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ABSTRACT 

 

 
New Zealand ecologists and wildlife managers have assumed traditionally that threatened 

insular endemic bird species are less susceptible to the predicted genetic consequences of 

declines and inbreeding. Conservation has relied on treating deterministic extinction pres-

sures to trigger population recoveries, with few measures taken to minimise stochastic ge-

netic threats to long-term viability. This study tested that assumption empirically by exam-

ining extinction vulnerability in two small, critically threatened Chatham Island black 

robin populations protected from external threats on habitat-restricted islands but not man-

aged purposefully for genetic health. Analysis of the factors eliminating the species’s 

original island populations indicated loss through habitat change and mammalian predation 

within perhaps no more than two to three decades of human contact. Loss was undoubtedly 

hastened by intrinsic extinction-proneness (low reproductive output, forest-interior prefer-

ence, sensitivity to habitat quality, intolerance of open spaces), greater in black robins than 

in other Petroica species in New Zealand and Australia. Low productivity in ancestral sur-

vivors prevented spontaneous recovery after translocation to better habitat, requiring inten-

sively assisted breeding to raise population sizes quickly. Strong growth in response to 

management did not suggest a moribund species but post-management growth rates were 

significantly slower. Analysis of demographic data from 1980-81 to 2001-02 showed 

breeding effort to be comparable in all populations but breeding failures of varying sever-

ity at different life-history stages affected natural recovery in each. The worst affected suf-

fered from briefer adult life-spans and more severe failure late in the breeding cycle. Gen-

erally colder sub-canopy air temperatures suggested adverse environmental pressure on 

this population. Extant populations are highly inbred and severely depleted genetically fol-

lowing successive bottlenecks (prolonged historically) and recovery from a single-pair 
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event between 1979-80 and 1982-83. At current small sizes, accumulating levels of relat-

edness are anomalously high. Contrary to perceptions that black robin recovery indicates 

normal fitness, viability was shown to be threatened by inbreeding depression expressed 

cumulatively in the breeding cycle as low juvenile production and survival, thus aggravat-

ing a principal vulnerability. Declines did not result during the study period and effects 

were limited to reproductive fitness costs in black robin fathers only. There was no evi-

dence of harmful effects on survival probability or from maternal inbreeding but an emerg-

ing kinship effect on yearling production is possible. The restricted costs in such highly 

inbred populations (relative to less inbred congeners) suggest historical purging of genetic 

load. Work is needed to clarify this and the extent to which inbreeding could reduce re-

sponses to new extinction pressures. Recent population declines may elevate levels of in-

breeding further. Genetic management is strongly recommended, including habitat expan-

sion to maximise population sizes and prevent further cross-breeding with a sympatric 

congener. Management and monitoring recommendations apply valuable lessons derived 

from a critique of past practices. In summary, findings give qualified support to the hy-

pothesis of reduced susceptibility to inbreeding depression in threatened insular endemic 

birds. Findings do not support the assumption implicit in black robin management histori-

cally and in New Zealand wildlife management practice generally that stochastic genetic 

threats are unimportant risks to viability. 
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CHAPTER ONE 

RESEARCH THEMES 

 

 

 

1.0 Research overview 

 
It is an assumption implicit in New Zealand wildlife management practice that the pre-

dicted genetic consequences of unnaturally small population sizes (loss of genetic diversity 

and inbreeding depression; Amos and Balmford, 2001, Frankham, 2005) are unimportant 

to the recovery and on-going viability of threatened insular endemic bird populations. In 

conservation practice, the assumption is inherent in a century-long tradition of addressing 

the immediate deterministic causes of decline—principally introduced mammalian preda-

tors and habitat deterioration (Clout, 2001; Saunders and Norton, 2001; Wilson, 2004, 

2008)—with few, if any, measures taken to anticipate or minimise potential genetic threats 

to population persistence (Jamieson et al., 2006, 2008; Groombridge, 2007).  

 

The safety of this assumption has important theoretical and management implications for 

the crucial task of safeguarding threatened species from total extinction. It contradicts 

seminal genetic principles of conservation biology and lies at the heart of an on-going de-

bate between conservation ecologists and geneticists over the relative importance of ge-

netic malfunction as an extinction-inducing factor (Frankham, 2005; Jamieson, 2007a, b). 

If applied uncritically in the management of unnaturally small insular or fragmented 

mainland populations, the assumption may result in the failure to treat genetic factors ca-

pable of compromising recovery, responsiveness to new threats or long-term persistence, 

even if external and other stochastic threats have been addressed (Frankham et al., 2002).  

 

A small but growing body of New Zealand studies suggests that the New Zealand assump-

tion of negligible genetic risk is not universally valid for the conservation of threatened 

island endemic birds (Jamieson, 2009). For both theoretical and management reasons, fur-

ther empirical testing of predicted risks has been called for in free-ranging species gener-

ally (Caughley, 1994; Amos and Balmford, 2001), insular species specifically (Frankham, 

1998; Elgar and Clode, 2001), and especially insofar as inbreeding depression may affect 

small population recovery and viability once other threats have been controlled, as is the 
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case for many insular endemic birds under watch or management in this country (Jamieson 

et al., 2006; Jamieson, 2007b).  

 

The research reported in this thesis addresses the need for empirical testing by analysing 

extinction vulnerability in two small, geographically isolated populations of Chatham Is-

land black robin Petroica traversi, a species whose dramatic recovery from the point of 

imminent extinction (Merton, 1990, 1992; Butler and Merton, 1992) features prominently 

in modern conservation lore and in the extinction literature of conservation biology.  

 

The black robin is a small, island-dwelling member of the Australasian robins and is en-

demic to the Chatham Island archipelago (situated 802 km east of Banks Peninsula, New 

Zealand; Figure 1.1). It is a typical constituent of the New Zealand terrestrial avifauna, 

87% of which is endemic to the New Zealand region (Wilson, 2004). Like the black robin, 

the vast majority of New Zealand’s terrestrial birds are insular species by virtue of persis-

tence on 700 or so outlying islands or in habitat fragments on the three major landmasses 

(Bell, 1991; Craig, 1991). The black robins inhabit regenerating forest remnants on Man-

gere Island (113 ha) and Rangatira Island (218 ha), two small outliers at the southern ex-

tremity of the species’s natural range in the archipelago (Chapter Two: Figures 2.3 and 

2.4). Both populations, one descended from the other, originate from two survivors of the 

species’s tiny relict population (now extinct) on Little Mangere Island (8-9 ha). Despite 

removal from immediate extinction threats, the black robin is classified by New Zealand’s 

Department of Conservation (DOC) as ‘nationally critical’—the severest level of endan-

germent—because of its critically low numbers (≤ 150 adults, Massaro and Briskie, 2009; 

Harvey, 2009) and confinement to a fraction of its original pre-human range. The black 

robin’s experience of range contractions, decline and small vestigial population sizes (con-

strained by limits on available habitat) make it a suitable analogue for threatened island 

endemic birds in New Zealand and world-wide. 

 

1.1 Conservation genetics and extinction vulnerability in insular endemic birds 

 
Defining and treating the factors which threaten wildlife populations with extinction are 

the driving mandates of conservation biology (Soulé, 1986; Caughley, 1994; Frankham et 

al., 2002). In the main, conservation biologists agree on a number of fundamental extinc-

tion principles: 
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Figure 1.1 The Chatham Islands archipelago in relation to New Zealand, showing 

the black robin habitats referred to in this thesis (Chatham, Pitt, Ranga-
tira, Mangere and Little Mangere Islands). 
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1. Deterministic pressures arising directly or indirectly from human activities 

(habitat loss, degradation and fragmentation, introduced predators, and over-

harvesting) combine with stochastic environmental, demographic and genetic 

threats to increase extinction probability (Hedrick et al., 1996; Jamieson, 2009).  

2. Deterministic factors are the primary drivers of extinction processes (Soulé and 

Mills, 1998; Lande, 1999) and are rightfully the first priority for treatment be-

cause they can eliminate populations outright and quickly (Shaffer, 1981; 

Caughley, 1994).  

3. Contractions in size erode the inherent ability of populations to cope with envi-

ronmental stresses, demographic bad luck and genetic impairment—interacting 

stochastic pressures which amplify as numbers decrease (Caughley, 1994). Gil-

pin and Soulé’s (1986) eloquent concept of the extinction vortex illustrates the 

destructive, mutually compounding feedback loops between deterministic and 

stochastic pressures which reduce population sizes further.  

4. Even if deterministic threats are relieved or removed, adverse chance events 

may convey reduced populations to extinction in the short-term or may persist as 

threats to long-term viability (Hedrick et al., 1996; Frankham, 1997; Frankham 

et al., 2002).  

 

Of all such pressures, the role of stochastic genetic processes in elevating extinction risk 

remains the least quantified and most debated, despite the prominence of conservation ge-

netics in the evolution of conservation biology thinking (Dobson, 1999).  

 

Conservation genetic theory anticipates that small populations of naturally outbred species 

will suffer two distinct forms of genetic compromise whose interacting effects increase 

extinction risk (Keller and Waller, 2002; Frankham, 1995, 2005). Genetic variability will 

be lost as the random processes of genetic drift act more aggressively in a diminishing pool 

of individuals to remove alleles from populations. The odds become greater as numbers 

fall that detrimental alleles will become fixed in all survivors. Bottlenecks, founder events 

and prolonged downward fluctuations in numbers increase the probability of allelic loss. 

Geographic or behavioural isolation will deny impoverished populations vital sources of 

genetic replenishment. Depletion rates are expected to be dictated by the severity of popu-
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lation decline and the number of generations over which a population is held at low num-

bers (Amos and Balmford, 2001). Loss of genetic diversity jeopardises the prospects of 

long-term persistence by weakening responsiveness to selection pressures and the potential 

to adapt to new environmental challenges (Wallis, 1994; Frankham et al., 2002). 

 

In contrast, increased rates of inbreeding, inevitable in reduced and isolated populations, 

lead to greater expression of homozygous semi-lethal recessive alleles in inbred individu-

als, reducing their fitness relative to non- or less inbred individuals (Hedrick and Kali-

nowski, 2000). Typically, inbreeding depression in naturally outbred species is expressed 

in compromised vigour, reproductive performance and survival (Frankham, 1998). Its se-

verity is related primarily to the extent and duration of population decrease, and its effects 

may be felt quickly, within a few generations after population decline (Amos and Balm-

ford, 2001). For this reason, inbreeding depression is regarded as the more immediate and 

potent genetic threat to population persistence (Keller and Waller, 2002; Jamieson et al., 

2008). Because loss of genetic variation and inbreeding depression are both negatively cor-

related with population size, they operate together (albeit over different timescales; 

Jamieson et al., 2008), and are likely to be mutually reinforcing as threats to fitness at 

population and individual scales respectively (Frankham et al., 2002).  

 

The magnitude of extinction risk posed by these stochastic genetic processes—especially 

the more immediate threat of inbreeding depression—has been a controversial element in 

conservation biology debates (O’Grady et al., 2006; Jamieson, 2007a, b). Early sceptics 

argued that inbreeding depression had not caused any known wild population to decline 

(Lande, 1988); that genetic malfunction alone had not been shown to have eliminated a 

species in the wild (Caughley, 1994); and that the more slowly realised costs of genetic 

impairment would not have time to threaten small populations in the wild before chance 

demographic and environmental events eliminated them (Lande, 1988, Caro and 

Laurenson, 1994; Craig, 1994). In New Zealand, Wallis (1994) was more circumspect, 

concluding that genetic threats were only a concern if gene pools were severely restricted, 

as was the case for many New Zealand birds. Otherwise, Wallis argued, demographic ad-

versity was a greater threat. 

 

In response to sceptics, geneticists have amassed theoretical, stochastic-modelling and em-

pirical studies to support their contentions. Their studies offer evidence that reduced popu-
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lations of naturally outbreeding species commonly experience inbreeding depression in the 

wild (Crnokrak and Roff, 1999; Hedrick and Kalinoswki, 2000), and that this can be both 

debilitating (Keller and Waller, 2002; Frankham et al., 2002; Frankham, 2005) and likely 

to shorten time to extinction (Brook et al., 2002; Spielman et al., 2004). Contrary to 

Caughley (1994), the genetic costs of small size were shown by empirical studies to be ca-

pable of eliminating declining populations outright if not reversed by introducing genes 

from less inbred sister populations (for example, Westemeier et al., 1998; Madsen et al., 

1999, 2004). The genetic studies have convinced geneticists that stochastic genetic proc-

esses set in train by population declines will aggravate the effects of other extinction pres-

sures (Soulé and Mills, 1998; Amos and Balmford, 2001; Frankham, 1997, 1998; Frank-

ham et al., 2002; Spielman et al., 2004). Substantial losses of fitness are predicted if popu-

lations decline suddenly. But if recovery is rapid, natural selection is expected to remove 

recessive lethal alleles, reducing the potential for harm (Lande, 1999). Any recovery of 

fitness is likely to be partial only (Frankham et al., 2002). Therefore, any small inbred 

population with positive growth rates is expected to take longer to achieve the size of a 

healthy population and may respond more slowly to set-backs or longer-term changes in its 

environment (Wallis, 1994; Frankham et al., 2002). Because these deleterious effects on 

fitness are stochastic, they are predicted to vary in severity and expression across taxa, 

species, populations and environments (Hedrick and Kalinoswki, 2000; Keller and Waller, 

2002).  

 

Conservation geneticists have long recognised oceanic islands as ideal environments in 

which to validate stochastic genetic threats as realistic extinction risks. Aside from ready 

accessibility as research subjects, populations of insular vertebrates more so than their 

mainland relatives meet the predicted genetic risk criteria of smaller sizes, finite limits to 

growth, genetic structures closed by geographic isolation or limited immigration, and 

higher rates of inbreeding. Moreover, insular populations have usually experienced found-

ing bottlenecks and are likely to have been isolated longer than related mainland popula-

tions (Frankham, 1998). Meta-analyses have shown genetic variability to be lower on av-

erage in insular than in continental species (Frankham, 1997, 1998) and lower in insular 

endemics relative to non-endemics, arguably because times since founding from mainland 

parent populations were longer (Frankham, 1997). Frankham (1998, 2001) also used meta-

analyses to demonstrate that mean levels of inbreeding were higher in insular endemics 
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than in insular non-endemics, and significantly higher in both relative to mainland equiva-

lents.  

 

On this basis, insular endemics are predicted to be amongst the most extinction-prone of 

species for genetic reasons (Frankham et al., 2002). Disproportionate extinction rates 

among island bird species are often invoked to support this contention (Frankham, 1997, 

1998, 2001; Frankham et al., 2002). Studies documenting bird extinctions since 1600 AD 

have reported rates of loss and levels of endangerment among the survivors which are sig-

nificantly greater than the proportion of insular species in the global avifauna (Myers, 

1979; King, 1985a; b; Atkinson, 1989; Reid and Miller, 1989; Johnson and Stattersfield, 

1990; Smith et al., 1993). Rates of loss among insular endemics have been even higher 

(McDowall, 1969; Temple, 1985).  

 

This support for genetic propositions is heavily inferential. It follows the logic that genetic 

factors must be implicated in insular bird extinctions because in general insular species are 

inherently more highly inbred and genetically depauperate. The logic understates the de-

gree to which common evolutionary attributes of island life, such as flightlessness, preda-

tor-naivety, tameness, low reproductive rates, sedentary habits, specialist ecological re-

quirements and restricted distributions (Bell, 1991; Wilson, 2004; Duncan and Blackburn, 

2004), exaggerate extinction vulnerability in insular birds confronted with introduced 

predators, hostile habitat change or other unfamiliar selection pressures. 

 

At their most insistent, conservation geneticists argue that loss of genetic variation and in-

breeding depression are inevitable consequences of population declines. They conclude 

therefore that extinction risk will be underestimated, often radically, if these hidden sto-

chastic threats to population persistence are ignored (Brook et al., 2002; Frankham, 2005). 

These warnings and the weight of argument in genetic propositions are obviously and 

ominously at odds with the assumptions of genetic risk made commonly by managers of 

threatened New Zealand endemic birds. 

 

1.2 The ‘New Zealand cure’ for threats to insular endemic birds 

Conservation biologists are commonly concerned with the pressures driving small popula-

tions towards extinction. In New Zealand, extinction vulnerability is an important consid-
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eration for threatened insular bird populations recovering under conditions in which the 

deterministic pressures of mammalian predation and habitat deterioration have been con-

trolled or eliminated. 

Conventionally, these pervasive threats have been managed in New Zealand by translocat-

ing population survivors to threat-free islands (Craig and Veitch, 1990; Armstrong and 

McLean, 1995), to ‘islands’ of protected mainland habitat (Saunders and Norton, 2001), or 

by managing the threats in situ through pioneering advances in predator control and eco-

logical restoration (Atkinson, 2001). Typically, translocations have been straight-forward 

management exercises paying little regard to theoretical genetic considerations of founder 

sizes, population mixing, the size of island sanctuaries or the post-liberation implications 

of obligatory inbreeding (Armstrong and McLean, 1995). Many translocations have been 

crisis-driven, one of the most notable in 1964 when wildlife managers simply moved what 

they could salvage at the last minute from Big South Cape Island (939 ha) after an irrup-

tion of recently arrived ship rats Rattus rattus. Thirty-six South Island saddlebacks Philes-

turnus carcunculatus carcunculatus were moved to two small islands (21 and 15 individu-

als respectively), and six Stead’s bush wrens Xenicus longipes variabilis were moved (in 

vain) to one island (Nilsson, 1978; Bell, 1978e; Wilson, 2004).  

After dealing with immediate deterministic threats, New Zealand wildlife managers have 

usually relied on spontaneous recovery in small transfer populations to counteract the haz-

ards of environmental and demographic stochasticity they have faced. Less frequently, in-

creases in population sizes have been engineered through active management. Increases in 

the numbers of populations have aimed to minimise the probability of total loss through 

predation or habitat changes (Diamond, 1990). For instance, descendants of the Big South 

Cape saddlebacks were distributed through sequential transfers to a further 18 islands, and 

flourished on 14 ranging in area from 6 to 270 ha (Hooson and Jamieson, 2003, 2004). The 

stochastic processes of genetic deterioration set in train by source-population declines, sin-

gle or serial bottlenecks and elevated rates of inbreeding in populations constrained by 

sanctuary size are commonly neglected after the danger from deterministic threats has 

passed (Armstrong and McLean, 1995; Jamieson et al., 2006, 2008). New Zealand wildlife 

managers have proceeded on the assumption therefore that increasing population numbers 

and the numbers of populations suffices on its own as a strategy to safeguard population 

viability.  
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This assumption defines the so-called ‘common New Zealand cure’ for conserving insular 

endemic bird populations (Groombridge, 2007: 148). The cure’s downplaying of potential 

genetic threats to recovery and persistence is peculiar to New Zealand (Jamieson et al., 

2006, 2008) and at odds with emerging consensus in conservation biology thinking that 

management of genetic threats should be integrated into conservation planning and prac-

tice once deterministic threats have been remedied (Hedrick et al., 1996; Frankham et al., 

2002; Frankham, 2005; Jamieson et al., 2006, 2008; Jamieson, 2009). 

 

The New Zealand cure has received theoretical comfort from the proposition of Craig 

(1991, 1994; reiterated in passing by Craig et al., 2000) that conservation biology’s ortho-

dox models for conserving threatened bird populations are based on predictions of genetic 

risk which may hold for the large, naturally outbred, migratory populations of the conti-

nental northern hemisphere but not for insular terrestrial bird species such as those en-

demic to the New Zealand archipelago. Craig’s (1991, 1994) hypothesis was that New 

Zealand’s insular birds are less susceptible to the effects of inbreeding depression because 

natural populations and relict survivors of habitat loss and mammalian predators have been 

small and genetically isolated for many generations. Many, Craig argued, are behaviour-

ally habituated to high levels of inbreeding through sedentary territorial habits and limited 

dispersal or flightlessness. Thus, the histories and social systems of New Zealand birds are 

expected to have exposed to natural selection the deleterious recessive alleles responsible 

for impaired fitness and viability.  

 

To support this contention, Craig (1991, Table 1; 1994) cited the century-long persistence 

of highly inbred relict populations of New Zealand terrestrial birds at population sizes 

lower than 20 pairs (bellbirds Anthornis melanura melanura on Tiritiri Matangi Island; 

Campbell Island teal Anas nesiotis on subantarctic Dent Island, and—on Little Mangere 

Island—Forbes’ parakeets Cyanoramphus forbesi along with the ancestral black robins. 

Moreover, Craig (1991) noted the lack of any apparent relationship between founder sizes 

and the high proportion (77%) of single and sequential translocations in New Zealand re-

sulting in self-sustaining bird populations, some founded from as few as five individuals 

(for example, South Island robins P. australis on Allports Island and Motuara Island; 

Flack, 1974a; see Taylor et al., 2005 for further empirical evidence). And, as illustrated by 

the Big South Cape Island saddlebacks, many translocated populations had persisted in the 
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absence of predators and habitat stresses on very small islands as well as large (sizes and 

locations unspecified by Craig).  

 

Craig’s (1991, 1994) proposition of inherited resistance to genetic effects generalises for 

insular bird species from a handful of examples serving his argument. Geneticists are in-

clined to dismiss these examples—and others such as the Seychelles warbler Acrocephalus 

sechellensis (Komdeur et al., 1998) and the Socorro Island red-tailed hawk Buteo ja-

maicensis socorroensis (Walter, 1990)—as rare exceptions to the rule (Frankham et al., 

2002). Nevertheless, Craig’s thinking reassured most New Zealand wildlife managers and 

conservation ecologists that inbreeding depression and lowered genetic diversity in small 

insular populations will not significantly threaten their immediate or longer-term viability 

(Jamieson et al., 2006; Groombridge, 2007). Wilson (2004) has suggested that these ge-

netic threats may be overstated as management considerations. This apparent complacency 

has established New Zealand’s approaches to conserving island endemic birds at the heart 

of debates over the importance of stochastic genetic threats to small population persistence 

(Jamieson, et al., 2006; Jamieson, 2007a, b). In addition, the New Zealand cure’s preoccu-

pation with the deterministic drivers of extinction is symptomatic of Caughley’s (1994) 

separation of ‘declining-population’ and ‘small-population’ mindsets which Caughley re-

garded as disabling for efforts to predict and avert further extinctions.  

 

In stark but simple terms, the New Zealand cure was a pragmatic response to each devel-

oping crisis in the country’s highly endangered avifauna (Bell, 1991; Wilson, 2004, 2008). 

The lack of follow-up was a pragmatic response to the next crisis. There was rarely time to 

theorise before or after intervention. As Groombridge (2007) remarks, the approach has 

established New Zealand as a world leader in the conservation of threatened insular en-

demic birds, but the conservation biology community is waiting to see whether the New 

Zealand cure will indeed ensure long-term population viability. 

 

1.3   Advances in genetic studies of New Zealand insular endemic birds 

 
In New Zealand, the establishment of threatened bird populations in natural and virtual 

islands of protected habitat offers ideal opportunities to test the genetic-risk implications of 

small capped populations without the confounding effects of other extinction pressures. 

The number of studies capitalising on New Zealand’s wealth of such viability ‘experi-
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ments’ is still small but conclusions drawn so far emphasise the probability of underesti-

mating the future viability of insular endemics if assumptions of negligible genetic risk 

dictate their management.  

 

Recent predictive modelling, molecular and empirical studies have examined the genetic 

consequences of historical declines and range contractions, bottleneck events and recovery 

in source and translocated populations of North and South Island robins Petroica spp. 

(Taylor et al., 2005, 2007; Jamieson et al., 2007; Boessenkool et al., 2007), takahe Por-

phyrio hochstetteri (Jamieson and Ryan, 2000; Jamieson et al., 2003; Grueber and 

Jamieson, 2008), and North and South Island saddlebacks Philesturnus spp. (Hooson and 

Jamieson, 2004; Taylor et al., 2005, 2007; Taylor and Jamieson, 2007, 2008). All are 

slow-breeding K-selected species, as is typical of the New Zealand terrestrial avifauna 

(Bell, 1991) and characteristic of southern temperate-zone passerines (Rowley and Russell, 

1991). Findings have confirmed that many of New Zealand’s threatened birds meet the 

predicted risk-criteria of lowered genetic variation (often emphatically; Jamieson et al., 

2006; Robertson, 2006) and elevated levels of inbreeding.  

 

Overall, genetic drift and inbreeding intensified by prolonged persistence at low numbers 

appeared to account more than translocation bottlenecks for the rates of genetic depletion 

observed in protected island populations (Jamieson, 2009). Life-history traits limiting 

population growth rates (such as inherently low reproductive output) and habitat con-

straints on ultimate population sizes were considered to increase viability risks (Taylor et 

al., 2005, 2007; Boessenkool et al., 2007; Taylor and Jamieson, 2008), effectively by pro-

longing bottlenecks and retaining populations at low numbers. Higher founder numbers, 

faster population growth and recovery to larger population size were considered to offer 

better prospects of minimising the fitness and longer-term evolutionary costs of genetic 

depletion (Jamieson et al., 2008).  

 

Evidence that New Zealand’s threatened endemic birds suffer inbreeding depression was 

reported in populations of ancestrally and recently inbred takahe translocated to small is-

land sanctuaries (Jamieson and Ryan, 2000; Jamieson, et al., 2003). Relative to the small 

relict source population in alpine Fiordland, egg infertility was higher and fledging success 

lower. These fitness costs were expressed differentially in inbred females and males, and 

seem to have arisen when removal of the birds from the ancestral inbreeding environment 
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exposed latent genetic load (the aggregate of deleterious genes carried in the population’s 

genome) (Jamieson and Ryan, 2000; Jamieson, et al., 2003). Similar environmentally de-

pendent inbreeding depression was a possible explanation for unusually low hatch-rates in 

a small descendent population of the ancestrally inbred South Island saddlebacks on Motu-

ara Island (Hooson and Jamieson, 2004). The severely habitat-limited population of North 

Island robins founded on Tiritiri Matangi Island showed evidence of inbreeding depres-

sion, strongly expressed in low survival rates for inbred juveniles (Jamieson et al., 2007). 

Compared with the robins, which were sourced from large, diverse mainland populations, 

the fitness costs of inbreeding in the small island populations of ancestrally inbred takahe 

were more weakly expressed, lending support to Craig’s (1991, 1994) proposition that 

long histories of inbreeding under natural conditions lower susceptibility to its debilitating 

effects on fitness. Jamieson (2009) concluded from these studies that inbreeding depres-

sion of varying form and severity was probably widespread in New Zealand’s small popu-

lations of threatened insular endemics. This prediction was supported by Briskie and 

Mackintosh’s (2004) finding that hatching success correlated negatively with recent and 

ancestral bottleneck size and inbreeding in 22 New Zealand bird species (marine and ter-

restrial, including black robins).   

 

Reviews of population-genetics research (Jamieson et al., 2006, 2008; Jamieson, 2009) 

have concluded that low genetic diversity and inbreeding depression combined to depress 

fitness at individual and population scales in threatened New Zealand endemic bird popu-

lations in ways which impeded rates of recovery under protected conditions. Inbreeding 

appeared to impose the more immediate costs on individual fitness, but its implications for 

population viability varied according to annual levels of inbreeding among close relatives 

(a function of population size), the overall incidence of inbreeding, the severity of inbreed-

ing depression, and the life-history stages affected (Jamieson, 2009). The reviewers con-

cluded that in general the stochastic genetic consequences of low numbers would not con-

stitute immediate threats to viability unless other extinction drivers were operating. Then, 

lowered reproductive success and survival would heighten extinction probability by im-

pairing responsiveness to population knock-downs, fluctuations and instability. On the 

other hand, genetic malfunction called longer-term viability into question, even if popula-

tions were recovering under protected conditions. It appeared to be most dangerous for ge-

netically depleted, inbred populations which remained small and stable or grew only 

slowly (Frankham et al., 2002; Jamieson, 2007a; Jamieson et al., 2008). Average levels of 
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inbreeding would accumulate quickly in such populations. And natural replenishment of 

diversity through mutation is generally expected to be too slow to restore resilience to new 

environmental, pathogenic or climatic selection pressures.    

 

The New Zealand studies have begun to fill the empirical vacuum for which Craig’s (1991, 

1994) hypothesis of negligible genetic risk has been criticised (Jamieson et al., 2006). 

They also suggest that New Zealand ambivalence towards genetic risks may be misplaced. 

However, the predictions outlined above generalise for threatened New Zealand bird spe-

cies from the few studies conducted so far. Broad principles of this sort require refinement 

through further studies, for two reasons. First, genetic risks may vary between species, 

populations and ecological contexts (Keller and Waller, 2002; Frankham et al., 2002). Sec-

ond, under-resourced wildlife managers are hard-pressed to cope with the growing number 

of conservation crises in New Zealand (Department of Conservation and Ministry for the 

Environment, 2000; Wilson, 2008). As the downplaying of genetic risks in past species 

management has shown (Armstrong and McLean, 1995), it is intuitively difficult to divert 

attention and resources from the ubiquitous short-term certainty of extinction to address 

the distant possibility of cryptic genetic threats operating well beyond normal planning 

time-frames.  

 

The authors and reviewers of the New Zealand studies acknowledge this. To preserve re-

covery momentum and longer-term viability from the more insidious processes of genetic 

impairment, they recommend precautionary genetic management of fitness and diversity in 

small populations, but only after the deterministic factors causing their declines have been 

treated (Jamieson et al., 2006, 2008). Jamieson (2009) suggests that mitigation of potential 

genetic threats should be integrated with other management considerations. If so, to make 

the most effective and efficient use of scarce resources, it will be highly advantageous to 

understand the particular genetic and non-genetic extinction vulnerabilities of recovering 

populations. Knowing the immediate constraints on growth rates and ultimate population 

sizes (for example, the critical ecological and behavioural adaptations limiting recovery or 

the particular life-history stages at which recovery is impeded) should minimise the poten-

tial for misdirected effort on less easily defined genetic threats. And in theory at least, 

managing the non-genetic constraints in order to accelerate rates of recovery will moderate 

the unseen genetic risks. 
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Genetic studies of New Zealand’s threatened endemic birds have striven to improve the 

management of study populations while attempting to refine genetics theory. This study 

follows these imperatives by examining genetic and non-genetic extinction vulnerability in 

the two small inbred black robin populations currently under watch in the Chatham Islands 

archipelago.  

 

1.4  Why study extinction vulnerability in the black robins? 

 
Among New Zealand’s impressive inventory of viability ‘experiments’ with threatened 

birds, there can be few more suitable or overdue than the black robin to test the assumption 

of minimal genetic risk to small inbred populations. The two recovered black robin popu-

lations are fitting empirical test-cases for several reasons.  

 

First, the species has a century-long history of reduction, isolation, and inbreeding. This, 

and passage to recovery through a single-pair bottleneck, has exposed descendants to a 

perfect storm of genetic hazards. In theory, the two present-day populations should be suf-

fering significant genetic impairment. 

 

Second, despite their histories, both populations are deemed to be stable (Department of 

Conservation, 2007a) and at no particular risk from genetic malfunction (Department of 

Conservation, 2001a). Accordingly, no genetic management has been planned and moni-

toring of population health has been scaled back radically (Department of Conservation, 

2001a; this study, Chapter Four). It is prudent to test the wisdom of these assumptions. 

 

Third, much of the black robin’s recovery from 1980-81 onwards was documented, pri-

marily for operational reasons. A diverse and highly insightful demographic record of re-

covery accumulated as a result. The pedigrees and demographic trends discernible in the 

field data are shorthand for the effects of all extrinsic and intrinsic variables shaping the 

fates of the two populations over a period of 22 years (about 13 generations). The insights 

to extinction vulnerability accessible in records of this detail and duration are rarely avail-

able to conservation biologists. The black robin record has never been subjected to sys-

tematic analysis in its entirety. 
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Fourth, references in other studies to the apparent viability of the black robins will remain 

speculative until the demographic data have been analysed. Conservation ecologists have 

invoked the black robin’s recovery and persistence as evidence that genetic threats are 

relatively insignificant for the conservation of New Zealand’s inbred island endemic birds 

(Craig, 1991, 1994), while resolute conservation geneticists have argued that the black 

robin is a rare example of a species dodging the genetic ‘bullet’ (Frankham et al., 2002; 

Frankham, 2005). This study’s analysis of the black robin record acknowledges the view 

of New Zealand conservation biologists that immunity to genetic threats has not yet been 

quantified adequately in the black robin populations (Wallis, 1994; Armstrong and 

McLean, 1995; Jamieson and Ryan, 2000; Jamieson et al., 2003; Briskie and Mackintosh, 

2004; Wilson, 2004; Jamieson et al., 2006, 2008; Jamieson, 2009).   

 

Fifth, the black robin’s rescue from the uttermost brink of extinction is frequently cited as 

an endorsement of New Zealand conservation philosophies and methods (Diamond, 1990; 

Bell, 1991; Atkinson, 2001; Wilson, 2004). Lay communities at home and abroad have 

also been encouraged to regard the rescue as a defining conservation success for New Zea-

land and assurance that critically threatened species can be saved no matter how imminent 

extinction may be. The black robin has acquired iconic status in popular conservation lit-

erature (see for example Cemmick and Veitch, 1985; Taylor, 1993; Morris and Smith, 

1988; Merton, 1990; Hutching, 2004), in television documentaries (Natural History New 

Zealand, 1980, 1982, 1989) and conservation media (Television New Zealand, 2009). New 

Zealand’s reputation and credibility as a world-leader in insular bird conservation owes 

much to the long-term survival of the species.  

 

1.5  Prior black robin research  

 
The black robin has a history of research interest spanning seven decades, commencing 

with ‘rediscovery’ of the species in its last island refuge, Little Mangere Island, on 2 Janu-

ary 1938 (Fleming, 1939a, b; McEwen, 2005).  

 

Fleming (1950a, b), Holdaway et al. (2001) and Miller and Lambert (2006) have made the 

principal contributions to the classification and taxonomy of the New Zealand Petroica 

species, proceeding variously from morphological and more recent molecular genetic 

analyses. The studies draw differing conclusions on black robin affinities with tomtit P. 
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macrocephala and robin P. australis congeners but all define the black robin as a determi-

nate island endemic species within the genus. 

 

Flack’s (1976a) integrated study of black robin ecology and conservation needs, conducted 

on Little Mangere Island from 1971-72 to 1975-76, was the first research to address ex-

tinction issues and gives the only systematic insights to the decline of any black robin 

population. Black robin numbers decreased precipitously during the research programme 

(Chapter Three: History of Decline). Consequently, the study of black robin ecology be-

came subordinated to the goal of designing biologically appropriate remedies to the extinc-

tion threat looming through habitat disintegration. In numerous reports and letters, Flack 

(1971, 1973, 1974a, b, 1976a, b, c, d, 1977) documented the processes of habitat collapse, 

population decline and the life-history traits accentuating the population’s collapse. How-

ever, the difficult research setting and a policy of minimising disturbance denied Flack 

crucial insights to vital population rates under extinction pressure, especially rates of re-

productive failure. The deepening crisis allowed little latitude to consider the genetic im-

plications of decline, but in any case Flack shared the optimism of wildlife managers that 

the species would rebound naturally once the habitat threat was remedied (Chapter Four: 

Management of Extinction Threat).  

 

Butler and Merton’s (1992) account of the subsequent recovery project was written for lay 

as well as expert audiences. Its detailed biological, historical and social narratives elabo-

rated significantly on Flack’s groundwork. The authors described the strategy and pioneer-

ing methods used to minimise extinction risk by actively increasing the number and sizes 

of populations. The black robin’s resilient response to this strategy (increased reproductive 

output, population growth and apparent resistance to avian pox) led the authors to con-

clude that the species was not genetically degenerate. They regarded anomalous egg-laying 

behaviour, through which some eggs were laid outside nest-bowls, as the sole substantive 

evidence of genetic malfunction. The authors did not dismiss outright the potential for ge-

netic problems, but were confident that any such issues were inconsequential at that point. 

Accordingly, they identified the arrival of mammalian predators, new pathogens and habi-

tat disasters as the most significant threats to viability. On-going quarantine of existing 

populations and expansion into other parts of the black robin’s traditional range were the 

recommended means of ensuring long-term persistence. Butler and Merton’s (1992) de-

tailed insights to black robin ecology, behaviour and population growth are indispensable 
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to my study. However, their viability conclusions drew on observation of population trends 

strongly shaped by management activities over ten years (1980-81 to 1989-90) and per-

haps still influencing trends described cursorily in two post-management seasons (1990-91 

to 1991-92). Moreover, their conviction that the black robins were genetically robust at 

that time may not hold for present-day viability or in the future.  

 

Three molecular studies have clarified important aspects of genetic risk to the black robin 

populations. Holmes (1994), reported subsequently in Ardern and Lambert (1997), quanti-

fied present-day genetic variability in the species. The authors described levels of neutral 

minisatellite DNA variation too low in either population to distinguish individuals other 

than by sex. This unexpected finding defeated hopes of confirming black robin monogamy 

and closing parentage gaps in the pedigree (Chapter Four). Higher diversity in similarly 

bottlenecked populations of South Island robins led Ardern and Lambert (1997) to con-

clude that the genetic impoverishment of black robins arose from genetic drift and high 

rates of inbreeding during the ancestral population’s long persistence at low numbers on 

Little Mangere Island (30-35 individuals, for at least 83 years; Chapter Three) rather than 

from the single-pair founding event of descendent populations. Healthy biological indica-

tors derived from Butler and Merton (1992)—positive productivity, survival rates and 

population growth under management—suggested to the authors that low genetic variabil-

ity did not to equate to low viability, at least under the conditions prevailing during recov-

ery. They surmised that harmful recessive alleles had been purged historically in the 

closely inbred ancestral population, offering some assurance of continued unassisted sur-

vival. However, these viability predictions inferred that diversity was equally low in other 

more functionally significant (fitness-related) parts of the black robin genome which the 

study did not analyse. The fitness measures used to judge viability were largely those from 

the intensive management years. Ardern and Lambert were not in a position to assess how 

the potentially harmful effects of advanced genetic depletion and accumulating levels of 

inbreeding in their study populations might be realised in later generations.  

 

Miller and Lambert (2004) examined the implications of genetic depletion for black robin 

immunity to pathogens. The populations were found to possess very low levels of diversity 

in class II B major histocompatibility complex (MHC) loci responsible for immuno-

competence. Variation was significantly less than in two obligatorily inbred South Island 

robin populations on Motuara and Allports Islands, each founded from five individuals 
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sourced from large, genetically diverse mainland populations (see Section 1.2 above) and 

growing strongly after its translocation bottleneck. Miller and Lambert (2004) attributed 

the difference in diversity at MHC loci to the black robin’s significantly longer ancestral 

bottleneck, thus agreeing with Ardern and Lambert’s (1997) conclusions. Evidence of lim-

ited susceptibility to pathogens in the past (Butler and Merton, 1992) and positive popula-

tion growth under natural conditions suggested to the authors that, despite depletion at 

MHC loci, immune function had remained adequate for pathogens commonly encountered 

under past conditions. Immunity under changed conditions or to new pathogens was con-

sidered to be less certain.  

 

Ma and Lambert’s (1997b) assessment of multilocus minisatellite DNA markers in the two 

black robin populations was intended to improve detection of future black robin cross-

breeding with sympatric Chatham Island tomtits P. macrocephala chathamensis by profil-

ing of suspected hybrid genotypes. Their molecular analyses reiterated Ardern and Lam-

bert’s (1997) findings of low genetic variation and discovered comparable depletion in the 

small tomtit population on Mangere Island. The study revealed unsuspected introgression 

on Mangere Island and confirmed hybrid fertility, thus quantifying an underestimated 

threat to the genetic integrity and long-term viability of both parent populations. My analy-

sis of hybridisation events and predisposing factors (Chapter Eight: Hybridisation) exam-

ines the implications of Ma and Lambert’s (1997b) findings for the persistence of the black 

robin genotype in the stressful habitat conditions in parts of both black robin islands. 

 

Inbreeding effects were first investigated by Mallinson (1992) whose dissertation research 

looked for correlations between individual inbreeding coefficients, reproductive success 

(eggs laid, hatch-rate, fledge-rate, offspring reaching independence, juveniles recruited) 

and survival in the two black robin populations on Mangere and Rangatira Islands between 

1980-81 and 1991-92. This timely study was hindered by omissions and inconsistencies in 

the raw productivity and pedigree data which required Mallinson to make potentially con-

founding assumptions in order to construct coherent datasets. No significant inbreeding 

effect was detected in any of the life-history parameters measured. Mallinson concluded 

therefore that observed variations in breeding performance and survival were not inevita-

ble consequences of inbreeding in the black robin populations. As with previous studies, 

analyses were able to examine only short-term sequences of demographic data in which 
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management effects (direct or shadow) may have masked evidence of inbreeding depres-

sion.  

 

None of the authors of these genetic studies suggested that genetic depletion and inbreed-

ing would remain inconsequential for longer-term viability in the black robin populations. 

The general weight of their conclusions suggested, however, that fitness and resilience had 

not been significantly affected by genetic problems during the first 12 years of recovery 

from the single-pair bottleneck. The threat posed by hybridisation with sympatric tomtits 

was the exception. Craig’s (1991, 1994) proposition of reduced susceptibility to genetic 

risks appears to be supported by these studies, notwithstanding the fact that there are no 

healthy black robin populations surviving to indicate how far fitness and recovery rates 

might have been compromised. This is a common impediment to assessing genetic risk in 

threatened New Zealand species (Wallis, 1994).  

 

My study is in a better position to assess whether the conclusions drawn in prior research 

and their implications for management are sound or premature. It conducts the first sys-

tematic analysis of the black robin demographic data accumulated during the recovery pro-

ject. The data have been checked rigorously to avoid the problems faced by past research-

ers. Most importantly, the data sequences are longer and span the 12-year period in which 

black robin population dynamics operated without interference by conservation manage-

ment. These last insights were unavailable to earlier studies. Finally, my study addresses 

potential genetic threats to population persistence alongside analysis of other extrinsic and 

intrinsic extinction factors. 

 

1.6  Thesis objectives 

 
This study pursues fundamental management and theoretical imperatives of conservation 

biology—that is, to define and minimise extinction vulnerability in threatened relict or 

fragmented wildlife populations surviving in natural environments. By analysing extinc-

tion vulnerability in the small closed black robin populations on Mangere and Rangatira 

Islands, it addresses two closely related questions central to conservation of threatened in-

sular endemic bird species in New Zealand and overseas.  
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The first question is theoretical. Does Craig’s (1991, 1994) hypothesis that insular endemic 

birds are less susceptible to inbreeding depression hold for all small populations of insular 

endemics currently protected from other threats to survival?  

 

The theoretical issue considered here relates to the prediction of conservation geneticists 

that short- and longer-term viability in small, isolated, obligatorily inbred wildlife popula-

tions will inevitably be compromised by stochastic genetic threats even after the determi-

nistic causes of decline have been treated and population growth has reduced exposure to 

stochastic demographic and environmental threats. Craig’s counter-hypothesis is that vi-

ability in such populations is not compromised unduly by the genetic consequences of re-

duction and decline.  

 

The second question relates to appropriate management of viability in threatened insular 

endemic bird populations. Is the assumption of negligible genetic risk implied in the New 

Zealand ‘cure’ a sound basis on which to manage recovering populations? In other words, 

is their persistence guaranteed simply by treating the deterministic causes of decline and 

raising population sizes to the carrying-capacities of their habitat sanctuaries? 

 

To evaluate these questions, my study analyses the detailed demographic record of recov-

ery in the black robin populations to assess potential threats to persistence. Specifically, 

the study asks: 

 
• which extrinsic and intrinsic factors were responsible for historical declines in black 

robin populations, and which appear to increase extinction vulnerability in descendent 

populations?  

• did growth trends vary in the recovering populations and which demographic variables 

appear to have influenced trends negatively? 

• are those demographic variables sufficiently correlated with levels of inbreeding in the 

populations to suggest that future viability will be compromised by further inbreeding? 

• was management of extinction threats to past and present black robin populations typi-

cal of New Zealand conservation practice, and what lessons discernible from this man-

agement can be applied to improve prospects of long-term persistence in present and 

future populations? 
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In addition to assessing the theoretical issues posed by this study, my aim in clarifying ex-

tinction vulnerability in the black robin populations is to strengthen their management and 

monitoring regimes. Similarly threatened species are expected to benefit from pursuing 

these objectives.   

  

1.7  Thesis structure 

 
My research questions are addressed in six analytical chapters whose lines of inquiry build 

towards assessment of the genetic questions prompting this study. 

 

The chapters bring a range of scientific perspectives to bear on the research questions. 

They combine natural historian with quantitative biological perspectives, along with ele-

ments of historical and social research disciplines, to explore the black robin questions as 

informatively as possible. This integration recognises that conservation biology generally 

and black robin conservation specifically are fundamentally biological and social under-

takings.  

 

In Chapter Two: Black Robin Biology, I introduce the black robin as a research subject 

and summarise key biological features which characterise it as an island endemic bird spe-

cies. This chapter adds to or amends existing knowledge (Flack, 1976a; Butler and Merton, 

1992; Higgins and Peter, 2002) by reporting new biological information obtained over 

longer periods of observation and under natural conditions. The chapter concludes by 

comparing black robin life-history traits with island and mainland congeners in New Zea-

land and Australia. This comparison is useful in identifying the particular biological attrib-

utes of the black robin which increase sensitivity to extinction pressures. 

  

Chapter Three: History of Black Robin Decline combines an historical narrative with 

analysis to examine the deterministic and stochastic causes of decline, and probable extinc-

tion intervals, in the each of the black robin’s original island populations in the Chathams 

archipelago. This is the first island-by-island analysis of extinction factors and timing for 

the black robins (or any other bird of the Chatham Islands). It attempts to define how the 

black robin’s evolutionary adaptations to island life may have exaggerated the lethal force 

of deterministic extinction pressures. The chapter examines the key features of the only 

decline documented by conservation biologists (that is, the near-extinction of the ancestral 
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population on Little Mangere Island and its translocated remnant on Mangere Island). This 

analysis conveys the study to the threshold of intensive conservation management in 1980-

81. Findings are intended to increase awareness of the black robin’s vulnerability to new or 

renewed threats. Finally, the chapter examines a previously unexplored dimension in the 

black robin story—the conviction shared by many Pitt Islanders that black robins survived 

until the mid-20th century on Pitt Island in the presence of extinction factors which had 

eliminated them swiftly from other islands. Examining the conflicting bodies of biological 

and local knowledge helps to consolidate conclusions reached in the chapter about histori-

cal causes of decline.  

 

Chapter Four: Management of Extinction Threat examines the conservation measures 

taken to avert black robin extinction. This overview is the first to critique the recovery pro-

ject from its beginnings on Little Mangere Island until the present. Its aim is to identify 

key principles and motivations shaping the tactics employed to rescue the black robins. My 

review examines the degree to which black robin conservation measures were consistent 

with conventional practice in New Zealand to minimise extinction vulnerability in insular 

bird species. The chapter also explains the ways in which commonly overlooked external 

factors (institutional imperatives and arrangements, logistical and resource issues) influ-

enced the choices made by black robin managers and the effectiveness of their work. The 

valuable lessons learned during this protracted conservation effort have not been docu-

mented previously. In the course of this critique, I am able to explain the nature and qual-

ity of the records and demographic data available to my study.  

 

Chapter Five: Data Collation and Verification describes the types and sources of demo-

graphic data exploited by my study and the processes I have followed to prepare the data 

for analysis. This is a brief account only of systematic collation and verification methods. 

It explains the efforts necessary to preserve the empirical value of raw field data which 

varied extensively in quality and quantity.  

 

Chapter Six: Population Trends After 1980 defines the growth trajectories and underly-

ing demographic trends in the black robin populations on Mangere and Rangatira Islands 

after intensive management commenced in 1980-81. The chapter examines the variations 

in productivity, survival and behaviour which appear to have limited population growth 

and raise questions about on-going viability. The chapter analyses for the first time new 
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demographic data from the post-management period (1990-91 to 2001-02) which give a 

truer indication of black robin viability under natural conditions. A preliminary study of 

potential environmental influences on demographic trends is reported also.  

 

Chapter Seven: Was Inbreeding A Problem? quantifies the levels of inbreeding in the 

recovered black robin populations and assesses whether these levels are sufficiently corre-

lated with the demographic variables limiting population recovery to be suggestive of ge-

netic threats to viability. In addition to testing the theoretical and management assumptions 

underpinning New Zealand conservation practice, findings from these analyses are in-

tended to guide the management and research recommendations made at the conclusion of 

my study. 

 

Chapter Eight: Hybridisation assesses what can be learned from past black robin x tom-

tit hybridisation events. Latter-day black robin managers are generally unfamiliar and 

therefore unprepared to deal with this potential threat to the genetic integrity of black robin 

and tomtit populations. The chapter reviews the history of cross-breeding in order to iden-

tify predisposing factors and the risk of recurrence. Although the cross-breeding has been 

reported in conservation biology literature, the nature and circumstances of events are not 

widely known. My findings add to the small body of empirical evidence that hybridisation 

is a significant extinction threat in its own right. Conclusions from the chapter are designed 

to benefit management of similarly at-risk wildlife populations. 

 

Chapter Nine: Conclusions summarises my study’s key findings on black robin extinc-

tion vulnerability and assesses what these imply for the genetic and management assump-

tions outlined in this chapter.  

 

Chapter Ten: Management Recommendations offers a series of recommendations in-

tended to ensure that black robins in the first instance and similarly threatened insular en-

demic species are managed appropriately to maximise their prospects of long-term persis-

tence and evolutionary resilience. I suggest refinements to current management strategies 

and make proposals for appropriate monitoring to reduce extinction vulnerability.  
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CHAPTER TWO 

BLACK ROBIN BIOLOGY 

 

 

 

2.0 Introduction 

 
The Chatham Island black robin is probably the best known of the New Zealand Petroica 

and the best known New Zealand passerine, yet elements of its biology remain inade-

quately defined. Behaviour, vital rates and population dynamics under natural (unman-

aged) conditions have received scarce attention in popular or peer-reviewed literature. The 

uncertainties limit ability to interpret the demographic record of the species reliably for 

research and management purposes. Predictive modelling of population trends is also hin-

dered by limited quantifying of life-history characteristics, with potentially adverse conse-

quences for black robin conservation. 

 

Early first-hand biological accounts of the species were few and spare (Travers, 1871; 

Travers and Travers, 1872; Fleming, 1939b) principally because ornithologists and collec-

tors of the time had difficulty accessing black robin habitats or loitering there once ashore. 

Vicarious accounts of the time were even more parsimonious (for example, Hutton, 1872; 

Forbes, 1893; Buller, 1890, 1894a). Mid-20th century descriptions dwelled principally on 

behavioural and morphological features pertinent to black robin phylogeny, drawing ex-

tensively on the skins and notes of earlier observers (Fleming, 1950a, b).  

 

Knowledge improved significantly after 1971-72 when first biological inquiry began as a 

pre-cursor to conserving the species (Flack, 1971, 1973, 1974a, 1976d, 1979). Knowledge 

advanced significantly during intensive conservation management between 1980-81 and 

1989-90. Despite sustained annual contact, however, a true picture of black robin biology 

could not emerge because key vital rates associated with breeding and survival were ma-

nipulated to avert extinction. The information acquired during this latter period has been 

described in both popular and scientific literature. Butler and Merton (1992) give a ful-

some but informal biological description in the course of explaining how the species was 

saved. Much of their detail forms the basis of the most comprehensive formal description 

in Higgins and Peter (2002).  
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In addition to describing the character of black robin habitats, this chapter gives a summa-

rising account of the species’s biology, dwelling on aspects which help to explain popula-

tion trends and extinction vulnerability. A more exhaustive account is unrealistic given that 

the underlying data were not acquired through systematic study but as a by-product of con-

servation management. Even so, my description refines existing knowledge in two ways. 

First, it draws on a much longer view of the black robins, from 1980-81 until 2008-09. 

Second and more importantly, it incorporates data from the 12 years during which black 

robin population dynamics were closely observed but not actively managed (1990-91 to 

2001-02). These data yield fresh insights to black robin biology under natural conditions.  

 

This biological summary generalises across all populations and leaves analysis of behav-

ioural and demographic differences at the population scale to later chapters in the thesis 

(particularly Chapter Six: Population Trends After 1980). Unless otherwise specified, I 

rely on observations made in breeding seasons from 1980-81 until comprehensive monitor-

ing of each population ceased (1998-99 on Rangatira Island and 2001-02 on Mangere). 

Particular emphasis is given to post-management seasons from 1990-91 to 2001-02. Lon-

gevity data are drawn from the current sample-monitoring phase of management on both 

islands (2002-03 until 2008-09; see Chapter Four: Management of Extinction Threat). 

 

The methods used to gather, collate and verify biological data from these periods are 

summarised in Chapter Four (Management of Extinction Threat) and Chapter Five (Data 

Collation and Verification). The explanations given in these chapters emphasise the em-

pirical basis for this biological account. For example, nest success was determined in al-

most every instance from field observation and did not require sample-based or inferential 

modelling.  

 

The chapter concludes by assessing what is known of black robin biology and reproductive 

output relative to temperate-zone Petroica species in the New Zealand and Australian re-

gions. In so doing, the chapter addresses an evident shortage of biological and life-history 

information on indigenous Petroica species specifically and passerines generally (Rowley 

and Russell, 1991). My assessment supports propositions that the life-histories of southern 

hemisphere passerines differ significantly from those of phylogenetically related passer-

ines in the northern hemisphere. And it throws important light on ecological and behav-

ioural adaptations which accentuate extinction vulnerability in the black robins. 
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In what follows, the term ‘nestling’ is preferred over the more ambiguous ‘chick’ and re-

fers to hatchlings brooded until fledging. ‘Fledglings’ have left the nest but remain de-

pendent on parental care. ‘Juvenile’ and ‘independant’ are preferred over Flack’s (1976a) 

term ‘immature’ and refer to fledglings which are nutritionally independent of parents and 

fully self-sufficient.  

 

2.1  Origins and taxonomy 

  
Black robins Petroica (Miro) traversi (Buller 1872; Order: Passeriformes; Family: Petro-

icidae, Australasian robins) are small, confiding, exclusively insectivorous passerines en-

demic to the Chatham Islands archipelago, 802 km east of Banks Peninsula, New Zealand 

(Figure 1.1; see Appendix One for a brief summary of archipelago topography, climate 

and flora). The Petroica genus is Australian in origin but Australo-Papuan and Pacific in 

distribution (Miller and Lambert, 2006).  
 

 

 

 
Figure 2.1   [Left] Chatham Island black robin in characteristic hunched posture, Woolshed 

Bush, Rangatira Island, June 2006 Photo: D. Houston 
  [Right] Colour-banded black robin male, Woolshed Bush, Rangatira Island, Septem-

ber 2006  Photo: K-J Wilson  
 

 

Recent estimates of time-of-arrival in New Zealand and the Chatham Islands follow Flem-

ing’s (1950a, b) initial contention—based on morphological and behavioural characters—

that black robins are descended from ancestral Petroica stock which migrated eastwards 
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from the Australian continent in the earlier of two petroicid invasions, probably towards 

the end of the Pliocene period. The first invasion is considered to have established the rob-

ins in New Zealand; the second introduced the smaller tomtits, from which was derived a 

sympatric congener of the black robin, the Chatham Island tomtit P. macrocephala chat-

hamensis (Figure 2.2). 
 

 

 

 

Figure 2.2 [Left] Adult male Chatham Island tomtit (Woolshed Bush, Rangatira Island) and 
[right] adult female (Top Bush, Rangatira Island). Photos: E. Kennedy 

 

 

Recent molecular analyses provide some evidence in support of the differentiated invasion 

hypothesis, though an indication that New Zealand’s robins and tomtits also form a mono-

phyletic cluster distinct from Australian species argues for a common time of arrival 

(Miller and Lambert, 2006).  

 

Since arrival, dispersal and radiation has been more significant than in other naturalised 

species, giving rise historically to on-going debate over taxonomy. The principal features 

of this debate are summarised in Butler and Merton (1992: 5-7, 14-15) and more latterly in 

Miller and Lambert (2006). The division of species and subspecies has been particularly 

problematic, yet throughout the debate morphological and molecular perspectives after the 

mid-20th century have distinguished the black robin as a species among the New Zealand 

members of the genus.  
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Fleming’s (1950a, b) comprehensive revision on the basis of morphology and behaviour 

distinguished the black robin as a robin species distinct from three robin sub-species in the 

sub-genus Miro (North Island robin, Petroica australis longipes; South Island robin P. a. 

australis; Stewart Island robin P. a. rakiura). Five tomtit sub-species were proposed by 

Fleming (North Island tomtit P. macrocephala toitoi; South Island tomtit P. m. macro-

cephala; Chatham Island tomtit P. m. chathamensis; Auckland Island tomtit P. m. marrin-

eri; Snares Island tomtit P. m. dannefaerdi).  

 

Latterly, Holdaway et al. (2001) have elevated all forms of robins and tomtits to full spe-

cies alongside the black robin (thus one of seven Petroica species—three robins and four 

tomtits—extant on the main islands of New Zealand and its principal outlying groups). 

Morphological similarities with the South Island tomtit retained the Chatham Island tomtit 

as a sub-species. Miller and Lambert (2006) acknowledge the morphological distinctions 

between tomtits but contend on the basis of molecular analyses that sub-specific status is 

sufficient for all five forms. This study follows the robin and tomtit nomenclature pro-

posed by Miller and Lambert (2006: Table 4), placing black robins among eight represen-

tatives of the Petroica genus in the New Zealand region (three robins and five tomtits).  

 

Miller and Lambert’s analyses question prevailing views of black robin provenance. Mito-

chondrial DNA markers align them more closely with the tomtits than with the ancestral 

robins, a finding which contradicts observed morphological and behavioural similarities to 

robins (Fleming, 1950a, b; McLean et al., 1994). Vocalisations share the characteristics of 

other Petroica species, particularly the ‘down-scale’ call, but black robin song is quieter, 

shorter and less complex than the New Zealand robin song and lacks the ‘warbling’ of the 

tomtits (Hay, 1975; Flack 1976a). Reconciliation of conflicting evidence for molecular and 

morphological affinities may help to explain the timing of the black robin’s arrival in the 

Chatham archipelago (Miller and Lambert, 2006). 

 

2.2  Morphology 

 
Black robins are distinctively melanic and sexually monomorphic in appearance. Sexes in 

all age-classes are a uniform dull black, the juveniles discernible only by softer plumage 

and barely visible pale streaking on the head and body. Adult plumage does not vary sea-

sonally or with age. The bright yellow soles characteristic of the Petroica genus and visi-
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ble in black robins collected by the early ornithologists (Fleming, 1950b) were lost prior to 

the early 1970s and are now a dull brown or flesh colour (Flack, 1976a, 1977).  

 

The species has been isolated on the Chatham Islands archipelago long enough to have 

evolved form and plumage unique among the New Zealand robins (Fleming 1950a, b). 

They are intermediate in size, tarsus length and wing dimensions between mainland robins 

and tomtits. Body shape appears shorter and rounder than the mainland Petroica through 

the black robin’s habit of holding its large head hunched close to its body. Stance on long 

thin legs is usually upright and alert (Figure 2.1).  

 

Morphological characters have not often been measured systematically. The surprisingly 

few measurements taken in the field (many opportunistically) indicate that characters vary 

within and between the sexes and adult and juvenile age-classes. The differences are small 

and indistinguishable to casual observation. Variations in means are more subtle, but on 

average, juvenile and adult females possess shorter wings, tails and bills than adult males 

(Table 2.1). Overlaps in character measures are frequent so that, coupled with the small 

sample sizes, measurements are not infallible indicators of age-class or sex. Breeding be-

haviour is the most dependable guide to the latter in the field.  

 

Black robin wings are broad, rounded and short (more so on average in females).1 The 

adult tail is only slightly longer on average in males. The bill is slender, black, short and 

encircled at its base by the bristles typical of other New Zealand robins. Tarsus length is 

comparable in males and females of all age-classes (Table 2.1).2   

 

                                                 
1   Fleming (1939b) gives a wing-length range of 82.0 - 86.0 mm (x̄ = 84.0 mm) but the four un-

sexed birds measured may have been collected skins. Fleming (1950b: 144) gives wing-
lengths for males and females (male, n = 11, range 81.0 - 86.0 mm, x̄ = 82.6 mm; female, n = 
10, range 79.0 - 85.0 mm, x̄ = 81.4 mm) but it is unclear how Fleming verified the sex of the 
specimens he measured (they may have been sexed by dissection at the original time of 
skinning). McLean et al. (1994: Table 1) combined Fleming’s wing-length measures to ar-
rive at a mean of 82.0 mm. 

 
2  Flack (1976a) gives significantly longer mean tarsus lengths for known-sex adult males 

(32.0 mm, n = 7) and adult females (31.1 mm, n = 8) on Little Mangere Island. The differ-
ences probably arise from using alternative points of measurement (Flack does not declare 
his method) but arguably later measurements may reflect morphological changes resulting 
from the single-pair bottleneck of 1979-80 to 1982-83 (Chapter Three: History of Decline). 
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Adult males are generally heavier than females but the relatively few data gathered in the 

field indicate that their weight ranges overlap. Heather and Robertson (1996) give average 

weights for males as 25 g and females 22 g. Unsexed juveniles and adults bled for DNA 

analyses in late summer ranged from 20 – 25.5 g (x̄ = 23 g; Ardern et al., 1994). All-

season multi-year data gleaned for this study from disparate records of field work on Man-

gere and Rangatira Islands give the mean male weight as 23.5 g (n = 24; range 20.5 – 25.7 

g) and the female mean as 22.3 g (n = 16; range 20 – 25.3 g). Flack (1976a) recorded 

slightly higher mean all-season weights for adults in the ancestral black robin population 

on Little Mangere Island (male x̄ = 24.4 g; female x̄ = 22.7 g). 

 

Male and female nestling weights differ also. In broods of known-sex nest-siblings (brood 

n = 40; summer, 1980-81 to 1998-99), male nestlings were on average 2.2 g heavier (range 

-1 g to 6.5 g) than females at banding age (14-16 days after hatching). In all broods, 

known-sex nestling weights for males and females overlapped closely (males: 20.5 – 33 g; 

females: 20 - 31.3 g). 

 

Few data exist for adult weight variations throughout the year. Flack (1976a: Table 6) re-

ports that mean weights for adult females on Little Mangere Island varied by less than 1 g 

(summer x̄ = 23 g; autumn and winter x̄ = 22.3 g) but males differed by almost 2 g (sum-

mer x̄ = 25.5 g; autumn and winter x̄ = 23.6 g). Weights were highest in summer and low-

est in winter.  

 

2.3 Distribution   

 
Prior to human contact, black robins were believed to be distributed throughout the Chat-

ham Islands archipelago (Fleming, 1939b, reporting local knowledge), on the islands pos-

sessing forest (Chatham, Pitt, Little Mangere, Mangere and Rangatira Islands). They are 

now confined to the two largest of the vegetated outliers in the group—Mangere Island 

(113 ha) and Rangatira (South-East) Island (218 ha) (see Chapter Three for a detailed as-

sessment of historical range and contractions).  

 

On Rangatira Island, black robins occupy two large habitat complexes known informally 

as the Woolshed Bush and the Top Bush (Figure 2.3). On Mangere Island, the black robins 

inhabit a recovering forest remnant known to field-workers as Robin Bush (Figure 2.4).   
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Figure 2.3 Rangatira (South East) Island (218 ha) showing the principal black robin 

habitats, Woolshed Bush and Top Bush, and other sites named in the text. 
Source: Google ™ Earth  

 

 

 

Field observations since March 1972 in the differing habitat complexes on Little Mangere, 

Mangere, Rangatira and (more recently) Pitt Islands affirm that the black robins are forest-

dwellers capable of breeding successfully in deep-forest interiors and at dense forest-edges 

alike.  
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In the larger continuous tracts of habitat on Rangatira Island where the choices made by 

black robins are most evident, territory density tends to be greater at the forest-edge (for 

observations on present-day territory disposition, see Kennedy and Wilson, 2005). Forest 

margins are not as permeable for black robins as they are for the sympatric Chatham Island 

tomtits. The black robins do not favour shrubland vegetation outside forest perimeters and 

are generally disadvantaged if attempting to breed in scattered vegetation (Flack, 1974b, 

1976a).  

 

 

 
Figure 2.4 Mangere Island (113 ha) showing the principal black robin habitat, Robin 

Bush; Little Mangere Island (8-9 ha, plateau area), and other sites named in 
the text.  

 Source: Google ™ Earth 
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The preference for forest rather than open habitat suggests that historically the black robins 

were widespread on Chatham and Pitt Islands wherever contiguous tracts of taller woody 

vegetation occurred. The generally impenetrable character of this vegetation (Travers, 

1868) may not have hindered their distribution but its varied composition may have influ-

enced local densities. 

 

2.4 Present-day habitat character 

 
The two tracts of forest habitat on Rangatira Island differ markedly in character, topogra-

phy and aspect. The Woolshed Bush comprises a complex of disaggregated forest rem-

nants distributed across approximately 26 ha 3 of a flat low-lying marine terrace in the 

northern third of the island (Figure 2.3). This broad terrace (of Pleistocene origin; Adams 

et al., 1988) inclines southwards towards the centre of the island and slopes in a gentle 

gradient down to the sheltered eastern coastline. Continuous forest cover has regenerated 

on the central and western parts of the terrace. Connectivity between the very scattered 

forest remnants to the east has improved through natural regeneration of woody cover 

since black robins were reintroduced to the island in 1983-84. Though the Woolshed Bush 

faces north and is sheltered from the prevailing salt-laden southerly winds, gales from the 

west (relatively common) and east (rare but destructive if storm-force) can create very cold 

conditions in the forest interior. 

 

In contrast, the significantly larger Top Bush habitat comprises an almost unbroken ex-

panse of forest (c. 84 ha) mantling the southern two-thirds of Rangatira Island (Figure 

2.3). The northern perimeter of this forest extends over a second smaller marine terrace 

(about 80-100 metres above sea-level.) overlooking the Woolshed Bush. Behind this rela-

tively sheltered plain, the island rises steeply south-westwards to a height of 224 metres. 

The elevated western and south-western margins of the habitat culminate in precipitous 

cliffs which receive the brunt of prevailing winds. Ramparts of lower stature on the oppo-

site north-eastern perimeter deflect easterly winds. The majority of the forest descends, 

often steeply, towards the south. Much of its complex topography is defined by the con-

tours of the island’s only water-course (an ephemeral stream known informally as Kokopu 
                                                 
3  Cartographic (plan-view) measurements are used here, generated from polygons drawn 

around the relevant bush perimeters in Google™ Earth satellite images of each island. To-
pographic measurements would give a truer (greater) area but Google™ Earth’s underly-
ing contour data are at too coarse a scale for reliable calculations.  
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Creek). The Top Bush culminates in flat, low-lying areas of regenerating akeake Olearia 

traversii forest which is advancing over the northern margins of the ‘Clears’. Akeake, a 

multi-stemmed tree daisy, is a robust ever-green coloniser of exposed forest edges and 

open spaces. On the highly eroded, very exposed Clears, scattered akeake trunks indicate 

the presence historically of a stunted forest of 3.7 – 7 metres in height (Atkinson, 2003), 

destroyed when livestock breached the windward edges of the vegetation (Ritchie, 1970). 

 

Robin Bush on Mangere Island (Figure 2.4) is distributed across approximately 7.9 ha of 

boulder debris-field below towering cliffs. The field descends steeply to the island’s east-

ern coastline. The forest is generally of lower stature than on Rangatira Island and note-

worthy for the number and longevity of mature akeake trees (Kennedy and Wilson, 2005). 

This forest is regenerating from the small remnant of original bush which survived the 

farming era (Ritchie 1970). It receives limited winter sunshine and is subject to destructive 

rock-falls from the cliffs above (Merton, 1992; pers. obs.). Continual disturbance of this 

sort is probably responsible for the dominance of akeake in the bush (Atkinson, 2003).  

 

When the black robins were reintroduced from Little Mangere Island in 1976-77, the forest 

was scattered over 4.7 ha (Flack, 1977).4 The canopy has since closed over significant ar-

eas of the debris-field and, as on Rangatira Island, the forest perimeters are expanding 

naturally. This process is being actively augmented by a long-running revegetation pro-

gramme (Atkinson, 2003). Exposure from the south has moderated as a result. Despite the 

regeneration and canopy closure, parts of the bush retain a conspicuously patchy character.  

 

2.4.1 Vegetation type 

 
The present-day forest communities of Mangere and Rangatira Islands are structurally and 

floristically less diverse than those elsewhere in the island group. A small body of histori-

cal evidence examined by this study suggests closer similarities in the past but sheds little 

light on the original pre-human character of the bush. If differing naturally from the origi-

nal unmodified forest communities on the larger landmasses (Chatham and Pitt Islands), 

                                                 
4  1.7 ha of tree cover distributed in patches over an area of 4.7 ha by 1976-77, according to 

Flack (1977); about 5 ha according to Atkinson (2003). The area was reduced to 4.2 ha in 
the winter of 1979 by a massive rock-fall (Butler and Merton, 1992, correcting Cox and 
Merton, 1980) which may have accounted for the loss of two experienced black robin 
breeders at a critical time near the point of extinction (see Chapter Three: Section 3.7). 
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the bush habitats occupied by black robins today would not have been familiar to the vast 

majority of black robins in the pre-human archipelago. The degree to which the historical 

and present-day habitats of Rangatira and Mangere Islands differ and are typical of pre-

human habitats is discussed in Appendix One. 

 

The two extant black robin populations on Mangere and Rangatira Islands occupy forest 

habitat of simple structure and modest stature. On Rangatira Island, the forest canopy (up 

to 15 metres, Roberts et al., 2007) comprises akeake and ribbonwood Plagianthus chat-

hamicus, a deciduous species whose straight stems, simple branch structure and smooth 

bark offer black robins fewer nest cavities and foraging opportunities. Matipo Myrsine 

chathamica, karamu Coprosma chathamica and, to a lesser extent, ngaio Myoporum 

laetum also compete for canopy space. The climbing vine Muehlenbeckia australis is 

abundant on the bush edge where it smothers seral vegetation and trees but deflects winds 

from the forest interiors during summer. The vine’s dense leafy walls increase black robin 

densities by augmenting nest-site and foraging opportunities (Flack, 1976a) but because it 

is deciduous, Muehlenbeckia is ineffective as shelter during winter. 

 

The canopy in Mangere Island’s smaller forest remnant, Robin Bush, reaches a height in 

places of 10-12 metres and comprises largely akeake and ribbonwood. Muehlenbeckia 

mantles bush-edge vegetation and outliers as it does on Rangatira Island. Unlike Rangatira 

Island where the forest is refreshed through relatively rapid rates of canopy collapse and 

recovery—owing to storms and the burrowing activities of oceanic petrels (Roberts, 

2004)—the forest structure and cover in Robin Bush appears to be relatively stable. Forest 

floors and substrates differ. Rangatira Island possesses broad expanses of deep soil, many 

on relatively level or gently undulating gradients. Most areas of forest floor are accessible 

to abundant oceanic petrels (seven species, all burrow-breeders; Nilsson et al., 1994; West 

and Nilsson, 1994). In contrast, the Robin Bush forest grows among massive angular boul-

ders (up to house-size) among which soil does not accumulate so extensively and is not so 

readily ‘ploughed’ by petrels.  

 

Sub-canopy vegetation on both islands varies locally in character and density. It comprises 

mahoe Melicytus chathamicus, matipo (a significant source of nesting cavities for the 

black robins), kawakawa Macropiper excelsum, and supplejack Rhipogonum scandens, a 

climbing liane. Hoho Pseudopanax chathamicus is also present in parts of the Rangatira 
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Island forest and is becoming more common, especially as seedlings on bush perimeters 

(pers. obs.). 

 

The forests occupied by black robins today are regenerating from stressed and simplified 

conditions induced by 19th- and 20th-century farming activities on both islands (see Rob-

erts et al., 2007 for analysis of change on Rangatira Island; see also Chapter Three). In the 

interior of Woolshed Bush where black robins are currently most numerous, ribbonwood is 

succeeding senescent akeake, the only canopy species of note to survive the farming years 

(Bell, 1953). In the process, a simple monotypic structure is emerging under which sub-

canopy conditions have become more open and exposed (pers. obs.). The changes have 

coincided with, but may not be directly related to, signs of a decline in the number of black 

robin territories (Kennedy and Wilson, 2005). The increasing stature of sub-canopy vege-

tation in both the Top Bush and Robin Bush seems likely to result in more open, exposed 

and arguably colder black robin habitat there too (Kennedy and Wilson, 2005). In the past 

30 years, canopy composition does not appear to have altered significantly in Robin Bush, 

though photographic comparisons with images taken in 1976-77 (Veitch, 1982) show a 

marked increase in canopy area. Canopy composition in the Top Bush on Rangatira Island 

appears to casual observation to be comparatively stable but there are few suitable histori-

cal images available for comparison.  

 

Despite centuries of human contact, rodent species have not established on either Mangere 

or Rangatira Island. Accordingly, invertebrate communities are conspicuously more di-

verse and abundant than elsewhere in the archipelago. The islands are currently free of the 

exotic mammalian predators present elsewhere in the archipelago (see below). Predatory 

buff wekas Gallirallus australis hectori—introduced to Chatham Island from New Zea-

land in 1905 (Bell, 1996), and to Pitt Island in the early 1960s (Ken Lanauze Snr, pers. 

comm.)—are also absent. The Australasian harrier Circus approximans and the introduced 

European starling Sturnus vulgaris breed, roost and forage on both islands. Both are occa-

sional predators of black robins and their nest contents (Butler and Merton, 1992). 

 

2.5 Habitat occupancy 

 
By habit, adult black robins are sedentary (Flack, 1976a, 1977) and occupy all-purpose 

territories. Observations under both managed and natural conditions show that most paired 
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adults and established bachelors remain in or near their territories throughout the year. 

Within and between seasons, adult females may also remain in or on the perimeter of terri-

tories after mates perish.  

 

Patterns of black robin distribution within the habitats and territory sizes on Mangere and 

Rangatira Islands were not measured systematically during the study period. The highest 

recorded density of breeding pairs under natural (unmanaged) conditions during full-

population monitoring was in Robin Bush (2.53 pairs ha-1, 1998-99; mean area available 

pair-1 = 0.4 ha).5 Breeding pair numbers were highest in 1998-99 on Rangatira Island 

(Woolshed Bush: 1.58 pairs ha-1; mean available area pair-1 = 0.63 ha). In the more lightly 

populated Top Bush, breeding density peaked in 1998-99 at 0.2 pairs ha-1 (mean available 

area pair-1 = 5.6 ha, much of it undefended).  

 

Under natural conditions between 1990-91 and 2001-02, movements within and between 

habitats were made predominantly by juveniles. On Rangatira Island, the majority of 

movements between the Woolshed Bush and Top Bush were made via forest corridors 

(Figure 2.3) and by female juveniles (see Chapter Six: Section 6.3). Movements by juve-

niles and unmated adults alike appeared to be random rather than related to population 

density and often resulted in individuals settling far from natal territories. Movement oc-

curred typically towards the end of the breeding season (January-March) or during the en-

suing winter. Migrants had usually settled in a new territory by early spring (September). 

 

The black robin’s powers of flight are limited but although reluctant to venture beyond 

forest perimeters, individuals may make strong flights across open country occasionally 

(Flack, 1976a). It is probable (but not certain) that individuals dispersed intermittently 

across the 260 metres of ocean between Little Mangere and Mangere Islands when both 

islands were forested, so that historically black robins on these two islands may have con-

stituted a single population genetically. Broader expanses of water appear to be insur-

mountable barriers to dispersal for present-day black robins.  

 

                                                 
5  These densities exclude unmated adults holding territory and do not refer to actual terri-

tory sizes. Based on cartographic area (see Footnote 3, Section 2.4).  
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In contrast, open terrestrial spaces appear to hold no fears for site-attached individuals 

‘homing’ to established territories. During the cross-fostering seasons (1980-81 to 1989-

90), match-making managers on Rangatira Island attempted to relocate unmated males to 

the Top Bush from Woolshed Bush. The males always returned to their original territories 

within hours or a day at most, some evidently crossing a large expanse of grassland known 

for good reason as Skua Gully (Butler and Merton, 1992; Chapter Four). The possibility of 

inter-island homing cannot be ruled out but the evidence for this is circumstantial. Two 

uniquely colour-banded adult males transferred to nearby Pitt Island (narrowest point of 

crossing, 2.2 km; direct line from point-of-release in Caravan Bush, 6 km) were reported 

back on Rangatira Island in September 2004 (Fastier, 2005; Kennedy and Wilson, 2005). 

However, neither individual was seen a second time despite intensive searching, and both 

were reported originally in proximity to local black robins with similar colour-band com-

binations.6  

 

2.6 Foraging 

 
The foraging niche, ecology and behaviour of black robins closely resemble those of sym-

patric Chatham Island tomtits (McLean et al., 1994; Powlesland et al., 2001). Black robins 

are not known to eat fruits or seeds as the tomtits and mainland congeners do (Powlesland 

et al., 2000; Higgins and Peter, 2002), nor do they possess the food-caching habit typical 

of the New Zealand robins (Fleming, 1950b; Powlesland, 1980). Like the Chatham Island 

tomtits, black robins forage diurnally for invertebrates in ground litter, tree crevices and 

sub-canopy vegetation. Crepuscular foraging on nocturnally active prey has also been re-

corded (New Zealand Wildlife Service, 1983).  

 

Black robins forage close to the ground more often than close under the canopy (Flack, 

1976a), and spend more time than tomtits foraging on the ground and on trees (McLean et. 

al. 1994). Ground prey is captured by pouncing from low branches, raking vegetation on 

the ground or through hopping excursions across the forest floor. Frequent short flights are 

taken for insects in foliage or on tree-trunks and branches (Higgins and Peter, 2002). Tak-

                                                 
6  One was transferred as a putative juvenile. Despite having no fixed territory on Rangatira 

Island, it was reported to be ‘home’ within six months of transfer. The other, a five-year-
old site-attached male, had been transferred two years earlier and had held territory with 
a mate on Pitt Island. Its return ‘home’ within eight months of its last sighting on Pitt Is-
land seems highly improbable.  
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ing insect prey on the wing was observed on Little Mangere Island where ground prey was 

depauperate (Flack, 1976a) but has seldom been observed in the richer prey environments 

of today’s habitats. Unlike the tomtits, black robins forage very rarely beyond the forest 

interior or in open spaces, a behavioural constraint which limits the available prey area and 

obliges them to forage over greater distances if living in smaller or narrower tracts of for-

est (Flack, 1974b, 1976a).  

