
Non-Linear Optimization for Parameter Estimation for 
Flood Forecasting 

 
M. Mohssen1 and M. Goldsmith2 

 
1 Lincoln University, ESDD, PO Box 84, Lincoln 7647, mohssenm@lincoln.ac.nz 

2Otago Regional Council, 70 Stafford St. Dunedin 
 
Keywords: Flood Forecast, Flood Modelling, Rainfall-Runoff, Non-Linear Optimization 

 
EXTENDED ABSTRACT 
 
Floods are the response of a catchment area to 
severe rainfall events.  Each catchment will have 
its unique response which is dependent on its own 
characteristics and the temporal and spatial 
distribution of the oncoming rainfall event.  A non 
linear optimization technique has been applied to 
historical data for rainfall and river flows of the 
Kakanui catchment in North Otago, New Zealand, 
to estimate the parameters of a model based on 
the transfer function concept.  The non linear 
optimization is based on Powell algorithm.  
Powell algorithm has been widely used in the 
literature, and it is more efficient and faster than 
the Simplex method (Press et al., 1989)  
 
Observed rainfall events at two locations in the 
Kakanui catchment, along with the corresponding 
observed flows of the river have been utilized to 
estimate the transfer function which represents the 
response of the Kakanui catchment to rainfall 
events.  An adjusted form of Philip’s equation for 
infiltration was used to estimate the abstraction of 
the rainfall event and obtain the effective rainfall 
which will contribute to the river flow.  Weighing 
factors were assigned to each of the rainfall sites 
to obtain the best fit between observed and 
forecasted flows.  Nine flood events were used for 
the calibration process, while two events were 
utilized for the validation of the derived model.  
The model has 19 parameters for the transfer 
function, 2 parameters for the hydrologic 
abstractions model, and 2 parameters for the 
weighing factors of the rainfall sites.  This results 
in a total of 23 parameters for the developed 
model.  The ratio of observed cumulative rainfall 
at Clifton Falls to the corresponding rainfall at the 
Dasher for historical events is not consistent, and 
varies significantly from one event to another.  
This indicates the high variability of the spatial 
distribution of rainfall events over the Kakanui 
catchment.  As these rainfall events were used in 
the model calibration, it was difficult to obtain the 
correct transfer function without proper 
accounting for the spatial distribution of rainfall 

over the whole watershed.  However, the model, 
in general, performed satisfactory, given the 
difficulty in representing the spatial variability of 
the rainfall events.  The model was capable of 
simulating the flood hydrographs of several 
events which were incorporated in its calibration, 
but did not perform well with others.  The model 
was able to simulate well the flows of a flood 
event which was not included in its calibration.  
Moreover, in applying the derived model for a 
real case event which occurred most recently on 
30 July 2007, the model was able to forecast very 
closely the peak flow, but the whole flow 
hydrograph was not forecasted as good. 
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1.  INTRODUCTION 
Floods can have catastrophic impact on our life, 
and can cause widespread damage over affected 
regions.  Flood forecasting is an essential tool for 
flood warning.  A proper flood warning could 
mitigate the impact of a flood event by giving 
people/authorities enough time to evacuate, take 
stock away, or prepare a temporary flood 
protection scheme.   
 
Available mathematical models in the literature 
can be categorized into two main approaches.  
The first approach simulates the associated 
hydrologic processes and utilizes hydraulic or 
hydrologic routing to estimate river flows.  The 
second approach incorporates the concept of a 
transfer function (step or simultaneous) to relate 
effective rainfall to river flow.  These techniques 
are mainly dependent on the simulation of rainfall 
losses to obtain the effective rainfall, and 
consequently use hydraulic/hydrologic routing or 
a response function to estimate the river flow 
(Chow et al 1988, Maidment et al 1993, Jowitt 

1999, Thompson 2002, Tripathi et al, 2003, Chen-
ShenHsien et al, 2006, Chang-Fi John et al, 
2007). 
 
