 1984) and this appraisal may be affected by patch 

geometry (size, shape, density). 

Observation of marked individuals showed that movement between patches was minimal. 

This apparent patch fidelity would mean that there would be little pollen flow between the 

patches. Studies on pollinator-mediated gene flow (via pollen) have shown that gene flow 

between populations is restricted in space (Levin & Kerster 1974). Increased isolation of 

patches could further limit pollen flow as isolated patches receive fewer visits from social 

bees (Sih & Baltus 1987). This has important implications for the genetic diversity of 

small isolated patches of entomophilous plants, particularly if they are dependent on a 

specialised pollinator. Pollen flow and the degree of pollinator limitation should be 

measured in future studies of this kind, although this is not easy. The development of 

isoenzyme markers, such as those in white clover (Michaelsonyeates et ai. 1997), is a 

powerful new technique that allows the pollen carryover by insect vectors to be detected by 

analysing the paternity of seeds produced from these pollination events. 

6.6 Pollinator management in New Zealand 

In the Northern Hemisphere there has been a growing awareness of the importance of 

pollination for agricultural sustainability and for the conservation of biodiversity. The 

motivating factors have been an increased demand for pollination services coupled with a 

decline in the abundance and diversity of bee species (in particular honey bees) as well as 

concern about the effects of fragmentation on plant communities. Active and integrated 

pollinator programmes are recommended that incorporate honey bee management, habitat 

management to increase pollinator species diversity and population size, and the 

development of alternative pollinators for specific crops (Parker et ai. 1987; Torchio 1987; 

Kevan et ai. 1990; Corbet et al. 1991; Kearns & Inouye 1997; Allen-Wardell et al. 1998). 

In New Zealand, honey bees are relatively free of the pests and diseases affecting the 

Northern Hemisphere honey bee industry and they are still the most widely used pollinator. 

Because of this reliance on honey bees, if a parasite like varroa mite did get into the 

country, the effects on crop yields could be disastrous. Apart from honey bee disease 
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monitoring, New Zealand has no active pollinator management programmes and there is 

presently no government funding into the research of alternative pollinators. Department 

of Science and Industrial Research (DSIR) programmes in the late 1970s and early 80s 

resulted in the introduction of the lucerne leafcutting bee (M. rotundata) and the alkali bee 

(N. melanderi) for lucerne pollination but their potential has been limited by unsuitable 

climatic conditions. More recently, attempts to introduce the orchard bee (0. cornifrons), 

which is a superior pollinator to honey bees for pip fruit pollination, have failed because of 

a lack of funding (B.J. Donovan pers. comm.). Management of New Zealand native bees is 

not considered to be a viable option because of their small size and small populations (Gurr 

1974) (although Leioproctus spp. have been identified as potential effective pollinators of 

kiwifruit (Donovan 1987)). Therefore, the only option available is to manage more 

effectively bees such as Bombus spp. that have already been introduced to New Zealand. 

Management of bumble bees in New Zealand is purely an economic objective (increasing 

crop yields), whilst in the Northern Hemisphere, where bumble bees are endemic, there are 

also related conservation objectives. Bumble bees are not a conservation threat in New 

Zealand because they confine their visits mainly to exotic plants, although they may help 

maintain weed populations such as gorse on offshore islands (Macfarlane & Gurr 1995). 

The use of bumble bees for pollination of glasshouse tomatoes is a widespread and cost-

effective practice and a thriving bumble bee rearing industry has developed in New 

Zealand to meet the demand. At present, the cost effectiveness of purchasing bumble bee 

colonies for field crop pollination is unproven and habitat management techniques are 

recommended. The use of bumble bees in the field may become more cost effective as the 

commercial rearing process becomes more refined and more cost competitive. An increase 

in honey bee colony prices due to additional disease control costs could also swing the 

balance in the favour of bumble bees. 

Alternative pollinators such as bumble bees are often not considered to be as reliable 

pollinators of crops as are honey bees because their population densities vary from year to 

year. However, as Torchio (1987) pointed out, this is a flawed comparison, because honey 

bees are intensively managed whilst non-Apis populations are not. The status of alternative 

pollinator management today has been compared with that of biological control 20 years . 

ago - showing potential, with some successes, but still requiring more theoretical and 
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empirical work (Parker et al. 1987). Likewise the key to overcoming obstacles to 

pollinator management will be more research into their biology and behaviour. 

Management of biocontrol and pollinating insects can also be integrated. The use of 

bumblebees in glasshouses went hand in hand with the biological control of greenhouse 

whitefly (Trialeurodes vaporariorum Westwood) by a parasitic wasp (Encarsiaformosa 

Gahan) because both practices require insecticide levels to be reduced (Dijkgraaf 1994). 

The management of beneficial insects such as bumble bees will playa key role in the future 

development of a more diverse and sustainable approach to agriculture. 

92 



ACKNOWLEDGMENTS 

I would like to thank my supervisors, Steve Wratten, Barry Donovan apd Eric Scott for 

their encouragement, guidance and editing throughout the course of this thesis, especially 

when things (often) went wrong. Thanks also to the staff and students in the department of 

Entomology and Animal Ecology who made working there a pleasure. In particular, Marie 

Schaffer provided timely advice and assistance when I first came to Lincoln and stimulated 

my interest in the 'bee business '., Thanks to all those that came and helped me out in the 

field at one time or another and to Andrew Allen for helping to construct the bee boxes. 