 

Prey size and type have not been quantified systematically (Wilson and Kennedy, 2008) 

and few observers have noted what is being caught and consumed when reporting breeding 

activity. Incidental field data exist for feeding frequency at the nest but systematic obser-

vations of frequency are scarce. Marris (1988) reported feeding visits to fledglings and 

nestlings averaging one every 3.5 minutes over two 12-hour periods, but this visit rate was 

affected by observer presence and supplementary-feeding. On Mangere and Rangatira Is-

lands, where invertebrate diversity and abundance have not been modified by introduced 

mammalian pests, diet is highly varied. Natural prey comprises many winged and flight-

less invertebrate taxa and most life-stages (pupae, larvae, adult)—spiders, beetles, bugs, 

weta, worms, flies, moths, aphids, cockroaches and caterpillars (Flack, 1976a, Higgins and 

Peter, 2002; Kennedy, 2006). Large natural prey can be taken; adult black robins can sub-

due (and consume) cave wetas Novoplectron serratum and Talitropsis megatibia up to 20 

mm in body length, after removing legs and antennae by violent flicking and dashing 

against logs (pers. obs.). Black robins readily consume the larvae of cultivated mealworms 

Tenebrio molitor and waxmoths Galleria mellanella used commonly to aid census work 

and for supplementary-feeding after 1987-88 (Kennedy, 2010). 

 

On Pitt Island, where introduced mice Mus musculus, pigs Sus scrofa and weka have se-

verely depleted insect life, especially ground-dwelling species (Rowan Emberson, pers 

comm.), the versatile prey preferences of black robins appear sufficient to sustain the effort 

of raising nestlings on predominantly arboreal prey (Kennedy, 2006), but poor rates of 

breeding success (Chapter Four) hint at nutritional inadequacy. Observations on Mangere 

and Rangatira Islands indicate that black robins do not favour blow-flies (Family: Cal-

liphoridae), the ubiquitous black carabid beetles (Family: Carabidae) and some species of 

caterpillar, particularly of the seasonally abundant noctuid or owlet moth Homohadena 

fortis (John Dugdale, pers. comm; Wilson and Kennedy, 2008).  
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2.7 Life-span 

 
Black robins are capable of living up to 14 years of age but life-spans longer than 12 years 

are exceptional (< 1% of those hatched between 1980-81 and 2001-02). Life-expectancy 

can vary significantly between populations but not between sexes. Contrary to Mallinson 

(1992), the field data available to this study indicate that on average black robins achieving 

adulthood under natural conditions survive to four years (see Chapter Six: Table 6.17). 

Population-scale variations in average life-expectancy are examined later in this thesis.  

 

2.8 Breeding 

 
2.8.1 Breeding age 

 
Contrary to Merton (1983c) and Higgins and Peter (2002), sexual maturity is achieved in 

both sexes in the season following fledging. Late-season juveniles can breed in their first 

adult season at less than 12 months of age. The majority of black robins surviving ≥ one 

year first pair and breed as yearlings under natural conditions (see Chapter Six: Table 

6.16). Higher proportions of females breed, and produce independent offspring, at year one 

(Table 2.2). Both sexes can raise viable offspring at very advanced ages (≤ 12 years; this 

study).  

 

 
Table 2.2 Percentage by sex of black robin recruits known to have first paired 

and bred as yearlings under natural conditions on Mangere and Ranga-
tira Islands (black robins hatched between 1990-91 and 2001-02). N for 
each productivity class is the total qualifying. Recruitment is defined as 
ultimately producing eggs (males, n = 192; females, n = 181). 

 
 

 Males   Females 

Known at year one to have n %  n % 

      

Paired 187 68.4  169 85.8 

Laid eggs 172 58.1  158 72.2 

Produced juvenile(s) 145 40.7  124 53.2 

Produced juvenile(s) at first attempt 85 69.4  73 89.0 
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The ages at which females first produced juveniles between 1990-91 and 1998-99 give a 

mean generation time under natural conditions of 1.7 years.  

 

2.8.2 Breeding system 

 
Breeding in the black robin’s patriarchal social system is territorially based. During breed-

ing, both sexes defend territories (pers. obs.) and, as in the South Island robin (Flack, 

1979), the male response to conspecific and tomtit intruders alike is usually the more im-

mediate and aggressive. During the balance of the year, responses to intruders tend to be 

less aggressive. If resident males die during breeding, experienced females may remain 

alone in the territory or on the perimeter until breeding ceases or a new mate is found. 

Typically, paired males and females associate outside the breeding season (Butler and 

Merton, 1992). Territory fidelity is strong between years and linked predominantly to sur-

vival of the occupying male (pers. obs., collated data).  

 

Males attract mates to territories through individually distinctive song and court approach-

ing females through pursuit flights and gifts of prey items. Males subsequently monopolise 

the food supply in order to subjugate receptive females, and harry them relentlessly to in-

duce egg-laying, incubation and renesting. Harassment of the female commonly includes 

feather-wrenching, severe cases of which can visibly deplete her dorsal plumage. Food 

monopoly and harassment diminishes only when both adults are required to provision their 

nestlings and fledglings (pers. obs.). 

 

Black robins are socially and sexually monogamous. On very rare occasions, males were 

observed attempting to breed simultaneously with two females, but breeding always failed 

(pers. obs.). Concurrent polyandry has not been recorded. As in some other Petroica spe-

cies (for example, North Island robin, Armstrong et al., 2000; Powlesland et al., 2000; and 

Australia’s red-capped robin P. goodenovii, Dowling, 2003), sequential polyandry has 

been observed but only rarely. In 1998-99, for instance, three older females on Rangatira 

Island deserted their mates mid-brood or after fledging and paired with another male. All 

three deserted males fledged and raised their offspring alone (collated data). The reasons 

for the three desertions were not clear but the very low incidence of such desertions does 

not suggest that sequential polyandry is a strategy to maximise individual reproductive 

output. 
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As with many monogamous species, pair-fidelity within and between years is strong but 

not absolute (Butler and Merton, 1992). Data from this study agree with Merton (1992) 

that young breeders are more inclined to switch mates. Of 14 females deserting pairings 

after laying (5% of all females reaching breeding age), ten were one or two years old (both 

management phases, this study). Eight deserted after breeding failure. Commonly, new 

pair bonds are formed locally but in unmanaged seasons, young females on Rangatira Is-

land were observed to move far from the old territory before pairing again (for example, 

from the Woolshed Bush to the Top Bush). Females of any age may switch mates between 

seasons, even if the original male is still alive. Contrary to Higgins and Peter (2002), it is 

difficult to define the extent of divorce by males because they are much less inclined to 

abandon a territory. Even in the event of successive breeding failures, life-long pairings are 

not uncommon and stable pairings of shorter duration are frequent between seasons. The 

longest recorded pairing under natural conditions endured into a ninth season before the 

female died (Mangere Island, 1991-92 to 1999-00). The location and identity of paired 

adults may be predicted with reasonable assurance from year to year once the pair-bond 

has been consummated through breeding (successful or otherwise).  

 

Rates of promiscuity (if any) have not been quantified in black robin populations, despite 

the duration and intensity of field observations. For this reason, the paternity of offspring 

cannot be assigned with absolute confidence to the social male. The determination of ex-

tra-pair paternity (EPP) through molecular analyses is frustrated by the anomalously low 

genetic diversity of black robins (Ardern and Lambert, 1997; Ma and Lambert, 1997a). 

This is also the case for intraspecific brood parasitism (ISBP). Between 1980-81 and 2001-

02, the extremely low incidence (n = 5) of black robin clutches in excess of the accepted 

maximum of three eggs suggests that an ISBP habit is highly unlikely. The five anoma-

lously large clutches are believed to have resulted from the territorial female laying eggs 

alongside a previous undetected clutch in the same nest. Analysis of EPP and ISBP in New 

Zealand robins also implies a very low probability of infidelity and egg-dumping (Holmes, 

1994; see also Ardern et al., 1997a; Taylor et al., 2008, and Jamieson, 2009, for confirma-

tion of genetic monogamy in North Island and South Island robins). The probability of 

EPP and ISBP in black robins is made lower still by the aggressive eviction of black robin 

trespassers from breeding territories, the strength of female-female hostility, and the dura-

bility of pair-bonds.  
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Contrary to Higgins and Peter (2002), instances of black robin hybridisation have been re-

corded. Three black robin females bred with sympatric tomtits in various seasons between 

1980-81 and 1998-99. Managers intervened to prevent another apparent cross-pairing 

(Butler and Merton, 1992) and other cross-pairings were suspected on Mangere Island 

(pers. obs.). No black robin males are known to have cross-bred. For a detailed assessment 

of hybridisation events, see Chapter Eight (Hybridisation).  

 

2.8.3 Nesting 

 
Like the Chatham Island tomtit, black robins are hollow- and cavity-nesters. Females se-

lect nest-sites in hollow tree-trunks, branches, in dense mantles of Muehlenbeckia or even 

(rarely) in rock cavities. Concealment from extant avian predators such as harriers and 

brown skuas Catharacta skua lonnbergi is usually good in such sites. However, more so 

than appears to be the case for the tomtits (Powlesland et al., 2000), nests can also be built 

in sites exposed to weather, nocturnal petrel-strikes or predatory starlings (for example, in 

the hollow tops of decaying matipo stumps which are common in the forest interior on 

Rangatira Island). Females will also build in highly unstable sites such as rotten tree-

trunks. Nest-sites may range from ground level to the upper strata of the forest, though 

sites in or near the crown structures of trees are uncommon. Sites easily accessible to ob-

servers (one to three metres above ground level) are frequent (pers. obs) and most are ≤ 10 

metres above ground (Nilsson et al., 1994). Females will also use artificial nest-boxes. 

Unlike other insular congeners (Snares Island tomtit, McLean and Miskelly, 1988; Auck-

land Island tomtit, Fleming, 1985), no black robin nests have been found in the open or in 

vegetation and human-made structures outside forest cover. 

 

Typically, females chose new sites for successive nests, though a few experienced females 

re-used familiar nest cavities in successive seasons after 1990-91. Re-use of cavities in the 

same season (and use of the same nest) has been observed on only five occasions between 

1990-91 and 2001-02, which is less than 0.46 % of the 1070 clutches laid (Chapter Six: 

Table 6.14). The preference for new nests and sites imposes a time-cost on breeding and 

presumably an additional energy cost. Nests are built by females alone, typically in short 

episodes of frantic activity over three to four days (pers. obs.). As with the South Island 

robin (Powlesland, 1983), building activity decreases as the nest nears completion (so 

much so at times that observers may often believe the partially prepared nest to be aban-
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doned). On occasions, several nests may be started before one is completed. Nest material 

is collected from the ground (feathers, leaves, moss, twigs) and from standing vegetation 

(decaying tree fibre, cobwebs). Nest composition varies little on Mangere and Rangatira 

Islands. A base is formed from coarse materials (tree fibre, large leaf skeletons, small 

twigs bound with cobwebs), within which a second-stage bowl is built comprising moss, 

strands of soft ribbonwood fibre, small leaf skeletons. The final nest-bowl is a deep open 

cup lined with moss and copious feathers from petrels and terrestrial birds. A very late 

black robin nest on Pitt Island containing a 12-day-old nestling (12 February 2006) con-

tained no feather-lining at all, perhaps because suitable feathers were unobtainable locally 

(Kennedy, 2006).7 

 

2.8.4 Breeding cycle 

 
A successful breeding cycle (nest-building to independent offspring) takes approximately 

90 days depending on the intervals between nest completion and egg-laying, the number of 

eggs laid and the time taken to raise offspring to independence. Females may renest if suc-

cessful, and cycles can overlap if renesting commences after the previous brood fledges. 

Relaying intervals recorded on Rangatira Island for 18 renesting females in the 1990-91, 

1997-98 and 1998-99 seasons averaged 12.6 days (range, 4 - 28 days). Females may begin 

construction of new nests as soon as four days after breeding failure (Butler and Merton, 

1992). Desertion of a failed clutch can take as long as 41 days (two females, Rangatira Is-

land, 1996-97) and 45 days (one female, Rangatira Island, 1991-92). Desertion after ≤ 10 

days after the due hatch-date is more usual. 

 

First eggs may be laid almost immediately upon completion of the nest but delays are more 

usual, sometimes of ten days or more (this study).8 Eggs are laid on consecutive days or 

very occasionally longer (Butler and Merton, 1992). The few shorter or longer intervals 

                                                 
7   On Little Mangere Island, a nest believed by Fleming (1939b: 507) to be a black robin’s also 

contained few feathers (‘[the nest] was fairly bulky, with a small cup neatly lined with a 
few feathers’). But this was early January, at or near the end of breeding, and the nest may 
have lacked feathers because it had already served its purpose.   

8  Daily observations during the nest-building phase were uncommon between 1990-91 and 
2001-02 so that the precise intervals between nest-completion and the laying of first eggs 
were not quantified systematically. The data available for Woolshed Bush and Top Bush 
pairs in 1990-91 indicates a mean delay of 6.12 days (n = 16, range, 3 - 11 days), but this is a 
rough guide only. 
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recorded under natural conditions probably result from unreliable or intermittent observa-

tions. Incubation, by the female alone, generally begins on the laying of the final egg and 

lasts 18 days (this study, confirming Butler and Merton, 1992). The incubation period did 

not vary with successive changes in management regimes. As with South Island robins 

(Powlesland, 1983), a female may continue to incubate if her mate dies but a clutch will be 

abandoned if the female dies.  

 

Usually, all eggs hatch within 24 hours. Only the female broods the nestlings but both par-

ents feed them. The transition to feeding nestlings is typically the stage at which yearling 

males fail in their parental duties.9  

 

There is no evidence of obligate brood reduction or siblicide. 

 

Intervals to fledging vary, perhaps in accordance with environmental conditions and paren-

tal experience. On average, nestlings fledge 22 days after hatching (range 19 - 25 days; 

collated data) and typically all nest-siblings fledge during the same day. Fledglings are al-

tricial and fed by both parents which often but not always divide the brood amongst them-

selves and retain the division. At first, some fledglings may roost on the ground briefly but 

thereafter siblings tend to remain together above ground close to nest sites until flight im-

proves and they begin to wander independently. Fledglings straying too far into neighbour-

ing territories are at risk of abandonment and starvation. In at least two observed instances 

after 1990-91, a stray fledgling was fed by an unrelated breeding adult in a neighbouring 

territory (male and female respectively, each neglecting its own fledgling; collated data). 

Fledglings in maternal care are also at risk of starvation she renests before they are suffi-

ciently advanced towards independence. Fathers do not automatically shun fledglings 

abandoned by renesting mates nor do they automatically abandon fledglings after the sec-

ond brood hatches (pers. obs.). But many fledglings die of starvation at these times.  

 

The independence threshold is difficult to discern precisely and intervals vary greatly be-

cause fledglings differ in their willingness to become independent. Data from non-

management seasons indicate that independence is rarely achieved at fewer than 35 days 

after fledging (contrary to Nilsson et al., 1994), and intervals of up to 60 days have been 

                                                 
9  Historically a cue for extra vigilance at nests during management seasons (pers. obs.). 
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recorded (this study). Butler and Merton (1992) reported 40 to 65 days for the intensive 

management seasons. Juveniles may linger in or near the territory during the balance of 

their natal season and will beg for food from any adult, even if nutritionally independent. 

Others disperse significant distances almost immediately (a common reason for assump-

tions by observers that they have died). Parents do not tolerate offspring in the territory 

once they are independent. Thus, offspring do not help with parenting or territory defence. 

No other forms of co-operative breeding (creching, parenting of other pairs’ young) have 

been observed.   

 

2.8.5 Timing of egg-laying 

 
The seasonal onset of egg-laying is unsynchronised and experienced pairs may not lay 

first. Females commence nest-site prospecting and nest-building in or about the last week 

of September. Eggs may be laid as early as the first week of October. The earliest recorded 

date for the commencement of a clutch is 1 October (estimate based on count-back from 

fledging date, Mangere Island, 1992-93). First-egg laying peaks in the last week of Octo-

ber (Figure 2.5). Laying can be deferred in some years by up to four weeks for reasons 

which have not been clarified but may relate to climatic conditions or food availability. 

 

Egg-laying rarely extends beyond mid January, by which time breeding adults are retiring 

to moult. The latest recorded clutch in any season was commenced on 27 January 1997 

(Top Bush, Rangatira Island). A clutch estimated to have commenced on 18-19 January 

1992 (Woolshed Bush, Rangatira Island) is the latest known to have produced offspring 

surviving to adulthood (fledging date c. 28-29 February 1992; collated data).  

 

Most first clutches are laid in late October and November but some pairs may not com-

mence egg-laying until December (Figure 2.6).  

 

These egg-laying intervals are more extended than the very short period of egg-laying re-

ported in the food-stressed ancestral population on Little Mangere Island between 1973-74 

and 1975-76 (minimum, about one month, late October to mid-November; maximum ≤ 56 

days, mid-October to mid-December; Flack, 1976a). 
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Figure 2.5 Weeks in which first eggs were laid in all clutches (n = 757) under 

natural conditions in the two black robin populations on Mangere and 
Rangatira Islands, 1990-91 to 1998-99. Weeks measured in seven-day 
increments (1-7, 8-14 etc), except for the last week which represents 
the balance of days remaining in each month. Data are from observed 
and estimated dates of first-egg laying.  

 

 

Most pairs attempt to nest once only during a season (51.5% of all pairs breeding between 

1990-91 and 1998-99; collated data). Fewer pairs make second and third attempts after 

successful first nesting (41.4% and 6.6% of pairs respectively in the unmanaged seasons). 

Second attempts may succeed also, but no successful third attempts were observed under 

natural conditions. Three females laid four clutches in a season, each with their original 

mate, but only one of these 12 breeding attempts succeeded in producing juveniles. One 

further female failed with four clutches in a season, having switched mates for the last. 

Overall between 1990-91 and 2001-02, each pair laid 1.54 clutches on average (Section 

2.11: Table 2.5).  

 

2.8.6 Clutch sizes 

 
Flack (1976a) reported two-egg clutches only in known nests of the ancestral population 

on Little Mangere Island (1972-73 to 1975-76) but on Rangatira and Mangere Islands, 
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clutches comprise one to three eggs. The majority contain two eggs (74.1% of 996 clutches 

of verified size laid between 1980-81 and 2001-02). The remainder comprised a single egg 

(9.5%) or three eggs (16.4%). Mean clutch size is 2.02 eggs (all populations combined, 

1990-91 to 2001-02; Table 2.5). 

 

 

 

Figure 2.6 Weeks in which black robin pairs laid first clutches under natural condi-
tions in the two populations on Mangere and Rangatira Islands, 1990-91 
to 1998-99. Weeks measured in seven-day increments (1-7, 8-14 etc), 
except for the last week which represents the balance of days remaining 
in each month. Data are from observed and estimated dates of first-egg 
laying in all first clutches.  

 

 

2.8.7 Mean reproductive output under natural conditions 

 
Productivity differed between populations (see Chapter Six for analysis of historical varia-

tions). Across all seasons in the Mangere and Rangatira Island populations combined, an-

nual average output per pair was 1.86 nestlings, 1.37 fledglings and 1.13 juveniles. Juve-

niles surviving ≥ one year averaged 0.81 pair-1 year-1 (Table 2.5).  
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Of all eggs laid between 1990-91 and 2001-02, 60.0% hatched. After egg mortality is 

taken into account, the hatch-rate for eggs incubated full-term was 74.8%. Of nestlings 

produced, 73.4% fledged and 60.8% survived to independence (82.9% of fledglings). 

Across all unmanaged seasons, 71.5 % of juveniles achieved adulthood (Table 2.5). 

 

Nest success in both populations combined (measured as the proportion of nests producing 

one or more juveniles) was 50.4% between 1990-91 and 2001-02. The lowest measure of 

nest success in any one year was recorded in the Top Bush (19.0%, 1995-96), and the 

highest was on Mangere Island (85.7%, 1992-93).     

 

2.8.8 Maximum numbers of juveniles raised 

 
Black robins (including individuals of either sex bereaved or deserted by mates) are capa-

ble of raising all clutch-siblings to independence (maximum, three; collated data). Under 

natural conditions, the majority of successful breeding pairs raised a total of one or two 

juveniles season-1 from all their breeding attempts (46.6% and 42.5% respectively of all 

pairs monitored, 1990-91 to 2001-02). Significantly fewer (7.9%) raised three juveniles 

season-1, and four is the maximum raised in a single season (3.0% of all pairs). The maxi-

mum number of broods a pair can raise to independence in any unmanaged season appears 

to be two (15.6% of total successful pairs, 1990-91 to 2001-02) but most pairs raise only 

one brood (84.4% of successful pairs; Section 2.11: Table 2.4).  

 

2.9 Mortality 

 
2.9.1 Potential causes 

 
The causes of black robin mortality are numerous and have not been quantified systemati-

cally. In field records for the study period, the cause of mortality is frequently a matter for 

speculation. Explaining egg-failures, the disappearance of birds between observations and 

the cause of injuries in those found dead proved particularly problematic for field-workers. 

For this reason, it is not possible to distinguish natural mortality (infirmity, poor parenting, 

infertility, pair-bond failure, old age, intraspecific aggression) from losses—confirmed or 

otherwise—associated with predation (starlings, harriers), nest evictions by Chatham Is-

land red-crowned parakeets Cyanoramphus novaezelandiae chathamensis (Melanie Mas-

saro, pers. comm.) or multiple forms of misadventure (disease; mite infestations; entan-
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glement in nest material, vegetation or cobwebs; exposure to poor weather; nest-site col-

lapse; nocturnal petrel-strikes; straying from parent care; accidents in the nest).  

 

2.9.2 Loss rates 

 
On average during seasons of no conservation management, 16.3% of all eggs laid were 

lost to factors unrelated to fertility or fitness (that is, through predation and misadventure). 

This rate of loss includes ‘rimshots’ (eggs laid on or over nest-rims). The incidence of rim-

shots varied annually after 1984-85 when the phenomenon was first observed in the Top 

Bush on Rangatira Island. At its most severe, 20.4% of all eggs laid in a single season 

were rimshots (1989-90, all populations combined). Under natural conditions, rimshot fre-

quency averaged 4.2% annually, significantly less than during intensive management sea-

sons (12.9%). The reasons for the difference may be attributable in part to under-reporting 

through failure to detect some rimshots during the post-management seasons.10 

 

The mean annual proportion of full-term eggs failing to hatch during non-management 

seasons was 25.2% across both populations. Infertility was not measured systematically 

during these seasons, and I have treated many field diagnoses of egg failures as likely to be 

unreliable.11 

 

Mortality in all hatched black robins was highest in pre-yearlings (56.1% of all those 

hatched between 1990-91 and 2001-02 inclusive). Mean annual nestlings mortality was 

25.9% (all populations combined). Of those surviving to fledge, 17.6% perished on aver-

age before achieving independence. Juvenile mortality was higher: on average 29% per-

ished annually before achieving adulthood at year one. Mean annual mortality of adults 

within seasons was higher for females (9.7%) than for males (7.3%) under natural condi-

                                                 
10  During the intensive management phase, detection and management of every egg was 

imperative to maximise nest productivity. During the post-management seasons, nest in-
spections no longer needed to be so thorough.   

11   Normally, failed eggs (if retrieved at all) were broken open but relatively few observers 
were practised enough to determine cause of death through casual inspection, especially 
if egg contents were in advanced states of decay. For this study, I checked diagnoses re-
ported for candled eggs in field records for 1992-93 against Massey University’s expert 
pathology for the same eggs (Cork, 1993). The eggs had been candled to preserve them 
for the later post mortem analyses. Many of the field predictions of infertility proved to be 
incorrect. 
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tions. Between-season (winter) mortality in breeding-age adults was more severe—16.1% 

of males and 15.5% of females were lost on average.  

 

As black robins grew older, overall mortality rates increased only slightly until year nine, 

after which mortality increased sharply (Figure 2.7). 

 

2.10 Sex ratios 

 
Under natural conditions between 1990-91 and 2001-02, tertiary (breeding-age) sex ratios 

fluctuated seasonally in each population (these ratios are calculated from pre-breeding cen-

suses on a ‘head-count’ basis, as appropriate for monogamous mating systems; Mills, 

2007).  

 

Large imbalances among unmated individuals were unusual and short-lived. On Mangere 

Island, for example, spare females outnumbered spare males nine to four in 1993-94 but by 

the following season this bias had eased to four females to two males (see Chapter Eight: 

Figure 8.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Mortality rates at each age for black robins (both sexes combined) 
hatched in the two populations on Mangere and Rangatira Islands 
during non-management seasons, 1990-91 to 2001-02 (n = 1354). 
None died at year 11. 
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Among the unmated breeding-age birds in the Top Bush on Rangatira Island, females out-

numbered males in six of nine non-management seasons (female-to-male ratio x̄ = 1.01, 

range 0.82 – 1.2; 1990-91 to 1998-99). On Mangere Island, seasonal male surpluses were 

evident in six of twelve seasons (female-to-male ratio x̄ = 0.97, range 0.71 – 1.5; see Fig-

ure 8.4). Spare breeding-age females in the Woolshed Bush were always outnumbered by 

males in the nine non-management seasons between 1990-91 and 1998-99 (female-to-male 

ratio x̄ = 0.84, range 0.73 – 0.93).   

 

2.11 Comparison with New Zealand and Australian congeners  

 
Black robin life-history information invites comparison with the traits and breeding of the 

12 other Petroica species in the temperate regions of New Zealand and Australia (Tables 

2.3 to 2.7). To what extent does the black robin differ from its relatives in both regions? It 

is the most immediately threatened of the south temperate Petroica (Higgins and Peter, 

2002; Department of Conservation, 2007a), suggesting the probability of one or more criti-

cal vulnerabilities.  

 

Interspecific comparisons of the Petroica are troubled by a lack of basic biological and 

life-history information for many of the 12 congeners. In studies for which information is 

available, authors quantify demographic variables in different ways (Rowley and Russell, 

1991). Few studies are long enough to explore longevity and longer-term trends in survi-

vorship. And few span the entire breeding season to gauge reproductive success in terms of 

juvenile production and survival, defaulting instead to the demographically less informa-

tive measure of fledgling output (Russell, 2000). The ecologies of widely distributed spe-

cies are subject to dislocating spatial and temporal variations between populations. The 

black robin is a rare exception on all such counts. The effects of introduced predators on 

nesting success and mortality rates complicate comparisons within and between species on 

both sides of the Tasman. In mainland New Zealand, few undisturbed populations of 

predator-naïve robins and tomtits are available for study. In what follows, therefore, I have 

gleaned what is capable of comparison from a diverse range of studies in diverse ecologi-

cal contexts.  

 

The black robin’s social and breeding systems are more typical of New Zealand than Aus-

tralian congeners, though the regional points of difference are few. Like its New Zealand 
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relatives, black robins are predominantly socially and sexually monogamous, breeding is 

strongly territorially based, and pair-bonds tend to endure, often until one of a pair dies. 

Most Australian Petroica are believed to be monogamous too but little is known of fidelity 

in species such as the pink robin P. rodinogaster and rose robin P. rosea (Higgins and Pe-

ter, 2002). Molecular analyses have detected high rates of extra-pair paternity in the red-

capped robin (Dowling et al., 2003). Like all other New Zealand Petroica, black robins are 

sedentary. Mated and single black robin adults remain in or near their territories through-

out the year. In contrast, seasonal nomadism is a feature of several Australian species. The 

flame robin P. phoenicea (Robinson, 1990b), red-capped robin (Dowling, 2003) and rose 

robin (Higgins and Peter, 2002) relinquish territories and disperse to varying extents from 

breeding habitats between seasons. Co-operative breeding, a reproductive strategy com-

mon among southern hemisphere passerines (Woinarski, 1985), is unknown in any of the 

regional Petroica. With the observed exception of one scarlet robin population at Nimmi-

tabel (south-eastern New South Wales, Robinson, 1990b) and the Snares Island tomtit 

(McLean and Miskelly, 1988), all of the species are multi-brooded (capable of fledging 

more than one brood in a season).  

 

2.11.1  Habitat requirements 

 
The black robin inhabited a variety of tall woody vegetation types in the pre-human Chat-

hams archipelago. This is consistent with the habitat preferences of congeners in both re-

gions (Higgins and Peter, 2002). But unlike all New Zealand and Australian Petroica rela-

tives, the black robin is more obviously a closed-canopy, forest-interior specialist in its 

breeding and foraging habits. North Island robins translocated to fragmented habitats on 

Tiritiri Matangi Island appear to be similarly constrained (Armstrong et al., 2000) but this 

may be an artefact of altered forest cover on the island. As a result, breeding-site choices 

and foraging areas are more limited for the black robins than for congeners behaviourally 

tolerant of open spaces. Unlike New Zealand and Australian relatives, black robin juve-

niles and adults appear to possess neither the powers nor the instinct for long-distance dis-

persal outside forest margins or over open country or water. The ancestral population’s 

decline in Little Mangere Island’s contracting and disintegrating forest cover, assisted by 

the high rates of breeding failure observed in marginal habitats (Flack, 1976a, 1977; see 

also Chapters Three, Four and Six), suggest that this specialised forest-interior habit makes 
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black robins are more sensitive than Petroica relatives to reduction in the extent and qual-

ity of forest cover. 

 

2.11.2  Longevity and survivorship  

 
Black robin longevity and survivorship are very well understood but almost nothing is 

known of life-spans in the other regional congeners, especially in New Zealand (Table 

2.3). What few data exist for other Petroica species suggest that black robin longevity 

(mean and absolute) in the two small recovering populations may not be exceptional, and 

is certainly not a liability. Annual survivorship exceeds the few rates recorded or estimated 

for Australian species, all of which co-exist with native and introduced predators. 

 

Similar rates of survivorship in black robin males and females of breeding age do not sug-

gest partitioned breeding effort. Both sexes appear to bear equivalent reproductive costs. 

This may not be true of red-capped robins in Terrick Terrick National Park, a higher pro-

portion of whose females disappeared after each of two seasons (Table 2.3). However, this 

imbalance may result from undetected dispersals from the study site (Dowling, 2003).  

 

2.11.3  Breeding densities 

 
McLean and Miskelly (1988) observe that in addition to slow breeding strategies, insular 

terrestrial bird species usually breed at higher densities than their mainland equivalents. 

Predation pressure (natural or otherwise) on almost all mainland and some insular popula-

tions complicates assessment of relative Petroica densities. The few New Zealand and 

Australian comparisons I have been able to make in Tables 2.4 and 2.6 support McLean 

and Miskelly’s observation. 

 

On small islands which are free of introduced mammalian predators and in which birds are 

rarely affected by native avian predators, three New Zealand Petroica species (including 

the black robin) breed at the highest reported densities for southern temperate-zone Petro-

ica. South Island tomtits achieve densities of five pairs ha-1 on Little Solander Island (4 ha) 

and the Snares Island tomtit study population (9.6 ha) breeds at 2.7 pairs ha-1 (McLean and 

Miskelly, 1988). 
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Table 2.3 Longevity (in whole years) and mean annual rates of adult survivorship in Petro-
ica species of the temperate New Zealand and Australian regions. Asterisks (*) 
denote values for unspecified sex(es). Red values indicate data from predator-
free environments; black values indicate data from predator-affected populations. 
Blank fields indicate absence of data.  

 

 Longevity 
Maximum age (mean) 

 Survivorship 
Annual average (%) 

 Male Female  Male Female 

New Zealand      

 Black robin 1 

 P. traversi 14 (4.2) 13 (3.7) 
 

83.9 84.5 

 North Island robin 
 P. longipes    

 
  

 South Island robin 
 P. australis   

 
* 38.6 2, * 70 8  

 North Island tomtit 
 P. macrocephala toitoi   

 
  

 South Island tomtit 
 P. m. macrocephala   

 
  

 Chatham Island tomtit 
 P. m. chathamensis   

 
  

 Snares Island tomtit 
 P. m. dannefaerdi   

 
  

 Auckland Island tomtit 
 P. m marrineri   

 
  

Australia      

 Flame robin 
 P. phoenicea   

 
* 70 - 75 7  

 Scarlet robin  
 P. multicolor  >10 3 

 * 70 - 75 7 

* 70.9 4  

 Rose robin 
 P. rosea  > 9 3 

 
  

 Pink robin 
 P. rodinogaster   

 
  

 Red-capped robin 
 P. goodenovii *>5 3, >3 5  > 3 5 

 
62.5, 45 5, * 79 6 31, 41.9 5 

       
 

1 Means for birds hatched in post-management 
years and achieving adulthood (year one; data 
from this study) 

2 Kowhai Bush, Kaikoura (Powlesland, 1983) 
3 Australian Bird and Bat Banding Scheme 

(ABBBS) 
4 Norfolk Island (Major, 1989) 

5 Ages for ten males, three females in Terrick 
Terrick National Park, Victoria; survival rates 
for two consecutive years, potentially affected 
by dispersal from study site (Dowling, 2003) 

6 New South Wales; extrapolation allowing for 
the diminishing effect of emigration on observed 
survival (Major and Gowing, 2002) 

7 Nimmitabel, New South Wales (Robinson, 
1990a, cited in Robinson, 1990b) 

8 Kowhai Bush, Kaikoura (Flack, 1979) 
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These densities represent natural (presumably stable) states, whereas the recorded peak 

density of 2.53 pairs ha-1 for black robins on Mangere Island (Robin Bush, 7.9 ha) is best 

treated as intermediate, since the population was rebuilding from very low numbers in a 

slowly recovering fragment of forest habitat. This qualification applies also to the maxi-

mum recorded densities on Rangatira Island (Woolshed Bush, 26 ha; 1.58 pairs ha-1). The 

substantially lower peak density of 0.2 pairs ha-1 in the larger 84-hectare Top Bush forest 

on Rangatira Island (Figure 2.4) appears to be a function of other limiting factors and not 

symptomatic of densities expected in larger habitats. The Top Bush may be sub-optimal 

habitat for black robins (see Chapter Six) and a further indication of sensitivity to habitat 

type. Unexplained post-peak declines in both black robin populations (Chapter Six) have 

reduced breeding-pair densities but census data do not permit reliable assessments of pair 

numbers today. 

 

The density maxima reported for predator-affected Petroica species are conspicuously 

lower (Table 2.6), especially among the Australian robins which evolved in the presence of 

native avian, marsupial and reptilian predators (Trevelyan and Read, 1989) and are now 

preyed upon by introduced mammalian predators. At the 300-hectare Nimmitabel study 

site, nomadic flame robins and resident scarlet robins achieved densities of 0.04 pairs ha-1 

and 0.07 pairs ha-1 respectively (Robinson, 1990b).  

 

Data for predated robins and tomtits on the New Zealand mainland vary considerably be-

tween populations but indicate higher overall breeding densities despite all species being 

predator-naïve (Table 2.4). For example, South Island tomtits bred in Banks Pensinsula 

habitats at 0.63 pairs ha-1 (Kearton, 1979), and Kikkawa (1966) estimated a mean of 0.53 

pairs ha-1 over 14 widely distributed South Island populations (range 0.14-0.88 pairs ha-1). 

The breeding densities of North and South Island robin populations have not been quanti-

fied in studies.  

 

Explaining these differences is beyond the scope of this study. What is noteworthy, how-

ever, is that black robin populations have been able to sustain themselves, and grow, at his-

torical densities as low as 1.32 and 1.37 pairs ha-1 (Mangere and Rangatira Islands respec-

tively) at the start of natural recovery in 1990-91 (19 pairs in the Woolshed Bush; six pairs 

on Mangere Island; Chapter Six: Table 6.8). At its peak, the Top Bush density of 0.2 pairs 

ha-1 was clearly insufficient to support population growth under natural conditions (Chap-
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ter Six). In contrast, the congeners whose pair distributions are reported have persisted at 

lower densities in the presence of predators and regardless of their evolutionary histories. 

This is true also of the sympatric Chatham Island tomtit which persisted in Chatham Is-

lands habitats long after introduced mammalian predators extirpated black robins (Chapter 

Three). 

 

2.11.4  Sexual maturity 

 
Black robins do not differ from regional congeners in the ability of both sexes to breed as 

yearlings (Tables 2.4 and 2.6) but few studies indicate whether first-year adults in other 

Petroica species are as successful as black robins in producing juveniles at their first at-

tempt (Chapter Six: Table 6.16). 

 

In the predator-affected population of South Island robins at Kowhai Bush (Kaikoura), fe-

male yearlings were significantly less likely than older females to fledge offspring, in part 

because nestlings were preyed upon more frequently (for undisclosed reasons; Powlesland, 

1983). Other studies do not distinguish breeding success by age-class. The high success 

rates of black robin yearlings may reflect the fact that the recovering study populations had 

yet to reach the carrying-capacities of their habitats, thus offering yearlings opportunities 

to claim breeding space and resources. 

 

2.11.5  Breeding intervals 

 
Breeding-season duration in Australian and New Zealand Petroica species varies inter- 

and intraspecifically, frustrating ready comparison. Studies also use differing parameters to 

measure duration (time-to-fledging versus time-to-independence intervals, for instance). 

Few report or give enough data to calculate average season-length.  

 

Taking the recorded interval across all seasons from the earliest recorded nest-building to 

the latest offspring independence), all New Zealand and Australian robins are capable of 

breeding over six months or longer (Tables 2.4 and 2.6; Figure 2.8). New Zealand’s tom-

tits confine their breeding to fewer months overall, especially the insular tomtits on the 

Snares, Chathams and Auckland Islands which may breed over three to four months only 

(Table 2.4).  
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Black robin

North Island robin

South Island robin

North Island tomtit

South Island tomtit

Chatham Island tomtit

Snares Island tomtit

Auckland Island tomtit

Flame robin

Scarlet robin

Rose robin

Pink robin

Red-capped robin
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Figure 2.8 Maximum span of months over which temperate-zone Petroica species of 
New Zealand and Australia are reported to breed. Intervals are based on the 
earliest recorded start to nest-building to the latest reported independence of 
offspring over all years studied. Months have been divided into quarters for 
comparative purposes. 

 

 

Maximum season lengths give only a rudimentary basis for comparison, since the merging 

of data from multi-year studies inflates estimates, as does the ‘clumping’ of data from tem-

porally and spatially varying populations. Breeding-cycle intervals give more precise 

points of comparison.  

 
The black robin, New Zealand robins and insular tomtits incubate for similar periods 

whose means lie between 17-20 days (Table 2.4). The briefer incubation intervals of the 

North and South Island tomtits (14-17 days; Table 2.4) are closer to those of Australian 

species. Australian incubation intervals range on average from 13.5 days (red-capped 

robin) to 16.8 days (flame robin; Table 2.6). Nestling periods are also briefer overall in the 

Australian Petroica. Black robin females brood nestlings for periods close to those of their 

New Zealand equivalents (range 19-26 days for all). This is slightly longer than the tomtits 

on the Snares and Chatham Islands (17-22 days). However, black robin fledglings remain 

dependent on their parents for longer than is the case in any other Petroica species for 

which fledging-to-independence intervals have been estimated (Table 2.4). On the basis of 
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current information, therefore, black robins have the longest breeding cycle (nest-building 

to independence: 83-94 days) of the New Zealand and Australian Petroica congeners. 

 
The black robin lays first clutches later than any of the other robins (first week of October 

at the earliest) but like the others may sometimes start final clutches in January. Poten-

tially, the lack of a food-caching habit denies the black robin the advantage of an earlier 

start to breeding. Food-caching is typical of the New Zealand robins (Fleming, 1950b), but 

none of the studies cited in Higgins and Peter (2002) makes mention of the habit in their 

Australian equivalents. As Powlesland (1980) suggests of South Island robins, food-

hoarding might have allowed black robin males to provision females on the nest at times of 

low prey availability during the cooler months and shorter days prior to October.  

 

2.11.6 Seasonal reproductive output 

 
The black robin is multi-brooded, as are all the south temperate Petroica species. The 

black robin’s shortened breeding season and long breeding cycle restricts the maximum 

number of broods fledged per pair to two per season, in common with the insular tomtits 

(Snares Island tomtit, one). Most black robin pairs succeed in fledging only one brood per 

season. The longer seasons and shorter breeding cycles allow the pairs of other robins in 

both regions and New Zealand’s mainland tomtits to fledge up to three or four broods per 

season. 

 

Black robin breeding effort in its predator-free habitats tend to be lower overall than for 

their New Zealand congeners, some of which (the mainland robins and tomtits) exceed 

black robin performance despite losses to introduced predators. Clutch sizes are invariably 

small (one to three eggs) and thus have less room to vary than the larger clutches of other 

Petroica. Even so, clutch sizes are relatively invariable in all of the regional Petroica. The 

black robin’s mean annual clutch size of 2.02 eggs (Table 2.5) is the lowest observed for 

both New Zealand and Australian species. Only the red-capped robin’s clutch size is simi-

lar (2.1 eggs).  

 

Mean brood size is low as a result (1.21 nestlings per clutch), compared with means of 4.0 

nestlings for North Island and South Island tomtits. On average, each black robin clutch 

produces 0.89 fledglings, substantially fewer than the means of 3.3 and 4.1 for North Is-
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land and South Island tomtit clutches respectively. By this measure, the black robin’s 

modest fledgling output lies between the minimum and maximum reported averages for 

Australian robins (Table 2.7)—0.25 fledglings per clutch in the flame robin (Robinson, 

1990b) and 1.4 in the red-capped robin (Coventry, 1988).  

 

Data are scarce for annual rates of production per pair in New Zealand and Australian con-

geners. Based on the few measures reported for fledglings, mean annual reproductive out-

put in black robins (1.37 pair-1 year-1) is very low relative to North Island robins protected 

from mammalian predators on Tiritiri Matangi Island (2.48 pair-1 year-1; Armstrong et al., 

2000) and South Island robins under predator-controlled conditions in the Nelson Lakes 

region (5.9 pair-1 year-1, Etheridge and Powlesland, 2001). These New Zealand compari-

sons imply that black robin productivity in other per-pair measures (nestlings, juveniles, 

and juveniles living ≥ one year) may also be much lower. The modest output for most 

black robin pairs of one brood per season supports this prediction.  

 

Mean annual fledgling output by robin pairs in Australia (Table 2.7) is lower than for all 

reported New Zealand species. Output ranges from 0.39 fledglings pair-1 year-1 in the scar-

let robin (Robinson, 1990b) to 1.6 pair-1 year-1 in the red-capped robin (Dowling, 2003). 

The average rate of fledgling production by black robins (1.37 pair-1 year-1) lies within this 

range. It is the only New Zealand Petroica known to do so.  

 

2.11.7 Nesting success 

 
Black robin hatching success (60.0% of all eggs laid in the two populations) is the lowest 

reported for predator-free Petroica populations in New Zealand (Table 2.5). It remains 

lowest when corrected for the effect of egg mortality (74.8% of all eggs incubated full-

term). Success at later life-stages in the breeding cycle appears to be markedly lower too 

when measured as the overall proportions of eggs or clutches resulting in fledglings and 

juveniles. Only the proportion of fledglings produced per clutch in the small translocated 

population of North Island robins on Tiritiri Matangi Island (51.0%) is worse than the 

black robin’s (57.8%), but exceeds it when corrected for the effects of anomalous exposure 

to avian predators, especially the introduced Indian myna Acridotheres tristis (Armstrong 

et al., 2000).  
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Data are lacking on overall rates of hatching, fledgling, independence and juvenile survival 

in mainland New Zealand Petroica. Other than the proportions of eggs hatching overall, 

little more is known for island congeners. Predator-free tomtit populations in the Chatham 

and Snares Islands hatch higher proportions of eggs laid (83.5% and 87.0% respectively) 

than were recorded for the black robins under natural conditions (60.0%). The black 

robin’s overall fledging rate (73.4% of all nestlings hatched) was higher than that of the 

Snares Island tomtit (63.9%) but the latter’s rate is derived from one season only (Best, 

1975).  

 

The very useful measure of mean nestling, fledgling and juvenile output per-egg is rarely 

reported in New Zealand studies. The only mean available (for sympatric Chatham Island 

tomtits, 0.83 nestlings egg-1 year-1) exceeds the black robin’s rate of production (0.60 nes-

tlings egg-1 year-1). 

 

Despite considerable variation in population data, Australian studies reveal that nesting 

success in flame, scarlet, pink and red-capped robins is generally lower than that of New 

Zealand relatives. Only the black robin’s success rates come closest to those of the Austra-

lians. The proportions of eggs resulting in nestlings range from 48.7% in one population of 

scarlet robins (Robinson, 1990b) to 66.2% in red-capped robin populations Australia-wide 

(Birds Australia Nest Record Scheme). This range fits hatching outcomes for black robins 

(60.0%) and predator-affected South Island robins at Kowhai Bush (63.0%; Powlesland, 

1983). Thereafter, the proportions of Australian eggs producing fledglings and juveniles 

can only be compared with those of black robins, which are greater (Table 2.7). These 

relativities are reflected in egg outcomes. On average, black robins are slightly less profi-

cient at converting eggs into nestlings (0.60 nestlings per egg, as opposed to maximum ra-

tios of 0.62 to 0.64 for populations of flame, scarlet and red-capped robins) but do better at 

producing fledglings and juveniles. Egg-ratio data for other New Zealand Petroica are 

lacking, except for the Chatham Island tomtits on Rangatira Island which managed 0.83 

nestlings per egg in one season (Powlesland et al,. 2001). 

 

2.11.8 Summary 

 
The behaviour and breeding ecology of black robins fit the pattern of distinctive life-

history characters in the Corvida species of the southern hemisphere’s temperate regions. 
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Relative to the temperate northern hemisphere’s Passerida species whose obviously differ-

ing life-histories have been the customary bench-marks for comparison (Rowley and Rus-

sell, 1991; Franklin and Wilson, 2003), south temperate passerines tend towards stable, 

frequently sedentary populations, long adult life-spans and high rates of annual survivor-

ship, long breeding seasons, and multiple small clutches. Breeding is characterised as a 

result by extended parental investments in few offspring and low reproductive output over 

many breeding seasons (Woinarski, 1985; Yom-Tov, 1987; Rowley and Russell, 1991; 

Dowling, 2003; Russell et al., 2004). These attributes distinguish the ‘slow’ breeding strat-

egy of south temperate birds from the abbreviated breeding patterns of Passerida in the 

northern hemisphere. There, the life-spans of adults and pair-bonds are generally shorter 

and the laying single (or a few) large, sometimes variable clutches appears to be an evolu-

tionary response to shorter, climatically compressed breeding seasons (Rowley, 1983; 

Rowley and Russell, 1991; Russell et al., 2004).  

  

My study has not set out to explore the specific environmental or phylogenetic bases for 

these ‘southern’ attributes in the black robins. It is plausible to suppose, however, that they 

are evolutionary adaptations to the stable habitats of the Chatham Islands archipelago, the 

lack of seasonal climatic extremes, year-round food supply and the reduced resource and 

recruitment opportunities within populations whose resident, long-lived breeders saturate 

available habitat. These are variables thought to explain the life-histories of endemic pas-

serines of the temperate southern regions generally (Ashmole, 1963; Skutch, 1967; 

Woinarski, 1985; Yom-Tov, 1987; Robinson, 1990b; Rowley and Russell, 1991; Russell, 

2000). Relative freedom from nest predation cannot be discounted as a factor also. It dis-

tinguishes the insular endemic passerines of New Zealand as a whole from those of Aus-

tralia whose life-histories and breeding strategies are conditioned by evolutionary exposure 

to native predators (Trevelyan and Read, 1989; Dowling, 2003).  

 

Like the other members of the Petroica genus in the temperate zones of New Zealand and 

Australia, the life-history traits of black robins are typical of K-selected species. Long iso-

lation in the Chatham Islands and specialist adaptations to local forest environments, most 

of relatively small area, appear to have resulted in a higher degree of K-selection than in 

mainland relatives on both sides of the Tasman. The few available insights to the insular 

tomtits of the subantarctic Snares and Auckland Islands suggest that they may be K-

selected to a similar degree. Even so, the black robin possesses several characteristics 
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which seem likely to have favoured the survival of Petroica relatives in more hostile envi-

ronments.  

 

Adult longevity and rates of survivorship are consistent with trends for passerines of the 

temperate southern hemisphere generally, a higher proportion of which survive at mean 

annual rates exceeding 70% relative to the shorter-lived Passerida of continental Europe 

and North America (Rowley and Russell, 1991). As with southern Petroica congeners, the 

longer life-span of black robin adults serves its slow breeding strategy by preserving 

breeding experience in populations. In the black robins, enduring pair-bonds may help to 

realise this benefit. In turn, the lower seasonal reproductive effort has the potential to pro-

long life-spans.  

 

The black robin’s breeding is characterised by the long nesting seasons and longer breed-

ing intervals observed in Petroica congeners and temperate southern passerines generally 

(Russell, 2000; Russell et al., 2004). These patterns are longer from those of northern 

hemisphere birds (Franklin & Wilson, 2003). The extended breeding regimes of southern 

birds are predicted to improve the survival probability of juveniles by producing fewer of 

them but investing more effort in their care (Martin, 1996). Few comparable data on juve-

nile output have been reported for Petroica congeners, but the high proportions of juve-

niles surviving to breeding age in the two expanding black robin populations (71.5% over-

all; 0.81 pair-1 year-1; Table 2.5) support the hypothesis of pay-offs in juvenile production. 

The black robin rates are significantly higher than Russell’s (2000) means of 37.4% for 34 

southern passerines and 27.6% for 22 northern birds.  

 

Although in other respects (early sexual maturity, success as yearling breeders, small 

clutch sizes, multiple-brooding), black robin breeding mirrors that of its Petroica relatives 

and other southern passerines, reproductive output is low relative to mainland New Zea-

land congeners, including those subjected to unnatural rates of nest predation. The output 

of chronically predated Australian relatives tends to be lower still, yet all predated relatives 

in both regions have persisted (albeit at very low breeding densities for the Australian spe-

cies). In contrast, the black robin has demonstrated an inherent inability to cope with 

predators and unfamiliar forms of habitat change. Later chapters in this thesis explore the 

features of these changes and their implications for black robin survival.  
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Anomalously small clutch sizes point to a decisive source of vulnerability. Its potentially 

disabling consequences for gross reproductive output are evidently realised by modest suc-

cess only at later life-stages in the breeding cycle, relative to other New Zealand Petroica 

(Table 2.5). The black robin’s unusually prolonged breeding cycle restricts brood-raising 

potential to no more than two (one for most pairs) in the abbreviated Chathams breeding 

season, a constraint reflected in the lowest reported clutch-laying effort (1.54 pair-1 year-1) 

of all south temperate Petroica (Tables 2.5 and 2.7).  

 

Vulnerability is increased further by the species’s specialist forest-dwelling and foraging 

habits, exclusively insectivorous diet (Section 2.6) and conspicuously limited powers of 

migration—all factors which suggest narrower viability thresholds for the small insular 

black robin populations. By implication, the factors favouring survival of mainland New 

Zealand Petroica appear to be their higher rates of reproductive output and comparatively 

more generalist habits. Further demographic studies of suitable duration and insight are 

needed to confirm this.  

 

Taken together, the black robin’s life-history traits and breeding effort were sufficient to 

sustain populations in benign pre-human habitats and under the conditions prevailing be-

tween 1990-91 and 2001-02 when population sizes grew naturally on Rangatira and Man-

gere Islands (Chapter Six). However, the small clutches characteristic of the slow breeding 

strategists in the southern hemisphere do not allow for large variations in size to compen-

sate for losses through disaster or set-back. Only the number of nests can be increased, and 

that number is a function of breeding intervals, season length and resources (Rowley and 

Russell, 1991).  

 

In the chapter which follows, I examine the interplay of life-history characteristics and 

changes in the Chathams environment which exposed the particular evolutionary vulner-

abilities of the black robin.  
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CHAPTER THREE 

HISTORY OF BLACK ROBIN DECLINE 
 

 
 ‘There were other birds but I have forgotten what they were like.’ 

Surveyor S. Percy Smith  
The Chatham Island Survey, 1868-69  

 

 

3.0 Introduction 

 
This chapter examines the factors responsible for the historical decline and extinction of 

black robin populations in the Chatham Islands archipelago. 

 

The loss of black robin populations from the larger islands of the archipelago was not wit-

nessed by European naturalists or ornithologists. Only the final stages of decline—in the 

species’s last tiny population on Little Mangere Island—were recorded by latter-day re-

searchers. They observed the black robin’s descent to and passage through its most recent 

bottleneck—in this case, of a single productive breeding pair. Through these fortuitously 

timed observations, understanding of the species’s subsequent recovery under management 

has been informed by knowledge of survivor family-lines and by first-hand experience of 

the stochastic pressures inducing the population’s final collapse. These valuable insights 

are rarely available to conservation managers under pressure to avert the extinction of 

critically endangered populations in the wild. But the extinction pressures witnessed on 

Little Mangere Island do not wholly explain the declines and final extirpation of black 

robin populations elsewhere.  

 

In this chapter, I combine knowledge of the black robin’s biological vulnerabilities (out-

lined in the previous chapter) with historical evidence of changes in the Chatham Islands 

environment to show that the black robins were progressively eliminated from their island 

habitats as an unintended consequence of human presence and activities. Using the modest 

body of historical evidence, much of it inferential and very widely dispersed in formal and 

anecdotal sources, the chapter illustrates the diversity of deterministic pressures which 

conveyed black robins to the brink of total extinction. And, as much as historical sources 

and latter-day paleontological research allow, it identifies the timing and specific determi-
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nistic causes of extirpation in each island habitat. These extinction pressures have not been 

investigated closely until now. Investigation prepares this study for more detailed analysis 

of the dynamics of black robin recovery in the course of and following conservation man-

agement. 

 

3.1 Pre-human distribution and densities 

 
As is often the case with critically small populations at risk of extinction, biologists and 

conservation managers are not able to refer to an undisturbed black robin population in 

intact habitat to understand what constitutes natural distributions and densities. No such 

populations have survived human colonisation of the Chathams archipelago. The informa-

tion crucial to the design of ecologically appropriate management must be inferred from 

black robin behaviour in the disturbed and simplified habitats they occupy today. 

 

No specific insights into pre-human distributions and densities are available from early 

European accounts of Chatham Islands flora and fauna (Dieffenbach, 1841; Travers 1868; 

Travers, 1871; Travers and Travers, 1872; Forbes, 1893; Cockayne, 1901, Smith, 1916) 

and later interpolations (Hutton, 1872; Buller, 1888, 1890, 1894a, b). Rothschild (1907) 

said merely that the species was originally very common in the Chatham Islands and dis-

appeared from Chatham Island long ago. Fleming (1939b) reported local knowledge that 

black robins originally inhabited the major islands of the Chathams archipelago. Fossil and 

archaeological deposits assist but do not complete the picture. Deposits are plentiful on 

Chatham Island and have been found on Pitt and Mangere Islands (Tennyson and Millener, 

1994). But other islands in the group lack suitable natural repositories (caves, sand dunes, 

wetlands; Millener, 1999) or have not yet been examined thoroughly. Rangatira Island is 

singularly poor in fossil sites (Alan Tennyson, pers. comm.). No evidence of a pre-human 

black robin population has yet been discovered on this island (Butler and Merton, 1992). 

 

3.2 Chatham Island Rekohu (90040 ha) 

 
Skeletal material confirms that black robins were present on Chatham Island before human 

arrival. Millener (1999) reports that black robin bones were common until at least 1150 yr 

BP at all levels in a limestone cave deposit he examined on the shoreline of Te Whanga 

Lagoon. No complete specimens have been recovered from the island at any time. A 
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‘Chatham Island’ specimen from Henry H. Travers’s second collecting expedition to the 

Chathams in July–August 1871 (reported as Dominion Museum number A.264 in Fleming, 

1950b: 144, Table 11) is almost certainly a mislabelled specimen from Mangere Island 

(Tennyson and Bartle, 2008). It was no longer considered possible to collect the species 

from Chatham Island by 1871 (Travers, 1871; Travers and Travers, 1872; Fleming, 

1939b).  

 

No indications of pre-human density on Chatham Island have survived. Natural distribu-

tion is similarly obscure but easier to infer. The first European naturalists reported signifi-

cant tracts of bush on the island, interspersed with numerous, often broad areas of wetland. 

In the mid-1800s, a low forest ‘varying in width from a mile or more down to one or two 

hundred yards’ encircled almost all the coastline (Seed, 1861).12 Travers (1868) and 

Cockayne (1901) took these areas of bush and evidence of an original old-age forest else-

where to suggest an extensive pre-human forest cover in the lower-lying northern and cen-

tral regions of the island. If correct, their conclusions indicate that the black robins should 

have been widespread in these parts of Chatham Island. The diversity of forest types, to-

pography and geology hints at local variations in abundance.  

 

Stratigraphic studies of dune and soil profiles indicate extensive coastal and near-shore 

forests inhabited by abundant terrestrial bird species historically and currently sympatric 

with black robins (Millener, 1999). On the higher, more exposed southern tablelands—a 

vast area of higher rainfall and more ‘quaking bog(s)’ (Cockayne, 1901: 248)—black rob-

ins may only have flourished on drier interstitial ridges or areas of elevated ground. The 

bush was dominated by tarahinau Drachophyllum arboretum, a signature species of cold, 

poorly drained soil conditions (Amanda Baird, pers. comm.). Patterns of black robin dis-

tribution today indicate that this is a forest-type deficient in shelter and nesting cavities 

suitable for the species. No black robins are known to have bred or held territory in the 

only habitat in which tarahinau and black robins coincide today (the modest remnant of 

mature tarahinau forest at the southern extremity of Rangatira Island). 

                                                 
12  Travers (1868: 176) is more generous, giving the bush ‘a depth of two or three miles [form-

ing] a fringe round a large portion of the island, and partly along the seashore… the whole 
so interwoven with our old friend the supple-jack, as to be almost impenetrable.’ This 
gives the impression of forest well suited to black robins.  
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The timing of extirpation from Chatham Island cannot be determined precisely. In this re-

spect, Fleming’s (1939b: 508) statement that the black robin was present ‘in very early 

days’ is unhelpful. What can be said is that coincident with the timing of other bird extinc-

tions in the Chathams (Millener, 1999), extirpation followed the arrival of Moriori from 

New Zealand 450-500 years ago (McFadgen, 1994; King, 1989).13 These first-wave colo-

nists brought with them the partially arboreal Polynesian rat (kiore) Rattus exulans (Mati-

soo-Smith et. al., 1999; Atkinson and Towns, 2001). The kiore remained the sole novel 

mammalian predator of birds, reptiles and invertebrates in the archipelago for at least 300 

years, until the first major influx of Europeans (sealers, whalers and settlers) in the second 

and third decades of the 19th century.  

 

Kiore are adept ground-hunters and doubtless compounded the difficulties for black robins 

from the outset by depleting invertebrate-prey biomass and diversity (Towns et al., 1997; 

Holdaway, 1999, Atkinson and Towns, 2001). But direct predation of eggs and nestlings 

could be expected to expose the black robin’s principal biological vulnerability—its low 

reproductive output (Chapter Two). Kiore are significant predators at the nests of mainland 

New Zealand Petroica (Flack and Lloyd, 1978). Black robin body mass, behaviour and 

habitat fit the species readily within the rat’s predatory potential. As a bird of the lower 

forest strata, black robins nest well within the vertical foraging range of kiore (>10 metres; 

Cuvier, Kapiti and Little Barrier Islands, Lovegrove, 1996). Cavity- and hollow-nesting—

effective as a form of concealment from traditional avian predators—is ineffective in pro-

tecting nests from scenting rats (Brown, 1997). Black robin eggs (length, 22 mm) and nes-

tlings (≤ 33 g) fall within kiore prey-size and weight ranges (eggs, ≤ 55-60 mm, Atkinson, 

1978; Holdaway, 1999; nestlings, ≤ 60 g; Lovegrove, 1996).  

 

Predation of juveniles and adults is less certain. Atkinson (1978) surmises that the kiore—

smallest of the three introduced Rattus species—is less effective at attacking passerines. 

Evidence of adult predation in other New Zealand Petroica is also scarce. The black robin 

possesses the quick flight responses of a fly-catcher, which appear to have minimised 

losses to mammalian predation of adult South Island robins at Kowhai Bush, even at the 

nest (Flack, 1973, 1976d; Moors, 1976).  

                                                 
13  Holdaway (1999) places the date of human arrival 200 years earlier, nearer to 1350 AD. 
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On Chatham Island, predation of nesting or roosting adults was probably confined to peri-

ods when kiore densities were very high—during the initial irruption for instance—or later 

when periodically high densities coincided with shortfalls in alternative prey. Fledglings 

and juveniles roosting on or near the ground would have been more at risk.  

 

Early sexual maturity and long adult life-spans in black robins have the potential to offset 

the effects of unnaturally high rates of reproductive failure but kiore pressure on the spe-

cies’s modest reproductive output may have overwhelmed this advantage, starving popula-

tions of recruitment. In contrast, the higher reproductive output of Chatham Island tomtits 

appears sufficient to have deferred their extirpation on Chatham Island until at least the 

mid-20th century (Powlesland et al., 2001).  

 

Kiore alone are likely to have eliminated the black robins from Chatham Island, and the 

time-to-extirpation may not have been protracted. The island’s black robin populations 

may have been overwhelmed in the first rat irruption since the super-abundance of inverte-

brate prey and small ground-nesting petrels would have sustained extremely high densities 

of kiore after arrival. In the absence of other rodents, kiore thrive periodically at very high 

densities (> 96 individuals ha-1) in both forest and grasslands in island contexts (Craig and 

Moller, 1978; Holdaway, 1999). How long black robins persisted is a matter for specula-

tion. Bones recovered at very low frequency at the sites of excavated Moriori middens 

(Point Durham; Marshall et al., 1987) suggest a period of overlap with kiore but the dating 

of the sites is too problematic to define the interval, when it occurred or when the black 

robin bones were deposited (Fiona Petchey, pers. comm.).  

 

There is no evidence that the species persisted on Chatham Island until the 19th century. 

The earliest European descriptions of the island’s biota often lacked informative references 

to land birds of any kind and none mentions black robins. In the course of his lengthy bo-

tanical account, Dieffenbach (1841: 207) is no more specific than a fleeting reference to 

the ‘three or four, small insectivorous birds’ he recorded on the island at the time of his 

visit in 1840.14 He does not list black robins in his later account of the New Zealand bird 

                                                 
14  Dieffenbach was also unable to find kiore, though perhaps he could not distinguish them 

from the Norway rats Rattus norvegicus which were evidently very abundant by 1840. 
Travers (1871: 66) knew from the Moriori of ‘the probable existence of a native rat’ but 
could not find a specimen in 1863-64. 
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fauna (Dieffenbach, 1843). Nor does Henry Travers (1868) list them among the terrestrial 

bird species persisting on Chatham Island in the presence of plentiful wild cats Felis catus, 

mice and Norway rats in 1863-64. Informal newspaper accounts of visits to the island are 

similarly silent. An article from 1866 refers only to tomtits being seen during a walk 

through bush and grassland (A Cruise to the Chatham Islands, West Coast Times, 17 Au-

gust 1866).15 It seems reasonable to assume then that the existence of black robins on 

Chatham Island had long passed from human memory, so that Travers (1871: 65) was able 

to claim, upon encountering them for the first time on Mangere Island in September 1871, 

that the species was ‘new to our fauna’. 

 

If severely depleted black robin populations had lingered until the time of earliest Euro-

pean contact, their fates were sealed by new guilds of browsers and predators introduced in 

the first decades of the 19th century. The second wave of human immigrants, the European 

sealers, whalers, agriculturalists and missionaries introduced sheep Ovis aries, cattle Bos 

taurus, pigs, goats Capra hircus, horses Equus cabalus, dogs Canis familiaris and a suite 

of mammalian predators: cats (c.1800), hedgehogs Erinaceus europaeus, Norway rats (c. 

1830), mice (c.1850s),16 and the most lethal of the rats, the ship rat, an arboreal specialist 

which arrived after 1890 (all putative arrival dates from Holdaway, 1999: Table 1). The 

island’s complement of introduced animals has since been augmented by predatory Austra-

lian brush-tailed possums Trichosurus vulpecula (introduced in 1911; Pracy, 1962; King, 

1990) and buff weka (introduced in 1905; Oliver, 1955; Bell, 1996). Together with the 

broad-scale clearance of forest cover for farming, the Chatham Island environment re-

mains hostile to black robins.    

  

3.3  Pitt Island Rangiauria (6325 ha) 

 
Black robins inhabited Pitt Island though the fossil evidence of their presence is still rare. 

The scarcity of evidence is not an indication of original abundance (Alan Tennyson, pers. 

comm.). Small passerine bones collected at Motutapu Point, Paremata Cove and north-

west Pitt Island in 2002 have yet to be identified reliably as belonging to black robins 

(Brian Gill, pers. comm.). The 1871 museum specimens labelled “Pitt’s Island” in Fleming 

                                                 
15  http://paperspast.natlib.govt.nz/1866 
16  Searle et al. (2008) suggest, without supporting evidence, that mice first arrived in cargo 

landed on Chatham Island in 1853 from the wreck of the English barque Randolph. 

http://paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&cl=search&d=WCT18660817.2.13&srpos=2&e=17-08-1866-----100-PubMetaWCT-1----2%22cruise+to+the+chatham+islands%22-all
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(1950b: 144, Table 11) are considered to be from Mangere Island (Tennyson and Bartle, 

2008), since Travers does not mention collecting black robins from any other location 

(Travers and Travers, 1872).  

 

The black robins almost certainly persisted into the 19th century on Pitt Island. The timing 

of local extinction cannot be determined accurately but declines in black robin density are 

likely to have been deferred until after the time of European contact in the first two dec-

ades of the 1800s. Moriori both visited and populated Pitt Island at various times prior to 

that (Travers, 1868; Smith, 1916; Richards, 1990) but kiore are not known to have sur-

vived the sea journey from Chatham Island (Holdaway, 1999). Inference suggests then that 

the black robins survived through centuries of Moriori contact until Europeans signifi-

cantly modified the vegetation cover of the island and introduced the cats which had be-

come feral and common by 1863-64 (Travers, 1868).  

 

The processes of disintegration in the Pitt Island bush were probably set in train when 

European livestock were introduced. Pigs may have been liberated prior to 1831, either by 

sealers or whalers (Bill Carter, pers comm.), or by the unspecified inhabitants of Pitt Island 

noted in December of that year by Captain John Biscoe, master of the sealing vessel Tula 

(Richards, 1982). Broad-scale changes to the bush were inevitable after Frederick Hunt 

imported domestic pigs in 1842 or 1843 to generate income from provisioning American 

whaling and merchant ships with pork, potatoes and other vegetables (Richards, 1990).  

 

After Hunt imported English grass-seed in 1847-48 and converted both bush and his own 

gardens to pasturage, sheep followed in growing numbers, then cattle. By his own admis-

sion, Hunt had overstocked the island by the mid-1860s. At this time, his sheep, horses and 

cattle were running in the home paddocks and the island’s open grasslands. At least one 

other settler (Apitia Punga, son of Rangiapitea) was farming 150 sheep at Glory by 1863 

(Bill Carter, pers. comm.). Pigs had become well established in the bush by this time too 

and were ‘excellent ploughmen, rooting up the fern in all directions’ (Richards, 1990, 

Chapter XIII). They had ‘greatly destroyed’ the island’s undergrowth by July and August 

1871, preventing Henry Travers from obtaining worthwhile specimens of ferns and other 

increasingly rare plants (Travers, 1871: 65). 
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It is difficult to judge precisely how pervasively or decisively the effects of these and other 

settlers’ livestock had compromised the black robin’s habitat by this period. Photographs 

of Pitt Island c.1888 show fragmenting bush cover, open understorey, forest wind-throw 

and erosion (see Appendix Three: Figures 3B and 3C; see also photographs of devastated 

nikau palm groves in Walls et al., 2000: 42). Unquestionably, reduction in the quality and 

extent of habitat available to black robins would have weakened their capacity to cope 

with the additional costs of predation by cats.  

 

Historical sources give few clues to the origins and timing of cat arrival on the island. Fu-

ture developments in molecular science may be more informative. Cats may have reached 

Pitt Island as early as 1827 when the sealing brig Glory went aground and was run ashore 

on the island’s south-east coast in the bay which now bears her name. Some of the crew 

returned to New Zealand in open longboats (Prickett, 2008), but others, perhaps with the 

ship’s cats, were left behind with stores and cargo depoted on the island (Richards, 1982). 

Along with sealers, itinerant convicts and deserters from whaling vessels, Moriori fleeing 

the newly arrived Maori inhabited the island prior to Frederick Hunt’s settling there in Oc-

tober 1842 (Richards, 1982). Any of these may have brought cats for companionship, as 

may Hunt himself or Bill the Clerk, another European who settled briefly at Glory Bay 

prior to 1844 (Richards, 1990).  

 

Cat presence had already been documented on Rangatira Island (see Section 3.4 following) 

from which an unruly gang of shore-whalers subsisting there in 1840 launched occasional 

raids on Pitt Island for supplies (Bill Carter, pers. comm.). It seems unlikely that the cats 

originated from a second shipwreck at Flower Pot in 1859 (the Franklin, an American 

whaler) given the interval necessary for feral cats to have become numerous by the time of 

Travers’s visit in 1863-64. But the crews of the many American whaling and trading ves-

sels provisioning at Flower Pot and befriended by the Hunt family in the previous decades 

(Richards, 1982, 1990) may have gifted cats to the young Hunt children. Notwithstanding 

all of these possibilities, Frederick Hunt’s silence on the existence of black robins hints at 

an earlier rather than later date for cat arrival. Travers (1868) trusted Hunt as a source of 

bird information. His apparent failure to tell Travers of so distinctive a species as the black 

robins suggests that he had no knowledge of them. Perhaps they had been extirpated before 

he took up residence on the island in 1842.  
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Travers gives the first published evidence of cat presence on Pitt Island and the first date at 

which we can infer that the black robin is locally extinct. As a keen collector of rare plant 

and animal species, Travers visited Hunt for a week in October 1863 and returned in No-

vember for a stay of several months. He made the island his expedition base ‘in conse-

quence of its offering greater advantages as a collecting ground’ (Travers, 1868: 176). At 

this time, Travers says, Pitt Island was completely covered in bush apart from 250 acres of 

farm clearings at Flower Pot, now the island’s main settlement. He makes no comment on 

the condition of the bush but laments the lack of land birds which he attributes to the ef-

fects of wild cats—‘…it is rare to meet with any [land birds] at all during a whole day’s 

walk in the bush’ (Travers, 1868: 178).  

 

Travers (1868: 178) lists land birds still extant on Pitt and Chatham Islands (‘a large Kite, 

the Pigeon, the Tui or Parson Bird (Prosthemadera Novae Zelandiae), the Pukeko (Por-

phyrio melanotus), the Parakeet (Platycercus, Sp.), the Fan-tail (Rhipidura), the Lark, and 

a small Titmouse,17 all identical with the birds of the same genera found on New Zea-

land’). This list is not exhaustive—it does not mention tomtits (still to be seen on Chatham 

Island, see Section 3.2 above), nor does it include the Chatham Island bellbird Anthornis 

melanocephala which was still on Pitt Island in the 1880s (Buller, 1894b; Fleming, 1939b, 

quoting Robert Paynter, a Pitt Islander). Crucially, the list makes no mention of black rob-

ins, an omission giving another strong indication that this distinctive species was not yet 

known to naturalists, or was not on Pitt Island to be seen if indeed naturalists had heard of 

it. None had visited Mangere Island yet, and that is where the species was probably con-

fined by 1863-64. Although Moriori, Maori and a few sealers must have landed on Man-

gere Island, Travers (1868) makes no mention of information received from them.  

 

Feral cats were evidently very numerous on Pitt Island four years after Travers’s visit. 

While surveying the island in 1868, S. Percy Smith (later Surveyor-General of New Zea-

land) observed a ‘great number running wild’ and their devastation of what he supposed to 

be storm-grounded ‘terns’ (probably storm petrels) on the forested peninsula at Ta-

rawhenua Point (Drummond, 1910b; see Appendix Two).  

                                                 
17   The ‘Titmouse’ is the silver-eye Zosterops lateralis, not the tomtit as its name suggests (W. 

T. L Travers, 1872:215, reporting his son H.H.T). Henry Travers (1868: 178) reports Freder-
ick Hunt’s claim that the ‘titmouse’ arrived in the Chatham Islands soon after disastrous 
‘Black Thursday’ fires in Australia (1851).  



Chapter Three: History of Decline  79

No other mammalian predators appear to have been present at this time. Norway and ship 

rats did not persist on the island if they ever reached it, and mice are the only rodents pre-

sent today. The scant early literature hints that mice were introduced after the cats (a curi-

ous reversal of convention) but their time of arrival is undocumented. Holdaway (1999) 

estimates accidental introduction to Chatham Island in the 1850s (see also footnote 16). 

Since mice and seed are customary travel companions, Frederick Hunt’s importation of 

grass-seed and his cultivated farm-holding of ‘English grasses’ (Travers, 1868: 173) are 

strongly suggestive of mouse arrival well before 1863. But Travers (1868: 178) is careful 

in his wording to say that ‘English mice’ were only on Chatham Island at this date. Robert-

son, a surveyor working on Pitt Island in 1883, states that ‘on Pitt's Island, there were 

originally no rats or mice…’ (cited in Richards 1990: 102). This ambiguous observation 

hints at arrival by 1883 but is more likely in my view to mean that rodents were naturally 

absent from the island. Current Pitt Islander lore indicates that mice did not arrive until 

after 1900, when a ‘pregnant mouse was observed to escape from a bag of flour unloaded 

from the ship’ (prior to 1903, Bill Carter, pers. comm.).18  

 

Whichever of the post-1863 founder dates is accepted, mice appear to have arrived too late 

to be implicated in the black robin’s decline. Despite the uncertainty over the timing of cat 

arrival, cats were conspicuous enough in 1863-64 to suggest that they alone could have 

been the ultimate deterministic cause of black robin extirpation from Pitt Island. The de-

cline was no doubt hastened by feral and domestic livestock whose unrestrained browsing 

in the bush would have induced progressively more sub-optimal conditions. The speed 

with which cats eliminated black robins from Mangere Island (see Section 3.5 following) 

indicates that extirpation from Pitt Island may have been relatively rapid. The island is lar-

ger, the bush more complex, and allowance must be made for lag-time while cat numbers 

increased to lethal densities after the founder event. Whether cats arrived in 1827 or after 

                                                 
18  Robert Gregory-Hunt, a Pitt Islander, recalls hearing of the mouse arrival after asking his 

father James Sidney White when Pitt Island’s large spiders had disappeared (the spiders 
Dolomedes shauinslandi are still found on rodent-free Rangatira and the two Mangere Is-
lands). His father described the mouse jumping out of a newly arrived box of flour when 
it was opened in the family home. It escaped despite the concerted efforts of the family 
and visitors to kill it. The mouse was assumed to be pregnant because after a period of 
about two years in which there was no sign of it or others, a mouse irruption occurred on 
Pitt Island, sustained no doubt by the abundance of grass-seed and invertebrates. Robert 
understands that his father was about 12 years old at the time, but this would place mouse 
arrival at about 1912 to 1914 (Bill Carter, pers. comm.).  
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the time of European settlement, it seems likely that the black robins had been eliminated 

well before Travers’s visit in 1863-64. By 1871, Travers asserts that he had ‘only found 

[the black robins] at Mangare Island’ (Travers and Travers, 1872: 216). 

 

In their tradition of heritage stories, Pitt Islanders hold fast to the conviction that black rob-

ins persisted on Pitt Island for at least another 65 years after this date. As recorded by 

Aikman (2002), Pitt Islander Sam Gregory-Hunt recounts that, as a 14-year-old youth 

home from secondary school in New Zealand in summer 1938-39, he saw ‘15-16 black 

robins’ in an isolated patch of native bush (‘about one acre’ in area) at Paremata Cove, 

west of Flower Pot on Pitt Island’s north coast (Figure 3A, Appendix Three). The birds 

disappeared after the bush was burned accidentally in efforts to clear adjacent ‘sand-

grass’19 for a fence-line, and that was the last time he saw black robins on the island. Ken-

neth Lanauze, Gregory-Hunt’s nephew, remembers this story clearly, knows the location 

of the bush referred to, and recalls that two other islanders engaged in farming activities at 

that time claimed to have seen black robins in bush elsewhere on Pitt Island (Kenneth 

Lanauze, pers. comm.; see Appendix Three for details). Support for the Pitt Islanders’ con-

viction that black robins survived beyond the time of Travers’s visits (1868; Travers and 

Travers, 1872) comes from a passing reference in Buller (1890) and an earlier Pitt Is-

lander’s account of black robins and their breeding behaviour given in a natural-history 

newspaper column of 1909 (Drummond, 1909; see Appendix Three for discussion). 

 

The biological case for extirpation before 1863-64 is persuasive. It seems unlikely that 

black robins could have survived long in the presence of cats alone (and later in combina-

tion with mice), especially if their forest habitats had also been accessible to livestock and 

feral browsers. On the other hand, the anecdotal evidence of persistence cannot be dis-

counted entirely. It is not easily corroborated but unless an open-mind is kept, it will not 

receive the attention it warrants as a compelling subject of inquiry.  

 

Widespread loss of forest cover and the introduction of numerous animals followed the 

populating of Pitt Island and its energetic conversion to a predominantly pastoral farming 

landscape. In addition to mice and cats, livestock (pigs, cattle, sheep, horses, goats; some 

                                                 
19  Marram grass Ammophilia areanaria was imported to Pitt Island from Chatham Island by 

Frederick Hunt in the 1880s (Bill Carter, pers. comm.). 
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now feral) and weka (established in the early 1960s, Ken Lanauze Snr, pers. comm.) have 

reduced Pitt Island’s forest remnants to states inhospitable to black robins. Recent attempts 

to reintroduce black robins to a semi-protected forest reserve (40 ha) have failed, for rea-

sons which have yet to be clarified (see Chapter Four and Chapter Six: Population Trends 

After 1980; see also Kennedy, 2006).  