This paper is based on the second approach and 
has focused on establishing a proper transfer 
function between hourly rainfall and flow data.  
Due to the non-linearity of the objective function 
to minimize, in order to estimate the model’s 
parameters, a non derivative optimization 
technique had to be applied.  The Powell 
algorithm for non-linear optimization has been 
utilized to estimate the model’s parameters which 
describe the infiltration losses, the weighted 
average between rainfall sites, and the parameters 
of the transfer function.  The Powell algorithm 
(Reklaitis et al, 1983; Press et al, 1989), which is 
an expanded variation of the univariate gradient 
search, has been widely applied to water 
resources problems.  The Kakanui catchment in 
North Otago has been selected for the 
development and application of this model. 
 

 

 
 
Figure 1 Location of soil sampling sites, rain-gauges, and flow monitoring sites for the Kakanui catchment. 
 
 
2.  CATCHMENT DESCRIPTION 
 
The Kakanui catchment is contained by the 
Kakanui Mountains and Pisgah Spur to the west 
and south, and by hill country to the north 

dividing it from the Waitaki Basin. The Kakanui 
River flows into the Pacific Ocean 10km south of 
Oamaru. With a catchment of 894km2, the 
catchment consists of about 35% river valley and 
40% of rolling hills or downland of less than 
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600m elevation. The remaining 25% of the 
catchment is mountainous, reaching heights of 
some 1640m (Otago Regional Council, 2000).  
 
The main tributaries of the Kakanui River are the 
Kauru River, Island Stream and Waiareka Creek. 
The Kakanui and Kauru Rivers both rise in the 
western mountainous region and flow through 
gorges incised in rolling or downland country. 
The Kakanui River flows out of the gorge at 
Clifton Falls to be joined further down the 
widening valley by the broad, gravel bedded 
Kauru River. Island Stream and Waiareka Creek 
drain the lower downland areas in the south-east 
and north-east of the catchment respectively. 
 
 
3.  FLOODING HISTORY 
 
The Kakanui Valley has a long history of 
flooding, with known records extending as far 
back as 1868 (ORC 2000). More recently large 
floods were recorded in 1968, 1980, 1986 and 
1993. These floods inundated large areas of the 

floodplain and at times the river and tributaries 
have broken out of their natural channels.  
 
Table 1 summarises rainfall statistics at rain-
gauge sites used for this model, while Figure 1 
shows the location of telemetered rainfall and 
flow monitoring stations in and near the Kakanui 
catchment.  
 
Table 1 Summary of Rainfall Data  
 Clifton Falls The Dasher 
Record Begins July 1987 January 1952 
Elevation 95 540 
Mean Annual 
Rainfall (mm) 

483 814 

Max. 24 hr 
Rainfall (mm) 

128.5 217 

Max, 12 hr 
Rainfall (mm) 

95.5 123.5 

 
 
The floods of the Kakanui River can be fast and 
quick, with a 60 m3/s rise in 15minutes during the 
flood event of April 2006, as shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Kakanui Flood event of April 2006 
 
 
4.  MODEL DEVELOPMENT 
 
4. 1  Transfer Function 
The concept behind this research is that each 
catchment should have its own “unique” 
hydrologic characteristics which will impact on 
its response to a rainfall event.  This transfer 
function is assumed to be invariant with time, and 
the case which is presented here considers a linear 

transfer function.   A rainfall-runoff model based 
on a transfer function to translate rainfall into 
river flows has been developed for the Kakanui 
River.  The parameters of the transfer function 
have been estimated by using Powell algorithm to 
minimize the objective function which describes 
the relation between observed and modelled 
flows.  The objective function Fx is defined as the 
sum of squared errors as follows: 
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Where m is the number of events included in the 
calibration process, nj is the number of intervals 
of event j, Qi,j is the observed flow at interval i of 
event j, and jiQ ,

)
 is the forecasted flow for event j 

at time interval i.  The forecasted flow jiQ ,

)
 is 

calculated from the transfer function X as follows: 
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Where L denotes the number of the rainfall 
intervals for event j, Rk is the rainfall depth at 
time interval k, and Xi is the ith parameter of the 
transfer function.  It should be noted that the 
objective function Fx is highly  
nonlinear in so many parameters, and thus a 
numerical non-linear optimization technique had 
to be carried out.  
 
