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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

Apparent Competition Between Native and Exotic Plants Mediated by a 

Native Insect Herbivore 

 

by 

Scot Michael Waring 
 

Invasive species can significantly impact native food webs through indirect effects. Examples 

of apparent competition typically involve a non-native consumer disproportionately affecting 

one host population in the presence of another.  My research finds evidence for apparent 

competition between two herbs, one invasive and one endemic, and mediated by an endemic 

insect herbivore.  The European pasture herb Jacobaea vulgaris (formerly Senecio jacobaea), 

is an invasive weed in several parts of the world, including New Zealand.  New Zealand is 

also home to 19 native species of Senecio – thirteen of which are endemic – that support an 

endemic insect fauna.  Some of these insects have since expanded their host range to include 

the invasive J. vulgaris.  I examined the relationships between one of those herbivores, the 

New Zealand magpie moth (Nyctemera annulata, Lepidoptera: Arctiidae), J. vulgaris and one 

endemic (S. wairauensis) and two native host plants (S. minimus and S. quadridentatus).  In 

my laboratory assays, magpie moth larvae found J. vulgaris as attractive as native host plants 

and larvae fed only J. vulgaris developed at comparable rates to those fed only native hosts.  

My landscape surveys revealed a strong association between J. vulgaris infestations, magpie 

moth abundance and increased levels of herbivore damage of the endemic S. wairauensis. 

Likewise, S. wairauensis was more likely to be present in transects where J. vulgaris was 

rare. There is convincing anecdotal evidence that the native magpie moth became far more 

abundant because of an invasive weed and my study suggests that this detrimentally affects 

native plants through population spillback. 

Keywords: apparent competition, indirect effects, invasive, enemy release, Jacobaea 

vulgaris, Senecio, minimus, quadridentatus, wairauensis, rufiglandulosus, dunedinensis, 

Nyctemera annulata, magpie moth, New Zealand  
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     Chapter 1 
Introduction 

1.1 Species Invasions 

In most geographic areas world-wide, the last several decades have seen the rate of successful 

establishment by non-natives accelerate, mainly through anthropogenic habitat disturbance 

and species introductions by humans (both intentional and unintentional) (Carlton, 1996; E. 

Grosholz, 2002; E. D. Grosholz, 2005; Keller & Lodge, 2007; J. M. Levine, Adler, & 

Yelenik, 2004; J. M. Levine, M. Vila, C. M. D'Antonio, J. S. Dukes, K. Grigulus and S. 

Lavorel, 2003; J. L. Lockwood, Cassey, & Blackburn, 2009; McKinney & Lockwood, 1999; 

Pimentel, Zuniga, & Morrison, 2005; Pyšek et al., 2004, p.4; Vitousek, D'Antonio, Loope, & 

Westbrooks, 1996; Worm et al., 2006).  While the vast majority of potential colonization 

events are unsuccessful, naturalised species are implicated in facilitating subsequent species 

invasions by changing habitat characteristics and ecosystem functioning (Adams, Pearl, & 

Bury, 2003; Altieri, van Wesenbeeck, Bertness, & Silliman, 2010; Bourgeois, Suehs, Vidal, & 

Médail, 2005; Bruno, Stachowicz, & Bertness, 2003; Dickie, Koide, & Steiner, 2002; Fridley 

et al., 2007; Carolyn M. Malmstrom, Shu, Linton, Newton, & Cook, 2007; Molina, 

Massicotte, & Trappe, 1992; Rowles & O'Dowd, 2009; Stachowicz & Byrnes, 2006; Van der 

Putten, 2009).  While this increases the biodiversity of a habitat in the short-term, the native 

community can often see a long-term decline in species numbers as a result – sometimes 

dramatically so (Gurevitch & Padilla, 2004; O'Dowd, Green, & Lake, 2003; c.f. Dov F. Sax & 

Gaines, 2008; Simberloff & Von Holle, 1999). 

