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EXECUTIVE SUMMARY 

Acute mountain sickness (AMS) is a debilitating health problem that affects a 

number of subjects when ascending to high altitude. Symptoms can include 

headache, nausea, lethargy, fatigue and subsequent loss of sleep and performance, 

however if susceptible subjects could be identified early precautionary measures 

could be put in place to reduce or eliminate AMS. The aim of this study was to 

determine if physiological variables measured at sea level could predict AMS (as 

measured by the Lake Louise score) at real altitude. A series of  physiological 

measures were taken at rest at sea level (Dunedin, New Zealand) and again at 

5050m (Pyramid Research Laboratory, Nepal). Measures included oxyhaemoglobin 

saturation, haematocrit, haemoglobin concentration, blood pressure, heart rate, 

cerebral blood flow and a number of ventilatory measures. We found that sea-level 

cerebral blood flow (R = 0.47), and haematocrit (R= -0.50) were strongly correlated 

with AMS, however using multiple linear regression results indicated that  sea-level 

mean blood pressure was the only statistically significant predictor of AMS at 

altitude (p < 0.01). This analysis indicated that sea-level mean blood pressure 

accounted for 45% of the prediction of AMS at altitude. In conclusion, while sea-level 

mean blood pressure is a useful predictor of AMS at altitude, clearly other factors 

account for the remaining 55% of AMS at altitude, and further research is required 

to uncover these remaining factors. 
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INTRODUCTION 

The occurrence of acute mountain sickness (AMS) is a public health concern as about 

half of lowlanders develop symptoms after rapid ascent to altitude > 2500 m [1]. 

These symptoms, including headache, nausea, vomiting, anorexia, lethargy, fatigue, 

dizziness and insomnia, can be experienced to differing degrees with onset occurring 

between 6-10 h after arrival [1]. Knowledge of predictive factors responsible for this 

large inter-individual variation in AMS susceptibility would enable preventative 

strategies to be implicated.  

 

The occurrence of AMS has been shown to be related to previous acclimatisation to 

high altitude, rate of ascent and individual susceptibility [2-4]. The physiological 

responses which determine an individual’s susceptibility, however, remain 

debateable. A wide range of ventilatory, cardiovascular and cerebral variables have 

been recorded for the prediction of susceptibility to acute mountain sickness, 

however, as yet, no clear conclusion can be drawn [5, 6]. Moore et al. (1986) found 

individuals who develop AMS symptoms to simulated altitude (4,800 m for 4.5 h) 

have a lower hypoxic ventilatory response (HVR) compared with those that are 

asymptomatic. Further research, however, has been unable to replicate this finding 

[7-11]. The majority of the literature, involving both simulated [12-15] and real [16-

19] altitude exposures, of both prospective and retrospective design, suggest 

lowered SaO2 to be a good predictor of AMS susceptibility and AMS progression 

(reviewed in [5]). Several studies, however, have found no predictability of AMS 

susceptibility by SaO2 levels [20-22], although trends suggested greater O2 

desaturation in subjects exhibiting AMS [21, 22]. Further, Grant et al. (2002) found a 
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fairly poor correlation between SaO2 levels at simulated altitude (in the laboratory) 

and those found at a comparable real altitude. This finding would suggest 

correlations between SaO2 at simulated altitude and AMS may not necessarily occur 

upon ascent to real altitude. 

 

In addition to HVR and SaO2, physiological variables such as fluid retention [23], 

elevated intracranial pressure [24-26], elevated cerebral blood flow (CBF) [18], and 

impaired regulation of cerebral circulation [22] have been suggested to be related to 

the development of AMS. Further studies at simulated altitude (3800 – 4600 m), 

however, have reported no relationship between CBF and AMS susceptibility [12, 27-

29]. 

 

The majority of research on AMS susceptibility has focused on physiological 

responses upon exposure to simulated altitude (≤ 4600m) for short durations (30 

min – 6 h). As AMS symptoms may take longer to fully develop, and responses to 

simulated altitude may differ to those at real altitude, the current research aimed to 

identify physiological variables involved in the development of AMS upon ascent to 

the pyramid research laboratory, (5050 m), 4 km from Mt Everest base camp, Nepal.  