Thank you to Robert MacCarthy for letting me tromp around his red clover seed crop. The 

Lincoln University farm mangers were also very tolerant when I was busy shifting bee 

boxes and sowing Phacelia around their field margins. Thanks to the nursery staff for 

tending to my plants in the greenhouse. Peter Clifford (AgResearch) provided advice and 

figures on red clover seed crops. The expertise of Neville Moar (Landcare) was invaluable 

when I was trying to identify pollen grains. Funding for my research was provided by the 

Department of Entomology and Animal Ecology. 

I was fortunate to have the opportunity to travel to Rothamsted Experimental Station, 

England this year to pursue my research interests. I would like to thank Ingrid Williams 

and Juliet Osborne for their hospitality and support whilst at Rothamsted. The Lincoln 

Fund for Excellence and the Commonwealth Science Council provided the funding for this 

excellent trip. 

Last but not least, I would like to thank the people behind the scenes - my friends and 

family - for their support and encouragement whilst I've been completing this monster of a 

thesis. Thank you to mum for being a good friend as well as a great mother. Thanks to RJ 

for all his love and support and for distracting me from my work. 

93 



REFERENCES 
Alford D V. 1975. Bumblebees. London: Davis-Poynter. 352 pp. 

Allen-Wardell G, Bernhardt P, Bitner R,BurquezA, Buchmann S, Cane J, Cox P A, 

Dalton V, Feinsinger P, Ingram M, Inouye D, JonesC E, Kennedy K, Kevan P, 

Koopowitz H, Medellin R, Medellin-Morales S, Nabhan G P, PavlikB, Tepedino 

V, Torchio P, Walker S. 1998. The potential consequences of pollinator declines 

on the conservation of biodiversity and stability of food crop yields. Conservation 

Biology 12: 8-17. 

Altieri M A. 1991. Increasing biodiversity to improve insect pest management in 

agroecosystems. In Biodiversity of Microorganisms and Invertebrates: Its Role in 

Sustainable Agriculture, pp. 165-182 Ed, D L Hawksworth. Wallingford, UK.: 

CAB International. 

Banaszak J. 1980. Studies on methods of censusing the numbers of bees (Hymenoptera, 

Apoidea). Polish Ecological Studies 6: 355-366. 

Banaszak J. 1992. Strategy for conservation of wild bee in an agricultural landscape. 

Agriculture, Ecosystems and Environment 40: 179-192. 

Banaszak J. 1996. Ecological bases of conservation of wild bees. In The conservation of 

bees, pp. 55-62 Eds, A Matheson, S L Buchmann, C O'Toole, P Westrich & I H 

Williams. London: Linnean Society of London and the International Bee Research 

Association. 

Bohart G E. 1967. Management of wild bees. Agricultural Handbook, No. 335: U. S. 

Department of Agriculture, 109-118. 

Bohart G E. 1972. Management of wild bees for the pollination of crops. Annual Review 

of Entomology 17: 287-312. 

Bond D A, Pope M. 1974. Factors affecting the proportions of cross-bred and selfed seed 

odtained from field bean (Viciafaba L.) crops. Journal of Agricultural Science 83: 

343-351. 

Bowers M A. 1985. Bumblebee colonization, extinction and reproduction in subalpine 

meadows in northeastern Utah. Ecology 66: 914-927. 

94 



----~-.<.~-,.,,-.--, 

Bowie M H, Wratten S D, White A 1. 1995. Agronomy and phenology of "companion 

plants" of potential for enhancement of insect biological control. New Zealand 

Journal of Crop and Horticultural Science 23: 423-427.·· 

Braun E, Mac Vicar R M, Gibson D R, Paukiw P. 1956. Pollinator studies on red clover. 

International Congress of Entomology Proceedings 10: 927. 

Brian A D. 1951. The pollen collected by bumble-bees. Journal of Animal Ecology 20: 

191-194. 

Brian A D. 1952. Division of labour and foraging in Bombus agrorum Fabricius. Journal 

of Animal Ecology 21: 223-240. 

Brian AD. 1954. The foraging of bumble bees. Part 1. Foraging behaviour. Bee World 35: 

61-67. 

Bronstein J L. 1995. The plant-pollinator landscape. In Mosaic Landscapes and Ecological 

Processes, pp. 256-288 Eds, L Hansson, L Fahrig & G Merriam. London: Chapman 

& Hall. 

Brown B. 1989. An assessment of Viciafaba and Trifolium pratense 'Pawera' as forage 

crops for Bombus hortorum, B. Hort. Sci. Hons dissertation, Lincoln College, 

University of Canterbury, Christchurch. 65 pp. 

Buchmann S L. 1983. Buzz pollination in angiosperms. In Handbook of experimental 

pollination biology, pp. 73-113 Eds, C E Jones & J R Little. New York: Van 

Nostrand Reinhold. 

Buchmann S L. 1991. Foraging distances flown by honey bee colonies: analyses using 

Mathematica software. American Bee Journal 131: 771. 

Buchmann S L, Nabhan G P. 1996. Theforgotten pollinators. Washington DC: Island 

Press/Shearwater Books. 292 pp. 