Species invasions and their direct impacts on native habitats and biological communities are 

increasingly well documented (Allen, 2006; B. J. Brown, Mitchell, & Graham, 2002; 

Ehrenfeld, 2003; Juliano & Lounibos, 2005; Kenis et al., 2009; J. L. Lockwood, Hoopes, & 

Marchetti, 2007; Sher, Marshall, & Gilbert, 2000).  Nevertheless, many of the mechanisms 

underlying the impacts of invasions and how invaded communities respond are still not well 

understood (Kenis, et al., 2009; Lau & Strauss, 2005; Martinez & Medel, 2002; Pages & 

Michalet, 2006; Pearson, D. E., McKelvey, & Ruggiero, 2000; D. E. Pearson & Callaway, 

2003; Rand, Russell, & Louda, 2009; Schoener, 1993; E. M. White, Wilson, & Clarke, 2006).  

While progress is being made on understanding the direct effects of species invasions on 

native species, communities and food web interactions, indirect effects have been less 

frequently studied and are less well understood despite being important (J. M. Levine, M. 
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Vila, C. M. D'Antonio, J. S. Dukes, K. Grigulus and S. Lavorel, 2003; Simberloff & Von 

Holle, 1999; E. M. White, et al., 2006; Wootton, 1994a). 

Indirect effects between species occur when one species affects another by altering the 

abundance and/or behaviour of one or more intermediate species.  Indirect effects can alter the 

trophic structure and ecosystem function of a community in sometimes inconspicuous ways.  

For example a predator can cause an increase the biomass of particular vegetation types by 

suppressing or changing the behaviour of herbivore populations (Ripple & Beschta, 2005 and 

references therein).  It is increasingly believed that the occurrence of indirect effects has broad 

implications for all ecological disciplines including agriculture, evolution, biological control 

and conservation (Adams, et al., 2003; Giovanelli, Vieira, & Silva, 2003; Louda, Arnett, 

Rand, & Russell, 2003; C. M. Malmstrom, McCullough, Johnson, Newton, & Borer, 2005; 

Carolyn M. Malmstrom, et al., 2007; Martinez & Medel, 2002; Meisner, De Boer, Gera Hol, 

Krumins, & Van Der Putten, 2009; Miller & Travis, 1996; Ortega, Pearson, & McKelvey, 

2004; Pearson, D. E., et al., 2000; D. E. Pearson & Callaway, 2003; Schoener, 1993; Styrsky 

& Eubanks, 2007; E. M. White, et al., 2006). 

Direct ecological interactions between two species, like predation and interference 

competition, are relatively straightforward conceptually.  For example, when non-native 

species establish in a habitat they can alter resource availability by out-competing native 

species for particular resources such as nutrients, habitat or mutualists.  However, the 

underlying mechanisms of indirect effects are typically not as obvious because they are 

complex and can often be unpredictable.  Despite this, indirect effects appear to exert strong 

pressures on native food webs.  White et al. (2006) discussed several specific types of indirect 

effects of non-indigenous species invasions and how these impact (or potentially impact) 

native habitats and Simberloff and Von Holle (1999) detailed some of the strong influences 

species invasions have on ecosystems just through indirect effects.  Both reviews argued that 

indirect effects appear to be common and highly influential in altering natural communities 

through restructuring food webs in invaded habitats and similarly concluded that there is a 

lack of comprehensive research on these phenomena. 

In this chapter, the current state of knowledge of indirect effects is summarized.  The 

summary is written with particular emphasis invasion facilitation, apparent competition and 

community-level impacts with examples for each.  I conclude with a tie-in to the study system 

for my doctoral thesis and the important role indirect effects may play. 
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1.2 Invasion Facilitation 

Increasingly, credence is being given to idea of interspecific facilitation as an important 

contributing factor to species invasions (J. L. Lockwood, et al., 2007; Ingrid M. Parker & 

Gilbert, 2007; Richardson, Allsopp, D'Antonio, Milton, & Rejmanek, 2000; Simberloff & 

Von Holle, 1999; E. M. White, et al., 2006).  In these instances, invading species act 

unilaterally or in concert to facilitate and accelerate invasion success.  In some cases invasions 

are facilitated through direct mutualisms where species interact with one another to affect 

their respective success (Aizen, Morales, & Morales, 2008; Christian, 2001; Jiu et al., 2007; 

Ness & Bronstein, 2004; M. A. Parker, 2001; Richardson, et al., 2000; Rudgers, Mattingly, & 

Koslow, 2005).  The species engaged in direct mutualisms act on one another in a mutually 

positive manner and through direct interactions.      