 

Aim of Study 

To determine if the symptoms of acute mountain sickness and the development of 

sleep apnea while breathing low levels of oxygen at sea-level can predict the extent 

of these symptoms at high altitude. 
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METHODOLOGY 

Subjects 

Seventeen (11 males, 6 females) active, healthy individuals volunteered to 

participate in this study (Table 1), which was approved by the Lower South Otago 

Regional Ethics Committee and the Nepalese Research Council, and conformed to 

the standards set by the Declaration of Helsinki. Subjects were informed of the 

experimental procedures and possible risks involved in the study and written 

informed consent was obtained. Subjects had no history of cardiovascular, 

cerebrovascular or respiratory disease, were not taking medication and were non-

smokers. All subjects were sea-level residents and had not spent time at altitude in 

the preceding 6 months. 

 

Table 1 
Subject characteristics and LLAMS scores 

 

 Males Females All Subjects 

N 11 6 17 

Age (yr) 32±10 30±8 31±9 

Height (cm) 176.3±6.8 168.0±7.1 173.4±7.8 

Body Mass (kg) 72.3±7.8 61.8±5.9 68.6±8.7 

LLAMS score 2.9±3.4 4.5±1.4 3.5±2.2 

 

Experimental design 

In Dunedin, New Zealand, sea-level respiratory, cardiovascular and cerebrovascular 

measurements were obtained in normoxia (Partial Pressure of inspired O2 (PIO2) = 

140 mmHg) while resting in a reclined position. On arrival to Kathmandu, Nepal, the 

team of researchers and subjects ascended to the Pyramid Laboratory (5,050 m; PIO2 
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~74 mmHg) in the Khumbu Valley (4 km from Everest Base Camp). At the Pyramid 

Laboratory, the same measurements as were conducted at sea-level were repeated 

within 1-3 days of arrival. In addition, subjects completed the self-assessment 

section of the Lake Louise Consensus Altitude Mountain Sickness Scoring 

questionnaire (LLAMS) [30] regarding the occurrence of AMS symptoms. 

 

Respiratory measurements 

Tidal volume (VT), minute volume (VE) and respiratory frequency were measured 

with BREEZE Ex v3.06, Medical Graphics CPX/D Metabolic Cart (Medical Graphics, St. 

Paul, Minnesota, USA). 

 

CBF velocity, arterial BP and HR measurements 

CBF velocity was estimated by the measurement of middle cerebral artery blood 

flow velocity (MCAV) with a 2-MHz pulsed Doppler ultrasound system (DLW Doppler, 

Sterling, VA) and search techniques described elsewhere [31]. Beat-to-beat arterial 

BP was monitored with finger photoplethysmography (Finometer, TNO-TPD 

Biomedical Instrumentation) and mean arterial blood pressure (MBP) was calculated 

by [(2×diastolic)+systolic]/3. Cerebrovascular conductance (mean MCAV/MBP) and 

resistance (MBP/mean MCAV) were calculated. Heart rate was calculated from the 

BP waveform. All data were acquired continuously at 200 Hz with an analog-to-

digital converter (Powerlab/16SP ML795; ADInstruments). 
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Arterial blood measurements 

An arterial line was inserted into the radial artery and upon sampling, blood was 

immediately analysed (PaCO2, PaO2, SaO2, Hb, Hct, pH, HCO3-) with a previously 

calibrated blood gas analyser (Radiometer ABL 500, Copenhagen, Denmark).  

 

Hypoxic responses 

Hypoxic ventilatory, cardiac and cerebral responses were calculated using the 

change in variables from SL to high altitude (day 1-3) as follows: 

Hypoxic ventilatory response (HVR) = ΔVE/ΔSaO2  

Hypoxic cardiac response (HCR) = ΔHR/ΔSaO2  

Cerebrovascular Response = ΔCBF/ΔPaCO2 

 

Statistical Analyses 

Data are presented as mean ± SD and analyses were conducted on SPSS (Version 15). 

Physiological changes from sea-level to altitude were analysed by paired t-tests. 