Butler C G. 1951. Annual Report. Bee Department., Rothamsted Experimental Station, 

pp 108-113. 

Campbell D R. 1985. Pollinator sharing and seed set of Stella ria pubera: competition for 

pollination. Ecology 66: 544-553. 

Campbell D R, Motten A F. 1985. The mechanism of competition for pollination between 

two forest herbs. Ecology 66: 554-563. 

Cane J H. 1997. Ground-nesting bees: The neglected pollinator resource for agriculture. 

Proceedings of the 7th International Symposium on Pollination, Alberta, Canada, 

pp. 309-323. 

95 



Carreck N L, Williams I H. 1997. Observations on two commercial flower mixtures as 

food sources for beneficial insects in the UK. Journal of Agricultural Science, 

Cambridge 128: 397-403. 

Clifford P T P. 1973. Increasing bumble bee densities in red cloverseed production areas. 

New Zealand Journal of Experimental Agriculture 1: 377-379. 

Clifford PT P, Anderson AC. 1980. Red clover seed production - research and practice. 

In Herbage seed production., pp. 76-79 Ed, J A Lancashire. Palmerston North: NZ 

Grassland Association. 

Clifford P T P, Scott D. 1989. Inflorescence, bumble Bee, and climate interactions in seed 

crops of a tetraploid red clover (Trifolium pratense L.). Journal of Applied Seed 

Production 7: 38-45. 

Corbet SA. 1984. Can bees select nectar-rich flowers in a patch? Journal of Apicultural 

Research 23: 234-242. 

Corbet S A. 1990. Pollination and the weather. Israel Journal of Botany 39: 13-30. 

Corbet SA. 1991. Applied pollination ecology. Trends in Ecology and Evolution 6: 3-4. 

Corbet S A. 1995a. The competition box: a graphical aid to forecasting pollinator 

performance. Journal of Applied Ecology 32: 707-719. 

Corbet SA. 1995b. Insects, plants and succession: advantages of long-term set-aside. 

Agriculture, Ecosystems and Environment 53: 201-217. 

Corbet S A. 1996. Why bumble bees are special. In Bumble bees for pleasure and profit, 

pp. 1-11 Ed, A Matheson. Cardiff: International Bee Research Association. 

Corbet SA. 1997. Role of pollinators in species preservation, conservation, ecosysetm 

stability and genetic diversity. 7th International Symposium on Pollination, Alberta, 

Canada, pp. 219-229. 

Corbet S A, Fussell M, Ake R, Fraser A, Gunson C, Savage A, Smith K. 1993. 

Temperature and the pollinating activity of social bees. Ecological Entomology 18: 

17-30. 

Corbet S A, Saville N M, Osborne J L. 1994. Farmland as a habitat for bumble bees. In 

Foragefor bees in an agricultural landscape, pp. 35-46 Ed, A Matheson. Cardiff: 

International Bee Research Association. 

Corbet S A, Williams I H, Osborne J L. 1991. Bees and the pollination of crops and wild 

flowers in the European Community. Bee World 72: 47-59. 

96 



Cowgill S E, Wratten S D, Sotherton N W. 1993. The effect of weeds on the numbers of 

hoverfly (Diptera:Syrphidae) adults and the distribution and composition of their 

eggs in winter wheat. Annals of Applied Biology 123: 499-514. 

Dafni A. 1992. Pollination Ecology- A Practical Approach. Oxford: Oxford University 

Press. 250 pp. 

Darwin D. 1951. The Origin of Species. London: Oxford University Press. 592 pp. 

Dennis P, Fry G LA. 1992. Field margins: can they enhance natural enemy population 

densities and general arthropod diversity on farmland? Agriculture, Ecosystems and 

Environment 40: 95-115·. 

Dijkgraaf A. 1994. Flight of the Bumblebee. New Zealand Geographic., 24, 84-98. 

Donovan B J. 1987. Give native bees a helping hand. New Zealand Kiwifruit May: 19-22. 

Donovan B J, Macfarlane R P. 1984. Bees and Pollination. In New Zealand Pest and 

Beneficial Insects, pp. 247-270 Ed, R R Scott. Christchurch: Lincoln University 

College of Agriculture. 

Donovan B J, Wier S S. 1978. Development of hives for field population increase, and 

studies on the life cycles of the four species of introduced bumble bees in New 

Zealand. New Zealand Journal of Agricultural Research 21: 733-756. 

Dramstad W, Fry G. 1995. Foraging activity of bumblebees (Bombus) in relation to flower 

. resources on arable land. Agriculture, Ecosystems & Environment 53: 123-135. 

Dramstad W E. 1996a. Do bumblebees really forage close to their nests? Journal of Insect 

Behaviour 9: 171-190. 

Dramstad W E. 1996b. The landscape ecology of bumble bees: Importance of the spatial 

distribution of resources, Ph.D. thesis, The Agricultural University of Norway, As. 

213 pp. 

Engels W, Schulz U, Radle M. 1994. Use of the Ttibingen mix for bee pasture in 

Germany. In Foragefor bees in an agricultural landscape, pp. 57-65 Ed, A 

Matheson. Cardiff: International Bee Research Association. 