Co-facilitation differs from direct mutualism in that species may not interact with one another 

directly.  Co-facilitation is affected through indirect mutualism or facilitative mutualism and 

can be complex and is usually context-driven (Schoener, 1993).  Indirect mutualism can even 

occur between pairs of organisms that, historically and theoretically (and for all practical 

purposes), are antagonistic in their behaviour to one another (i.e. plant-herbivore, predator-

prey, parasitoid-prey, disease-host), however in these instances they mutually assist one 

another in the presence of other species or novel food webs (J. L. Lockwood, et al., 2007; 

Simberloff & Von Holle, 1999; E. M. White, et al., 2006).  So although these species they 

may have a +/- relationship (consumer-host), their net relationship in the new habitat is +/+ by 

contributing to each other’s success relative to their respective competitors.  Lockwood et al. 

(2007) found that potential invaders with a facilitator(s) are more likely to be successful than 

species without such counterparts.  Richardson et al. (2000) concurs and found that many 

invaders have a higher probability of establishing with a facilitator species that is already 

present in the new habitat.  Perhaps the most well-documented example of invasion 

facilitation is from the invasion of an ant and its impact community structure and function on 

Christmas Island (O'Dowd, et al., 2003).   

Ants can have a disproportionately dramatic impact on the community that they invade 

because of a combination of factors that include eusociality, defence/aggression behaviours 

and numerical dominance (Holway, Lach, Suarez, Tsutsui, & Case, 2002; Holway & Suarez, 

1999; Suarez, Holway, & Ward, 2005; Tsutsui & Suarez, 2003).  In the early 20th Century, the 

yellow crazy ant (Anoplolepis gracilipes) was accidentally introduced to Christmas Island.  

Where it naturalized, the ants decimated populations of native red land crabs (Gecarcoidea 

natalis), an herbivore that is primarily responsible for preventing establishment of non-native 
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plants and snails in island forests, primarily through foraging.  In areas where the crab 

populations were diminished in size or extirpated by the ants, several species of non-native 

plants and land snails were able to establish.  As a further result of the ant’s proliferation, nine 

different species of exotic, honeydew-producing scale insect (Hemiptera: Coccoidea) were 

able to establish where they were tended and protected by the ant.  The scales were ultimately 

found to be dependent on the yellow crazy ant since they fail to persist in locations where ants 

were experimentally removed (Abbott & Green, 2007).  Presence of these scales mutually 

enhanced the fitness and fecundity of the ants by supplying them with an abundant supply of 

carbohydrates (honeydew) thereby further increasing the range and abundance of both taxa on 

the island.  However, the trophic cascade on Christmas Island reached a crescendo when 

sooty mould (Fungi: Ascomycota), which thrives on the excess honeydew produced by the 

scales, began to blanket these areas.  The overabundance of sooty mould more negatively 

affected indigenous vegetation and caused native canopy dieback, which in turn increased the 

amount of light that reached the forest floor.  The dramatic increase in light to the ground 

favoured exotic flora over native vegetation.  In combination with the demise of the red crabs, 

the increase in sunlight ultimately and dramatically changed the composition of the jungle to 

predominate with non-native trees and shrubs.  In retrospect, the arrival of a single ant species 

effectively facilitated numerous invasions of the Christmas Island ecosystem by non-native 

plant and arthropod species, fundamentally altering the community composition of the island. 