 

3.4 South East Island Rangatira (218 ha) 

 
Black robins are assumed to have populated Rangatira Island (Butler and Merton, 1992), 

and Fleming’s (1939b: 508) ‘larger islands’ comment leaves that possibility open too, but I 

have found no anecdotal, naturalist or physical evidence to confirm their presence prior to 

human contact. For a remarkable length of time after European arrival, the island’s biota 

and condition escaped documentation by naturalists who visited the Chatham Islands but 

failed for various reasons to land on Rangatira Island itself (Dieffenbach, 1841; Buller in 

1855, Travers, 1868; Travers and Travers, 1872; Forbes, 1893; Cockayne, 1901; Archey 

and Lindsay, 1924). The island is also depauperate in fossil-deposit sites such as sandy 

substrates, rock overhangs and fissures. Its acidic soil is expected to have dissolved fragile 

bones (Alan Tennyson, pers. comm.). If the black robins were naturally absent, the gap in 

distribution is difficult to explain. 

 

Black robin extirpation from Rangatira Island lacks obvious explanations. The absence of 

introduced mammalian predators today indicates that predation was unlikely to be a factor. 

A large black cat was said to have surprised pig-hunters on the island in November 1831 

(Richards, 1982, citing the master of the sealing vessel Tula), 20 but this is the only refer-

ence in the historical or recent literature to cats on the island. There is no evidence of other 

mammalian predator introductions. Common starlings, predators of black robin eggs and 

nestlings and competitors for nest cavities today (see Chapter Six), could not have been 

implicated since they were not introduced to the Chatham Islands until 1881 (Long, 1981; 

Holmes, 1984). 

 

                                                 
20  In the ship’s log, Captain John Biscoe of the Tula does not specify Rangatira Island as the 

site at which his men were hunting pigs but other locality details relating to the Corn-
wallis Islands (known variously, according to source, as Pitt, Mangere, Little Mangere and 
Rangatira Islands) indicate strongly that that is where the cat was encountered.  
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In addition to cause, the timing of disappearance from Rangatira Island is also obscure. 

Without exception, all early European accounts of Chatham Islands species and their dis-

tribution are silent on the question of black robin presence (Travers, 1868; Travers, 1871; 

Travers and Travers, 1872; Hutton, 1872; Forbes, 1893; Buller, 1894a; Kirk, 1895; Roths-

child, 1907). If present originally, the black robins had disappeared by 1871 when Travers 

understood that they were confined to Mangere Island (Travers and Travers, 1872).21 Evi-

dently, Henry Palmer did not encounter any when collecting red-crowned parakeets in 

September 1890 (Tennyson and Bartle, 2008), because no comment to that effect is made 

in the literature of the time. Nor did W. Hawkins, a resident bird collector thoroughly fa-

miliar with the Chathams, when collecting Chatham Island petrels Pterodroma axillaris in 

May 1892 (Buller, 1894a). The silence in all sources implies loss before European occupa-

tion of the island (about or prior to 1836 when a sealing gang was living there; Richards, 

1982) or between that time and the initial exploratory surveys of the Chathams by orni-

thologists and bird collectors (1863-64 onwards).  

 

What little evidence is available from the literature and local anecdote points to progres-

sive deterioration in the area and quality of forest cover on Rangatira Island as the cause of 

black robin extirpation. Except for the scale and precipitating causes, this explanation 

shares strong similarities with the black robin’s decline on Little Mangere Island (Section 

3.6). The chronology of fatal change is unknown but is most plausibly associated with 

European contact. Moriori journeyed to Pitt Island’s outliers for seasonally available food 

resources (Shand, 1894) but the absence of kopi groves, found commonly near Moriori 

camps and settlements on Pitt and Chatham Islands, suggests that they did not stay perma-

nently on Rangatira Island (Roberts et al., 2007). The scarcity of water on the island may 

have discouraged settlement too. There is no reported evidence of Moriori fires or other 

forms of disturbance which might have affected the island’s original forest cover. If any 

existed, it has been disguised or obliterated by the profound changes following the intro-

                                                 
21  Travers does not say how he arrived at this understanding. He did not reach Rangatira 

Island on his first visit (Travers, 1868) and makes no mention of landing there on his sec-
ond visit, even though the opportunity may have presented itself through Frederick 
Hunt’s interest in the island’s livestock at that time. Both Travers (1868) himself and 
Drummond (1910a, reporting Travers on the subject of his 1871 visit to Mangere Island) 
indicate quite clearly that Travers was guided by local knowledge in his pursuit of rare 
bird specimens. If Hunt himself or his family had seen black robins on Rangatira Island, 
they evidently did not tell Travers during his two visits to Pitt Island in summer 1863-64 
and winter 1871.   
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duction of European livestock (pigs before 1831) and more deliberate farming practices in 

1840.  

 

Between 1840 and 1871, pastoral farming on Rangatira Island was episodic and beset with 

reversals which resulted in livestock being abandoned to run wild on the island. Contrary 

to Ritchie (1970), farming commenced on a structured basis as a supplement to sealing in 

1840 when William Reeve introduced more pigs and potatoes to provision whaling ves-

sels. Fifty merino sheep were introduced in March 1841. Goats were liberated in this pe-

riod too (Richards, 1982), though their purpose and ownership is unclear. By 1845, sheep 

numbers are estimated to have risen to about 300 (Bill Carter, pers. comm.) but many were 

removed in that year following eviction of the Europeans by Maori claimants to the island. 

Remaining sheep and the goats were abandoned to Frederick Hunt who, followed by his 

son-in-law Matthew Gregory and son William Hunt, assumed nominal absentee ownership 

of them. The livestock remained largely untended until William died in 1892.  

 

No record of farm-management activities during the 1840-1871 period has survived. It is 

not possible to determine therefore how rapidly and severely the quality of forest habitat 

declined in these three decades. If black robins were not to be found in this large habitat by 

1871, then evidently the changes were sufficient to have fatally compromised population 

viability. During the first five years of farming, the island’s grasslands were probably 

burned regularly to induce regrowth, as was conventional practice (Bill Carter, pers. 

comm.). Hunt and his relatives may have burned the grasslands after 1845 but there is no 

evidence to indicate that they did so. Some felling of forest cover was inevitable to in-

crease pasturage and provide construction materials (yards, fences, buildings) but through-

out the 30-year period, the goats no doubt served the broader-scale objective of clearing 

forest by browsing woody vegetation (shrub and low tree cover). The goats remained until 

shot out by Tom McClurg between 1913 and 1915. At times of food stress (summer 

droughts, winter), shrub and tree seedlings would have been browsed heavily. 

 

Twentieth-century observers documented the nature of the changes set in train by these 

practices. Fleming (1939c: 8) alluded to a significantly fragmented forest cover on the 

warmer woolshed flats, the absence of understorey, and grasslands and meadows ‘200 

feet’ a.s.l. in which shore plovers Thinornis novaeseelandiae were breeding. Bell (1953) 

documented very extensive forest die-back, wind-throw, loss of the forest-edge ecotone, 
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retreat of forest perimeters, canopy collapse and self-perpetuating processes of desiccation 

in the forest interior. By 1961, the understorey in the island’s Top Bush was so open that 

New Zealand Wildlife Service hunters pursuing the last 14 sheep could run unimpeded 

through the forest (Ian Hogarth, pers. comm.).  

 

Loss of the wind-deflecting vegetation gradient at the forest-edge was arguably the most 

ominous of the changes for the black robins. Climatic conditions would probably have de-

teriorated under whatever forest cover remained. Processes of understorey loss and forest 

collapse would follow naturally, hastened by browsing pressure. Without the shelter of a 

forest edge, black robin adults and young alike would have experienced unnaturally ele-

vated rates of mortality during the harsh winter months, the period in which greatest mor-

tality is recorded today (Chapter Two: Section 2.9.2). Fragmentation of forest cover cou-

pled with the loss of understorey no doubt reduced the area of forest suitable for breeding. 

Optimal nest-sites probably became less common, increasing the rates of breeding failure 

by exposing nests to weather and disturbance by arriving and departing petrels. Competi-

tion with tomtits for food and nest-sites is likely to have increased. As the forest assumed a 

canopy-only character unfitted for a lower-stratum forest-interior specialist such as the 

black robin, prey availability would have diminished, with predictable consequences for 

the energy costs of foraging and breeding.  

 

These predictions draw on observations of habitat collapse on Little Mangere Island (Sec-

tion 3.6). But a small body of inferential evidence on Rangatira Island suggests that the 

processes of habitat change might hardly have been far enough advanced or pervasive to 

eliminate the black robins between 1840 and 1871.  

 

First, Bill Carter (pers. comm.) considers it likely that sheep and goat numbers remained 

quite low for some time after 1845. Certainly, if forest still covered much of the island, 

grazing opportunities would have been limited. The scarcity of fresh water on the island 

probably placed a significant constraint on stock numbers. Clearly, the bush interior had 

not become so dry that moist-dependent plants were jeopardised. On the sheltered wool-

shed flats where extensive loss of forest cover indicates that much of the grazing was con-

centrated, mature tree-ferns were still sufficiently abundant in the early 1900s to supply the 

cladding and fencing for Tom McClurg’s woolshed (Appendix One: Figure 1A).  
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Second, other forest bird species were not eliminated. Even under the more severely de-

pleted conditions of the early 20th century, tomtits, Chatham Island warblers Gerygone 

albofrontata and Chatham Island fantails Rhipidura fuliginosa penitus were evident and at 

times abundant (Fleming, 1939b; Bell, 1953, Dawson, 1954). However, the presence or 

abundance of these species is not a wholly convincing indication that changes in forest 

character had been minimal. None of these species is dependent on intact, closed-forest 

habitat. All possess the powers of flight which make them more likely than black robins to 

recolonise the island. The tomtit’s reproductive output gives that species an advantage over 

the black robin (see Chapter Two). Intriguingly, Ma and Lambert (1997b) offer evidence 

from molecular analyses that Rangatira Island tomtits have passed through one or several 

periods of critically low numbers historically (see also Chapter Eight: Hybridisation).22  

Perhaps this was such period. 

 

Finally, early and mid-20th century photographs of Rangatira Island show glimpses of an 

extensive canopy cover surviving in the Top Bush (Fleming, 1939a, c; Roberts, 2004). De-

spite Hogarth’s recollections of a devastated understorey at the end of the farming era, it is 

difficult to believe that the cumulative effects of the mid-19th century’s more modest pas-

toral activities could have eliminated black robins from all corners of this vast area of for-

est before 1871. Perhaps they did not and surviving robins were overlooked by any indi-

viduals advising Travers in 1871.23 Analyses of latter-day demographic data reported later 

in this study (Chapter Six) indicate that if a remnant of the black robin population was in-

deed confined to the Top Bush in 1871, its persistence was doubtful. Under improved, re-

generating conditions between 1990-91 and 1998-99, the natural reproductive output of 

black robins in the Top Bush was insufficient to sustain their numbers. Juvenile production 

and survival were lower than in the Woolshed Bush. The resident population was reliant 

on constant replenishment through dispersal from the woolshed flats. These latter-day 

findings raise the intriguing possibility that the effects of farming between 1840 and 1871 

only needed to compromise black robin reproduction and longevity on the lower northern 

terraces of Rangatira Island to threaten the viability of the entire population. 

 

                                                 
22  This evidence comes from analysis of blood taken from the descendants of tomtits rein-

troduced to Mangere Island from Rangatira Island in April 1989 (Merton, 1989). 
23  Latter-day observers found it very difficult to locate human-habituated black robins in the 

Top Bush after the species was reintroduced to the island in 1983-84 (pers. obs.). 
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If my reasoning is correct, the elimination of black robins from Rangatira Island before 

1871 is noteworthy for two things. First, it is attributable to a single extinction-inducing 

factor—in this case, environmental stress originating from detrimental changes to the 

character of the island’s forests. The severity of this stress cannot be determined from 

available historical sources, but relative to the very poor condition to which pastoral farm-

ing had reduced the forests by the mid-20th century (Bell, 1953), it was probably modest. 

Second, the interval to local extirpation may have been very brief—perhaps no more than 

30 years. Loss in so short a period supports the conclusion that the black robin’s extinction 

vulnerability derives ultimately from its low reproductive potential and the threat that 

poses to persistence when recruitment does not keep pace with mortality. The species’s 

inability to produce juveniles in compromised habitat was amply demonstrated later on 

Little Mangere Island (Section 3.6). Low reproductive output could be expected to threaten 

population viability on Rangatira Island when the species’s other vulnerability—its spe-

cialist forest-interior habit—was exposed by reduction in the area and quality of the is-

land’s bush cover. 

 

The brief time to extirpation under conditions of habitat stress alone raises valid questions 

about how long before 1863 black robins had been eliminated from Pitt Island where ex-

tinction pressures (habitat disintegration and cats) worked in combination. If the interval 

was 30 years or fewer, it was not unique to Rangatira Island. The population on Mangere 

Island was lost within a comparable period of unfamiliar changes.  

 

3.5 Mangere Island Mangare (113 ha)  

 
Mangere Island is the first of the original pre-human habitats in which the black robin’s 

presence and extirpation interval were documented in published literature. Travers col-

lected the first specimens there in September 1871 (Travers, 1871; Travers and Travers, 

1872) during a weather-bound stay of 12 days, 11 more than intended (Drummond, 

1910a). At this time, the black robin ‘was not uncommon’. The island itself appears to 

have become the last predator-free refuge of significant area for other terrestrial bird spe-

cies declining or eliminated elsewhere in the archipelago. In addition to the black robin, 

Travers found parea Hemiphagus chathamensis, bellbirds, tomtits, fernbirds Bowdleria 

rufescens, Chatham Island snipe Coenocorypha pusilla, Forbes’s parakeets, Chatham Is-



Chapter Three: History of Decline  87

land red-crowned parakeets, shore plover and the naturally rare (thus highly prized) Chat-

ham Island rail Rallus modestus.   

 

This assemblage of birds, the relative abundance of most, and the numerous Procellarifor-

mes listed by Travers at the same time, suggest an unmodified terrestrial environment. In 

fact, the processes of habitat destruction had already been set in train (see below). Travers 

reported that Mangere Island was ‘nearly covered in a low, rigid scrub’ (Travers and 

Travers, 1872: 213). As described by an anonymous correspondent24 in a contemporary 

newspaper column (Chatham Island Sketches—Pitt’s Island, Hawke’s Bay Herald, 3 No-

vember 1868),25 this vegetation—‘so impervious that it is somewhat difficult to force a 

passage through’—was confined to the lower reaches of the island. The top of the island 

was ‘thickly studded over with trees of large growth, interspersed with scrub.’ Every-

where, passage was hindered by petrel burrows so deep and numerous that a visitor ‘at 

every other step…will sink to his knees in loose soil…’. Evidence of old-age akeake 

trunks littering the grasslands at all altitudes on the island today (see Ritchie, 1970: Figure 

6; Bell, 1974) indicate that Travers and the article’s author were describing a low-stature, 

wind-shorn bush, the most continuous tracts of which may have been located on the ex-

posed peninsula adjacent to Little Mangere Island. From the fallen tree trunks, Atkinson 

(2003) assessed a canopy height of 3.7 – 7.0 metres in places where akeake grew. 

 

Curiously, Travers makes no mention at this time of the rabbits and goats which were ‘in 

large numbers’ on the island during his visit (Travers, quoted four decades after his visit in 

Drummond, 1910a). Frederick Hunt is said by W. Hawkins (letter to W. Buller, August 

1893; British Natural History Museum, TM/1/6/9) to have liberated these animals, appar-

ently after securing grazing rights to the island from its Maori claimants. The rabbits may 

have been come from Tasmanian whalers in the 1850s and were liberated on Mangere Is-

land (and Rabbit Island; Figure 3A) because Hunt did not want them on Pitt Island (Bill 

Carter, pers. comm.).  

 

The precise dates of liberation for these browsers are undocumented but the anonymous 

newspaper correspondent of 1868 refers to ‘a numerous colony of goats and rabbits in-
                                                 
24  Believed by Richards and Carter (2009) to be John Amery who also ghost-wrote Frederick 

Hunt’s ‘autobiography’ (Richards, 1990).  
25  http://paperspast.natlib.govt.nz/1868 

http://paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&cl=search&d=HBH18681103.2.30&srpos=1&e=03-11-1868-----10-PubMetaHBH-1----2%22Chatham+Island+Sketches%22-all
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creas[ing] and multiply[ing]’, which hints at introduction long enough beforehand for the 

animals to have become numerous by that date. These browsers were the vanguard for 

sheep (11 merino ewes and a ram; Bill Carter, pers. comm.) introduced in or before 1890 

by William Pepper of Pitt Island under a grazing lease obtained from Hunt. According to 

Travers (Drummond, 1910a), the rabbits were so abundant that Pepper released cats to de-

stroy them, apparently because they were exhausting the grazing potential of the island 

(Forbes, 1893; Drummond, 1910a). The fate of the goats is undocumented. 

 

Pepper probably obtained his cats from Pitt Island, the source nearest to hand. Bill Carter 

(pers. comm.) considers that he liberated them on Mangere Island no earlier than 1888 and 

no later than 1890, but there is equivocal evidence of an earlier date. A report of Henry 

Palmer, one of Rothschild’s collectors (The Naturalist, Otago Witness, 27 November 

1890), 26 implies that cats were already numerous in 1890—‘…through the depredations of 

cats, the [rare] birds are being reduced wholesale’. The article does not say that Palmer 

was referring specifically to Mangere Island but the reference to cats, an 1890 photograph 

of Palmer on the island (Miskelly, 2008) and the black robin specimens obtained there (see 

below) suggests that that is where he was ‘very successful in his mission [of obtaining] 

two rare specimens of birds’.27 Assuming that Pepper did not liberate great numbers of 

cats, a lag-time of years would be necessary for numbers to have increased, even allowing 

for the year-round abundance of rabbit prey.    

 

The black robins were still on Mangere Island in 1890 when Palmer collected black robin 

specimens there (Rothschild, 1907). Thereafter, it is necessary to read carefully from what 

is not said in published sources to estimate how long the doomed black robin population 

persisted after the cats arrived. W. Hawkins, the diligent commercial collector writing to 

Walter Buller on 6 September 1892, makes no mention of black robin extinction when re-

cording the strenuous efforts a colleague made nightly over two months to obtain a Chat-

ham Island rail specimen from the island (Buller papers, Alexander Turnbull Library, MS-

Papers-0048-22). Hawkins also wrote to H. O. Forbes of rediscovering the rail but evi-

dently made no reference to black robin demise in that letter either, because Forbes does 

                                                 
26 http://www.paperspast.natlib.govt.nz/cgi-bin/1890  
27  Clarification cannot be obtained from Palmer’s Chatham Islands correspondence. A letter 

dated 1896 archived in the British Natural History Museum at Tring (Ref. TM/1/19/12) in-
dicates that Palmer’s letters were destroyed soon after his visit to the Chathams.   

http://www.paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&cl=search&d=OW18901127.2.135&srpos=1&e=27-11-1890-----10-PubMetaOW-1----0The+naturalist+Palmer-all
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not report it. Forbes reports the black robins as extant (Forbes, 1893), no doubt on the basis 

of his own collecting visit to the Chathams in 1892.28 He is also in receipt of black robin 

specimens from both Mangere and Little Mangere Islands but he does not specify the col-

lector or collection date. It appears however that publication of Forbes’s paper (October 

1893) overran the news from Hawkins that the black robins were no longer obtainable on 

Mangere Island. In August 1893, Hawkins advised Buller by letter that the black robin was 

‘gone’ (British Natural History Museum, Archive ref. TM/1/6/9; Buller, 1894a).29  

 

If gone between late 1892 and early 1893, the black robin population on Mangere Island 

appears to have been eliminated in fewer than five years of cat arrival, assuming cat libera-

tion between 1888 and 1890. The population had probably been reduced in size and viabil-

ity by the effects on habitat quality of goat and rabbit browsing over two or more decades. 

Goats had no doubt opened the bush edge and interior to chilling winds. The 1890 photo-

graph of Palmer shows him sitting, apparently on the ridge above the present hut, in open, 

grazed, disintegrating bush among the debris of fallen akeake trees and branches. Pastoral 

management by Pepper may have accelerated habitat decline but no record of his activities 

has survived. Buller (1905) refers to the burning and active clearance of forest to plant 

grasses on the island, but it is not clear if he is alluding to the period prior to 1893 or after. 

In all probability, Pepper burned the island’s existing grasslands to induce regrowth. Fire 

may have encroached on the forest, especially in dry conditions and high winds but ac-

cording to Bill Carter, the Chathams bush cannot be burned effectively unless the standing 

timber has first been felled and dried. No evidence exists to indicate that Pepper did this, in 

which case the goats, rabbits and wind alone were probably the principal agents of black 

robin decline prior to cat arrival. 

 
                                                 
28  Contrary to Butler and Merton (1992: 1), I can find no reference in Forbes (1893) or else-

where to indicate that Forbes himself collected specimens from Little Mangere Island in 
January 1892. 

29  Forbes (1893: 525) quotes Hawkins as saying that the cliffs of Little Mangere Island had 
collapsed, making it ‘terribly difficult’ to obtain specimens there. This and other oblique 
references point to Hawkins being the collector of Forbes’s black robin specimens from 
that island. However, even if Hawkins had not visited the island but had engaged locals 
to collect birds from the top of the island for him, as Fleming suggests (1939b: 383), it is 
difficult to explain how he could be so sure that the black robin was ‘gone’ (implying ex-
tinction). He may have assumed that cats had also reached Little Mangere Island. Or 
maybe the locals had misled him to avoid further hazardous (and perhaps underpaid) ex-
cursions to the top of the island on his behalf. 
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Extirpation from Mangere Island followed the pattern of loss from Pitt Island in which the 

interacting processes of habitat decline and mammalian predation each obscured the 

other’s effects. Ultimately, it was the cats which delivered the coup de grâce to black robin 

populations whose vital rates of recruitment and mortality had doubtless been compro-

mised by habitat reduction. The capacity of vegetation change alone to undermine popula-

tion viability—merely inferred from events on Rangatira Island—is demonstrated explic-

itly in the decline of the black robins in their last island refuge.  

 

3.6 Little Mangere Island Tapuaenuku (8-9 ha) 

 
The black robin populations on Mangere and Little Mangere Islands were probably linked 

by occasional exchanges of individuals across the narrow ocean gap between the two is-

lands (about 260 metres from historic bush-edge to bush-edge). After elimination from the 

larger part of this combined area—most likely between late 1892 and early 1893—the 

black robins were reduced abruptly to a vestigial population in the compact, wind-shorn 

forest on the 200-metre heights of Little Mangere Island. The species persisted in this tiny 

habitat until 1976-77 when the seven remaining individuals were transferred to Mangere 

Island (see below, and Chapter Four). Over the final six years in this refuge (1971-72 to 

1976-77), the small, obligatorily inbred population was conveyed swiftly towards extinc-

tion by the destabilising effects of forest degeneration which lowered productivity and in-

creased mortality rates. Regular visits to study black robin biology and conservation needs 

in each of these years yielded important demographic insights to the extinction process, 

and to those extrinsic (environmental) and intrinsic (demographic) features which were no 

doubt instrumental in the species’s extirpation from all other island habitats.   

 

3.6.1 Timing of habitat collapse 

 
The processes of bush deterioration on Little Mangere Island and their consequences for 

the island’s small black robin population were documented but observers of the time could 

not agree on the precise timing and causes of the habitat’s collapse.  

 

Nineteenth-century naturalists and bird collectors left no record of forest character and ex-

tent on Little Mangere Island, and only a little can be read from the observations of the 

first ornithologists to land with more benign intentions in the next century. Charles Flem-
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ing, Graham Turbott and Alan Wotherspoon spent approximately three hours ashore over 

midday on 2 January 1938, more than two of them devoted to the fearful climb and descent 

(Turbott, 1938; McEwen, 2005). Under pressure of time to gather information on island 

biota of all kinds (Turbott, pers. comm.), the party did not explore the full extent of the 

bush on the plateau. Fleming (1939a: 383) observed that the forest occupied by the black 

robins and Forbes’ parakeets comprised ‘barely an acre of virgin tangled vine and bush on 

its summit, wherein the birds find refuge’. Turbott (1938) described the mainly low, scrub-

like character of the vegetation elsewhere—generally lower than shoulder height (Turbott, 

pers. comm.)—and the scarcity of cover in which it was possible to walk upright.  

 

Twenty-nine years later, Merton and two others landed by helicopter to make a two-day 

survey of the island’s birdlife (2-3 September 1968). The party noted that the area of tall 

forest available to black robins on the island’s summit amounted to about one acre of tall 

bush (Merton, 1969; Ritchie, 1970). Their visit made apparent for the first time the threat 

posed to the species’s survival by ecological change on the island (Merton, 1969). The 

party was unpleasantly surprised to find that a large area of vegetation on the island’s 

summit (about half a hectare; Butler and Merton, 1992) had been cleared to allow helicop-

ter landings so that harvesters could gather titi (sooty shearwaters Puffinus griseus and 

other petrels). Broad areas of scrub and Muehlenbeckia cover nearby had been heavily 

trampled and broken down (Merton, pers. comm.).30 The helicopter pad made the island 

easily accessible where previously the difficulty in scaling the cliffs had limited titi har-

vesting. Fleming’s (1939a, b) confidence in the island’s impregnability as an ecological 

safeguard had been misplaced.  

 

No ornithological visits were made after September 1968 until late March 1972 when Dr 

Douglas Flack of the New Zealand Wildlife Service began his study of black robin biol-

ogy. Thereafter, until removal of the seven surviving black robins to Mangere Island in 

1976-77, Flack’s research teams, botanists and wildlife managers monitored deterioration 

in the bush cover during 12 visits of varying duration (Table 3.1; see Chapter Four for ad-

ditional details). During Flack’s first visit on 29-30 March 1972, the fragmented and de-
                                                 
30  The wording in Merton (1969: 4-5) indicates that the helicopter pad had been cut in April 

or May 1968. It was ‘25 yards square’ and sited close to the tallest forest on the island. The 
island plateau was strewn with beer bottles and other rubbish. According to Pitt Islanders, 
the culprits were New Zealand cray-fishermen from Bluff. They and companion birders 
had dug up burrows to take about 2000 titi that season. 
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generating condition of bush remnants prompted immediate concern (Flack, 1973, 1974a, 

b, 1976b).  

 

Atkinson et al. (1973) and Flack (1976a) assessed the bush condition systematically while 

attempting to define the black robin’s habitat needs. Mature akeake trees, judged by Flack 

to be the original canopy species, had died along with matipo trees which appeared by 

their growth to have succeeded the akeake quite some time beforehand. Living and stand-

ing-dead matipo trees substantially covered in Muehlenbeckia vines formed the majority of 

the bush cover available to the black robins (Flack, 1976a). Regeneration of both akeake 

and matipo was minimal within and outside the standing bush perimeters. Fragmentation 

of the bush cover over significant areas of the plateau had opened the bush interiors to 

wind and weather (Atkinson et al., 1973; Rod Morris, pers. comm.). Atkinson et al. (1973) 

noted that only three of the ten black robin territories at that time possessed vegetation in 

stable condition. These territories offered relatively good shelter from all but the strongest 

of winds (Flack, 1976a). Sea-facing vegetation was in rapid retreat. In six of the ten territo-

ries, the area of habitat available to the birds was decreasing on one or more margins.  

 

Atkinson et al. (1973) judged that the processes of habitat collapse had commenced at least 

three decades beforehand (that is, at or after the time of Fleming’s visit in 1938) and, with-

out remedy, would culminate in a low, woody successional scrubland unsuited to the black 

robin’s needs. Flack (1976a, 1977) treated decayed and moribund root systems in the erod-

ing soil at the coastal edges of the plateau as evidence of a formerly healthy closed-canopy 

forest covering an area of 8-9 ha 50 years previously. He concluded that more than 50% of 

that area had already become or was in the process of converting to open habitat (Flack, 

1976c). In his judgment, the island’s vegetation changes had been gradual in the first half 

of the 20th century and had gathered momentum in the latter half. By 1976, the total area 

of forest fragments available to the black robins amounted to 3.9 ha, supplemented by 2.2 

ha of scattered vegetation in which nesting might be possible (Flack, 1976a). Applying 

contour information to aerial photographs, Flack calculated that the largest tract of closed 

canopy bush (5-10 metres high) was barely one hectare in area. Understorey vegetation 

was conspicuously absent and the ground was bare of both leaf litter and herbaceous plants 

(Flack, 1974a, b, 1976a).  
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The 1938 observations of Fleming (1939a, b) and Turbott (1938) offer incidental support 

for early onset of the decline. Beyond Fleming’s reference to virgin bush (presumed to 

mean unaffected by human activities), both remarked on the small area of tall forest, the 

noteworthy Muehlenbeckia vine, the lack of undergrowth under any of the taller scrub and 

trees, and petrel burrowing of such extraordinary density that the team plunged knee-deep 

into the soil ‘with every step’ (Fleming, 1939b: 507).  

 

How far habitat deterioration had advanced after 1938 cannot be determined from Merton 

(1969). The personal recollections of the 1968 party members are more informative, as are 

Flack’s (1976b) allusions to their impressions (see below). Merton (pers. comm.) believes 

that the conditions he observed in 1968 were not as bad or the forest as open as Flack 

found them in March 1972. John Kendrick (pers comm.) recalls the Muehlenbeckia vine 

being everywhere, collapsing the bush under its weight. But although the extent of tall for-

est was limited, there were still good areas of bush cover ‘over head-height’. In the three 

years after 1968, the cover had evidently become more severely fragmented and degraded 

(Flack, 1973, 1974a, b).  

 

The reasons for the sudden deterioration are unclear. The helicopter pad has often been 

cited (see for instance Cemmick and Veitch, 1985; Hutching, 2004) and has assumed apoc-

ryphal significance in the black robin story, more than may be justified by its direct effects 

on habitat quality (Rowley Taylor, pers. comm.).  

 

Merton (pers. comm.) considers that the clearing breached the vegetation gradient at the 

edge of the taller bush, permitting wind to penetrate and securing for Muehlenbeckia vines 

an unnatural advantage through access to the deep spoils within. But this may have been a 

localised effect only and not the cause of the widespread deterioration in bush cover. At-

kinson et al. (1973) did not mention the clearing at all in their assessment of forest col-

lapse, causes and remedies.  

 

More probably, the helicopter pad aggravated the existing processes of collapse by allow-

ing titi harvesters easy access to the island’s plateau during the three seasons after 1968. 

The damage done by birding parties to soil structure and vegetation cover over wide areas 

was amply evident in 1968 (Merton, 1969). This damage may have been enough to trigger 
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rapid deterioration in a habitat already predisposed to collapse through decades of shear-

water stress.  

 

3.6.2  Causes of decline in habitat quality 

 
Indirectly, the helicopter pad served the black robin’s interests by acting as a catalyst for 

efforts to purchase the island from its Maori owners (Merton, 1969; Butler and Merton, 

1992). These efforts were ultimately unrewarded. The intrusions and their apparent effects 

also prompted much closer assessment of the black robin’s biology and viability (Flack, 

1971).  

 

The research programme which followed identified the smothering effects of the prevalent 

Muehlenbeckia (Fleming’s ‘tangled vine’) and the destructive effects of extremely abun-

dant, heavy-bodied sooty shearwaters 31, 32 as the two principal causes of forest disintegra-

tion. The relative importance of these two factors was disputed by black robin researchers 

and managers but both sides of the argument agreed that conditions of unusual climatic 

stress had accelerated the rate of bush collapse. The damage wrought by consecutive years 

of severe summer droughts, such as occurred between 1972-73 and 1973-74, and a series 

of intensive dry (low humidity) salt-laden storms was evident in the extensive dieback of 

foliage on the island (Atkinson et al., 1973; Flack, 1976a). The extensive deep-soil bur-

rowing of the shearwaters increased the drought-prone-ness of the island’s soils (Atkinson 
                                                 
31  Alluding to the views of Brian Bell and other Wildlife Service colleagues, Flack (1976a) 

suggests that hostile changes in the shearwater’s breeding habitats elsewhere in the Chat-
hams were responsible for their overwhelming numbers on Little Mangere Island. If so, 
displacement has not resulted in super-abundant shearwater densities on predator-free 
Rangatira Island (Nilsson et al., 1994; West and Nilsson, 1994), or on neighbouring Man-
gere Island now that it is free of introduced predators. The latter appears to have had 
higher shearwater densities historically (see 3.4 above—the reference to walking difficul-
ties in the 1860s), but perhaps the complete absence of bush cover over most of the island 
since the early 1900s exposes the shearwaters unduly to avian predators (skuas and harri-
ers). In contrast, Flack (1976a) observed that the geological character of Little Mangere Is-
land favoured the shearwaters with powerful up-draughts from the vertical cliffs and very 
short journeys to take-off points—attributes not possessed by other islands in the vicinity. 

32  At least 60,000 pairs, considerably more than the number of burrows available, judging 
from the great number of eggs laid on the surface (Flack, 1976c). According to Flack 
(1976a: Table 2), burrow density for sooty shearwaters on Little Mangere Island (x̄ = 102 
per 100 square metres) exceeded any cited for five southern titi islands of comparable size 
around Stewart Island. The Little Mangere Island density is a little less than those found in 
Poa meadows (1.9 per m2) and Olearia forest (1.2 per m2) by Warham and Wilson (1982) on 
the larger Snares Islands.   
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et al., 1973). Their nocturnal traffic polished the soil surface and swept it clear of leaf lit-

ter, reducing moisture retention and seed germination. Tree seedlings were dislodged eve-

rywhere except in small isolated areas. The moisture and leaf-litter deficits created scarci-

ties of ground invertebrates crucial for black robin breeding and survival (Flack, 1976d). 

Many palatable insect groups were barely represented or unavailable to the birds during 

summer (Flack, 1976a, c). Modest winter improvements in soil texture, ground litter and 

invertebrate biomass were swept away again when the shearwaters returned to breed each 

year. The installation of wire-netting petrel-exclosures in 1973-74 and later seasons dem-

onstrated that natural regeneration would be rapid in the absence of the shearwaters (Flack, 

1976a, d).   

 

Researchers and managers became deeply divided over the role of Muehlenbeckia in the 

bush’s decline, especially when decreasing black robin numbers made it critical to address 

the correct cause of habitat collapse swiftly. Merton (1969) had made no special mention 

of Muehlenbeckia but was convinced by 1976 that the vine was the principal problem. He 

argued that its smothering growth stifled regeneration through light deprivation and 

through wind-sail effects which killed the tall trees by destabilising their root systems (‘the 

trees rocked backwards and forwards in the wind’; Merton, pers. comm.).  

 

In a letter to colleagues, Flack (1976b) rejected these propositions, citing old-age vine 

growth as evidence that Muehlenbeckia was an original component of the habitat and 

therefore not naturally destructive. He regarded its apparently aggressive mantling of low 

vegetation and trees, both living and dead, as a symptom rather than the cause of senescent 

forest cover. In his judgment, dead and dying trees dominated the bush because the shear-

waters had suppressed the processes of forest replenishment for some time. 

 

The issue was part of a larger debate on Muehlenbeckia threats to forest recovery on Ran-

gatira and Mangere Islands following complete removal of their livestock (1961 and 1968 

respectively). The vine had encroached swiftly on the bush edges, light-wells and replant-

ings (Veitch, 1982). It remains a conspicuous and contentious feature of black robin habi-

tat today (Roberts et al. 2006; pers. obs.). Observations of black robin nest-site choices and 

territory disposition at the forest edges (Chapter Two) suggest that Muehlenbeckia was a 

mixed blessing on Little Mangere Island. The destabilising effects of shearwater burrow-

ing on soil and root systems accentuated the vine’s harmful properties, but on balance, 
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Flack’s (1976a, b) position was probably correct. Without the sheltering and foraging 

benefits of Muehlenbeckia, the black robins might not have survived in the degenerating, 

open habitat otherwise available to them.  

 

Because the black robins did not use the expanding areas of open woody vegetation, the 

progressive contraction in suitable forest habitat on so small an island had measurable re-

ducing effects on territory disposition, quality and numbers (Flack, 1974a, b). Through the 

loss of continuous bush cover, pairs occupied isolated territories which lacked the multiple 

points of connection and boundary negotiation possible in the forest habitats of mainland 

Petroica (Flack, 1976a). The changes are certain to have imposed higher energy costs, es-

pecially during the critical summer periods of nesting and parenting.  

 

Under contracting bush cover devoid of ground litter, foraging ranges and opportunities 

would have narrowed, obliging birds to make longer foraging journeys. This was an effect 

observed in the very fragmented Caravan Bush on Pitt Island where, in 2006, black robins 

flew long circuitous routes through bush corridors rather than crossing clearings on forag-

ing trips (Kennedy, 2006). On Little Mangere Island, the conditions reducing prey avail-

ability also undermined the reliability of food supply (Flack, 1976a). The modest winter 

recovery of ground invertebrates may have averted a higher rate of winter mortality, but 

conversely the sheltering benefits of the deciduous Muehlenbeckia were lost during these 

harsh months. The stresses resulted in high mortality rates and lowered reproductive output 

(Flack, 1974b, 1976a, d, 1977), with predictable consequences for population viability and 

size. 

 

The growing environmental pressures were aggravated by the presence of exotic bird spe-

cies, especially blackbirds Turdus merula and dunnocks Prunella modularis. The latter 

were common on Little Mangere Island in the 1970s, apparently because conditions were 

improving for them on neighbouring Mangere Island (Flack, 1976a). Both exotics com-

peted with the black robins for diminishing nest-site opportunities and—especially the 

dunnock, a ground-foraging specialist (Heather and Robertson, 1996)—for invertebrate 

prey in the lower strata of the bush (Flack, 1976a). Reports of the period make no mention 

of starlings on the island, though these were very common on Mangere Island in 1968 

(Merton, 1969).  
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3.6.3 Population decline 

 
Knowledge of black robin’s decline towards total extinction, first on Little Mangere Island 

and later on Mangere Island (see Section 3.7 below), is book-ended by Fleming’s observa-

tions in January 1938 and first conservation management in 1980-81. With one notable 

exception, the decline has been treated merely as a prefatory narrative in published ac-

counts of the species’s subsequent recovery. Butler and Merton (1992) offer the fullest 

published record of the decline but their summary is troubled by incomplete and contradic-

tory data in the official reports of research on Little Mangere Island between 1971-72 and 

1975-76.  

 

To analyse the intrinsic (demographic) features of the decline, I have attempted to rectify 

the uncertainties through recourse to the primary field sources. Other than the diaries of 

Morris (1973, 1975, 1976, 1977a) and field-books of Hay (1975), however, few such 

sources have been available. Douglas Flack has not permitted me to consult his field dia-

ries and workbooks, and by a dismaying accident of timing, Warwick Brown, his long-

term field assistant, had burned all his field notebooks ten days before I sought permission 

to look at them. A definitive demographic analysis of the decline is unachievable in a data 

vacuum of this nature. Therefore, the following description of the population’s decline is 

reconstructed from secondary sources in the public domain, from the small number of offi-

cial field and summarising progress reports from those years, from the recollections of par-

ticipating field-workers and associates, and from Flack’s incomplete black robin mono-

graph (1976a).33  

 

The data conveyed through these diverse sources are incomplete and often ambiguous, re-

sulting in a conservative picture of annual productivity and mortality. Against this, only 

rudimentary comparisons can be drawn with the detailed demographic data recorded after 

active conservation management commenced in 1980-81.   

 

 

                                                 
33  This is the only paper in which Flack attempted to document his research findings for the 

period 1971-72 to 1975-76. Unfortunately, copies of the draft manuscript still extant in the 
public domain are missing maps and tables essential to systematic analysis of the popula-
tion’s decline. Hand-written notations and marginalia imply that important corrections 
were still to be made. 
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3.6.4 Original population size 

 
The size of the black robin population originally isolated on Little Mangere Island after 

1893 is undocumented. Flack (1976a, 1977) concluded from the area of soil-covering on 

the island (8-9 ha, topographic; 5.2 ha cartographic34) that the former closed bush had 

naturally supported 20-30 pairs, considerably more than the six pairs and four bachelors 

(ten territories) counted definitively in October 1973 (Flack, 1974a, b, 1976a). The correct 

measure of historical abundance may lie between Merton’s (1986, 1990) unsupported pre-

dictions of no more than 30 individuals at any one time and densities observed in present-

day habitats.  

Merton’s estimate of ≤ 30 black robins allows for a historical density of 5.7 birds ha-1 car-

tographic (3.75 ha-1 topographic). Unlike Flack (1973, 1976a, 1979) who referred to a 

predator-reduced South Island robin population (Kowhai Bush, Kaikoura) for typical 

Petroica densities, Merton was basing his estimate on rising black robin densities on 

predator-free Mangere and Rangatira Islands prior to 1990 (Butler and Merton, 1992). 

These densities increased further after 1990 (see Chapter Six), achieving a pre-breeding 

peak in 1999-2000 of 6.8 bird ha-1 and 4.0 territories ha-1 (cartographic) in the Robin Bush 

on Mangere Island (7.9 ha), the habitat most comparable in size and insularity to Little 

Mangere Island (see Chapter Six: Table 6.3 for census count). Extrapolation from this peak 

Robin Bush density suggests a maximum population on Little Mangere Island (5.2 ha car-

tographic) of 35 black robins occupying 20 territories. This may be the upper limit of his-

torical population size because Little Mangere Island’s carrying capacity was probably the 

lower of the two habitats through greater exposure to winds from all directions, climatic 

pressures (storms, drought, lower mean seasonal temperatures), vegetation constraints and 

the more linear configuration of the habitat. 

 

                                                 
34  Flack used aerial photos, contour data and on-the-ground measurements to arrive at his 

topographic estimate of 8-9 ha for the original (pre-decline) forest cover on Little Mangere 
Island. As the basis for converting his estimate to cartographic area (the only measure fea-
sible elsewhere), I have drawn plan-view polygons around the edge of the island’s plateau 
in Google™ Earth satellite images, following Flack’s (1976a) use of cliff-edge soil-cover to 
define the original bush perimeter. To correct for probable underestimate in the use of 
polygons, I have calculated the ratio of topographic to cartographic area using the lower 
range of Flack’s topographic estimate (8 ha).   
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The cartographic densities of 3.8 birds ha-1 and 2.5 territories ha-1 (2.6 birds ha-1 and 1.64 

territories ha-1 topographic) observed in 1973-74 in Flack’s 6.1 ha of forest and scrub-

cover remaining on Little Mangere Island were lower than pre-decline estimates of popula-

tion size. In equating to a 19th-century population of about 20 black robins and 13 territo-

ries, they offer a possible measure of the degree to which habitat deterioration had already 

reduced the population to an unnaturally low density. 

 

3.6.5 Decline in black robin abundance 

 
Fleming (1939b) was the first observer to quantify black robin abundance numerically. In 

the belief that the species’s confiding nature gave him a truer indication of numbers, Flem-

ing determined from the birds seen everywhere along the crest of the island that the popu-

lation on the plateau comprised about 12 pairs. Having seen black robins in a cliff-side ter-

ritory traversed on the climb up from the landing, he made further allowance for cliff terri-

tories assumed to exist beyond view, arriving at a total estimated population of (minimum) 

20 and (maximum) 35 pairs (Table 3.1). Later experience of counting colour-banded black 

robins convinced Flack (1976a) that Fleming could not have avoided double-counting of 

unmarked birds in 1938. Adults moulting reclusively in early January and highly mobile, 

gregarious young of the year would have complicated Fleming’s estimate. Flack (1976a) 

also established that no more than one cliff territory was likely to have existed at Flem-

ing’s time or at any time during that century. 

 

Three subsequent counts also over-estimated numbers. A one-hour visit in late November 

1961 was too brief to test Fleming’s conclusions (Bell and Hogarth, 1962; Hogarth, pers. 

comm.). Merton (1969) attempted the first whole-island census of the population on 3 Sep-

tember 1968. This was essentially a pre-breeding survey capable of yielding a more ecol-

ogically prudent indication of population size and status. Walking line-abreast, the survey 

team of three counted 30 robins on the plateau, from whose distribution they extrapolated a 

total of about 17 pairs. Allowance was made for up to eight more pairs believed to inhabit 

inaccessible cliff ledges. The total of 17 pairs for the plateau alone was treated in retro-

spect as an over-estimate resulting from double-counting (Butler and Merton, 1992; Mer-

ton, pers. comm.). Multiple-counting difficulties also troubled Flack’s estimated minimum 

of 26 black robins in late March 1972 (Butler and Merton, 1992), despite the benefits of 

having colour-marked nine adults and juveniles with unique combinations (Flack, 1974a, 
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1976a). In hindsight, Flack (1977) gave the likely number at 1968 as fewer than 20. Infer-

ence from his post-breeding count in January 1973 (18-20 birds, Flack, 1974a) suggests 

that this was close to the likely number in March 1972 also.35 

 

Between late-January 1973 and September 1976, 11 further research visits of short dura-

tion plotted annual reductions in population size, pair numbers and territory configuration 

(Tables 3.1 and 3.2). Estimates of adult numbers were not accurate until all adults were 

finally colour-banded in February 1975 (the penultimate season of the research pro-

gramme). The timing of visits (spring and late summer or autumn) also deprived research-

ers of opportunities to follow breeding attempts and fledgling fates, omissions which per-

petuated uncertainties about annual juvenile production and survival. Even so, deteriora-

tion in the habitat’s carrying-capacity was amply expressed in the post-breeding population 

declines of about 60% over four successive seasons (from no more than 20 individuals in 

early February 1973 to seven in September 1976). Known pre-breeding numbers declined 

by 56% between October 1973 and September 1976 (Tables 3.1 and 3.2).  

 

The hostile changes in habitat quality exerted pressure on the population’s reproductive 

potential in a number of ways. Despite no evident sex-bias in juvenile production (Table 

3.2), the population developed a pronounced male skew (Tables 3.2 and 3.4) caused appar-

ently by the poor habitat selecting more heavily against females (Flack, 1976a, 1977). 

Breeding was successful in only five of the ten recognised territories on the island, in part 

because males in small, isolated territories failed to attract females.  

 

Food stress delayed the onset of egg-laying and abbreviated the season, shortening the po-

tential for renesting. Egg-laying periods varied from approximately 30 to 56 days during 

the last three research seasons, considerably less than the interval between earliest and lat-

est recorded egg-laying in superior habitats on Mangere and Rangatira Islands (about 120 

days; Chapter Two: Figures 2.5 and 2.6; Chapter Six). The short breeding season also lim-

ited the period within which offspring could be raised and resulted in higher mortality rates 

                                                 
35  As knowledge of the black robin situation improved on Little Mangere Island, numbers 

reported at the time of the early surveys were often revised several times (without com-
ment) in the multi-year summaries of later years. Confusion is also created by figures re-
ported in many sources which did not differentiate between pre- or post-breeding totals. 
No final statement of annual population sizes was ever published for the censuses between 
1968-69 and 1975-76.  



Chapter Three: History of Decline  101

in late offspring (Flack, 1976a). Food stress increased adult mortality during summers 

(Table 3.4; Flack, 1974b, 1976a) and was deemed responsible—along with the suspicion 

of inbreeding depression—for the failure of productivity to improve when larger territories 

became available on the death of occupants (Flack, 1976a). Recruitment to the breeding 

population was almost completely extinguished by the high mortality rate of juveniles 

(Flack, 1974b, 1977), all of which perished in the climatically taxing periods of winter and 

early spring (Flack, 1976d). Most of the juveniles dying during these periods were pro-

duced in bush of inferior quality or had been marginalised there over winter (Flack, 

1976a). 
 
Flack’s research showed that habitat and resource stresses had conveyed the shrinking 

population below a critical viability threshold. The rudimentary productivity data acquired 

from 1973-74 until 1975-76 indicated that the population’s reproductive output had been 

about 1.7 juveniles year-1, which equated to 0.36 juveniles pair-1 year-1 (Table 3.3). Juve-

nile survival over the same period was 0.7 year-1 (0.14 pair-1 year-1). This output no longer 

compensated for the elevated rates of mortality in adults and offspring alike. These mortal-

ity rates were higher than those recorded by Flack in predator-free and predator-reduced 

New Zealand robin populations in island and mainland habitats (Flack, 1973, 1976a, d, 

1979).  

 

Only three of the 10-12 juveniles thought to have been produced between 1971-72 and 

1975-76 survived to breeding age. Only one (the legendary Old Blue) may have bred suc-

cessfully within that period, though there is reason to doubt that she did so (Table 3.3).36 

Up to 16 adults perished after research commenced in March 1972. At least nine of the 11 

dying in the final three seasons (1973-74 and 1975-76) were experienced breeders (Table 

3.4). Eight of these 11 adults died during summer (Table 3.4). As the population became 

smaller, each death—especially of the numerically disadvantaged adult females—deprived 

it of progressively greater proportions of its reproductive potential.  

                                                 
36  Merton (1986) and Butler and Merton (1992) say that only one of the juveniles produced 

during this period bred successfully. This would be true of Old Blue if success is measured 
by the two fledglings she is known to have produced in 1973-74. There is some doubt that 
she raised these two offspring to independence (see Footnote 37), and too much doubt ex-
ists over breeding in later seasons to be certain that Old Blue raised any other offspring to 
independence prior to 1979-80.   
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The relentless rate of decrease witnessed after March 1972 suggests that the population’s 

viability had been fatally compromised, or brought to the point of fatal compromise, before 

that date. A slow approach to the critical threshold is inferred from Flack’s proposition of 

gradual habitat decline over more than half a century, a proposition supported perhaps by 

Fleming’s observations on habitat character and petrel abundance in January 1938. Then, a 

growing proportion of the black robins encountered may have been occupying territories in 

transition to sub-optimal quality or destined to become so. The population’s persistence 

may already have become unduly reliant on the reproductive potential of the small number 

of breeders occupying the few forest remnants described by Fleming (1939b) and Turbott 

(1938). Their genes were likely to become dominant. At some stage between 1937-38 and 

1971-72, the pool of productive breeders appears to have become unnaturally small, since 

it was during this time that genetic serendipity deprived the species of its distinctive 

‘bright yellow’ foot-pads (Fleming, 1950b: 143; Flack, 1976a, 1977). 

 

At whatever time viability became irretrievably compromised, the population’s decline 

was hastened by the black robin’s inability to adapt behaviourally to an unfamiliar envi-

ronment increasingly devoid of forest cover. The species’s foraging niche at or near 

ground-level jeopardized viability through the seasonal shortfalls in ground invertebrate 

prey noted by Flack (1974b, 1976a, c, d). The high rate of summer mortality in adults sug-

gests that the black robin’s broad invertebrate prey preferences were not versatile enough 

to compensate for the severity of ground-food shortages during the breeding seasons.  

 
Under these stressful circumstances, low reproductive rates arising from the short breeding 

season, small clutch sizes (no more than two eggs; Flack, 1976a), declining pair numbers 

and low rates of offspring survival proved to be fatally disadvantageous to population per-

sistence.  

 

As numbers fell year-by-year, only the longevity of survivors—fortuitous in so small and 

stressed a population—sustained the species until the courageous decision was taken to 

intervene. This advantage remained crucial until the ranks of ageing breeders on Mangere 

Island were first joined under better conditions by increasing numbers of their offspring, 

then swelled with many more under intensive management of breeding (Chapter Six). 
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3.7 Mangere Island, 1976-77 to 1979-80 

 
Seven black robins—five adult males, one adult female and a yearling female—survived 

the 1976 winter on Little Mangere Island. Only two young black robins were of known age 

(Table 3.5). Between 17 and 21 September 1976, both females were moved with three 

males to the smaller, regenerating Robin Bush on Mangere Island and bred there in the 

season ahead.  

 

 

Table 3.5 Age and sex of survivors in the ancestral black robin population on Little 
Mangere Island, September 1976. All were transferred to Mangere Island in 
the 1976-77 season. Ages given as years-of-age (that is, Old Blue was at least 
five years old when transferred). 

 

Name Sex Band 
number 

Age at  
transfer Natal year Transferred  

      
Old White * M B-35348 2 1974-75 17 Sep 1976 

Old Blue * F B-11384 ≥ 5 Probably 1971-72 18 Sep 1976 

Red Yellow * †  M B-31201 ≥ 6 Prior to 1971-72 18 Sep 1976 

Blow-Out Female II * † F B-36481 1 1975-76 21 Sep 1976 

Helipad Male †† M B-35343 ≥ 4 In or prior to 1972-73 21 Sep 1976 
      
Cliff Male * † M B-35345 ≥ 5 In or prior to 1971-72 15 Mar 1977 

Ridge Male * † M B-35479 ≥ 5 In or prior to 1971-72 15 Mar 1977 
      

 
NOTES *  Bred successfully on Mangere Island 

 †  Died before the 1980-81 season 
 †† Died before 1980-81without breeding 

 

 

The two males left behind on Little Mangere Island were transferred to Mangere Island on 

15 March 1977 (Morris, 1977a, b, c). It was at least 83 years since black robin extirpation 

from the island. 

 
Though related through shared ancestors in the tiny Little Mangere Island population, the 

two surviving females, Blow-Out Female and Old Blue, had no parents in common and 

represented separate maternal family-lines on Mangere Island. After transfer, the Blow-Out 

Female line persisted in two daughters (Gauntlet, 1976-77; Old Green, 1978-79) and one 

grand-daughter (Gunner) reared in 1980-81. All but Gunner bred successfully, contribut-
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ing four of the five juveniles produced in the post-transfer population prior to 1980-81. 

The line produced five juveniles in total (the three females named above and two males) 

before terminating on the sudden death Old Green in November 1986 (the last surviving 

female, assumed killed by starlings at her nest on Rangatira Island; Butler and Merton, 

1992). The line would have contributed nothing further to the species’s future were it not 

for the providential survival and nine-year longevity of the Blow-Out Female’s grandson, 

Old Yellow (raised in 1977-78 by Gauntlet, in her only year of adult life). Total extinction 

of the species was averted by the mate choice of this male. 

 
Old Yellow mated with the seven-year-old Old Blue in 1978-79 and remained paired with 

her until the time of her death aged 12 years in December 1983. The pair-bond effected a 

convergence of the two maternal lines and realised the second line’s productive potential, 

perhaps for the first time.37 The pairing occurred just in time. Though the Blow-Out Fe-

male line had done most to sustain black robin numbers in the first four years after trans-

fer, it was destined to produce no successful breeders after 1978-79. From this point, the 

fate of the species depended entirely on Old Blue’s productivity. Old Blue and Old Yellow 

were not successful at first, but produced a single female juvenile (Red) in 1979-80, the 

only surviving offspring of the year (Cox and Merton, 1980; Bell, 1980a). Red remained 

unmated in the next season—there were no males to spare—and died in the following win-

ter (1981).  

 

Had conservation managers not intervened in 1980-81 to boost the reproductive output of 

the population’s two breeding pairs through obligatory renesting and cross-fostering, it is 

doubtful that Old Blue and Old Yellow’s natural productivity would have preserved the 

species from extinction. Intervention averted this looming catastrophe but could do noth-

ing to avoid the Old Blue-Old Yellow bottleneck. All black robins in the Mangere Island 

population and sister population on Rangatira Island are therefore descendants of the Old 

                                                 
37  Between 1972-73 (when first observed as a yearling breeder) and 1978-79, Old Blue was not 

confirmed as having produced any juveniles (Table 3.3). Butler and Merton (1992) as-
sume—perhaps on the basis of field notes I have not seen—that two juveniles roaming in 
the vicinity of Old Blue’s breeding territory in 1973-74 were her progeny. My reading of 
Flack’s (1976a: 29-30) wording suggests that these juveniles were produced by the neigh-
bouring Western female. Neither juvenile survived the winter of 1974. The uncertainties 
frustrating productivity analyses for these seasons would have been minimised if reports 
of that period had routinely referred to individuals by their colour-band combinations and 
territory names together. 
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Blue line and have received from Old Yellow the genetic inheritance of the Blow-Out Fe-

male line.  

 

It is not possible to determine the scale, reasons or timing of reproductive failure in the 

tiny Mangere Island population after 1976-77. Optimistic of natural recovery, a manage-

ment policy of minimal disturbance was followed which resulted in minimal information 

on breeding attempts over the following four seasons (Table 3.3). Numbers and survival 

were monitored during fleeting early- and late-season visits, some timed early enough to 

acquire fragmentary evidence of longer egg-laying periods in the better habitat (Bell, 

1977a, b, c, d, 1978a, b, c, d, 1979, 1980a, b; Billing, 1977; Morris, 1977a, b, c; Wright, 

1978; Russ, 1979; Fisher, 1979; Cox and Merton, 1980). The population did not increase 

as hoped. Five juveniles were produced and survived between 1976-77 and 1979-80 (1.25 

year-1, which equated to 0.55 pair-1 year-1, nearly quadruple the survival rate in the five 

seasons prior to transfer; Table 3.3). But this was only just sufficient to offset the mortality 

of ageing adults (Table 3.4). 

 

As a result, the size of the pre-breeding population remained unchanged until 1979-80 (n = 

7; Table 3.2). Pairs became isolated in large territories (Russ, 1979; Butler and Merton, 

1992), minimizing the likelihood of stimulatory interaction between males during the 

breeding season. The male bias persisted. Pair numbers fluctuated annually between two 

and three (Table 3.3). Three of the four seasons commenced with just two females, the 

most experienced of which (Old Blue) had a long history of breeding failure. It was ques-

tionable how long chance would favour this modest stability in such perilously low num-

bers. 

 

Productivity finally failed to compensate for adult losses after 1978-79. Mortality over the 

winter of 1979 accounted for the only productive breeders remaining—the four-year-old 

matriarch Blow-Out Female and Red Yellow (at least eight years old), her mate of the 

1978-79 season, and possibly her father.38 Their deaths might have been associated with a 

massive rock-fall destroying about 0.5 ha of the bush between autumn and spring visits 
                                                 
38  Red Yellow’s consistently successful breeding in the Western territory on Little Mangere 

Island (Flack, 1976a) was likely to have contributed crucially to the ancestral population’s 
persistence after 1971-72. Breeding data are too imprecise to confirm whether he fathered 
the Blow-Out Female but the only other qualifying male is less likely to have done so (this 
study). 
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(Butler and Merton, 1992). The pair’s yearling son perished also, unmated for lack of a 

spare female. The losses reduced the population to five and shifted the burden of breeding 

to two pairings yet to demonstrate that they could breed successfully. Only the juvenile 

female Red was produced that season, but the death over winter of the sole bachelor (Cliff 

Male), her potential mate, deprived the population of her breeding potential.  

 

Cross-breeding commenced under extreme urgency in 1980-81 with the pre-breeding 

population reduced to two adult males and three adult females (Butler and Merton, 1992; 

see Chapters Four and Six).   

 

3.8 Conclusions 

 
The history of the black robin’s extirpation from each of its historical island habitats traces 

the familiar pattern of retreat to small populations lingering in marginal refugia, the course 

taken by many plants and animals driven towards extinction by human activities (Olson, 

1989). Loss of each discrete black robin population is also symptomatic of the perils faced 

by forest-dwelling bird species in particular (King, 1985b) and by the island endemic birds 

that comprise such a prominent proportion of recent global bird extinctions (Myers, 1979; 

King, 1985a, b; Atkinson, 1989). Extirpation from the extensive habitats of Chatham Is-

land (90040 ha) is proof that ample abundance alone is no safeguard for locally adapted, 

slow-breeding K-selected species confronted by sudden hostile changes in their environ-

ments. 

 

The late 20th-century observations made on Little Mangere and Mangere Islands give par-

tial but crucial insights to the ways in which anthropogenic change might fatally have 

compromised the viability of black robin populations lost unobserved elsewhere in the is-

land group. Inferences made possible by these insights compensate for the paucity or com-

plete lack of information in historical sources.  

 

Directly and indirectly, human activities in the Chatham Island archipelago exerted reduc-

ing pressures on all of the black robin’s historical populations. Regardless of their size, all 

declined independently towards local extinction at different times. These pressures culmi-

nated over six seasons in unrelenting contractions in the size of the last vestigial popula-

tion on Little Mangere Island, conveying the black robin to the brink of functional extinc-
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tion before intensive boosting of reproductive output on Mangere Island after 1980-81 

averted loss of the entire species.  

 

The five black robin populations succumbed to differing extinction pressures, some appar-

ently operating singly rather than through synergistic interaction with others. On Rangatira 

and Little Mangere Islands, habitat loss was the principal (and seemingly only) form of 

change inducing population collapse. Predation alone seems likely to have accounted for 

the large population on Chatham Island—if so, adding this species to the grim inventories 

of local insular extinctions attributable to kiore (Atkinson, 1978, 1985; Holdaway, 1999; 

Towns et al., 2006). Gradual changes in forest structure following Moriori settlement 

might have become contributed but this assumes that kiore did not eliminate the species 

first, within years or a decade of the pioneering rat irruption. In contrast, we can be more 

certain that mammalian predation compounded the difficulties of habitat deterioration for 

the original Mangere Island population. The short three- to five-year interval between the 

introduction of cats (presumably a small number only) and black robin extinction implies 

that the two to three decades of goat and rabbit browsing had already undermined popula-

tion stability. The mutually compounding costs of habitat deterioration and cat predation 

on Pitt Island may simply have differed in relative scale, assessment of which requires bet-

ter knowledge of when the cats arrived.   

 

The Little Mangere Island experience revealed explicitly the nature of habitat changes le-

thal to black robin survival. Although the initial agent of habitat change (sooty shear-

waters) differed from the introduced browsers on Pitt, Rangatira and Mangere Islands, 

habitat structure and quality suffered comparable forms of disintegration. Fragmentation, 

opening up and simplifying of naturally closed, sheltering forests probably resulted in the 

harmful changes to prey availability and abundance, contractions in foraging ranges, and 

reductions in territory numbers and quality observed on Little Mangere Island. Harsher 

forest-interior climates and higher energy costs must surely have followed. On Little Man-

gere Island, the effects of habitat deterioration were expressed in fatally high rates of re-

productive failure, breeding-season mortality in adults and winter mortality of juveniles, 

all of which culminated in the population’s decline. 

 

Isolation on geographically discrete islands gave populations no assurance of immunity to 

habitat change. The effects of ecological disturbance elsewhere in the archipelago could 
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migrate through familiar ecological associates such as sooty shearwaters (perhaps deprived 

of breeding space elsewhere), or through the movements of introduced starlings, dunnocks 

and blackbirds, strongly flighted competitors for space and resources. Today’s black robin 

populations are still exposed to the threats of disease, competition, predation and habitat 

change through these vectors.  

  

Regardless of extinction pressures (habitat change, predation, or both), extirpation inter-

vals for most populations appear to have been relatively brief and shorter perhaps than the 

15-33 years I have postulated for Rangatira (c.1840-1871), Pitt (1827-1842 or 1863) and 

Mangere Islands (c.1860-1893). The intervals give a crude measure of the degree to which 

evolution in the challenging Chathams environment did not equip the black robin with the 

requisite biological tolerances to cope with or adapt to change. Its tolerances were signifi-

cantly more slender than those of the sympatric Petroica congener, the Chatham Island 

tomtit, which narrowly survived the period of human colonisation and the growing diver-

sity of threats, but no doubt similar to those of the other extinct insular sympatrics whose 

biologies are not known—the Chatham Island bellbird, fernbird and rail.  

 

The advantages of longevity delaying extirpation of the Little Mangere and new Mangere 

Island populations were clearly outweighed by the species’s particular biological vulner-

abilities. As witnessed in those populations, the black robin’s naturally low rates of pro-

ductivity—an artefact of late, short breeding seasons, long (c.90-day) rearing intervals, 

small clutch sizes and, more often than not, single broods (Chapter Two)—penalised ca-

pacity to replace adults and offspring lost at unnaturally high rates through resource and 

climate stresses. Those rates would have been higher still under pressure from cat or kiore 

predation. As was evident on Little Mangere Island, the species’s specialist ground-

foraging habit was debilitating during summer ground-prey shortages. In fragmenting 

habitat conditions, intolerance of open spaces reduced territory opportunities and foraging 

ranges within them. Strong territorial instincts appear to have aggravated the shortage of 

cover by forcing less dominant males into sub-optimal bush margins where pairing and 

breeding was unsuccessful. Settlement opportunities for dispersing juveniles were simi-

larly compromised, no doubt contributing to the unsustainable rates of winter mortality. 

Under such conditions, limited social interaction with neighbours may have subdued the 

stimulus to breed. Poor flight and aversion to open spaces doubtless prevented recolonising 

of vacated habitats and would certainly have prevented inter-island replenishment.  
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On Little Mangere Island, the habitat changes appear to have selected against females, in 

part perhaps because the black robin’s long breeding intervals imposed greater energy de-

mands on them (Chapter Two). On Chatham and Pitt Islands, kiore and cat predation at the 

nest may also have selected against the females whose exclusive duty it is to incubate and 

brood. However, very low rates of adult mortality at the nests of South Island robins sug-

gest that mammalian predation accounted mostly for the contents of black robin nests 

(Flack, 1973, 1976d; Flack and Lloyd, 1978), thus compromising recruitment potential. If, 

as the male-skew on Little Mangere Island suggests, habitat disintegration was prejudicial 

to female survival, historical black robin populations may have comprised males only in 

their terminal stages of decline.  

 

The courses taken towards extinction by the vestigial population on Little Mangere and its 

descendent population on Mangere Island support the prediction that isolated populations 

reduced to arbitrarily small sizes by deterministic pressures have demographic thresholds 

below which they become exposed to lethal combinations of threat from stochastic factors 

(Lande, 1988, 1999; Brooks et al., 2002). The declines on Little Mangere and Mangere 

Islands illustrate the working of extinction-vortex pressures through which the mutually 

compounding effects of environmental and demographic misfortune drive numbers even 

lower (Gilpin and Soulé, 1986). Reduced, fragmented and destabilised by habitat loss and 

predation, the largest populations in the black robin’s range seem certain to have been cap-

tured within similar vortices.  

 

On Little Mangere and Mangere Islands, demographic chance began to play a dispropor-

tionately greater role in determining population fates. Chance favoured the populations 

through the fortuitous survival and pairing of key breeders (Old Yellow and Old Blue, for 

instance), but also deprived the tiny Mangere Island population of all experienced breeders 

simultaneously. Reproductive potential was wasted when by chance potential breeders be-

came separated in habitat fragments or there were no suitable mates at the right time. On 

both islands, variations in individual breeding performance which are normally averaged 

out in larger populations (Caughley, 1994; Lande 1999) became progressively more haz-

ardous to population viability as numbers decreased. As indicated by Old Blue’s long his-

tory of unsuccessful breeding, strong pair-fidelity in black robins could be a liability in 

such circumstances. Unproductive pairings were likely to endure even if better mates were 

available. Diminishing mate options may also have matched the few experienced females 
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with young or yearling males less likely than older experienced males to possess crucial 

parenting skills (Chapter Two). 

 

The fate of the relocated Mangere Island population is especially illuminating. It shows 

clearly that the intrinsic risks of small population size can be lethal on their own if over-

whelming deterministic pressures such as predation or sudden catastrophic loss of habitat 

have not first eliminated a population outright. The failure of the tiny population to in-

crease in size naturally once removed to Mangere Island’s stable environment confirms 

Gilpin and Soulé’s (1986) prediction that populations exposed to stochastic threats may be 

irrecoverable even if the deterministic causes of collapse are remedied. Unfortunately, the 

policy of minimal management has denied us close insights to the life-history factors at 

play, but pre- and post-breeding head-counts between 1976-77 and 1979-80 suggest that 

demographic stochasticity would ultimately have delivered the coup de grâce had conser-

vation managers not intervened to raise the population’s size rapidly after 1980-81.   

 

Elimination of the black robins throughout their historical range is consistent with the pre-

diction that the short-term effects of environmental and demographic adversity will extin-

guish isolated populations before the harmful genetic implications of small size are real-

ized (Caughley, 1994, Lande, 1999; Dobson, 1999). With the possible exception of the 

Chatham Island population whose survival interval after kiore arrival is simply not known, 

all populations were eliminated quickly, allowing little time for the potential fitness costs 

of inbreeding depression and genetic drift to weigh in. Persistence at very low numbers 

and the obligatory inbreeding which ensued over at least 83 years on Little Mangere Island 

contributed more significantly perhaps than the intervening Old Blue-Old Yellow bottle-

neck to the severe depletion of genetic diversity evident in today’s black robin populations 

(Ardern and Lambert, 1997). But the steep rate of collapse over the population’s last five 

years is more obviously suggestive of punishing habitat pressures rather than compromised 

fitness. How significantly genetic depletion contributed to the rate of decline and the fail-

ure to rebound naturally on Mangere Island was not quantified at the time and can only be 

inferred now from the demographic histories of today’s recovered populations. This ques-

tion is examined in Chapter Seven (Was Inbreeding A Problem?). 

 



 

Chapter Four: Management of Extinction Threat  115

CHAPTER FOUR 

MANAGEMENT OF EXTINCTION THREAT 

 

 

 

4.0 Introduction 

 
This chapter summarises and critiques the conservation measures employed by New Zea-

land wildlife managers between 1971-72 and 2007-08 to avoid total extinction of the black 

robins and return them to important parts of their natural range. The summary is the first to 

review black robin management in its entirety. Given the context, it cannot boast the detail 

of earlier histories, the fullest and most illuminating of which is Butler and Merton’s 

(1992) description of events up until 1991-92. The longer view given here draws together 

information contained in a wide variety of documents, especially departmental instruc-

tions, summary reports, letters and e-mails or in black robin field records and hut log-

books. Some of these sources are held in public archives but none is published. Where 

possible, I have also referred to the field notebooks and personal diaries of project partici-

pants and project associates. I have made strenuous efforts to obtain copies of most records 

but some no longer exist, have not been placed at the disposal of my study or have become 

too widely dispersed to trace. Where documentary evidence is not available, I have drawn 

on the memories of the relevant wildlife managers or on my own recollections. The latter 

span 30 years of direct involvement in or close connection with the black robin recovery 

programme (1977-78 until present).  

 

The summary benefits this study in several ways. First, it explains the ecological and insti-

tutional contexts in which black robin recovery was pursued. The directions taken to man-

age extinction risk in the black robin populations were often dictated by non-ecological 

factors operating in the working environments of successive conservation teams. Resource 

constraints were the most influential factor. In this chapter, I illustrate the inauspicious ef-

fects of such pressures on black robin management and the consequences for retrospective 

analysis of the data accumulating throughout the programme.  

 

Second, the narrative explains that the species’s recovery was accomplished through four 

distinct phases of management, each reflecting shifts in conservation imperatives. These 
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shifts resulted in varying degrees of contact with the populations. In describing these 

phases, my intention is show how well or poorly the differing levels of contact served 

management of extinction risk. In the process, the summary explains the origins of the 

field data analysed by this study and the reasons for their variable coverage and quality. 

 

Third, the summary sets the scene for Chapter Seven (Was Inbreeding A Problem?). It re-

veals the degree to which black robin conservation was small-population management as 

Caughley’s (1994) declining population paradigm defines it. That is, management pre-

occupied with unnaturally small population size as a product of deterministic extinction 

pressures. Early conservation managers were justifiably concerned about the critical de-

cline in black robin numbers and the external threat (habitat collapse) driving them lower. 

The remedy dictated by these concerns (remove the threat and increase population sizes) 

followed, if in fact it did not entrench, the New Zealand ‘cure’ as conventional conserva-

tion practice in this country to salvage critically threatened vertebrate species from extinc-

tion (Diamond, 1990; Atkinson, 1990, 2001; Wilson, 2004). As I have explained in Chap-

ter One (Research Themes), this long-standing strategy has tended to treat the intrinsic 

risks of small population size—greater vulnerability to stochastic genetic threats—as sec-

ondary or inconsequential threats to viability (Caughley, 1994; Armstrong and McLean, 

1995; Jamieson et al., 2006). Black robin recovery placed its faith in eliminating the eco-

logical pressures and raising population sizes quickly as insurance against any such viabil-

ity problems. This optimism persists in the operative Black Robin Recovery Plan (Depart-

ment of Conservation, 2001a) which makes no mention of stochastic genetic threats or pre-

cautionary management of them. Chapter Seven examines the wisdom in this optimism, 

especially as it might suffice as an on-going strategy to maintain the mid- and long-term 

viability of tomorrow’s small, habitat-limited black robin populations.  

 

Finally, this summary defines the black robin recovery project as an empirical test-case for 

the proposition that New Zealand’s reduced and fragmented populations of terrestrial bird 

species, especially those on outlying islands, are inherently less susceptible to inbreeding 

depression (Craig, 1991, 1994; Craig et al., 2000). As I have outlined in Chapter One, this 

proposition rests on the assumption that prolonged high rates of inbreeding in New Zea-

land’s naturally small, isolated and largely sedentary bird populations would already have 

exposed to natural selection the deleterious recessive alleles responsible for inbreeding de-

pression. The growing evidence that this may not be the case for all threatened insular en-
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demic bird populations in all ecological contexts (Jamieson et al., 2006; Jamieson 2009) 

argues for empirical testing of the assumption. As this chapter shows, the black robin of-

fers a generally very detailed record of population recovery in which the emergence of vi-

ability problems is likely to be unobscured precisely because conservation management 

did not attempt to address them directly. 

 

4.1 Management phases 

 
Conservation of the black robins proceeded in four management phases:  

 

1. 1971-72 until 1979-80: the initial phase of biological inquiry in the black robin’s last 

surviving population on Little Mangere Island. During this nine-year period, the popu-

lation declined towards total extinction. The phase was marked by the now-famous 

transfer in 1976-77 of the last seven individuals from Little Mangere Island’s disinte-

grating forest fragment to a small, modified but regenerating tract of forest on 

neighbouring Mangere Island. 

 
2. 1980-81 until 1989-90: the intensive management phase during which wildlife manag-

ers intervened to increase population sizes by boosting black robin productivity on 

Mangere Island (throughout the period) and on Rangatira Island (1983-84 until 1989-

90). This phase commenced when it was apparent that, without human intervention, 

natural rates of productivity could not compensate for annual rates of adult and juve-

nile mortality in the tiny post-transfer population. This was the period of actively as-

sisted population recovery.  

 
3. 1990-91 until 2001-02: the full-population (or post-management) monitoring phase 

which followed the end of active intervention. During this phase, each black robin 

population was observed as intensively as resources would allow to determine whether 

it could continue to increase in size without further help. This 12-year phase marked 

the period of natural population recovery. 

 
4. 2002-03 until present: the sample- (or index-) monitoring phase during which monitor-

ing was reduced in intensity, scale and precision. Annual assessment of population 

trends relied on pre- and post-breeding walk-through surveys of abundance in defined 

population sectors and on monitoring of productivity in a smaller subset of the popula-
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tion. During this period, attempts to establish a third black robin population on Pitt Is-

land failed (2002-03 to 2005-06).  

 

4.2 Initial Phase—Research and rescue: 1971-72 until 1979-80 

 
As outlined in Chapter Three (History of Decline), systematic observation of the black 

robins commenced on Little Mangere Island on 29-30 March 1972, after breeding had 

ceased for season. From the outset, observations served management aimed at increasing 

the numbers and range of the species (Flack, 1971), an over-arching goal which guided all 

subsequent management. The initial objective of visits was to study black robin ecology 

and determine the status and composition of the vestigial population. Between March 1972 

and the initial transfer of five individuals to Mangere Island in September 1976, 12 sets of 

observations were made, usually at the beginning and end of breeding seasons (Chapter 

Three: Table 3.1). Within the limits imposed by the timing of visits and the hesitant col-

our-banding programme, observers also monitored annual trends in population structure 

and size through head-counts of adults and offspring surviving during each period of con-

tact (Flack, 1977). The number and identity of breeding pairs, the production of juveniles, 

and rates of recruitment and mortality were also assessed, with degrees of accuracy vary-

ing seasonally.  

 

Other than the use of locally available invertebrates to attract birds and the marking of in-

dividuals with unique colour-band combinations, observers did not interfere with the black 

robins or manipulate their behaviour in any way. Colour-banding commenced during the 

inaugural visit in March 1972 and helped to define population size more accurately (Chap-

ter Three: Section 3.6.5). In the four seasons which followed, 20 black robins were banded, 

five of them verified juveniles (Department of Conservation non-gamebird banding sched-

ules, 1972-1975). Banding proceeded fitfully for the first three seasons. Local conditions 

reduced the effectiveness of capture techniques (clap-trapping, mist-netting), so that it was 

not until February 1975, near the near the end of the study project, that observers suc-

ceeded in marking the whole population (by then, 11 individuals). Banding experiences on 

Little Mangere Island informed the practices used later on Mangere and Rangatira Islands.    

 

Observations proceeded in parallel with vigorous between-season debates on management 

options for the species, coupled with pilot studies of management alternatives on the New 
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Zealand mainland using the South Island robin (Flack, 1971, 1973, 1976d, 1977, 1979). 

This larger congener was then thought to be the most suitable ecological analogue and 

‘test-bed’ but experience in later management phases demonstrated that the sympatric 

Chatham Island tomtit closer at hand would have been more appropriate. To obtain in-

sights to black robin life-history, the ecology of South Island robins and their interactions 

with sympatric yellow-breasted (South Island) tomtits were also studied at this time (Flack, 

1971, 1973, 1974a, b, 1976a, d). Unlike the debates and experimental work elsewhere, 

field observations on Little Mangere Island adopted a wait-and-see approach based on op-

timism that the population contractions witnessed in each successive season would correct 

themselves in the next. This optimism was ultimately dashed. 

 

The continuing decline in black robin numbers threatened to deprive the population of its 

few experienced breeders after the 1974-75 season (Butler and Merton, 1992). Managers 

responded with a two-pronged strategy. First, the population on Little Mangere Island was 

to be increased in situ by improving habitat area and quality (Flack, 1976d, 1977). Second, 

the decision was taken to found a new population on adjacent Mangere Island at the end of 

the 1975-76 season. Initially, managers planned to transfer up to three unmated black rob-

ins deemed to be least important to the ancestral population (Flack, 1976c, 1977).  

 

In the context of declining black robin numbers, the longer-term strategy of habitat en-

hancement seems ill-founded but it addressed two problems plainly visible to observers. 