Erdtman G. 1943. An introduction to pollen analysis. Waltham, Massachussetts, USA: 

Chronica Botanica Company. 240 pp. 

Faegri K, van der Pijl L. 1979. The principles of pollination ecology. Oxford: Pergamon 

Press. 244 pp. 

Fairey D T. 1993. Pollination and Seed Set in Herbage Species: A Review of Limiting 

Factors. Journal of Applied Seed Production 11: 6-12. 

97 



Forster I W, Hadfield W V. 1958. Effectiveness of honey bees and bumble bees in the 

pollination of Montgomery red clover. New Zealand Journal of Agricultural 

Research 1: 607-619. 

Free J B. 1959. The effect of moving colonies of honeybees to new sites on their 

subsequent foraging behaviour. Journal of Agricultural Science 53: 1-9. 

Free J B. 1970. The flower constancy of bumblebees. Journal of Animal Ecology 39: 395-

402. 

Free J B. 1993. Insect Pollination of Crops. London: Academic Press Ltd. 684 pp. 

Free J B, Butler C G. 1959. Bumblebees. London: Collins. 208 pp. 

Free J B, Free N W, Jay S C. 1960. The effect on foraging behaviour of moving colonies 

to crops before or after flowering has begun. Journal of Economic Entomology 53: 

564-566. 

Free J B, Williams I H. 1972. The transport of pollen on the body hairs of honeybees (Apis 

Mellifera L.) and bumblebees (Bomb us spp. L.). Journal of Applied Ecology 9: 

609-615. 

Free J B, Williams I H. 1974. Influence of the location of honeybee colonies on their 

choice of pollen sources. Journal of Applied Ecology 11: 925-935. 

Frison T H. 1926. Experiments in attracting queen bumblebees to artificial domiciles. 

Journal of Economic Entomology 19: 149-155. 

Fry G L A. 1989. Conservation in Agricultural Ecosystems. The Scientific Management of 

Temperate Communities for Conservation; the 31st Symposium of the British 

Ecological Society, Southhampton, England, pp. 415-443. 

Fussell M. 1992. Diurnal patterns of bee activity, flowering, and nectar reward per flower 

in tetraploid red clover. New Zealand Journal of Agricultural Research 35: 151-

156. 

Fussell M, Corbet SA. 1992a. Flower usage by bumble-bees: A basis for forage plant 

management. Journal of Applied Ecology 29: 451-465 . 

. Fussell M, Corbet S A. 1992b. The nesting places of some British bumblebees. Journal of 

Apicultural Research 31: 32-41. 

Fye R E, Medler J T. 1954. Field domiciles for bumblebees. Journal of Economic 

Entomology 47: 672-676. 

Gary N E, Witherell P C, Marston J. 1972 .. Foraging range ahddistribution of honey bees 

used for carrot and onion pollination. Environmental Entomology 1: 71-78. 

98 



Griffiths D, Robberts E J. 1996. Bumble bees as pollinators of glasshouse crops. In 

Bumble beesJor pleasure and profit, pp. 33-39 Ed, A Matheson. London: 

International Bee Research Association. 

Gurr L. 1957a. Bumble bee species present in the South Island of New Zealand. New 

Zealand Journal oj Science and Technology A 38: 997-1001. 

Gurr L. 1957b. Seasonal availability of food and its influence on the abundance of 

bumblebees in the South Island of New Zealand. New Zealand Journal of Science 

and Technology (AJ 38: 867-870. 

Gurr L. 1961. The pollination of red clover and lucerne in New Zealand. Proceedings oj 

the New Zealand Society oj Animal Production 21: 166-173. 

Gurr L. 1974. The role of bumble bees as pollinators of red clover and lucerne in New 

Zealand: A review and prospect. Proceedings oj the NZ Grassland Association 36: 

111-122. 

Harder L D. 1982. Measurement and estimation of functional proboscis length in bumble 

bees (Hymenoptera: Apoidea). Canadian Journal oJZoology 60: 1073-1079. 

Harder L D. 1986. Influences on the denisty and dispersion of bumble bee nests 

(Hymenoptera: Apidae). Holarctic Ecology 9: 99-103. 

Hawkins R P. 1956. A preliminary survey of red clover seed production. Annals oj Applied 

Biology 44: 657-664. 

Heinrich B. 1975. Energetics of Pollination. Annual Review oj Ecology & Systematics 6: 

139-170. 

Heinrich B. 1976. The foraging specializations of individual bumblebees. Ecological 

Monographs 46: 105-128. 

Heinrich B. 1979a. Bumblebee economics. Cambridge, Massachusetts and London, 

England: Harvard University Press. 247 pp. 

Heinrich B. 1979b. Resource heterogeneity and and patterns of movement in foraging 

bumblebees. Oecologica 40: 235-245. 

Heinrich B. 1983a. Do bumblebees forage optimally, and does it matter? American 

Zoology 23: 273-281. 

Heinrich B. 1983b. Insect foraging energetics. In Handbook oj Experimental Pollination 

Biology, pp. 187-214 Eds, C E Jones & R J Little. New York: Van Nostrand 

Rheinhold. 

99 



Herrera C M. 1989. Pollinator abundance, morphology, and flower visitation rate: analysis 

of the "quantity" component in a plant-pollinator system. Oecologia 80: 241-248. 