Another example of invasion facilitation was detailed by Power and Mitchell (2004) where a 

grassland plant and pathogen community was manipulated to better understand how the 

constituent species interacted.  Plots that contained native and non-native grasses were 

manipulated to control for presence of the generalist pathogen, barley yellow dwarf virus 

(BYDV).  From some of the plots, an exotic host plant, wild oats (Avena fatua), was also 

removed.  An important characteristic of A. fatua is that it is able to tolerate higher loads of 

the pathogen than the native grasses and carries a much higher titre.  From this, a picture 

emerged that showed there was strong virus spillover from A. fatua to all three of the other 

grass species monitored with significant, negative impacts on growth and production of the 

populations of two of those native species.  By acting as a reservoir of BYDV, virus 

abundance remained consistently high in the landscape and served to suppress the less-

tolerant native grasses making A. fatua the de facto dominant species in the community.  Not 

unimportantly, BYDV and A. fatua have origins in the old world, where they presumably 

coevolved.  Both species have since naturalized in North America, although it is likely that 

these naturalizations occurred at different times since BYDV can only be transmitted 

horizontally and only by infected aphids (Mitchell et al., 2006).  In its native range A. fatua 
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and virus complex are considered to interact in an antagonistic relationship of host and 

pathogen: virus infects plant  plant’s fitness reduced  natural selection for 

resistant/tolerant genes  ensuing arms race.  In this system, however, evidence suggests that 

the dual introduction of the plant and the pathogen is a likely contributor to their individual 

success as invaders in grasslands where A. fatua competes with native grasses.  In essence, the 

presence of this exotic pathogen facilitated the rise and dominance of its exotic host, resulting 

in a dramatic change in community structure. 

In the both cases of facilitation described above, species act in concert to improve their 

success and relative fitness.  Although they occur in novel food webs, in both of these cases 

(BYDV and A. fatua, yellow crazy ant and scale insects) the species directly interact.  

However there are also indirect effects on other species in the community (e.g. insects that 

obligately use native plants), which are negatively affected in both scenarios.  Like other 

types of indirect effects, the facilitative mutualism mechanism that causes one species to 

affect another in the presence of a third is likely more common than previously recognized.  

This is certainly the case with one of the better known (but still often ignored) forms of 

indirect effect known as apparent competition. 

1.3 Apparent Competition 

Apparent competition occurs when two or more prey species, that may or may not utilize a 

common set of resources, share a common natural enemy and affect one another with impacts 

at the population level (Holt, 1977).  In such instances one of the prey species will be 

preferred or can be fed upon more easily by the consumer (Blais & Maly, 1993; Bonsall & 

Hassell, 1998; Caccia, Chaneton, & Kitzberger, 2006; Chesson, 1983; Groner & Ayal, 2001; 

Hamback & Bjorkman, 2002; Langer & Hance, 2004; Libbrecht, Gwynn, & Fellowes, 2007; 

Morris & Lewis, 2002; Pastorok, 1981; Reitz, Funderburk, & Waring, 2006) and like direct 

competition, exclusion of the less apparently competitive species can result (Gause, 1934).  

Sometimes a dominant apparent competitor can also precipitate a significant increase in the 

population size of a shared consumer while still being more tolerant to predation pressure 

(like A. fatua in the example with BYDV above).  A “population spillover” can result from 

this situation, where an inflation of a shared consumer’s population on one host causes an 

alternative host to experience higher numbers of consumers.  Spillover happens when these 

consumers move from areas of high density to low density or as they disperse through the 

landscape. 
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True competition can be contrasted with apparent competition by the mechanisms that cause 

the changes in population size.  True competition is already acknowledged by ecologists as 

important in structuring natural communities, as well as a driving force behind natural 

selection and evolution (Badano, Cavieres, Molina-Montenegro, & Quiroz, 2005; Barrat-

Segretain, 1996; Brose & Tielborger, 2005; Case, 1990; Corbin & D'Antonio, 2004; Finn & 

Gittings, 2003; Flores & Yeaton, 2000; Force, 1985; Forstmeier, Bourski, & Leisler, 2001; 

Kupferberg, 1997; McEvoy, Rudd, Cox, & Huso, 1993; Sher, et al., 2000; van Veen, Morris, 