Forest cover and quality on Little Mangere Island had been deteriorating year-by-year 

(Chapter Three: Section 3.6.1). And contrary to expectations, black robins remaining in the 

diminishing population were not occupying newly vacated territories, arguably because 

resource opportunities had diminished there (Flack 1976a, 1977). Managers anticipated 

that nurturing the habitat’s natural regenerative processes would augment resource oppor-

tunities in the territories and trigger the hoped-for recovery. Habitat restoration acted also 

as insurance against failure of the transfer strategy over which—far from being optimis-

tic—managers had long been suffering agonies of doubt (Morris, 1973; Flack, 1971, 

1974b, 1977).   

 

Large wire enclosures installed in black robin territories in 1973-74 had shown that forest 

cover would regenerate if the surface and burrowing activities of sooty shearwaters could 

be moderated (Flack, 1974a, b, 1976a, d, f). Saturation deployment of seedling enclosures 
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was considered, along with supplementary-feeding of the black robins and the wholesale 

removal of Little Mangere Island’s estimated 60,000 pairs of shearwaters (Flack, 1976c, 

d). None of these options was adopted. 

 

To improve conditions further for the black robins, the tomtit population of Little Mangere 

Island (five adults) was culled (Butler and Merton, 1992). Earlier observations of aggres-

sive interactions between the species had prompted fears that the black robins might be 

unable to compete successfully for resources and nest sites (Flack, 1976a, c, d, f). Mangere 

Island’s tomtit population (19 individuals) was also culled ahead of the transfer (Flack, 

1976c, f), eliminating the one species which would later prove crucial to black robin con-

servation on that island. In November 1973, planting commenced in Mangere Island’s ex-

tensive grasslands to augment the meagre forest cover surviving the farming era. Estimates 

of plant numbers vary. Between 1974-75 and 1978-79, 150,000 – 160,000 akeake trees, 

30,000 Hebe dieffenbachii and 4000 shelter-belt flaxes Phormium ‘Chathams’ were 

planted (Veitch, 1982; Amanda Baird, pers. comm., September 2008). Restoration was not 

expected to provide suitable habitat on Mangere Island for up to ten years (Flack, 1977), 

and long lead-times were anticipated for habitat improvement on Little Mangere Island 

(Atkinson et al., 1973).  

 

Alarming contraction in the number of black robins overran this two-pronged strategy. All 

seven individuals remaining were moved to Mangere Island in the 1976-77 season (Chap-

ter Three: Section 3.7). 

 

In the three seasons following the transfer, the wait-and-see management policy was re-

sumed despite the extremely tenuous position of the species and cogent arguments for 

modest forms of intervention to increase productivity. Morris (1977c: 8) expressed dismay 

at the prospect of ‘leaving the robins to it’, arguing instead for supplementary-feeding and 

the installation of nest-boxes, measures which would later contribute significantly to black 

robin recovery. Cox and Merton (1980) recommended that the saturation density of other 

insectivorous passerines in Mangere Island’s threadbare habitat (dunnocks, starlings, Chat-

ham Island warblers, silvereyes, blackbirds) be reduced each autumn to relieve resource 

stress. This last recommendation was not implemented. 
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Between 1976-77 and 1979-80, monitoring of black robin breeding and survival often co-

incided with other work on Mangere Island but the timing of visits seldom allowed conclu-

sive quantifying of breeding outcomes. Observers strove to colour-band each season’s ju-

veniles but by delaying this until after independence, they could not know precisely how 

many offspring had been produced originally. Apart from banding, a policy of minimal 

interference was adopted, conditioned by optimism that the black robin numbers would 

rebound naturally in the better habitat.  

 

Midway through the 1979-80 season, it was apparent that numbers were unlikely to rise in 

response to the improved conditions and food availability. The population had declined by 

then to five individuals, and only one of the two pairs was productive (Table 3.2). The rec-

ommendation was made formally to address the population’s inadequate reproductive out-

put through direct intervention (Cox and Merton, 1980). The Little Mangere and Mangere 

Island populations had produced on average one yearling per year since 1971-72 (Table 

3.3). Under the better conditions on Mangere Island, the population produced only 1.25 

yearlings per year, insufficient to compensate for adult mortality (Table 3.3). It was pro-

posed to induce black robin pairs to renest by removing first-clutch eggs to another sym-

patric species for fostering (Recommendation 4, Cox and Merton, 1980). In the absence of 

the culled tomtits, the most promising foster species was considered to be the ubiquitous 

Chatham Island warbler. Fostering was to be conducted in situ following generic principles 

derived from captive-rearing practice (Butler and Merton, 1992). These proposals were 

implemented under extreme urgency in 1980-81. 

 

The forms of management adopted during this initial phase of contact with the species fo-

cused on ecological extinction pressures (habitat deterioration). This was justifiable given 

the critically low numbers of black robins, the limited knowledge of their biology and the 

uncertainty about their ability to cope with highly intrusive management. The logical 

remedies were to remove the threat from the population (improve habitat conditions on 

Little Mangere Island), and then to remove the population from the threat (transfer to Man-

gere Island). However, these strategies failed to achieve the initial research and manage-

ment goals of increasing abundance and range because black robin numbers were also in-

fluenced by the stochastic demographic risks of small population size. Optimism that re-

moval to better habitat would guarantee recovery was symptomatic of the degree to which 

this stochastic threat was underestimated. 
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During this initial management period, a variety of factors and decisions affected the qual-

ity and quantity of demographic data acquired. Inevitably, access to and from the precipi-

tous heights of Little Mangere Island had been dictated by weather, which also curtailed 

work on the island. Operational requirements elsewhere often determined the time avail-

able for observations. Life alongside the black robins in their inhospitable refuge was 

physically and logistically taxing (Flack, 1976c). As a result, contact was unduly brief by 

later standards, varying in duration from just a few hours to 11 days (x̄ = 5 days). The tim-

ing of visits did not always coincide with the peak of breeding activity. Observers were 

seldom able to determine the fate of breeding attempts or the precise causes of mortality in 

eggs, young and adults. The parentage of the few roaming juveniles encountered was fre-

quently a matter for speculation. Uncertainties about the age and identity of individuals 

were created by the inability to mark the whole population, a problem aggravated by the 

decision to colour-band offspring at the juvenile stage only. This policy complicated con-

temporary assessments of relatedness and adult age structure. Finally, as black robin num-

bers decreased, observations grew progressively less intrusive to minimise disturbance. 

This had predictable consequences for first, understanding of black robin breeding ecol-

ogy; second, assessment of the bird’s tolerance to intervention, and third, the depth and 

precision of demographic data acquired. 

 

Scarce data on individual longevity, productivity and relatedness in this ancestral popula-

tion hinder analyses of decline during this period. Limited knowledge of parentage has 

also obliged me to rely on underestimates of inbreeding and kinship coefficients in the 

black robin pedigree to assess inbreeding effects on population recovery (Chapter Seven). 

My attempts to define individual life-histories have also been frustrated by the generalising 

and contradictory accounts provided by the secondary sources available (see for example 

the conflicting summaries of Flack, 1974a, 1976a, and Butler and Merton, 1992). Black 

robin management had yet to evolve a culture of systematic reporting which included de-

tailed annual tabulation of survival, the fates of individual breeding attempts and seasonal 

productivity. Only Morris (1973) provided a list in which the pairs of one season (1973-

74) were identified by their colour-band combinations. However, despite the knowledge 

gaps created by justifiable concern to minimise disturbance, the demographic information 

gathered prior to the 1976-77 transfer was significantly more detailed and insightful than 

afterwards. The intrinsic factors predisposing black robins to decline—short breeding sea-
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sons, low reproductive success and high mortality among adults and juveniles (Flack, 

1974b, 1976d, 1977)—were fundamentally understood.  

 

The stand-off policy adopted on Mangere Island after the 1976-77 transfer obliged manag-

ers to accept pre- and post-breeding census counts as the sole quantitative measure of 

population viability. The policy permitted few insights to reproductive effort. When the 

timing of visits allowed, managers investigated nests which were easily accessible but did 

not intrude on others which required more disturbance to find. As on Little Mangere Is-

land, information on clutches or brood fates remained undetermined more often than not. 

The ability to predict population declines was limited therefore by knowing little about the 

causes and extent of breeding failures. This information might have quickened responses 

to the stalled black robin recovery and strengthened vigilance for inbreeding depression. 

Observations were not close enough to acquire basic biological information about incuba-

tion and fledging intervals, or the time to independence (Butler and Merton, 1992). 

 

However, post-transfer observations on Mangere Island made significant advances for 

black robin conservation. The entire species remained colour-banded, consolidating the 

foundation for a near-complete genealogical record spanning another two decades. This 

investment served management needs of the time but is now a critically important asset for 

assessments of extinction vulnerability (Chapter Six: Population Trends After 1980, and 

Chapter Seven). Monitoring the activities and pairings of each black robin was just suffi-

cient to document the productivity of the two female breeding lines remaining in the tiny 

population (Chapter Three: Section 3.7). Relatively accurate estimates of hatching or 

fledging dates were made for the few juveniles banded. Rates of mortality prompted think-

ing about the threats posed to young and adults alike by avian predators, especially star-

lings (Butler and Merton, 1992). Systematic mapping of territories and nest sites began. 

The following management phase improved radically on these advances. 

 

4.3 Phase Two—Intensive management: 1980-81 until 1989-90 

  
Active intervention in black robin breeding commenced in September 1980 and marked 

the beginning of the resurgence in numbers. Managers then had at their disposal five of the 

six black robins alive at the end of the previous season (two adult pairs and a yearling fe-
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male). Full-scale intervention concluded ten seasons later at the end of the 1989-90 season 

when 113 individuals were known to be alive (Chapter Six, Table 6.3).  

 

This period of management is defined by the goals and operational requirements of the 

cross-fostering programme whose principal aim was to raise black robin numbers rapidly 

by boosting annual productivity. This was the only pragmatic option at that time, but at the 

outset, managers were convinced that the crisis was induced wholly by external factors and 

not in any way by genetic degeneracy in the species. Raising population numbers quickly 

was regarded therefore as the best means of achieving a full recovery of the species (Mer-

ton, 1980).  

 

By obligatory renesting, females were forced to lay more than their usual one clutch per 

year (Butler and Merton, 1992). Cross-fostering necessitated the founding of a larger sister 

population on Rangatira Island and the regular transfer of birds between the two popula-

tions, thus satisfying the ancillary aim of extending the species’s range. These forms of 

management were extremely effective (Chapter Six) but could not avert the bottleneck 

event which defines the beginning of the black robin’s recovery. The death of the eight-

year-old female Old Green in November 1986 terminated both her breeding line and its 

unrealised potential to cultivate genetic diversity in black robin populations (Chapter 

Three: Section 3.7). From this point, management was obliged to work solely with the de-

scendants of the founder pairing of Old Blue and Old Yellow. 

 

Cross-fostering commenced with the two first clutches laid in the 1980-81 season (10 and 

15 October). Before placing the first eggs in warbler nests, managers experimented to as-

sure themselves that both species would tolerate disturbance at the nest and the interrup-

tion of normal nesting routines. Pilot trials used the eggs and nestlings of other possible 

foster species (silvereyes and dunnocks). The techniques and innovations developed during 

this season informed the fostering practices used until 1989-90. In later years, experimen-

tation preceded commitment to any new measure if time and contingencies allowed.   

 

Despite the overlap with black robin diet and concurrent breeding, the warblers proved un-

suitable as a foster species. In the 1980-81 and 1981-82 seasons, 11 warbler pairs received 

eggs (in one instance, nestlings) from seven of the 12 black robin clutches laid but none 

succeeded in raising broods beyond 11 days. Evidence suggested that malnutrition through 
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problems with food type rather than quantity was the most common cause of nestling mor-

tality (Butler and Merton, 1992). In 1981-82, warblers were relegated to temporary egg-

holding duties and were permitted to brood black robin nestlings for no longer than seven 

days (Merton, 1981). Fostering to tomtit pairs on Rangatira Island was trialled success-

fully. The three black robin nestlings transferred to the island in 1981-82 were raised 

throughout by tomtits and returned to Mangere Island as juveniles in accordance with re-

strictive conditions imposed by the government agency then administering Rangatira Is-

land.  

 

In spite of the losses in warbler nests during the first two seasons, cross-fostering demon-

strated its value. By compelling black robin females to lay additional clutches, productivity 

climbed to an annual average of 2.25 juveniles pair-1 (this study). The time between 

clutches was compressed, improving survival prospects for second-clutch offspring.  

 

On the threshold of the 1982-83 season, black robin managers were confident of having 

perfected the necessary cross-fostering techniques (Merton, 1982). A series of proposals 

was made which set the pattern for cross-fostering and other forms of management over 

the next seven seasons. The use of warbler pairs was discontinued entirely. Black robin 

eggs and nestlings were to be fostered instead to tomtit pairs on Rangatira Island despite 

the risks associated with the uncomfortable 15 km ocean journeys between islands by fish-

ing boat (weather, timing, and the handling of fragile mobile incubators). As a matter of 

policy, it was decided to exploit productive potential further by transferring second 

clutches to Rangatira Island. Third clutches (if any) were to be retained for rearing by 

black robins to ensure pair stability (Merton, 1983b). This last decision was providential 

for the management of later mal-imprinting problems (Chapter Eight: Hybridisation). 

Along with the practice of transferring nestlings back to black robin nests for fledging, this 

last measure had the potential to preserve pair bonds from any effects of multiple nesting 

‘failures’. 

 

The need to establish a second black robin population on Rangatira Island was apparent by 

the end of the 1981-82 season. The fostering potential of Mangere Island’s few black robin 

pairs was limited and the precautionary culling of tomtits in 1976-77 had deprived Man-

gere Island of its only alternative foster species. Reintroduction of black robins to Ranga-

tira Island could capitalise on the fostering potential of the largest tomtit population in the 
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Chathams archipelago. Aside from the safety in having a second geographically discrete 

black robin population, there were three additional benefits. The scale and frequency of 

inter-island transfers could be reduced; counter-productive congestion in Mangere Island’s 

tiny 4.5 ha habitat could be avoided, and (eventually) two discrete black robin ‘breeding-

lines’ could be created (Merton, 1982, 1983b).   

 

The nucleus of Rangatira Island’s adult population was a pair of two-year-old black robins 

with breeding experience, moved from Mangere Island in January 1983. Two further 

adults followed in June 1983. They and their offspring flourished under intensive man-

agement so that by the mid-1980s, the Rangatira Island population had become the focal 

point of conservation efforts. The small Mangere Island population became principally a 

centre for harvestable production.  

 

Inter-island transfers were indispensable to this period of management. Fifty-three eggs 

(36.8% of eggs laid) and four nestlings were transferred from Mangere Island to black 

robin and tomtit foster-nests on Rangatira Island by the end of the cross-fostering project. 

Eight juveniles and 11 adults were also moved (Chapter Six: Table 6.2). Movements from 

Rangatira Island were much less frequent and were usually intended to sustain the Man-

gere Island population itself (two eggs, eight nestlings, five juveniles and seven adults).  

 

Transfers served other purposes. To maximise seasonal productivity early in the project, 

managers ensured that proven breeders were mated by moving individuals to correct peri-

odic sex-ratio imbalances. Conversely, individuals were transferred to break unproductive 

pair-bonds. The founder female Old Blue was (literally) a casualty of this last practice in 

November 1983 when retired to Rangatira Island in her 13th year of life. The option was 

also available to break pairings between closely related individuals (Merton, 1983b). Es-

tablished breeding pairs were not moved, a policy retained until the 2002-03 season trans-

fers of black robins from Rangatira Island to Pitt Island (Aikman and Thompson, 2003; see 

Chapter Four: Section 4.5).  

 

While Mangere Island remained tomtit-free, black robins known or suspected to have be-

come mal-imprinted on tomtit foster-parents could be sent there to reduce the risk of cross-

breeding (Chapter Eight). Mal-imprinting was first suspected in 1981-82 (Butler and Mer-

ton, 1992), prompting a precautionary policy of returning all tomtit-fostered black robins 
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to Mangere Island, and establishing on Rangatira Island only black robins which had been 

fledged and raised by their own kind (Merton, 1982). In practice, this policy proved diffi-

cult to implement. While black robin numbers were very low, managing the risk of extinc-

tion took precedence over the lesser risk of cross-breeding. The policy of returning fos-

tered individuals to Mangere Island lapsed and fears of cross-breeding were eventually re-

alised (Chapter Eight).  

 

The operational requirements of cross-fostering grew considerably with each successive 

season’s increase in the number of black robin breeding pairs. From the outset, five cross-

fostering prerequisites increased the complexity of management: (1) the requirement to 

synchronise breeding in both black robin and potential foster pairs; (2) the renesting of 

black robins and tomtits whose chosen nest was sited inconveniently for cross-fostering; 

(3) the synchronising of (ideally) up to six foster pairs for each clutch of black robin eggs; 

(4) the careful manipulation of nest contents in donor, recipient and back-up pairs to en-

sure that egg or nestling transfers were reversible in the event of desertion or failure; and 

(5) the necessity to return nestlings to black robin pairs before fledging in order to mini-

mise the risk of mal-imprinting. A sixth humanitarian constraint was adopted as a matter of 

pride. Displaced tomtit eggs and nestlings were themselves redistributed whenever possi-

ble to suitable foster nests (pers. obs.).39 These operational complexities were exacerbated 

significantly by inconvenient variations in the timing and numbers of tomtits breeding on 

Rangatira Island in many seasons.   

  

The synchronising of tomtit pairs anticipated fostering contingencies which might jeopard-

ise the safety of precious black robin eggs and nestlings (nest desertion, pair-bond failure, 

inadequate feeding at the nest). Several synchronising techniques were used: removal of 

inappropriately timed or poorly sited nests during construction, the use of plastic eggs to 

prolong incubation or to preserve a female’s commitment to a nest, and the cold-storage of 

un-incubated eggs (Butler and Merton, 1992).   

 

Cross-fostering activity commenced each season by locating all paired black robins and 

assessing their breeding status. All black robins had been conditioned from the late nes-

                                                 
39  Even so, 99 tomtit eggs were collected from Rangatira Island during the cross-fostering 

seasons. The eggs included those deserted, failing to hatch or sacrificed (Powlesland et al., 
2001). 
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tling stage to associate hand-clapping with food hand-outs. Birds approaching observers on 

these cues were called ‘friendly’. Tomtit foster pairs were generally conditioned as adults 

(and continued to respond in later years even if not used again for cross-breeding). There-

after, pairs and nests were located by feeding the males of both species and following them 

to their mates. Unmated black robins, fledglings and juveniles were monitored in the same 

way. Breeding pairs were fed regularly to bring nesting forward and to ensure an adequate 

supply of food to nestlings and fledglings. Black robin solo-parents received special atten-

tion. Initially, supplementary-feeding relied on locally sourced invertebrates but eventu-

ally, when black robin numbers overwhelmed the inefficient food-gathering capacities of 

field-workers, commercially cultivated Tenebrio molitor larvae were substituted (Ken-

nedy, 2010. Black robins and tomtits accepted these unfamiliar larvae with alacrity. 

 

Nest-boxes were trialled first in the 1980-81 season to supplement Mangere Island’s lim-

ited range of natural nest cavities, and were in widespread use on both islands by 1983-84. 

Nest-boxes offered important advantages. They increased nest-site options in habitats oc-

cupied by other hollow- and cavity-nesting passerines (dunnocks, starlings, blackbirds). 

Black robin and tomtit nests were moved into boxes after egg-laying to protect their 

clutches, broods and females from starling predation and nocturnal petrel-strikes. Both 

species accepted nest transfers readily. Once nests were installed and incubation had re-

sumed, the boxes themselves were moved to sites appropriate for easy access and safe ma-

nipulation of contents. To minimise disease and parasite threats to black robin nestlings, 

the nest-box design was modified so that recycled fumigated nests could be exchanged for 

old ones at regular intervals. In addition to protecting their fragile contents, nest-boxes im-

proved management efficiency and knowledge-gathering. These benefits outweighed the 

costs of nest desertion or egg loss through handling accidents, the incidence of which was 

low and well within limits tolerated by managers of the time. Rooves and plastic mesh 

were installed over natural nests to protect them in situ from weather, predation and pet-

rels. 

 

Cross-fostering continued unabated in both populations until the end of 1988-89, a season 

in which 25 breeding pairs (55 clutches) had been managed on both islands. Fostering to 

black robin nests ended in 1989-90. By then, managers felt able to manipulate breeding to 

forestall egg-laying late in the season, thereby minimising the higher rates of mortality in 

late-season fledglings (Merton, 1987). Management of so many fostered eggs and nestlings 
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was an extraordinarily complex undertaking, demanding constant surveillance of foster 

pairs and back-ups in case of failures, and the continual evolution of contingency plans. 

The growing numbers of experienced black robin pairs relieved the pressure when cross-

fostering approached or exceeded the finite limits of tomtit numbers.  

 

In April 1989, managers reintroduced tomtits to Mangere Island from Rangatira Island 

(Merton, 1989, Grant, 1989), confident that the island’s black robin population (n = 14) 

could compete successfully for space and resources in the limited habitat available in the 

Robin Bush. The risk of cross-breeding was considered to have passed when the last of the 

mal-imprinted black robins had been lost from the population through natural attrition 

(Chapter Eight). The liberation succeeded in founding a new tomtit population on the is-

land after an absence of 11 years. 

 

In 1988-89, managers sought assurance that the black robins could cope naturally by ex-

perimenting with differing degrees of productivity enhancement. Pairs on both islands 

were divided into three groups comprising equal numbers of experienced and inexperi-

enced breeders. Productivity in two groups (one subjected to conventional cross-breeding 

and supplementary-feeding, the other to nest protection only) was compared with that of 

the third, undisturbed control group (Merton, 1988). The experiment’s sample sizes were 

small and unruly (black robins deserted pairings in one group to form pairings in another). 

Even so, the trial revealed that production of juveniles by unmanaged pairs was approxi-

mately half that of fully managed pairs (Butler and Merton, 1992). Despite the reductions 

in output, the increase in total numbers during the season (38.9%) was within the range of 

annual increases over the preceding four years (18.8 - 45.8%; this study). Ironically, this 

encouraging result fuelled mounting criticism within the newly constituted Department of 

Conservation (DOC) that the cross-fostering effort was excessive and unjustified (Butler 

and Merton, 1992). 

 

At the end of the 1988-89 season, when total post-breeding numbers stood at 95 (81 on 

Rangatira Island, 14 on Mangere Island; Table 6.3), black robin managers agreed to halt all 

cross-fostering and other forms of intervention. In their place, a comprehensive monitoring 

regime was proposed. The intention was to eliminate all forms of disturbance to gain a true 

measure of natural population trends. Of necessity, the new project sanctioned the individ-

ual colour-banding of birds and the use of food hand-outs to trace them. Supplementary-



 

Chapter Four: Management of Extinction Threat  130 

feeding was discontinued. The old habits proved hard to break, however, especially when 

managers witnessed the construction of doomed nests, nest-mite irruptions, the wastage of 

eggs and nestlings, or the demise of black robins through preventable accident or misad-

venture, all which would have been remedied previously. The inaugural monitoring season 

(1989-90) was not completely free of intervention. ‘Rimshots’ (eggs laid on nest rims, the 

perplexing phenomenon first detected in 1984-85; Chapter Two: Black Robin Biology, and 

Chapter Six) were returned to incubation, often producing fledglings which technically 

should not have survived. Some deserted eggs were salvaged and fostered to other black 

robin pairs. A few nest sites were protected and mite-infestations in some nests were 

treated with insecticides. At least one female solo-parent received supplementary-feeding 

assistance. These residual forms of intervention were discontinued in later seasons but be-

cause they had complicated assessment of black robin viability in this season, the three-

year monitoring programme was restarted from 1990-91. 

 

The cross-fostering programme had been labour- and time-intensive but the conservation 

efforts of this period averted total extinction of the species. Numbers had been raised over 

ten breeding seasons from five individuals in September 1980 to 93 in October 1990. An-

nual productivity averaged 1.88 juveniles pair-1 season-1 (this study). The two sister-

populations consolidated during this period were closely linked genetically through inter-

island transfers, but these were about to cease, closing each population to gene flow and 

the risk of disease or other threats migrating from one to the other.  

 

Management of extinction risk benefited from continuity in both leadership and field staff, 

and from the near-continuous contact with the populations throughout most or all of each 

breeding season. The continuity resulted in such intimate knowledge of the populations, 

and of the individual black robins themselves, that critical problems could be anticipated 

or detected before they became insurmountable. Managers learned where to find important 

breeders and could anticipate their behaviour. The mal-imprinting issue arising from early 

cross-fostering practices was corrected promptly before hybridisation threatened project 

outcomes because managers were alert for signs of abnormal behaviour, were there to de-

tect them and were equipped with the necessary knowledge to respond appropriately. 

  

Although lapses occurred, the data gathered as a by-product of management between 

1980-81 and 1989-90 set a very high standard for precision, detail and recording practice. 
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Knowledge of black robin biology advanced step-wise through what amounted to the first 

in-depth study of ecology and behaviour. Visits made to the islands during the pro-

gramme’s first winters extended this knowledge and reinforced for managers the harsh na-

ture of the conditions endured by black robins between seasons (pers. obs.).  

 

Explicit management imperatives of full-population census (prior to and after each breed-

ing season) and careful attention to each black robin’s breeding preserved the integrity of 

the genealogical record founded at the initial transfer from Little Mangere Island in 1976-

77. With very few exceptions, all breeding attempts were monitored, the vast majority 

from beginning to end. The outcomes of occasional late-season broods might remain un-

known when observers departed the islands, but offspring surviving in the next season 

gave valuable clues. Clutch numbers and sizes were recorded, and where possible the fer-

tility of eggs was assessed before and after failure. Every black robin was uniquely colour-

marked while in the company of parents (usually as 10- to 19-day-old nestlings or at the 

next convenient opportunity), made ‘friendly’ and located repeatedly throughout each 

breeding season to determine mates and fate. The causes of mortality at all life-stages were 

considered more fully though not always conclusively (Chapter Six).   

 

Data collection practices developed during this phase introduced habits adopted as stan-

dard practice in the following management phase. To avoid confusion and the inevitable 

transcription errors, managers referred to all black robins by given names rather than by 

names relating to localities or colour-band combinations. Rudimentary field log-books 

were introduced from 1981-82 in which summary diaries of each day’s black robin events 

were kept alongside other biological and social accounts of island life. Demographic and 

narrative detail varied considerably according to the literacy, mood and maturity of ob-

servers. The breeding of each pair was tracked systematically for the first time and was 

plotted schematically on charts by the end of the period. Daily tick-charts of black robin 

sightings made their first appearance as a means of tracking survival and disappearances 

(the latter were investigated). Annual and multi-season black robin data were tabulated 

consistently for the first time. All of these practices were responses to the exigencies of 

cross-fostering but became instrumental in shaping a culture of black robin management 

which insisted on acuity and quality in both the record and labour of the recovery pro-

gramme. Expectations of this sort were severely tested by the institutional circumstances 

of the next management phase (Section 4.4).  
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During this period, managers had concluded from early successes with multiple-clutching 

that black robin fitness and resilience had not been affected significantly by inbreeding in 

the ancestral population (Merton, 1980). They were aware that inbreeding after the Old 

Blue – Old Yellow bottleneck might threaten viability in the long-term (Merton, 1983b) 

and remained alert for signs of inbreeding depression in the early seasons when pairings 

between closely related individuals were unavoidable in such a small population. The es-

tablishment of the second population on Rangatira Island gave some latitude to separate 

closely related individuals but it is not clear from the records how often this option was 

invoked specifically as an avoidance measure. Fears that inbreeding depression might be a 

problem began to recede when all 16 eggs laid by two brother-sister pairs in 1983-84 

proved to be fertile (Merton, 1983a; Butler and Merton, 1992). High rates of egg fertility 

(90%), egg hatchability (80%) and juvenile survival to year one (70%) reported for an un-

disclosed period were taken to indicate the absence of harmful inbreeding effects (Butler 

and Merton, 1992). These rates agree with my estimates for 1980-81 to 1989-90—80.9% 

hatch-rate of eggs incubated to full-term; 71.7% survival of juveniles to adulthood (Chap-

ter Six: Table 6.13). The laying of eggs on nest rims was the only behavioural abnormality 

to raise suspicions (Butler and Merton, 1992), and this was managed by returning the rim-

shots to incubation.  

 

At the conclusion of successful intensive management, geneticists were invited to assess 

the genetic status of both populations (Don Merton, pers. comm.). Benchmark profiling of 

variability between individuals and populations was sought, along with advice on potential 

problems ahead. This research was conducted during the post-management phase (Chapter 

One: Section 1.5). In general, however, concerns about inbreeding depression were after-

thoughts which had little effect on the design and direction of the recovery programme.   

 

4.4 Phase Three—Post-management monitoring: 1990-91 until 2001-02 

 
Post-intervention monitoring aimed to assess whether the two black robin populations 

were capable of sustaining themselves naturally, without further management (Kennedy, 

1993a). As a minimum, monitoring was expected to yield authoritative pre- and post-

breeding estimates of abundance. It was immediately apparent however that this could not 

be achieved unless every individual was uniquely colour-banded and made ‘friendly’. This 

objective was pursued diligently for the most part, thereby continuing the genealogical re-
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cord. In addition, caution argued for preserving continuity in the knowledge of productiv-

ity inherited from the cross-fostering years. This was felt to be indispensable for interpret-

ing emerging trends and highly advantageous should remedial action be necessary to cor-

rect population declines. As with the data gathered during the initial phase of management 

(1971-72 to 1979-80), observations in this new phase recorded black robin behaviour 

largely unmodified by management actions, though in considerably greater detail. 

 

Essentially, monitoring teams followed the routines of the past, this time with their hands 

firmly in their pockets. Monitoring was scaled back from the intensity of the cross-

fostering years, but—at least in the earlier seasons—observers remained in the field for the 

duration of breeding. They visited all black robin pairs and unmated individuals at two- to 

five-day intervals (more frequently close to hatching or fledging dates). The project aimed 

to colour-band all individuals, account for each one throughout the season, record all pair-

ings and follow all breeding attempts to their conclusions. The timing of mortality at all 

life-stages was documented as closely as possible, and comments were made on possible 

causes. As during the management phase, incidental information was gathered on dispersal 

and distribution, habitat occupancy, predation, evidence of disease and physical abnormali-

ties, unusual or aberrant behaviour, climatic conditions (through daily maximum-minimum 

temperature readings), habitat changes and interactions with other species. Much of this 

was narrative comment. 

 

Initially, three breeding seasons were to be monitored but because the false start in 1988-

89 did not give a true indication of population trends, a fourth season was added (1993-

94). Responsibility for planning of the monitoring project fell to the newly established 

Black Robin Recovery Group, a small group of black robin specialists from within and 

outside DOC. The group first met in September 1991 and had compiled the first formal 

multi-year recovery plan for the species by October 1993. This made the case to continue 

full-population monitoring on both islands until a third viable population was established, 

preferably within the species’s natural range (Kennedy, 1993a). Ultimately, the founding 

of a third population on nearby Pitt Island (the preferred option) was hindered by the fail-

ure of DOC to secure from the Pitt Island community consent to eradicate feral pigs, weka, 

cats and mice, the first three of which were highly valued locally (see for example Walls et 

al., 2000). Therefore, the monitoring project continued after 1993-94 and persisted until 

1998-99 on Rangatira Island and 2001-02 on Mangere Island.  
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From the outset, the project drew criticism from under-resourced managers of other threat-

ened species in the Chathams region. On an annual basis, black robin managers were urged 

to curtail the duration and intensity of field work, especially by reducing the frequency of 

visits to territories and the intensity of productivity monitoring. In response to these pres-

sures, managers experimented reluctantly with episodic monitoring of the smaller Mangere 

Island population. Between 1990-91 and 1992-93 (inclusive), brief visits to the island were 

timed to coincide with the onset of breeding, its conclusion and the anticipated banding 

dates for nestlings in-between. This experiment was a return to the approaches taken to 

monitoring on Little Mangere and Mangere Islands prior to 1980-81. It yielded such pat-

ently inadequate information on black robin numbers, pairings, breeding attempts (some of 

which were missed altogether), productivity and survival that the original monitoring re-

gime was reinstated in 1993-94. Though well-intentioned, these cost-saving measures 

opened the largest breaches in the black robin pedigree. Undetected cross-breeding events 

laid the foundations for another entirely unexpected extinction crisis in the years ahead 

(Chapter Eight). 

 

In this stressful operating climate, project leaders persevered with full-population monitor-

ing (Department of Conservation, 1995, 1996a; Kennedy, 1996a). Once in the field, ob-

servers strove to preserve monitoring quality and intensity through an unspoken policy of 

persisting with business as usual. Relatively detailed demographic data was acquired from 

both populations. The Rangatira Island pedigree remained almost wholly intact. Business 

as usual yielded valuable dividends for black robin conservation. Aside from detecting the 

development of a potentially calamitous black robin x tomtit hybrid swarm on Mangere 

Island, the prolonged and detailed data sequences allowed more detailed tracking of demo-

graphic trends. In addition, important research into inbreeding effects and levels of genetic 

diversity in the black robin populations (Mallinson, 1992; Ardern and Lambert, 1997; Ma 

and Lambert, 1997b) was strengthened by the knowledge of life-histories and familial rela-

tionships. Among other benefits of a lengthening overview, monitoring experience accu-

mulated. This ensured that lessons of the past were applied, avoiding costly repetition of 

mistakes, misjudgements and misinterpretations.  

 

To cope with rising population sizes and associated increases in the volume of data, track-

ing and recording methods were refined. Field information was cross-checked on a daily 

basis so that errors could be rectified immediately, if necessary through a return visit to the 
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territory of interest. The goal was to account for the fate of every egg laid in a season. 

Breeding progress was tracked on large wall-charts so that nest or territory inspections on 

key dates were not missed (egg-laying, hatching, banding of nestlings, fledging). Breeding 

observations and commentaries on behaviour were recorded for each pair in log-books 

which centralised information. The activities of unmated birds were followed in the same 

way. Daily ‘roll-call’ charts were essential means of alerting observers to the unexplained 

absences of adults or offspring. The practice of summarising daily work activity and 

weather conditions in hut logs continued from the cross-fostering era.  

 

Understandably, the operational demands of monitoring escalated significantly as popula-

tion sizes increased season by season. Following the growing numbers of itinerant juve-

niles was particularly taxing. At the same time, however, the institutional arrangements of 

DOC weakened capacity to meet these demands. Internal arrangements were largely out-

of-step with the particular demands and contingent nature of wildlife management (Ken-

nedy and Perkins, 2000; Kennedy, 2003). The supply of experienced black robin observers 

dried up, compelling project leaders to fall back on unqualified staff and volunteers who 

lacked the experience or intuition necessary to interpret and anticipate black robin behav-

iour. Field work often commenced late to save funds and concluded prematurely to comply 

with DOC’s inflexible administrative calendar. As a result, reliable pre- and post-breeding 

censuses could not be conducted and late fledglings could not be made ‘friendly’ for trac-

ing in the following spring (Kennedy, 1994a, b). Recovery planning for the following sea-

son was almost always obliged to proceed on incomplete understanding of the season in 

progress.  

 

For these reasons, the demographic data of the monitoring years were more variable in 

quality and coverage than the data gathered previously. For example, the fertility of eggs 

which failed to hatch was not routinely checked nor did field-workers always check for 

rimshots during nest inspections. Important information on the causes and timing of mor-

tality or the disappearance of eggs, nestlings and fledglings was lost when visits to nests 

and territories became less frequent in the latter part of the monitoring phase. Little more 

was learned about nest predation or the species responsible for it, and the incidence of 

overlooked nests (and therefore of juveniles of uncertain parentage) increased as popula-

tions expanded. Black robins on population peripheries were increasingly neglected, espe-

cially by inexperienced observers not as attuned to the need to search for them or as adept 
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at doing so. With the notable exceptions of Atkinson (2003) and Roberts (2004), habitat 

character and quality was not quantified systematically on either island. As a result, under-

standing of successional changes in forest structure and their implications for black robin 

viability remains largely anecdotal. 

 

Under extreme resource stress in late 1997, the Black Robin Recovery Group sought ad-

vice from DOC scientists, conservation associates and external conservation biologists on 

the wisdom of continuing with full-population monitoring (Kennedy, 1997). I have not 

been able to locate the responses on official files, but the balance of opinion shared the 

views of Hay (1998) who favoured monitoring of lesser intensity while acknowledging the 

value of what had been achieved. To support their recommendations for reduced effort, 

most respondents alluded to the positive growth trajectories in the two black robin popula-

tions. In the meantime, full-scale monitoring continued on both islands in the 1997-98 sea-

son. By 1998-99, the programme had passed in its entirety to fresh but inexperienced 

hands through another administrative restructuring of DOC. In addition to a rushed opera-

tional hand-over, the new institutional arrangements favoured stricter local autonomy 

(Kennedy, 2003). As a result, the incoming project leaders found themselves obliged to 

proceed without meaningful access (then and on-going) to the long-term experience of the 

previous programme leaders and observers. Unfamiliar with the long-standing conventions 

of monitoring, well-meaning new-comers disturbed the demographic record by intervening 

in breeding, in particular by salvaging rimshots (Thurley, 1999). In the same season, the 

first in a succession of commercial wildlife contractors was engaged to conduct the field-

work. This practice of ‘out-sourcing’ black robin management compensated for the 

chronic shortage of internal skills but ultimately it weakened management continuity and 

institutional familiarity with the populations. 

 

At the conclusion of breeding in March 1999, 199 robins were judged to be alive on Ran-

gatira Island (54 breeding pairs) and 71 were alive on Mangere Island (20 breeding 

pairs)—the highest number of black robins in existence for more than a century (Tables 

6.5 and 6.10). This proved to be the final season of full-population monitoring on Ranga-

tira Island. Three seasons later when full-scale monitoring ceased on Mangere Island, post-

breeding numbers there had dipped to 63 robins (17 breeding pairs). 
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Management during this phase relied on close-order monitoring of populations as the sim-

plest way to detect new ecological threats and harmful trends (Kennedy, 1993a). Given 

that monitoring was the only management tool adopted, managers were inclined to protect 

its quality and coverage from the effects of chronic resource shortages by treating the data-

gathering and the data themselves as the principal objects of interest. This was clearly 

beneficial in that it preserved close contact with the populations and a demographic record 

capable of interrogation for viability threats. However, the habit discouraged critical as-

sessment of which population parameters were the best to monitor. For this reason, and 

because positive growth trends in both populations did not argue for doing so (Hay, 1998), 

the field data were not analysed systematically between seasons. Instead, data were simply 

collated and subjected to summary analysis only, often in rudimentary end-of-season re-

ports to the Recovery Group (see for example, Kennedy, 1996a; Bell, 1998). Few reports 

attempted to fit what had been observed to longer-term views.  

 

The recovery strategy for this period acknowledged the possibility of inbreeding depres-

sion as justification for monitoring but stipulated no specific measures to minimise it 

(Kennedy, 1993a). Intervening to manage any such threat would have contradicted the 

primary goal of monitoring, which was to measure wholly undisturbed population trends. 

In practice, field observers remained alert for signs of physical or behavioural abnormali-

ties which might suggest inbreeding depression. Otherwise, the programme relied princi-

pally on a change in population sizes to signal more serious problems. By this relatively 

crude numbers-watching measure, subtle fitness-related declines in productivity and sur-

vival measures were likely to be hidden by the volume of data accumulating. There was 

assurance taken that at least high quality data were accumulating, putting ‘money in the 

bank’ for unforeseen contingencies. Reduced sensitivity to inbreeding risks was also vin-

dicated by investigations of black robin genetics which concluded that inbreeding depres-

sion and the anomalously low genetic diversity in the black robin genotype showed no ap-

parent effects on the vital rates of either population (Chapter One; Mallinson, 1992; 

Holmes, 1994; Ardern and Lambert, 1997). 

 

The policy of preserving the level of demographic detail inherited from the cross-fostering 

era resulted in monitoring which exceeded the standards and expectations of similar pro-

jects elsewhere in New Zealand, even for other critically threatened species on the same 

islands (Forbes’ parakeets, Chatham Island petrel, New Zealand shore plover). The project 
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was heavily criticised for this despite having detected serious threats such as hybridisation 

on Mangere Island (Chapter Eight) which monitoring of reduced intensity had missed. The 

single-species focus was regarded as out-of-step with new ecosystem-scale management 

imperatives (Department of Conservation, 1996b). Other critically threatened species in 

the region competed for its resources, their shortages aggravated by difficulties with biodi-

versity funding inequities nationally (Department of Conservation, 1997; Kennedy and 

Perkins, 2000). These pressures prevailed in the next management phase when monitoring 

was radically reduced in intensity. 

 

4.5 Phase Four—Sample-monitoring: 1999-2000 until present 

 
The new managers assuming full responsibility for black robin recovery in 1998-99 were 

predisposed to reducing monitoring intensity. In September 1998, prior to the onset of 

breeding, they conducted population-indexing trials on Rangatira Island to assess the fea-

sibility of alternative, less labour-intensive monitoring techniques. Internal reviews ques-

tioned the value and cost-effectiveness of full-population monitoring. Hay (1999:1) con-

cluded that monitoring had contributed little to management of the species—‘intensive 

monitoring has been the management’. At the end of the 1998-99 season, the Recovery 

Group was confident that the two populations were secure enough with numbers at 254 

(O’Connor, 1999) 40 to reduce monitoring intensity (Department of Conservation, 2001a).  

 

The new managers were mindful of the risks in abandoning full-population perspectives. 

The debate preceding the decision to reduce monitoring considered the many ways in 

which index-monitoring might disadvantage correction of future problems. Concerns were 

expressed about ability to detect declines quickly, to detect hybridisation, to select the right 

founders for new populations or to find ‘unfriendly’ black robins. Experienced observers 

warned that thorough familiarity with the populations (including the 20-year-long genea-

logical record) could never be recovered once contact was interrupted or minimised (De-

partment of Conservation, 1999). There was a risk that the knowledge lost through less 

intensive monitoring would be critical to defining the factors at play if negative trends de-

veloped (Kennedy, 1999). The failure to analyse earlier data deprived the debate of in-

sights to which vital rates might account for future population changes. No agreement was 

                                                 
40  The post-breeding total was actually 270 (see Chapter Six: Table 6.3) 
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reached on which population parameters should be measured by index-monitoring re-

gimes.  

 

Despite these concerns and warnings that the ‘friendliness’ of the black robins was a com-

plication likely to inflate population estimates (Hay, 1999), the Recovery Group endorsed 

Hay’s (1999) recommendation that distance-sampling be adopted immediately (Depart-

ment of Conservation, 1999). To test the accuracy of distance-sampling, its estimates of 

population size on Mangere Island were to be tested and calibrated against censuses con-

ducted during a further season of full-population monitoring. Full-scale monitoring was to 

cease on Rangatira Island but breeding pairs in a standardised area of habitat (easily acces-

sible tracts of West Woolshed Bush) were to be monitored annually to obtain measures of 

productivity, pair stability and the ratio of paired to unmated birds (Department of Conser-

vation, 1999).  

 

The new monitoring strategy was formalised in a revised recovery plan (Department of 

Conservation, 2001a) which retained the long-standing focus on disease and ecological 

threats to extant populations and the goal of founding more populations in the region. Pitt 

Island was still the preferred site for a third population but the plan also favoured returning 

black robins to Little Mangere Island, despite acknowledging that this population would 

always be small. The genetic ramifications of such an inbred population were not men-

tioned. The plan required all black robin populations to be stable and self-sustaining. It set 

a minimum of 250 adults (in total) as its viability benchmark. Genetic concerns raised in 

the earlier plan (Kennedy, 1993a) were dropped.    

 

Distance-sampling was abandoned on both islands after one season’s trial (1999-2000). 

When run in parallel with full-scale monitoring which required a ‘friendly’ population, in-

dex-counts on Mangere Island gave significant over-estimates of population size (Thurley, 

2000). The natural inclination of black robins to approach observers also did not suit the 

monitoring technique in which distance from observers at the initial sighting was a funda-

mental criterion (Hilary Aikman, pers. comm.). Mark-resighting was adopted instead, a 

method capitalising on the black robin’s confiding behaviour. The new method was cali-

brated against head-counts from further full-population monitoring on Mangere Island in 

2000-01 and 2001-02. 
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From 2000-01, both populations were monitored through mark-resighting surveys prior to 

and after breeding (in some seasons, at only one of these times). Surveys were supple-

mented by recording incidental black robin sightings. Assessment of breeding pairs and 

nesting attempts in the sample area on Rangatira Island was discontinued after hostile 

weather conditions obliged observers to cancel their pre-breeding visit in spring 2006 (De-

partment of Conservation, 2007b). Following a split decision (Kerry-Jayne Wilson, pers 

comm.), the Recovery Group dispensed entirely with full-population monitoring on Man-

gere Island at the end of the 2001-02 season. As a result of these decisions, understanding 

of population trends on both islands deteriorated markedly.   

 

Analyses of survey data using a range of mark-resighting estimators in Program NORE-

MARK yielded varying measures of population size (sometimes outside the known sizes), 

requiring on-going adjustment of survey methodology (see Pryde, 2003, for a discussion of 

the methodology). The precision of estimates proved sensitive to a number of survey vari-

ables (for example, the number of banded individuals in the populations, the conspicuous-

ness of birds at different times in the season, the number of surveys and the validity of 

sightings). Inaccurate sightings of banded black robins contributed to the uncertainty in 

estimates by over-counting the number of individuals seen (individuals sighted once might 

be recorded again as another). These inaccuracies were common in some seasons (Hous-

ton, 2008b) and appeared to arise from the mis-reading or mis-recording of band combina-

tions by observers of varying skill or obliged by inflexible time-frames to survey in poor 

conditions. In addition, erroneous sightings of black robins known to be dead or obviously 

out of territory were accepted unknowingly or uncritically by novice observers unfamiliar 

with the populations (Kennedy, 2007a, 2007d; Houston 2008b). Difficulties were com-

pounded by the use of easily confused band colours (a practice avoided in the past) and an 

unusually high incidence of colour-band failure (losses, or fracture and slippage resulting 

in obscured or inverted combinations), the causes of which have not yet been determined. 

Managers did not begin systematic replacement of missing or faulty colours until the 2007-

08 season. 

 

These monitoring problems were first quantified in 2006-07 during my collation of sur-

vival data for this study. Correction of the errors drew on my longer-term familiarity with 

the black robin populations (Kennedy, 2007b, 2007c). Successive project leaders in the 

index-monitoring period had only short-term familiarity and were largely unaware of these 
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troubling inaccuracies or their effects. The corrected mark-resighting data are to be sub-

jected to revised NOREMARK analyses (Dave Houston, pers. comm., August 2008) but 

these have yet to be conducted (Moira Pryde, pers. comm.).  

 

Loss of familiarity was an inevitable consequence of index-monitoring but institutional 

pressures amplified its severity. During this time, continuity suffered from high rates of 

staff turn-over and disproportionate numbers of inexperienced observers. Visits to the two 

black robin islands were fleeting and tightly constrained in their objectives. Black robin 

surveys confined themselves to strictly prescribed quantitative measures of population 

size. Despite genuine interest in doing their best for the species, contractors were under 

pressure to confine themselves to narrow contractual obligations (pers. obs.).  

 

The mark-resighting method concentrated surveys and other contact with the black robins 

to restricted areas of the two islands.41 Thus censuses did not detect the disappearance of 

birds from substantial areas of habitat elsewhere on Rangatira Island, especially in the Top 

Bush (Chapter Six: Section 6.2.3). The contraction in range was first noticed during micro-

climate research conducted as part of this study (Kennedy and Wilson, 2005). Suspicions 

of reduced numbers overall were reported at the same time. Although acknowledging that 

numbers ‘seemed excessively depleted’ (Department of Conservation, 2005: 1), the Re-

covery Group declined Kennedy and Wilson’s (2005) recommendation that a one-off full-

population head-count be conducted to assess the status of the Rangatira Island population. 

The Group felt that mark-resighting analyses showed insufficient evidence of a decline to 

warrant the census (Hilary Aikman, pers comm.).  

 

Island-wide censuses were eventually conducted on Rangatira Island two seasons later, in 

2007-08 and 2008-09, after further acknowledgement of lower than usual black robin 

numbers on both islands (Leseberg, 2007; Department of Conservation, 2007b). The first 

head-count on Mangere Island was conducted in March 2009 (Harvey, 2009). These free-

ranging head-count surveys have yielded the most informative insights to population 

trends during the index-monitoring period. I have described the declines and head-count 

censuses in greater detail in Chapter Six. 

                                                 
41 On Mangere Island, the main tracks in the Robin Bush interior but not the bush perimeters 

or contiguous habitat beyond; on Rangatira Island, the principal tracks of the Woolshed 
Bush interior and major eastern outliers. 
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During this period, attempts were made to establish the long-awaited third black robin 

population on Pitt Island (Kennedy, 1993a; Department of Conservation, 2001a). It is pos-

sible that transfers of black robins from Rangatira Island were partly or wholly responsible 

for the suspected population decline there (Kennedy and Wilson, 2005). Too little is 

known of the population’s condition at the time of the transfers to draw firm conclusions.   

 

Thirty-four adult and juvenile robins were transferred to the Ellen Elizabeth Preece Con-

servation Covenant (Caravan Bush) between 2002-03 and 2003-04 (Aikman and Thomp-

son, 2003; Collen, 2004; Charteris, 2004a, b; Lewis, 2004; Bester, 2005; Aikman, 2005). 

The new habitat comprised a 40 ha tract of mixed broad-leaf coastal forest modified his-

torically by browsing and separated from contiguous forest by a three metre-high protec-

tive fence designed to exclude cats, wekas, and pigs but not mice.  

 

Birds were transferred on two occasions, drawing from the more numerous and accessible 

Woolshed Bush sub-population (Table 4.1). In order to ensure an even sex ratio, estab-

lished pairs were targeted for the first transfer in September 2002 (Aikman and Thompson, 

2003), but contrary to Collen (2004), difficulties with capture resulted in the transfer of 

only three recognised pairs (14 birds in total, aged from one to seven years). A fourth resi-

dent pairing was terminated with the transfer of the male. None of the transferred birds 

survived longer than six months. Mortality was attributed to dispersal from the protected 

area and to storms which followed the releases (Aikman and Thompson, 2003; Collen, 

2004) but these were assumptions only. Although several individuals had dispersed to bush 

immediately adjacent to the reserve (at least one was recaptured and returned), there was 

no evidence to suggest that dispersal and storms accounted for all of the losses.  

 

A second larger transfer was made in February 2004. Twenty black robins judged to be 

non-site-attached juveniles were moved. The switch from adults was intended to minimise 

impacts on the Woolshed Bush breeding population (Collen, 2004). The Recovery Group 

aimed to establish at least three breeding pairs on Pitt Island (Department of Conservation, 

2004). By spring 2004-05, only eight of the 20 black robins could be found, and two pairs 

had formed (Charteris, 2004b). To meet the target of three pairs, managers transferred two 

adults from Mangere Island in October 2004 (Charteris, 2004b; Lewis, 2004), separating 

the male and female from their mates in the process. Two Mangere Island females fol-



 

Chapter Four: Management of Extinction Threat  143

lowed later to correct sex imbalances created by ongoing mortality (Fastier, 2006). To be 

sure of their sex, the two females were taken from established pairings.  

 

No steps were taken to assess the effects of these transfers on either source population. 

Managers assumed that both would recover naturally from the losses and were confident 

that the mark-resighting survey regime would signal any adverse change. More precise 

means of detecting change were unavailable after full-population censuses had ceased but 

managers had historical benchmarks at their disposal. The 14 adult robins removed in Sep-

tember 2002 represented 12.5% of the pre-breeding total in the Woolshed Bush (n = 112) 

at the last full-scale census in spring 1998 (Table 6.3). The 20 juveniles represented 38.5% 

of the number of Rangatira Island juveniles counted (n = 52) in autumn 1999 (Appendix 

Four: Table 4B). 

 

 

Table 4.1 Black robins transferred to Caravan Bush from Mangere and Rangatira Islands 
between September 2002 and September 2005. Juvenile sexes are based on 
relative weights if not confirmed by behaviour, breeding or later dissection. 

  

 Adults  Juveniles  Unknown 

 Male Female Pairs  Male Female  Sex 

Rangatira Island         

25-26 September 2002 6 4 3     4 
18-26 February 2004     12 6  2 
         
Mangere Island         

17 October 2004 1 1       
3 September 2005  2       
         

 

 

 

The few records available to me indicate that post-liberation monitoring on Pitt Island de-

tected at least six breeding attempts between September 2002 and February 2006 (Table 

4.2). Only one attempt appears to have produced a fledgling. Breeding failures were attrib-

uted to the loss of a parent, suspected predation and unexplained injuries to offspring. In-

formation on other brood failures is lacking in reports. 
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Table 4.2 Breeding attempts reported in Caravan Bush (Pitt Island) after the transfer 
of 38 black robins from Rangatira and Mangere Islands between September 
2002 and September 2005. 

 
 Pairs Clutches Eggs Nestlings Fledged Cause of failure 

       

2002-03 1 2 4 3  
First nestling predated (?) and failed egg 
infertile; 2 nestlings deserted after death 
of parent (Aikman and Thompson, 2003) 

2003-04 0     
 

2004-05 2 2  ≥ 1 1 
First clutch fate unknown; fledgling dead 
with traumatic injuries to leg (Lewis, 
2004; Bester, 2005; Aikman, 2005) 

2005-06 1 2   2   
First nestling dead with traumatic injuries 
to leg and thorax (Aikman, 2005). Sec-
ond nestling last reported alive at 12 
days of age (Kennedy, 2006) 

       

 

 

Despite changes in the timing of transfers, supplementary-feeding and the shift from hard- 

to soft-releases, black robin numbers dwindled rapidly after each liberation. Only three of 

the 37 robins eventually released from the holding aviary were found dead. The remainder 

disappeared without trace, often soon after release. Observations and post mortem tests 

showed that avian pox, other viral and bacterial infections, and nematode infestations were 

problems for the adults (Collen, 2004; Charteris 2004a; Lewis, 2004; Bester, 2005; De-

partment of Conservation, 2005). Managers attempted to treat these problems by adminis-

tering antibiotics and worm-drenches injected into Tenebrio larvae (Department of Con-

servation, 2005).   

 

To safeguard source populations from the further potentially harmful transfers planned for 

Pitt Island and other islands (Star Keys, Little Mangere Island; Department of Conserva-

tion, 2005), Kennedy and Wilson (2005) recommended intensive management of the trans-

fer survivors on Pitt Island, surmising that they may possess inherent ability to cope with 

the local conditions. Proposals for nest manipulations, renesting of brooding females and 

(if necessary) cross-fostering reminded managers that they had at their disposal interven-

tion techniques which had been highly effective during the extinction crisis of 1980-81. 

The Recovery Group did not act on the intervention proposals and opted instead to persist 

with transfers which were the more affordable option (Department of Conservation, 2005). 
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The subsequent decisions to move four individuals from Mangere Island disagreed with 

Kennedy and Wilson’s (2005) recommendation that the black robins on this island should 

be left undisturbed as a reference population.    

 

Transfers to Pitt Island were suspended in 2006-07 and were to be resumed only if the last 

founder female survived into 2007-08 (Department of Conservation, 2007b). She did but 

disappeared some time after November 2007 (Leseberg, 2008). The Recovery Group 

elected to defer a decision on the alternative of returning black robins to Little Mangere 

Island (Merton, 2008a), preferring to wait until the viability of the Mangere and Rangatira 

Island populations had been clarified (Department of Conservation, 2008). To date, no 

formal review of the Pitt Island translocation experiment has been commissioned. 

 

During this management phase, monitoring of the Mangere and Rangatira Island popula-

tions retained the long-standing pre-occupation with abundance as the indicator of viabil-

ity. The imprecise instruments of index-monitoring used to measure abundance were less 

likely than the full-scale monitoring method they replaced to detect the signs of inbreeding 

depression. They have not left a useful demographic record or pedigree in which signs of 

depression can be read in hindsight.  

 

Although resource constraints dictated the final choice to reduce monitoring intensity, the 

decision signalled confidence first-and-foremost that the black robin populations were sta-

ble and likely to remain viable in the long-term. This confidence was maintained despite 

evidence of declines and problems with the means of verifying them. The reduced moni-

toring effort also reflected rigorous new institutional expectations of efficiency, measur-

able, cost-effective outputs and short-term, tightly goal-directed investment of resources. 

These were imperatives of the so-called ‘Bach Model’ (Kennedy, 2003) with which black 

robin managers were obliged to comply in their planning and management decisions, field 

practices, staffing policies and work programmes. Coupled with reliance on a succession 

of external contractors to conduct the field work, these limiting factors resulted in loss of 

contact with the populations which severely undermined sensitivity to trends.  

 

The black robin management culture inherited from previous phases was lost through high 

rates of staff turn-over. Lacking continuity and peer-review, management did not recognise 

the need to remedy lapses in the consistency and quality of field observations. The demo-
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graphic data acquired during this period give a poor understanding of population trends. 

From 2001-02, the coarse-scale measures of abundance generated by annual mark-

resighting surveys were unreliable because they incorporated inaccurate sighting data. 

Colour-banding continued in both populations but largely within the survey compass. 

Banding effort fluctuated from season to season to meet the statistical criteria of mark-

resighting analyses and the needs of the Pitt Island transfer project. Age, parentage and 

relatedness were unknown for the majority of individuals banded. As a result, the introduc-

tion of sample-monitoring terminated the black robin genealogical record, along with its 

potential to quantify accumulating rates of inbreeding in each population and the family 

lines and lineages which might be advantageous to new founder populations (Jamieson et 

al., 2008).   

 

Brief, infrequent visits to Rangatira Island resulted in incomplete or inconclusive produc-

tivity data from the sampled breeding pairs. These data have not yet been collated for 

analysis (Houston, 2008a). Short-term visits to both islands reduced alertness to shifts in 

black robin densities, range contractions and longer-term changes in habitat character. The 

effects of discontinuity in leadership and staffing were apparent in the field reports of this 

period. The marked lack of quantitative and qualitative commentary on population and 

habitat condition suggested that few observers had the familiarity necessary to detect 

changes. It seems evident that each newcomer regarded the situation encountered as ‘nor-

mal’. Short-term, episodic monitoring of the new Pitt Island population did not allow con-

fident explanation of the transfer and breeding failures. As a result, the few demographic 

data gathered do not allow any form of analysis to assess whether inbreeding depression 

latent in population founders was expressed by the change in environment (Kennedy, 

2006). 

 

For black robins of known age and parentage in the established populations, index-

monitoring and incidental sighting data have residual value in simple measures of longev-

ity, pair-fidelity and territory occupation. Taken in their entirety, however, they do not de-

scribe the apparent declines in both populations, the period’s most significant events. It is 

not possible to discern predisposing and contributing factors, the timing, pattern and scale 

of declines, the changes in population structures, or the nature of any rebound in numbers. 

Black robin managers are therefore unable to determine whether the declines were expres-

sions of compromised viability or simply a downward fluctuation in abundance. The best 
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insights are emerging from the free-ranging pre-breeding ‘head-counts’ conducted in 

2007-08 and 2008-09, monitoring methods most closely related to those used in the past.     

 

4.6 Conclusions 

 
The unambiguous strategy of increasing population sizes rapidly rescued the black robins 

from the immediate threat of extinction through stochastic demographic and environmental 

threats. Three factors contributed to success. First, managers treated the deterministic fac-

tors driving the species to extinction by removing the surviving black robins to better habi-

tats. Second, managers reduced vulnerability to demographic misfortune by addressing the 

problem of the black robin’s low juvenile output through the obligatory renesting of fe-

males and the fostering of the additional offspring. Third, detailed knowledge of the popu-

lations was preserved in order to detect unforeseen problems and adverse trends. The strat-

egy benefited from demographic serendipity, the odds of which were as low as the black 

robin numbers themselves. The most fortuitous were the chance mating of Old Blue and 

Old Yellow and the late onset of successful breeding by the ageing matriarch (Chapter 

Three).  

 

Conversely, the odds against success steepened when managers adopted stand-off policies 

of wait-and-see based on optimistic assumptions about population viability and persis-

tence. These reactive policies proved to be unsuitable responses to the stochastic demo-

graphic and environmental threats growing in inverse proportion to population sizes on 

Little Mangere and Mangere Islands (Chapter Three). Index-monitoring has proceeded on 

a similar basis, reassured by the unassisted population increases of the previous decade but 

without the insights necessary to assess viability and predict potentially harmful changes. 

On Mangere Island, experimental reductions in monitoring intensity between 1990-91 and 

1992-93 also assumed that all would be well. This approach failed to detect cross-breeding 

events which threatened the black robin and tomtit genotypes locally (Chapter Eight). 

Critical knowledge gaps created at the same time seriously hindered remedies. Detection 

and treatment relied on more comprehensive forms of monitoring and longer-term famili-

arity with the populations at risk.  

 

The decisive phase of the black robin recovery (1980-81 to 1989-90) conformed to the pre-

sumption of Caughley’s (1994) ‘declining population’ paradigm that diminishing numbers 
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alone were the rightful object of remedy if extinction was to be avoided. Viability was 

measured in the currency of numbers: its loss in Little Mangere Island’s ancestral popula-

tion ‘was proved in 1976 with the drop to only three potential pairs’ (Butler and Merton, 

1992: 60). This pre-occupation was entirely justified when the species hovered on the 

brink of extinction. The only option was to raise population sizes quickly, then deal with 

viability problems later. The pre-occupation with numbers-building remained in place after 

the crisis had passed, however, implying confidence that expansion in population sizes 

alone would insure the species against the more cryptic genetic threats to viability associ-

ated with the founding bottlenecks, inbreeding and population sizes capped by limits on 

available habitat.  

 

There were few apparent reasons to question this confidence. The low rate of juvenile pro-

duction in the relict population transferred to Mangere Island might have aroused suspi-

cions had managers known the extent and causes of breeding failures, but later, when in-

breeding had been most intense under management, black robin productivity responded 

satisfactorily to the demands of multiple-clutching. Key measures such as fertility, hatch-

rates and juvenile survival were not indicative of a problem during the period of aug-

mented breeding effort (Butler and Merton, 1992; Holmes, 1994; Arden and Lambert, 

1997). Investigation of black robin genetics revealed anomalously low genetic variation 

but researchers concluded that this had had no serious implications for short-term viability 

(Mallinson, 1992; Holmes, 1994; Ardern and Lambert, 1997). Strong population growth 

under managed conditions reinforced these conclusions, and the more modest growth in 

the post-intervention phase was what managers had expected to see. These factors eased 

later decisions to rely on coarser-scale measures of population size as indicators of short- 

and longer-term viability.  

 

During and after the period of intensive management, the recovery programme adopted 

few measures to minimise the potential for genetic malfunction. Close-order monitoring 

and the establishment of a sister-population preserved options for future responses but nei-

ther was explicitly intended to moderate inbreeding risks. Inter-island transfers ensured 

gene flow between the two populations but this and options to disrupt closely related pair-

ings benefited from rather than prompted the transfers. The potential value of gene ex-

changes after management ceased was subordinated to the goal of monitoring undisturbed 

(natural) population trends.  
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The strong rebound of the black robin populations appears to support Craig’s (1991) hy-

pothesis that New Zealand’s island endemic bird species are more immune than naturally 

outbred species to the effects of heightened inbreeding and depleted genetic variation. 

However, the anecdotal and published evidence for this rests largely on the relatively 

short-term measures of viability (productivity and juvenile survival) visible during the pe-

riod of intensive management when inbreeding depression may have been masked by man-

agement activities. Field data for the post-management period were not interrogated for 

potential inbreeding effects on vital rates under natural conditions. Similarly, the potential 

role played by genetic impairment in recently indicated population declines has gone un-

explored because managers responded ambivalently to the declines and tolerated compro-

mised insights from the under-performing index-monitoring regime. Suspicions of in-

breeding depression aroused by the hesitant breeding performance and mortality of adults 

and offspring on Pitt Island have not been investigated. The operative Recovery Plan 

makes no provision for follow-up testing of genetic variation or divergence in the two 

small, closed populations on Mangere and Rangatira Islands. And monitoring of current 

intensity and quality is unlikely to detect the more subtle, cryptic effects of extremely low 

genetic variability on adaptive potential which are expressed over many generations rather 

than cohorts (Jamieson et al., 2008). 

 

Chapter Six of this study addresses these shortfalls by investigating the accumulated field 

data for the demographic variables most likely to explain variations in population growth 

since intensive management began. The neglected post-management data are of particular 

interest. Chapter Seven quantifies levels of inbreeding in the populations and assesses 

whether a relationship exists between their predicted effects on individual fitness and the 

demographic variables identified as having most influence on population trends.   

 

Finally, variations in the standard and coverage of data available for analysis reflect 

changes in the focus and intensity of management since 1980-81. Data are comprehensive 

and attention to biological detail greater when contact with the black robins was more fre-

quent and intrusive during the better resourced intervention phase. Quality began to fluctu-

ate during the resource-stressed monitoring phases of management. In general, managers 

were pre-occupied with the reduced condition of the species and measured productivity 

and survival primarily. They did not pay much more than passing attention to peripheral 

factors. They noted (at best) but did not systematically record important viability factors 
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such as the incidence of disease, morphological abnormalities or aberrant behaviour, or the 

influence of environmental factors or habitat quality variables (micro-climates and vegeta-

tion types) on black robin behaviour, survival and productivity. Nor were key demographic 

variables measured routinely or precisely. For instance, data are inconsistent or lacking on 

the causes of egg, nestling or nest failure (infertility, loss to avian predators, nocturnal pet-

rel-strikes or multiple other factors), the causes of juvenile and adult mortality, the fates of 

most recovered rimshots, the causes of pair-bond failure, or the gender of unmated off-

spring and adults.  

 

Comparison of population dynamics in decline and recovery phases would have benefited 

from longer and more comprehensive records of the pre-1980-81 ancestral populations on 

Little Mangere and Mangere Islands and post-intervention populations. Reliable data for 

these periods are in short supply. Interactions with sympatric tomtits and other species 

were not measured routinely, nor was the effect of black robins on other species. In prac-

tice, attention to all such variables would have asked too much of frantic field-workers but 

some well within reach (for example, the fertility of failed eggs) were neglected, especially 

during the post-management periods when observer quality and experience was less con-

sistent.  

 

Lapses in quality are inevitable in a recovery programme of this duration but the severity 

of many described in this chapter is symptomatic of discontinuity in management, short-

term perspectives and reliance on assumption to substitute for direct observation. Chronic 

under-resourcing was, and continues to be, responsible for many of these difficulties. In 

contrast, it has become clear during the course of this study that data quality was highest 

and most consistent when gathered under conditions of stability in project leadership and 

field teams, each of which cultivated degrees of sensitivity to the black robin populations 

which were unattainable by other means. These conditions appear to have been met most 

effectively when project leaders were closely involved in the field work year after year and 

rates of turn-over in experienced observers were minimal.  

 

The fluctuations in data quality and the many gaps in black robin records have required me 

to rely on estimates or compensating generalisations which reduce empirical precision in 

the demographic record. These adjustments are explained in Chapter Five. 
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CHAPTER FIVE 

COLLATION OF DEMOGRAPHIC DATA 

 

 

 

5.0 Introduction 

 
This chapter introduces the field records on which this study’s analyses are based. It ex-

plains briefly how I have collated and verified raw demographic data from these diverse, 

often unstructured sources, and how I have compensated for gaps and omissions.  

 

The field records were compiled annually during the four phases of black robin manage-

ment outlined in Chapter Four. Records from the intensive management phase (1980-81 to 

1989-90) and post-management phase (1990-91 to 2001-02) are the most detailed and 

therefore the most informative for my analyses. They span the period of recovery in the 

two sister-populations on Mangere and Rangatira Islands after each had passed through a 

single-pair founding threshold (Mangere Island, 1980-81; Rangatira Island, 1983-84). 

They provide a near-continuous daily account of population dynamics during successive 

breeding seasons (spring to early autumn). I have described continuity losses in the post-

management period in Chapter Four: Section 4.4.  

 

In contrast, the records of the initial investigatory phase on Little Mangere and Mangere 

Islands (1971-72 until 1979-80) and the current period of index-monitoring (2002-03 until 

present) are significantly less informative and offer incomplete insights to population 

trends. I have explained the reasons for this in Chapter Four.  

 

Finding the field records was an unexpectedly difficult task. Some were held in the official 

filing systems of DOC and its wildlife-management predecessor, the New Zealand Wild-

life Service. With puzzling exceptions, I found closed official files in the regional collec-

tions of Archives New Zealand, central government’s official record-keeping agency. 

However, the black robin management project had no centralised collection point for the 

other data-rich paraphernalia of field work (field notebooks, black robin logs, hut log-

books, charts, lists, maps, field instructions or briefing notes, graphs, photographs). I and 

other project leaders had lodged some hut logbooks, field notebooks and black robin dia-
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ries with Archives New Zealand but the remainder were held by project participants, some 

of whom were indisposed to allow access. Other records languished forgotten in DOC of-

fice files, boxes or cupboards where the danger of disposal continues to grow as new staff 

inherit the unfamiliar collections. The degree of dispersal was so considerable that many 

former and current black robin workers I spoke to could only guess where to search for 

missing material.   

 

Mining the field records for demographic data has been extraordinarily challenging. First, 

the records kept in the field were intended primarily for operational uses. Scientific uses 

were very much secondary considerations. Daily observation data were raw, unrefined and 

often of an informal, narrative nature. Recording methods lacked an orthodox unifying 

format, so that recording conventions changed within and between management phases. 

Second, record quality, consistency and content varied considerably within and between 

seasons, in part because the record-keepers themselves differed from the meticulous to the 

minimalist. The majority were sincere, earnest and adequate in their efforts. Institutional 

pressures to reduce monitoring intensity were also to blame (Chapter Four). Third, omis-

sions, misconceptions and inaccuracies in daily records were generally not corrected or 

annotated in hindsight to reflect what was learned subsequently. I looked to end-of-season 

reports for clarification but found that they often perpetuated the errors, so that none could 

be accepted uncritically as an authoritative summary. End-of-season or multi-season data 

were tabulated, most carefully during the cross-fostering years, but these helpful summa-

ries were rarely included with end-of-season reports. For these reasons, much of the infor-

mation in records had to be checked for accuracy. I chose to rebuild the demographic re-

cord from the ‘ground up’ rather than import potentially inaccurate data.  

 

5.1  Data collected in the field 

 
The individual life-histories of black robins form the basis of the demographic data avail-

able to this study. The intrusive methods used to recover the species during the intensive 

management period enabled observers to follow the fate of each egg laid until death. As 

explained in Chapter Four, this also became the driving ambition of post-management 

monitoring. The observation effort yielded life-histories for 2177 eggs known to have been 

laid between 1980-81 and 2001-02 (Chapter Six: Table 6.14). Survival, breeding and terri-

tory data were gathered for all 1354 hatched black robins from 1980-81 until 1998-99 on 



 

Chapter Five: Data Collation and Verification 153

Rangatira Island (19 breeding seasons, 11 generations based on a generation-time of 1.7 

years; Chapter Three) and until 2001-02 on Mangere Island (22 seasons, 18 generations).   

 

Black robins were marked as nestlings at 10-19 days or at the next convenient opportunity 

with uniquely numbered metal bands and colour-band combinations (one to three colours). 

This was essential for tracking each individual within and between seasons. From the 

commencement of banding in March 1972 until the end of full-population monitoring in 

2001-02, 1075 black robins were marked (Table 5.1). In contrast, 230 have been banded in 

both island populations during the 2002-03 to 2007-08 period of sample-monitoring. From 

February 1975, when all 11 black robins alive were marked for the first time, to March 

2002, only four are known to have fledged and died without having been caught and 

banded.  

 

Pre- and post-breeding censuses were conducted as near as possible to the onset of court-

ship feeding in late spring and as late as possible in the breeding season. These head-

counts searched actively for black robins which may have been overlooked previously, in-

cluding offspring from undetected nests or pairs. Between censuses, each mated black 

robin was visited at one- to five-day intervals on average to record location, activity and 

the fate of breeding attempts. Visit-frequency declined during the full-population monitor-

ing period. Regardless of management regime, predicted hatching or fledging dates neces-

sitated daily visits. Offspring were observed daily (at best) until made ‘friendly’ in the 

manner I have described in Chapter Four. Unmated birds were visited less frequently but 

were watched carefully nonetheless because they had the potential to attract hitherto unde-

tected mates. When conservation budgets permitted in the early stages of the intervention 

period, observers assessed the survival of adults and young in late autumn and winter. 

 

Observers gathered the same types of data during the intensive management and full-scale 

monitoring phases. While noting pairings, clutch sizes, egg fates, nestling and fledgling 

numbers and fledgling fates, observers also recorded the dates of egg-laying, hatching and 

fledging for each clutch along with coincidental information such as nest sites, territory 

occupancy and intraspecific interactions. Fledglings were followed after achieving inde-

pendence and while roaming as juveniles. Censuses and daily observations alike provided 

survival and longevity data. The cause of mortality in black robins found dead was investi-

gated by experienced observers, though seldom with absolutely conclusive results. Disap-
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pearances during breeding seasons were not treated as deaths until repeated searching had 

been unsuccessful or the individuals failed to appear in the next season. Dispersal of adults 

and juveniles within and between seasons was recorded by noting where and with whom 

individuals appeared or settled. Notes were made by experienced observers on the inci-

dence of disease, morphological abnormalities and aberrant behaviour. 

 

 
Table 5.1 Total by natal habitat of black robins fitted with uniquely numbered 

metal bands and colour-band combinations during the four manage-
ment phases between 1971-72 and 2007-08. Totals exclude two in-
dividuals fitted with replacement metal bands and one fitted with 
colour-bands only.   

 

Population  Initial Intensive Post Total  Index 

L MANGERE Whole island 27 - - 27  - 

MANGERE Robin Bush and 
Douglas Basin 3 62 212 277  44 

RANGATIRA West Woolshed and 
western outliers - 34 150 184  62 

 East Woolshed and 
eastern outliers - 32 276 308  63 

 Top Bush - 70 209 279  47 

 Unspecified - - - -  14 

PITT Caravan Bush - - - -  - 

 Total 30 198 847 1075  230 

 

 

5.2  Recording of data in the field 

 
Documenting of field information grew in sophistication as the volumes of data increased 

with the black robin abundance. Early observers used personal field notebooks. By 1980-

81, daily observations and management commentaries were committed to the black robin 

section of a general bird log kept on Mangere Island. In 1981-82, data were centralised in 

dedicated black robin notebooks, a practice maintained until the end of intensive manage-

ment in 1989-90. At the same time, field-workers began to keep hut log-books in which 

more generalised social and biological commentaries on island life were written alongside 

helpful narrative summaries of progress with the populations. These informal summaries 

have often substituted for primary records which I have not been able to locate.  
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In 1991-92, soon after comprehensive monitoring commenced, record-keeping for the lar-

ger Rangatira Island population made an important change from recording observations for 

all black robins by day to reporting daily observations by black robin. This simple adjust-

ment made it easier for incoming observers (and my study) to relate new information se-

quentially to old. This helpful practice was adopted piecemeal for the smaller Mangere Is-

land population. Qualitative observations on nest sites, behaviour and interactions were 

still included. Large wall charts were introduced to plot progress with the growing num-

bers of nesting attempts. The charts had two functions. First, they alerted managers to key 

dates in the breeding cycle (start to incubation, hatching, banding of nestlings, fledging). 

Second, they summarised schematically the data committed to log-books so that errors and 

other information needs could be detected at a glance. Finally, each observation of an adult 

or fledged black robin was logged in a daily roll-call register (a tick-chart or log-book) 

which functioned as both a running population census and a means of signalling the need 

to investigate the whereabouts of missing individuals. For my study, the roll-calls gave 

important clues to time-of-death. 

 

Banding information was recorded in a master list detailing the colour-band combinations 

in use on black robins known or believed to be alive and available for use. To avoid dupli-

cations, combinations were reused only after two seasons had passed since the disappear-

ance of the previous holder. The master list recorded the colour-combinations fitted, the 

number on the metal band, given name, parents, clutch number, date, and weight and age 

at banding (days since hatching). Banding details were often repeated in black robin log-

books and occasionally in hut log-books. Official band-return schedules were completed in 

accordance with Banding Office requirements. As early as 1983-84, project leaders rou-

tinely included given names on the schedules, a small but invaluable expedient enabling 

managers to relate band-schedule data to other forms of record. 

 

Simultaneous checking of data consistency in the various records was achieved using rec-

onciliation tables of various descriptions (a blackboard on Rangatira Island; Table 5.2). If 

figures did not balance, observers were obliged to find and remedy the source of error, if 

necessary by returning to the field for confirmatory observations.   

 

Observation aids preserved important seasonal information. Portable booklets listing given 

names and colour-bands allowed observers to check an individual’s identity on the spot. 
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These lists have acted in retrospect as supplementary sources of information on numbers 

and presence each season. Track maps supplied to novice field-workers often plotted the 

relative location of mated and single black robins. These now assist understanding of terri-

tory numbers and distribution, features which were not otherwise plotted systematically.   

 

 

Table 5.2  Example of a black robin reconciliation table used to ensure 
the consistency of field data in diverse records. These data 
are transcribed from the entry for 24 February 1996 in the 
Rangatira Island hut log-book, October 1991–May 1996 (Ar-
chives New Zealand, Accession CABK 808). Observers 
guilty of careless record-keeping soon came to loathe table 
updates. 

 

DATE 24.02.96   

EGGS Number known laid  162 

 Lost through rimshots 6  

 Evicted or deserted 9  

 Disappeared or predated 20  

 Incubated full-term  127 

 Failed to hatch 45  

 Still to hatch 0  

NESTLINGS Known alive  0 

 Dead or disappeared 17  

FLEDGLINGS Known alive  10 

 Known dead 4  

 Missing probably dead 10  

 Missing probably alive  0 

JUVENILES Known alive  32 

 Missing probably alive  9 

 Missing probably dead 0  

ADULTS Known alive  93 

 Missing probably alive  5 

 Missing probably dead 3  

TOTAL Robins known or presumed alive  149 

 

 

Interim and end-of-season reports summarised seasonal information but detail, scope and 

commentary varied significantly for the reasons explained in Chapter Four. Project leaders 

differed in the value they placed on these reports as definitive accounts of population 
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status. Pre- and post-breeding census results were commonly reported along with summa-

rised breeding data (pair numbers, eggs laid, numbers of nestlings, fledglings and juve-

niles). Individual pair summaries, banding details and lists of the black robins seen were 

rarely tabulated. Mid-season reports generally suffered from a shortened view of events 

(for example, population totals did not include birds reappearing later). I found that this 

was a problem in primary records too. Adjustments were usually necessary in post-

management census totals after ‘dead’ black robins reappeared in the following season. 