Hickman J M, Wratten S D. 1996. Use of Phacelia tanacetifolia (Hydrophyllaceae) as a 

pollen resource to enhance hover fly (Diptera: Syrphidae) populations in cereal 

fields. Journal of Economic Entomology 89: 832-840. 

Hobbs G A, Nummi W 0, Virostek J F. 1961. Food-gathering behaviour of honey, bumble 

and leaf-cutter bees (Hymenoptera: Apoidea) in Alberta. Canadian Entomologist 

93: 409-4 19. 

Hobbs G A, Nummi W 0, Virostek J F. 1962. Managing colonies of bumble bees 

(Hymenoptera: Apidae) for pollination purposes. Canadian Entomologist 94: 1121-

1132. 

Hobbs G A, Virostek J F, Nummi W 0. 1960. Establishment of Bombus spp 

(Hymenoptera: Apidae) in artificial domiciles in southern Alberta. Canadian 

Entomologist 92: 868-872. 

Holling C S. 1959. The components of predation as revealed by a study of small mammal 

predation of the European sawfly. Canadian Entomologist 91: 293-320. 

Holm S N. 1960. Experiments on the domestication of bumble bees (Bombus Latr.) in 

particular Bombus lapidarius L. and B. terrestris L. Arsskr. Kgl. Vet.-landbh¢jsk. 

1960: 1-19. 

Holm S N. 1966. The utilization and management of bumble bees for red clover and 

alfalfa seed production. Annual Review of Entomology 11: 155-182. 

Ingvarsson PC, Lundberg S. 1995. Pollinator functional response and plant pollination 

dynamics: Pollinators as a limiting resource. Evolutionary Ecology 9: 421-428. 

Inouye D W, Gill D E, Dudash M R, Fenster C B. 1994. A model and lexicon for pollen 

fate. American Journal of Botany 81: 1517-1530. 

Jennersten 0, Berg L, Lehman C. 1988. Phenological differences in pollinator visitation, 

pollen deposition and seed set in the sticky catchfly, Viscaria vulgaris. Journal of 

Ecology 76: 1111-1132. 

Jennersten 0, Caman S, Moller A P, Robertson J, Widen B. 1992. Agricultural habitat 

islands. In The ecological principles of nature conservation:applications in 

temperate and boreal environments, pp. 394-424 Ed, L Hansson. New York: 

Elsevier Science Publishers. 

100 



Kearns C A, Inouye D W. 1993. Techniquesfor Pollination Biologists. Colorado: 

University Press of Colorado. 583 pp. 

Kearns C A, Inouye D W. 1997. Pollinators, flowering plants, and conservation biology. 

BioScience 47: 297-307. 

Kennet C. 1995. Molecular study of genetic variation in bumble bees (Bomb us terrestris), 

BSc Hons dissertation, Lincoln University, Christchurch. 65 pp.-

Kevan P G, Baker H G. 1983. Insects as flower visitors and pollinators. Annual Review of 

Entomology 28: 407-53. 

Kevan P G, Clark E A, Vernon G T. 1990. Insect pollinators and sustainable agriculture. 

American Journal of Alternative Agriculture 5: 13-21. 

Kevan P G, LaBerge W E. 1979. Demise and recovery of native pollinator popUlations 

through pesticide use and some economic implications. Proceedings of the 4th 

International Symposium on Pollination, pp .. 

Krebs C J. 1994. Ecology: The experimental analysis of distribution and abundance. New 

York: HarperCollins College Publishers. 801 pp. 

Kwak M M. 1987. Marking a bumblebee without anaesthesia. Bee World 68: 180-181. 

Kwak M M, van den Brand C, Kremer P, Boerrigter E. 1991. Visitation, flight distances 

and seed set in populations of the rare species Phyteuma nigrum (Campanulaceae). 

Acta Horticulturae 288: 303-307. 

La Salle J, Gauld I D. 1993. Hymenoptera and Biodiversity. Wallingford: CAB 

International. 348 pp. 

LagerlOf J, Stark J, Svensson B. 1992. Margins of agricultural fields as habitats for 

pollinating insects. Agriculture, Ecosystems and Environment 40: 117-124. 

Lamont B B, Klinkhamer G L, Witkowski EFT. 1993. Population fragmentation may 

reduce fertility to zero in Banksia goodii - a demonstration of the Allee effect. 

Oecologia 94: 446-450. 

Lecomte J, Pouvreau A. 1968. Study with radioactive gold198Au, of the foraging range of 

bumble-bee colonies (Bomb us sp.) in relation to the pollination of cultivated plants. 

In Isotopes and radiation in entomology, pp. 17-21. Vienna: International Atomic 

Energy Agency. 

Levin D A, Kerster H W. 1974. Gene flow in seed plants. In Evolutionary Biology, pp. 

139-220 Eds, T Dobzhansky, M K Hecht & W C Steere. New York: Plenum Press. 

101 



Macfarlane R P, Griffin R P. 1985. An assessment of bumble bees and honey bees as 

pollinators of red clover. Australasian Conference on Grassland Invertebrate 

Ecology 4: 114-119. 

Macfarlane R P, Griffin R P, Read P E C. 1983. Bumble bee management options to 

improve "Grassland Pawera" red clover seed yields. Proceedings of the NZ 

Grassland Association 44: 47-53. 