& Godfray, 2006).  But where pressures underlying interference and exploitation competition 

are typically straightforward to observe, those driving apparent competition are generally 

more complex, less conspicuous and may be inadvertently overlooked (Bonsall & Hassell, 

1997; Chaneton & Bonsall, 2000; Connell, 1990; Denno, 1995; Holt, 1977; Holt & Lawton, 

1993; Kelly, Paterson, Townsend, Poulin, & Tompkins, 2009; Morris & Lewis, 2002; Orrock 

& Witter, 2009; Power & Mitchell, 2004; Rand, 2003; Sessions & Kelly, 2002; Tompkins, 

Draycott, & Hudson, 2000; Turchin, 2003; van Veen, et al., 2006; E. M. White, et al., 2006).  

Regardless of its often-inconspicuous nature, apparent competition has been found to be 

integral in structuring and altering natural communities (Bonsall & Hassell, 1997, 1998; 

Dangremond, Pardini, & Knight, 2010; Hatcher, Dick, & Dunn, 2006; Holt, 1977; Kelly, et 

al., 2009; Lau & Strauss, 2005; Libbrecht, et al., 2007; Morris & Lewis, 2002; Morris, Lewis, 

& Godfray, 2004; Power & Mitchell, 2004; Rand, 2003; Reitz, et al., 2006; Rott & Godfray, 

2000; Settle & Wilson, 1990; Valladares, Salvo, & Godfray, 2001; van Veen, et al., 2006).  

As suggested in most of these manuscripts, relatively little research on apparent competition’s 

impact to communities has been carried out – particularly in proportion to its likely influence 

and their authors suggest that greater attention should be paid to this phenomenon. 

Some of the best documented examples of apparent competition are incidental and come from 

studies of classical biological control.  In this field, practitioners are charged with deliberately 

adding species to food webs to achieve a specific, anthropocentric goal.  Although the overall 

investment in post-release monitoring is still paltry, review of specific examples of biological 

control reveal that that unintended indirect effects (under the umbrella definition of “non-

target effects”) can occur. 

Perhaps the highest profile example of such inadvertent, indirect effects comes from an 

American biological control program for control of Eurasian thistles (particularly Musk 

thistle, Carduus nutans complex) that saw the importation and release of the flowerhead 

weevil, Rhinocyllus conicus, in 1969 (Louda, 2000).  Although R. conicus was not anticipated 

to have any adverse effects on native thistles based on pre-release testing (H. Zwölfer & 



` 

 7 

Harris, 1984), Louda (2000) found abundant evidence of non-target plant use by R. conicus.  

She demonstrated that this feeding damage had a dramatic, negative impact the fitness of the 

individual native thistles that was likely to translate to population-level effects.  Subsequent 

analyses showed that habitat use and direct competition with grasses had a greater negative 

influence on Musk thistle abundance and persistence than did the pressure generated by the 

weevil (Louda, et al., 2003; Louda et al., 2005; Rand, et al., 2009).  Further examination of 

the system by Louda et al. (2005) lead to the conclusion that invasive thistles, which are still 

escaping significant control, are acting as reservoirs for the flowerhead weevil and that there 

is evidence of weevil spillover onto native thistle species at the local spatial scale.  The final 

verdict is that the flowerhead weevil is responsible for mediating apparent competition in 

favour of the Musk thistle and to the detriment of natives. 

In another example of an unanticipated, indirect effect resulting from a biological control 

effort, Carvalheiro et al. (2008) describes a situation in Australia where an introduced insect 

herbivore established and directly affected populations of the native parasitoid community.  