Typically, the resulting contradictions and corrections went without comment by authors, 

creating confusion over which account was correct.  

 

5.3  Data collation 

 
To place this study’s analyses on the strongest possible empirical basis, I have collated and 

verified field data meticulously. I have attempted to minimise data omissions and the in-

ferences (statistical or otherwise) which omissions necessitate. The goal of empirical accu-

racy has obliged me to make decisions wherever appropriate on how to deal with incom-

plete or ambiguous information. 

 

Primary and secondary data sources of all kinds from 1971-72 until 2008-09 (Table 5.3) 

were collected and sorted by season and population. Original records were copied if they 

could not be retained for the study. The 18 island-years of hut and black robin log-books 

(1980-81 until 1988-89) held by Archives New Zealand were hand-transcribed over a pe-

riod of seven months.  

 

I contacted project leaders, field-workers, researchers and associates of the black robin 

programme to find missing records. Most were willing and able to help. Even so, I have 

been unable to locate all primary records for some seasons. Official band-return schedules 

are the sole form of primary record available for the initial management period (1971-1972 

to 1979-80). Observations on Mangere Island between 1990-91 and 1992-93 appear to 

have been recorded only as brief, sometimes cursory, comments in the hut-log. I can find 

no primary records for the 2002-03 to 2007-08 seasons on Pitt Island. In these instances, 

my data have been gleaned from secondary sources.   
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Table 5.3 Nature and diversity of black robin records consulted for this study.  

 
Primary sources Secondary sources 

• Black robin log-books 
• Black robin monitoring data forms 
• General bird observation log-books 
• Breeding progress wall-charts 
• Daily roll-call registers  
• Personal field notebooks 
• Robin master lists 
• Track-and-territory maps  
• Official band-return schedules 
• Index monitoring survey forms 
• Incidental sighting forms 
• Museum specimen registers 

• Hut log-books 
• Official field reports 
• Interim and end-of-season reports 
• Field identification lists 
• Seasonal data summaries 
• Pre-season briefing material 
• Personal diaries 
• Academic publications (papers, theses) 
• Popular publications (magazine articles, 

newspaper reports, books) 
• Official correspondence and news releases 
• Personal correspondence 

 

 

Demographic data were transferred to Microsoft Excel (2002) flat-file spreadsheets for in-

spection and verification. I sorted the data into four complementary demographic catego-

ries: individual life-history summaries and, for each population, annual roll-calls, annual 

breeding summaries and annual productivity tables. Other individual parameters (longev-

ity, territories, dispersals, inbreeding coefficients, population-scale vital rates) were calcu-

lated from the data in these first-tier collations. All collations were cross-checked to ensure 

accuracy and consistency (see Section 5.4 below).   

 

5.3.1 Life-history summaries 

 
Life-history information for each black robin comprised: 

• given name 

• band number and colour-band combination 

• sex (male, female or unverified) 

• hatching and banding dates  

• age and weight at banding  

• mother and father  

• parenting history (raised naturally or fostered)  

• clutch number  

• provenance (black robin, black robin x tomtit hybrid)  

• natal population  
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• populations to which the individual dispersed or was transferred  

• breeding population(s) and population in which the individual died  

• age at first breeding and when first producing juveniles  

• dates of death (if known) or last observation and date of first failing to appear 

• age at death 

• inbreeding coefficient.  

 

Inbreeding coefficients were estimated relative to the founder population using pedigree 

software (Chapter Seven: Was Inbreeding A Problem?). Populations were defined as Man-

gere Island and either Woolshed Bush or Top Bush on Rangatira Island (Chapter Six). Sex 

was confirmed by mate choice. Courtship behaviour was usually reliable but occasional 

temporary same-sex pairings of black robins (both sexes) could mislead. If a black robin 

did not pair or breed, its sex was estimated on the basis of adult behaviour or weight at 

banding (weight relative to nest-siblings or nestling weights in general; see for instance, 

Charteris, 2004b). Although experienced observers were correct more often than not when 

estimating sex by this means, the method was fallible. Even so, I was more inclined to ac-

cept estimated assignments from experienced observers than from observers I did not 

know. Otherwise, I treated unconfirmed assignments of sex in records as indicative only, 

and if records gave no indication at all, I classed the individual conservatively as of un-

known sex.   

 

Parental data during the intensive management and monitoring phases were confirmed by 

direct observation in the field. The identity of mothers, fathers or both were unknown for 

22 banded black robins (11 on Mangere Island; 11 on Rangatira Island). To fill the gaps, I 

made educated guesses in all but one case, deducing the likely identity of the unknown 

parent(s) from field information, my own familiarity with the populations and by eliminat-

ing local black robins which were accounted for at the appropriate times (paired or seden-

tary in other territories). The parents of black robins hatched in the initial phase of man-

agement (1971-72 to 1975-76) and the index-monitoring phase (2002-03 to present) are 

usually unknown. 

 

If hatch-dates were not recorded, I used the estimated age at banding to calculate the prob-

able date. Age at banding was noted routinely by most observers, but if not recorded, I de-
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duced the probable date from other information given (apparent age at first sighting or cap-

ture, time of season, behaviour, interactions with other individuals).  

 

Time-of-death was rarely determined precisely in the field for fledged black robins (only 

11.3% were found dead or dying). The remainder disappeared. Nestlings were more likely 

to be recovered dead (46.6%). Those missing from nests were almost certainly dead unless 

disappearing within days of their due fledging date. The practice in the field was to search 

for missing birds in order to confirm death. None of the missing birds could migrate from 

the islands, so if searches were unsuccessful or the birds failed to reappear in the following 

season, they were classed as dead.  

 

To cope with unknown dates-of-death, I listed the dates on which each black robin was last 

seen and first failed to appear. The mid-point in the interval was used to calculate a surro-

gate date-of-death in later analyses (Chapter Six). Because many last sightings were the 

last date of observations rather than true date of death, I was obliged to treat the first fail-

ure to appear as the dates on which observations were resumed in the new season. This un-

avoidable expedient increased the likelihood of error in surrogate date-of-death estimates.  

 

Finally, in qualitative comments, I summarised what was known of the individual’s likely 

status and condition at last sighting (alive or dead; moulting; fit, injured or ailing). I also 

recorded the identity of mates in each season of adult life, and defined rearing, fostering 

and transfer histories (including the identity of mothers at fledging), changes to given 

names or bands, and other incidental details clarifying life-history. 

 

Many gaps remaining in these information classes may be closed if new field records come 

to light, but most reflect the achievable state of knowledge. Data are most deficient for sex, 

ages at first breeding and first productive breeding, and dates of death.   

 

5.3.2 Annual roll-calls 

 
I collated presence-absence data for all fledged black robins into annual roll-call spread-

sheets. These spreadsheets listed given name, sex and the population in which an individ-

ual resided at each pre-and post-breeding census (Mangere Island, Woolshed Bush and 

Top Bush). Individuals dying as nestlings were not included, even if banded and named. 



 

Chapter Five: Data Collation and Verification 161

Each season’s roll-call identified pairings and unmated birds. I sorted successful pairs 

(those producing juveniles) from others attempting or failing to breed.  

 

Pre-breeding roll-calls listed the black robins known to have been alive at the end of the 

previous season and seen in the following spring, but for obvious reasons I could not list 

those dying in spring before observers reached the islands. They were consigned to the 

category of individuals missing or confirmed dead since the previous season. To assist 

analysis of age-related mortality rates, I chose to list separately the juveniles surviving 

from the previous season.   

 

Post-breeding roll-calls listed adults and juveniles alive at the end of the season. Those of 

any age disappearing or known to have died since the pre-breeding census were listed 

separately. In cases of doubt over whether a black robin was alive at season’s end, I made 

judicious use of available field evidence along with my experience and local knowledge to 

make a judgement. This introduced potential errors to the roll-calls. In both pre- and post-

breeding roll-calls, juveniles and yearlings were sexed in retrospect if they had paired or 

bred. I distinguished them from non-breeders whose sex was unknown or estimated only.  

 

The roll-calls served two functions. First, they allowed me to determine population sizes 

definitively at each census. Reconciling running totals between years was an important 

means of checking accuracy. Second, the roll-calls assisted calculation of individual life-

spans and population mortality rates. Individuals could be traced from birth year to death, 

a valuable resource not previously available to black robin managers or researchers. 

 

5.3.3 Breeding charts 

 
I used breeding charts based on Excel flat-file spreadsheets to document the day-by-day 

breeding activities of every pairing from 1980-81 to 2001-02. My charts were adapted 

from those used in the field during the full-population monitoring phase. They consoli-

dated observation data in black robin log-books with other information scattered un-

systematically through primary and secondary records.  

 

The charts plotted daily breeding data for all known intraspecific and black robin x tomtit 

pairings in the Mangere and Rangatira Island populations. The fates of every egg known to 
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have been laid were tracked clutch-by-clutch from first to final dates of observation. For 

those laid in the cross-fostering seasons (1980-81 to 1989-90), tracking at the individual 

scale unravelled the bewildering complexity of transfer and fostering histories. Unlike the 

field originals, the charts benefited from hindsight by incorporating knowledge of off-

spring survival from the following season.   

 

A validated resource of this kind has not previously been available. For my study, the 

charts have offered a point of easy reference for natal-season information on individual 

black robins (for example, hatching, fledging and last-sighting dates; length and timing of 

exposure to tomtit foster-parents; differences in natal and fledging sites), and on each 

breeding pair (number, timing and fate of any clutches laid). I have used the charts to re-

solve many uncertainties in life-history and roll-call data. For example, I could deduce the 

undocumented timing of breeding by a black robin pair by counting back from the dates of 

known events using incubation and nestling intervals. The charts helped me to interpret 

perplexing cross-breeding events on Mangere Island (Chapter Eight), and to judge the 

identity of unknown parents by illustrating which black robins were not occupied else-

where at critical times. 

 

5.3.4 Productivity tables 

 
I collated the clutch-fate data for each breeding pair into annual productivity tables from 

which breeding measures for each population and season were summarised (number of 

pairs breeding or attempting to breed; number of clutches and eggs laid; egg, nestling and 

fledgling mortalities, and the number of juveniles produced). As with the roll-calls, I dis-

tinguished effective pairs (those raising juveniles) from ineffective pairs (those failing to 

do so, or failing to lay eggs at all). The tables were an important means of standardising 

field data of highly variable quality.  

 

I attempted to define clutch fates as accurately as I could but numerous uncertainties ex-

isted. Egg losses were problematic because field-workers rarely found evidence to suggest 

a cause of desertions or disappearances. It was rarely possible to tell reliably whether miss-

ing eggs had first been deserted by females. I followed the field records in assigning eggs 

to categories of ‘deserted’ or ‘disappeared’ (predated or lost through misadventure). How-

ever, I knew from experience that such field judgements were questionable, so for later 
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productivity analyses (Chapter Six) I combined the two categories of loss. In the produc-

tivity tables, I excluded from both categories the small number of eggs failing to hatch but 

disappearing before they could be examined for signs of infertility or embryonic death. 

They were classed as ‘failing to hatch’ along with the failed full-term eggs which observ-

ers did inspect for cause of death.   

 

To preserve precision in later productivity analyses, it was important to decide whether or 

not missing nestlings and fledglings had died before advancing to the next life-stage. For 

missing nestlings, I followed the practice adopted in the other collations of treating them as 

dead unless disappearing close to fledging age. If the latter, I used field records or my local 

knowledge to judge the likelihood of survival. I considered that the error rate introduced to 

analyses by these judgments would be lower than if I treated all missing late-stage nes-

tlings as dead.  

 

Fledglings disappearing well before independence were generally treated as dead but were 

searched for nonetheless (in practice, very few reappeared later). The failure of parents to 

carry food was almost always (but not universally) an indication that missing fledglings 

had died or had wandered out of territory. For fledglings missing when approaching inde-

pendence, I took into account the timing of disappearances, parental experience, the moult-

ing status of parents, the character of surrounding habitat (densely occupied by black rob-

ins, discrete or extensive, regularly or rarely visited by observers), fledgling behaviour 

(degree of responsiveness to hand-clapping; intrepid and gregarious, retiring and elusive), 

observed interactions with other black robins, and observer experience. If still in doubt, I 

deemed a late-stage fledgling dead if observers had had sufficient time to look it. If well 

advanced fledglings disappeared close to the conclusion of a season’s observations, I as-

sessed their fates (dead or independent) on a case-by-case basis using the cues listed 

above.  

 

5.4  Verification 

 
The disordered state of the field data was a fertile source of error (see Mallinson, 1992, for 

a detailed explanation of the difficulties created for researchers). To preserve the potential 

in field data for detailed insights, I chose not to tolerate errors in my collations. As a result, 

collation and verification alike have submitted the black robin field records to the most 
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thorough and comprehensive summary analysis they have received to date. I minimised 

errors by three means. First, my collations proceeded chronologically from the earliest to 

the latest seasons in order to preserve continuity in seasonal accounts. This was an impor-

tant means of ensuring accuracy in life-span data.  

 

Second, collating by spreadsheet allowed me to sum and reconcile totals by sex, popula-

tion or other class of information. Like the universally loathed reconciliation tables of field 

work (Table 5.2), this proved to be the most effective means of detecting transcription er-

rors or dealing with mistakes, omissions and ambiguities in the original data. When in a 

roll-call summary, for instance, a pre-breeding population total exceeded the post-breeding 

total of the previous season, I was prompted to check for the source of error and to make 

the necessary correction.  

 

Third, confirmation of corrections was sought wherever possible from the original records. 

This was a compelling reason to locate missing records. If the records were deficient, I de-

duced what I could from other verified information the records offered, as I have explained 

when calculating unobserved hatch-dates or time of death. For instance, population cen-

suses were bedevilled by inconclusive sighting of colour-band combinations. To deduce 

who the ‘mystery’ individual might have been, I compared the colours seen against the 

lists of colour-banded black robins confirmed alive before and after such sightings. Local 

knowledge (my own or others’) of black robin origins, habits or territory occupancy was 

an important means of validating such deductions. Observers did this routinely in the field 

to resolve uncertainties as they arose.  

 

5.5 Summary 

 
Systematic collation of raw black robin field data into life-history summaries, annual roll-

calls, breeding charts and productivity tables involved a degree of sorting and verification 

not previously attempted in the course of black robin management.  

 

The four forms of collation allowed me to define in detail a comprehensive set of individ-

ual and population parameters for this study’s analyses (Table 5.4). 
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Table 5.4 Demographic parameters and annual trends defined from field records and 
secondary accounts of the black robin recovery programme on Mangere 
and Rangatira Islands, 1980-81 to 2001-02. 

 

Individual  Population  

• Parents 
• Natal clutch number 
• Siblings 
• Sex  
• Survival and longevity 
• Mates  
• Territory 
• Annual reproductive output 
• Offspring 
• Inbreeding coefficient 
• Breeding and demise populations 
• Provenance (black robin, hybrid) 
• Fostering history  
 

• Founders 
• Annual pre- and post-breeding sizes 
• Distribution 
• Rates of growth 
• Sex ratios 
• Breeding pair numbers 
• Effective breeding pair numbers 
• Collective annual productivity 
• Rates of recruitment 
• Rates of survival and mortality  
• Rates of immigration and emigration 
• Pedigree (assuming paternity by social males) 
• Levels of Inbreeding  
• Incidence of cross-breeding 
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CHAPTER SIX 

POPULATION TRENDS AFTER 1980 

 

 

 

6.0  Introduction 

 
In this chapter, I summarise key demographic trends in the recovering black robin popula-

tions between 1980-81 and 2001-02. I also outline trends discernible in the seven years of 

piecemeal demographic data available from the sample-monitoring period (2002-03 to 

2008-09). 

 

The trends reported commence at or soon after the founding of each population. As ex-

plained in Chapters Three (History of Decline) and Four (Management of Extinction 

Threat), the black robins on Mangere and Rangatira Islands trace their origins to the few 

survivors of the declining ancestral population on Little Mangere Island. The last seven 

individuals transferred to Mangere Island in 1976-77 formed the nucleus of the population 

from which the Woolshed Bush and Top Bush sub-populations on Rangatira Island were 

founded. Three years after intensive management commenced on Mangere Island in 1980-

81, four adults were moved to the Woolshed Bush in preparation for the 1983-84 season. 

The Top Bush population was founded in the following season (1984-85) after two juve-

niles produced in the Woolshed Bush dispersed and settled there, joining another juvenile 

dispersing there after transfer from Mangere Island.  

 

The aim of this chapter is to outline the nature of the black robin’s recovery during both 

the management period (1980-81 to 1989-90) and the monitoring period (1990-91 to 2001-

02). No undisturbed black robin populations have survived to indicate how much recovery 

may have been influenced (if at all) by the ancestral population’s prolonged persistence at 

very low numbers, decline towards extinction and subsequent passage through the found-

ing Old Blue-Old Yellow bottleneck. Comparisons between the two sister-populations, de-

scended from the same founders and linked genetically thereafter by inter-island transfers 

(Chapter Four), offer the most immediate alternative means of inquiry. Accordingly, this 

chapter focuses on differences in population trends and attempts to determine the varia-

tions in vital rates which explain them. The ultimate aim of these comparisons is to iden-
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tify variations in performance which may signify intrinsic vulnerability to decline and risks 

to short- and longer-term viability. The demographic variables identified are therefore 

those most likely to be of interest to conservation managers charged with monitoring the 

health of extant and future black robin populations.  

 

This chapter consolidates, extends and in some cases amends Butler and Merton’s (1992) 

comprehensive account of trends during the black robin’s rescue (summarised in Higgins 

and Peter, 2002). Their account draws to a close soon after the inception of post-

management monitoring (1991-92). The new information I present on population trends 

after management ended fills a conspicuous gap in the literature on black robin recovery. 

 

The chapter also reports the results of my habitat micro-climate investigations on Ranga-

tira and Mangere Islands. These investigations set out to assess whether differing environ-

mental conditions in black robin habitats might be an explanatory variable for observed 

differences in population trends. Earlier research on the islands had attempted unsuccess-

fully to address this question by using the doubly labelled water technique to quantify 

daily energy expenditure in black robins as a measure of habitat quality (Williams, 2003). 

Findings were to be compared with other indirect measures of habitat quality: the record of 

black robin breeding success, survival and population density in each habitat, and the den-

sity and diversity of invertebrates. Sampling of the latter was too brief and limited in scope 

to be conclusive (David Bryant, pers comm.), and spoiled blood samples from Mangere 

Island precluded between-island comparisons of black robin energy budgets. No signifi-

cant difference could be detected in the energy expenditure of black robins living in the 

Top Bush and Woolshed Bush forests on Rangatira Island (Williams, 2003). This result 

suggests intuitively that habitat quality did not differ markedly. 

 

My decision to assess environmental differences over six consecutive calendar seasons 

(the expected life of the data-logger batteries), addressed the problem that energy budgets 

measured on a single summer’s day could not reflect the quality of habitats within and be-

tween years, especially during winters when habitat character may be a crucial determinant 

of population trends. My decision was also prompted by the impressions of many black 

robin field-workers that climatic conditions in the Top Bush forest on Rangatira Island 

were generally colder and harsher than those in the lower-lying and more sheltered forests 

of the Woolshed Bush and Mangere Island.  
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6.1 Methods 

 
As I have explained in Chapters Four and Five (Data Collation and Verification), all analy-

ses of demographic trends are based—unless otherwise specified—on whole-population 

data acquired through direct observation in the field. 

 

6.1.1  Analytical perspectives 

 
As outlined in Chapter Four, the black robin recovery programme comprised two man-

agement phases in which full-population monitoring occurred: intensive management cen-

tred on intervention in breeding to boost reproductive output and population sizes (1980-

81 to 1989-90), and post-management monitoring to ensure that populations sustained sat-

isfactory rates of growth without further assistance (1990-91 to 2001-02). Full-population 

monitoring ceased on Rangatira Island in the 1998-99 breeding season but continued on 

Mangere Island until 2001-02.  

 

In this chapter, I retain the distinction between management phases for analytical purposes. 

Demographic trends during the intensive management phase were driven by highly inva-

sive activities designed to maximise productivity and minimise mortality. During this pe-

riod, for example, rates of population growth and reproductive output on Mangere Island 

were affected by the transfers of black robin eggs, nestlings, juveniles and adults to Ranga-

tira Island (Chapter Four: Section 4.3). In contrast, trends on both islands from 1990-91 

onwards were not disturbed by management and offer the only available detailed insights 

to population dynamics operating under natural conditions. This chapter emphasises post-

management trends for this reason.  

 

For analytical purposes, I have separated the Rangatira Island population into two sub-

populations: the Woolshed Bush and Top Bush. In reality, these are geographical divisions 

in a single black robin population, linked through spontaneous dispersal of juveniles and 

adults, and through the transfers uniquely associated with intensive management (Chapter 

Four). Nevertheless, I anticipated that these sub-populations might differ in ways capable 

of yielding insights to viability and extinction vulnerability. Where appropriate, results are 

reported for the Rangatira Island population as a whole, which anticipates a need to com-

pare population trends on each island rather than in each sub-population.  
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For easier reading, I refer to the birds on Mangere Island and Rangatira Island as ‘popula-

tions’. The term ‘sub-populations’ refers exclusively to Rangatira Island where the distinc-

tion is made between the Woolshed Bush and Top Bush.  

 

6.1.2 ‘Demise-site’ and ‘natal-site’ data collations  

 
Demographic trends for black robins cannot always be explored on a closed-population 

basis. During the intensive management phase, 52.3% of black robins were transferred or 

dispersed naturally between populations. Thus, they were not raised in or did not reach in-

dependence, breed or die in their natal habitats. After management activity concluded, 

17.4% of adults and juveniles on Rangatira Island dispersed and settled away from natal 

habitats.  

 

I have accounted for the natural and managed movements of black robins at all life-stages 

when collating demographic data in the ‘open’ populations. These collations place each 

bird in the population caring for it as an egg, nestling, fledgling, juvenile or adult. Under 

management particularly, individuals might pass in and out of populations several times 

before settling in a territory as a juvenile or adult. For ease of reference, I have used the 

term ‘demise-site’ to describe these data. Unless otherwise specified, all my analyses are 

based on data collated in this way. 

 

I have used a second ‘natal-site’ collation which assumes that no movement of individuals 

occurred at any life-stage (in other words, it assumes that black robins were raised 

throughout by their biological parents and did not move from natal populations). This form 

of collation had an essential verifying function. It made it simpler for me to trace each egg 

through successive life-stages until death so that its life-history was complete. Preserving 

the analytical connection between parent and offspring in this way is also appropriate 

when analysing genetic issues (relatedness and fitness; see Chapter Seven: Was Inbreeding 

A Problem?). 

   

Neither form of collation explains all demographic trends on its own. For instance, trends 

derived from ‘natal-site’ data ignore the fact that the quality of foster-parental care, or dif-

ferences in habitat type, food resources and population densities will have affected the pro-

ductivity and longevity of a dispersing or transferred bird. ‘Demise-site’ trends make im-
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plicit allowance for those factors but minimise the importance of fitness characteristics in-

herited from parents. Fortunately, the two perspectives overlap closely after intensive man-

agement stopped. On Rangatira Island, all black robins remained with their biological par-

ents until reaching independence, and on Mangere Island, the population was wholly 

closed during post-management seasons (there were no neighbouring populations to dis-

perse to).   

 

6.1.3 Tomtit foster-nest locations 

 
Before analysing demise-site data for Rangatira Island, it is necessary to place fostered 

black robins in the correct sub-population caring for them at successive life-stages. This is 

not a problem for black robin foster-nests but I have been unable to determine the location 

of many tomtit foster-nests—the records alluded to in Powlesland et al. (2001) have not 

been made available. Where I could not deduce nest locations from other information, I 

have assumed that Mangere Island eggs and nestlings destined for tomtit foster-care on 

Rangatira Island were placed exclusively in Woolshed Bush foster-nests. This assumption 

has some validity. Tomtit pairs were more numerous in the Woolshed Bush, more conven-

ient to managers and in closer proximity to back-up pairs than those in Top Bush (pers 

obs; see also Chapter Four).  

 

I have also assumed that the tomtit-fostered offspring of Rangatira Island black robins 

stayed in their natal sub-population. None was fostered to Mangere Island because tomtit 

breeding did not resume there until 1989-90 (Chapter Four, and Chapter Eight: Hybridisa-

tion).  

 

My two assumptions will result in small but unavoidable errors in analyses of productivity 

and survival for the Rangatira Island sub-populations. For example, the number of eggs 

reported as hatching or failing to hatch in Top Bush foster nests is likely to be exaggerated 

since tomtit nests were generally fewer in that habitat.  

 

The lack of locality data for tomtit foster-nests is inconsequential to post-management 

analyses and to ‘natal-site’ summaries for either management phase. 
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6.1.4 Pre- and post-breeding census data 

 
I have relied primarily on pre-breeding census counts to explain population growth trends, 

since post-breeding counts include black robins dying before being recruited to breeding 

populations. I have used post-breeding census data to calculate survival and mortality 

rates.   

 

6.1.5 Dispersals and transfers  

 
I use the term ‘dispersal’ to refer to the spontaneous movement of juveniles and adults 

from one sub-population to another, followed by a definable period of settlement. By this 

definition, dispersals occurred only on Rangatira Island where the sub-populations were 

not closed. I have classed each individual’s movement from a sub-population as a separate 

dispersal event, so that the multiple movements made by some in the same season are sev-

eral events. Black robins dispersing after transfer from Mangere Island required me to as-

sume an original departure point in the Woolshed Bush. I could find few records specify-

ing other liberation sites on Rangatira Island. 

 

I have differentiated dispersals from management-related transfers of birds between sub-

populations and between islands. Inter-population transfers had the potential to distort 

analyses of trends during the intensive management seasons because some relocated black 

robins were returned to natal populations, and in some cases, away again. To avoid over-

stating the contribution gross transfer totals made to trends, I have based analyses on net 

transfer movements. These ignore any intermediate transfers of an individual (as say, fos-

tered eggs or nestlings) if ultimately managers returned it to its natal habitat.  

 

6.1.6 Breeding pairs 

 
My productivity summaries for each season class breeding pairs as ‘effective’ if producing 

juveniles (regardless of juvenile survival) and ‘ineffective’ if laying eggs but failing to 

produce juveniles. This distinction applies to post-management seasons only; during inten-

sive management seasons, pairs could not be deemed successful if their offspring were 

raised to independence by others. Effective pairs may suffer clutch failures but not the fail-

ure of all clutches in a season. My productivity summaries omit pairs which formed (how-
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ever briefly) but did not lay eggs, along with known or suspected cross-pairings between 

black robins and tomtits (see Chapter Eight). 

 

I accept that the use of juvenile output to define success distinguishes this from most other 

studies of New Zealand and Australian Petroica in which fledgling output is the criterion 

(Chapter Two: Black Robin Biology). However, juvenile output gives the truer measure of 

breeding success (Russell, 2000).  

 

6.1.7 Productivity 

 
Productivity is defined by pair rather than by female. The female measure disguises the 

number of productive males since each female may breed productively with several mates. 

I have derived per-pair productivity measures at all life-stages in the breeding cycle (lay-

ing, hatching, fledging and independence). A population’s productivity is the collective 

reproductive output of its constituent pairs at each such life-stage but especially in juve-

niles. Developing productivity indices is complicated by the demise- and natal-site issues I 

have already referred to. I address these complexities separately at the appropriate times in 

this chapter. 

 

In analysing black robin productivity during the intensive management and post-

management phases, I have distinguished between reproductive output and reproductive 

performance. Output is a quantitative measure of production. I have expressed it as the 

mean annual per-pair production of clutches and eggs laid, eggs incubated full-term and 

hatched, nestlings fledged and raised to independence, and juveniles surviving to breeding 

age (that is, into a second year of life). Reproductive output can be compared by manage-

ment phase for all productivity parameters, but only during the post-management era was 

the output natural. The between-phase comparisons indicate how effective management 

was in raising output and how resilient the black robins were in responding reproductively 

to conservation measures.   

 

Reproductive performance is a measure of success and failure. I have quantified this at the 

population scale as (1) gains at each life-stage in the breeding cycle (percentage overall of 

all eggs hatching, and all nestlings, fledglings and juveniles surviving) and (2) losses (per-

centage of all eggs lost as rimshots or through misadventure; of all eggs failing to hatch 
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and of all nestlings, fledglings and juveniles dying). Between-phase comparisons of per-

formance gains are possible only for clutch sizes and hatch-rates, the two intrinsic meas-

ures of reproductive success resistant to direct management effect. Success in other meas-

ures cannot be compared since the swapping of eggs, nestlings and juveniles between 

populations disguised true reproductive performance during the intensively managed era. 

A true indication of a population’s fledging success cannot be obtained, for example, by 

relating the number of nestlings fledged to the number hatched if managers removed some 

of the nestlings from the population in the interval.    

 

Between-phase comparisons of productivity failure are limited in the same way. Managers 

actively minimised threats to breeding during the intensive management seasons. The only 

measures of failure capable of valid comparison are the proportions of eggs laid as rim-

shots and the proportions of full-term eggs failing to hatch, since neither could be con-

trolled directly. Even then, managers minimised the potential costs of rimshots by return-

ing those detected early enough to incubation (Chapter Four).   

 

6.1.8 Recruitment 

 
Recruitment rates are the number of juveniles surviving and breeding in each population 

relative to the total number it produced in the previous season. The total produced includes 

any juvenile transferred or dispersing to the population between seasons. In order to define 

recruitment rates by sex, I have limited my calculations to juveniles surviving to pair and 

lay eggs in any post-natal season. This filter has two benefits. First, I did not have to make 

assumptions about the sex of juveniles dying before making confirmatory mate choices 

(27.2% of all juveniles produced). Second, it excludes unmated juveniles or those failing 

to lay eggs after pairing, none of whom contributed directly to population growth trends. 

Of necessity however—there being no alternative—I based the proportions of qualifying 

male and female recruits on the total number of juveniles produced. 

 

6.1.9 Growth rates 

 
Exponential rates of population growth annually (r) are calculated from pre-breeding cen-

sus totals sorted by management phase by fitting a linear regression, using the equation r = 

(loge Nt - loge N0)/t in which t is the increase in the population (loge N) over one interval of 
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time (one year) (Sinclair, Fryxell and Caughley et al., 2006: 80). Mean rates of growth in 

breeding-pair numbers and in the proportions of effective pairs are calculated by the same 

method. 

 

6.1.10  Life-span estimations 

 
Individual life-spans could be determined for all black robins using annual pre- and post-

breeding census data supplemented by exhaustive observations throughout each breeding 

season. I calculated life-spans from hatch-date to date of death. For many birds, one or 

both dates were not observed. If required to estimate hatch-dates, I counted back from the 

known or estimated age at banding or age at death in the nest. Observers recorded this 

brood information routinely. For a small minority of black robins banded as fledglings or 

adults, or not banded at all, I estimated probable hatch-dates from other cues (apparent age 

at first sighting or capture, time of season, behaviour, interactions with other black robins). 

These post-fledging estimations have a higher probability of error but with few exceptions 

this will be months, not years.  

 

Given the high frequency of nest visits, dates of death were observed or estimated (within 

days) for dead or missing nestlings, and for fledglings just out of the nest. Most juveniles 

and adults died unobserved, typically between autumn and spring (that is, between annual 

observations; see Chapter Two: Section 2.9.2). For these I fixed a surrogate date-of-death 

mid-way between the dates on which each was last sighted and first failed to appear. The 

life-span dataset comprised 281 males, 267 females and 815 others of unverified sex (306 

nestlings and 509 fledglings, juveniles and adults). Individual life-span data could be 

sorted by natal- and demise-site populations, management phase and sex. 

 

6.1.11  Survival probability  

 
Trends in survival probability were analysed using R (version 2.8.1; R Development Core 

Team, 2008; www.r-project.org). My associate supervisor, Professor Richard Duncan, 

managed the scripting process and advised on the appropriate analytical model. To assist 

survival and later inbreeding analyses (Chapter Seven), I assigned each individual to one 

of six categories depending on its likely survival status at last sighting (Table 6.1). Black 

robins in category 0 were predominantly lost over winter, while most in categories 1 and 2 
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were nestlings which were found dead or had disappeared within one or more days of a 

nest inspection (that is, they were incapable of surviving independently). Five euthanased 

black robins were assigned to category 4 in order to distance them from analyses based on 

natural life-spans. Eight black robins hatched during the post-management phase and 

transferred to the doomed Pitt Island population between 2002-03 and 2005-06 (Chapter 

Four) were assigned to category 5 for the same reason (they had probably died prematurely 

as a result of the transfer).  

 

We fitted the individual life-span data to the Kaplan-Meier survival estimator in R (‘sur-

vival’ library; R Development Core Team, 2008) to compare survival trends by sex, man-

agement regime and demise-site (the population in which a black robin died). The estima-

tor was appropriate for the non-symmetrical survival data, the staggered entry and exit of 

individuals in the dataset, and the right-censoring of individuals alive at the end of the 

study period (category 3, n = 8, treated as last seen on 15 September 2008). We ran the 

model separately for the fitted covariates of demise-site, sex, management phase, and sex 

and management phase together. 

 

 

Table 6.1 Survival categories to which black robins in the three Mangere and Rangatira 
Island populations were assigned according to information on fates available 
at last-sighting dates, 1980-81 to 2001-02. 

  

Category Survival status at last sighting n 

   
0 Alive when last seen but died at some unknown time later 682 
1 Found dead 264 
2 Alive when last seen but almost certainly died soon after 396 
3 Still alive at the end of the study 8 
4 Euthanased for disease, cross-breeding or humanitarian reasons 5 
5 Probable premature death on Pitt Island 8 

   
 

 

6.1.12 Environmental measurements 

 
To gauge environmental differences between black robin habitats, I measured air tempera-

tures (°C) over the 2004-05 and 2005-06 breeding seasons and the intervening autumn-
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winter period. Measurements spanned six calendar seasons, from spring 2004 until sum-

mer 2005. Resource constraints did not permit me to measure wind-chill, arguably a more 

telling environmental variable.  

 

Contemporaneous monthly-mean climate data for the Chatham Islands (NIWA, 2009) 

were available for the two black robin management phases but they were universal for all 

populations and lacked local precision. To ensure sensitivity to potentially small differ-

ences experienced by the populations, I recorded temperatures in the forest tracts occupied 

by each. The temperature data I gathered could not be related directly to the historical 

population trends I am analysing. Instead, I assumed that any differences I recorded be-

tween habitats would reflect the direction of historical differences, though the latter might 

not necessarily be of the same magnitude. 

 

I deployed Hobo H8 Pro Series data-loggers in the centres of breeding for which I held 

historical data. Three data-loggers were deployed in each population (Woolshed Bush, Top 

Bush, Mangere Island; nine units in total). The deployment sites are listed in Appendix 

Four (Table 4A). Each data-logger was programmed to make high-resolution (fine-scale) 

measurements of ambient air temperature (ºC) on the hour night and day, every day. Log-

gers were fixed inside purpose-built radiation screens designed to protect them from air-

borne dust, salt spray and rain (Figure 6.1). The screens were placed in sites shaded from 

direct sunlight and mounted approximately one metre off the ground on PVC pipes de-

signed to flex if the assemblies were struck by petrels or falling forest debris.  

 

Prior to deployment, all nine loggers were run simultaneously at a sample site to test for 

consistency of measurement. All measurements commenced at 0100 hours on 1 October 

2004. The three data-loggers on Mangere Island were uplifted on 10 February 2006. Ran-

gatira Island’s six data-loggers were retrieved on 17 February 2006. I standardised sam-

pling periods for all sites by omitting all data collected after 0000 hours (midnight) on 10 

February 2006. 

 

Initially, I used exploratory analyses of the hourly data to assess (1) the temperature ranges 

experienced by black robins in each population during the six seasons sampled and (2) the 

differences in mean daily temperatures for each calendar season. I was interested in deter-

mining (3) which populations experienced the warmest and coolest temperatures in each 
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season, and (4) the extent to which temperatures were warmer or cooler. To avoid intro-

ducing potentially erroneous values, missing data from failed data-loggers (see Section 

6.8) were not substituted in any analyses.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.1  
 
Micro-climate data-logger station WSB 1, 
on the West Woolshed Bush track, Ranga-
tira Island, 23 September 2004. 
Photo: K-J Wilson 

 

 

Temperature extremes were expressed as the highest and lowest hourly temperature re-

corded at each data-logger site in a calendar season. The mean of daily temperatures for 

each season was obtained by averaging hourly data (0100–0000 hours), first by day at each 

data-logger site and then for all three sites in each population’s habitat. To determine 

which populations experienced the warmest and coolest conditions seasonally, I averaged 

the minimum and maximum daily temperatures from each trio of data-loggers. In addition 

to showing by how much (or little) ranges differed within calendar seasons, I was able to 

determine whether the differences were consistent season-by-season (that is, was the cold-

est habitat always the coldest?). Finally, to assess the extent to which one habitat was 

warmer or cooler than the other two in each season, I calculated the mean of differences in 

their daily temperatures and expressed the magnitude of variation from other habitats as 

the percentage difference.  

 

After reviewing the results of these initial assessments, I submitted the data briefly to de-

gree-day analyses in order to explore cumulative temperature differences between habitats. 
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Degree-day measures are commonly used to assess temperature effects on invertebrate 

communities (Worner, 2007) and are therefore a means of relating temperatures to black 

robin food supply, a potentially fundamental determinant of population trends. I measured 

the degree-day differences at the 5ºC threshold over the breeding seasons themselves (1 

October – 28 February) and the intervening non-breeding months.  
 

6.2 Results 

 
6.2.1 Population sizes during the intensive management phase 

 
Black robin numbers in all three populations increased overall in response to the cross-

fostering and associated conservation measures adopted from 1980-81 until 1989-90. In all 

populations combined, numbers rose from the five individuals remaining on Mangere Is-

land in spring 1980 to 93 at the first spring census of post-management monitoring (Octo-

ber 1990; Figure 6.2; see also Appendix Four: Table 4B for census counts by age-class). 

Population distribution had become skewed towards Rangatira Island after cross-fostering 

commenced there in earnest in 1983-84, supported by transfers from Mangere Island at all 

life-stages (81.8% of net inter-island transfers between 1980-81 and 1989-90; Table 6.2). 

In spring 1990, the Woolshed Bush population comprised 41 adults and yearlings, the Top 

Bush 33 (74 in total for the island), and Mangere Island 19 (Appendix Four: Table 4B; and 

Table 6.3).  

 

Under management, growth in pre- and post-breeding numbers in the Top Bush sub-

population was consistently positive. Pre-breeding numbers on Mangere Island fluctuated 

markedly until 1986-87 then rose consistently. Annual growth in post-breeding numbers 

was more stable. Woolshed Bush numbers stalled between 1985-86 and 1987-88 (inclu-

sive) but otherwise increased strongly overall. I attribute the hesitation to (1) random dis-

persals by juveniles and unmated adults under no apparent displacement pressure in the 

sparsely populated Woolshed Bush, and (2) to managers capitalising on the stability and 

experience of Top Bush pairings when fostering Woolshed Bush eggs and nestlings (But-

ler and Merton, 1992). Some of these fostered offspring were recruited locally. Dispersals 

and fostering alike contributed to the convergence in numbers in the two Rangatira Island 

sub-populations at the pre- and post-breeding censuses of 1987-88 (Table 6.3). At no other 

time did numbers in the Top Bush sub-population approach those in its island counterpart. 
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Table 6.2  Numbers by life-stage of black robins transferred between Mangere and Ran-
gatira Islands during the ten intensive management seasons, 1980-81 to 
1989-90. Net totals omit any transfers of individuals ultimately returned 
permanently to their natal sites. Survival is defined as living beyond the sea-
son of transfer. 

 

 
 

 

6.2.2 Population sizes during the post-management phase 

 
After management ended in 1989-90, total black robin numbers continued to increase natu-

rally (Figure 6.2). At the final pre-breeding census of full-population monitoring nine sea-

sons later (spring 1998), 146 adults and yearlings were counted on Rangatira Island 

(Woolshed Bush, n = 112; Top Bush, n = 34; Table 6.3). Pre-breeding numbers on Man-

gere Island had reached 51. By the end of that final season, numbers had increased to 199 

on Rangatira Island (Woolshed Bush, n = 156; Top Bush, n = 43) and 71 on Mangere Is-

land—a combined total for both islands of 270 (the last confirmed total for the entire spe-

cies). Three years later when full-scale monitoring concluded on Mangere Island (2001-

02), pre- and post-breeding censuses counted 53 and 63 black robins respectively.  

 

 RANGATIRA TO MANGERE 

 Eggs  Nestlings  Juveniles  Adults 

 Total Moved Survived   Moved Survived   Moved Survived   Moved Survived 

            
Gross 2 0  8 6  5 2  7 4 

            
Net 2 0  7 6  1 0  2 1 

                      
            
            
 MANGERE TO RANGATIRA 

 Eggs  Nestlings  Juveniles  Adults 

  Moved Survived   Moved Survived   Moved Survived   Moved Survived 

            
Gross 53 23  4 3  8 5  11 7 

            
Net 44 14  3 2  8 5  11 7 
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From 1990-91, positive population growth trajectories in the Woolshed Bush and on Man-

gere Island were punctuated by pre- or post-breeding censuses at which numbers stalled or 

declined. Growth was most consistent in the Woolshed Bush (17 of 18 censuses; Table 

6.3). Annual increases on Mangere Island were less frequent (17 of 24 censuses). Rever-

sals out-numbered pauses, were short-lived and—with the exception of the 1999-2000 

post-breeding count (Figure 6.2)—were of modest scale.42 In contrast to the Woolshed 

Bush where pre- and post-breeding numbers were rising steadily, pre-breeding numbers on 

Mangere Island levelled off (at between 51 and 54 individuals) in the final five seasons 

before full-scale monitoring ended. Growth in the Top Bush population fluctuated mark-

edly, in contrast to strong increases under management. Numbers rose in only eight of 18 

pre- and post-breeding censuses. As a result, the population took until the final season of 

full-population monitoring (1998-99) to recover from the abrupt contraction in numbers 

between 1990-91 and 1992-93 (Figure 6.2; Table 6.3).  

 
The pronounced post-management fluctuations in Top Bush numbers coincided with tran-

sience in the population’s distribution. At no time did black robins establish territories 

throughout the full extent of this large habitat. Two isolated breeding centres persisted dur-

ing this phase but otherwise black robins formed ephemeral low-density clusters of breed-

ing pairs which were usually well removed from others. These clusters appear to have 

formed in vacant habitat where dispersing individuals succeeded in attracting a mate, and 

usually persisted only for the life-span of the original settlers or their immediate offspring. 

This was not the pattern observed in the Woolshed Bush and on Mangere Island where 

breeding pairs and unmated black robins became dispersed throughout almost all available 

forest habitat.  

 

6.2.3 Population sizes in the sample-monitoring phase 

 
I have not been able to estimate population sizes during the sample-monitoring seasons. 

Distance-sampling and mark-resighting data contain numerous errors which have compli-

cated NOREMARK estimates for the areas surveyed between 2002-03 and 2007-08 (Man-

gere Island and Woolshed Bush, Chapter Four). New estimates have yet to be generated 

from survey data corrected by this study (Moira Pryde, pers. comm.). 

                                                 
42  Thurley (2000) attributes the steep fall in 1999-2000 numbers to anomalously low repro-

ductive effort and success in that season, without identifying any underlying factors.   
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Head-count surveys have been more informative. After semi-structured monitoring of 

black robin encounters in September 2004, Kennedy and Wilson (2005) suspected popula-

tion declines on both islands. Encounter rates in historical centres of distribution were un-

expectedly low. On Rangatira Island, Kennedy and Wilson (2005) also noted reductions in 

density (western and upper central Woolshed Bush) and contractions in range (from Wool-

shed Bush outliers and the Top Bush) not signalled in the results of mark-resighting sur-

veys. In tracts of the Top Bush populated historically, only six isolated black robins were 

encountered (five of unknown age). However, the probability of encounters was lower in 

the Top Bush because young black robins were not being made ‘friendly’ for transfer to 

Pitt Island, as they were in the Woolshed Bush at that time. Kennedy and Wilson’s (2005) 

population assessments were also too brief and too early in the season for definitive pre-

breeding counts on each island. In contrast to the mark-resighting surveys with which they 

coincided, however, the assessments involved purposeful searching on and off tracks in 

parts of the forests not frequented by sampling teams. Kennedy and Wilson were also free 

to linger in order to confirm the identity, sex and mates of black robins they encountered. 

 

Between October and December 2007, incremental island-wide head-counts on Rangatira 

Island yielded more reliable indications of population size (Wickes, 2007; Merton, 2008b; 

Massaro and Briskie, 2008). These free-ranging searches revealed a 29.4% reduction from 

total pre-breeding numbers last confirmed with certainty in spring 1998. The Top Bush 

sub-population (n = 16) had fallen to 47% of 1998 numbers. The Woolshed Bush sub-

population (n = 87) had declined less, to 87% of 1998 numbers. These figures did not in-

clude five to ten black robins thought likely to be present but not counted (reasons and 

sites unspecified; Massaro and Briskie, 2008). The survey was repeated in the following 

season, between October and December 2008, but Massaro and Briskie (2009) only gave 

an estimate of 120 black robins for Rangatira Island as a whole.  

 

The Mangere Island population had declined also. Kennedy and Wilson (2005) encoun-

tered at least 24 individuals over two days of searching in late September 2004. Harvey 

(2009) reported a stable pre-breeding population of about 30 robins between 2006-07 and 

2008-09. This is 56.6% of the total counted in spring 2001 (the final pre-breeding census 

of full-population monitoring era).  
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Too few data exist for any demographic parameter during the seasons after 2001-02 to as-

sess whether the lower population sizes indicated by the head-counts were symptomatic of 

stability or instability, rebounds from steeper declines, or fluctuations around a post-

colonising equilibrium.   

 

The key points emerging from the three management phases are the growth in sub-

population sizes on Rangatira Island under intensive management (at the expense of Man-

gere Island), the continued natural growth in the Woolshed Bush and on Mangere Island 

after management ceased, and the unforeseen instability of the Top Bush population under 

the same conditions. The three populations experienced declines of differing scale after 

full-population monitoring ended. Decline was most severe in the Top Bush and least se-

vere in the Woolshed Bush. The timing of each decline is unknown but total numbers on 

each island fell independently. Given the character of black robin dispersals on Rangatira 

Island, it is less likely that sub-population declines there were independent. 

 

6.3  Intra-island dispersal  

 
Adult and juvenile dispersals between sub-populations were confined to Rangatira Island 

where they influenced breeding pair numbers under the two fully monitored management 

regimes. 

 

Dispersing black robins moved primarily from the Woolshed Bush to the Top Bush (Table 

6.4). The origins of this bias are unclear. An exploratory analysis of the movements sug-

gests no positive relationship between population density and dispersal frequency during 

either management phase (Appendix Four: Figures 4A and 4B). In fact, the total number of 

black robins dispersing decreased as population density increased in the Woolshed Bush 

during the post-management phase (see Section 6.3.1 below). In the earliest of the inten-

sive management seasons, dispersal frequency appeared to be inversely related to popula-

tion size. For instance, the first two males and two females to settle in the Top Bush dis-

persed independently from the Woolshed Bush in which only one breeding pair held terri-

tory. This suggests a random dispersal habit in the black robin or dispersal in the search of 

potential mates. I have not assessed these possibilities systematically. 
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Features of island geography seem likely to have augmented dispersal rates. The routes 

taken by dispersing black robins were not documented during any management phase. 

Analysis of fledging-site data for dispersers indicates however that 89% of birds moving in 

both directions had fledged or resided as adults in bush tracts connected to two steep forest 

corridors linking the eastern parts of the Woolshed Bush and the Top Bush (Figure 2.3). 

The corridors had survived the farming era.  

 

The majority of dispersing birds originated from the well populated East Woolshed Bush, 

an elongated chain of forest remnants and connected outliers which funnelled itinerants 

towards one of the two corridors. If dispersing by other routes between the Woolshed Bush 

and Top Bush, black robins were obliged to cross expanses of open grass- or shrubland 

patrolled by southern skuas and Australasian harriers.  

 

6.3.1  Post-management dispersals 

 
After intra- and inter-island transfers stopped in 1989-90, natural dispersals accounted for 

all black robin movements between the two Rangatira Island sub-populations. Juveniles 

made 82.9% of these movements (Table 6.4). The proportion dispersing after achieving 

independence decreased markedly in post-management seasons. For instance, 72% of all 

female juveniles made dispersal movements during the intensive management phase but 

only 24.1% did so after the change in management regime. The decrease for males was 

more modest (Table 6.5). Overall, female juveniles were more likely than males to dis-

perse. The bias in female movements was bi-directional during the intensively managed 

years but was evident only in movements to the Woolshed Bush in post-management sea-

sons (11 of the 13 juvenile movements, Table 6.4). 

 

As for juvenile females, adult females dispersed more often than adult males. The bias was 

pronounced and bi-directional in post-management seasons (nine of ten adult movements 

to the Top Bush; four of four movements to the Woolshed Bush; Table 6.4). Total adult 

dispersals decreased from 7.5% of black robins counted at post-breeding censuses during 

the intensive management period to 1.5% in post-management seasons (Table 6.6).  
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After management ceased, immigrants comprised 26% of all birds residing in the Top 

Bush—28.6% of females (range annually 13 - 54%), and 22.8% of males, (range 7 - 47%; 

Table 6.4). However, the proportions failing to breed after arrival were also high (25% of 

females, 34.5% of males). This rate of failure is explained perhaps by the lower probability 

of finding mates in the smaller Top Bush population, or in the less densely populated habi-

tat. Settlement (especially by juveniles) in vacant tracts of habitat distant from the stable 

centres of black robin breeding cannot have helped. In contrast, immigrants from the Top 

Table 6.5 Proportions of black robin juveniles dispersing from the two Rangatira Is-
land sub-populations in which they achieved independence. Each move-
ment counts as a single dispersal event. Sex assignments are based on 
weights at banding and on post-fledging behaviour for juveniles failing to 
breed (intensive management, n = 2; post-management, n = 14).  

 

  Female  Male 

  Phase Produced Dispersed %   Produced Dispersed % 

         
Intensive management 25 18 72.0  26 6 23.1 

Post-management 158 38 24.1  196 30 15.3 

           

Combined 183 56 30.6  222 36 16.2 

                 

Table 6.6 Proportions of black robin adults counted at post-breeding censuses 
dispersing between the two Rangatira Island sub-populations. Each 
movement counts as a single dispersal event. The sex of one non-
breeding female (post-management) is estimated from her banding 
weight and post-fledging behaviour.  

  Female  Male 

  Phase Alive Dispersed %   Alive Dispersed % 

         
Intensive management 25 4 16.0  28 0 0.0 

Post-management 430 13 3.0  509 1 0.2 

           

Combined 455 17 3.7  537 1 0.2 
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Bush augmented the Woolshed Bush population by a mere 3% overall—females by 5.4% 

(annual range 2% - 11%); males by 0.6% (range 0% – 3%). Unlike Top Bush immigrants, 

all 15 female arrivals and one of the two new males subsequently bred in the Woolshed 

Bush. 

 

It is evident from these disproportionate rates of dispersal that the Top Bush population 

was dependent on annual immigration from the Woolshed Bush to support growth in num-

bers under natural conditions. Without this regular replenishment, the productivity of the 

resident population may not have been sufficient to sustain its numbers. As it was, the 

combined efforts of resident and immigrant black robins were barely adequate to sustain 

growth.  

 

6.4 Rates of growth in pre-breeding populations 

 
Mean rates of growth in pre-breeding numbers differed substantially between populations 

throughout the study period. For both management phases combined, growth was strongest 

in the Woolshed Bush population (r = 0.201). Transfers from Mangere Island during the 

intensive management seasons contributed to that population’s lower overall growth rate (r 

= 0.134), and negligible post-management growth had a reducing effect on the overall rate 

in the Top Bush (r = 0.114; Table 6.7). 

 

Intensive management accelerated growth rates in the Rangatira Island populations. Natu-

ral growth rates in the nine post-management seasons were much lower (Figure 6.3). The 

beneficial effects of management were revealed most sharply in the Top Bush where the 

mean rate of population increase declined by 97.3% after cross-fostering and transfers 

ceased (from r = 0.373 to 0.010; Table 6.7). In the Woolshed Bush, the natural rate of in-

crease (r = 0.116) was 68.3% lower than the management rate. Rates combined for Ranga-

tira Island (r = 0.442) far exceeded those on Mangere Island during the ten management 

seasons when productivity was harvested (r = 0.072). But when cropping ceased at the 

conclusion of management, the rate of growth in the Mangere Island population improved 

on the rebound, by 37.5% (r = 0.099). This rate of increase was higher than the collective 

rate for Rangatira Island over the post-management period.  
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Table 6.7 Mean annual rates of growth (r) in pre-breeding numbers by 
management phase in the black robin populations on Mangere 
and Rangatira Islands, 1980-81 to 2001-02. 

 

Intensive management n (years) r 95%CI 

Mangere  10 0.072 ± 0.0737 

Rangatira 7 0.442 ± 0.1468 

 Woolshed Bush  7 0.366 ± 0.1247 

 Top Bush  6 0.373 ± 0.0427 

Post-management monitoring   

Mangere 12 0.099 ± 0.0266 

Rangatira  9 0.083 ± 0.0234 

 Woolshed Bush 9 0.116 ± 0.0209 

 Top Bush 9 0.010 ± 0.0408 

All phases combined   

Mangere 22 0.134 ± 0.0199 

Rangatira  16 0.194 ± 0.0516 

 Woolshed Bush 16 0.201 ± 0.0382 

 Top Bush 15 0.114 ± 0.0465 
    

 

 

6.5 Productivity 

 
The accelerated growth rates and resultant population increases on both black robin islands 

between 1980-81 and 1989-90 were engineered by the multiple-clutching of females and 

other protective measures explained in Chapter Four. The intervention disguised the natu-

ral variations in breeding effort and success which were expressed in the more modest 

population growth rates of the post-management seasons. 

 

6.5.1 Trends in total breeding pair numbers during intensive management seasons 

 
Breeding-pair numbers on both islands were influenced by the managed increases in black 

robin abundance, and by inter-island transfers designed to minimise the numbers of un-
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mated individuals (Butler and Merton, 1992). On Rangatira Island, the effects of natural 

dispersal contributed also. 

Figure 6.3  Differences in mean annual growth rates (r) in the three 
black robin populations on Mangere and Rangatira Islands 
during the intensive management and post-management 
monitoring phases. Exponential rates derived from pre-
breeding census counts (95% confidence intervals). 

 

 

After breeding commenced on Rangatira Island in 1983-84, pair numbers increased stead-

ily from one to 20 in the Woolshed Bush and two to 12 in the Top Bush (Table 6.8), giving 

mean annual rates of increase of r  = 0.503 and 0.382 respectively (Table 6.9). Increases 

were augmented by the net transfer of 44 eggs, three nestlings, eight juveniles and 11 

adults from Mangere Island (Table 6.2). On Mangere Island, breeding pair numbers fluctu-

ated annually between one and six pairs, so that mean annual growth in pair numbers (r = 

0.091) was poorer than on Rangatira Island. Pair numbers benefited from more modest net 

transfers of two eggs, seven nestlings, one juvenile and two adults from Rangatira Island 

(Table 6.2). The juvenile and adult imports addressed the depleting effect of productivity 

cropping on pair numbers and ensured higher harvestable output from the Mangere Island 

breeding population.  
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Table 6.9 Exponential rates of growth (r) by management phase in the 
numbers of breeding pairs in the three black robin populations 
on Mangere and Rangatira Islands, 1980-81 to 2001-02. 

 
Intensive management n (seasons) r 95% CI 

Mangere 10 0.091 ± 0.108 

Rangatira 7 0.528 ± 0.092 

 Woolshed Bush 7 0.503 ± 0.111 

 Top Bush 6 0.382 ± 0.101 

Post-management monitoring   

Mangere 12 0.105 ± 0.033 

Rangatira 9 0.071 ± 0.019 

 Woolshed Bush 9 0.102 ± 0.017 

 Top Bush 9 0.008 ± 0.052 

 All phases   

Mangere  22 0.132 ± 0.024 

Rangatira  16 0.221 ± 0.059 

 Woolshed Bush 16 0.252 ± 0.054 

 Top Bush 15 0.111 ± 0.051 
    

 

 

6.5.2  Trends in breeding pair numbers during post-management seasons 

 
Under natural conditions, mean annual growth in breeding pair numbers slowed in each 

Rangatira Island sub-population and improved on Mangere Island (following the release 

from cropping pressure). The rates converged on Mangere Island and in the Woolshed 

Bush (r = 0.105 and 0.102 respectively; Table 6.8).  

 

Mangere Island pair numbers rose from six to 20 pairs between 1990-91 and 1998-99, in-

creasing modestly by an average of two pairs over seven of nine seasons (range 1-5 pairs). 

Numbers then decreased by one pair annually to 17 pairs in 2001-02. Woolshed Bush 

numbers rose over six of nine seasons from 19 to 41 pairs. The annual increases were more 

variable, ranging from one to nine pairs (x̄ = 3.66), but growth was generally steady.  
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In marked contrast to earlier stable growth under management, Top Bush pair numbers 

declined overall from 15 to nine pairs by 1994-95, then commenced a slow recovery to 15 

pairs in 1998-99. The slower rate of increase in the Top Bush (r = 0.008) depressed the 

collective growth rate on Rangatira Island (r = 0.071) below Mangere Island’s rate (r = 

0.105; Table 6.9).  

 

6.5.3  Pair numbers after the conclusion of full-population monitoring 

 
Missed surveys and errors in survey data confuse the picture of breeding pair numbers dur-

ing the sample-monitoring seasons on Rangatira Island after 1999-00 and on Mangere Is-

land after 2002-03. Breeding pairs occupying a standardised sample area of Woolshed 

Bush were monitored from 1999-00 to 2003-04 (Department of Conservation, 2001a) but I 

have not been able to obtain the data for analysis (data misplaced; Dave Houston, pers. 

comm., July 2008). Nor is a definitive estimate of pair numbers in the Woolshed Bush and 

Top Bush possible from the island-wide head-count surveys conducted between October 

and December in 2007 and 2008. 

 

I found that the head-count reports for 2007-08 contained incomplete or contradictory data. 

In the Woolshed Bush and its outliers, Merton (2008b) reported 31 territories occupied by 

pairs and another held by a single black robin (sex unspecified). Massaro and Briskie 

(2008) found ‘nearly all nesting pairs’ in the Woolshed Bush (active nests, n = 25) but did 

not specify total numbers of pairs or territories. My analysis of the 2007-08 count data col-

lated separately by the Department of Conservation (2008) suggests a possible 30 pairs in 

the Woolshed Bush. This is considerably fewer than in 1998-99 when breeding and non-

breeding pairs occupied 45 territories, and 27 unmated black robins (18 males, nine fe-

males) occupied others. For 2008-09, Massaro and Briskie (2009) reported 39 pairs in the 

Woolshed Bush without mentioning unmated birds. I have not been able to obtain the 

2008-09 count data. Based on these reports, however, I would estimate a minimum of 30-

35 breeding pairs today. 

 

I am less certain of Top Bush pair numbers. For 2007-08, Merton (2008b) estimated at 

least 11 territories but did not distinguish between paired and unmated black robins. Mas-

saro and Briskie (2008) reported for that only nine individuals were discovered in the Top 

Bush despite intensive searching, yet my analysis of their survey data (Department of Con-
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servation, 2008) indicates a maximum of eight possible pairs in the Top Bush. In 2008-09, 

the Top Bush was not surveyed comprehensively (Massaro and Briskie, 2009). At the last 

definitive census in 1998-99, territories were held in the Top Bush by 17 breeding and 

non-breeding pairs and three unmated black robins (two males, one female; this study). 

 

6.5.4 Proportions of effective pairs 

 
Effective pair numbers give a better indication of each population’s breeding potential but 

are discernible only during the post-management seasons when broods were raised exclu-

sively by biological parents. In contrast, 52.7% of juveniles produced during the intensive 

management seasons (1980-81 to 1989-90) were raised to independence by foster-parents 

(Appendix Four: Table 4C).   

 

Under natural conditions, the annual proportions of effective pairs on Mangere Island de-

clined gradually on average as total breeding pair numbers increased (r = - 0.019). The 

mean rate of decline was similar in the Top Bush (r = - 0.017) where overall pair numbers 

stagnated. Conversely, the proportions rose in the Woolshed Bush as breeding pair num-

bers increased (r = 0.021; Table 6.10).  

 

In none of the post-management populations did all breeding pairs in a season succeed in 

producing juveniles. In all post-management seasons combined, the Woolshed Bush pos-

sessed the highest proportion of successful pairs in its breeding population (74%) and the 

Top Bush population possessed the fewest (56%). On Mangere Island, 64% of all breeding 

pairs were effective (Table 6.10).  

 

6.5.5  Reproductive output from egg-laying to fledging 

  
In analysing black robin productivity, I have distinguished between reproductive output 

and reproductive performance, as explained in Section 6.1.7. In this section, I confine my 

output and performance summaries to the intermediate life-stages of the breeding cycle 

(clutches and eggs laid, eggs incubated full-term and hatched, and nestlings fledged).  

 

Intensive management of the three populations increased mean annual reproductive output 

pair-1 at all intermediate life-stages. As with trends in population sizes and breeding pair 
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numbers, the elevated output was an artefact of brood manipulation and other conservation 

measures which did not give a true indication of the black robin’s natural reproductive po-

tential.  

 

 
Table 6.10 Mean annual rates of growth (r) in the proportions of breeding pairs 

which were effective (that is, they produced juveniles) in the three black 
robin populations on Mangere and Rangatira Islands during the post-
management seasons, 1990-91 to 2001-02. Ranges express the lowest 
and highest annual proportions observed in any season. The overall pro-
portion relates to the sum total of breeding pairs in all post-management 
seasons combined. 

 
 n (years) r 95% CI Range (%) Overall  

Mangere 12 - 0.019 ± 0.0266 32 – 89 0.64 

Rangatira 9 0.014 ± 0.0197 59 – 83 0.69 

 Woolshed Bush 9 0.021 ± 0.0238 52 – 81 0.74 

 Top Bush 9 - 0.017 ± 0.0353 40 – 78 0.56 
      

 

 

After intensive management concluded, natural output pair-1 year-1 was universally lower 

and output differences between the populations became less pronounced (Table 6.11). Re-

productive performance declined in the two productivity measures not directly influenced 

by conservation activities. Average clutch-size declined on Mangere Island but remained 

more or less constant in the two Rangatira Island sub-populations (Table 6.12). The inci-

dence of rimshots decreased sharply, particularly on Rangatira Island (Table 6.13). Hatch-

rates declined in all three populations also, most obviously in the Top Bush. These trends 

are quantified below. 

 

I have not attempted a systematic assessment of potential causes for the lower rimshot fre-

quency (from a mean annual rate of 12.9% to 4.2% of eggs laid in all populations). Post-

management observers were less likely to detect rimshots because nest observations were 

less intense and the salvage of the mislaid eggs was no longer imperative (pers. obs; Chap-

ter Four). The reduction may also be related to lower egg-laying stresses after the obliga-

tory renesting of females ceased. Clutch data are detailed enough to show whether first or 
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only later clutches were affected, and perhaps why the phenomenon varied in severity by 

population and season (up to 20.4% of all eggs laid in 1989-90; Chapter Two), but analysis 

of those data is beyond the scope of my study.  

 

6.5.5.1  Woolshed Bush productivity from egg-laying to fledging 
 
Under natural conditions, the mean annual reproductive output of Woolshed Bush pairs 

(sum total = 266) decreased relative to managed output in all intermediate productivity 

measures (Table 6.12). On average, each pair laid 1.56 clutches (21.2% fewer than under 

management), 3.13 eggs (- 20.8%) and incubated 2.55 eggs to hatching age (- 44%). Pro-

duction of nestlings (x̄ = 1.88) and fledglings (x̄ = 1.5) declined by 47.1% and 42.2% re-

spectively (Table 6.11). Per-pair output lay within the ranges of the other populations for 

all these productivity measures (clutches laid, eggs laid, incubated full-term and hatched). 

The pair-1 fledgling output was a third better than on Mangere Island and 4.1% higher than 

in the Top Bush.  

 

Clutch sizes were unaffected by the change in management regime (x̄ = 2.0 - 2.01 eggs, 

Table 6.12). The overall proportion of eggs hatching decreased to 73.7% of eggs incubated 

full-term (5.5% lower than under managed conditions). Despite laying five times more 

eggs during post-management seasons (Table 6.13), the proportion laid as rimshots 

(17.5%) was 76.6% lower than during management, the highest rate of decrease in the 

three populations.  

 

On average, Woolshed Bush pairs incubated the highest proportion of eggs to hatching age 

under natural conditions (84.7%), though the difference with Mangere Island was slight. 

The majority of eggs lost to incubation were deserted or disappeared from clutches (often 

for unknown reasons in both cases). Natural proportions of full-term eggs hatching were 

similar to Top Bush rates, though black robins in each Rangatira Island sub-population 

were poorer than their Mangere Island equivalents at hatching eggs. The Woolshed Bush 

population fledged the greatest proportion of nestlings (80%), a rate which equated to 0.48 

fledglings for each egg laid (n = 399, from 833 eggs; Table 6.14).   

 

In summary, natural pair-1 year-1 output and breeding success in the Woolshed Bush com-

pared favourably with output in the other populations but benefited from lower mean rates 
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of egg and nestling mortality. Gross reproductive output also benefited from steady growth 

in the numbers of breeding pairs and the proportions of effective breeders (see Sections 

6.5.3 and 6.5.4 above). The net result was that Woolshed Bush pairs converted 17% more 

of their eggs into fledglings than Mangere Island pairs could manage and 20% more than 

Top Bush pairs. 

 

6.5.5.2  Mangere Island productivity from egg-laying to fledging 
 
As in the Woolshed Bush, per-pair productivity weakened on Mangere Island after man-

agement ended. Natural clutch numbers declined 36.7% to 1.41 pair-1 year-1. Pairs pro-

duced 2.75 eggs on average (- 40.9%) and incubated 2.24 to full-term (-17.3%). Natural 

nestling output was 1.73 pair-1 year-1 (- 19.9%). Fledgling production averaged 1.12 pair-1 

(- 26.3%). This was the smallest decrease in fledgling output in the three populations (Ta-

ble 6.11). In all of these measures, natural pair-1 output was lower than in the Rangatira 

Island sub-populations, particularly for fledgling production (25.5% and 22.6% lower than 

Woolshed Bush and Top Bush pairs respectively).   

 

Natural clutch sizes (1.95 eggs) were 6.7% smaller in post-management seasons. The 

77.2% of full-term eggs hatching also represented a small decrease. Relative to the Ranga-

tira Island sub-populations, rimshot frequency had been anomalously low under manage-

ment and remained inconsequential afterwards (2.8% of all eggs laid; Table 6.13). The 

population was as successful as Woolshed Bush black robins at incubating eggs to full-

term (83.2%), benefiting from a similar rate of egg mortality (16.8% of all eggs under in-

cubation). On the other hand, nestling mortality of 35.4% (the most severe of the three 

populations) took its toll on fledging success (64.6%). Each egg laid produced 0.41 fledg-

lings (n = 190, from 467 eggs; Table 6.14), a marginally better rate than in the Top Bush 

but poorer than in the Woolshed Bush.   

 

Overall, the natural reproductive output of Mangere Island robins was low in all interme-

diate productivity measures. Fledgling output was limited by smaller clutch sizes and 

lower egg production, and ultimately by a very high rate of nestling mortality. Incubation 

success and natural hatching rates were not limiting factors nor was overall growth in the 

numbers of breeding pairs. But the diminishing proportion of successful breeders was a 

potential constraint. Only 64% of pairs breeding throughout the post-management phase 
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would eventually produce juveniles (Table 6.10). Despite these factors, the population 

converted its egg-laying investment into fledglings at a rate intermediate between the Top 

Bush and Woolshed Bush rates.  

 

6.5.5.3  Top Bush productivity from egg-laying to fledging 
 
After management ceased in the Top Bush, mean annual per-pair output of eggs, nestlings 

and fledglings decreased as it had elsewhere. Pairs laid 28.5% fewer clutches (x̄ = 1.69) 

and 28.1% fewer eggs (x̄ = 3.63). This rate of output was greater than per-pair effort in the 

other populations. Pairs also exceeded output elsewhere in the mean number of eggs incu-

bated to full-term annually (x̄ = 2.77, 39.1% fewer than under management) and in nes-

tlings produced (x̄ = 2.06, - 41.7%). Fledgling production (x̄ =1.44, - 45.3%) was a little 

less than Woolshed Bush output (x̄ = 1.5) but better than Mangere Island effort (x̄ = 1.12; 

Table 6.11). 

 

Clutch sizes (x̄ = 2.14 - 2.15) were unaffected by the change in management and were the 

largest of the three populations under both regimes (Table 6.12). Rimshot frequency fell by 

more than half to 5.7% of eggs laid overall but this was still the highest proportion under 

natural conditions. The population’s hatch-rate had exceeded the others under management 

(85.2% of all eggs incubated full-term) but decreased to 74.1%, a natural rate much closer 

to that in the Woolshed Bush (73.7%) and on Mangere Island (77.2%; Table 6.13). This 

was the largest post-management correction in hatching success (and conversely, hatch-

failure) in the three populations. 

 

Despite Top Bush pairs incubating the greatest mean number of eggs to hatching age, in-

cubation success was the lowest recorded (79.9% of all eggs remaining in nests), though 

not more than 5.5% less than the best rate in Woolshed Bush. The low rate is attributable 

to total egg losses from incubation of 20.1%, more than a fifth higher than on Mangere Is-

land and almost 30% higher than in the Woolshed Bush. Nestling mortality (29.8%) was 

not substantially out-of-step with the other populations (Woolshed Bush, 20%; Mangere 

Island, 35.4%), and the population managed to fledge 70.2% of all brooded nestlings. The 

net result was that each egg laid produced 0.40 fledglings (n = 153, from 385 eggs; Table 

6.13), almost matching Mangere Island’s fledging success (0.41 egg-1) but much less effi-

cient than Woolshed Bush production (0.48 egg-1). 
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Overall, the Top Bush population made the greatest clutch and egg-laying investment un-

der natural conditions but was ultimately the least successful at converting that investment 

into fledglings. Hatch-rate was not a limiting factor but the cumulative effects of egg and 

nestling mortality were. These are likely to have increased the incidence of renesting re-

flected in the elevated numbers of clutches and eggs per pair. Gross output was limited by 

volatility in breeding pair numbers after management stopped, coupled with an overall de-

cline in the proportion of successful breeders (Table 6.10). The limited life-span of breed-

ers may also have contributed (see Section 6.7.1 below). However, despite these impedi-

ments, per-pair fledging production was not significantly poorer than on Mangere Island, 

suggesting that on balance Top Bush pairs were not intrinsically less able to perform at the 

intermediate stages of breeding.  

 

Gross output of fledglings varied in the three populations but breeding performance up to 

the fledging stage in the breeding cycle did not appear to separate the populations mark-

edly. The Woolshed Bush population performed better but the Top Bush and Mangere Is-

land populations were similarly matched in fledgling production. 

 

6.5.6 Juvenile production 

 
Intensive management lifted the mean annual rate of juvenile production for all popula-

tions combined to 1.88 pair-1. This rate of production was more than three times greater 

than that of the relict founder population on Mangere Island after 1976-77 (0.55 juveniles 

pair-1 year-1; Chapter Three: Table 3.3).  

 

After management ceased, pairs in all populations produced fewer juveniles on average, 

following from their weaker reproductive output at intermediate life-stages. The combined 

rate declined from managed output by 39.9%, to 1.13 juveniles pair-1 year-1 (Table 6.11). 

Differences in juvenile production rates narrowed between populations under natural con-

ditions (Table 6.11). Woolshed Bush pairs were the most successful at raising fledglings to 

independence (x̄ = 1.27) and Top Bush pairs the least successful (x̄ = 0.98). Mangere Is-

land pairs were only marginally more productive than Top Bush breeders (x̄ = 1.01).  

 

Differences in fledgling mortality were considerable and penalised Top Bush production 

heavily. Mean annual pair-1 fledgling output on Mangere Island had been low relative to 
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the other populations (x̄ = 1.12) but overall, the population raised 90.5% of its fledglings to 

independence (Table 6.13), a mean loss rate of 0.11 fledglings pair-1 year-1 (Table 6.11). 

This equated to a mean of 0.37 juveniles produced from each egg laid in post-management 

seasons. Woolshed Bush pairs had been the best producers of fledglings (x̄ = 1.5) but lost 

twice as many (x̄ = 0.23 pair-1 year-1) in the interval to independence. The population 

reared 85% of its fledglings successfully (0.4 juveniles per egg laid). In marked contrast, 

the Top Bush population reared only 68% of its fledglings successfully. The anomalously 

high proportion dying (32%) equated to a mean loss of 0.46 fledglings pair-1 year-1, twice 

the number in the Woolshed Bush and quadruple the number on Mangere Island. Each egg 

laid in the Top Bush produced 0.27 juveniles under natural conditions (Table 6.14).  

 

These relative rates of fledgling mortality persisted in both management phases, and the 

obvious disparity in Top Bush juvenile production persisted throughout (Tables 6.14 and 

6.16). Mortality at this stage in the breeding cycle appears to have been a key factor re-

sponsible for the poor productivity outcomes for this population under natural conditions 

between 1990-91 and 1998-99. 

 

6.5.7 Juvenile survival 

 
Under natural conditions on Rangatira Island, 19.2% of all juveniles produced dispersed 

between sub-populations after achieving independence in their natal territories (male and 

female totals combined, Table 6.5).  

 

Demise-site collation of survival data (which recognise the dispersal movements) cannot 

relate the numbers of juveniles surviving to adulthood in each sub-population to the num-

bers originally produced because the survivors include juveniles produced elsewhere. For 

instance, the pronounced bias in juvenile movements into the Top Bush (Tables 6.4 and 

6.5) results in inflated survival ratios for juveniles produced by Top Bush pairs (90.4%, 

Table 6.13). Conversely, the juvenile deficit in the Woolshed Bush appears to result in a 

suspiciously low ‘survival’ rate of 61.9% (Table 6.13).  

 

Natal-site collation of survival data (that is, collation which assumed that juveniles did not 

disperse from natal populations) reveals that 72.9% of all juveniles produced by Woolshed 

Bush pairs survived to breeding age, regardless of where they settled. In contrast, only 
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54.8% of all juveniles produced in the Top Bush survived where they settled. These rates 

do not account for the effects on survival of dispersal or conditions in adopted habitats. In 

the closed Mangere Island population, the natal- and demise-site distinction was irrele-

vant—79.1% of all juveniles survived their first winters in non-management seasons. 

 

Despite the complications caused by dispersals, demise-site survival data reveal accurately 

the numbers of juveniles achieving adulthood in each sub-population (Table 6.14). These 

numbers provide a rudimentary index of recruitment potential. Dividing the sum total of 

surviving juveniles by season number gives mean annual recruitment potential of 11.3 

yearlings on Mangere Island and 10.4 yearlings in the Top Bush during post-management 

seasons. In contrast, the ranks of breeders in the Woolshed Bush could draw on an average 

of 23.3 yearlings annually.  

 

6.6 Recruitment to breeding populations 

 
The proportions of male and female juveniles actually recruited to breeding populations 

differed under each management regime. Recruitment during the management seasons was 

influenced by conservation activity which redistributed birds among the populations, be-

fore or after fledging. When pair numbers were precariously low, for instance, managers 

attempted to influence recruitment by moving potential mates for spare females between 

populations (Butler and Merton, 1992). During all intensive management seasons, propor-

tionately more juvenile females than males attempted to breed in each population (Table 

6.15). This imbalance disappeared in the Top Bush after conservation activities were sus-

pended, and reversed to favour males in the other populations. Sexual asymmetry in re-

cruitment ratios was most pronounced on Mangere Island (male x̄ = 0.17, female x̄ = 0.31) 

and least evident in the Top Bush (male x̄ = 0.31, female x̄ = 0.35). This relative asymme-

try persisted in these populations during post-management seasons. 

 

Under management, juveniles produced in the Top Bush (both sexes combined) were more 

likely to be recruited (66% of numbers produced) than those in the Woolshed Bush (54%) 

and on Mangere Island (49%). Under natural conditions, however, Mangere Island juve-

niles joined the ranks of breeders at the highest frequency (64%). The proportions re-

cruited in the Woolshed Bush also increased (59%). Top Bush ratios declined from 66% to 

match recruitment in the Woolshed Bush. The suspension of conservation measures had 
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least impact on recruitment in the Woolshed Bush and most in the Mangere Island sub-

population.  

 

 

Table 6.15 Mean annual recruitment ratios for juveniles produced 
in the three black robin populations on Mangere and 
Rangatira Islands, 1980-81 to 2001-02. Means for 
each sex are calculated by demise-site from the total 
number of juveniles produced. 

   

Phase   Seasons n Males Females All 

Intensive management 1980-81 to 1989-90   
   

MANGERE 10 0.17 0.31 0.49 

WOOLSHED BUSH 7 0.25 0.30 0.54 

TOP BUSH 6 0.31 0.35 0.66 
  
Post-management 1990-91 to 2001-02   
  

MANGERE 12 0.35 0.29 0.64 

WOOLSHED BUSH 9 0.32 0.27 0.59 

TOP BUSH 9 0.29 0.29 0.59 
      

 

 

6.6.1 Female age of recruitment 

  
Regardless of management regime, significantly more females paired as yearlings than at 

two years or older (Table 6.16). This trend was most entrenched in Woolshed Bush fe-

males (management, 95.5 %; post-management, 93.8%). In contrast, pairing in year one 

was less common on Mangere Island (75% during management seasons, declining to 

66.7% in the post-management period). Almost all of those deferring recruitment found 

mates for the first time at two years. In the Top Bush, the proportion of females recruited 

at year one rose from 80% to 92.7% after management stopped. 