Macfarlane R P, Gurr L. 1995. Distribution of bumble bees in New Zealand. New Zealand 

Entomologist 18: 29-36. 

Macfarlane R P, Patten K D. 1997. Food sources in the mangement of bumble bee 

populations around cranberry marshes. Proceedings of the 7th International 

Symposium on Pollination, Alberta, Canada, pp. 239-244. 

Macfarlane R P, Patten K D, Mayer D F, Shanks C H. 1994. Evaluation of commercial 

bumble bee colonies for cranberry pollination. Melanderia 50: 13-19. 

Macfarlane R P, van den Ende H J, Griffin R P. 1991. Pollination needs of 'Grasslands 

Pawera' red clover. The Sixth International Symposium on Pollination, Tilburg, 

The Netherlands, pp. 399-404. 

Marden J. 1984. Remote perception of floral nectar by bumblebees. Oecologia 64: 232-

240. 

McGregor S E. 1976. Insect pollination of cultivated crop plants. Washington DC: United 

States Department of Agriculture, Agricultural Research Service. 

Meade D E. 1991. Effective foraging ranges of feral colonies. American Bee Journal 131: 

778. 

Michaelsonyeates T P T, Marshall A H, Williams I H, Carreck N L, Simpkins J R. 1997. 

The use of isoenzyme markers to determine pollen flow and seed paternity 

mediated by Apis mellifera and Bombus spp. in Trifolium repens, a self-

incompatible plant species. Journal of Apicultural Research 36: 57-62. 

Ohashi K, Yahara T. 1998. Effects of variation in flower number on pollinator visits in 

Cirsium purpuratum (Asteraceae). American Journal of Botany 85: 219-224. 

Osborne J L. 1994. Evaluating a pollination system: Borago officinalis and bees, Ph.D. 

thesis, Cambridge, Cambridge University. 421 pp. 

Osborne J L, Williams I H, Carreck N L, Poppy G M, Riley J R, Smith A D, Reynolds D R, 

Edwards A S. 1997. Harmonic radar: A new technique for investigating bumble 

102 



bee and honey bee foraging flight. Proceedings of the 7th International Symposium 

on Pollination, Alberta, pp. 159-163. 

Osborne J L, Williams I H, Corbet SA. 1991. Bees, pollination and habitat change in the 

European community. Bee World 72: 99-113. 

O'Toole C. 1993. Diversity of native bees and agroecosystems. In Hymenoptera and 

Biodiversity, pp. 169-196 Eds, J La Salle & I D Gauld. Wallingford: CAB 

International. 

Palmer-Jones T, Forster I W, Clinch P G. 1966. Observations on the pollination of 

Montgomery Red Clover (Trifolium pratense L.). New Zealand Journal of 

Agricultural Reesearch 9: 738-747. 

Parker F D, Batra S W T, Tepedino V J. 1987. New pollinators for our crops. Agricultural 

Zoology Review 2: 279-304. 

Paton D C. 1993. Honeybees in the Australian environment; does Apis mellifera disrupt or 

benefit the native biota? BioScience 43: 95-103. 

Patten K D, Shanks C H, Mayer D F. 1993. Evaluation of herbaceous plants for 

attractiveness to bumble bees for use near cranberry farms. Journal of Apicultural 

Research 32: 73-79. 

Plowright C M S, O'Connel C E, Roberst L J, Reid S L. 1995. The use of proximal and 

distal cues in nest entrance recognition by bumble bees. Journal of Apicultural 

Research 34: 57-64. 

Plowright C M S, Plowright R C. 1997. The advantage of short tongues in bumble bees 

(Bombus) - Analyses of species distributions according to flower corolla depth, and 

of working speeds on white clover. Canadian Entomologist 129: 51-59. 

Plowright R C, Hartling L K. 1981. Red clover pollination by bumble bees: A study of the 

dynamics of a plant-pollinator relationship. Journal of Applied Ecology 18: 639-

647. 

Plowright R C, Laverty T M. 1984. The ecology and sociobiology of bumblebees. Annual 

Review of Entomology 29: 175-179. 

Plowright R C, Thaler G R. 1979. The effect of biocides on forest pollination in New 

Brunswick. Proceedings of the 4th International Symposium on Pollination, pp. 

483-86. 

Pomeroy N. 1981. Use of natural field sites and field hives by a long-tongued bumble bee 

Bombus ruderatus. New Zealand Journal of Agricultural Research 24: 409-414. 

103 



Prys-Jones 0 E, Corbet SA. 1987. Bumblebees. Cambridge: Cambridge University Press. 

86pp. 

Ranta E. 1983. Foraging differences in bumblebees (Bombus). Annales Entomologica 

Fennica 49: 17-22. 

Rasheed S A, Harder L D. 1997. Economic motivation for plant species preference of 

pollen-collecting bumble bees. Ecological Entomology 22: 209-219. 

Rathcke B. 1983. Competition and facilitation among plants for pollination. In Pollination 

biology, pp. 305-329 Ed, L Real. Orlando: Academic Press, Inc. 