The Bitou bush seed fly, Mesoclanis polana (Diptera: Tephritidae), was introduced into the 

southern areas of Australia in 1996 to in an attempt to control the invasive costal herb, Bitou 

(Chrysanthemoides monilifera ssp. rotundata), by limiting its seed production (Edwards & 

Brown, 1997).  Surveys carried out following its introduction found that M. polana had a 

negligible impact on limiting Bitou recruitment from seed (Adair & Bruzzese, 2000; Noble & 

Weiss, 1989).  Collections and dissections of M. polana revealed that this introduced 

biocontrol agent was highly parasitized by at least three species of native parasitoid that also 

use native insects as hosts (A. J. Willis & Memmott, 2005).  Carvalheiro et al. (2008) 

concluded that the presence of M. polana in the landscape, while failing to significantly limit 

the fitness of its target host, was causing an increase the populations of these shared 

parastoids.  Furthermore, the spillover of these parasitoids from M. polana onto native seed-

feeding insects was suppressing populations of the latter. 

The examples of the flowerhead weevil and the Bitou bush seed fly both illustrate the effect 

of predator spillover and how proximity of the non-target host populations to target hosts can 

increase the vulnerability of the former to the spillover effects.  The examples above also 

demonstrate how indirect effects can pose an important challenge for biological control 

programs.  Indirect effects like these can alter entire natural communities by changing the way 

species interact, by fundamentally changing the type and level of existing connections, and by 

altering the overall community composition.  Several of the following documented cases of 



` 

 8 

species invasions and introductions exemplify the way in which indirect effects can have 

strong, community-level impacts. 

1.4 Community Impacts 

Williams et al. (2002) examined several food webs and theorized how the vast majority 

of species in a community are impacted when perturbations, as a result of an invasion, flow 

through a community food web.  These changes often disrupt the relative stability of the 

existing food web and can leave a natural community susceptible to further invasions 

(Chaneton & Bonsall, 2000; E. D. Grosholz, 2005; J. L. Lockwood, et al., 2009; J. L. 

Lockwood, et al., 2007; O'Gorman & Emmerson, 2009; D. E. Pearson & Callaway, 2003; 

Richardson, et al., 2000; Simberloff & Von Holle, 1999; van Veen, et al., 2006; Von Holle, 

2005).  An acute example of this is the yellow crazy ant invasion of Christmas Island, which 

was discussed above.  This type of scenario was termed “invasional meltdown” by Simberloff 

and Von Holle (1999) and, although it is an extreme example, it illustrates how communities 

experience changes in the wake of species invasions and become destabilized as a result.   

The establishment of the yellow crazy ant on Christmas Island also represents a “trophic 

cascade”, which occurs from downward dominance by a predator on prey in the community 

thereby releasing organisms at the next lower trophic level.  While a majority of the well-

documented cases of trophic cascades are taken from marine and aquatic ecosystems (e.g. 

Lavrentyev, Gardner, & Yang, 2000; Rodriguez, Becares, Fernandez-alaez, & Fernandez-

alaez, 2005; Simon, Townsend, Biggs, Bowden, & Frew, 2004; D.R. Strong, 1992) there are a 

growing number of terrestrial examples (e.g. Fortin et al., 2005; O'Dowd, et al., 2003; 

Simberloff & Von Holle, 1999; D. R. Strong, Whipple, Child, & Dennis, 1999).  Like the 

examples above of apparent competition, much of the documented evidence of trophic 

cascades is from biological control attempts gone awry.  As is often the case, the unintended 

consequences (non-target impacts) are felt beyond the one or two non-target species selected 

for study and can have a significant effect on the greater ecological community.  Some of the 

previously mentioned examples of biological control can be further used to illustrate this. 

In a comprehensive review on impacts to native thistle communities by R. conicus, which was 

introduced to control Musk thistle, Louda (2000) reported that there are at least five native 

insects recorded to feed on native wavyleaf thistle (Cirsium undulatum).  These species only 

use this host and are unable or unwilling to use the abundant invasive, Musk thistle.  This is 

similarly true for a native butterfly species, the swamp metalmark (Calephelis muticum) 

(Lepidoptera: Riodinidea), which relies solely on its host plant, swamp thistle (Cirisum 
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muticum), for food and reproduction (Louda et al., 1998).  Louda (2000) also noted an inverse 

correlation between population size of a native tephridid fly (Paracantha culta) and the 

number of flowerhead weevils in a given area.  Obviously the combination of the flowerhead 

weevil’s host preference combined with the native insects’ limited host range is likely to have 

far-reaching impacts to the survival of the wavyleaf thistle’s fauna.  It is a similar situation for 

both the Platte (C. canescens) and Pitcher’s thistle (C. pitcheri) which both support unique, 

native insects as well.  All of these native thistles are preferentially attacked by R. conicus, 

including C. pitcheri which is already considered a rare, federally protected species (Louda, 

2000). 