 

6.6.2 Male age of recruitment  

 
The majority of male recruits also paired first as yearlings but in both management phases 

this trend was generally weaker than for females. Yearling males entered the breeding 

population most commonly in the Top Bush (management, 95.2%; post-management, 
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86.8%; Table 6.16) and least frequently on Mangere Island (60% and 56.6% respectively). 

As with females, the incidence of first-year pairing decreased in all populations after man-

agement concluded, most obviously in the Woolshed Bush (from 81% to 67.7% of re-

cruits). Mangere Island males delayed recruitment until ≥ two years in greater numbers 

than elsewhere (management, 40%; post-management 43.4%).  

 

6.6.3 Female ages at first egg-laying 

  
The majority of mated yearling females in the Woolshed Bush laid clutches (81% during 

management seasons, increasing to 87.8% subsequently; Table 6.16). This upward trend, 

and the proportions laying, were very similar in the Top Bush. In contrast on Mangere Is-

land, deferral of mating contributed to a pattern of egg-laying at older ages. Under man-

aged conditions, 58.3% of female recruits laid at ≥ two years. This trend became more pro-

nounced during post-management seasons (66.7%).    

 

6.6.4 Age at first successful breeding 

  
I cannot define the ages at first successful breeding during the intensive management sea-

sons because breeding pairs were not always permitted to raise their own offspring. Under 

natural conditions in post-management seasons, successful recruits were still more likely 

to be yearlings on Rangatira Island. This trend was greatest in the Woolshed Bush where 

67.2% of females breeding productively for the first time were yearlings. Fewer yearling 

recruits were successful in the Top Bush (54.2%). On Mangere Island, the effects of de-

layed mating and laying were evident in the later ages at which female recruits were first 

successful. Only 27.8% were yearlings. More than a third of female recruits were not pro-

ductive until three years or older (Table 6.16). Male recruits were even less likely to be 

successful as yearlings (50.7% in the Woolshed Bush and 53.1% in the Top Bush). As 

with females in these sub-populations, a marked shift towards first success at ≥ two years 

was apparent. On Mangere Island, 84.1% of male recruits were first productive at two 

years or older.  

 

6.6.5 Success at first breeding attempt 

 
Yearling recruits of both sexes were capable of producing juveniles at their first breeding 

attempt. Top Bush pairs comprising yearling males or females proved to be highly suc-
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cessful producers of juveniles (females, 92.9%; males, 94%). This was also true of year-

ling females in the Woolshed Bush (97.7%) and of Woolshed Bush males to a lesser extent 

(72.9%). By comparison, first-year recruits were much less effective at their first attempt 

on Mangere Island. Pairs comprising yearling females produced the majority of juveniles 

at the first attempt (62.5%) but male productivity at this age was very low (36.8%). Male 

recruits on Mangere Island were most likely to be productive at their first attempt when 

two years old (57.9%; Table 6.16).  

 

Ages at recruitment, first-breeding and first-success are likely to have been influenced by 

factors affecting the availability of mates such as sex ratio imbalances in populations and 

the chance spatial separation of potential mates. These factors may have contributed to the 

pattern of deferred recruitment on Mangere Island where, between seasons, male and fe-

male surpluses fluctuated markedly in both directions (Chapter Two: Section 2.10; Chapter 

Eight: Figure 8.4).  

 

A density effect may also have been operating in the recovering populations. In the 

sparsely populated Top Bush, new breeders would not have had difficulty finding breeding 

space and resources. In contrast, this may have been a factor in the confinement of Robin 

Bush on Mangere Island as pair numbers increased towards carry-capacity (reached appar-

ently when numbers levelled off in 1997-98). However, I have not systematically analysed 

the relationships between recruitment, breeding success, mate availability and population 

density.  

 

The important feature of the recruitment trends I have reported is that under both managed 

and natural conditions black robins were capable of pairing and breeding successfully in 

their first adult seasons and often did so. On Rangatira Island, recruitment and first-

breeding does not appear to have played a role in population fates. In the poorly perform-

ing Top Bush population, for instance, recruits of both sexes were mated in their first adult 

years at very high frequency and bred successfully at their first attempts. Deferred recruit-

ment and breeding on Mangere Island denied the population the reproductive potential of 

the unmated birds, usually for one year, and may have contributed to the population’s 

more modest productivity growth rates overall. 
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6.7 Survival  

 
6.7.1 Life-spans 

 
Black robin life-spans ranged up to 14 years throughout the study period but ages ≥ 12 

years were uncommon (nine males, four females of 1359 black robins studied). At the time 

of writing, only one individual (a Woolshed Bush male hatched in 1987-88) is known to 

have lived until 14 years of age. Equally old individuals may still be alive on Rangatira 

Island but I have not been able to obtain the 2008-09 resighting data held by the Depart-

ment of Conservation.  

 

A higher proportion of black robins hatched in the intensive management phase achieved 

ages of 12 years or more (1.46%, as opposed to 0.7% of post-management black robins). 

Black robins of both sexes in the Woolshed Bush and on Mangere Island proved capable 

of these long life-spans. In contrast, none residing in the Top Bush survived beyond seven 

years during management seasons or eight years in post-management seasons, regardless 

of their population of origin.  

 

Mean life-spans differed between populations and declined overall in post-management 

seasons. Neither sex was consistently longer-lived than the other in populations or man-

agement phases. Black robins of known sex surviving ≥ one year on Mangere Island and in 

the Woolshed Bush died on average at four or five years during the intensive management 

seasons but on average at four years during post-management seasons (Table 6.17). 

Known-sex adults in the Top Bush usually died at two or three years under managed con-

ditions and at two years in the following phase. Life-span means for males and females 

combined are lower if adults of unknown sex are included, since 74.3% of unsexed (un-

mated) black robins died as yearlings or two-year-olds.  

 

6.7.2 Survival  

 
As signalled in their shorter mean life-spans, the proportions of all black robins surviving 

at each age-step in the Top Bush were conspicuously lower than in the other populations 

between 1980-81 and 2001-02. Survival probability for Woolshed Bush and Mangere Is-

land black robins did not vary markedly (Figure 6.4).  



 C
ha

pt
er

 S
ix

: P
op

ul
at

io
n 

Tr
en

ds
 A

fte
r 1

98
0 

21
0

Ta
bl

e 
6.

16
 

Pr
op

or
tio

ns
 b

y 
se

x 
an

d 
m

an
ag

em
en

t p
ha

se
 o

f b
la

ck
 ro

bi
n 

re
cr

ui
ts

 w
hi

ch
 s

uc
ce

ed
ed

 a
t o

ne
, t

w
o 

an
d 

th
re

e 
+ 

ye
ar

s i
n 

pa
iri

ng
, l

ay
in

g 
eg

gs
, b

re
ed

in
g 

pr
od

uc
tiv

el
y 

an
d 

pr
od

uc
in

g 
ju

ve
ni

le
s 

at
 th

ei
r f

irs
t b

re
ed

in
g 

at
te

m
pt

 in
 

th
e 

th
re

e 
po

pu
la

tio
ns

 o
n 

M
an

ge
re

 a
nd

 R
an

ga
tir

a 
Is

la
nd

s, 
19

80
-8

1 
to

 2
00

1-
02

. T
ot

al
 n

 fo
r e

ac
h 

po
pu

la
tio

n 
is

 th
e 

nu
m

be
r o

f j
uv

en
ile

 re
cr

ui
ts

 k
no

w
n 

or
 li

ke
ly

 to
 h

av
e 

la
id

 e
gg

s. 
A

ge
 ra

tio
s i

n 
ea

ch
 p

ro
du

ct
iv

ity
 c

la
ss

 re
la

te
 

to
 th

e 
to

ta
l n

um
be

r o
f s

uc
ce

ss
fu

l r
ec

ru
its

 in
 th

at
 c

la
ss

. T
he

se
 to

ta
ls

 re
du

ce
 a

s 
re

cr
ui

ts
 d

ie
 o

r i
f t

he
ir 

br
ee

di
ng

 w
as

 n
ot

 fu
lly

 o
bs

er
ve

d 
(in

 w
hi

ch
 c

as
e 

th
ey

 h
av

e 
be

en
 o

m
itt

ed
). 

Fo
st

er
in

g 
du

rin
g 

th
e 

in
te

ns
iv

e 
m

an
ag

em
en

t 
ph

as
e 

di
sg

ui
se

d 
da

ta
 o

n 
fir

st
 p

ro
du

ct
iv

ity
 a

nd
 p

ro
du

ct
iv

ity
 a

t f
irs

t a
tte

m
pt

.  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

M
A

LE
S

 
 

FE
M

A
LE

S
 

 
 

 
 

P
ai

re
d 

(y
r) 

 
E

gg
s 

fir
st

 la
id

 
 

Fi
rs

t p
ro

du
ct

iv
e 

 
P

ro
du

ct
iv

e 
fir

st
 ti

m
e 

 
 

P
ai

re
d 

(y
r) 

 
E

gg
s 

fir
st

 la
id

 
 

Fi
rs

t p
ro

du
ct

iv
e 

 
P

ro
du

ct
iv

e 
fir

st
 ti

m
e 

P
ha

se
 

  
n 

  
1 

2 
3+

 
  

1 
2 

3+
 

  
1 

2 
3+

 
  

1 
2 

3+
 

 
n 

1 
2 

3+
 

  
1 

2 
3+

 
  

1 
2 

3+
 

  
1 

2 
3+

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

In
te

ns
iv

e 
m

an
ag

em
en

t 1
98

0-
81

 to
 1

98
9-

90
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
M

an
ge

re
 

10
 

 
60

.0
 

30
.0

 
10

.0
 

 
30

.0
 

60
.0

 
10

.0
 

 
 

 
 

 
 

 
 

 
13

 
75

.0
 

25
.0

 
0.

0 
 

41
.7

 
50

.0
 

8.
3 

 
 

 
 

 
 

 
 

W
oo

ls
he

d 
B

us
h 

21
 

 
81

.0
 

14
.3

 
4.

8 
 

57
.1

 
28

.6
 

14
.3

 
 

 
 

 
 

 
 

 
 

22
 

95
.5

 
4.

5 
0.

0 
 

81
.0

 
14

.3
 

4.
8 

 
 

 
 

 
 

 
 

To
p 

B
us

h 
21

 
 

95
.2

 
4.

8 
0.

0 
 

95
.2

 
4.

8 
0.

0 
 

 
 

 
 

 
 

 
 

20
 

80
.0

 
15

.0
 

5.
0 

 
80

.0
 

15
.0

 
5.

0 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Po
st

-m
an

ag
em

en
t 1

99
0-

91
 to

 2
00

1-
02

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
M

an
ge

re
 

59
 

 
56

.6
 

41
.5

 
1.

9 
 

24
.0

 
68

.0
 

8.
0 

 
15

.9
 

59
.1

 
25

.0
 

 
36

.8
 

57
.9

 
5.

3 
 

54
 

66
.7

 
29

.2
 

4.
2 

 
33

.3
 

55
.6

 
11

.1
 

 
27

.8
 

36
.1

 
36

.1
 

 
62

.5
 

31
.3

 
6.

3 

W
oo

ls
he

d 
B

us
h 

90
 

 
67

.7
 

32
.3

 
0.

0 
 

64
.7

 
34

.1
 

1.
2 

 
50

.7
 

39
.1

 
10

.1
 

 
72

.9
 

27
.1

 
0.

0 
 

84
 

93
.8

 
6.

3 
0.

0 
 

87
.8

 
10

.8
 

1.
4 

 
67

.2
 

29
.7

 
3.

1 
 

97
.7

 
2.

3 
0.

0 

To
p 

B
us

h 
43

 
 

86
.8

 
10

.5
 

2.
6 

 
89

.2
 

8.
1 

2.
7 

 
53

.1
 

31
.3

 
15

.6
 

 
94

 
5.

6 
0.

0 
 

43
 

92
.7

 
7.

3 
0.

0 
 

87
.2

 
12

.8
 

0.
0 

 
54

.2
 

29
.2

 
16

.7
 

 
92

.9
 

7.
1 

0.
0 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

A
ll 

m
an

ag
em

en
t 1

98
0-

81
 to

 2
00

1-
02

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
M

an
ge

re
 

69
 

 
57

.1
 

39
.7

 
3.

2 
 

25
.0

 
66

.7
 

8.
3 

 
 

 
 

 
 

 
 

 
67

 
68

.3
 

28
.3

 
3.

3 
 

35
.1

 
54

.4
 

10
.5

 
 

 
 

 
 

 
 

 

W
oo

ls
he

d 
B

us
h 

11
1 

 
70

.1
 

29
.1

 
0.

9 
 

63
.2

 
33

.0
 

3.
8 

 
 

 
 

 
 

 
 

 
10

6 
94

.1
 

5.
9 

0.
0 

 
86

.3
 

11
.6

 
2.

1 
 

 
 

 
 

 
 

 

To
p 

B
us

h 
64

 
 

89
.8

 
8.

5 
1.

7 
 

91
.4

 
6.

9 
1.

7 
 

 
 

 
 

 
 

 
 

63
 

88
.5

 
9.

8 
1.

6 
 

84
.7

 
13

.6
 

1.
7 

 
 

 
 

 
 

 
 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  



 

Chapter Six: Population Trends After 1980  211

Table 6.17 Mean age at which adult black robins died in the three popula-
tions on Mangere and Rangatira Islands, 1980-81 to 2001-02. 
Means relate to black robins hatched during each management 
phase and are based on known-sex males and females only. 
Means for ‘All’ include adults of unknown sex. 

      
  Seasons   Adults living ≥ one year 

Intensive Management    n   Male Female All 

        

 MANGERE  10  4.60 5.21 5.03 

WOOLSHED BUSH  7  5.22 4.52 4.76 

TOP BUSH  6  2.72 3.15 2.90 

 All populations    4.22 4.14 4.01 
        
Post-management             

        
 MANGERE  12  4.65 4.26 3.98 

WOOLSHED BUSH  9  4.42 4.00 4.05 

TOP BUSH  9  2.89 2.49 2.34 

 All populations         4.20 3.74 3.68 

        

 

 

Regardless of management regime, higher proportions of males survived than females 

(Figure 6.5). In contrast, unsexed black robins experienced very significantly higher mor-

tality than known males and females.  

 

This result was expected since black robins of unknown sex comprised individuals dying, 

usually as nestlings and fledglings, before achieving breeding age when mate choices 

would confirm their sex. The long tail to the survival curve for unsexed black robins repre-

sents unmated adults or adults whose sex observers did not note (a particular failing during 

the sample-monitoring years). 

 

Survival was generally, though not markedly, better during the intensively managed sea-

sons between 1980-81 and 1989-90 (Figure 6.6). When distinguished by sex and manage-

ment regime, however, unsexed black robins survived at lower rates during intensively 

management seasons (Figure 6.7). Female survival rates under both management regimes 

tended to be lower than male rates. 
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6.8 Environmental variation in black robin habitats 

 
Faulty data-logger batteries terminated ambient air temperature measurements prematurely 

at three of the nine data-logger sites (WSB 2, TPB 5 and TPB 6, see Appendix Four: Table 

4A). As a result, measurement periods varied from 16.3 months for the six functional data-

loggers (WSB 1 and 3; TPB 4; MGR 7, 8 and 9) to 11 months at TPB 5 and eight months 

at WSB 2 and TPB 6. 

 

6.8.1 Temperature extremes 

  
Over the six calendar seasons in which measurements were taken hourly day and night 

(spring 2004 to summer 2005 inclusive), ambient air temperatures in the forests inhabited 

by black robins ranged between 2.6 ºC (0800 hrs, 31 July 2005) and 23.05 ºC (1400 hrs, 31 

January 2006; Table 6.18). Both extremes were recorded at data-logger station WSB 3, the 

eastern-most in the Woolshed Bush, on Rangatira Island’s lower terraces. In fact, five of 

the six seasonal maxima and three of the six minima were recorded at this site (Table 

6.18). Temperature extremes on Mangere Island lay within the ranges on Rangatira Island.  

 

6.8.2 Seasonal differences in mean daily temperatures  

  
The mean daily temperatures for each of the six calendar seasons varied less than 1°C in 

all black robin habitats. Daily temperatures were warmest on average in the two summers, 

becoming progressively cooler in autumn, the spring of each year, and in winter (Table 

6.19). By this relatively broad measure of air temperatures, the Woolshed Bush population 

enjoyed the warmest conditions most frequently, while the Top Bush population experi-

enced the coolest most consistently. The differences were minimal. 

 

6.8.3 Warmest and coldest habitats  

  
Over all seasons, the Woolshed Bush experienced the highest mean daily temperatures 

most frequently (53.9% of days). Mangere Island was warmest on 34.3% of days, and the 

Top Bush on 11.8% of days. Conversely, mean daily temperatures were lowest in the Top 

Bush on 65.2% of days. Mangere Island and the Woolshed Bush experienced the coolest 

daily means on 24.4% and 10.4% of days respectively. 
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Table 6.18 Ambient temperature extremes (ºC) recorded in each calendar season at micro-
climate data-logger sites in the three black robin habitats on Mangere and Ranga-
tira Islands, 1 October 2004 to 10 February 2006. Temperatures in red and blue 
denote the highest and lowest temperatures for each season. Empty fields indicate 
that data-loggers had failed by that time. 

 
 

 Woolshed Bush  Top Bush  Mangere 

Data-logger 1 2 3  4 5 6  7 8 9 
Date 

Time (hr) 

Spring Min 3.89 4.0 3.89  3.13 3.52 3.21  4.23 3.97 3.84 9 Nov 04 
(1300) 

2004 Max 16.38 16.4 17.54  16.4 15.76 15.52  15.93 16.81 16.12 3 Oct 04 
(0100) 

Summer Min 6.01 5.99 5.75  5.29 5.42 5.35  5.93 5.7 5.6 31 Dec 05 
(0500) 

2004-05 Max 19.95 20.18 21.07  20.54 20.97 19.97  19.73 20.04 19.78 15 Feb 05 
(1400) 

Autumn Min 6.06 6.11 4.78  5.45 5.96 5.5  6.16 6.19 6.16 30.May.05 
(1800) 

2005 Max 18.85 18.83 19.42  18.97 19.38 18.47  18.73 19.23 18.95 07 Mar 05 
(1200) 

Winter Min 3.18  2.6  3.13 3.15   3.52 3.79 4.13 31 Jul 05 
(0800) 

2005 Max 12.66  13.89  14.16 12.95   12.83 12.76 13.41 25 Jul 05 
(1300) 

Spring Min 2.84  3.29  3.13    3.76 4.02 4.67 21 Sep 05 
(0700) 

2005 Max 17.21  19.28  18.78    17.28 17.07 18.14 21 Nov 05 
(1600) 

Summer Min 7.13  6.82  7.18    7.81 8.01 8.16 11 Jan .06 
(0500) 

2005-06 Max 21.04  23.05  22.91    20.66 21.16 21.33 31 Jan 06 
(1400) 

        
 

 

The seasonal means for minimum and maximum temperatures in each habitat reflect the 

same trends. Maximum temperature means were highest in the Woolshed Bush for all but 

the last summer season (Table 6.20). Mean minimum temperatures were lowest in the Top 

Bush in four of the six seasons. However, Top Bush means for the final two seasons may 

not fairly represent temperatures in this vast habitat since only one data-logger was still 

operating, at the habitat’s eastern periphery.  

 

Variations in the seasonal ranges for mean maximum and minimum temperatures in each 

habitat did not exceed 1.0 °C. 
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Table 6.19 Calendar-season means for daily temperatures (°C) in the forest habitats of the 
three black robin populations on Rangatira and Mangere Islands, 1 October 
2004 and 10 February 2006. Means are calculated from temperatures recorded 
hourly between 0100-0000 hrs at three stations in each habitat and averaged 
across all days in a season. Means in red denote the warmest mean temperature 
in each of the six seasons; blue values denote the coolest. 

 
 

 Woolshed Bush Top Bush Mangere Variation (ºC) 

Spring 2004 10.40 9.91 10.42 0.51 

Summer 2004-05 13.66 13.21 13.49 0.45 

Autumn 2005 12.46 12.03 12.37 0.43 

Winter 2005 8.78 8.50 8.59 0.28 

Spring 2005 9.80 9.75 * 9.80 0.05 

Summer 2005-06 13.72 13.81 * 13.71 0.1 

 

NOTE * Mean derived from temperatures at one data-logger station only (upper Long Drop track) 
 

 

 

Table 6.20 Seasonal mean minimum and maximum temperatures (°C) in the three black 
populations on Mangere and Rangatira Islands, 1 October 2004 to 10 Febru-
ary 2006. Red and blue values denote the warmest and coolest means.  

 
 

 Spring 
2004 

Summer 
2004-05 

Autumn 
2005 

Winter 
2005 

Spring 
2005 

Summer 
2005-06 

Mean minimum       

Woolshed Bush 6.63 7.6 7.22 5.38 4.54 9.06 
Top Bush 5.99 6.87 6.73 4.9 4.6 8.95 

Mangere 6.74 7.21 6.98 5.28 5.08 8.68 

Variation in range 0.64 0.73 0.49 0.48 0.54 0.38 

Mean maximum       

Woolshed Bush 14.52 17.92 17.01 11.8 15.23 19.05 

Top Bush 14.08 17.75 16.68 11.5 15.23 * 19.32 * 

Mangere 14.04 17.92 16.91 11.55 14.93 18.52 

Variation in range 0.48 0.17 0.33 0.3 0.3 0.8 

    
  

NOTE * Mean derived from temperatures at one data-logger station only (upper Long Drop track) 
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6.8.4 How much warmer or cooler were the habitats?  

  
Overall, Woolshed Bush tended to be the warmest of the three habitats and the Top Bush 

the coolest but the differences in relative warmth in all three habitats were small through-

out the sampling period (Table 6.21).  

 

Conditions differed most between the Woolshed Bush and the Top Bush. In the five sea-

sons when the Woolshed Bush was the warmer of the two on average, the difference in 

seasonal mean daily temperatures ranged from 0.7% to 5.26% (x̄ = 3.47%). In temperature 

terms, this equated to an average seasonal variation of 0.34 ºC (range 0.02 – 0.49 ºC).  

 

Woolshed Bush and Mangere Island differed less. Woolshed Bush was 0.06% to 2.47% 

warmer in all seasons except spring 2004 (x̄ = 1.04%). This equated to a negligible 0.09 ºC 

seasonal variation in warmth (range 0.02 - 0.18 ºC).   

 

These results suggest that the Top Bush tended to be cooler than the more sheltered, north-

oriented habitats of the Woolshed Bush and Mangere Island. However, the exploratory 

analyses I have used to assess temperature differences relied on sequential averaging of the 

hourly data to arrive at seasonal means. Smoothing the data in this way will have disguised 

the true extent of variation. In fact, the effect of temperature on plants and insects is cumu-

lative and most often measured in terms of accumulated degree-days or physiological time 

(Worner, 2007).  

 

Preliminary analyses of degree-day accumulation (5 ºC threshold) during daylight hours 

over the period of this study (standardised as 0700 to 1900 hours) show clearly that the 

Top Bush habitat was generally cooler. Fewer degree-days decrease the heat units avail-

able for invertebrate development. Fewer degree-days are likely to reduce the number of 

generations of some species and may as a consequence reduce the insect biomass available 

for black robin food. Over the first breeding season, for instance (1 October 2004 to 28 

February 2005), the cumulative difference between the Top Bush and Woolshed Bush was 

72 degree-days. The cumulative difference by the end of winter 2005 (to 30 September 

2005) was 123 degree-days. For the same periods, the deficit between Mangere Island and 

Woolshed Bush was more modest (23 and 19 degree-days respectively).  
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Table 6.21 Extent to which the habitats of the three black robin populations on Mangere and Ran-
gatira Islands were warmer or cooler than one another, 1 October 2004 and 10 Febru-
ary 2006. Relative warmth expressed as the percentage difference in mean daily tem-
perature for each calendar season. Warmer habitats are denoted in red and cooler in 
blue. The variation expressed as temperature (ºC) is the mean of all daily differences 
between each pair of habitats.   

           

 Spring 2004  Summer 2004-05  Autumn 2005 

 WSB TPB MGR  WSB TPB MGR  WSB TPB MGR 

           

Woolshed Bush (%)  5.26 -0.18   3.77 1.46   3.92 0.89 

Mean variation (ºC)  0.49 0.02   0.45 0.17   0.43 0.09 
           

Top Bush (%) -4.95  -5.13  -3.59  -2.2  -3.72  -2.91 

Mean variation (ºC) 0.49  0.51  0.45  0.28  0.43  0.34 

           

Mangere (%) 0.23 5.49   -1.39 2.3   -0.79 3.05  

Mean variation (ºC) 0.02 0.51   0.17 0.28   0.09 0.34  

            
            

 Winter 2005  Spring 2005  Summer 2005-06 

 WSB TPB MGR  WSB TPB * MGR  WSB TPB * MGR 

            

Woolshed Bush (%)  3.68 2.47   0.7 0.06   -0.53 0.14 

Mean variation (ºC)  0.28 0.18   0.05 < 0.00   0.08 0.01 
           

Top Bush (%) -3.42  -1.17  -0.62  -0.73  0.56  0.69 

Mean variation (ºC) 0.28  0.09  0.05  0.05  0.08  0.1 

           

Mangere (%) -2.18 1.28   -0.06 0.83   -0.07 -0.61  

Mean variation (ºC) 0.18 0.09   < 0.00 0.05   0.01 0.1  

            
 

 
NOTE * Based on temperatures recorded at one data-logger station only (upper Long Drop track) 
 

 

Much depends on data-logger placement and season, requiring additional work to clarify 

the magnitude of degree-day differences between sites and seasons, but that was beyond 

the scope of my study. At this stage, it is reasonable to assume that diurnal and nocturnal 
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sub-canopy temperatures in the Top Bush might have been lower on average than in the 

other black robin habitats during the two management phases I have examined. Even if the 

differences varied in scale and direction from year to year, this environmental variable 

cannot be dismissed as a factor explaining the divergence in demographic trends in each 

black robin population.  

 

6.9  Summary and discussion 

 
The ‘New Zealand’ strategy adopted to conserve black robins from extinction achieved its 

short- and mid-term objectives. In 1980-81, the last population of five individuals was 

threatened most immediately by adverse demographic and environmental events. New 

Zealand wildlife managers succeeded in minimising vulnerability to these unpredictable 

threats by increasing black robin abundance and establishing a second larger population on 

Rangatira Island. Their conservation strategy addressed the intrinsic risk factor—the relict 

population’s inadequate rate of juvenile production—by multiple-clutching of females, 

fostering of the extra offspring and protective measures designed to increase survival at all 

life-stages. Nesting data in the pre-1980 population are too scarce to judge the magnitude 

of increase in clutch numbers, but intensive management boosted juvenile production four-

fold over the rate achieved naturally by the Little Mangere Island survivors after transfer in 

1976-77. The increased production resulted in the first positive growth in black robin num-

bers since at least 1971-72 and rapid expansion into available habitat on both island sanc-

tuaries. The revival was greater and faster in Rangatira Island’s larger tracts of forest 

where the newly founded Woolshed Bush and Top Bush populations were the principal 

beneficiaries of active recovery measures.  

 

The post-management trends reported in this chapter show the degree to which that recov-

ery under management did not give a true indication of black robin viability. The two is-

land populations remained capable of sustaining population increases after active conser-

vation ceased but their rates of recovery were slower. The cumulative effects of brood ma-

nipulation, transfers, supplementary feeding and other activities disguised from managers 

the naturally lower and varying rates of reproductive output and survival which would dic-

tate the fate of future black robin populations. The reversal of trends in the Top Bush sub-

population, a strong performer under management, was a striking illustration of how effec-

tive management had been, and how its effects could mask normal trends. Had managers 
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merely left the black robins to get on with recovery unobserved, on the assumption of 

growth rates witnessed under active conservation, they would have over-estimated the in-

trinsic ability of the two island populations to rebound from set-backs or sustain them-

selves in the long-term.  

 

After intensive management ceased, per-pair output in all populations combined was lower 

at all life-stages because each pair produced 29% fewer clutches and 31% fewer eggs on 

average (Table 6.11). Each pair’s juvenile output decreased by almost 40% (to a rate still 

two-and-half times higher than that of the two to three pairs among the Little Mangere Is-

land survivors prior to intervention; Table 3.3). Mean annual rates of population growth 

converged on both islands to become roughly comparable for the first time since interven-

tion started. On Rangatira Island as a whole, lower production resulted in mean annual 

growth of 8.3% (Table 6.7), a fifth of the managed rate (a reduction of 81.2%). Once the 

Mangere Island population was released from the draw-down effects of transfers to grow 

naturally, the mean rate of increase rose from 7.2% to 9.9% p.a., an improvement of 

37.5%. 

 

While reproductive output varied under both management regimes, breeding success re-

mained remarkably similar. The overall proportions of nestlings fledging, achieving inde-

pendence and surviving to sexual maturity (one year) did not differ markedly (Table 6.13). 

The principal differences lay in the threefold reduction in the proportions of eggs laid as 

rimshots and the lower proportions hatching under natural conditions (74.8% of all eggs 

incubated full-term, a decrease of 7.5% from the intensive-management rate). The change 

in rimshot frequency may have been related to the lower probability of detection or the re-

sumption of natural breeding patterns, as I have suggested in Section 6.5.5 (above).  

 

The decline in hatching success may be an artefact of reduced monitoring intensity during 

the post-management years (miscounted eggs or nestlings, failure to check for unhatched 

eggs after fledging). The scaling-back of supplementary food hand-outs (Chapter Four) 

may have contributed also, by causing incubating females to make more foraging trips 

with potentially harmful cooling effects on egg development, by increasing rates of incu-

bation neglect, or by reducing egg mass and thermal retention. However, Mackintosh and 

Briskie (2005) found no evidence of such causal relationships in experimentally fed South 

Island robins on Motuara Island. An alternative explanation, supported by Mackintosh and 
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Briskie (2005), may be that the lower black robin hatch-rate is mildly expressed inbreeding 

depression emerging as inbreeding levels accumulated in the two island populations. I ad-

dress this question in Chapter Seven (Was Inbreeding A Problem?). Mackintosh and 

Briskie (2005) observed that the hatch-failure rate in the insular population of South Island 

robins (24.1%; Byrne, 1999) was markedly higher than in their mainland ancestral popula-

tion at Kowhai Bush (9%, derived from Powlesland, 1983). They attributed the higher 

hatch-failure rate to the loss of genetic diversity following the founding bottleneck of five 

individuals (Flack, 1974a; Ardern et al., 1997b).  

 

The comparisons of individual population trends made in this chapter offer closer insights 

to black robin viability. The balance of recovery momentum shifted in the three study 

populations after management stopped. The Top Bush and Woolshed Bush sub-

populations on Rangatira Island had grown strongly under management, supported by pro-

duction on Mangere Island (Table 6.7). Under natural conditions, the Woolshed Bush 

population was the most productive and fastest growing, followed by Mangere Island. In 

contrast, seasonal fluctuations in numbers translated into inconsequential growth in the 

Top Bush population.  

 

The variations in recovery rates were not attributable to the same factors. The Woolshed 

Bush and Mangere Island breeding populations increased at comparable rates (Table 6.9) 

but in the Woolshed Bush the proportion of effective pairs grew 2% annually on average 

while it declined on Mangere Island by the same rate (Table 6.10). Breeding pairs in the 

Woolshed Bush made greater clutch- and egg-laying investments, but both populations 

converted their investments into juveniles at a comparable rate (0.4 and 0.37 juveniles per 

egg respectively). Success in both populations was limited by similar rates of egg loss 

from incubation, but whereas Mangere Island suffered an unusually high rate of nestling 

loss, Woolshed Bush nestling losses were low. The overall hatch-rate of full-term eggs was 

greater on Mangere Island than in the Woolshed Bush (Tables 6.11 and 6.13). In each 

population, high proportions of juveniles survived to breeding age—80% and 93% respec-

tively (natal-site data for juvenile survival). Survival probability was similar in both (Fig-

ure 6.4). 

 

In the Top Bush, breeding effort matched or exceeded that in sister populations. Clutch 

and egg production was greater, perhaps because nest failures increased renesting fre-
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quency. The proportion of full-term eggs hatching exceeded the Woolshed Bush rate 

slightly (Table 6.13). Despite these healthy breeding investments, natural recovery mo-

mentum was minimal and unstable. Productivity was undermined by a high proportion of 

rimshots, high rates of egg and nestling loss from nests, and the highest mortality of fledg-

lings and juveniles recorded under natural conditions (32% and 46% respectively; natal-

site data for juveniles). These compounding failures weakened growth potential. Reduced 

rates of immigration from the Woolshed Bush undermined it further (Table 6.4) and the 

anomalously short life-spans of locally raised and immigrant adults also deprived the 

population of reproductive potential. Adult survival had been poor under management too. 

The proportion of effective pairs declined only gradually in the Top Bush (at a rate similar 

to Mangere Island’s) but this slim advantage was offset by stagnating growth in the size of 

breeding population as a whole (Table 6.9).   

 

External factors operating variably in each habitat and on different life-history stages in 

each population no doubt influenced trends but their relative effects and local importance 

cannot be determined from available field records. Systematic investigation and reporting 

of these factors was not the primary objective of the recovery project. The least that can be 

said is that productivity and survival trends were subjected to the broad range of external 

and intrinsic pressures reported by observers (Chapter Two: Black Robin Biology)—

infirmity at birth, occasional morphological abnormalities, predation by starlings, poor 

nest-site selection, inadequate parenting, parental deaths, nest-mite infestations, avian pox, 

nocturnal petrel-strikes, tree- or branch-falls, egg-binding, cobweb entanglement, nest col-

lapse, straying from parental care and sundry other forms of misadventure. Climatic events 

of varying severity and duration (storms, prolonged droughts, unusually humid summers, 

harsh winters) were also remarked upon by observers but their influences on productivity 

and survival were not quantified systematically. For example, observers learned to expect 

nestling mortalities from increased nest-mite densities during long humid periods (Butler 

and Merton, 1992) but in reporting the heavy infestations as the cause of death, they did 

not attempt to distinguish other underlying factors such as poor parenting skills.  

 

My preliminary assessment of differences in ambient air temperatures indicate the strong 

probability of environmental influences on population trends, especially in the cooler Top 

Bush habitat where natural recovery was weak. The results point more confidently to an 

environmental effect than Williams (2003) was able to report from briefly comparing 
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black robin energy expenditure in the Top Bush and Woolshed Bush. That study’s finding 

of a negligible between-habitat difference in energy expenditure over two days does not 

rule out the possibility of cumulative energy costs of chronically cooler conditions for the 

Top Bush black robins. As I have suggested, retarded breeding cycles in invertebrate prey 

may result in cumulative shortfalls in available food biomass. Briefer periods of warmth 

daily and narrower upper temperature ranges may limit the timing and intensity of inverte-

brate activity, forcing black robins to make more energy-expensive foraging trips over 

longer distances or intervals. Thermoregulatory costs may increase metabolic rates, and 

poorer body condition may increase susceptibility to pathogens. None of these potentially 

disabling effects has been measured directly for any black robin population. Evaluation of 

relative wind-chill levels might make environmental effects more explicit, especially if as-

sessed simultaneously with ground and arboreal invertebrate activity. Simple comparisons 

of foraging times for pairs raising offspring may be equally helpful in quantifying relative 

environmental effects on vital rates. Until these corroborating assessments are conducted, 

however, it is appropriate to assume that historically the Top Bush was the cooler of the 

three black robin habitats, and that lower ambient temperatures may have contributed to 

the poorer rate of recovery witnessed after management ceased.  

 

The possibility of a depressive climatic effect in the Top Bush lends support to my conclu-

sions in Chapter Three that browsing and clearing of the original forests on the black robin 

islands could precipitate fatal population declines, especially when windward edges were 

breached and chilling winds penetrated forest interiors. Some or all of the possible harmful 

consequences of climatic exposure may have been operating to extinction-inducing effect 

in the disintegrating forest remnant on Little Mangere Island (Chapter Three). There is 

support too for my suggestion that farming effects need only have reduced the quality of 

conditions in the Woolshed Bush to impose fatal pressures on the original Rangatira Island 

population.  

 

Although the weaker post-management trends raise questions about black robin viability, 

there were positive indications of resilience in all three populations. From 1980-81 until 

the end of full-scale monitoring, the species as a whole sustained positive growth in num-

bers. Crucially, breeding pairs (including the nine-year-old ancestral female Old Blue) 

proved capable from the outset of the augmented productivity demanded by the intensifi-

cation of breeding. The strong response to management was not suggestive of an intrinsi-
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cally moribund species. Subsequent recovery benefited from viability measures in which 

all three populations remained generally comparable throughout. Although black robin 

hatch-rates were low relative to those recorded in mainland congeners (Powlesland, 1983; 

Mackintosh and Briskie, 2005) and declined after management stopped, they were suffi-

cient to support overall population growth under protected conditions. Average clutch 

sizes remained largely constant between management regimes. Yearling black robins re-

mained capable of breeding successfully from the outset (Table 6.16). Major disparities 

did not emerge over time in the proportions of effective pairs in each breeding population. 

In broad terms, breeding effort was not the problem faced by the three bottlenecked popu-

lations, even in the Top Bush where recovery was ultimately inadequate.  

 

The Top Bush population raises the strongest questions about black robin viability. In real-

ity, this population acted throughout the study period as a sink for Woolshed Bush produc-

tion. As a closed population, the Top Bush may never have been viable and self-sustaining. 

By treating it analytically as though it were discrete, however, singular vulnerabilities have 

emerged which were not so apparent in the other two populations prior to the end of full-

scale monitoring. Adult life-spans were shorter under the management and monitoring re-

gimes, and mortality rates in fledglings and juveniles were anomalously high. These fail-

ures appear to have imposed the greatest constraints on natural recovery in that population. 

There are insufficient data to support a clear relationship between these critical failures and 

external factors alone. None of the field records I have consulted for this study alluded to 

specific threats operating uniquely or more severely in the Top Bush environment (other 

than field-workers’ perceptions of a harsher climate). Therefore I am compelled to look for 

other explanations. In the next chapter, I investigate the possibility that the Top Bush fail-

ures were related to inbreeding effects which have not so far been considered in this thesis.  

 

Inbreeding depression is an explanatory variable which can be tested in hindsight from the 

demographic record and may be common to all three populations. All were closely related 

genetically. That is not to say that the Woolshed Bush and Mangere Island populations 

were exposed to problems at the life-stages impeding Top Bush recovery but testing for 

relationships with inbreeding may indicate that these viability failure-points were latent 

under the prevailing conditions.  
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Inbreeding effects may also explain the independent declines in black robin numbers on 

Mangere and Rangatira Islands soon after monitoring intensity was reduced (Section 

6.2.3). Other explanations are problematic and became difficult to test when crucial in-

sights to population trends were lost after full-population monitoring ended. The decreases 

may have had their origins in the return of each island to its natural carrying-capacity once 

the black robins were deprived of regular breeding-season food hand-outs (Department of 

Conservation, 2009). Kennedy (2010) argues, however, that the 2.0 – 2.5 Tenebrio larvae 

each black robin would have received as a daily average was an inconsequential addition 

to normal food intake. Alternatively, the transfers of 38 adult and juvenile black robins to 

Pitt Island between 2002 and 2005 (Chapter Four) may have been destabilising. This does 

not seem a plausible explanation for Mangere Island which gave up only four individuals 

but declined by 43.3%, while Rangatira Island yielded 34 individuals and declined by ap-

proximately 25%.  

 

Regenerative changes in the character of the forests on each island may have contributed, 

especially on Rangatira Island where Roberts et al. (2007) predicted an emerging forest 

structure less favourable to black robins, and Kennedy and Wilson (2005) noted informally 

(but did not quantify) a more open and colder sub-canopy (Chapter Two: Section 2.4.1).  

 

Whatever the factors triggering the declines, the reduction in numbers can be expected to 

increase the frequency of close inbreeding and the rate at which average levels of related-

ness accumulate in the populations. The potential for harmful effects on viability are inves-

tigated in the next chapter, by assessing whether inbreeding has been a factor influencing 

historical population trends. 
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CHAPTER SEVEN 

WAS INBREEDING A PROBLEM? 

 
‘New Zealand’s wildlife is [possibly] less susceptible to inbreeding depression.’ 

Craig et al., 2000: 68 
 

‘It’s better to have screwed-up black robins than none at all.’ 
Don Merton 

NZ Wildlife Service Biennial Conference, 1981  

 

 

 

7.0  Introduction 

 
In previous chapters, I have reviewed the factors driving the black robin towards total ex-

tinction after humans arrived in the Chatham Islands archipelago at least 450-500 years 

ago (McFadgen, 1994; King, 1989). The new extinction drivers comprised a lethal mix of 

deterministic changes in their environments (principally habitat disintegration and mam-

malian predation) and worsening exposure to stochastic demographic and environmental 

pressures as population sizes decreased (Chapter Three: History of Decline). The species’s 

retreat from its pre-human range was almost certainly hastened by ecological and behav-

ioural adaptations to island life, the vulnerabilities inherent in its slow-breeding strategy 

and population closure, all of which increased sensitivity to the unfamiliar forms of distur-

bance (Chapter Two: Black Robin Biology). Renewal of these pressures is a constant risk 

confronting the recovered populations of today.   

 

This history of population losses, decline and last-minute recovery also exposed the spe-

cies to practically every possible genetic risk-criterion. This history gives black robin man-

agers at least four reasons for concern about the potential for genetic threats to viability. 

 

As I have outlined in Chapter Three, all major island populations in the black robin’s natu-

ral range were eliminated outright after the hostile processes of habitat change and mam-

malian predation were set in train following human contact. The inferences I have drawn 

from historical records indicate that the ancient, isolated populations on Chatham, Pitt, 

Rangatira and Mangere Islands were eliminated in as little as two to four decades, if not 

sooner. This suggests that deterministic extinction pressures overran the genetic costs of 
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reduction and fragmentation before they could become significant or lethal in their own 

right. If these geographically isolated populations had acquired differing levels of sensitiv-

ity to change through ecological and genetic divergence on their respective islands, it made 

no difference to the final outcome. The lost populations have disabling implications for 

management of genetic risks today. First, they deprive existing and future populations of 

vital sources of genetic enrichment. Second, they deny managers undisturbed reference 

populations against which to judge the severity and implications of genetic impairment 

today, and the effectiveness of remedial management. 

 

The sole surviving reservoir of genetic diversity in the species contracted severely follow-

ing the elimination of Mangere Island’s black robins in late 1892 or early 1893. This last 

small, locally adapted gene pool had probably extended across the ocean narrows to Little 

Mangere Island, an open-air flight of about 260 metres for occasional dispersers. Genetic 

variation evolving formerly in a combined population of several hundreds of black robins 

was suddenly restricted to about 35 individuals or fewer (Chapter Three: Section 3.6.4). 

Over almost nine decades (1892-93 to 1980-81), extreme genetic impoverishment resulted 

from chronic, obligatory inbreeding and genetic drift among such low numbers (Ardern 

and Lambert, 1997; Ma and Lambert, 1997a; Miller and Lambert, 2004). By the mid-

1990s, black robins in both the Mangere and Rangatira Island populations were distin-

guishable by sex alone at the minisatellite DNA markers analysed at that time. Band-

sharing coefficients (0.84 ± 0.04 SD) were exceeded only by those of the comparably re-

duced Campbell Island teal Anas nesiotis (0.87 ± 0.04 SD) as the highest reported for free-

living avian species (Robertson, 2006; Jamieson, 2009). Unfortunately, the intriguing 

question of just how much diversity was lost cannot be answered conclusively because 

DNA in black robins collected in 1871, 1897 and 1990 (Miller and Lambert, 2006), prior 

to and just after the gene-pool contraction, has so far proven to be too degraded to analyse 

(Hilary Miller, pers. comm.). 

 

Extant populations have been exposed to two further perils—a succession of bottleneck 

events and confinement to small population sizes for more than 26 years (and the foresee-

able future) in the reduced forest habitats of Mangere and Rangatira Islands.  

 

At least two evolutionary bottlenecks occurred when the species colonised New Zealand 

from Australia and then the Chatham Islands through trans-ocean dispersal (Fleming, 
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1950a, b; Miller and Lambert, 2006). Dispersal in the Chatham Islands may have had sig-

nificant founder effects. Population extinctions after human contact subjected the species 

to progressive restriction of the gene pool. Severe bottlenecking occurred when the last 

seven black robins were transferred to Mangere Island in 1976-77, followed by the further 

decline to one effective breeding pair between 1979-80 and 1982-83 (Chapter Three). The 

Rangatira Island population was established from the few descendants of this pair. At this 

point, the potential for loss of genetic variation from source and new populations (that is, 

loss of what little heterozygosity may have remained by then) was countered by numerous 

transfers of individuals between the two islands and the simultaneous augmenting of re-

productive output to increase population sizes (Chapter Four). However, as has been typi-

cal of crisis-translocations in New Zealand (Armstrong and McLean, 1995), managers did 

not have the opportunity to select for genetically appropriate founders. Ardern and Lam-

bert (1997) concluded that these modern sequential bottlenecks were less penalising for 

genetic diversity and fitness than the ancestral population’s nine-decade-long reduction to 

low numbers on Little Mangere Island. It is conceivable nonetheless that what little genetic 

variation the ancestral survivors carried with them did not include crucial rare alleles.   

 

Finally, the black robin populations are typical of many recovering New Zealand bird spe-

cies surviving as closed populations on protected islands. Though safe for the meantime 

from the deterministic threats causing their declines, they remain at risk of gradual fitness 

loss and genetic depletion through inbreeding and genetic drift. This is especially an issue 

if the size of their island sanctuaries or the habitat available keeps populations unnaturally 

small (Jamieson et al., 2006, 2008; Jamieson, 2009). On Mangere Island, the small closed 

population of black robins in Robin Bush is severely habitat-limited and will remain so for 

decades at current rates of reforestation (Figure 2.4). On Rangatira Island, the population 

is larger but confined predominantly to the Woolshed Bush, ostensibly by environmental 

factors operating in the Top Bush which cannot be managed readily (climatic conditions, 

forest structure; Chapter Six). The Woolshed Bush is the smaller and more fragmented of 

the two forested areas available (Figure 2.3) and regenerating in ways which may lower 

carrying-capacity for black robins (Kennedy and Wilson, 2005). 

 

Despite these factors predisposing the black robins to genetic malfunction, the species re-

sponded strongly to conservation management, as I have outlined in Chapter Six, and ap-

pears to have weathered the genetic storm so far. The aim of this chapter is to assess the 
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possibility that the predicted genetic perils of such a history of decline and recovery may 

have been realised but remain cryptic and persist as an on-going stochastic threat to the 

viability of current and new populations. Deficient demographic data have not allowed me 

to determine whether harmful genetic changes aggravated the processes of collapse in the 

small ancestral population on Little Mangere Island. But their descendants may have inher-

ited a legacy of genetic impairment expressed in the variable rates of population recovery I 

have identified in Chapter Six. 

 

Specifically, this chapter examines whether heightened levels of inbreeding in the small 

ancestral and descendent populations may have resulted in inbreeding depression mani-

fested as lowered fitness at key life-history stages. I am aware that inbreeding and random 

genetic drift are separate though compounding processes capable of eroding viability (as I 

have explained in Chapter One), but the fitness implications of each cannot be separated in 

the demographic record of black robin recovery. Given the advanced levels of genetic ho-

mogeneity in extant black robin populations, there is a strong probability of mutually rein-

forcing effects. Because my analyses depend wholly on the demographic record, I am only 

able to investigate potential genetic problems through reference to inbreeding. 

 

The analyses reported in this chapter quantify the levels of inbreeding in the black robin 

study populations. From this, I assess whether correlations exist between individual and 

kinship breeding coefficients and the life-history variables which appear to explain ob-

served variations in recovery trends (Chapter Six). The hypothesis tested is that there is no 

correlation between inbreeding and the following variables of interest: (1) survival, (2) 

hatch-rates, which declined overall in the three black robin populations after management 

ceased, and (3) production of fledglings, juveniles and yearlings. Population trends dif-

fered through failures at all of these life-history variables during the study period. Per-

formance was demonstrably low in the Top Bush, the most distressed and apparently least 

viable of the populations recovering under natural conditions.  

 

I have confined my investigation of inbreeding effects to the post-management period of 

black robin recovery when true differences in recovery rates became explicit and there was 

little management activity to mask evidence of fitness costs.  

 

 



 

Chapter Seven: Was Inbreeding a Problem? 230 

7.1 Methods 

 
7.1.1 Master pedigree construction 

 
The valuable demographic record and pedigree of recovery during the periods of highly 

intrusive management and post-management monitoring is indispensable to my analyses. 

From this record, I constructed a master pedigree whose base was formed by survivors of 

the ancestral population on Little Mangere Island and their immediate descendants on 

Mangere Island prior to 1980-81. I omitted ancestral black robins which were unrelated to 

others in the pedigree. Therefore the base comprised the male and female from which all 

other black robins were descended (Old Yellow and Old Blue; Chapter Three: Section 3.7) 

and seven other individuals with which these two founders had bred or were related prior 

to 1980-81. The descendent population comprised all black robins hatched from 1980-81 

until 1998-99 (inclusive) on Rangatira Island and 2001-02 (inclusive) on Mangere Island. 

The master pedigree contained 1363 individuals—1052 banded as nestlings, juveniles or 

adults, and 311 nestlings, fledglings and juveniles dying before being banded. Four known 

F1 hybrid offspring from black robin x Chatham Island tomtit cross-breeding events were 

omitted (Chapter Eight: Hybridisation). Individual inbreeding coefficients (F) and kinship 

(parental) coefficients were calculated from this master pedigree. For later analyses, I con-

fined the master pedigree to birds alive at or after 1980-81 (n = 1358, including five ances-

tral black robins). A non-breeding individual suspected of being a hybrid on Mangere Is-

land was omitted also.   

 

Parental data for the pedigree were confirmed by direct observation of breeding or the 

banding of offspring while still associated with parents. From 1980-81 onwards, 651 pairs 

and 1070 clutches were observed (Chapter Six: Table 6.13). For each clutch, the social and 

biological (genetic) fathers were assumed to be the same (Chapter Two). Foster-parent 

data were ignored for individuals not raised by biological parents during the cross-

fostering seasons (1980-81 to 1989-90).  

 

I retained individuals in the pedigree if the mother, father or both were in doubt or un-

known (11 on Mangere Island; 11 on Rangatira Island). The close genetic similarity of all 

black robins did not make it possible to identify parentage by molecular means (Ardern 

and Lambert, 1997; Ma and Lambert, 1997b). However, field records, personal familiarity 
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with the populations and breeder histories, and knowledge of which potential breeders 

were nearby at the appropriate time (Chapter Five: Data Collation and Verification) al-

lowed me to guess who the missing parent(s) might have been for 16 of the 22 individuals. 

The other six (five ancestral birds and one descendant) were left without parental informa-

tion when calculating inbreeding coefficients. Because 13 of the 22 affected individuals 

bred successfully (seven on Mangere Island; two in the Woolshed Bush; four in the Top 

Bush), I judged that errors made (if any) in missing-parent assignments would interfere 

with estimates of inbreeding coefficients less than if I omitted these individuals from the 

pedigree or assumed that all were unrelated (F = 0.0). 

 

The pedigree could be subdivided by management phase according to hatch-dates, and by 

population using either natal or demise-site (see below). 

 

7.1.2 Inbreeding and kinship coefficient estimates 

 
I estimated the coefficient of inbreeding F for each individual and the kinship coefficient 

for each breeding pair with the PEDSYS 2.0 pedigree database system (South-West Foun-

dation for Biomedical Research, www.sfbr.org), using the Stevens-Boyce algorithm option 

(Boyce, 1983). The unique band numbers fitted to fledged individuals were used as identi-

fiers, and I assigned a fictitious band number (in the B-93000 series) to each unmarked 

nestling, fledgling and juvenile. For the five ancestral black robins of no known parentage, 

I followed the conventional practice (Jamieson et al., 2007) of assuming that their parents 

were unrelated. As a result, PEDSYS estimated that all nine individuals in the master pedi-

gree’s base population were unrelated (F = 0.0).  

 

Individual inbreeding and kinship coefficients were estimated relative to the base popula-

tion. Given the inevitability of close inbreeding in the small ancestral population on Little 

Mangere Island, the assumption of a wholly unrelated base population was expected to un-

derestimate values for the individual F and kinship coefficients of descendants.  

 

To calculate levels of inbreeding coefficients accumulating over time in the pedigree, I 

used natal-site data for each population, which was consistent with the nature of productiv-

ity data analysed (Section 7.1.4 below).  
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7.1.3 Life-span estimations 

 
I based my analyses of potential inbreeding effects on survival on the black robin life-

spans calculated by the methods specified in Chapter Six (Section 6.1.10). This was the 

life-span data used for the Kaplan-Meier estimations of survival probability (Section 

6.1.11).  

 

7.1.4 Productivity 

 
To assess the implications of inbreeding for fecundity, I prepared a master dataset of re-

productive output for breeding-age females. The methods used to collect and collate the 

productivity data from field records are outlined in Chapters Four and Five. For each fe-

male (n = 246), the dataset listed by breeding season her age, mate or mates of the year (if 

any), the age of mate(s), breeding habitat (Woolshed Bush, Top Bush, Mangere Island) 

and reproductive output at each life-history stage (number of clutches and eggs laid per 

clutch; eggs incubated full-term; nestlings, fledglings and juveniles produced, and the 

number of juveniles surviving ≥ one year). These were natal-site data which assumed that 

biological parents had raised their own offspring entirely (Chapter Six: Section 6.1.2). The 

kinship coefficient of each pairing was included. The dataset included 26 females which 

survived to breeding age but did not lay any eggs before full-scale monitoring ceased. It 

omitted others fledging but not reaching breeding age within the study period. Thirteen 

non-breeding black robins merely suspected of being females were omitted also, as were 

two females known to have bred solely with tomtits (Chapter Eight). 

 

To allow sorting for later analyses, I distinguished females and breeding effort in the mas-

ter dataset by several criteria. A female was designated ‘single’ when unmated in a season 

but if paired and not laying, her productivity values for that season were set to zero. I in-

cluded one female breeding with both black robins and tomtits but treated her as ‘single’ 

when cross-breeding. Clutch-cycles ending prematurely on the death of the female (n = 66) 

or male (n = 22) were identified. I ignored eight desertions after clutch-failure and six 

other mid-cycle desertions of unknown cause because deaths and desertions did not always 

result in breeding failure (Chapter Two). This was usually true if a parent was lost late in 

the breeding cycle. The dataset identified by clutch all juveniles produced by each female 

and the number surviving ≥ one year. All juveniles and adults were identified by their 
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unique band numbers for assignment of hatch-dates and inbreeding coefficients from a 

subsidiary dataset. Females and males in the dataset could be sorted by population (using 

breeding site) and management phase (using the year of breeding). Male productivity 

could be interrogated also.   

 

7.1.5 Environmental factors 

 
I chose not to include environmental variables as an explanatory factor in inbreeding 

analyses because the air temperature data showing cooler conditions in the Top Bush 

(Chapter Six: Section 6.8) were not gathered at the time of the population trends examined 

by my study. I acknowledge the strong possibility that any environmental effect operating 

at that time may have influenced the magnitude of inbreeding effects measured by my 

analyses.  

 

7.2 Analyses 

 
All analyses were conducted using R (version 2.8.1; R Development Core Team, 2008; 

www.r-project.org), with significance set at α = 0.05. My associate supervisor, Professor 

Richard Duncan, managed the scripting process and advised on the appropriate analytical 

models.  

 

7.2.1 Analysis of inbreeding effects on survival  

 
I wanted to assess whether an individual’s degree of inbreeding (F) was positively or nega-

tively correlated with survival probability. I was interested in assessing correlations by sex, 

the population in which the individual settled and died (demise-site), and management re-

gime (intensively managed or unmanaged). As explained above, the Kaplan-Meier sur-

vival dataset was used, from which black robins dying prematurely had been omitted to 

avoid skewing results. 

 

To eliminate variations in the depth of parental data in the dataset and to ensure that coef-

ficients of F = 0.0 were genuine, I followed the practice of restricting the black robin pedi-

gree to individuals with both sets of grandparents known (Jamieson et al., 2007). The 

pedigree then comprised 1322 black robins, of inbreeding coefficients ≥ F = 0.03125. Ex-
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ploratory analyses using first, all black robins alive in and after spring 1980 (n = 1358) re-

gardless of parental information and second, individuals with both parents known (n = 

1343), merely accentuated the result obtained with the pedigree of uniform depth.   

 

To test the hypothesis that an individual’s level of inbreeding affected survival probability, 

we ran the life-span data in a Cox Proportional Hazard model to which individual coeffi-

cient of inbreeding F was fitted as a covariate with sex, demise-site, and management 

phase. Sex, demise-site and management phase were categorical covariates. These were 

coded so that one category (female, intensive management, and Mangere Island, respec-

tively) was set to zero, with parameter estimates for the remaining categories showing the 

effect relative to the zero category.   

 

7.2.2 Productivity analyses  

 
We used a Generalised Linear Mixed Model (GLMM) with normal and Poisson error dis-

tributions to assess whether the effects of accumulating inbreeding and kinship levels, 

along with other covariates, explained observed variations in female fecundity in the three 

black robin populations (Chapter Six). The GLMM was run in the R statistical package (R 

Development Core Team, 2008) using the library ‘lme4’. 

 

Following from my findings in Chapter Six, we selected hatch-rate (the proportion of fully 

incubated eggs hatching) and production of fledglings, juveniles and yearlings (juveniles 

surviving ≥ one year) as response variables for separate iterations of the model. Hatching 

success in all three populations decreased during the post-management period (Chapter 

Six: Table 6.13). Although the overall proportion hatching under natural conditions was 

only 7.5% lower, we considered that the decrease may signal an emerging inbreeding ef-

fect capable of weakening population resilience in the future. As response variables, pro-

duction of fledglings, juveniles and yearlings reflected rates of mortality in (respectively)  

nestlings, fledgling and juveniles. These rates varied in each population, and were particu-

larly penalising for the Top Bush population where growth under natural conditions was 

severely limited by poor fledgling and juvenile survival. We chose to analyse fledgling 

production despite concerns that the proportion of nestlings surviving to fledge was proba-

bly determined by unique external factors not operating for fledgling and juvenile survival 

(starling predation, nocturnal petrel strikes on nests).  
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Data for the response variables were drawn from the female productivity dataset in which 

values for hatch-rate and production of fledglings, juveniles and yearlings were given by 

female and clutch (Section 7.1.4). To reduce noise in the data, the set was modified to 

eliminate females in seasons when they were single and pairs in which one of the parents 

died before completion of the last clutch-cycle.  

 

Because many fledglings and juveniles shared parents, we fitted male and female identity 

(using their unique band numbers) as random effects to control for the non-independence 

of data involving the same parent. Breeding season was added as a random effect to allow 

for unmeasured influences of climate, habitat changes, predation and other seasonally 

varying factors on productivity. As explanatory variables, we fitted fixed effects for male 

and female age (log-transformed), and breeding population (relative to Mangere Island). 

Kinship coefficients were fitted to test the effect of parental inbreeding on productivity. To 

ensure uniformity in kinship depth and genuine F = 0.0 values, we restricted the female 

productivity dataset to pairs for which all four parents were known (thus, all grandparents 

were known for offspring). Paternal and maternal inbreeding coefficients F were fitted also 

(using the grandparent-restricted dataset described in Section 7.2.1), anticipating that the 

degree to which each parent was inbred might also explain productivity variations.   

 

We ran the GLMM for post-management productivity alone (1990-91 to 2001-02) for two 

reasons. First, exclusion of the intensive management seasons eliminated possible fitness-

masking effects of obligatory multiple-brooding, intra- and inter-island transfers, nest pro-

tection and supplementary-feeding. Second, the potentially confounding effects of foster-

ing during the intensive management era were eliminated (that is, the influence of foster-

parents and foster-sites on survival). The post-management productivity dataset comprised 

449 breeding attempts (162 females, 163 males).  

 

7.3 Results 

 
7.3.1 Incidence of inbreeding  

 
Individual inbreeding coefficients F were estimated on the basis of known mothers and 

fathers for all descendants of the founder pair, Old Blue and Old Yellow. Old Blue and one 

pre-1980-81 male were the exceptions. The four grandparents of all but 36 birds were 
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known. Pedigree depth measured in black robin generation time (1.7 years; Chapter Two) 

varied according to management phase and the periods over which data were collected for 

the populations themselves (Table 7.1).  

 

All but 24 (1.8%) of the 1358 individuals included in the master pedigree were estimated 

to be inbred (Table 7.2). In reality, the proportion of inbred birds was almost certainly 

greater than this, since the founder pair and one other breeding at the outset—four of the 

24 black robins with F = 0.0 in the pedigree—were survivors of the tiny obligatorily in-

bred ancestral populations prior to 1980-81 and likely to be very closely related. 

 

 
Table 7.1 Generation depth in the pedigree of each black robin population on Man-

gere and Rangatira Islands between 1980-81 and 2001-02 (generation 
time = 1.7 years; Chapter Two). The number of observation seasons is 
given as n. 

 

  Management phase 

Population n Intensive  n Post n Combined 

       
Mangere Island 10 5.9 12 7.0 22 12.9 

Woolshed Bush 7 4.1 9 4.7 16 9.4 

Top Bush 6 3.5 9 4.7 15 8.8 
       

 

 

Overall, accumulating inbreeding F ranged from 0.0 to > 0.4 over the first ten years of in-

tensive management, and from 0.25 to > 0.6 in the non-management seasons. In all popu-

lations, the accumulation was faster in known (breeding) males than females during the 

intensive management seasons but this pattern reversed when management ceased (Table 

7.2).  

 

Mean levels of inbreeding F in the pedigree accumulated over time at different rates in 

each population (Figure 7.1). Post-1990 fluctuations in the Top Bush are likely to have 

been induced by the higher rates of adult turn-over (through earlier demise and immigra-

tion from the Woolshed Bush) and the significant variations developing in population size 

after management activity ceased (Chapter Six).  
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Figure 7.1  Mean levels of individual inbreeding coefficient F accumulating 
annually in the three black robin populations on Mangere and 
Rangatira Islands between 1980-81 and 2001-02. 

 

 

During the management phase, inbreeding means were influenced by gene flow associated 

with natural dispersals on Rangatira Island and by management-related transfers between 

the three populations. Relative to the Rangatira Island sub-populations, Mangere Island’s 

lower mean level of F = 0.236 is likely to reflect the removal of individuals from the popu-

lation for management reasons. After management ceased, the Mangere Island population 

became fully closed and mean inbreeding levels accumulated more quickly than else-

where, even for Rangatira Island combined (Table 7.2).  

 

7.3.2 Inbreeding and survival probability  

 
The hypothesis that individual inbreeding F had no effect on survival probability was sup-

ported by the Cox Proportional Hazards model. A non-significant positive relationship 

with life-span was indicated for both sexes combined over the two management phases 

(1.57; p = 0.377; Figure 7.2).  

 

Sex and demise-site were the most influential explanatory variables for poor survival. 

Relative to females, mortality rates were much higher for unsexed black robins, which 
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were principally birds dying as nestlings and dependent fledglings (7.495; p > 0.05). There 

was also a very significant negative relationship between survival at each age-step in the 

Top Bush as a habitat relative to Mangere Island (0.7838, p = 0.0023). These results for 

unsexed black robins and the Top Bush were consistent with the unusually high rates of 

mortality reported in Chapter Six (Sections 6.7.1 and 6.7.2; Figures 6.5 and 

6.6).Conversely, slightly higher survival probability was indicated for males relative to 

females (1.153; p = 0.111), for birds hatched during the unmanaged seasons (1.165; p = 

0.039) and for those living in the Woolshed Bush (1.0784, p = 0.292).   

 

7.3.3 Inbreeding and fecundity 
 

The GLMM did not support the hypothesis of a nil inbreeding effect on reproductive out-

put. A consistent negative relationship with reproductive performance at all four life-

history stages measured was found for male inbreeding F (Figures 7.3 – 7.6). Female F 

had no deleterious effect on any of the fecundity parameters. Kinship showed no effect on 

reproductive success except for yearling output where a possible negative correlation was 

indicated (Figure 7.6).  

 

Male inbreeding F grew in explanatory power at successive life-stages in the breeding cy-

cle. The degree to which fathers were inbred was negatively, but not significantly, related 

with lower hatching success (-1.38, p = 0.239; Figure 7.3). Black robin male inbreeding 

tended towards significance as an effect for fledgling output (-1.27, p = 0.065; Figure 7.4). 

Noise in the nestling survival data may have disguised the true extent of inbreeding cost at 

this life-stage. Male inbreeding F was strongly related to juvenile output (-1.922, p = 

0.015; Figure 7.5) and with the number of juveniles reaching sexual maturity (-2.22, p = 

0.018; Figure 7.6).  

 

Reproductive performance was enhanced by paternal age which was a slightly stronger 

predictor of breeding success than maternal age. Natal-site effects varied but as the breed-

ing cycle advanced beyond hatching, the Top Bush became progressively more prominent 

as an explanation for breeding failure. This trend is symptomatic of the cumulative effects 

of breeding failure at successive life-stages in that habitat (Chapter Six: Tables 6.14 and 

6.16).  
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Figure 7.6 GLMM correlation of black robin yearling production 

with the ages and inbreeding coefficient F of mothers 
and fathers, the kinship coefficients of parents, and na-
tal habitats during post-management seasons, 1990-91 
to 2001-02. Filled circles indicate P < 0.05. 

 
 

 

To assess specific inbreeding and habitat effects using yearling production (the ultimate 

expression of breeding success) as the response variable, we tested for two-way interac-

tions between habitat and male and female inbreeding F, and habitat and kinship. There 

were no significant effects for these terms. 

 

7.4  Conclusions 

 
The two small black robin populations on Mangere and Rangatira Islands, descended from 

a single breeding pair but genetically isolated since 1990-91, are highly inbred. Only a tiny 

proportion of individuals at the base of the modern pedigree (< 2 %) are considered to be 

unrelated. This is a minimum indication of inbreeding—the true extent is probably signifi-

cantly greater, since the ancestral founding pair was inevitably related, perhaps very 

closely. Average levels of individual inbreeding F accumulating in each population were 

nearly three times higher than the nearest reported for insular populations of wild birds 

(ancestrally inbred takahe, a non-passerine, distributed on four small islands in northern 
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New Zealand, F = 0.123 based on all pairs; Jamieson et al., 2003). Black robin relatedness 

far exceeds the range reported for naturally outbred bird populations of the northern hemi-

sphere (F = 0.009 – 0.051; Kruuk et al., 2002: Table 2). The differing genetic histories and 

varying depths of the pedigrees reported complicate direct comparisons, but evidence of 

inbreeding depression in other less inbred bird populations suggests that the black robins 

have been overdue for detrimental inbreeding effects. For example, survival probability 

was significantly lower in inbred juveniles of a translocated population of North Island 

robins (a Petroica congener) whose average level of inbreeding was about 8% of black 

robin levels (F = 0.027, Tiritiri Matangi Island; Jamieson et al., 2007).    

 

The results reported in this chapter confirm the prognosis of a harmful inbreeding effect 

for black robins. There is now evidence that the two populations on Mangere and Ranga-

tira Islands have experienced inbreeding depression expressed, at least since 1990-91, as 

reproductive fitness costs which have had cumulative depressive effects at successive life-

history stages late in the breeding cycle. There is no compelling evidence that survival 

probability for either sex had been compromised under the conditions prevailing since in-

tensive management ceased. 

 

A significant finding of our analyses is that inbreeding costs were acting selectively 

through breeding males alone. Sex-differentiated inbreeding depression has been reported 

previously, but not for males. In inbred insular takahe populations, fledging success was 

negatively correlated with female inbreeding F (Jamieson et al., 2003). And in a small, 

closed, insular population of naturally outbred song sparrows Melospizia melodia, signifi-

cantly lower hatch-rates ultimately limited the number of juveniles inbred females pro-

duced during their lifetimes (Keller, 1998).  

 

The degree to which black robin mothers were inbred or pairs were related did not appear 

to affect breeding success. In other studies of wild birds, kinship F has been negatively re-

lated with breeding success (hatch-rates in great reed warblers Acrocephalus arundina-

ceus, Bensch et al., 1994; hatch-rates in blue tits Parus caruleus, Kempenaers et al., 1996). 

Although parental relatedness does not appear to have caused problems for black robins so 

far, the suspicion of a deleterious kinship effect on yearling production (Figure 7.6) is sug-

gestive of a latent threat which may be expressed as inbreeding levels accumulate further 

in the pedigree or conditions change for the populations. 



 

Chapter Seven: Was Inbreeding a Problem? 244 

We have not attempted to investigate why inbreeding depression should be expressed in 

males but not females, or the course of male inbreeding effect on offspring. We expect that 

genetic inheritance from inbred fathers may impose fitness costs on offspring, perhaps as 

early as the nestling stage (affecting fledgling production) or later, in fledglings and juve-

niles, as our results suggest. We do not have data to show what morphological or behav-

ioural penalties inbred males experienced themselves. It is conceivable that lower resil-

ience or weaker behavioural disposition could influence claims to optimal territories, de-

fence of territory from disruptive intruders, foraging ability or attentiveness to parental du-

ties. These issues cannot be addressed from the demographic record and would require fur-

ther research in a marked and pedigreed black robin population. It is evident from our re-

sults, however, that if male inbreeding affects breeding success early in the clutch-cycle, 

the costs will be cumulative as the cycle advances. Further modelling may quantify the 

specific nature of costs at each stage.   

 

We have no evidence that inbreeding depression in breeding males was synonymous with 

population decline. During the post-management seasons, black robin populations on both 

islands continued to grow naturally, albeit at rates significantly lower than during the ten 

seasons of obligatory renesting and cross-fostering. Our results indicate, however, that in-

breeding depression is likely to have slowed the rate of natural recovery by limiting the 

number of juveniles produced and surviving to be recruited. Under the conditions of that 

time, the number doing so was evidently sufficient to maintain overall growth. The fact 

that inbreeding did not appear to affect survival was advantageous for growth. It preserved 

reproductive potential in the generally long-lived adult populations, a critical factor com-

pensating for lower juvenile output.  

 

For males, there was the added advantage of age-related breeding success, which was a 

stronger effect than for females, and arguably a factor mitigating paternal inbreeding costs. 

There are two possible explanations for the stronger influence of male age. It may be an 

artefact of parental performance improving from a poor start. Yearling males often ne-

glected parental duties, a trend indicated by the lower proportions of males breeding suc-

cessfully as yearlings (Chapter Six: Table 6.16). This trend did not persist as males ac-

quired breeding experience. In contrast, females generally bred successfully from earlier 

ages. Experience may also have counted when males were required to feed first-clutch 
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fledglings, second-clutch nestlings and the brooding female. This was a crucial time for 

dependent fledglings, when many could be neglected or abandoned by fathers.   

 

Our results support the findings of Chapter Six that breeding success in Woolshed Bush, 

measured in the GLMM as gross production of offspring at each life-history stage, was 

higher than on Mangere Island and in the Top Bush. This, and higher relative survival 

probability, is the compelling explanation for the Woolshed Bush’s superior growth rate 

after management activity ended. Conversely, our results indicated that negligible growth 

in the size of the Top Bush population was explained by the low survival probability of 

black robins settling there and inferior rates of offspring production at each life-history 

threshold in the breeding cycle. The strong positive correlation with fledgling production 

in the Top Bush (a measure of nestling mortality) may be deceptive. Clutch-failures early 

in the cycle (merely suggested by the negative but non-significant relationship with hatch-

rate; Figure 7.3) was likely to increase the probability of renesting, so that gross output of 

offspring (for example, fledglings, Figure 7.4) would appear to be higher relative to the 

other populations. Nonetheless, the trend shown in the model indicated progressive dete-

rioration in Top Bush breeding success, culminating in lower yearling output than else-

where (Figure 7.6).  

 

We did not find conclusive evidence that inbreeding was a factor explaining population 

trends in the Top Bush, though there is expected to be a more severe inbreeding effect if 

environmental conditions are harsher (Keller et al., 2002; Frankham et al., 2002). The 

finding in Chapter Six that the Top Bush black robins (the least inbred on average of the 

three populations; Table 7.2) generally experienced the coldest conditions suggests the 

heightened probability of an inbreeding effect. This was demonstrated in small populations 

of Darwin’s finches on Isla Daphne Major (Galapagos Islands) where episodic inbreeding 

depression of significant effect flared among inbreeding birds during periods of low food 

availability (Keller et al., 2002). If, as Worner (2007) suggests, colder average conditions 

lower insect biomass available over time to foraging birds, inbreeding depression may 

have contributed to the faltering performance of Top Bush black robins after management 

assistance was withdrawn (Chapter Six). Our preliminary exploration of interactions be-

tween inbreeding and habitat was inconclusive. It would be prudent to investigate this rela-

tionship more closely, especially as inbreeding depression may be triggered by exposure to 

environmental conditions varying from those in which ancestral inbreeding occurred. If a 
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relationship exists between inbreeding and environment, there are significant implications 

for site selection when establishing new black robin populations from tomorrow’s more 

highly inbred source populations. The change may be more important than the quality of 

the new conditions (Jamieson and Ryan, 2000), suggesting that establishment in better 

habitats may still trigger debilitating inbreeding effects. 

 

A key question raised by our findings is why such anomalously inbred black robin popula-

tions experienced inbreeding effects in males only and inbreeding costs which did not stall 

population growth altogether. A persuasive explanation is that the species has indeed been 

purged of genetic load by its century-long history of tight bottlenecks and associated in-

breeding, as proposed by Ardern and Lambert (1997). There is support for this explanation 

from recent New Zealand studies. Jamieson et al. (2003) considered that the purging ef-

fects of background inbreeding might explain the sex-specific bias in reproductive success 

in four small closely related takahe populations on offshore islands. Laws and Jamieson 

(unpublished data) concluded that weak evidence of inbreeding depression (measured as 

juvenile survival) in a small, severely bottlenecked, genetically depleted population of 

Stewart Island robins on Ulva Island was partly attributable to historical purging of genetic 

load in the bottlenecked source population. In contrast, inbreeding depression was strongly 

expressed (as juvenile mortality) in Tiritiri Matangi Island’s North Island robins sourced 

from large genetically diverse mainland populations from which genetic load was much 

less likely to have been purged (Jamieson et al. 2007).  

 

Our findings suggest that the two black robin populations possess residual genetic load de-

spite their history of reduction, chronic inbreeding and advanced genetic impoverishment. 

Measurement of lethal equivalents (Morton et al., 1965) would help to confirm this. Re-

sidual load has implications for the future of the populations and their management. Dele-

terious effects have been expressed so far through male reproductive performance alone 

but this may not remain the case as average levels of relatedness rise in existing popula-

tions or if they are subjected to significant or sudden environment change. Contractions in 

population sizes, such as those occurring recently on Mangere and Rangatira Islands, in-

crease the incidence of close inbreeding and amplify the risk of both depression and the 

loss of alleles. Stalled or minimal population growth exposes the two small populations 

and any daughter-populations to the same risk (Jamieson, 2007a).  
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The results of our analyses lend tentative support to Craig’s (1991, 1994) speculative hy-

pothesis of reduced susceptibility to inbreeding depression in New Zealand’s insular en-

demic birds but do not support the assumption made commonly by New Zealand wildlife 

managers (Chapter One) that the genetic costs of population declines, persistence at low 

numbers, and consequent inbreeding are inconsequential for future viability. Genetic mal-

function was not shown to equate to declines in the two extant black robin populations un-

der the conditions prevailing during the study period. But we cannot be certain that this 

was true of the following years in which declines did occur (Chapter Six) or that it was not 

implicated in the failure of the Pitt Island translocations (Kennedy, 2006). Inbreeding may 

have significant consequences for the years ahead, especially if populations are challenged 

by adverse environmental conditions, new pathogens or other unforeseen pressures. The 

evidence of individual inbreeding effects and the suggestion of emergent kinship effects 

indicate that the assumption of negligible genetic risk underpinning the so-called ‘New 

Zealand cure’ (Groombridge, 2007) may be unsafe. 
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CHAPTER EIGHT 

HYBRIDISATION 

 

 

 

8.0 Introduction 

 
Under natural conditions, the inter-breeding of reproductively isolated bird species can be 

evolutionarily constructive and a mechanism of avian speciation (Grant and Grant, 1997). 

The black robin may have acquired its tomtit characters through an ancient inter-breeding 

event before or after arrival in the Chatham Islands (Miller and Lambert, 2006). Con-

versely, anthropogenic hybridisation can expose distinct avian genotypes to the risk of ex-

tinction at population and species scales through genetic introgression or through demo-

graphic costs such as reproductive wastage (sterile offspring, reductions in offspring fit-

ness), poor cross-mating success, skewed reproductive advantages or displacement by bet-

ter adapted hybrids (Rhymer and Simberloff, 1996).  

 

Species introductions and the loss or fragmentation of habitat are common triggers of an-

thropogenic hybridisation (Rhymer and Simberloff, 1996; Lande, 1999) and often work in 

combination. The changes break down the evolutionary mechanisms (ecological barriers, 

behavioural adaptations) isolating related species reproductively (Taylor, 1975). In popula-

tions reduced by habitat stress, demographic instability (sex imbalances, isolation from 

conspecific mates) may predispose individuals to breeding with available congeners. In 

New Zealand, for example, a history of habitat loss and mammalian predation has reduced 

endemic black stilts Himantopus novaeseelandiae to a small but highly dispersed popula-

tion obliged by the shortage of preferred conspecific mates to inter-breed at times with the 

ubiquitous pied stilt H. h. leucocephalus (Pierce, 1984; Green, 1994; Wallis, 1999; De-

partment of Conservation, 2001c).  