Rathcke B 1. 1992. Nectar distFibutions, pollinator behaviour, and plant reproductive 

success. In Effects of Resource Distribution on Animal-Plant Interactions, pp. 113-

138 Eds, M D Hunter, 0 Ohgushi & P W Price. San Diego: Academic Press, Inc. 

Rathcke B J, Jules E S. 1993. Habitat fragmentations and plant-pollinator interactions. 

Current Science 65: 273-277. 

Rau P. 1924. Notes on captive colonies and homing of Bombus pennsylvanicus de Geer. 

Annals of the Entomological Society of America 17: 368-381. 

Read P E C, Donovan B J, Griffin R P. 1989. Use of bumble bees, Bombus terrestris, as 

pollinators of kiwifruit and lucerne in New Zealand. New Zealand Entomologist 12: 

19-23. 

Real L. 1983. Microbehavior and macrostructure in plant-pollinator interactions. In 

Pollination biology, pp. 287-304 Ed, L Real. Orlando: Academic Press, Inc. 

Richards K W. 1978. Nest site selection by bumble bees (Hymenoptera: Apidae) in 

southern Alberta. Canadian Entomologist 110: 301-318. 

Richards K W, Myers T W. 1997. Commercially managed colonies of bumble bees for 

pollination of cicer milkvetch. Proceedings of the 7th International Symposium on 

Pollination, Alberta, pp. 293-297. 

Riley J R, Smith A D, Reynolds D R, Edwards A S, Osborne J L, Williams I H, Carreck N 

L, Poppy G M. 1996. Tracking bees with harmonic radar. Nature 379: 29-30. 

Root R B. 1973. Organization of a plant-arthropod association in simple and diverse 

habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43: 95-

124. 

Roubik D W. 1982. The ecological impact of nectar-robbing bees and pollinating 

hummingbirds on a tropical shrub. Ecology 63: 354-360. 

104 



Roubik D W. 1989. Ecology and natural history of tropical bees. Cambridge: Cambridge 

University Press. 514 pp. 

Saville N M. 1993. Bumblebee ecology in woodlands and arable farmland, Ph.D. thesis, 

Cambridge University, Cambridge. 331 pp. 

Saville N M, Dramstad W E, Fry G L A, Corbet S A. 1996. Bumble bee movement in a 

fragmented agricultural landscape. Agriculture Ecosystems & Environment 61: 145. 

Sawyer R. 1981. Pollen Identification for Beekeepers. Wales: CSP Printing of Cardiff. 

111 pp. 

Schaffer M J. 1997. Spatial aspects of bumble bee (Bombus spp.: Apidae) foraging in farm 

landscapes, M. Appl. Sc. thesis, Lincoln University, Christchurch. 155 pp. 

Schmid-Hempel P, Durrer S. 1991. Parasites, floral resources and reporduction in natural 

populations of bumble bees. Oikos 62: 342-350. 

Schneider S S, McNally L C. 1993. Spatial foraging patterns of the African honey bee, 

Apis mellifera scutella. Journal of Insect Behaviour 2: 505-521. 

Shelly T E, Buchmann S L, Villalobos EM, O'Rourke M K. 1991. Colony ergonomics for 

a desert-dwelling bumblebee species (Hymenoptera: Apidae). Ecological 

Entomology 16: 361-370. 

Sih A, Baltus M S. 1987. Patch size, pollinator behaviour, and pollinator limitation in 

catnip. Ecology 68: 1679-1690. 

Skovgaard 0 S. 1952. Foraging rates of honeybees and bumble bees when pollinating red 

clover. Tidsskriftfor Planteavl55: 449-475. 

Sladen F W L. 1912. The humble-bee: its life history and how to domesticate it. London, 

UK: MacMillan. 283 pp. 

Spencer-Booth Y. 1965. The collection of pollen by bumblebees and its transport in the 

corbiculae and the proboscidal fossa. Journal of Apicultural Research 4: 185-190. 

Synge AD. 1947. Pollen collection by honeybees (Apis mellifera). Journal of Animal 

Ecology 16: 122-138. 

Thomson G M. 1922. The Naturalisation of Animals and Plants in New Zealand. London: 

Cambridge University Press. 607 pp. 

Thomson J D. 1982. Patterns of visitation by animal pollinators. Oikos 39: 241-250. 

Thomson J D, Peterson S C, Harder L D. 1988. Response of traplining bumble bees to 

competition experiments: shifts in feeding location and efficiency. Oecologia 71: 

295-300. 

105 



Torchio P F. 1987. Diversification of pollination strategies for US crops. Environmental 

Entomology 19: 1649-1656. 

van Doorn A. 1993. Bumblebees breaking through as crop pollinators. Proceedings of the 

International Symposium on Pollination in the tropics, Bangalore, India, pp. 195-

196. 

Visscher P K, Seeley T D. 1982. Foraging strategy of honeybee colonies in a temperate 

deciduous forest. Ecology 63: 1790-1801. 

Waddington K D. 1983. Floral-visitation-sequences by bees; models and experiments. In 

Handbook of experimental pollination biology, pp. 461-473 Eds, C E Jones & J R 

Little. New York: Van Nostrand Reinhold. 

Waddington K D, Visscher P K, Herbert T J, Richter M R. 1994. Comparisons of forager 

distributions from matched honey bee colonies in suburban envrionments. 

Behavioral Ecology and Sociobiology 35: 423-429. 