Simple linear regression was computed to locate variables most related to LLAMS 

score and the correlation matrix was studied for correlation between independent 

variables. This process resulted in the selection of 4 variables for further analyses. A 

multiple regression analysis, using a backwards elimination process, including 

quadratic transformation for the independent variable, was performed to determine 

the best subset of predictors of LLAMS score. Box-plots of these variable 

distributions were viewed for data normality. Log10 transformation of the dependent 

variable (LLAMS) resulted in no improvement of model fit.
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RESULTS 

Residence at high altitude (5,050 m) for 1-3 days significantly affected many systemic 

and cerebral variables compared to sea-level values (Table 2). HR and MBP were 

elevated at altitude compared with sea-level. VE was increased despite no significant 

change in either VT or Bf. An increase in CBF was found despite hyperventilatory 

induced hypocapnia (decreased respiratory and arterial CO2).  

Table 2 
Cardiovascular, cerebral, respiratory and blood gas variables measured at sea-level 

and at altitude (5,050 m) 
 

 Sea-level Altitude P 

HR (beats.min-1) 69±10 80±10 < 0.01 

MBP (mmHg) 78.5±14.0 89.8±15.0 <0.05 

CBF (cm.s-1) 66.3±10.9 84.1±16.0 <0.001 

CVC (cm.s-1.mmHg-1) 0.880±0.242 0.962±0.176 NS 

CVR (mmHg.cm-1.s-1) 1.233±0.382 1.096±0.260 NS 

VE (L.min-1) 13.7±2.5 16.3±4.2 <0.05 

Vt (L) 1.0±0.3 1.0±0.3 NS 

Bf (breaths.min-1) 15.3±4.2 17.2±4.3 NS 

PO2 (mmHg) 108.7±8.1 47.2±5.8 <0.001 

PCO2 (mmHg) 40.8±4.5 25.6±2.9 <0.001 

SaO2 (%) 98.4±0.5 79.9±3.4 <0.001 

PaO2 (mmHg) 105.1±10.8 43.9±2.8 <0.001 

PaCO2 (mmHg) 41.5±3.1 29.2±2.6 <0.001 

pH 7.45±0.04 7.47±0.03 <0.05 

HCO3- (units??) 28.6±3.1 21.3±2.4 <0.001 

Hct (%) 43.7±4.0 45.7±3.9 <0.01 

Hb (g.dL-1??) 14.6±1.2 14.9±1.3 NS 

Data are mean±SD. P indicates statistically different between sea-level and altitude 
measurements.  
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The increases in both MBP and CBF at altitude resulted in no change in CVC or CVR. A 

fall in SaO2 within the first few days at altitude accompanied the reduction in O2 

partial pressures (respiratory and arterial). Elevated arterial blood Hct at high 

altitude was not reflected by a change in Hb concentration. An increase in arterial pH 

with altitude exposure was found alongside a fall in arterial HCO3-. Altitude exposure 

for 1-3 days resulted in the development of AMS of varying degrees in the majority 

of participants, with only two individuals reporting no symptoms (range 0 – 7.5). 

Average LLAMS scores are reported in Table 1. Participant age and LLAMS score 

were not correlated. The LLAMS score was not related to CV response, HVR or 

plasma volume change, but was significantly correlated with HCR (R = -0.58, P = 

0.015). Of the sea-level measurements, MBP (Figure 1), CBF, CVC, CVR and Hct were 

found to be significantly correlated with LLAMS score (Table 3).  

 

Table 3 
Variables significantly correlated with LLAMS score selected for multiple linear 

regression and their correlation with LLAMS score (R) 
 

 Pearson Correlation 

R 

HCR -0.58* 

MBP (SL) -0.67** 

CBF (SL) 0.47* 

CVC (SL) 0.71** 

CVR (SL) -0.66** 

Hct (SL) -0.50* 

P < 0.05*, 0.01**,  SL = sea-level 
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As CVC and CVR were also highly correlated with both CBF (R = 0.77, -0.81, 

respectively) and MBP (R = -0.89, 0.86, respectively) at sea-level, these variables 

were removed from the multiple regression model to reduce collinearity. No 

variables measured at altitude were correlated with LLAMS score. Simple linear 

regression, therefore, identified the following variables as being highly correlated 

with LLAMS score and were chosen for the subsequent multiple regression analysis; 

HCR, CBF SL, MBP SL and Hct SL.  