 

Species isolated on islands are particularly exposed to hybridisation threats because habi-

tats changes can be more extensive, there may be fewer populations, habitat partitioning 

may be narrower and the juxtaposition of species closer than for mainland populations. On 

Mangere Island, mammalian predation and major contractions in available forest habitat 

have resulted in the severely reduced population of forest-specialist Forbes’ parakeets hy-
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bridising with similarly reduced sympatric Chatham Island red-crowned parakeets (Taylor, 

1975, 1985; Department of Conservation, 2001b). Protection of both parental genotypes 

from an enveloping hybrid swarm (the multiple back-crossing of fertile hybrids with the 

parental and hybrid populations) depended on the culling of hybrids which have proven 

equally able to exploit the recent recovery of forest habitat. Early culling also selected (de-

liberately and accidentally) against the red-crowned parakeet population on Mangere Is-

land to protect the smaller and more localised Forbes’ parakeet population (Department of 

Conservation, 2001a)  

 

Conservation biologists and wildlife managers dealing with critically endangered species 

must decide whether inter-breeding with former reproductively isolated congeners is natu-

ral or anthropogenic in origin. If natural, the threatened genotype may vanish; if anthropo-

genic, direct intervention to preserve it will be necessary. Similarly, decisions over local-

ised hybridisation (between insular congeners, for example) may determine whether valu-

able genetic variation in a population of a rare or declining species is lost or preserved. In-

tervention preserves options for the future and may minimise the risk of inter-breeding 

threats migrating to unaffected populations through hybrid dispersal.  

 

Inattention to the risk of hybridisation, hesitation in managing it or failure to detect it may 

result in fatally compromised viability or the development of a hybrid swarm, in the midst 

of which the detection, much less the recovery, of the parental genotypes could soon be-

come exceedingly difficult. No action was taken, for example, to protect New Zealand’s 

indigenous grey duck Anas superciliosa (a species disadvantaged by changes to wetland 

quality and extent) from introgressive hybridisation with introduced and more adaptable 

Mallard ducks Anas platyrhynchos. The swarm which developed through neglect is pre-

dicted to culminate in the outright loss of the grey duck as a distinct New Zealand species 

(Rhymer et al., 1994).  

 

In all three examples cited, wildlife managers have not been able to rely on inferior hybrid 

fitness or sterility to moderate the threats from introgression or demographic cost. It is not 

axiomatic that hybrids will suffer outbreeding depression in all cases (Rhymer and Simber-

loff, 1996). Nor can managers rely on the traditional morphological approaches to detect-

ing and managing hybridisation after the event. More recent molecular tools do better and 
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can determine the extent and history of hybridisation (Ma and Lambert, 1997a) but they 

too are not infallible (Allendorf et al., 2001).  

 

This chapter examines the history, causes and risk of recurrent hybridisation between black 

robins and Chatham Island tomtits, the congener with which black robins coexisted natu-

rally in the Chathams archipelago (Fleming, 1939b; Powlesland et al., 2001). Present-day 

black robin managers regard both the probability and consequences of further hybridisa-

tion as negligible. The operative black robin management strategy specifies no precaution-

ary monitoring for cross-breeding (Department of Conservation, 2001a). The policy is 

based on the misapprehension that observed black robin x tomtit cross-breeding arose en-

tirely as an unintended consequence of conservation management which ceased in 1989-

90. As this chapter reveals, unrelated cross-breeding events occurred long after that time. 

 

My brief account of historical black robin x tomtit cross-breeding is primarily descriptive 

and synthesises a more detailed work in progress to document the full history and causes 

of inter-breeding. Butler and Merton’s (1992) description of cross-breeding early in the 

intensive management phase (1980-81 to 1989-90) is helpful. Ma and Lambert (1997a, b) 

summarise the historical context of later cross-breeding events and Hardersen (1996) and 

Hutching (2004) refer to them, but otherwise the factors predisposing black robins and 

tomtits to cross-breeding under conditions apparently unrelated to management have been 

little documented or analysed. This summary also meets the need to quantify hybridisation 

as an extinction threat. This threat tends to be underestimated by conservation biologists 

and wildlife managers pre-occupied with the causes of deterministic extinction (Rhymer 

and Simberloff, 1996).  

 

8.1 History of black robin x Chatham Island tomtit hybridisation 

 
During the two central phases of black robin management (intervention, 1980-81 to 1989-

90; post-management monitoring, 1990-91 to 2001-02), at least one black robin female on 

Mangere Island and two on Rangatira Island mated with male tomtits. On Rangatira Island, 

managers also intervened to prevent a hybridising pair-bond establishing between a black 

robin yearling believed to be a female and tomtits with which she was interacting. The 

three black robin females breeding with tomtits (1.2% of 246 black robin females reaching 
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breeding-age in these periods) produced at least nine clutches (≥ 11 eggs) from which two 

F1 hybrid nestlings are known to have fledged (Figure 8.1; Table 8.1).   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.1 Tobin, the female F1 hybrid offspring of a tomtit male x black robin fe-

male pairing on Rangatira Island in the 1989-90 season (see Table 8.1). 
 Photo: Don Merton  

 

 

The two Rangatira Island cross-breeding black robins had selected the tomtit males as their 

first mates. One died naturally without ever mating with black robins. The other was trans-

ferred to Mangere Island (then tomtit-free; see below) where she could breed only with her 

own kind. After doing so successfully, she was returned to Rangatira Island where she 

mated with black robin males exclusively (Butler and Merton, 1992). This switching of 

mate-choices does not appear to hold true in reverse—no black robin females from this 

period or later were observed to breed with tomtits after having paired with black robins. 

However, the mate-selections of the Mangere Island female are unknown for the seven 

seasons in which she was overlooked by monitoring teams. She was mated with a tomtit 

when discovered in her final year.  
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On both islands, other cross-breeding events were possible after unmarked birds resem-

bling black robins but of unknown parentage (Mangere Island, n = ≤ 10, 1991-92 to 1993-

94; Rangatira Island, n = 11, 1990-91 to 1995-96) appeared in populations where all indi-

viduals were believed to have been fully accounted for. Suspicions were not aroused un-

duly on Mangere Island until irrefutable evidence of cross-breeding emerged five years 

after the first of the unmarked individuals appeared. Until then, all unmarked birds were 

considered to be genetically pure progeny of black robin pairings or breeding attempts 

which monitoring teams had missed.  

 

On Mangere Island, the unexpected appearance of unmarked individuals coincided with a 

three-year period (1990-91 to 1992-93) during which a dramatically scaled-down monitor-

ing regime was trialled by resource-stressed black robin managers (Chapter Four: Man-

agement of Extinction Threat). This experimental regime proved to be inadequate (Merton, 

1993, 1994) and full-population monitoring resumed in 1993-94. Four of the unmarked 

individuals were eventually colour-banded, suggesting that some of the ten originally ob-

served had been double-counted. The mate-choices, breeding behaviour and offspring his-

tories of these newly banded individuals indicate now that three of the four were probably 

genetically pure black robins. The fourth seems likely to have been the sibling of a known 

hybrid. It died naturally at age ≤ 4 (hatch-date uncertain), apparently without mating. A 

fifth unmarked bird (known subsequently as Robin A; Table 8.1) avoided banding but was 

followed closely.  

 

On Rangatira Island, eight unmarked individuals were eventually banded and followed 

closely. None aroused suspicion of being hybrids. On both islands, however, observers 

could not be sure that they had banded and followed all of the unmarked individuals origi-

nally counted.    

 

Back-crossing commenced on Mangere Island in 1993-94 but black robin managers did 

not recognise this for what it was. The fifth unmarked individual (Robin A) had mated with 

a tomtit female in regenerating forest and scrub on the periphery of the Robin Bush. To 

casual observation, Robin A was morphologically indistinguishable from a black robin and 

was considered to be one. His cross-breeding confounded black robin managers. Until that 

time, only black robin females with cross-fostering histories had inter-bred with tomtits. 

Merton (1993, 1997) considered that Robin A’s mate-choice originated from imprinting on 
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tomtit parents after a black robin female had laid in a tomtit nest or black robin eggs had 

been placed there, mischievously or otherwise. Robin A’s edge-dwelling habit, choice of 

territory, open-country perching behaviour (Figure 8.2), fragmentary fluting calls and trill-

ing at the nest (Kennedy, 1993b, 1996b) were explained in the same way. The egg-

dumping explanation had no precedent and unsanctioned fostering was an unconvincing 

suggestion. Adoption as a fledgling by tomtits was also postulated, but the only precedent 

for this involved tomtit foster-parents reclaiming a black robin fledgling they had raised 

after it had been returned to neighbouring black robins for rearing (Butler and Merton, 

1992).  

 

In 1995-96, three years after his discovery, minisatellite DNA analyses revealed that Robin 

A was an F1 hybrid from a tomtit male x black robin female breeding event (Lambert, 

1996, Ma and Lambert, 1997b). At that time, black robin managers knew of no such cross-

pairing but a year later the discovery of a cross-breeding female with a hybrid brood (Peg 

III, Table 8.1) suggested that she may have been his mother. The possibility of other unde-

tected cross-breeding females could not be ruled out. Robin A and his tomtit mate fledged 

two F2 hybrids in 1993-94 (Figure 8.3; see also Hardersen, 1996) and had hatched three 

F2 hybrid nestlings in 1994-95 (Table 8.1) when managers intervened to prevent further 

cross-breeding by the pair and their progeny.  

 

No further hybridising events were reported on either island after the discovery of Peg III 

in 1996-97. After 2001-02, monitoring intensity was scaled down significantly on Mangere 

Island and therefore was less likely to detect hybridisation (see Chapter Four for further 

details).     

 

8.2 Management of hybridisation events 

 
All hybridising events were treated as artefacts of human disturbance to the natural envi-

ronments of both species (Minister of Conservation, 1994; Aviss, 1995). Though small in 

relation to the number of conspecific pairings, the incidence of black robin x tomtit cross-

pairing and back-crossing (0.01% of total clutches laid, n = 1081, 1980-81 to 2001-02) 

was considered a threat to the small black robin population in the first instance, and to both 

parental genotypes secondarily. Management responses followed the policy adopted 

throughout New Zealand that, unless constructive hybridisation would benefit the species 
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of concern, protection of threatened parental taxa took priority even if the ecological im-

plications of cross-breeding were in doubt (Aviss, 1995). 

 

Black robin x tomtit cross-pairings on Rangatira Island were broken up either by culling 

the offending tomtit or by transferring the black robin to Mangere Island (tomtit-free be-

tween 1975-76 and 1988-89). When the transfer option was not available after tomtits 

were returned to Mangere Island, one or both cross-breeders were culled (Butler and Mer-

ton, 1992; Kennedy, 1993b, 1996b).  

 

Hybrid offspring were invariably culled in case they had inherited the superior mobility of 

tomtits and dispersed to breed undetected in the parent populations or in populations on 

other islands (Merton, 1993).  

 

 

 

 
 

 
Figure 8.2 Robin A (a male) was morphologically indistinct from genetically pure black rob-

ins on Mangere Island and was considered to be one until molecular analyses re-
vealed that he was the F1 hybrid progeny of a tomtit male x black robin female 
mating.  Photo: Sönke Hardersen 
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Figure 8.3 
 
Tom V (top right), the female F2 hybrid 
progeny of F1 Robin A (father) in the 
company of her tomtit mother, Mangere 
Island, 1993-94.  
Photo: Sönke Hardersen 

 

 

 

Specimens were retained for diagnostic DNA profiling of hybrids and to confirm their par-

entage (especially the identity of Robin A’s unknown mother) but the universally low ge-

netic diversity of black robins frustrated these objectives (Ardern and Lambert, 1997; Ma 

and Lambert, 1997a). Profiling was foreseen as a means of testing for hybridisation in the 

future (Kennedy, 1996b).  

 

What little post mortem and molecular data exist from the specimens suggests sexual di-

morphism in hybrids. First- and second-generation hybrid females (Figures 8.1 and 8.3) 

may be phenotypically intermediate between black robins and tomtits, resembling dark 

‘smudgy’ tomtit females. F1 hybrid males may resemble black robins (Figure 8.1; Te Papa 

Collection List for Petroica traversi, OR 025468; Ma and Lambert, 1997b) but this as-

sumption is based on a single sample (Robin A). I was unable to access the sample to con-

firm its sex. 

 

The policy of swift elimination was resisted by some black robin managers arguing that 

hybrid fertility and vigour should be tested by allowing F1 hybrids to breed under condi-

tions of close observation. If hybrids were infertile, then unmonitored black robin popula-
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tions of the future would be jeopardised only by the wasted reproductive effort and not by 

introgression (Kennedy, 1993b). The breeding success of the F1 hybrid male Robin A an-

swered these questions and confirmed that recurrent introgressive hybridising could lead to 

a potentially unmanageable hybrid swarm in unmonitored populations. Confirmation that 

cross-breeding might recur unseen did not influence later decisions to reduce monitoring 

intensity (Department of Conservation, 2001a). 

 

The realisation that F1 hybrids (Robin A) could resemble black robins triggered an inten-

sive effort to obtain DNA samples from black robins of unknown parentage on Mangere 

Island. Samples were taken from 20 tomtits also, to help with molecular detection of cross-

breeding. None of the suspected hybrids was found and were all assumed dead (Amey and 

Studholme, 1996). Rangatira Island populations were not investigated in this way but ear-

lier DNA-related research had revealed no signs of genetic mixing in the 61 black robins 

sampled (58.6% of the population; Holmes, 1993, 1994; Ardern and Lambert, 1997). The 

Mangere Island survey revealed incidentally that introgression was a serious threat to the 

tomtit genotype. Genetic diversity in the small tomtit population (n = 51) was discovered 

to be depleted (Ma and Lambert, 1997b), suggesting that it and the Rangatira Island popu-

lation from which it was derived by transfer were, like the black robins, descendants of 

reduced, ancestrally inbred populations.  

 

The immediate risk of further cross-breeding was managed in both black robin populations 

by continuing with comprehensive monitoring during the breeding seasons. Locating the 

cross-paired black robins and tomtits was considered to be the most reliable means of de-

tecting cross-breeding in time to intervene. On Mangere Island, more time was devoted to 

searching the scattered bush areas outside the Robin Bush. Vigilance was rewarded in 

1996-97 when the female Peg III was discovered with a tomtit mate and hybrid brood 43 in 

the largest aggregation of scrub in the Douglas Basin (Figure 2.4). It was this discovery 

which strengthened concerns about the provenance of the ten or so unmarked individuals 

encountered since Peg III had disappeared (thought dead) eight years before, in 1988-89.  

 

                                                 
43  The DNA sampling team had captured Peg III two months earlier in the same locality 

but had construed her interest in a local tomtit male to be aggression, not cross-breeding 
behaviour (Amey and Studholme, 1996). 
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Full-population monitoring ceased on Rangatira Island in 1998-99 and was replaced with 

pre- and post-breeding index-monitoring (distance-sampling in 1999-2000, and mark-

resighting from 2000-01 onwards). The mark-resighting method was adopted exclusively 

on Mangere Island after 2001-02. These labour-saving alternatives to full-scale monitoring 

are significantly less sensitive to the signs of hybridisation or the subtle behavioural 

anomalies of hybrids. Current monitoring practice is therefore unlikely to detect introgres-

sion before it is well advanced. 

 

8.3 Causal factors 

 
Mal-imprinting, habitat fragmentation and unnaturally small population sizes appear to 

have been the proximate causes of black robin x tomtit cross-breeding. Mal-imprinting was 

an unintended consequence of conservation management, but the timing of another con-

servation initiative—the reintroduction of tomtits to Mangere Island—contributed also. 

This last factor has been overlooked in previous accounts of hybridising events on Man-

gere Island. 

 

8.3.1 Mal-imprinting 

 
Sexual mal-imprinting on tomtit foster-parents was the unifying explanation for all hy-

bridisation events on Rangatira Island (Table 8.1; Butler and Merton, 1992). Black robin 

offspring were never fostered to tomtits on Mangere Island, but a small number of males 

and females fostered to tomtits on Rangatira Island were transferred to Mangere Island to 

breed. None of these showed signs of sexual mal-imprinting. 

 

Receptiveness to tomtit courtship behaviour emerged as a side-effect of cross-fostering in 

the first fully fostered black robin female surviving to breed (that is, she was hatched and 

raised to independence entirely by tomtits). This mal-imprinting effect was not evident un-

til 1984-85, four seasons after cross-fostering commenced. A small number of black robin 

females had been raised by their biological parents in the interim, thus avoiding—by 

chance—a very small breeding population dominated by mal-imprinted females. Fully fos-

tered black robin males (n = 12) showed no reciprocal preference for tomtit females, nor 

was mal-imprinting in fostered females shared by female siblings in the same nest. Female 

receptiveness to tomtits was remedied in 1985-86 and thereafter by the policy of returning 
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all fostered black robin nestlings to black robin pairs whenever possible for fledging and 

rearing to independence (Butler and Merton, 1992). Following the change to temporary 

fostering, 36 of the 53 females fostered to tomtits survived to breeding age. None showed a 

preference for tomtit mates (this study).  

 

Sixteen black robin females were fully raised by tomtits on Rangatira Island during the 

cross-fostering programme (1980-81 to 1989-90). Eight survived to breeding age, among 

them the three Rangatira Island females breeding with tomtits or responding to courtship 

overtures (Table 8.1). Of the other five, three formed pair-bonds with black robin males 

and two did not live long enough as adults to do so. Two of the three mal-imprinted fe-

males on Rangatira Island remained constantly aloof from the company of their own kind. 

Their detachment may have been a habit acquired through tomtit-upbringing or it may 

have been coincidental—some naturally raised black robins of both sexes remained aloof 

in later seasons too. Whatever the explanation, the preference for territories on the periph-

ery of the resident black robin population increased the likelihood of contact with potential 

tomtit mates operating in relative freedom from territorially defensive black robin males. 

 

The risk of cross-breeding by any fully fostered black robin female ceased when the last of 

them passed out of the populations through transfer (Mangere Island, 1987-88) and natural 

attrition (Rangatira Island, 1997-98; this study).   

 

8.3.2 Cultural transmission of sexual mal-imprinting 

 
The cross-breeding black robin female on Mangere Island (Peg III; Table 8.1) was raised 

entirely by her biological parents. Her father was fully tomtit-raised and her mother par-

tially so (Table 8.2). Merton (1997) argued that enough of their ‘cross-culturally acquired 

characteristics’ had been transmitted during parenting to influence her mate-choice. This 

argument was extended to the unknown parents of the unmarked ‘black robins’ (including 

Robin A) discovered outside the Robin Bush between 1991-92 and 1996-97.  

 

The evidence for cultural transmission is weak. The majority of black robin offspring 

reared to breeding age by partially or fully tomtit-raised parents did not cross-breed (Table 

8.2). Two of the three which did cross-breed had no contact with black robin parents at any 

time (that is, they were fully raised by tomtits from earliest incubation). Only the third 
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(Peg III) was raised by black robin parents which were themselves fostered.44 Any tomtit 

affinities acquired from her parents failed to affect her 11 surviving siblings. The fourth 

female treated as a potential cross-breeder (Ali I; Table 8.1) was raised entirely by black 

robin parents with no cross-breeding history at all.  

 

 

Table 8.2 Numbers of breeding-age offspring produced by tomtit-fostered black robin 
parents and numbers among them later cross-breeding with Chatham Island 
tomtits on Rangatira and Mangere Islands. Names in red denote cross-
breeding offspring which were themselves fostered to tomtits (fully fostered in 
all cases). 

 
 Offspring  Offspring later cross-breeding 

Tomtit-raised parents Male Female  Male Female Name 

       

Mother fully fostered  11 12 
 

- - - 

Mother part-fostered  71 65 
 

- 2 Maggie 
Peg III 

       

Father fully fostered 23 14 
 

- 3 
Marion 
Maggie 
Peg III 

Father part-fostered  58 52  - - - 

       
 

 

8.3.3 Habitat fragmentation 

 
Sexual mal-imprinting on tomtit foster-parents is the leading explanation for cross-

fostering-phase inter-breeding on Rangatira Island, but it does not adequately explain post-

fostering hybridisation on Mangere Island. Instead, the interacting effects of habitat change 

and small population size appear to have created the predisposing conditions for inter-

breeding on Mangere Island.  

 

                                                 
44  The relationship between Peg III’s cross-breeding and her parents’ fostering histories 

may simply have been coincidental. Because tomtit-raised breeders of either sex out-
numbered black robin-raised breeders 4 to 1 in her natal season, her probability of being 
raised by fostered parents was unusually high. 
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Anthropogenic changes to Mangere Island’s forest cover were more profound than on 

Rangatira Island. The island was almost completely deforested during more than a century 

of livestock browsing and pastoral farming (c.1860 to 1968; Chapter Three: History of De-

cline). Despite natural regeneration assisted by revegetation programmes (Atkinson, 2003), 

the largest area of forest habitat is the small Robin Bush isolate (7.9 ha). This is sur-

rounded by outlying fragments of bush and scrub cover, mostly in the Douglas Basin. This 

fragmented habitat is sub-optimal for the forest-specialist black robins, and may be so for 

the tomtits too. In contrast, on Rangatira Island both species have large areas of contiguous 

forest cover available to them, within and between which they can disperse.  

 

The extent and quality of breeding habitat reduces Mangere Island’s black robin and tomtit 

populations to unnaturally small sizes, accentuating the probability of inter-breeding and 

introgression (Rhymer and Simberloff, 1996; Ma and Lambert, 1997b). In addition, differ-

ing histories of extirpation (Chapter Three) and asynchronous re-introduction of the two 

species to the island (see below, and Chapter Four) have disturbed the natural sympatry 

between black robins and tomtits. 

 

A telling feature of cross-breeding on Mangere Island is that it did not occur within Robin 

Bush where Amey and Studholme (1996) found tomtit densities to be highest. All cross-

breeding on the island was detected outside the Robin Bush where at least five of the ten 

unmarked ‘black robins’ (including the F1 hybrid Robin A) were also encountered.  

 

In the confinement of Robin Bush, young black robins and unmated adults commonly 

cluster near the bush edge (pers. obs.; field records consulted by this study), predisposing a 

few to movement beyond. Beyond the perimeter, new territory opportunities and refuge 

from territorial conflict within the bush exist only in fragmented habitat depauperate in 

black robin mate-choices. Occasionally, young non-site-fixed black robins stray beyond 

the Robin Bush perimeters but no black robin pairs are known to have established territo-

ries outside the Bush or in the Douglas Basin (data collated by this study). In contrast, 

tomtits utilise open habitat (Flack, 1976a) and pairs breed in and outside the Robin Bush 

today (pers. obs.).  

 

The critical contribution of habitat fragmentation to cross-breeding on Mangere Island is 

likely to be the isolation it imposed on dispersing black robins. What role habitat character 
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and reduced numbers played in tomtit population dynamics on Mangere and Rangatira Is-

lands is difficult to determine in hindsight. Pre-occupation with black robin recovery ne-

glected study of the tomtits, so that little is known of the habitat-disturbance effects which 

may have predisposed tomtit males to breed with black robin females on either island.  

 

8.3.4 Small population size 

 
The unnaturally small black robin population on Mangere Island was exposed to two con-

ditions likely to have accentuated the probability cross-breeding in poor or limiting habitat: 

annual imbalances in sex ratios and diminished opportunities to acquire conspecific mates. 

Evidence suggests that the small tomtit population may have been exposed to at least the 

former condition for some time after reintroduction to the island.   

 

8.3.4.1 Sex-ratio imbalances 
  
Merton (reported in Kennedy, 1993b) suggested that Robin A’s cross-breeding (while he 

was still regarded as a black robin) was attributable to shortages of black robin mates aris-

ing from skewed sex ratios on Mangere Island. There is no evidence that shortage of mates 

in the familiar, relatively undisturbed habitat of the Robin Bush resulted in cross-breeding. 

There is a strong inferential link between mate-shortage and cross-breeding events outside 

Robin Bush. 

 

Sex-ratio imbalances in the small black robin population could not have contributed to fe-

male cross-breeding until tomtits were reintroduced to the island after 1986-87 (see Sec-

tion 8.3.4.3 below). Thereafter a female surplus arose only in 1989-90 (Figure 8.4), the 

season in which Peg III appears to have settled outside the Robin Bush. Naturally fluctuat-

ing sex ratios in post-management seasons (1990-91 to 2001-02) resulted in higher num-

bers of unmated black robin males and females. Surpluses were skewed in both directions 

(Figure 8.4) but none of the unmated black robins or others occupying Robin Bush was 

observed to mate with the reintroduced tomtits (this study).  

 

A pronounced male-skew in the tomtit population of 1996-97 (33 males - 18 females; 

Amey and Studholme, 1996) did not have observed hybridising consequences inside the 

Robin Bush either but may have contributed to events in the fragmented habitat beyond. It 

is not known when this skew developed or for how long it persisted after 1996-97. 
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8.3.4.2 Inability to find mates 
 
On Mangere Island, extensive inter-breeding did not follow from bi-directional imbalances 

in black robin mate availability after 1986-87. However, isolation from potential conspeci-

fic mates in fragmented habitat comes closest to explaining the tomtit mate-choice of the 

dispersing female Peg III and the reciprocal choice of her tomtit mate. Separation from 

potential black robin mates may also have contributed to the cross-breeding by mal-

imprinted females on Rangatira Island. As noted earlier (Section 8.3.1), two of the cross-

pairings (one consummated, the other apparently forming) were located in the isolated 

tracts of forest from which unmated black robin males were absent at the time.  

 

Peg III could not be found in January 1989 and it is supposed now that she had dispersed 

from the Robin Bush as a free-ranging juvenile. She had not been made ‘friendly’ before 

she disappeared. The Bush was lightly populated at that time (black robin n = 14), so her 

movement beyond the bush perimeter may have been random and consistent with the na-

ture of juvenile movements observed in comparable population densities on Rangatira Is-

land (Chapter Six: Population Trends After 1980). The experimentally reduced monitoring 

regime pursued in subsequent seasons failed to detect her. If settled in the Douglas Basin 

by spring 1989, she was well removed from the 12 black robins then in the Robin Bush, 

and unable to compete for any of the six males in the population. There were no spare 

black robin males to seek her out in that season (Figure 8.4). In the next season, all four 

spare black robin males remained in Robin Bush. In 1989-90, her mate-choices were lim-

ited to the tomtits newly released into her habitat in the preceding April or their progeny of 

following seasons.  

 

8.3.4.3 Introduction of Chatham Island tomtits 
  
To reduce competition for scarce space and resources, Mangere Island’s population of 19 

tomtits was eliminated prior to the transfer of the last seven robins from Little Mangere 

Island in 1976-77 (Flack, 1976c, f). The species was reintroduced from Rangatira Island 

on four occasions between 1986-87 and 1987-88 (transfers of one to nine birds, Merton, 

1989) but none of the transfers resulted in re-establishment. In April 1989, 21 non-site-

attached tomtits (13 males, 8 females) were liberated into the Mangere Island habitat (Mer-

ton, 1989; Grant, 1989). Some were taken as far as the Robin Bush (Ron Nilsson, pers. 

comm.) but most were released in the Douglas Basin. This larger liberation succeeded in 
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its purpose despite the tomtits having to compete with the 14 established black robins. Up 

to six tomtit adults were seen in the next season, some breeding successfully in and around 

the Robin Bush periphery (Mangere Island hut logbook entries, 1989-90). Despite several 

searches, none was found alive in the Douglas Basin nor was the isolated, elusive Peg III 

seen there. There is no evidence to suggest that in that season she bred with a tomtit or that 

she bred at all, but the reintroduction and immediate breeding success of the tomtits en-

sured that this was a possibility. The first hint that she might have mated and bred produc-

tively was the appearance of an unmarked ‘black robin’ of unknown provenance in the 

Douglas Basin after breeding had concluded in the 1991-92. Robin A’s appearance in 

1992-93 is strongly suggestive of a tomtit mate by at least that season. 

 

8.4 Discussion 

 
Hybridisation between black robins and Chatham Island tomtits is unique among the mod-

ern New Zealand Petroica. Despite the degree to which populations of sympatric mainland 

congeners are confined and reduced in many parts of their ranges (Heather and Robertson, 

1996; Higgins and Peter, 2002), the literature reports no instance of cross-breeding.   

 

Events on Mangere and Rangatira Islands between 1984-85 and 1996-97 confirm that hy-

bridisation should not be underestimated as a threat to populations reduced to unnaturally 

small sizes by deterministic extinction pressures (Rhymer and Simberloff, 1996). There is 

no evidence of historical hybridisation during the period of black robin decline, suggesting 

that extirpation of each island population was too swift. Instead, the cross-breeding threat-

ened population recovery. Cross-pairing individuals deprived the black robin and tomtit 

populations of breeding potential at times when the numbers in each were critically low. 

The processes of introgression had also commenced but were arrested before advanced 

genetic mixing could imperil either parental genotype. Had cross-breeding not been de-

tected at the first instance, large-scale culling would have been penalising. However, cull-

ing and other forms of intervention now deprive today’s conservation managers of infor-

mation critical to gauging the potential for hybrid swarms in the future. Though first-

generation hybrids proved to be fertile and were not behaviourally bound to mating exclu-

sively with other hybrids, the fertility, fitness and mate-preferences of second- and third-

generation hybrids remain unknown (no F1 females or F2 hybrids of either sex were per-

mitted to breed). Cross-breeding between parent populations appears to have been sexually 
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unidirectional (only black robin females and tomtit males hybridised) but this may not be 

true of hybrids if they solicit reciprocally.  

 

The events described on Mangere and Rangatira Islands illustrate the potential of hybridi-

sation to arise from well-intentioned and otherwise successful conservation management. 

The reintroduction of tomtits to habitat on Mangere Island in which black robins were al-

ready established brought the populations of both species into sudden juxtaposition when 

each was exposed to the perils of demographic instability associated with small size—in 

this case, isolation from potential mates. Cross-fostering overrode the behavioural and re-

productive barriers to inter-breeding, elevating the risks associated with highly manipulat-

ive management of critically small populations (Ma and Lambert, 1997b). Had fully fos-

tered black robins simply been left to their own devices after fledging, unobserved cross-

fostering may inadvertently have increased rather than lessened extinction risk.  

 

The later cross-breeding on Mangere Island supports predictions that habitat decline and 

small population size predispose reproductively isolated congeners to inter-breeding (Tay-

lor, 1975; Rhymer and Simberloff, 1996). Sexual mal-imprinting on tomtit foster-parents 

appears to have played much less a role in events than believed (if any at all). On the evi-

dence available, inter-breeding was confined to the areas of degraded habitat in which one 

of the parent populations (the black robin) was disadvantaged and the other (the tomtit) 

was more suited. The ecological and behavioural mechanisms separating the black robins 

and tomtits reproductively did not break down in the Robin Bush which was habitat famil-

iar to both, despite its small size and confinement. Evolved preferences for conspecific 

mates prevailed under less modified conditions, even in seasons of significant and unpre-

dictable sex-ratio imbalances. This was true also in the larger intact habitats on Rangatira 

Island where mate surpluses existed but tended to be less erratic (Chapter Two: Section 

2.10). On Mangere Island, the shortage of suitable conspecific mates only became a liabil-

ity to the small black robin population in severely fragmented habitat.  

 

The Mangere Island events have the more ominous implications for the future of the black 

robin and tomtit populations while habitat constraints reduce population sizes. Chance had 

a significant role to play in the isolation of Peg III, suggesting an unpredictable dimension 

to cross-breeding which did not operate in the Rangatira Island context. Chance may have 
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been given a hand by the random dispersal behaviour of non-site-fixed black robin juve-

niles, particularly (but not exclusively) females (Chapter Six). 

 

8.4.1 Will cross-breeding happen again? 

  
Two of the three factors predisposing black robins and tomtits to cross-pairing histori-

cally—habitat fragmentation and small population size—continue to operate on Mangere 

and Rangatira Islands. Sexual mal-imprinting on tomtit foster-parents can be discounted 

now and there is no evidence to suggest that cultural transmission of tomtit mate-

preferences is a threat.   

 

Habitat fragmentation is the most potent factor predisposing black robins and tomtits to 

cross-pairing activity in the future. The risk is greater for the black robins whose biological 

vulnerabilities (forest-interior habit and low productivity) make the species more sensitive 

to changes in habitat quality (Chapters Two, Three and Six). A black robin dispersing by 

chance or displacement outside forest perimeters has a higher probability of encountering 

tomtits which are better adapted to living and breeding there.  

 

The implications of fragmented habitat for cross-breeding on Rangatira and Mangere differ 

only in scale. On Mangere Island today, habitat is as limited and confining as it has been 

for the last two decades. The recent planting of a forest corridor between the Robin Bush 

and the Douglas Basin plantings could encourage more black robins to move into the lat-

ter, perhaps increasing the probability of finding a black robin mate. However, this prob-

ability is offset by the apparent reluctance of black robins to establish pair-bonds in this 

sub-optimal habitat. The cross-breeding risk posed by serendipitous isolation in the Doug-

las Basin vegetation will not diminish until an extensive, mature forest cover develops. At 

current rates of canopy closure, this will take decades.  

 

In contrast to Mangere Island, Rangatira Island possesses broad expanses of contiguous 

forest habitat and closely positioned forest outliers. These suggest a lower probability of 

hybridisation. However, black robin densities in the Woolshed Bush interior had already 

reached the point at which, by the mid-1990s, individuals were dispersing to and settling in 

isolated bush outliers and the tracts of tall scrub in Muehlenbeckia fields beyond (data col-

lated for this study). In the Top Bush, black robin densities have always been low and 



 

Chapter Eight: Hybridisation 268 

breeding centres sparsely distributed (Chapter Six). Dispersing juveniles often settle re-

motely in isolation from other black robins. Recent disintegration of Top Bush breeding 

centres (Kennedy and Wilson, 2005; pers. obs.) has exaggerated this condition. The possi-

bility of hybridisation cannot be ruled out.  

 

8.4.2 Conservation management implications of cross-breeding 

 
The black robin and tomtit populations of the Chatham Islands are too seriously reduced in 

range and number to allow future cross-breeding to take an evolutionarily creative course. 

The ecological value of a novel Petroica genotype of uncertain viability is outweighed by 

the conservation risks of reducing the parent genotypes to single populations.  

 

The future of extant black robin and tomtit populations cannot be taken as assured if cross-

breeding recurs and is not treated swiftly. Cross-breeding and introgression may not re-

main confined to population peripheries. Given the depleted genetic diversity of each spe-

cies (Ardern and Lambert, 1997; Ma and Lambert, 1997a, b), neither can afford to lose ge-

netic variation accumulating in extant populations. Nor can natural selection be left to 

purge the effects of introgression because the populations may not be responding naturally 

to selection pressures.  

 

Very early detection of cross-breeding was the key to effective management in the past. 

Conversely, poor monitoring courted the disaster of a hybrid swarm on Mangere Island. 

Detection of cross-pairings as they form or breed avoids the very considerable difficulties 

of managing advanced introgression. The legacy of uncertainty over sexual dimorphism 

and the nature of phenotypic variation in black robin x tomtit hybrids makes hybrid recog-

nition in the field problematic. The longer the delay in responding to cross-breeding, the 

more complex, costly and uncertain are the prospects of rebuilding from a core of verifi-

able parental genotypes (Rhymer and Simberloff, 1996; Allendorf et al., 2001).   

 

Detailed knowledge of the black robin populations was unquestionably the most advanta-

geous asset for effective management of the cross-breeding risks. The crucial insights ob-

tained from full-population monitoring were indispensable to detecting past cross-breeding 

events, interpreting their causes and minimising the effects of preventative management on 

the parent populations. The consequences of substituting inferior forms of monitoring on 
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Mangere and Rangatira Islands are fully illustrated in the penalising lapses in monitoring 

between 1990-91 and 1992-1993 (Merton, 1993, 1997; Chapter Four). Current index-

monitoring methods offer even fewer insights than were available to observers on Mangere 

Island at that time. Precautionary management and follow-up of cross-breeding suspicions 

are very significantly disadvantaged as a result.  

 

The lessons learned from past hybridising events make clear what measures represent ideal 

pro-active management of cross-breeding risks. The less rigorously these measures are ap-

plied, the higher the probability that observation will fail to detect inter-breeding: 

• comprehensive black robin monitoring of consistently high quality, incorporating 

concerted surveys of distribution throughout habitats 

• simultaneous monitoring of tomtit populations wherever they coincide with black 

robins 

• closer familiarity with black robin and tomtit populations and their habitats, derived 

from longer and more frequent contact within seasons and from year to year   

• continuity in monitoring and management teams sustained through retention of 

skilled staff, knowledge transfer of higher quality and the reinstatement of a collegi-

ally owned and grounded black robin management culture 

• selection of experienced observers who know what to look for, how to interpret what 

they see and how to record it appropriately 

• accelerated replanting of forest habitat on Mangere Island. 
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CHAPTER NINE 

CONCLUSIONS 

 

 

 

9.0 Introduction  

 
This study set out to examine extinction vulnerability in the two small, chronically inbred 

sister-populations of Chatham Island black robins recovering on Mangere and Rangatira 

Islands from historical decline to a single-pair bottleneck between 1979-80 and 1982-83. 

Each island is a habitat-limited refuge from deterministic extinction threats. To assess vul-

nerability to decline historically and in the future, my evaluation of extrinsic and intrinsic 

extinction risks has drawn extensively on diverse historical sources and an often detailed 

demographic record of population collapse and recovery spanning 30 years.  

 

Clarification of black robin risk factors has addressed two closely related theoretical and 

management questions. First, do threatened insular endemic birds have naturally lowered 

susceptibility to the predicted genetic consequences of small population sizes? This was 

the hypothesis advanced by Craig (1991, 1994) to explain the persistence of New Zealand 

bird populations reduced by anthropogenic change to unnaturally low numbers. These 

populations persist in relict habitats or have been successfully established on small pro-

tected islands from founder numbers as low as five randomly selected individuals. Craig’s 

hypothesis of elevated immunity to inbreeding effects argued that insular endemic birds in 

New Zealand and elsewhere differ from outbred species of continental contexts. They are 

assumed to be naturally more inbred through evolutionary confinement to small population 

sizes and through traits as sedentary habits, stable territorially based breeding systems and 

limited dispersal ability. These typical adaptations to insular life are expected to have ex-

posed genetic load to the purging processes of natural selection.  

 

The second question investigated by my study concerns the conservation implications of 

the first. Is the mid- and long-term viability of threatened insular endemic bird populations 

guaranteed solely by treating deterministic extinction pressures and reversing population 

declines? This has been the strategy adopted widely in New Zealand to preserve critically 

threatened birds from extinction. Translocation to protected islands or to ‘islands’ of pro-
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tected habitat, many of them very small, has rarely been followed by measures to minimise 

potential genetic threats to persistence. This so-called ‘New Zealand cure’ for threats to the 

viability of insular endemic birds (Groombridge, 2007), and the theoretical support it re-

ceives from Craig (1991, 1994), are at odds with central tenets of genetics theory. These 

predict inevitable genetic compromise in reduced, isolated, obligatorily inbred wildlife 

populations which will threaten mid- and long-term viability even after the deterministic 

causes of decline have been treated. 

 

I have analysed the black robin decline and subsequent recovery to test these questions 

empirically. Their underlying assumptions have been addressed by assessing which intrin-

sic and extrinsic factors responsible for population losses and decline in the tiny vestigial 

population on Little Mangere Island increase extinction vulnerability in present-day and 

future populations. I have analysed trends in the two extant populations to assess which 

demographic variables limited rates of recovery and signal problems for future viability. 

The fitness implications of these variables have been examined through correlations with 

levels of inbreeding in the populations to gauge potential threats from continued inbreed-

ing. These insights have been complemented by critical review of past management strate-

gies, their consequences for the management of extinction threat in the past and their ap-

propriateness for the remedy of future threats.  

 

9.1  Extinction-risk factors 

 
This study’s detailed analysis of black robin life-history traits shows that the species is in-

herently extinction-prone and suggests for the first time that it is the most intrinsically vul-

nerable of the 13 south temperate Petroica species in New Zealand and Australia. The 

Snares and Auckland Island tomtits may be the exceptions but little is known of their biol-

ogy (Chapter Two: Tables 2.4 and 2.5). As a classically K-selected species with associated 

island-dweller traits and the ‘slow’ breeding strategy common among southern passerines 

(Russell et al., 2004), the black robin possesses the ecological and behavioural attributes 

which account for the disproportionate representation of insular endemic birds in global 

avifauna extinction rates (Myers, 1979; King, 1985a, b; Atkinson, 1989, Reid and Miller, 

1989; Johnson and Stattersfield, 1990; Smith et al., 1993). K-selection is characteristic of 

many threatened terrestrial birds in New Zealand and other oceanic islands (Bell, 1991; 

Wilson, 2004), but relative to the other south temperate Petroica, the black robin possesses 
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specialist evolutionary adaptations to stable, predator-free island environments which in-

crease its vulnerability to novel threats. Sensitivity is heightened particularly by preference 

for forest-interior habitat, which restricts foraging and breeding ranges and exaggerates 

stresses imposed by fragmenting forest cover. Reluctance to traverse open spaces limits the 

black robin’s ability to exploit distant habitat and broader foraging opportunities. Poor 

powers of flight have extinguished inter-island gene flows and recolonising potential. The 

black robins nest in hollows or cavities in the lower forest strata, well within the hunting 

ranges of introduced mammalian predators or avian competitors such as starlings. Cru-

cially, my study shows that reproductive output is the lowest known of the south temperate 

Petroica species (Tables 2.4 to 2.7), a consequence of low average clutch sizes, a long 

breeding cycle and short breeding seasons. The species trades low output potential for long 

investments in parental care, with the result that pairs generally raise one brood only in the 

short nesting season. The black robin does not have recourse to the mainland robin’s food-

caching habit as a means of extending breeding seasons into periods of food scarcity.  

 

The black robin possesses a degree of resilience to change but some biological advantages 

can become liabilities when change is radical. As a small passerine, it is capable of breed-

ing sooner and faster than larger-bodied K-selected non-passerines such as kakapo and ta-

kahe, both also reduced to critically small population sizes (Neill, 2008; Wickes and 

Crouchley, 2008). Males and females can breed successfully at year one and often do in 

current populations. Females can renest successfully (up to twice) or can make up to four 

breeding attempts if previous efforts fail. Territories and pair bonds are durable, resistant 

to the effects of breeding failure and frequently long-lasting. This is advantageous when 

pairs produce well but has the potential to prolong unproductive pair-bonds. As I have 

shown in Chapter Three, this problem nearly proved fatal to the species when only two 

pairs remained after transfer to Mangere Island in 1976-77. Fidelity in closely related pair-

ings may also aggravate inbreeding problems for very small populations. The risks in a 

wholly insectivorous diet are moderated by the diet’s broad diversity but black robins for-

age extensively on or near the forest floor where rodents and the predatory flightless weka 

present on larger islands in the group will compete aggressively if introduced. These forag-

ing traits limit the potential for reintroduction to the major predator-affected islands in the 

black robin’s former range (Pitt and Chatham Islands). On Little Mangere Island, ground-

prey shortages induced by petrel activity (compounded no doubt by the cooling and desic-

cating effects of wind penetration) were debilitating (Flack, 1976a). Both sexes are gener-
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ally long-lived in suitable habitats (up to 13 or 14 years in rare cases), a factor favouring 

population persistence. But, as indicated by the high rates of adult and juvenile mortality in 

Little Mangere Island’s deteriorating forest (Chapter Three) and anomalously short life-

spans in the colder Top Bush (Chapter Six), longevity may be significantly compromised 

in sub-optimal habitats. The black robin may be more sensitive to forest type and quality 

than has been expected. My study suggests that the extent of habitat suitable for black rob-

ins may be much less than appears to the observer.   

 

The black robin’s life-history attributes and slow breeding strategy were appropriate in its 

benign pre-human environments but they became fatally disadvantageous when mammal-

ian pests arrived, forest habitats deteriorated and mortality rates increased. Tellingly, the 

black robin has not persisted in some hostile Chatham Islands habitats still populated (for 

now) by its nearest relation, the Chatham Island tomtit. The tomtit’s social, breeding and 

foraging strategies are similar but the species possesses a critical reproductive advantage in 

a shorter breeding cycle and larger average clutch sizes, both of which result in brood po-

tential twice that of the black robin’s (Tables 2.4 and 2.5). This and other biological advan-

tages (tolerance of open spaces which extends breeding and foraging ranges, and perhaps 

inter-island dispersal powers) have allowed the tomtits to survive long-lasting and varied 

threats in the black robin’s traditional habitats. The persistence of South Island robins in 

the presence of predatory rodents, cats, and mustelids at Kowhai Bush is similarly indica-

tive of that species’s superior reproductive output (Powlesland, 1983; Flack, 1976d, 1979; 

Flack and Lloyd, 1978). The South Island robin’s high reproductive potential has allowed 

the population on predator-free Motuara Island (58 ha) to grow unassisted from five indi-

viduals introduced in 1973 (Flack, 1974a) to 600 birds two-and-a-half decades later 

(Byrne, 1999; Boessenkool et al., 2007). In contrast, the seven black robins introduced to 

Mangere Island in 1976-77 declined to five until very actively assisted over ten years to 

reach 93 individuals in spring 1990 (Chapter Six).   

 

The extent to which the black robin’s sensitivity to threats is natural or compromised by its 

genetic history can no longer be ascertained through comparisons with undisturbed refer-

ence-populations. Whichever the case, evolutionary adaptation to local conditions did not 

equip black robin ancestors to withstand the changes associated with human contact. My 

scrutiny of sketchy historical records has identified habitat destruction and mammalian 

predation as the main extinction drivers (Chapter Three). The records are generally unin-
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formative about the timing of direct exposure to these unfamiliar pressures but inferences 

drawn from the few clues given, coupled with analysis of the population collapse on Little 

Mangere Island and findings on the black robin’s narrow biological tolerances, suggest 

swift elimination from Pitt, Rangatira and Mangere Islands, perhaps within two to three 

decades of first exposure to predators and habitat change. Not enough is known of the 

Chatham Island extinction to be sure of its timing.  

 

My historical research allows important conclusions to be drawn about external threats and 

their implications for small, isolated populations of black robins and birds similarly lack-

ing the ability to cope:  

 

• For black robins, change in the character and quality of forests alone appears to have 

been fatal historically. This is the only plausible explanation for extinction of the origi-

nal Rangatira Island population, and was the observed driver of population collapse on 

Little Mangere Island. Given the black robin’s forest-interior habit, contracting and 

fragmenting forest cover will act directly on population sizes by restricting living and 

foraging space. Preliminary evidence of a climatic effect restricting populations in the 

Top Bush on Rangatira Island today (Chapter Six) points to further reductions in carry-

ing-capacity when forest interiors are opened to weather.  

   

• Predation by partially arboreal kiore, the earliest, smallest and perhaps least adept pas-

serine-predator of the three rat species introduced to New Zealand (Atkinson, 1978), 

was possibly the sole cause of extinction on Chatham Island. This assumes a fatally 

large or sustained irruption of rats after first arrival (Chapter Three). Other studies 

show that black robin adults, eggs and nestlings fit within the kiore’s prey size range, 

reach and foraging habits (Atkinson, 1978; Lovegrove, 1996; Brown, 1997; Holdaway, 

1999). If my assumption of kiore extinction is correct, the black robin can be added to 

the global list of insular bird extinctions attributable to this commensal rodent (Atkin-

son, 1978, 1985; Holdaway, 1999; Towns et al., 2006). 

 

• On Mangere Island, extensive loss and fragmentation of forest cover appears to have 

been a principal factor eroding the ecological and behavioural barriers to inter-breeding 

between black robins and sympatric tomtits (Chapter Eight). The same factors explain 

the hybridising of their ecological associates, the rare Forbes’ and ubiquitous Chatham 
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Island red-crowned parakeets (Taylor, 1975, 1985; Department of Conservation, 

2001b). The consequences of introgression for both Petroica congeners are profound 

while their populations remain small and genetically depleted (Ardern and Lambert, 

1997; Ma and Lambert, 1997a, b). This underestimated implication of habitat change is 

a crucial threat to both Petroica genotypes while only two small populations of each 

survive in protected habitats.  

 

• Two potentially advantageous features of black robin distribution proved to be com-

pletely ineffective defences against habitat and predator threats on some islands. Ironi-

cally, all black robin recovery strategies have striven to capitalise on these very fea-

tures (Flack, 1971; Butler and Merton, 1992; Kennedy, 1993a; Department of Conser-

vation, 2001a). Large population size and distribution over 90,000 ha conferred no 

immunity to outright loss on the Chatham Island. Nor did isolation on a remote island 

prevent threats migrating through an ecological associate (the sooty shearwater) to Lit-

tle Mangere Island. Whether or not the destructive densities of shearwaters on the is-

land resulted from displacement of the species from larger breeding sites elsewhere in 

the archipelago (no firm evidence of this exists), their catastrophic effects on forest sta-

bility and regeneration signalled that remoteness is no barrier to threats arriving 

through avian vectors. Strongly flighted organisms can introduce a variety of extinction 

pressures—(1) competition or predation from starlings, dunnocks, blackbirds (or wasps 

Vespula spp. and Indian mynas if the last two reach the Chathams); (2) pathogens 

(Miller and Lambert, 2006); (3) the destabilising effects of petrel burrowing on forest 

structure (Flack, 1976a; Roberts et al., 2006, 2007), or (4) the dispersal of black robin x 

tomtit hybrids (Merton, 1993; Chapter Eight). 

 

• Failure of the seven ancestral black robins to rebound naturally after transfer to Man-

gere Island in 1976-77 signalled that the species seemed inherently unable to recover 

after deterministic extinction threats reduced it to critically low numbers. The failure 

offered a sobering insight to lethal stochastic demographic pressures (Chapter Three). 

Chance played a disproportionate role in mortalities and pairings on Mangere Island 

but natural reproductive output barely kept pace with losses and ultimately failed to do 

so. This also appears to explain the fate of the translocated population on Pitt Island 

where, in the presence of an unquantified mouse threat, larger founder numbers gave 

no assurance of establishment in a fragmented but recovering habitat (Chapter Four). A 
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prudent conclusion from my assessment of founder fates on both islands is that the 

black robin will require active assistance again to recover from severe knock-downs or 

to establish in further parts of its range. 

 

The deterministic threats eliminating the original black robin populations acquired their 

potency from the species’s inherent sensitivity to their effects. Alone or in combination, 

habitat change and predation appear to have overwhelmed the populations rapidly and 

probably well before the stochastic processes of genetic erosion could acquire any lethal 

force of their own. These remain lethal threats, no matter what success black robin man-

agement has in offsetting inherent vulnerability or restoring genetic resilience through 

population increases. For these reasons, protection from external threats is rightly the first 

priority to safeguard the viability of black robin populations and those of other species 

similarly at risk. 

 

9.2 Population recovery 

 
Despite a grievous history of decline, severe bottlenecks in ancestral and descendent popu-

lations and unavoidable inbreeding, the black robin recovered after translocation to islands 

free of the habitat and predation threats driving the species towards extinction. While un-

managed, the seven survivors of the last tiny, chronically inbred population were incapable 

of producing enough juveniles for recovery, but when reproductive effort was intensified 

by management, the species’s response was strong from the outset. Response and recovery 

through the following ten years of very demanding breeding intervention were not indica-

tive of a moribund species.  

 

Under management, populations grew rapidly and expanded into most parts of available 

habitat. After management ended, natural rates of recovery were significantly slower. 

Management had little effect on breeding success in the species as whole but it achieved its 

objective of raising population sizes quickly by increasing gross reproductive output. 

When finally left to recover naturally, Mangere Island’s pre-breeding populations grew at 

a rate comparable overall to their larger sister-populations on Rangatira Island, but growth 

levelled off towards the end the study period, suggesting that carrying-capacity had been 

reached in the small, isolated forest habitat. Growth was still positive in the Rangatira Is-

land population when full-scale monitoring had ended three years earlier.  
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Under unmanaged conditions, the Woolshed Bush and Mangere Island emerged as the two 

centres of black robin productivity and growth. The Woolshed Bush was the stronger of 

the two. Contrary to all indications of viability given by strong growth and productivity 

under managed conditions, natural reproductive output in the Top Bush habitat was poor 

and recovery ultimately negligible. This population was supported under both management 

regimes by dispersal from the Woolshed Bush, especially by juvenile females. After man-

agement stopped, immigrants comprised 26% of the Top Bush population, whereas black 

robins dispersing from the Top Bush amounted to only 3% of Woolshed Bush numbers. 

The Top Bush population was clearly a sink for Woolshed Bush production and may never 

have been viable if wholly reliant on its own resources. 

 

In all three populations combined, each pair produced almost 40% fewer juveniles on av-

erage after management ceased, a reflection of lower breeding investments in clutches 

(29% fewer) and eggs (31% fewer). Though reduced as expected after multiple-clutching 

ended and lower relative to New Zealand and Australian congeners (Tables 2.4 to 2.7), 

these investments were sufficient to preserve recovery momentum on both islands under 

the prevailing, largely threat-free conditions.  

 

Natural recovery varied in each of the three study populations. Breeding effort was gener-

ally comparable. No consistent measure of fertility was applied in the field (Chapter Four) 

but, as a surrogate, hatch-rates (the proportions of all fully incubated eggs hatching, and 

the mean annual rates pair-1) were also comparable. Breeding success was the problem. 

Rates of recovery—similar in the Woolshed Bush and Mangere Island and inferior in the 

Top Bush—were influenced by differing levels of mortality at various life-history stages. 

No single life-history variable was a crucial determinant of variations. Top Bush recovery 

was unique in its unusually high rates of fledgling and juvenile mortality. Recovery was 

further compromised by diminished immigration after management ceased and the low 

survival probability of locally raised and immigrant black robins. Life-spans no longer 

than eight years deprived the population of important breeding potential in both sexes. 

Survival probability and life-spans were higher in the Woolshed Bush and on Mangere Is-

land. 

 

The field records used by my study reveal (or speculate about) the nature of external fac-

tors operating on the black robin populations but not their relative effects on underlying 
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vital rates. It would require systematic field study to clarify these non-genetic threats, their 

trends and their implications for viability. Black robin observers attributed mortality in-

formally to diverse factors ranging from adverse weather events, predation by starlings, 

avian pox and nest-mite irruptions, death of a parent and poor nest-site selection, to un-

usual events such as nocturnal petrel strikes on nests, entanglement in cobwebs, egg-

binding, tree-falls and numerous other forms of misadventure. Poor parenting, dependent 

young straying out-of-territory, pair-bond failure, disruptions from neighbouring bachelors 

and inherent infirmity (rarely said to be congenital) were also proffered as explanations. 

Little can be done in hindsight to quantify the effects of these factors on recovery rates. 

The uncertainties surrounding them frustrate explanations of demographic trends. If viabil-

ity is in doubt in the future, this is an important issue for monitoring and management.   

 

My study has thrown important light on the potential of environmental variables to limit 

population recovery. Micro-climate measurements taken over two breeding seasons and 

the intervening winter (2004-2005; Chapter Six) provide compelling evidence that climatic 

conditions in the poorly performing Top Bush were generally colder than in the Woolshed 

Bush and on Mangere Island. Unlike the Top Bush (and Pitt Island’s Caravan Bush in 

which black robins failed to establish), the Woolshed Bush and Mangere Island forests are 

oriented to the sun and relatively sheltered from prevailing winds. My investigation of sub-

canopy temperatures probably understates the environmental differences because wind-

chill could not be measured. However, the evidence procured argues for further study to 

define the relationships between consistently cooler conditions and black robin productiv-

ity and survival. Aside from helping to explain the poor Top Bush recovery, better knowl-

edge of the role of climate is likely to help black robin managers assess the suitability of 

habitats for new black robin populations. In the meantime, I suggest that higher energy 

costs, retarded replenishment rates in insect communities, briefer periods of prey activity 

and lower available prey biomass are possible environmental effects explaining the poor 

reproductive output and high rates of adult and offspring mortality in the Top Bush. Any 

such costs may have been particularly punishing during winter when adult and juvenile 

mortality was greatest in all three populations (Chapter Two). 

 

Genetic factors may have influenced population recoveries but did not halt them or cause 

declines during the study period. Total numbers on each island increased overall. Consid-

ered in isolation, however, the Top Bush population raises questions about a possible in-
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teraction between inbreeding and the cooler environmental conditions. Average levels of 

relatedness in the small Top Bush population were comparable to those in its larger 

neighbour during the period of unmanaged recovery (Table 7.2)—a consequence perhaps 

of immigration or high turn-over of breeding adults—but harsher conditions are generally 

expected to elicit or increase the severity of inbreeding depression (Keller et al., 2002; 

Frankham et al., 2002). Conceivably, the food-stress trigger for inbreeding depression in 

Darwin’s finches (Keller et al., 2002) may have its parallel in environmentally induced 

prey deprivation for the Top Bush black robins. Modelling of interactions between habitat 

and inbreeding did not confirm such a relationship (Chapter Seven) but if the new evi-

dence of inbreeding depression in black robins is to be tested for detrimental effects, the 

faltering Top Bush population is the most plausible place to begin.   

 

The recovery trends I have analysed offer no convincing explanation for the population 

declines on Mangere and Rangatira Islands during the sample-monitoring seasons. These 

relatively sudden and curiously coincident decreases in population sizes raise legitimate 

questions about black robin viability. The declines indicated by early-season head-counts 

in 2007-08 (Massaro and Briskie, 2008; Harvey, 2009) were significant—decreases of 

more than 43% on Mangere Island and about 25% on Rangatira Island since full-scale 

monitoring was suspended (Chapter Six).  

 

The Top Bush population appears to have declined most severely (by about 53% at the last 

comprehensive head-count in 2007-08; Massaro and Briskie, 2008). The pronounced fluc-

tuations in Top Bush numbers, the ephemeral nature of breeding concentrations and negli-

gible overall growth up until 1998-99 suggest a population hovering at or near its viability 

threshold. Its past function as a sink population implies sensitivity to reductions in the 

numbers of immigrants from the Woolshed Bush. The causes of its decline may originate 

there, in what was the most productive and fastest growing breeding centre. Kennedy and 

Wilson (2005) surmised that the decrease in black robin numbers first suspected in Sep-

tember 2004 might reflect cooler and more exposed conditions in the central Woolshed 

Bush where forest regeneration had resulted in a taller, more open forest structure. The 

temperature analyses conducted by this study do not support a climatic explanation. The 

micro-climate data-logger closest to the forest centre (WSB 2, Appendix Four: Table 4A) 

did not register unduly cooler temperatures (Table 6.18), and my analyses of mean tem-

peratures and degree-day differences showed the Woolshed Bush to be warmest of the 
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three habitats measured. However, the replacement of senescent multi-stemmed akeake 

trees in the centre of the bush by the increasing dominant ribbonwoods (Roberts et al., 

2007) may have reduced carrying-capacity. The tall straight-stemmed ribbonwood offers 

black robins little understorey cover and inferior opportunities for nesting and foraging. 

Mapping of black robin territories in the Woolshed Bush, a relatively simple exercise, 

would allow comparisons of distribution and density to be made with historical territory 

distribution data available but not analysed by my study.  

 

The Mangere Island population had ceased to grow in the final five seasons of the study 

period, fluctuating annually between 51 and 54 birds at pre-breeding counts (Table 6.3). 

My study has found no indication of instability predisposing the population to decline. In-

formal comparisons of historical and current forest character indicated no significant re-

generative changes in the Robin Bush (Kennedy and Wilson, 2005). As a first step, terri-

tory mapping would help to test a possible redistribution effect of any forest changes.  

 

The declines on both islands occurred independently and may have been caused by differ-

ent factors. However, the coincidence of timing and decreases over similar intervals imply 

the working of one or more common factors. The absence of explanations in the trends I 

have analysed points to factors unique to the sample-monitoring period. Both islands may 

have returned to a naturally lower carrying-capacity when the frequency and quantity of 

food hand-outs was reduced during the sample-monitoring seasons. Preliminary estimates 

of average intake of cultivated Tenebrio larvae during breeding seasons (≤ 2.5 per day) 

suggest an inconsequential addition to individual diets (Kennedy, 2010). Black robins re-

ceived no hand-outs at other times, including winter when food was most limiting. Trans-

fers of birds to Pitt Island between 2002 and 2005 would have caused ‘mortality’ spikes in 

the source populations but potentially destabilising effects are not indicated by the relative 

extent of declines in each. The Woolshed Bush lost 34 individuals (14 in spring 2002 and 

20 in late summer 2004; Chapter Four: Table 4.1) but declined significantly less than 

Mangere Island which gave up only four individuals over two seasons.   

 

No useful trend data were gathered during the periods of decline, and sample-productivity 

data from Rangatira Island had been mislaid at the time of writing. Although my study has 

found no convincing evidence of predisposing factors, the highly detailed demographic 

data I have assembled have the potential to yield important explanatory insights if sub-
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jected to more powerful statistical modelling. Variations in individual life-history trends 

over time during the study period may be informative and will indicate specific informa-

tion requirements from current populations. Manipulation of known variables to predict 

times-to-extinction should also help to focus remedial management, if in fact any is 

needed. The declines may simply be indicative of fluctuations around a new natural equi-

librium in each population.  

 

Finally, the value in treating the Top Bush and Woolshed Bush as analytically discrete 

sub-sets of the Rangatira Island population has been demonstrated by my study. The unex-

pected reversal of trends in the Top Bush after intensive management ended gives striking 

insights to first, the beneficial effects of management and second, their capacity to disguise 

natural levels of viability in small populations. The Top Bush population contributed little 

to the welfare of its larger and more resilient neighbour in the Woolshed Bush during the 

post-management period but showed the potential draw-down effects of sub-optimal habi-

tat and population sinks on its margins. The post-management trends discernible in the 

Top Bush gave valuable insights to the dynamics of a barely viable population, insights 

which were less obvious in the other apparently more resilient populations. Investigation 

of explanatory factors has pointed more clearly to the probability of harmful climatic ef-

fects on recovery trends in inbred populations. The discrete Top Bush pedigree also pro-

vides a better basis than a Rangatira Island pedigree for testing the potentially limiting or 

disabling effects of inbreeding depression on fitness parameters in a poorly performing 

population. 

 

9.3  Inbreeding and viability 

 
The black robins are highly inbred as a result of population extinctions, persistence of the 

relict ancestral population at very low numbers on Little Mangere and Mangere Islands 

over nine decades (1892-93 to 1980-81) and passage to recovery through the Old Blue-Old 

Yellow bottleneck (Chapters Three and Seven). Current populations possess average levels 

of relatedness three times greater than the highest reported in another species in genetic 

literature (insular populations of inbred takahe, F = 0.123; Jamieson et al., 2003). On aver-

age, the small Mangere Island population, closed genetically since 1990-91, is the most 

highly inbred (F = 0.396, both sexes combined; Table 7.2) and the large Woolshed Bush 

population is the least inbred (F = 0.346). The difference may reflect the longer period 
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over which Mangere Island inbreeding was measured. Even so, these are likely to be sig-

nificant underestimates of relatedness, since ancestral black robins at the base of the pedi-

gree were almost certainly very closely related.    

 

Contrary to perceptions in genetic literature (see for instance, Frankham et al., 2002; 

Frankham, 2005) and the optimistic predictions of earlier researchers (Butler and Merton, 

1992; Ardern and Lambert, 1997), the descendants of the last tiny ancestral population 

have not escaped genetic harm. This study found evidence of disabling inbreeding effects 

on black robin fecundity during the post-management seasons. Intensive management sea-

sons were not analysed. Inbreeding-related fitness costs were indicated by strong negative 

correlations between levels of inbreeding in fathers and reproductive failures at life-history 

stages late in the breeding cycle. This appears to be the first avian evidence of inbreeding 

costs acting selectively through breeding males. Maternal inbreeding F and kinship (paren-

tal) inbreeding had no harmful implications for productivity, although an emerging kinship 

effect on yearling production (juvenile survival) is possible. Inbreeding did not appear to 

influence survival probability for either sex during the study period. 

 

Male inbreeding F showed a strengthening negative effect on breeding success at succes-

sive stages in the breeding cycle after hatching (fledgling, juvenile and yearling output). 

Hatching success was negatively but not significantly related with the degree to which fa-

thers were inbred but a stronger probability of nestling failure (fledgling production) was 

indicated. Fledgling and juvenile mortality were strongly correlated with paternal inbreed-

ing, reflecting perhaps the cumulative effects of inbreeding-related failures at earlier stages 

in the breeding cycle. Paternal age, equated with breeding experience, showed a mitigating 

beneficial effect at all breeding thresholds. The Top Bush also demonstrated a strengthen-

ing negative correlation with reproductive failure but exploratory modelling of two-way 

interactions between habitats and inbreeding (individual and kinship) showed no signifi-

cant effect.  

 

Genetic depletion, chronic inbreeding and sex-differentiated inbreeding depression did not 

equate to declines in either island population after they were left to recover naturally. 

However, the reproductive costs imposed by inbred fathers are highly likely to have 

slowed the recovery by reducing the numbers of juveniles produced and surviving to be 

recruited into breeding populations. Under the protected conditions prevailing at that time, 
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production by inbred fathers was still sufficient to preserve recovery momentum. Recovery 

benefited from the fact that inbreeding did not disadvantage reproductive output by inbred 

females or pairs, and did not affect adult survival, thus maximising their reproductive po-

tential. This was the case prior to the end of full-population monitoring on each island and 

for the average levels of relatedness accumulating in the populations’ pedigrees at that 

time.   

 

The grievous genetic histories of the black robin populations and their anomalously high 

levels of inbreeding imply that fitness costs should have been expressed in both sexes and 

more severely than my study has shown. Inbred Petroica congeners (North Island robins 

on Tiritiri Matangi Island) experienced juvenile mortality at levels of inbreeding substan-

tially lower than the black robin’s (Jamieson et al, 2007). A compelling explanation is that 

the prolonged history of reduction to low numbers and chronic inbreeding has purged the 

black robin of genetic load, as was suggested by Ardern and Lambert (1997). In contrast, 

the North Island robins on Tiritiri Matangi Island were sourced from large, more geneti-

cally diverse mainland populations in which genetic load was likely to have been retained. 

If correct, this assumption supports the explanation of purging offered for the weakly ex-

pressed fitness costs observed in a tightly bottlenecked and genetically impoverished popu-

lation of South Island robins on Ulva Island (Stewart Island; Laws and Jamieson, unpub-

lished data).  

 

Comfort taken from the potentially advantageous effects of purging (if any) must be tem-

pered by the evidence that black robins have retained some genetic load, fixed perhaps in 

the small populations on Mangere and Rangatira Islands. This does not appear to have had 

fatal implications for population viability during the study period, but it would be unwise 

to assume that fitness costs will not deepen or diversify as individual inbreeding coeffi-

cients accumulate further or if the populations are subjected to changed conditions. The 

probability of more extensive and severe fitness effects is elevated by decreases in popula-

tion sizes, such as those occurring recently, those associated with cropping to establish 

new populations, or those resulting from periodic fluctuations to low numbers. All such 

events act effectively as additional bottlenecks, increasing rates of inbreeding and aug-

menting the threat to advantageous rare alleles in the genome.  
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The immediate threat posed to breeding success by inbred males implies a need to manage 

and monitor extant populations for genetic health. This has not been a consideration for 

black robin managers (Department of Conservation, 2001a). Among other things, founder 

selection for new populations will benefit from excluding highly inbred males whose com-

promised reproductive potential could jeopardise establishment, expansion and viability in 

the new site. The augmented management and monitoring requirements necessary to 

measure genetic health are addressed in recommendations made in Chapter Ten (Manage-

ment Recommendations).  

 

My study has identified an inbreeding threat to viability but further work is required to 

clarify its implications for black robin persistence. Genetic load should be quantified, 

along with the extent to which viability is already compromised. How much latitude do 

current fitness effects leave the populations to withstand new extinction pressures? What 

are the implications of rising levels of relatedness? Closer evaluation of inbreeding effects 

is needed on earlier life-history stages (clutch numbers, clutch sizes). Relationships be-

tween environmental variables and inbreeding effects should be examined more closely.  

 

Most importantly for future management, it is highly desirable to assess carefully the im-

plications of increased levels of inbreeding for population growth, focusing particularly on 

life-history and other variables which are amenable to management. Research of this sort 

should ensure that remedies are appropriately directed and effective. The demographic re-

cord and pedigree available to this study provides an exceptionally solid platform for the 

necessary predictive modelling.  

 

9.4  Lessons from past management  

 
The effort involved in saving the black robin from extinction has been extraordinary, yet 

stock has rarely been taken of the management lessons to be learned from the investment. 

My study has made a start.  

 

9.4.1 Did the New Zealand cure work? 

 
The approach taken by wildlife managers to save the black robins defined the ‘New Zea-

land cure’ in action in almost every respect and has been widely celebrated as an endorse-
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ment of New Zealand wildlife management practice. True to Caughley’s (1994) ‘declining 

population’ paradigm, researchers and managers of the time identified the external factor 

driving the species to extinction (forest collapse) and attempted to remove the threat by 

reversing the forest’s decline on Little Mangere Island. When rapidly declining numbers 

showed that strategy to be impractical, they removed the black robin from the threat. The 

prior research and final translocation to safer habitat on Mangere Island were crisis-driven. 

Managers had no choice in the composition of the founders for the new population: the 

only black robins available were the seven remaining. Management has proceeded from 

that point until now on the assumption that stochastic genetic threats were unimportant. 

 

Although the overall strategy of treating deterministic and stochastic demographic threats 

worked (the species is not extinct), the approach common to many such emergency trans-

locations in New Zealand failed the black robins. Managers made the optimistic assump-

tion that release into better habitat would be enough to ensure a natural rebound in num-

bers. A cautious management strategy committed to minimising disturbance was under-

standable when numbers were critically low and the black robin’s tolerance of intrusions at 

the nest was untested. Better habitat was not enough—the species did not recover and fi-

nally declined. The strategy was nearly fatal. Better knowledge of the factors causing the 

breeding failures might have quickened awareness of the black robin’s inherently low re-

productive output (a threat from within) and prompted earlier intervention when there were 

more black robins to work with.  

 

Twenty-six years later, the same strategy failed the species on Pitt Island. Managers moni-

tored the founders of the new Caravan Bush population but not closely enough and without 

anticipating the need to intervene to assist establishment. Misplaced confidence in black 

robin viability and the species’s natural capacity to exploit the new habitat opportunities 

proved fatal on that occasion. The translocations failed with no clear indication of why. 

Little has been learned from the Pitt Island experiment to inform future translocation pro-

jects.   

 

The near-miss on Mangere Island and the failure on Pitt Island are valuable indications 

that standard New Zealand translocation practice—release and hope (Armstrong and 

McLean, 1995)—is not universally applicable for all threatened species. 
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9.4.2 The hazards of numbers-watching 

  
Numbers-watching has been the dominant feature of black robin management from the 

outset. The underlying assumption throughout was that black robin abundance equated to 

black robin viability. Once intervention was unavoidable in 1980-81, managers were prag-

matically committed to raising black robin numbers quickly. When numbers were criti-

cally low, this was the appropriate and only means of navigating the species out of danger 

from stochastic demographic and environmental threats. It worked. However, pre-

occupation with numbers-building persisted long after the immediate extinction crisis had 

passed. Numbers-building was a crucial driver of conservation effort but it was inherently 

focused on external threats without due consideration of the more cryptic, longer-acting 

threats from within. Numbers-watching had numerous unhelpful effects on management.  

 

• As the two small populations grew strongly in response to intensive management, con-

fidence also grew that precautionary genetic management was unnecessary. Aside from 

the incidental genetic pay-offs of inter-island transfers, little was done to anticipate the 

potentially harmful implications of historical and contemporary inbreeding. Manage-

ment for longer-term viability was treated justifiably as a secondary issue while num-

bers were very low (for instance, very closely related pairings were tolerated) but this 

remained the case throughout the period of active recovery. 

  

• The intensive monitoring which followed was unduly concerned with quantifying 

trends in abundance as signals of instability in the unmanaged populations. The pro-

gramme subordinated proactive genetic management to the reactive goal of disturbing 

natural recovery trends as little as possible.   

  

• The monitoring programme treated its valuable store of productivity data as ‘money in 

the bank’, for use in interpreting population declines if needed. The positive growth 

trajectories of both island populations convinced managers that there was no need to 

analyse the data between seasons for subtle signs of genetic and non-genetic threats.  

 

• In the early 1990s, the unfortunate experiment with ‘flying-squad’ monitoring on Man-

gere Island was based on the conviction that pre- and post-breeding numbers were the 

only necessary measures of population status. This was called ‘efficiency’. Black robin 
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x tomtit hybridisation went undetected and could not be remedied without resumption 

of full-population monitoring. Irremedial gaps were opened in the Mangere Island 

pedigree.  

 

• Resource-stressed managers were comforted by black robin numbers when deciding to 

surrender the invaluable advantages of full-population monitoring. The decision has 

deprived managers of any understanding of subsequent population declines. 

 

• The index-monitoring alternative is solely numbers-focused and has failed black robin 

management as a means of detecting and interpreting declines. Like earlier problemati-

cal reductions in monitoring intensity, it assumes all will be well. It is inherently reac-

tive without the providing enough information on how to react.   

 

As a result of the numbers mind-set, black robin managers did not undertake any form of 

precautionary genetic management once the more immediate extinction pressures were 

treated. 

 

9.4.3 Monitoring intensity 

 
The black robin recovery project has demonstrated the value in both the most and the least 

effective forms of monitoring practice. Each placed radically different value on contact 

and familiarity with the small black robin populations, the species’s vulnerabilities and 

population trends. 

  

Intensive monitoring made few assumptions about the unforeseen. At crucial times, it gave 

managers early warning of problems. The nearly fatal mal-imprinting issues on Rangatira 

Island were detected immediately and remedied with the knowledge immediately at hand 

(Chapters Four and Eight). Little during the establishment of new population on Rangatira 

Island was left to chance. Comprehensive knowledge of vital rates in each population in-

creased the potential to manage all classes of threat. It laid the foundation for management 

of genetic compromise, the principal threat to viability still operating after the populations 

were protected from deterministic pressures. The resulting longitudinal record of black 

robin demography and recovery is a rare asset for conservation biology in general.  
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Monitoring of reduced intensity traded off the benefits of short-term gain (largely savings 

in resources and time) against conservation effectiveness and potentially greater costs 

later. It resulted in a monocular focus on the black robins alone, especially their numbers, 

so that awareness of influences and changes in the populations’ broader ecological con-

texts contracted markedly. Stand-off monitoring proved to be disadvantageous when man-

agers were confronted with the stochastic demographic and environmental threats growing 

in inverse proportion to population decreases on Little Mangere and Mangere Islands. 

Stand-off monitoring failed to detect the cross-breeding events on Mangere Island which 

nearly developed into an unmanageable hybrid swarm. Managers were caught completely 

unawares and left flat-footed for explanations and remedies. This has also been the conse-

quence of today’s index-monitoring regime whose rudimentary indices of abundance have 

yielded no useful insights to the declines occurring since 2001-02. The failure of the Pitt 

Island translocations is unexplained as a result of deficient monitoring. Managers are 

therefore inadequately informed to manage the next translocations. 

 

It is an unpalatable truth in times of resource-stress that viability management is best 

served by detailed demographic insights to threatened population dynamics. They serve 

management at the time and in the future. Monitoring of reduced intensity serves neither 

appropriately and is generally false economy. 

 

9.4.4  Management and monitoring quality 

 
Many of the pressures exerted on management and monitoring quality during the black 

robin recovery programme are familiar to conservation biologists (chronic resource short-

ages, logistical difficulties, inhospitable habitats). Some were avoidable. The heavy de-

mands of the black robin programme made the quality lapses arising from them more tell-

ing and explicit. Recovery was not helped by the following factors. 

  

• Planning and management perspectives were usually short-term and strongly influ-

enced by single-year funding cycles. This problem has become more acute under ex-

isting institutional arrangements. The longer-term ecological demands of the black 

robin programme were difficult to prepare for and meet. 

 



 

Chapter Nine: Conclusions 289

• Discontinuity in project leadership and field-teams had visibly detrimental conse-

quences for management and monitoring quality. Costly mistakes of the past were re-

peated and few consistent standards were applied from year to year in field practice, 

the nature of the data gathered and the way it was reported. The perils of short-term or 

fragmented perspectives extended into seasonal and strategic planning. 

 

• A crucial consequence of discontinuity was the loss of the collegially mediated cul-

ture of black robin management inherited from the intensive monitoring period. The 

current institutional arrangements of DOC have exacerbated the continuity problem 

and are philosophically hostile, though not deliberately so, to restoration of a man-

agement culture (Kennedy and Perkins, 2000; Kennedy, 2003). Its absence from black 

robin management has resulted in the loss of powerful collegial peer-review mecha-

nisms (in and out of the field) and of vital self-correcting, adaptive management func-

tions. There is now little passage of knowledge and experience between successive 

generations of black robin workers, and no apprenticeship into the skills and com-

plexities of conserving this and similarly threatened species in the region. There is a 

critical lack of collegially agreed and applied standards for black robin work and its 

reporting. The culture’s place has been taken by goal-directed outlooks, embedded in 

secularising management prescriptions and contractual obligations on black robin 

workers, all of which insist more on the quantity than the quality of work done (Ken-

nedy, 2003). 

 

• The store of knowledge and experience accumulated since 1971-72 is indispensable to 

black robin management but field practice has often failed to borrow from it. In the 

past, unwillingness to apply valuable lessons has been costly, as was demonstrated in 

the fate of the Pitt Island translocations. Failure in Caravan Bush was symptomatic of 

insensitivity to the value of translocation experiences and the methods proven to en-

sure successful establishment of new black robin populations. 

 

9.5 Theoretical and management implications  

 
The findings of this study lend qualified support to Craig’s (1991, 1994) hypothesis that 

small populations of threatened insular endemic birds may be inherently less susceptible to 

inbreeding depression through evolutionary adaptation to conditions of reduction and iso-
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lation. The black robin’s long history of persistence at very low numbers and rapid passage 

to recovery from the single-pair bottleneck may be critical explanatory factors. The ex-

pression of reproductive fitness costs in inbred black robin males only in such highly in-

bred and genetically depleted populations appears weak relative to costs imposed on sig-

nificantly less inbred congeners. Genetic load in the species, fixed or otherwise, has still to 

be quantified but the indications from this study are that natural selection operating on 

very low numbers of inbred ancestors and population founders may have had beneficial 

purging effects for the species. Confidence in this conclusion must be tempered, however, 

by the possibility that the rapid increases in population sizes engineered by intensive con-

servation management may have moderated the severity of fitness effects, as genetic the-

ory predicts they will (Jamieson et al., 2008). Estimation of lethal equivalents will help to 

clarify uncertainties and provide a benchmark for later assessments of inbreeding risks.  