4.2  Hydrologic Abstractions 
Philip’s equation to simulate infiltration through a 
soil (Singh, 1992) was used to estimate the 
hydrologic abstractions from a rainfall event in 
the model.  The infiltration rate is defined as: 

t
baft 2

+=  mm/hr                                      (3)  

while the cumulative infiltration is: 
 

tbatfF
t

tt +== ∫
0

   mm                           (4)                                                                         

 
It is the cumulative infiltration after a time 
interval “t” which we are interested in for this  
model.  However, this model assumes ponding 
conditions apply since the start of the event, 
which is not the case.  To account for this, 
cumulative infiltration every time step has been 
calculated and compared to the cumulative 
rainfall up to this time step, then the estimated 
infiltration depth is taken as the smaller value of 
the cumulative observed rain or the cumulative 
infiltration depth from equation (4).  The same 
procedure was carried out to define the ponding 
time, after which equation (4) is applicable.  The 
parameters for the infiltration model were 
estimated also through the optimization process 
by Powell algorithm.  Thus, equation (4) was used 
to estimate the abstraction losses, and in turn the 
effective rainfall of the event.   
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Figure 3 Infiltration test at the Dasher 
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Figure 4 Infiltration test at Upper Clifton Falls 
 
Moreover, an infiltration test, using the double 
ring infiltrometer, was carried out at two sites in 
the catchment to investigate the infiltration 
capacity of the Kakanui catchment.  The locations 
of these two sites are at the upper of Clifton Falls, 
and at the Dasher, as illustrated in Figure (1). 
Figures (3) and (4) show the results of these tests.  
The average “stable” observed infiltration rates at 
upper Clifton Falls and the Dasher were 40 mm/hr 
and 150 mm/hr, respectively.  This is a very high 
value, and will exceed the rate of any rainfall 
event.  This suggests that most of the flow in the 
river is coming from hilly areas as “through 
flow”.  However, these infiltration tests were 
carried out for less than one hour, and of course 
the response of the catchment due to a rainfall 
event which lasts much longer than one hour 
could be different.  Moreover, a rainfall runoff 
experiment was carried out in the field in the 
upper Clifton Falls catchment, and confirmed that 
the “steady” infiltration capacity of the soil is 
higher than 30mm/hr. 
 
In addition to at site field experiments, two soil 
samples of the Kakanui catchment at upper 

1785



 5

Clifton Falls and the Dasher have been obtained 
for further experiment in the hydraulic lab of 
Lincoln University.  Each sample is 700x700x200 
mm, and a sprinkler was used to simulate rainfall 
events over these samples.  Surface runoff and 
through flows were collected and measured for 
several simulated rainfall events.  Again, the 
results confirmed that the infiltration capacity of 
the soil is high, and most of the river flows would 
be from the through flow and not the surface 
runoff. 
 
The above analysis leads to the fact that the 
infiltration model is used to estimate the temporal 
hydrologic abstractions from a rainfall event, 
rather than the actual infiltration to the soil, as 
most of this infiltrated water will contribute to the 
river flow as a through flow.  The optimized 
values for parameters a and b were estimated at  
0.5 mm/hr and 1.5mm/hr0.5, respectively.   
 
4.3  Model Calibration 
Nine observed flood events at Clifton Falls, along 
with their corresponding rainfall events at Clifton 

Falls and the Dasher, were used for model 
calibration and the estimation of the model 
parameters.  Powell’s algorithm for 
multidimensional minimization has been used in 
this research to estimate the model parameters 
during the calibration process.  Powell’s approach 
is more efficient and faster than the Simplex 
Method (Press et al, 1989).  Table (2) presents a 
summary of these flood events, in addition to the 
two flood events which were used for model 
validation. 
 