 

Figure 1 
Relationship between AMS score and MBP at sea-level (SL) 

 

MBP SL (mmHg)

50 60 70 80 90 100 110

L
L
A

M
S

 s
c
o
re

0

2

4

6

8

 

 
 
The backward procedure isolated MBP SL as the only significant predictor of LLAMS 

score (Table 4). A quadratic transformation of MBP SL had little effect on the model 
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fit and was hence not included in the final analysis. MBP SL accounted for 45 % (R2 = 

0.448) of the prediction of LLAMS score.  

Table 4 
Multiple linear regression analysis of variables as predictors of LLAMS score 

 

 Variables Coefficient SE P 

Multiple Regression HCR -0.622 0.642 0.352 

(all variables) CBF SL 0.037 0.041 0.384 

 MBP SL -0.061 0.035 0.105 

 Hct SL -0.159 0.106 0.161 

Backwards Analysis MBP SL -0.105 0.030 0.003 

(best fit)     

P indicates significance of t tests of regression coefficients against 0.  SL = sea-level. 
 



10 

DISCUSSION 

Exposure to high altitude (5,050 m) for 1-3 days was found to affect several 

physiological variables and result in the development of AMS symptoms to varying 

degrees in the majority of subjects. The severity of AMS, as determined by the Lake 

Louise AMS scoring system, was best predicted by the measurement of MBP at sea-

level which accounted for 45 % of the prediction of AMS score. 

 

Exposure to high altitude for 1-3 days elevated both HR and MBP, with an increased 

sympathetic activity likely responsible for these changes. Although elevated HR at 

altitude is well documented [12, 13, 22, 27, 28, 32-35], few have concurrently 

reported an enhanced MBP [33, 34]. MBP appears to remain unchanged at altitude 

in the majority of studies [12, 22, 27, 28, 36]. Contrasting findings within the 

literature are potentially related to differing methodologies, including factors such as 

real versus simulated altitude, magnitude of elevation (m), rate of ascent and 

duration at altitude. Although a simulated altitude protocol was utilised by Sevre et 

al. (2001), the fact that they also reported elevated BP with increased altitude is 

potentially due to the stepwise increment in altitude over 3 days to an elevation of 

4500 m, similar to the real elevation in altitude in the present study. The other 

aforementioned studies either exposed subjects immediately to altitude (simulated) 

[12, 27, 28, 37] or ascent occurred faster than the present study (~ 1.5 days, [22]). A 

gradual rate of ascent has previously been shown to elevate HR to a greater level 

than an abrupt ascent (Vogel et al. 1967 – reviewed in [38]), a similar BP response 

may potentially occur. 
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Sea-level MBP was negatively correlated with AMS severity (R = -0.67, P < 0.01) and 

was the only significant predictor of AMS score. In contrast to the present finding, a 

significantly higher resting MBP at low altitude has been found in individuals 

susceptible to AMS (R = 0.5, P = 0.03) [21]. As the occurrence of AMS is well known 

to be influenced by the rate of ascent to altitude [4], with symptoms generally 

developing from 6 h of exposure [1], these differing findings may be due to a 

combination of slower rate of ascent and delayed recording of AMS symptoms (1-3 

days versus 2-4 h) upon arrival at altitude in the present study. A further possibility is 

that in the present study, AMS score was obtained from the self-reported section of 

the Lake Louise questionnaire, whereas, Lanfranchi et al. (2005) combined the self-

reported and clinical assessment sections. Although sea-level MBP was detected as 

the best predictor for AMS severity, it only accounted for ~ 45 % of AMS score, 

hence it is clear there are other factors involved in AMS susceptibility. 

 

AMS severity was not related to either sea-level or altitude HR or SaO2 values, 

however, when the fall in SaO2 at altitude was simultaneously considered with the 

change in HR, the hypoxic cardiac response was significantly correlated with AMS 

score (R = -0.58, P < 0.01), although it was not a significant predictor of AMS. In 

contrast, Leoppky et al. (2008) found HR at altitude (12 h at simulated altitude 

4880m) to be greater in those with the highest Lake Louise AMS scores compared 

with those with the lowest scores. Differing methodology between the two studies; 

real vs simulated altitude, rate of ascent to altitude, duration at altitude (24-72 h vs 

12 h); may explain these conflicting findings. Although the fall in SaO2 at altitude has 

previously been suggested to be the most useful predictor of AMS susceptibility [5, 
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12, 13], this is not supported by the current research or several earlier studies [20-

22]. This suggests that some factor other than the extent of hypoxaemia is 

responsible for the development of AMS. 