Waser N M. 1983. Competition for pollination and floral character differences among 

sympatric plant species: A review of evidence. In Handbook of experimental 

pollination biology, pp. 277-293 Eds, C E Jones & R J Little. New York: Van 

Nostrand Reinhold Company Inc. 

Waser N M, Real LA. 1979. Effective mutualism between sequentially flowering plant 

species. Nature 281: 670-672. 

Wenner A M, Meade D E, Friesen L J. 1991. Recruitment, search behavior, and flight 

ranges of honey bees. American Zoology 31: 769-782. 

Westrich P. 1996. Habitat requirements of central European bees and the problems of 

partial habitats. In The conservation of bees, pp. 1-16 Eds, A Matheson, S L 

Buchmann, C O'Toole, P Westrich & I H Williams. London: Linnean Society of 

London and the International Bee Research Association. 

Whidden T L. 1996. The fidelity of commercially reared colonies of Bombus Impatiens 

Cresson (Hymenoptera: Apidae) to lowbush blueberry in Southern New Brunswick. 

Canadian Entomologist 128: 957-958. 

Williams C S. 1997. Nectar secretion rates, standing crops and flower choice by bees on 

Phacelia tanacetifolia. Journal of Apicultural Research 36: 23-32. 

Williams I H, Carreck N L. 1994. Land use changes and honey bee forage plants. In 

Foragefor bees in an agricultural landscape, pp. 7-20 Ed, A Matheson. Cardiff: 

International Bee Research Association. 

106 



Williams I H, Christian D G. 1991. Observations on Phacelia tanacetifolia Bentham 

(Hydrophyllaceae) as a food plant for honey bees and bumble bees. Journal of 

Apicultural Research 30: 3-12. 

Williams I H, Corbet S A, Osborne J L. 1991. Beekeeping, wild bees and pollination in the 

European Community. Bee World 72: 170-185. 

Williams P H. 1982. The distribution and decline of British bumble bees (Bornbus Latr.). 

Journal of Apicultural Research 21: 236-245. 

Williams P H. 1986. Environmental change and the distributions of British bumble bees 

(Bomb us Latr.). Bee World 67: 50-61. 

Williams PH. 1989. Bumblebees and their decline in Britain, The Central Association of 

Beekeepers, liford, Essex, pp 1-15. 

Woodward D R. 1990. Food demand for colony development, crop preference and food 

availability for Bombus terrestris L. (Hymenoptera: Apidae), Ph.D. thesis, Massey 

University, Palmerston North. 242 pp. 

Wratten S D, van Emden H F. 1995. Habitat management for enhanced activity of natural 

enemies of insect pests. In Ecology and Intergrated Farming Systems, pp. 117-145 

Eds, D M Glen, M P Greaves & H M Anderson. Chichester, U.K.: John Wiley and 

Sons. 

Zar J H. 1984. Biostatistical Analysis. New Jersey: Prentice-Hall, Inc. 718 pp. 

107 



APPENDICES 

Appendix 3.1. 

Video recordings of B. hortorum nests 

Nest Date Time (NZ summer time) 

2 28/1/97 7:13-14:48 

2 29/1/97 16:00-17:26 

2 14/2/97 7:00-18:30 

2 18/2/97 7:04-21:00 

2 27/2/97 12:45-16:45 

4 12/3/97 7:01-20:42 
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Appendix 3.2. 
~'- - ... , ..:. ~ 

Corbiculae pollen samples collected from B. hortorum foragers 

Nest Date * Time (NZ summer time) Number of sam121es 

1 20/1/97 10:20-11 :20 3 

2 21/1/97 15:00-16:00 6 

.'. ---_._,- 2 23/1/97 15:20-16:20 1 
'- . '-" ~--- 2 26/1/97 15:10-16:00 6 .... ,.~---~- ..... , 

1 27/1/97 10:20-11 :20 3 

2 30/1/97 15:45-16:45 5 

2 31/1/97 15:15-16:05 6 

1 112/97 10:05-11 :05 5 

2 6/2/97 14:20-14:48 6 

1 7/2/97 10:20-11:18 2 

2 8/2/97 15:20-16: 15 6 

2 10/2/97 14:05-14:45 6 

2 13/2/97 14:13-15:10 5 

1 14/2/97 10:30-11 :32 1 

2 17/2/97 14:05-15:01 6 

2 19/2/97 14:25-15:25 5 

4 20/2/97 10:30-11:20 6 
.. 4 25/2/97 10:00-11 :00 5 

4 26/2/97 10:05-10:44 6 

2 26/2/97 14:15-15:03 6 

2 28/2/97 14:05-15:05 3 

3 3/3/97 15:03-15:55 1 

3 9/3/97 14:00-15:00 2 

4 10/3/97 10:25-11 :25 4 

* Does not include occasions where sampling was attempted but no pollen 
collectors were caught 
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Appendix 3.3. 

Pollen types identified from corbiculae loads of B. hortorum 

Carduus spp. 

Convulvulaceae 

Cucurbitacece 

Ericaceae 

Eucalyptus spp. 

Honeysuckle (Lonicera periclymenum L.) 

Mallow (Malva sylvestris L.) 

Red clover (Trifolium pratense L.) 

Rosaceae 

Unidentifiable type 

White clover (Trifolium repens L.) 
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