 

The evidence of inbreeding depression in black robins confirms the predictions of conser-

vation geneticists that arbitrary reduction and confinement to small, closed populations set 

in train extinction-inducing processes of genetic erosion which undermine viability and 

threaten population persistence (Brook et al., 2002; Frankham, 2005). My findings add 

empirical weight to the argument that stochastic genetic threats continue to increase ex-

tinction vulnerability in small inbred populations even after more immediate deterministic 

pressures have been relieved. In the black robin populations, inbreeding depression acted 

cryptically and cumulatively on reproductive output to reduce the numbers of juveniles 

available for recruitment. Similarly, there is support for the prediction that genetic threats 

exaggerate the inherent risks imposed on small populations by life-history traits limiting 

population growth (Taylor et al., 2005, 2007; Boessenkool et al., 2007; Taylor and 

Jamieson, 2008). Without healthy populations to refer to, it is not possible to determine 

whether the black robin’s reproductive potential is naturally low or a reflection of histori-

cal inbreeding effects, but relative to other south temperate Petroica species (Chapter 

Two), black robin viability appears to be particularly at risk if inbreeding amplifies this 

vulnerability. Recovery in the two populations has almost certainly been slowed during the 

post-management period when inbreeding effects were assessed, and it is prudent to as-

sume that future responses to downward fluctuations in abundance or unforeseen set-backs 

will be weaker as inbreeding levels rise in the capped populations. 
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My study supports the assumption made by conservation biologists that deterministic 

threats are the principal object of remedy to save threatened bird populations from extinc-

tion (Shaffer, 1981; Caughley, 1994; Soulé and Mills, 1998; Lande, 1999). The extinction 

pressures characteristically associated with human activities rapidly eliminated the original 

large black robin populations. Natural or human-induced habitat change threatened the last 

population on Little Mangere Island. My analysis of trends in the small population of an-

cestral survivors transferred to Mangere Island also supports the prediction that stochastic 

demographic and environmental pressures can operate lethally on low numbers even if the 

original causes of decline are removed (Gilpin and Soulé, 1986; Hedrick et al., 1996).  

 

My findings do not support the assumption made traditionally by New Zealand wildlife 

managers that the predicted genetic costs of unnaturally low numbers are inconsequential 

threats to the viability of threatened endemic bird populations. The so-called ‘New Zealand 

cure’ was the best strategy to avert immediate extinction but not the one most suited to as-

suring the black robin’s long-term persistence. Minimal or incidental management of po-

tential genetic risks (despite the species’s obvious exposure to major risk criteria) ne-

glected the principal remaining threat to viability once the populations had been secured 

against deterministic pressures. Later management focuses have been more ambivalent.  

 

Inbreeding in the black robin populations did not result in population declines under the 

conditions operating during the study period. As inbreeding levels continue to accumulate 

(faster if the populations remain at current sizes or decrease further), the reproductive pen-

alty identified by my study may become more severe and diversified. Without the option 

of gene replenishment from healthy sister-populations to increase genetic diversity and to 

moderate inbreeding effects, the black robins must survive for the foreseeable future on the 

attributes they have inherited from their evolutionary and genetic histories. The implica-

tions of the latter must be a matter for concern, especially as the species is already inher-

ently at risk through its specialist ecological and behavioural traits. The black robin’s long-

term persistence depends on how well it responds to unforeseen pressures. Protection from 

well understood external threats is in place but the need for remedial genetic management 

is strongly indicated, along with careful sustained monitoring of its effectiveness. 
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Finally, a number of implications can be drawn from this study which may benefit the con-

servation of critically threatened birds world-wide (not necessarily the insular species 

alone).    

 

The first is self-evident but bears constant restatement. The viability of free-living bird 

populations is best preserved by avoiding declines to unnaturally small size in the first 

place. For conservation managers and species alike, prevention is more ecologically ad-

vantageous and cost-efficient than cure. The financial cost of the black robin’s recovery 

has never been fully quantified but probably runs to several millions of dollars. The in-

vestment—which has yet to assure the long-term persistence in today’s modest population 

of about 150 birds—has consumed a significant proportion of New Zealand’s chronically 

stressed conservation budgets. Inevitably, work on other threatened species in New Zea-

land has been affected as a result. 

 

Second, critically endangered populations can be recovered despite declines to very low 

numbers. Thus, giving up should never be an option. The black robin’s recovery demon-

strated that species with even the most grievous genetic histories can be preserved from 

extinction, in the first instance by raising numbers rapidly, as has been stressed throughout 

this study. Equally, the crises themselves serve extinction biology by quickening the impe-

tus to invent and experiment. Among other advances, the techniques of cross-fostering in 

the wild (Butler and Merton, 1992) were pioneered through last-minute desperation to re-

trieve the black robins from the threshold of total extinction. 

 

Third, effective recovery programmes require basic knowledge of species biology and de-

mography yet the necessary studies are often lacking or are too brief to acquire important 

information on life-histories and longitudinal trends. Responses to annual declines in the 

black robin’s ancestral population on Little Mangere Island were nearly fatally delayed by 

limited understanding of black robin biology and demography (Chapters Three and Four). 

Russell (2000) pleads rightly for data on the survival of fledglings and juveniles, life-

history stages which are commonly neglected by ornithological studies. As this study has 

shown, post-fledging survival data were crucial to detecting key threats to black robin vi-

ability. The benefits of biological ground-work are far-reaching. For instance, managers 

raising bird numbers quickly by boosting juvenile output will be well served by knowing 

what rates of breeding success to expect—and what rates are adequate to preserve viabil-
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ity—in populations skewed disproportionately towards first-time breeders. Equally, under-

standing natural fluctuations in annual productivity, survival and dispersal may avoid 

costly misreading of trends and their causes. Basic biological inquiry is therefore worthy 

and crucial for managing extinction risks. 

 

Fourth, management of genetic health in small compromised populations is highly sensi-

tive to the quality and duration of pedigree and demographic data. As shown by this study, 

pedigrees constructed from fully colour-marked populations are indispensable to determin-

ing the rates and severity of inbreeding. Pedigrees also enable managers to choose geneti-

cally valuable founders for new populations. Annual productivity data give direct meas-

ures of inbreeding-related fitness costs, especially if gathered for each pair and clutch 

through to completion of the breeding cycle. Rates of longevity and survivorship over gen-

erations fulfil the same function, by determining how fitness costs are expressed, which 

life-history variables to manage, and how effectively intervention may be addressing 

threats to viability. Without the advantages of pedigree and demographic data, manage-

ment of cryptic genetic risks becomes something of a lottery. 

 

Fifth, the ‘slow’ breeding typical of temperate southern hemisphere birds is evolutionarily 

attuned to prolonged, relatively intensive parental investments in low numbers of offspring 

(Chapter Two: Section 2.11). Thus, population persistence is dependent on the output and 

recruitment of relatively few juveniles. In such species then, juvenile output and recruit-

ment are crucial demographic variables to monitor. Monitoring regimes focused solely on 

indices of abundance may fail to detect the threat arising from shortfalls in juvenile pro-

duction, especially if the appearance of viability is preserved by the characteristically long 

life-spans of adults and territory stability. This was precisely the error made by black robin 

managers after rescuing the last seven birds from Little Mangere Island (Chapter Four).  

 

Sixth, ‘slow’ breeding strategies are appropriate in stable threat-free environments but po-

tentially hazardous to viability if conditions change. The small, largely invariable clutch 

sizes and long breeding cycles of slow-breeding strategists do not allow them to increase 

reproductive output spontaneously in response to unnatural rates of mortality. This was a 

point first made in Chapter Two and exemplified through black robin analyses in subse-

quent chapters. Moreover, the long nesting intervals of multi-brooded southern birds ex-

pose females to greater dangers on the nest. As a result of these intrinsic disadvantages, 
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managers should anticipate heightened susceptibility to change, expressed perhaps through 

relatively swift declines in species possessing more specialised life-history traits, as is the 

case with the insular black robins. Recoveries too may be slower than in faster-breeding 

birds capable of more prolific or variable seasonal output. Correspondingly, managers 

should anticipate the need to augment natural rates of productivity through intervention 

when slow-breeders are confronted with unfamiliar conditions (for example, new threats in 

situ, or translocation to new habitats). As experience of the black robin recovery has made 

clear (Chapters Three, Four and Eight), optimistic policies of minimal disturbance and 

transfer-and-forget may not be adequate.  

 

And last, the value of observing threatened populations and their habitats systematically to 

define the causes and character of declines cannot be stressed enough to field workers and 

conservation administrators alike. Among its many benefits, competent monitoring at close 

quarters will help frugal managers to direct their efforts to best effect. This benefit will be 

realised, of course, only if observation data are analysed routinely (Chapter Four). The 

black robin experience reveals the risk of investing conservation effort unwittingly in sink 

populations whose viability may always be questionable. Similarly, this study has shown 

that habitats which appear suitable for species of interest may actually be sub-optimal and 

therefore a poor guide to the suitability of potential translocation sites. These are avoidable 

mistakes.    
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CHAPTER TEN 

MANAGEMENT RECOMMENDATIONS 

 

 

 

10.0  Introduction 

 
It has been a primary motivation of this study to identify key threats to the viability of 

black robin populations and to make informed recommendations for their management. 

Similarly threatened insular endemic bird species are expected to benefit by implication. 

The following suggestions aim to strengthen current practice so that black robin managers 

are better prepared to deal with potential threats.  

 

I am acutely aware that resourcing levels have the final say on what is eventually done. 

However, my primary duty is to the black robins and other threatened species. For this rea-

son, I have chosen to translate my research findings into management recommendations in 

two ways. First, I outline the best technical advice for management of long-term viability. I 

have not leavened this by second-guessing the options forced upon black robin managers 

by resource constraints. Given current resource stresses, this advice will be regarded as 

unrealistic, but the most prudent management options need to be stated. If nothing else, 

they are reason to argue for better support and funding.  

 

Second, I have recognised current realities by presenting what I consider to be minimum 

acceptable options for management. These relate primarily to population monitoring, 

which is often regarded as consuming scarce resources for little apparent reward. Inade-

quate monitoring is false economy, as Chapter Four of my study has emphasised. My sug-

gestion for a minimal monitoring regime is intended to improve on current practice until 

better alternatives are developed or are affordable. 

 

In what follows, I deal first with what is optimal for black robins and managers alike. Then 

I outline a baseline monitoring regime which is both more sensitive than current index-

monitoring to changes in population condition and more advantageous to investigating vi-

ability threats. 
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In making these recommendations, I am aware (and have indicated as much in Chapter 

Four) that the chief impediments to proper management of the black robins and like spe-

cies in New Zealand are institutional. The solutions to DOC’s resourcing difficulties and 

inadequate wildlife management arrangements are political. They lie beyond the scope of 

my study but have been explored in previous research (Kennedy and Perkins, 2000; Ken-

nedy, 2003).    

 

10.1  Managing immediate threats 

 
There is no question that the principal threats to black robin persistence are deterministic 

factors capable of driving them to extinction quickly. Most such external threats are well 

known to wildlife managers familiar with New Zealand’s history of bird extinctions and 

endangerment (Wilson, 2004). New threats to the black robins may emerge as longer-term 

environmental changes such as global warming take effect. However, only some external 

pressures have in situ remedies available. For instance, techniques now exist to prevent 

and eradicate mammalian predators (mice, rats and cats) arriving from elsewhere in the 

archipelago (Atkinson, 2001). Eradication of predatory weka (present nearby on Pitt Is-

land) has also been achieved elsewhere (Middleton, 2007). But dealing with these threats 

may not be straightforward. It is not certain in the prey-rich environments of Mangere and 

Rangatira Islands, for instance, that eradication would succeed before black robin losses 

(direct and collateral) were catastrophic.  

 

The arrival of new pathogens and increased competition with predatory starlings are rec-

ognised as serious threats (Department of Conservation, 2001a) but few remedies are 

available at present. Similarly, accidental fire could be devastating given the remoteness of 

the black robin islands from any fire-fighting infrastructure. Should global warming extend 

the ecological ranges of predators such as introduced Indian mynas, wasps or other insect 

pests, black robin managers would lack effective responses. Roberts et al. (2006, 2007) 

warn that the single-age-structure forests of the black robin islands are unusually vulner-

able to broad-scale wind-throw from severe storm events. Little could be done in situ to 

reverse the sudden, severe contractions in black robin numbers which would ensue from 

the loss of large tracts of forest. These could be grave reversals in the Woolshed Bush (cur-

rently the optimal centre of black robin breeding) or in the Robin Bush (the only breeding 

habitat on Mangere Island).   
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The Black Robin Recovery Plan (Department of Conservation, 2001a) has established the 

first line of defence against some such serious contingencies with measures which are 

well-established in island-management practice throughout New Zealand—strict quaran-

tine and surveillance for pests and disease, and rigorous control of human access to the 

black robin islands. The unchecked illegal harvests of titi continue to breach this line of 

defence annually (Department of Conservation, 2001a). The Recovery Plan’s principal 

safety-nets against the failure of threat quarantine, however, are the expansion of popula-

tion sizes and founding of new populations within the black robin’s natural range. These 

prudent strategies are essential to moderate the threat of further genetic malfunction and 

also offer some protection from intractable longer-term pressures such as harmful regen-

erative changes in the character of black robin habitats which may cause extant popula-

tions to decline.  

 

The findings of this study allow important observations to be made on the means chosen 

by black robin managers to achieve the Recovery Plan’s twin ten-year objectives of popu-

lation and range expansions. It is timely to discuss these. Not only have these objectives 

not been realised since they were set in 2001, but the entire recovery strategy is due for 

review in 2011. Moreover, the holding strategy of monitoring and protecting existing 

populations has kept the islands free of pests and other immediate threats (so far) but has 

neither prevented or explained a decline in black robin abundance. 

 

10.2 Short-term objective—Increasing population sizes 

 
In 2001, the Black Robin Recovery Plan directed management to a ten-year target of 250 

adults distributed among at least three stable, self-sustaining populations (Department of 

Conservation, 2001a). Two hundred and fifty was the number required to move the species 

to a lower conservation ranking. This threshold is administrative rather than ecological and 

understates the need for management adjusted to the particular conservation requirements 

of each population. It is imperative to achieve the largest possible sizes in each in the 

shortest possible time as the first step to protecting viability against threat-induced fluctua-

tions in numbers and stochastic changes in genetic structures.  

 

Substantial increases in numbers cannot be achieved on Mangere and Rangatira Islands 

until the two populations are released from the constraints imposed by historical reductions 
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in forest cover, a persistent legacy of farming on each island (Chapter Three). The finding 

of this study that effective habitat size is less than the area of forest available (Chapter Six) 

has significant implications for managing population growth. Rangatira Island possesses in 

the Top Bush the largest expanses of closed-canopy forest available to the species, yet the 

habitat appears to be sub-optimal under existing conditions. Orientation to the prevailing 

winds and cooler sub-canopy temperatures are probably contributing factors. This may 

also be true of the fragmented Caravan Bush habitat in which black robins failed to estab-

lish between 2002 and 2005 (Kennedy, 2006; Chapter Four). Until the particular physical 

and biological impediments to black robin success in the Top Bush can be identified, man-

agers should not regard it as under-exploited habitat or make investments in increasing 

black robin numbers there. 

 

The priority should be to maximise numbers in the Woolshed Bush, since unmanaged pro-

ductivity and population growth in this more disaggregated habitat have been stronger and 

more stable than elsewhere. This goal is especially pressing if the recent 22% decline in 

Woolshed Bush numbers (Chapter Six: Section 6.2.3) is indicative of lower carrying-

capacity following adverse changes in forest structure.  

 

The pragmatic response is to expand the area of available forest. Localised revegetation of 

open spaces between forest fragments would achieve this, particularly among the scattered 

eastern outliers of the Woolshed Bush, as recommended by Roberts et al. (2006). The few 

post-1998-99 data on relative densities in the Woolshed Bush (Kennedy and Wilson, 2005) 

suggest that its sheltered eastern areas are favoured by black robins. If so, staged reforesta-

tion of the sheltered, gently sloping eastern terraces behind Thinornis Bay should be a pri-

ority. Natural extension of the eastern forest perimeters has stalled through smothering by 

Muehlenbeckia (Roberts et al., 2006) but my observations indicate that seed from akeake 

trees will germinate if small spaces created in the blanketing Muehlenbeckia ground-cover 

are kept open while seedlings establish. 

 

Increases in black robin numbers on Mangere Island cannot be achieved without extensive 

reforestation of the open grasslands inherited from the farming era. Reforestation will 

benefit other threatened species such as Forbes’ parakeets, tomtits and Chatham petrels 

(the latter if reintroduced or colonising from Pitt and Rangatira Islands). My research has 
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indicated two necessary adjustments to the existing revegetation plan due for review 

shortly (Atkinson, 2003).  

 

Black robin numbers on Mangere Island are tightly constrained by the limited area of 

Robin Bush (about 5 ha of forest cover), with obvious implications for the levels of in-

breeding which are higher in this population than elsewhere (Chapter Seven: Table 7.2). 

Expansion of contiguous forest cover must be a priority. This is best achieved by integrat-

ing the Robin Bush isolate with the extensive Douglas Basin plantings (about 11 ha) on a 

broad front. Integration would treble the extent of closed-canopy habitat available. Elimi-

nating fragmentation within and between the two forested areas would also address a ma-

jor factor predisposing dispersing black robins to cross-breeding with tomtits, as I have 

argued in Chapter Eight (Hybridisation).  

 

The second reforestation requirement is unavoidable if the Recovery Group intends to pro-

ceed with the reintroduction of black robins to Little Mangere Island (Department of Con-

servation, 2001a, 2008; Merton, 2008a). If the two island populations were naturally 

united, as I have suggested in Chapters Three and Seven, re-establishment in the tiny an-

cestral habitat should also attempt to restore the original ecological and genetic linkages. 

Black robins should be able to disperse between the islands, a natural and cost-effective 

means of managing genetic integrity on both. This can only occur through reforestation of 

the western (or hut) peninsula and all ridges and slopes beyond to the Douglas Basin. This 

is a substantial long-term undertaking. Until accomplished, however, any new population 

marooned on Little Mangere Island will require constant, costly monitoring of numbers 

and genetic integrity to preserve it as a viable ‘life-boat’ population in case of losses else-

where. Forest enhancement would certainly improve this situation and benefit other forest 

species such as Forbes’ parakeet, but the logistical difficulties are formidable.  

 

Selection for forest type on both islands is important. The black robins and other species 

will benefit most from early establishment of the robust pioneering akeake which provides 

nest-cavities and foraging opportunities on trunks and branches, generates abundant seed 

and leaf-litter, and does not shed its foliage in winter. Matipo is also desirable. The fast-

growing deciduous ribbonwood should be kept to a minimum, since this offers few of the 

same advantages, appears to compete aggressively with akeake for space, and produces 
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open, colder forest interiors little favoured by black robins, other cavity-nesters and petrels 

requiring take-off trees. 

 

10.3 Short-term objective—Establishing new populations 

 
The founding of new black robin populations has been a long-standing objective of man-

agement (Flack, 1971). It aims to return the species to further parts of its natural range and 

to secure it on as many islands as possible as insurance against catastrophes (Department 

of Conservation, 2001a). The strategy may have the additional longer-term benefit of di-

versifying the black robin gene pool (Butler and Merton, 1992), though this will be real-

ised only if rates of inbreeding and deleterious genetic drift are minimised by maintaining 

populations consistently at the maximum sizes permitted by island area (Frankham et al., 

2002; Jamieson et al., 2008).  

 

As my study has illustrated, future translocations have the benefit of past experience to 

draw on. This will be critical because there are currently no other large, threat-free islands 

available in the Chathams archipelago. The remaining options are restricted to problematic 

‘islands’ of protected habitat in the hostile Pitt and Chatham Island environments. The fail-

ure of black robins to establish in Caravan Bush indicates that translocations to such sites 

are neither straightforward nor assured of success, even with large numbers and multiple 

liberations of founders (38 adults and juveniles in this case; Chapter Four). 

 

Where the circumstances of each translocation project allow, the following considerations 

should be taken into account when choosing new sites, founder sizes and follow-up pro-

grammes for management and monitoring.  

 

10.3.1 Reintroduction to real rather than virtual islands 

 
The history of black robin management has shown that reintroduction to threat-free geo-

graphically isolated islands has a greater chance of success than liberation into protected 

reserves in predator-populated environments (Chapters Three and Four). Given the black 

robin’s poor powers of flight and reluctance to traverse extensive open space, founders and 

offspring cannot disperse from real islands. They will be easier to trace. Threat quarantine 

protects the whole habitat and the population is not constantly vulnerable to the failure of 
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artificial barriers to pest invasions. Because new threats are localised, the probability of 

complete eradication is higher. 

 

Pitt Island (6,325 ha) is unquestionably the best option for black robins and the numerous 

other critically threatened terrestrial and marine birds in the region. Conservation manag-

ers must persevere with their efforts in the Pitt Island community to obtain consent for the 

island-wide eradication of weka, mice and feral cats and the containment of farmed and 

feral livestock (cattle, pigs and sheep).  

 

In the meantime, the only remaining island option is Little Mangere Island. It has the ad-

vantages of geographical isolation but population size will be severely curtailed in the 

small area of regenerating forest (about 4-5 ha). If, as Merton (2008a) suggests, only eight 

territories are available (of perhaps 18-20 originally), numbers may be held at no more 

than 20 individuals until reforestation restores linkages with the Mangere Island popula-

tion. At current rates of replanting, that prospect is many decades away. It will be neces-

sary to manage and monitor genetic integrity carefully (see below) to avoid exposing the 

fitness of any new population to the high levels of inbreeding and drift which depleted ge-

netic diversity historically.    

 

10.3.2 Reintroduction to discrete habitats in hostile environments 

  
Large, geographically discrete areas of fully protected habitat are preferable to protected 

partitions if black robins are being reintroduced to Pitt or Chatham Islands. Given the 

black robin’s intolerance of open spaces, discrete habitats reduce the probability of disper-

sal by valuable founders, and concentrate the founder population within manageable areas. 

The risks of genetic harm from closure of populations in such sites can be managed later 

by inter-site transfers (Section 10.4 below). 

 

The wisdom of this policy is well demonstrated by past experience. The decision to trans-

fer the last seven black robins to Mangere Island’s small forest remnant, rather than to the 

larger, better habitat on Rangatira Island proved critical to recovery of the species (Chap-

ters Three and Four). Even moderate dispersal from release points in the Woolshed Bush 

would have compromised opportunities for pairs to form, especially as later match-making 

relocations of itinerant black robins were ineffective (Chapter Two: Section 2.5). The fail-
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ure of the Pitt Island transfers between 2002 and 2005 was no doubt hastened by the fact 

that non-site-attached black robins ranged freely into predator-infested habitat beyond the 

protected boundary of Caravan Bush.  

 

10.3.3 Site preparation 

  
Potential threats in reintroduction sites should be identified and remedied before black rob-

ins are introduced. These threats (hazardous plants such as piri piri Acaena spp., predators, 

competitors, inadequate food supplies or habitat fragmentation) may waste important foun-

ders and reduce the probability of successful establishment.   

 

Success in Caravan Bush was jeopardised by at least two threats. Natural vegetation re-

covery had commenced only a decade beforehand, hardly enough to repair the significant 

degree of fragmentation in the forest cover after a century of browsing by domestic live-

stock. And mice, the only rodent species on Pitt Island, were still present. Any threat they 

might pose to black robins was not addressed. Depletion of invertebrate prey communities 

would appear likely as mice compete directly for the ground-dwelling prey exploited by 

black robins. Mice are also known predators of eggs and nestlings of other New Zealand 

Petroica species (Moors and Flack, 1979). The mouse threat may have been aggravated by 

the removal of cats and weka, increasing the possibility of episodic predation of black 

robin nests. Furthermore, black robin presence severely limited options for mouse eradica-

tion, since the birds were vulnerable to ground-set traps and toxins accumulating in the 

food chain.  

 

10.3.4 Post-transfer management to ensure establishment  

 
Planners of future black robin liberations must anticipate the need to manage founders ac-

tively from the outset and assist them to breed successfully. Sustained, intrusive interven-

tion may be needed, making extensive use of the methods proven during the intensive 

management period from 1980-81 to 1989-90 (Chapter Four).  

 

Since black robin management commenced in 1971-72, translocations have succeeded 

only if assisted and where population increases were managed. Conversely, the failures 

followed from simply liberating black robins into new habitat and leaving them to estab-
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lish naturally. This was the flawed approach taken in 1976-77 when the last seven black 

robins were transferred to Mangere Island, and was essentially the approach adopted for 

the Caravan Bush transfers (Chapters Three and Four). Both founder-populations faltered 

but only the Mangere Island population received the active assistance it needed to grow 

quickly. Had managers not intervened, extinction was inevitable. Unlike their more pro-

ductive and versatile congeners, the mainland robins, which have established without as-

sistance from small founder sizes (Taylor et al., 2005), black robins are constrained in their 

ability to establish by their shorter breeding seasons, lower reproductive output, specialist 

forest requirements and sensitivity to habitat quality (Chapters Two and Three).  

 

The survival and establishment of founders is the primary objective of intervention, espe-

cially if they possess scarce genetic qualities needed to counteract the bottleneck effects of 

translocation. Rapid increases to large numbers are desirable to overcome stochastic 

demographic and environmental threats, as illustrated on Mangere Island (eventually) and 

Rangatira Island. Rapid population increases also minimise the potential genetic costs of 

the founder event(s) and subsequent inbreeding. 

 

If resource constraints threaten to compromise the quality and duration of post-liberation 

management, initial liberations should be confined to small numbers of founders, supple-

mented as quickly as possible once a nucleus of breeders has been consolidated. The alter-

native of relying on large founder numbers to compensate for inadequate follow-up did not 

succeed in Caravan Bush, especially when the quality of the habitat itself was question-

able.  

 

10.3.5 Selection of founders to minimise genetic threats to viability 

 
Ideally, founders should be selected for genetic qualities likely to maintain population fit-

ness and heterozygosity as prerequisites for short- and long-term viability. Predictive mod-

elling of founder selection suggests that candidates should represent the genetic diversity 

in the source population’s original founding base (Haig et al., 1990). This is best deter-

mined from pedigrees in which all individuals are identifiable. Furthermore, the founder 

population should possess the common and rare alleles present in source populations. The 

alternatives of selecting the most reproductively successful individuals, or selecting indi-

viduals at random, are likely to result in loss of genetic variation (Haig et al., 1990). The 
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advantages of highly fecund founders (the potential to maximise offspring production) 

may be outweighed if their genes dominate the genetic structure of the new population at 

the expense of valuable rare alleles.   

 

The results of my study (Chapter Seven) indicate that highly inbred males should be ex-

cluded from black robin founder-populations. The negative correlations found between 

male inbreeding F and the survival of nestlings, fledglings and juveniles do not augur well 

for a new population’s establishment prospects. If environmental conditions at the new es-

tablishment site vary significantly from those of the source population, the inbreeding de-

pression in males may be expressed more strongly. The phenomenon of environmentally 

dependent inbreeding depression—latent depression triggered by shifting inbred birds to 

new environments (including better ones)—has been suggested in small insular popula-

tions of translocated South Island saddlebacks (Hooson and Jamieson, 2004) and takahe 

(Jamieson and Ryan, 2000). As a precaution against the expression of any latent inbreed-

ing depression in females under altered conditions, it would be advisable to select for low 

female inbreeding F. 

 

Black robin managers are now at a serious disadvantage in applying these principles after 

terminating the long-running pedigree and productivity monitoring. Individual inbreeding 

coefficients and founder representation cannot be defined. Nor does monitoring at current 

intensity permit the fecundity of potential founders or their breeding heritage to be ascer-

tained. Negligible genetic differentiation between individuals complicates molecular de-

termination of pedigrees but more comprehensive analyses may reveal levels of heterozy-

gosity worth managing (see Section 10.4 below). This last option should be explored. Until 

genetically important individuals can be identified by other means, black robin founders 

will have to be randomly selected. The attendant risks of genetic depletion can now be 

managed only by the conventional means of increasing numbers rapidly to minimise levels 

of inbreeding.  

 

10.3.6 Post-transfer monitoring of new populations 

 
For genetic and other reasons, new populations should be monitored annually by compe-

tent observers so that harmful trends can be detected, explained and remedied swiftly to 

ensure successful establishment. This is best achieved by detailed recording of population 
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pedigrees, individual life-histories and breeding performance. The demographic record of 

recovery will enable managers to assess genetic threats more reliably than by other means 

(see below). Close monitoring will be critical during the establishment phase when it is 

highly desirable to know, for instance, whether most or only one or two pairs are breeding 

successfully. Routine molecular assessments of genetic diversity are advisable (see below). 

 

Documenting of management activities and vital rates is necessary for non-genetic rea-

sons. It will help to define the pressures on the new populations and ensure that lessons 

learned at considerable expense are applied elsewhere. Annual population counts alone 

will not suffice, since they do not reveal anything of underlying demographic problems, as 

has been demonstrated by the failure of sample-monitoring to explain recent declines on 

Mangere and Rangatira Islands.  

 

Once establishment seems assured by commonly agreed criteria (consistently strong 

growth rate or reproductive output, low rates of adult mortality, full habitat occupancy), 

and the population is stable or growing after supplementary management has been with-

drawn, I suggest that monitoring revert to the minimum model I propose below (Section 

10.5). If doubts remain about the stability of the new population, monitoring of productiv-

ity should resume at regular intervals (no more perhaps than every three to four years, and 

spanning at least three consecutive seasons to allow for annual variations). More regular 

monitoring should resume if the need is indicated by signs of problems. 

 

Adequate monitoring will be difficult to achieve under present resource constraints and in 

logistically taxing habitats such as Little Mangere Island. Even so, it is unacceptable to 

have translocations fail without any objective understanding of why. Translocation theory 

and practice requires careful documenting of establishment projects, especially those 

which are unsuccessful (Armstrong and McLean, 1995).  

 

Design of monitoring and management regimes would benefit from a critical review of the 

failed Pitt Island transfers. This is an urgent prerequisite for consideration of new translo-

cation proposals. The review should attempt to define without prejudice the ecological, 

management and institutional impediments to the establishment of black robins in Caravan 

Bush.  
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10.3.7 Monitoring of source populations 

 
Finally, it is essential to understand the impacts of founder removal on source populations. 

It may not be coincidental, for instance, that black robin numbers on Rangatira Island had 

declined 29.4% by 2007-08 after removal of 34 individuals from Woolshed Bush in 2002 

and 2004 (Chapter Six: Section 6.2.3). Although the Black Robin Recovery Group requires 

the viability of the Mangere and Rangatira Island populations to be clarified before new 

translocations will be considered (Department of Conservation, 2008), post-transfer viabil-

ity must be assessed also. This presupposes more insightful monitoring than is currently 

conducted. 

 

10.4  Management of genetic threats to viability 

 
Black robin managers should anticipate more severe and diversified inbreeding effects in 

the two black robin populations. Precautionary genetic management is advisable to main-

tain population fitness and longer-term responsiveness to unforeseen selection pressures. 

 

The aim of genetic management is to maximise genetic variation in small inbred popula-

tions, with associated benefits for fitness. However, the efficacy of genetic management is 

not well understood in New Zealand bird species (Jamieson et al., 2006). Measures 

adopted for black robins will be largely experimental and should be monitored closely to 

detect adverse effects specifically and to inform future genetic management practice gen-

erally.  

 

Management of genetic health in small populations is served best by knowledge of produc-

tivity (which provide fitness measures), population demography and pedigrees in which 

genetic relationships among individuals can be determined (Haig et al., 1990; Jamieson, 

2009). Estimation of lethal equivalents likely in extant populations (using historical data) 

is highly desirable. Measurement of genetic diversity in populations is also highly advan-

tageous though molecular analyses are still inferior substitutes for detailed records of 

population demography from longitudinal studies (Pemberton, 2004). The value of de-

tailed demographic observations is stressed in the recommendations which follow.  
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10.4.1 Maximise population sizes 

 
Reducing the probability of inbreeding is accepted currently as being the most effective 

means of maximising population fitness and genetic diversity (Hedrick and Kalinowski, 

2000). Large populations and fast rebounds from declines reduce the frequency and inten-

sity of inbreeding. 

 

10.4.2 Monitor genetic variation within and between populations 

 
 DNA samples of sufficient type and quantity should be gathered from all populations at 

regular intervals for molecular assessment of genetic diversity. Heterozygosity invisible to 

past analyses may be revealed by the more powerful techniques of today and the future. 

New fitness-related DNA markers should be assessed also. Selection of sampling regimes, 

frequency, sample types and DNA markers is beyond the scope of this study but can be 

determined through consultation with conservation geneticists.   

  

 Conventional genetic thinking suggests that variation in and between populations is likely 

to diverge through mutation over hundreds of generations. However, evidence from longi-

tudinal studies of an inbred population of Scandinavian wolves Canis lupus descended 

from three individuals (Bensch et al., 2006) and a closed insular population of mouflon 

Ovis aries founded from two individuals in 1957 (Kaeuffler et al., 2007) indicates that 

natural selection may play a role in maintaining and increasing heterozygosity over shorter 

time-scales, even if (in the case of the wolves) mean inbreeding coefficients are rising.  

Whether or not natural selection operates advantageously in this way for black robins, any 

differentiated heterozygosity emerging in particular populations or environments increases 

options for the selection of founder populations and remedial gene-exchanges between 

populations.   

 

10.4.3 Inter-population exchanges 

  
The efficacy of routine gene-exchanges is not well understood. Predictions of reversed in-

breeding effects through inter-population transfers of at least one individual and up to ten 

per generation (Mills and Allendorf, 1996) are supported by computer-modelling for natu-

rally outbred species (Frankham et al., 2002; Wang, 2004). There is some empirical sup-

port for beneficial effects, as was demonstrated by the recovery of a chronically inbred 
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population of greater prairie chickens Tympanuchus cupido pinnatus after birds were in-

troduced from a larger, more genetically diverse sister-population (Westemeier et al., 

1998). As is typically the case for threatened New Zealand birds (Jamieson et al., 2006), 

no such healthy sister-populations exist for black robins, but future genetic divergence be-

tween populations may suffice as an alternative, especially if loci are found to be fixed for 

different alleles (Frankham et al., 2002). 

 

Each black robin population should receive at least one individual per generation from an-

other population. This means inter-island exchanges at no more than two-yearly intervals. 

Ideally, the individuals selected for transfer should be genetically differentiated from the 

recipient population and should have a proven breeding heritage. They must reproduce af-

ter transfer. Clutch transfers may substitute (if the fostered offspring survive to breed) and 

could avoid the many forms of social disruption associated with juvenile or adult ex-

changes. Transfers of birds carry an associated risk of disease transmission which should 

be minimised by routine screening of source populations.  

 

Because efficacy is not well quantified, any inter-population exchanges of black robins 

should be treated as experimental. Systematic adjustments in the number and provenance 

of individuals may be required, along with changes in the frequency of transfers (Mills and 

Allendorf, 1996). Monitoring for beneficial and adverse effects is essential. The most prac-

tical means of discerning any such effects is by observing fitness parameters in each popu-

lation (see below). Monitoring of genetic diversity (above) could also be instructive.  

 

10.5 Population monitoring  

 
The aim of population monitoring is to prevent black robin extinction. For this, black robin 

monitoring regimes must equip managers with the knowledge necessary to understand 

population viability, explain changes in status and predict future trends. In operational 

terms, this means monitoring of: 

• annual trends in established and new populations 

• the impacts of unusual events, catastrophes or founder selection on source populations 

• the effects of any remedial management 
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The quality and intensity of monitoring had a direct bearing on the ability of black robin 

managers to anticipate and remedy problems in the ancestral and descendent populations. 

Much now depends on the type and quality of future monitoring. The more comprehensive 

it is, the better a manager’s ability to identify or predict changes in trends or viability, thus 

enhancing the black robin’s prospects of long-term persistence (the overarching goal of 

current management; Department of Conservation 2001a). Conversely, as my study has 

illustrated (Chapter Four), monitoring of lesser intensity will rapidly erode management 

effectiveness and responsiveness.  

 

10.5.1 Desirable elements of monitoring 

 
The inability of latter-day managers to detect and explain recent population declines 

(Chapter Six) signals that monitoring intensity has been reduced too far. Before making 

recommendations on alternative monitoring regimes, however, my critique of past moni-

toring practices (Chapter Four) justifies the observation that ecologically sound monitoring 

combines two elements—quantitative measurement of chosen demographic parameters 

(adequate on its own), and qualitative understanding of populations and their environ-

ments. The two in combination achieve otherwise unobtainable synergies and enhance 

management, as illustrated during the critical period of intensive conservation activity 

(Chapter Four). As a monitoring attribute, sensitivity growing from familiarity, knowledge 

and experience of the black robin populations has been radically undervalued in recent 

years, so much so that transient observers discouraged from ‘looking around’ by the snap-

shot demands of index-monitoring failed to both sense and detect potentially catastrophic 

population changes. In what follows then, it should be implied that experience, knowledge 

and continuity in black robin observation are crucial qualities for effective monitoring.  

 

These qualities are customarily brought willingly to monitoring by skilled, motivated ob-

servers. If black robin management is to benefit from them, present-day managers will 

need to critically review: 

• the ‘flying-squad’ approach of index-monitoring (is it really value for money?) 

• the operational emphasis on completing the task rather than completing it well  

• the policy of regular turn-over in black robin project leaders and field staff 

• the practice of using unskilled, one-trip observers or a succession of contractors 



 

Chapter Ten: Management Recommendations 310 

• the currently minimal standards for quantitative and qualitative reporting of field 

work and monitoring results 

• the absence of an apprenticeship, mentoring and peer-review system founded on cul-

tural transmission in the field of skills, knowledge, experience and standards. 

 

A review of these issues will be a challenge in the current institutional environment, which 

relies predominantly on contractual obligations, standard operating procedures and opera-

tional guidelines to legislate for quality.  

 

10.5.2 Population modelling  

 
As I have suggested in my conclusions (Chapter Nine), black robin management would be 

significantly advantaged by more powerful predictive modelling of historical demographic 

data (or suitable data acquired in the future). This option should receive immediate consid-

eration. Modelling has the potential to identify the life-history stages likely to be compro-

mising the stability and viability of black robin populations. It can be used to identify fur-

ther information needs and assess the likely genetic consequences of changes in population 

sizes. In the meantime, my finding in Chapter Six—that no single life-history factor ex-

plained historical differences in population trends—means that monitoring must attempt to 

cover all bases. Focusing randomly on key vital rates or life-history stages may not be safe 

if they are uninformative in isolation or change in their importance over time.   

 

10.5.3 Optimal monitoring 

 
Ideally, black robin monitoring should aim to give managers an unequivocal understanding 

of annual population trends and the demographic variables shaping them. Trends in abun-

dance and underlying vital rates express the interacting effects of extrinsic and intrinsic 

forces acting on the populations. Accurate, timely interpretation and prediction of trends 

relies especially on measuring vital rates.  

 

To ensure accurate measurement in each black robin population, a number of minimum 

monitoring requirements would have to be met: 

• fully colour-marked populations 

• close observation (to completion) of annual breeding attempts 
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• annual pre-breeding census  

• population pedigrees based on full knowledge of parentage  

• analysis of field data between seasons 

 

A proposal for monitoring at this intensity will be seen as an uncritical return to the prac-

tices of the past. There is no denying, however, that black robin management was well 

served by such monitoring between 1980-81 and 2001-02, particularly at critical times 

such as the cross-fostering seasons and establishment of black robins on Rangatira Island 

(Chapter Four). The mal-imprinting and cross-breeding crises were dealt with swiftly be-

cause managers were very familiar with the populations (Chapter Eight). Monitoring of 

this intensity would serve managers well in future decisions and unforeseen crises. Impor-

tantly, it would provide managers with an adequate platform for managing genetic threats 

to black robin populations.  

 

Any such monitoring regime, or variations of it, would be strengthened by including indi-

cators of external variables which influence trends. These were not monitored historically 

but might include: 

• tomtit densities (if declining in parallel with black robins, a common environmental fac-

tor may be operating) 

• changes in forest structure (measurable through regular photo-point or other simple 

quantitative indices of vegetation change) 

• starling densities (a measure of predation and disease threats) 

• sub-canopy temperature and humidity (measures of environmental stress obtained 

cheaply at permanent data-logger stations and highly desirable base-line information for 

selection of new population sites). 

 

Past experience has shown that efficiencies can be achieved in intensive monitoring of this 

kind by using skilled observers familiar with black robin behaviour and the geography of 

their habitats. Observation frequency can be reduced but potentially at the cost of knowing 

less about breeding attempts or black robin fates. The focus of monitoring should be sharp-

ened by analysing annual field data systematically between seasons so that observers are 

aware of which demographic variables require more attention than others.   
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Clearly, monitoring of all demographic and chosen external variables implies a significant 

investment of time and observers throughout the black robin breeding season. Current re-

sourcing arrangements will not support that. However, it goes without saying that if fewer 

variables are measured, understanding of population trends will diminish significantly, 

with predictable consequences for ability to interpret and respond appropriately to emerg-

ing extinction pressures. I need to stress that measurement of potential genetic threats to 

viability is particularly sensitive to reductions in demographic monitoring, as I have ex-

plained earlier. This is true also for measuring the effectiveness of genetic management 

and selection of genetically appropriate founders for new populations. Without the demo-

graphic insights to support the necessary decisions, genetic management of black robins 

will remain largely a lottery. 

 

10.5.4 The integrated approach to monitoring 

 
Full demographic monitoring requires the near-continuous presence of observers through-

out breeding season. This could not be justified for black robins alone but might be sus-

tainable if black robin monitoring were integrated closely with work on other threatened 

plant and animal species on the islands. Integration was the norm historically but is not a 

feature of current operational practice in the Chatham Islands.  

 

Four practised field staff stationed semi-permanently on Rangatira and Mangere Islands 

(two on each), from spring to autumn (as needed), could manage a range of threatened spe-

cies tasks on each island. This ‘game-keeper’ approach to species management creates op-

portunities for multiple synergies of effort. It has numerous advantages over existing fly-

ing-squad tactics, which are inherently inflexible, insensitive to contingencies and unre-

sponsive to the needs of black robins or any other species. On-the-ground familiarity with 

the populations will augment the quality and consistency of management. Among other 

things, observers on the spot are appropriately placed and informed to act as circuit-

breakers for problems before they become serious or insurmountable.   

 

The ‘game-keeper’ approach has precedents in the past employment of long-term contrac-

tors and, further back, in the rotational deployment of field teams between 1980-81 and 

2001-02. These precedents suggest the minimum criteria for successful integrated man-

agement: 
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• competent, versatile, multi-skilled operators well-attuned to island life  

• agreement on seasonal tasks and work standards 

• an expectation that game-keepers will return for successive seasons and train their 

replacements in the field 

• creative employment arrangements reflecting (1) the contingent nature of multi-

species work and (2) the special social demands of isolation 

• a shift in species recovery planning perspectives to maximise the benefits of inte-

grated management on the ground. 

 

10.5.5  Minimum monitoring regime  

 
The current index-monitoring regime (mark-resighting) is not meeting the minimum 

requirements for black robin monitoring. Abundance estimates made for the proportions 

of the populations sampled have proven to be too variable to show trends reliably 

(Chapters Four and Six). The method is sensitive to errors in the sighting data supplied 

for NOREMARK estimators, and these appear to have been extensive in the past (Chap-

ter Four), with no immediate prospect of improvement. Moreover, sample-monitoring, 

and monitoring of abundance itself, give only a partial indication of population status 

and may not reflect detrimental changes adequately or quickly. The focus on abundance 

is not intended to reveal anything of the vital rates in which harmful changes will be 

both expressed and more easily explained. The current regime makes no provision for 

precautionary monitoring of productivity, the vital complement to abundance monitor-

ing.  

 

An immediate priority for determination of the method’s future is to re-run the NORE-

MARK estimators with the historical data cleaned to remove errors. This study has con-

tributed significantly to that process by identifying the errors and suggesting appropriate 

corrections (Kennedy, 2007b, c). Re-runs may reveal the timing and extent of recent 

population declines. If not, the appropriateness of the mark-resighting method is ques-

tionable. Until it is demonstrated to be reliable and robust, or an alternative index-

monitoring method is developed, it is prudent to adopt an interim approach more sensi-

tive to the management needs I have identified at the beginning of this section. 
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The following recommendation makes provision for monitoring abundance and vital 

rates, and—depending on degree of standardisation—is much less labour-intensive than 

the optimal monitoring approach. However, it provides insufficient data for population 

modelling. It does not make any allowance for precautionary management of genetic 

integrity in extant and new populations, except to ensure that population contractions 

are detected quickly. Routine monitoring of genetic diversity (above) and disease 

screening should continue as independent activities.   

 

I propose a two-stage regime. The first stage aims to detect potentially harmful declines 

in black robin numbers by annual baseline monitoring of population sizes. Because 

gross numbers are fallible indicators of viability (Chapters Three and Four), their pri-

mary function in this regime is to indicate declines. Declines indicated consistently over 

three seasons (see below) will then trigger intensive monitoring designed to define (1) 

their causes; (2) the life-history stages at which threats are affecting population dynam-

ics, and (3) the appropriate application of remedies.  

 

This proposal has crucial benefits for managers. It provides a known, banded population 

against which to validate index-monitoring alternatives, and it will have defined the dis-

tribution of breeding populations managers may have to monitor if persistent declines 

are indicated. 

 

10.5.6  Baseline monitoring of population sizes 

 
Population sizes on Mangere and Rangatira Islands have always been assessed more 

accurately by head-counts than by index-monitoring (Chapters Four and Six). I recom-

mend that head-count monitoring resume.  

 

I acknowledge that historical head-counts were achieved over long periods of observa-

tion in which the probability of encountering all black robins was high. Therefore, this 

proposal is ideally suited to the integrated game-keeper approach to multi-species man-

agement. Time-limited head-counts standardised for yearly replication are problematic 

and will increase the probability of error. If standardised, the head-count methodology 

will have to be configured to ensure statistical power, especially as the second phase of 

productivity monitoring will be triggered by declines of set magnitude.  
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Phase One Annual head-count censuses in the Woolshed Bush, Top Bush and on 
Mangere Island no later than mid-October 

 
If not standardised, head-count surveys should be conducted annually in the Woolshed 

Bush, Top Bush and on Mangere Island, commencing no later than the first week of Oc-

tober. Two surveyors on each island should search all areas of potential habitat, linger-

ing to (1) verify the number and identity of black robins encountered, and (2) determine 

the identity of unseen mates. The principal emphasis is on counting the banded adults 

and unbanded juveniles surviving the winter (see below). Incidental sightings of other 

individuals later in the season should be recorded carefully and added to the census 

counts. No post-breeding count is required, although given that the black robin’s slow-

breeding strategy carries inherent risks to viability if juvenile production is inadequate, 

it is highly desirable to establish the number of juveniles produced each year. 

 

Current index-monitoring effort on each island amounts to about 20 person-days a year 

(two observers for two five-day pre- and post-breeding mark-resighting surveys). This 

effort should be reinvested in the early season head-counts. 

 

Head-count accuracy depends on  

• unique colour-banding of most or all black robins 

• skilled, motivated observers who are very familiar with the habitats 

• mandatory noting of sex, mate and territory (relative to formed tracks) 

• a centrally managed banding database, available to surveyors in the field   

 

Initially, a greater investment of time will be necessary to bring adult populations up to 

fully or near-fully colour-banded status. The effort of finding and banding black robins 

will be useful in establishing abundance bench-marks. From that point on, banding ef-

fort can be expected to decline considerably. The majority of birds banded in spring will 

be yearlings. If not complemented by post-breeding head-counts, assessment of annual 

juvenile production will have to be based on the numbers of unbanded birds presenting 

at pre-breeding head-counts.  

 

Standardising of head-counts will require careful design to ensure multi-year replication 

and minimal error in counts. Ideally, the counts should be restricted to two observers for 
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the chosen survey interval (defined for statistical power) and should commence before 

females retire from view to incubate (that is, very late September to early October). To 

minimise the effects of annually varying rates of dispersal, surveys should be conducted 

in all forested areas in the Woolshed Bush and Robin Bush. Standardising of head-

counts will have to segregate incidental sightings from survey-period data but this in-

formation should be recorded carefully anyway. 

 

Phase Two Contingency monitoring of productivity and survival 
 
Head-count surveys should continue annually if population sizes remain stable or in-

crease. If declines of 10% or more are indicated in each of three consecutive seasons, 

monitoring of pair numbers, productivity and survival should commence immediately. 

The first two years of decline will forewarn managers of this necessity. The 10% trig-

ger-threshold is based on the mean annual rate of decline apparent in the Mangere Is-

land population between 2001-02 and Harvey’s (2009) estimate of pre-breeding num-

bers in 2006-07 (a 43.4% decline overall; an annual average of 8.7% over five seasons). 

 

Productivity and survival monitoring should confine itself to the Woolshed Bush and 

Mangere Island breeding populations, the two strongest and most similar in productivity 

historically (Chapter Six). The aim is to quantify breeding outcomes for all or large 

standardised samples of pairs throughout the season so that managers can explain trends 

at each life-history stage for offspring. Survival monitoring should aim to define and 

explain adult and juvenile mortality rates. This study provides a guide to historical 

breeding and survival data under natural conditions between 1990-91 and 2001-02, 

though the analyses to which new demographic data are submitted may benefit from 

more powerful statistical modelling. 

 

Productivity and survival monitoring should continue annually until managers are con-

fident that the declines are not indicative of a serious threat to populations, or that the 

causes have been identified and treated effectively. Positive corrections in the affected 

demographic parameters and subsequent population increases should be used as indica-

tions of the latter. 
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The operative Black Robin Recovery Plan (Department of Conservation, 2001a) is en-

tirely silent on the nature of management responses to population declines but I would 

expect intensive monitoring of this kind to have commenced had index-counts indicated 

the recent declines accurately.   

 

10.6 Assisting research 

 
Access to historical and new demographic data on black robin populations is crucial to 

good research outcomes. Managers can assist this by centralising and cataloguing field 

records annually. As I have learned from my study, even the most insignificant of field 

records is worth retaining, more so because future research needs cannot be predicted. 

Rationalising of existing placements with archival institutions may be required, since 

historical records have become widely dispersed and are exceedingly difficult to trace.  

 

Research will also benefit from greater consistency in observation standards. All ob-

servers should understand the minimum expectations required. A collegial culture of 

black robin mentoring and management would help to ensure this. The recent introduc-

tion of a banding database available to field-workers (Dave Houston, pers. comm., Oc-

tober 2009) should minimise the errors in recording of band combinations which have 

crippled index-monitoring and frustrated my study.   

 

Significant improvements in reporting practices and subject-matter are essential. Very 

little quantitative and qualitative information is available in formal reports or informal 

logbooks from the seasons after full-population monitoring ceased. This was also a 

problem with reporting in the two previous management phases. Reports should in-

clude: 

• dates for the report and the field visit(s) 

• the names of authors and observers 

• areas traversed 

• tabulated lists of the black robins seen and banded, along with sighting dates and all 

relevant biological information (sex, mates, activity) 

• tabulated summaries of productivity data 

• comment on factors limiting the accuracy of data reported 
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• qualitative comment on population trends, the behaviour of black robins and eco-

logical associates, habitat changes, apparent threats and any other issues deemed 

relevant  

• other sources of information  
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APPENDIX ONE 

Chatham Islands topography, climate and flora 

 
The Chathams archipelago is a loosely dispersed group of oceanic islands formed from a 

combination of prolonged volcanism and episodic submergence and uplift. The principal 

islands in the group are generally low-lying—none exceeds an elevation greater than 294 

metres a.s.l. The high points indicate centres of ancient volcanic action, most evident today 

in the precipitous cliffs on weather (southern and western) shorelines and in the steep to-

pography of many of the outer islands. The group’s two major landmasses—Chatham Is-

land Rekohu/Wharekauri (90040 ha) and Pitt Island Rangiauria (6325 ha)—are perma-

nently inhabited. Numerous outliers of varying sizes are distributed around these two large 

islands, most at the southern extremity of the group, but only four possess woody vegeta-

tion cover of significant stature (Little Mangere Island, 8-9 ha; Mangere Island, 113 ha; 

Rangatira (South-East) Island, 218 ha; and Star Keys, c.10 ha).    

 

The archipelago straddles latitude 44°S where it is exposed to persistent salt-laden winds 

from the south and west known as the ‘Roaring Forties’. The group’s landmasses are of 

insufficient area to generate their own weather, which is strongly determined by the marine 

winds and the shifting convergence nearby of warm sub-tropical and colder subantarctic 

waters (the Subtropical Convergence). The climate is temperate and noted for its rare in-

consequential frosts, mid-summer droughts and frequent gales throughout the year. Rain 

falls often, is localised, occasionally heavy and prolonged, and varies annually from 715-

1050 mm (Cockayne, 1901; Roberts et al., 2007). Temperatures average 11°C year-round 

(extremes range from 0°C to more than 20°C; see also Chapter Six: Table 6.8), and high 

summer humidity often exceeds 80% (Thompson, 1983; Atkinson, 1996).   

 

The indigenous flora of the Chathams possesses an unusually high degree of diversity and 

endemism (11%, 47 of 435 native taxa, all plant categories; Amanda Baird, pers. comm., 

May 2008), as is typical of islands isolated geographically and in geological time from 

mainland or continental landmasses. It also exhibits an unusual mix of plants related to 

species in the warmer northern and colder southern or subantarctic regions of New Zea-

land. Wind- and salt-tolerant forest appears to have been a dominant vegetation type prior 

to human contact (Cockayne, 1901) but tree species are relatively few in comparison with 

the marked diversity of shrubs, herbs and ferns in the flora (Given, 1996).  
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How typical are present-day habitats? 
 
The present-day forests of Mangere and Rangatira Islands do not resemble the more struc-

turally and floristically diverse habitats elsewhere in the island group. Chatham and Pitt 

Islands, which would have supported the largest populations of black robins, were mantled 

historically in a locally variable mosaic of forest, shrub- and wetlands (Dieffenbach, 1841; 

Cockayne, 1901; King, 1989). The original character of these communities was strongly 

influenced by drainage and soil-type (Amanda Baird, pers. comm., May 2008).  

 

The pre-human character of the vegetation in which black robins evolved is difficult to dis-

cern precisely because—with the few uninformative exceptions on the smallest, inhospita-

ble outliers—the types and distribution of plant communities throughout the archipelago 

have been modified significantly since human arrival at least five to six centuries ago 

(McFadgen, 1994; Holdaway, 1999). Moriori, the original East Polynesian colonisers, 

were responsible for the peat fires noted by Europeans in 1807 (Richards, 1982) but the 

degree to which Moriori were living in regrowth forests at the time of European contact is 

uncertain. The Maori who arrived in 1835 (King, 1989) lit extensive fires and permitted 

their cattle, horses and abundant pigs to roam at will (Travers, 1868). These reducing ef-

fects augmented the intensive and more systematic land-use changes associated with the 

pastoral farming of a growing European population.  

 

The historical processes of change have been compounded by the introduction of 366 ex-

otic plant taxa (Amanda Baird, pers comm., May 2008) and feral browsers such as Austra-

lian brush-tailed possums. Introduced predators—cats, mice, rats (in order of arrival) Rat-

tus exulans, R. norvegicus, R. rattus, pigs and weka—are also likely to have modified 

habitat character by eliminating key ecological associates such avian and reptile seed-

dispersers, insect pollinators and the densely populated oceanic petrel communities which 

acted as abundant sources of marine nutrients.   

 

Henry Travers (1868) reported that Pitt Island was all but fully covered in bush at the time 

of his visit (1863-64) but says very little about its character, aside from comments on the 

prevalence of introduced weeds. A comment on the richer collecting opportunities on Pitt 

Island (Travers, 1868: 176) suggests that the bush there might have fared better than on 

Chatham Island. On Chatham Island, Travers encountered evidence of a once extensive 
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bush cover in the many impenetrable remnants and in the massive trunks of an old-age for-

est buried deep within the peat at some sites. Cockayne (1901) describes a range of vegeta-

tion communities on Chatham Island differing in type and composition from north to south 

according to elevation, topography, drainage and climate. Akeake, the tree daisy Olearia 

traversii, was common in almost all forested localities, often alongside other canopy spe-

cies such as ribbonwood Plagianthus chathamicus, matipo Myrsine chathamica, karamu 

Coprosma chathamica, hoho Pseudopanax chathamica, mahoe Melicytus chathamicus, 

kopi Corynocarpus laevigatus, and tarahinau Drachophyllum arboretum. These species 

also feature in the canopy structure of Pitt Island forest remnants. 

 

In contrast, the pre-human composition of vegetation cover on Mangere and Rangatira Is-

lands is not well known since no naturalists visited before browsing animals were first in-

troduced—on Rangatira Island: pigs before 1831, sheep in 1841, goats c.1842 (Richards, 

1982); on Mangere Island: goats and rabbits perhaps as early as the late 1850s (see Chapter 

Three: Section 3.5). The character of vegetation communities of both islands was obscured 

thereafter by 120 years of dissembling change induced by the periods of intensive pastoral 

farming (goats, sheep, cattle), the deleterious impacts of which were exacerbated by burn-

ing, systematic clearing for cropping and later periods of over-grazing (Chapter Three). 

The cumulative effects of farming caused forest desiccation, local fragmentation, canopy 

collapse and soil erosion (Bill Carter, pers. comm; Bell, 1953; Ritchie, 1970; Richards, 

1982; Roberts, 2004). 

 

There are compelling indications that vegetation on both islands was originally more di-

verse than it is today. Drummond (1910a) attributes to Henry Travers a single generalising 

statement about Mangere Island: ‘At the time of Mr Travers’s visit [September 1871], 

[Mangere Island] was covered densely with forest, of the same kinds as are found on other 

members of the Chathams group’.45 The original woolshed on Rangatira Island was built 

from the trunks of mature tree-ferns, the great number of which suggests that they were 

harvested on the island (Figure 1A). Tree-ferns Dicksonia squarrosa are still present but 

                                                 
45   This reported statement is at odds with an earlier reference to the island’s bush, though 

that description is more a matter of inference. In Travers and Travers (1872: 214), Henry 
Travers says that Pitt Island possesses bush ‘of the same class as that on the main [Chat-
ham] island’ but does not say the same of Rangatira and Mangere Islands in the sentences 
which follow immediately.   
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very rare on Rangatira Island (Bell, 1953; Taylor, 1991) 46 and are not recorded on Man-

gere Island (pers. obs.). Likewise, kopi are rare on Rangatira Island and were absent en-

tirely from Mangere Island in the mid-1970s (Brian Bell, pers. comm.).47 Curiously, nei-

ther island yields evidence of nikau palms Rhopalostylis “Chatham” which were once 

abundant on adjacent Pitt Island (Walls et al., 2000). Both islands are well within the fly-

ing range of parea, the indigenous fruit pigeon. Strongly flighted parea, the largest of avian 

seed-dispersers locally, were present on Pitt Island historically (Travers, 1868; Fleming, 

1939b). 

 

Drier soil conditions, reflected in the scarcities of ponding water, streams, peat, tarahinau 

(and perhaps the nikau palms), may have diminished historical similarities with the major 

islands. Travers refers, for instance, to the stony nature of Mangere Island (Travers and 

Travers, 1872). Differences in community scale certainly seem likely, and both islands 

were probably more drought-prone than the larger landmasses. Removal of forest cover 

and understorey during the farming era (Chapter Three) may have induced even drier con-

ditions which are inhibiting the recovery of the moisture-demanding tree-ferns and kopi. 

Oceanic petrels are strong determinants of vegetation type and structure, as Flack (1976a) 

remarked of Little Mangere Island’s declining forest cover. Nocturnal burrowing con-

stantly ploughs the soil and the nightly ground-activities of petrels can sweep the forest 

floor clear of seedlings and leaf litter.  

 

On Mangere Island which is now predominantly covered in a deep sward of introduced 

grasses, burrowing is concentrated in the small area of forest inhabited by the black robins 
                                                 
46  Isolated examples of tree-ferns (about one metre high) may now be found on sheltered for-

est margins near the woolshed and around the perimeter of Kokopu Swamp, indicating 
that recovery is underway. Solitary dead stems of mature tree-ferns have been encountered 
during Chatham Island petrel field-work in the Top Bush (Graeme Taylor, pers. comm.). 
Cyathea cunninghamii, another more drought-intolerant tree-fern species present in the 
Chatham Islands, is not recorded at all on the island (Taylor, 1991).  

47  Logan. C. Bell photographed dying kopi trees on the west coast of the island (apparently on 
the coastal slope above Skua Gully) in January 1953 but did not mention how widespread 
kopi were elsewhere in the bush (Bell, 1953). By 1983-84, kopi trees were extremely rare on 
the island. Berries collected from two large trees just inside the entrance of the Woolshed 
Bush were widely scattered in the Woolshed Bush and Top Bush by Geordie Murman, a 
New Zealand Wildlife Service (NZWS) officer working on the black robin cross-fostering 
programme (Murman, pers. comm.). There were no kopi trees on Mangere Island when the 
NZWS reforestation programme began in the mid-1970s. In the late 1970s, Brian Bell and 
Peter Fisher (NZWS) distributed half a sack of kopi berries among replanted akeake trees in 
the Douglas Basin and at the southern end of Robin Bush. The berries were harvested from 
the Weisner property at Kaingaroa, northern Chatham Island (Brian Bell, pers. comm.). 



 

Appendix One 346 

(Robin Bush). On Rangatira Island, however, the ‘ploughing’ of soil is a dominant feature 

of the forest environment (Roberts, 2004; Roberts et al., 2007). Millions of oceanic petrels 

breed on the island (West and Nilsson, 1994) in densities which may be unnaturally high 

as a consequence of habitat loss elsewhere in the archipelago. The cumulative effects of 

burrowing and seedling mortality may restrict the range of tree species on both Mangere 

and Rangatira Islands to those capable of persisting on dry, unstable, nutrient-saturated 

soils.  

 

The degree to which the recovering vegetation communities on Mangere and Rangatira 

Islands were naturally simpler in structure and diversity than those on neighbouring islands 

awaits clarification (Geoff Walls, pers. comm.). If they are atypical of pre-human habitats 

today, it does not follow necessarily that they are sub-optimal. Aside from their superior 

invertebrate communities (a product of the marine nutrients conveyed ashore by petrels 

and the absence of introduced predators), areas of closed canopy are more extensive than 

in the diverse and mixed-height bush remnants on Pitt Island today. Browsing and compet-

ing land-uses no longer inhibit regeneration. As Chapter Two has outlined, these qualities 

are important for black robin persistence. Ultimately, what constitutes typical black robin 

habitat will not be understood until population densities in the transitional forests of Man-

gere and Rangatira Islands can be compared alongside those in restored, protected and 

predator-free habitats on the larger islands.  
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APPENDIX TWO 

Mr S. Percy Smith’s account of feral cat abundance on Pitt Island in 1868 

 

From the newspaper column In Touch with Nature: Notes on Natural History in New Zea-

land (Drummond, 1910b). 
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APPENDIX THREE 

Alternative date for black robin extirpation on Pitt Island 

 

 
Conversations with Pitt Islanders Kenneth Lanauze (10 June 2009) and Robert Greg-
ory-Hunt (30 June 2009)  
 
Kenneth (Dorse) Lanauze is a Pitt Islander and nephew of Sam Gregory-Hunt whose ac-

count of seeing black robins on Pitt Island in summer 1938-39 is recorded in Aikman 

(2002). Kenneth knows the small piece of bush in which his uncle said he saw the black 

robins. The bush, of which only inconsequential fragments exist now, was situated at the 

neck of the small peninsula on the north-western corner of Pitt Island (Tarawhenua Point; 

Figure 3A). It lay directly across the narrowest part of the peninsula from Paremata Cove 

(the Boat Harbour) and faced Mangere Island which is approximately 2.8 km distant. In 

Kenneth’s recollection, the bush comprised mostly low matipo and Muehlenbeckia vine 

but this may not be indicative of its form and composition in 1938-39.  

 

Kenneth understands that two other Pitt Islanders, Laurie Smylie and Bert Hunt, had also 

encountered black robins on Pitt Island at about the same time. Bert Hunt was a generation 

older than Gregory-Hunt. He was mustering sheep to the old Waipaua sheep-yards south 

of the Waipaua Stream, on the island’s south-east coast. Hunt is said to have seen black 

robins in bush near the keketehere Olearia chathamica ‘clears’ in the south-east corner of 

the Waipaua Block. Smylie farmed at Waihere on the island’s west coast, overlooking 

Mangere Island. He was Gregory-Hunt’s age and a descendant of the island’s Paynter fam-

ily. Smylie knew of black robins in bush closer to Paremata Cove, between Kaingaroa 

Head and Waihere Head hill. Bill Carter believes that this might be the bush present near 

the grave-site of Steve Gregory-Hunt, in the vicinity of the Rauceby homestead. Kenneth 

Lanauze has no recollection of when black robins were last seen at any of these sites, or of 

how many were seen.  

 

Robert Gregory-Hunt, a Pitt Islander who left the island in 1957, is also certain of seeing 

black robins in the matipo bush on Tarawhenua Point up until at least 1942. I asked him to 

describe black robins and tomtits, which he did with a reasonable degree of accuracy. The 

black robins were ‘black all over… not a patch of lighter colour anywhere’. He says he 

saw them many times while working with his father in that part of the farm. 
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I asked Kenneth and Robert why they thought it was that Charles Fleming did not learn of 

the black robins on Pitt Island when actively searching for them in 1937-38. Robert felt 

that Fleming may have spoken with locals who took no interest the island’s birdlife. Ken-

neth’s response was that Pitt Islanders have always been very cautious about sharing local 

knowledge with outsiders. Both are plausible explanations, but Fleming’s travelling com-

panion and climbing guide, Alan Wotherspoon, was an adventurous ornithologist and local 

teacher who had interacted with Pitt Islanders on numerous occasions. Presumably he 

would have known the best local sources of bird information. Wotherspoon also made bird 

observations on Pitt Island a year later, in the summer of 1938-39 when Sam Gregory-

Hunt said he had encountered black robins (Fleming, 1939c). Equally, the range of other 

local contacts Fleming had at that time suggests that local knowledge of black robins 

would have to have been extremely well guarded.  

 

As soon as Fleming arrived in the Chatham Islands, he asked Chatham Islanders as to 

whether and where the black robins were still in existence (McEwen, 2005). Fleming also 

communicated with Pitt Islanders or people who knew Pitt Island well. He was advised 

locally and extensively on bird matters by Robert Paynter who had been raised on Pitt Is-

land but was by then domiciled at Kaingaroa on Chatham Island (Fleming, 1939a, b, c). He 

was also advised by Dick Clough who had strong family connections with Pitt Island. 

Clough took him by boat to his island destinations. And Terry Prenderville who went 

ashore with Fleming on Little Mangere Island was connected by birth with Pitt Island 

families. Moreover, Fleming spent a morning making bird observations on Pitt Island with 

Wotherspoon and Graham Turbott, a young ornithologist from New Zealand, just a few 

days before the momentous ascent of Little Mangere Island (McEwen, 2005). It is difficult 

to comprehend how the existence of black robins on Pitt Island up to that time—even in 

small numbers—could have been unknown to or kept secret by so many locals.  

 

Buller (1890) reference to black robins on Pitt Island 
  
Buller (1890: 37) says in reference to the disjunct distribution of ‘black robins’ in the 

Chatham Islands and more distant Snares Islands that ‘[the black robin] occurs on the 

Chatham Islands, and on Pitt’s Island, adjacent thereto’. This single allusion to Pitt Island 

has the ring of a generalising statement. It contradicts specialist first-hand knowledge of 

that time that black robins were found only on Mangere Island (Travers and Travers, 1872) 
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and Buller’s own statements that the robin was absent from both Chatham and Pitt Islands 

(Buller, 1888). A possible explanation is that Buller treated Mangere Island as an adjunct 

to ‘Pitt’s Island’, a misconception encouraged perhaps by references to it (and Rangatira 

Island) as merely one ‘of several small rocky islets’ in the vicinity (Travers and Travers, 

1872: 213). Any confusion of island names, especially by people who had not visited the 

southern part of the Chathams archipelago, could explain the later mis-labelling of the 

black robin specimens Travers obtained from Mangere Island in 1871 (see above; Alan 

Tennyson, pers. comm.). In my view, no weight can be placed on Buller’s 1890 statement. 

 

1909 description of ‘robins’ on Pitt Island  
 
The strongest support for Sam Gregory-Hunt’s contention comes from R (Robert) E. 

Paynter, a Pitt Island resident, who is reported in a newspaper column of 1909 as saying 

that ‘robins’ were still common on the island despite the ease with which cats killed them 

(Drummond, 1909). The article is reprinted below.48 Like his father Richard, Robert 

Paynter was a part-time collector and amateur naturalist (Broun, 1910). At face value, his 

description of the ‘robins’ is compelling, though his reliability as a bird observer is called 

into question by his mention of broken-wing displays by parents protecting nests. Paynter 

may have used the wrong terminology.  

 

Distraction displays of this sort have not been recorded during the many latter-day nest-

inspections of black robins (collated data; pers. obs.). But Buller (1888 (2): 41) records his 

own observation of a North Island tomtit female ‘fluttering away with wings outstretched 

and quivering, as if unable to fly, and apparently to divert attention from the nest.’ And on 

Little Mangere Island, Flack (1976a: 28) noted that black robin adults sometimes showed 

distress at his proximity to nests through ‘calls or mildly agitated flights, once with mo-

mentary partial opening of the wings’. Paynter may have witnessed similar agitation.  

 

Because Paynter’s description of ‘robin’ nesting and parental behaviour could readily ap-

ply to tomtits, I asked Kenneth Lanauze and his wife Judy whether Pitt Islanders used the 

generic term ‘robins’ to refer to tomtits. Both assured me that no such generalising term 

                                                 
48  The article is a second-hand account, leaving open the possibility of misreporting, but the 

column itself was moderated by noted New Zealand naturalist, James Drummond, who 
might be expected to have known the difference between black robins and tomtits.       
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was part of local vernacular and that Pitt Islanders then and now would know the differ-

ence between the two birds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is not to say that Paynter did, and we should be careful not to impute today’s greater 

familiarity with the species to Paynter’s time. If indeed black robins were confined to Lit-

tle Mangere Island by that time, local consciousness of them may have been no more than 

mere understanding that they existed there. On Pitt Island, Paynter’s need to differentiate 

between black robins and tomtits may therefore have been less obvious to him.  

 

Fleming (1939b) offers evidence that Paynter might have known black robins through per-

sonal experience of them. He reports (1939b: 509) that ‘Mr R. Paynter’ had seen several 

pairs of Chatham Island bellbirds on Little Mangere Island in 1906.49 Paynter could not 

have missed the black robins there unless he did not climb to the top of the island or they 

were in very low numbers at that time. Curiously, Fleming says earlier (1939b: 507) that 

                                                 
49   Fleming is taken to be referring to Robert Paynter here and not to his father Richard, who 

died in 1933. Doubt about which of the two was on Little Mangere Island arises solely 
from Fleming’s qualifying statement (1939b: 509) that Paynter knew the bellbirds ‘well in 
the ‘eighties from Pitt Island.’ Robert Paynter was born in 1879 (Bill Carter, pers. comm.) 
and would only have been 10 years old by the end of the 1880s.   
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the black robins had ‘not been authentically recorded for about thirty years’. In fact, allow-

ing for first published reports of extirpation on Mangere Island as early as 1894 (Buller, 

1894a), the time elapsed is actually closer to 45 years. Fleming’s ‘thirty years’ hints at the 

possibility that Paynter may have mentioned seeing black robins on Pitt Island in or prior 

to 1909. Whatever Paynter may have communicated, Fleming makes nothing of it, perhaps 

through scepticism, because he goes on to say that he has been told by islanders that the 

black robin was still present on Little Mangere Island at the time of his visit in 1937-38. 

Fleming’s expedition companion, Turbott, does not recall Fleming mentioning alterative 

survival sites and is sure that he would have said so had he been told of any (Graham Tur-

bott, pers. comm.).  

 

Paynter’s allusion to robins on Pitt Island in 1909 is itself contradicted in the same news-

paper column (Drummond, 1909). Reporting the conspicuous decline of birds on Chatham 

Island, Whangamarino resident and noted plant naturalist F. A. D. Cox implies that the 

black robin is confined solely to ‘Mangare’ (by which presumably he meant Little Man-

gere Island).   

 

 

 

 

 

 
 
Discussion 
 
Other than the anecdotal accounts of Paynter and latter-day Pitt Islanders, I have not been 

able to find evidence which contradicts the views of eminent naturalists and ornithologists 

that black robins had disappeared from Pitt Island by 1863. To be fair, extirpation of black 

robins can only be inferred from the latters’ reports—none states explicitly that black rob-

ins no longer existed on Pitt Island. However, these individuals visited the Chatham Is-

lands in the spirit of scientific inquiry to collect black robins and other vanishing species 

before it was too late, or were corresponding with Chathams bird collectors such as 

Charles Traill, W. Hawkins and Henry C. Palmer, some of whom were actively searching 

for black robins on their behalf (Travers, 1868; Travers and Travers, 1872, Forbes, 1893, 

Rothschild, 1907, Fleming, 1939a, b).  
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Other evidence weighs against the probability of black robins surviving on Pitt Island into 

the 20th century. Similarly vulnerable sympatric species such as the Chatham Island fern-

bird and Chatham Island rail (Tennyson, 2004) were extinct on all islands in the group by 

1894 (Buller, 1894a). Feral cats were so numerous on Pitt Island that 19th- and early 20th- 

century observers felt obliged to comment. The black robins were extirpated from Man-

gere Island very soon after cats were introduced. And the low reproductive output of the 

species suggests greater vulnerability to decline and extinction than in other New Zealand 

(or Australian) Petroica (Chapter Two). The processes of forest decline on Pitt Island were 

well in train before the turn of the 19th century. Photographs of Paremata Cove in the late 

1880s also show disintegrating forest cover in which the margins are in retreat, the under-

storey has become exposed by wind and livestock, and soil is eroding (Figures 3B and 

3C).  

 

There are possible explanations for the black robin reports of Paynter, Gregory-Hunt, Hunt 

and Smylie. 
 

• The most parsimonious explanation is that the black robins seen by all Pitt Islanders 

were tomtit males. Present-day black robin workers glimpsing the black dorsal plum-

age of male tomtits are often convinced that they have seen black robins (pers. obs.). 

However, this explanation assumes that the Pitt Islanders could not distinguish tomtits 

from black robins under any circumstances. If some (the older Bert Hunt perhaps) had 

harvested titi (sooty shearwaters) from Little Mangere Island instead of the more read-

ily accessed Mangere and Rangatira Islands, then this assumption is certainly un-

founded. Sam Gregory-Hunt’s estimate of ‘15-16’ black robins also suggests a lower 

probability of making this mistake, unless of course he was counting the same birds 

several times—a difficulty confounding all black robin observation until every bird 

was individually marked (first achieved in 1974-75).  
 

• Black robins did survive on Pitt Island. This explanation is difficult to support if it is 

taken to imply that the black robins seen just before World War II were remnants of the 

original population. The combined effects of mammalian predators and hostile change 

in habitat quality on Pitt Island were more profound than those likely to have extirpated 

the black robins on Chatham Island and Rangatira Island. In addition to the loss of eggs 

and nestlings to cats, predation of adults would have deprived the black robins of 
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breeder longevity, their last biological advantage (Chapter Two). Apart from Robert 

Paynter’s reference in 1909, no other observations of black robins on the island are re-

ported (anecdotally or otherwise) since Travers’s visit in 1863-64 (Travers, 1868). This 

was a period in which interest in collecting rare species remained high. Fleming was 

still collecting rare species in 1937-38 (Fleming 1939a, b; McEwen, 2005), and Paynter 

himself could hardly have overlooked the considerable commercial value of black rob-

ins if, as his other collecting activities suggest (Broun, 1910), he was obliged to sup-

plement his income (Bill Carter, pers. comm.).  
 

• The black robins seen were vagrants. If so, the birds reported by all Pitt Islanders could 

only have come from Little Mangere Island, perhaps via the largely tree-less, cat-

populated Mangere Island (2.4 km from Pitt Island at its closest point), or from a ves-

tigial population on Rabbit Island (300 metres distant from Tarawhenua Point; Figure 

3A). The latter is unlikely since any black robin population on the tiny Rabbit Island 

(terra nullis) would soon be apparent to locals harvesting titi annually, just as they do 

today. The possibility of dispersal (natural or storm-induced) from Little Mangere Is-

land would be stronger if the birds had been seen in a single location on Pitt Island. To 

disperse to several locations and be noticed, vagrant black robins or populations would 

require multiple migration events or a long lag-time until the descendants of a re-

colonising pair became sufficiently numerous. Despite very close contact with the 

black robins since 1980-81, there is no verified instance of individuals dispersing 

across water or being blown from forests during storms. 
 

• The black robins were translocated to Pitt Island from Little Mangere Island. There is 

no evidence to support this and no-one has claimed the achievement itself or knowl-

edge of it.  

 

It would be poor science to dismiss the 20th-century extirpation date unequivocally. Until 

further information is available, however, it is difficult to reconcile the biological evidence 

with any of the possible explanations offered here. That evidence is a combination of ex-

pert historical knowledge and the significantly more advanced understanding we have of 

black robin biology today. But like the lay-person, experts are fallible and there is much to 

learn about black robins yet. For the meantime, the weight of evidence favours an extirpa-

tion date on Pitt Island prior to 1863 more strongly than a later termination date.  
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Figure 3A Site on Pitt Island in which Sam Gregory-Hunt was working with his father when 
he saw ‘15-16 black robins’ in summer 1938-39 (Kenneth Lanauze, pers. comm.).  

 Source: Google™ Earth 
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Appendix Four 363

Table 4C Proportions of juveniles produced in each black robin population raised to 
independence by Chatham Island tomtit or black robin foster-parents dur-
ing the intensive management phase, 1980-81 to 1989-90. Foster-parents 
were not necessarily located in a juvenile's natal population (% per foster-
site). 

   Foster-raised  % by foster-site 

  n Produced   %   By Tomtit By Robin   Natal Other 

          

Mangere 62  54.8  14 20  11.8 88.2 

Rangatira 143  51.7  12 62  79.7 20.3 

Woolshed Bush 75  57.3  7 36  76.7 23.3 

Top Bush 68  45.6  5 26  83.9 16.1 

          

All sub-populations 205  52.7  26 82  58.3 41.7 

                    



 

 


	Figure 6.1 Micro-climate data-logger station WSB 1, on the West Woolshed Bush track,Rangatira Island, 23 September 2004. 177