 

Resting CBF was elevated by 35.7% following 1-3 days exposure to high altitude (P < 

0.001). This elevation falls within the range reported (30-60%) upon acute ascent to 

~ 4000 m altitude [39], and is supported by many studies which have found an 

increase in CBF at altitude [28, 40]. There are, however, several reports of no change 

in CBF upon exposure to simulated [12, 27, 33] or real [22, 41] altitude. CBF change is 

dependent upon the sensitivity of the individual to hypoxic cerebral vasodilation and 

hypocapnic cerebral vasoconstriction, potentially explaining the varied CBF 

responses to altitude [39]. The elevation of MBP and CBF at altitude in the present 

study resulted in no change in either CVC or CVR upon altitude exposure. 

 

Resting CBF at sea-level was significantly correlated to AMS score (P < 0.05). This 

supports a previous finding that subjects exhibiting AMS symptoms (≥3 Lake Louise 

AMS scoring system) had a significantly higher resting CBF than those without AMS 

(0-2 Lake Louise score) [18]. Following further analysis (multiple regression with 

backward process), however, it became clear that, in the present study, CBF at sea-

level was not a significant predictor of AMS score. Altitude CBF was not related to 

severity of AMS, supportive of several publications [12, 22, 27, 29]. With the recent 

publication of data from 1985 [26], when Brian Cummins directly measured 

intracranial pressure at high altitude (5,030 m), it appears that the development of 

AMS may be dependent upon the compliance of the CBF systems and subsequent 



13 

accommodation of increased intracranial pressure upon exposure to high altitude. 

Less invasive research has recently supported the role of intracranial pressure in the 

development and severity of AMS by utilising the measurement of optic sheath 

diameter [24, 25]. The elevated CBF at altitude, therefore, appears to not be a 

predictor of AMS itself, but rather how the brain copes with the resulting increased 

intracranial pressure. In addition, impaired dynamic autoregulation of cerebral 

circulation has been found at real altitude [22, 41], which has been reported to be 

the only significant independent predictor of AMS severity (Environmental Symptom 

Questionnaire) [22]. 

 

A disturbance in plasma volume has previously been suggested to be related to AMS 

susceptibility (Ward et al. 2000 – In [42]). This is not supported by the current 

research where no change in PV was found, as determined by Hb and Hct data. The 

estimation of PV change in the present study, however, may not be as precise as the 

method adopted by Ward et al. (2000) (In [42]). 

 

The hyperventilatory-induced hypocapnia experienced during the first few days at 

high altitude was accompanied by a reduction in bicarbonate levels. This relationship 

has previously been reported [43], with an enhanced removal of excess base 

potentially occurring as a result of diuresis [44]. As the percentage fall in PaCO2 was 

greater than that of HCO3-, supportive of a previous finding [43], pH was increased 

at altitude, supportive of the literature [35]. 
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Despite a wide age range in our subjects (19 – 57yr), no correlation was found 

between AMS score and age, potentially due to our relatively low subject numbers. 

Conflicting results regarding the relationship between AMS score and age are 

presented in the literature. Lanfranchi et al. (2005) found older subjects to be more 

symptomatic, whereas Wagner et al. (2008) reported a negative correlation between 

age and AMS score, potentially due to brain atrophy and hence larger ventricles in 

the older individual allowing for improved protection upon increased intracranial 

pressure (reviewed in [26]). 
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CONCLUSIONS 

In summary, exposure to high altitude for 1-3 days affected many cardiorespiratory 

and cerebrovascular variables. Sea-level MBP, CBF and Hct, and HCR were strongly 

correlated with AMS score, however, sea-level MBP was the only significant 

predictor of AMS score (R2 = 0.448, P < 0.01). As the majority of the AMS score 

remained unpredicted, it is clear other variables, as not measured in the current 

research, are involved in the prediction of AMS susceptibility. Factors such as 

intracranial pressure and dynamic cerebral autoregulation may potentially be 

involved in the development of AMS at altitude. The measurement of these factors, 

however, involves specialised equipment and experienced individuals, and are, 

therefore not practical for AMS prediction for the general population ascending to 

altitude.  
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