The selected floods for model calibration cover a 
wide variety of flood events with regard to the 
duration, total rainfall, peak flow and the total 
runoff volume, as shown in table (2).  Moreover, 
it is obvious from the table that usually the Dasher 
receives more rain than Clifton Falls.   
Unfortunately, the ratio between the rainfalls of 
the two sites is not the same for all rainfall events, 
and in some cases, such as event 2, Clifton Falls 
received more rain than the Dasher.  Of course 
this is dependent on the rainfall event, its 
direction, and its spatial distribution as it hits the 

 
Table 2  Flood Events for Model Calibration and Validation 

Event Date 
Duration 
(hrs) Total Rain (mm) 

Peak 
Flow(m3/s) 

Total Runoff 
(106 m3) 

      Dasher Clifton falls Clifton Falls Clifton Falls 
1 13/06/1995 85 128.0 37.5 77.1 9.0 
2 20/11/1996 43 31.0 37.0 82.1 3.1 
3 4/02/1997 56 73.8 22.5 44.3 3.4 
4 31/08/2000 129 217.0 67.0 148.0 19.0 
5 11/02/1997 60 51.1 47.5 93.1 4.0 
6 18/07/2001 50 40.0 15.0 12.0 0.8 
7 20/07/2001 72 149.0 77.0 96.0 7.9 
8 10/01/2002 68 182.5 58.5 256.6 11.9 
9 12/01/2002 63 265.0 62.5 256.0 16.7 
10 18/01/2002 28 26.5 10.0 45.2 2.3 
11 30/07/2007 51 154 79 215 Not available 
 
catchment.  Such discrepancy is expected to 
confuse the model.  Figures (5) and (6) show that 
the model did not simulate well the flood events 
of 20 November 1996 “event 2” and 20 July 2001 
“event 7”. This would have been expected for 
event 2 which deviates from the pattern of the 
other events, but It should be noted that also for 
event 7 the rainfall at Clifton Falls was more than 
half the rainfall at the Dasher.  However, Figure 
(7) presents a good match between the forecasted 
and observed flows using the developed model for 
events 8 and 9 “January 2002”.  This could be 
attributed to the fact that Clifton Fall’s rain was 
less than 1/3 the rainfall at the Dasher for events 8 
and 9, which is the case for most of the events.  
The good performance of the model for the flood 
events of January 2002 indicates the ability of the 
model of reliably forecasting the flows of flood 

events which preserve the pattern of the 
significantly lower rainfall at Clifton Falls than 
the Dasher.  
The final forecast model for the Kakanui 
catchment has 19 parameters for the transfer 
function, 2 parameters for the hydrologic 
abstraction model and 2 parameters for the 
weights of the rainfall sites, totalling 23 
parameters. 
 
4.4  Model Validation and Application 
The fitted forecast model for the Kakanui River 
was applied to several flood events which were 
not included in its derivation.  Figures (8) and (9) 
present the application of the transfer function 
model to the observed rainfall events at Clifton 
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Falls and the Dasher, then comparing the 
forecasted flows versus the observed ones.  The 
model performed well in forecasting the flood 
flows of event 5 (11 February 1997), and did well 
in forecasting the peak flow for the most recent 
event on 30 July 2007 (event 11).  It is the peak 
flow which usually is important for the flood 
forecast, and despite the whole hydrograph for the 
July 2007 was not forecasted as good, still the 
model’s performance was satisfactory as it 
simulated very good the peak flow.  It is noted 
that the Dasher rain gauge stopped sending 
signals for its rainfall after about 20 hours from 
the start of the event, and estimated values for the 
Dasher rainfall were estimated based on Clifton 
Falls.  This could have an impact on the 
hydrograph for the forecasted flows. 
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Figure 5  Flood Event 20 Nov. 1996 (Event 2) 
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Figure 6  Flood Event 20 July 2001 (Event 7) 
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Figure 7  Flood Events Jan. 2002 (events 8 and 9) 
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Figure 8  Flood Event 11 Feb. 1997 (Event 5) 
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Figure 9  Flood Event 30 July 2007 (Event 11) 
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5. CONCLUSIONS  
 
The derived model by using non-linear 
optimization to estimate the parameters of a 
transfer function was capable of forecasting the 
Kakanui River flows satisfactory.  The technique 
made use of the observed flood events and of the 
basic concept that each catchment should have its 
unique response to rainfall events.  However, the 
high variability of rainfall events, and the 
difficulty of representing the spatial variability of 
a rainfall event makes it difficult to exactly 
estimate the perfect transfer function.  Moreover, 
the derived transfer function was linear, while 
adding non linearity could improve the 
performance of the derived model.  In addition, it 
is recommended to include the direction or the 
type of the rainfall event as this could incorporate 
the spatial variability in the modelling process. 
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