 Researchers tracking the attempted control of spotted knapweed (Centaurea 

maculosa) found that the introduction of the gall fly (Urophora affinis, Diptera: Tephrididae) 

caused enormous impacts in the grassland community where it established.  Native deer mice 

(Peromyscus maniculatus), which are considered mainly granivorous, switched to 

preferentially feeding on the introduced gall fly maggots.  They changed their behaviour so 

much that they began switching microhabitats in winter to take advantage of the abundant 

novel food source (Pearson, D. E., et al., 2000).  It was also normal for these deer mouse 

populations to experience a decline in the wintertime due to a seasonal decrease in food 

availability.  However, Ortega et al. (2004) found that in habitats where introduced gall flies 

had naturalised there was double the number of deer mice, primarily from lower-than-

expected winter population declines.  The increase in mice generated dramatic changes to the 

trophic structure of the community through increased seed and arthropod predation by mice.  

Further examination found that increased mouse survival was correlated with a threefold-

increase in the number of mice testing seropositive for the Sin Nombre virus (SNV) compared 

to previous years.  SNV is the causal agent of hantavirus pulmonary syndrome (HPS) in 

humans and this increase in mouse infection rates was considered an indirect effect of the gall 

fly introduction by the authors.   

Another notable point involving some of the cases of biological control outlined above is that, 

although many instances of indirect impacts and apparent competition involve organisms that 

have prior coevolutionary links, they also often involve species that have never encountered 

one another.  Unlike the flowerhead weevil and BYDV, which still use their original host 

plants, Bach (1991) outlines a case in point of this type of interaction that ties together 

multiple invasive species with completely novel associations.  This example is found in 

Hawai’i where serendipity and ecological fitting resulted in a multitrophic mutualism by three 

previously-allopatric species in a novel habitat.  The mutualism is formed from an African ant 

(Pheidole megacephala), a South American scale insect (Coccus viridus) and an Asian plant 
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(Pluchea indica) that established on a Pacific island thousands of kilometres from any of 

those places.  Like many other species of ants, P. megacephala tends a range of hemipteran 

insects, including scales.  Coccus viridus, like other soft scales, produces honeydew that is 

consumed by the ants and in return for protection from potential predators and parasitoids.  

The presence of patrolling ants benefits the plant by significantly decreasing the amount of 

damage from other herbivores, while preventing the build-up of honeydew and build-up of 

sooty mould.  For its part, P. indica is a widespread invader found in high densities which 

allow the polyphagous C. viridus and its tender ants to expand their geographic distribution 

into areas that are otherwise lacking in suitable hosts, like habitats characterised by salinity, 

marshes and high levels of disturbance where P. indica is common.  In this case all three 

exotic species benefit from one another’s presence, despite the fact that this community is 

formed from an amalgamation of immigrants that have no prior association. 

1.5 Indirect Effects of Novel Plant-Herbivore Associations 

As in the case of some of the organisms above, many herbivorous insects are able to make use 

of novel host plants which can potentially lead to indirect effects in a food web following an 

introduction or invasion of a plant or insect herbivore.  The practice of using novel hosts is 

referred to in the literature as “host range expansion” (in cases where the original host is still 

occasionally used) and “host-switching” (where the original host is no longer used or is 

absent) (e.g. Agosta, 2006; S. M. Fraser & Lawton, 1994; Hanks, Millar, & Paine, 1995; 

Keane & Crawley, 2002; Velasco & Walter, 1993).   

There may be several fitness-enhancing advantages to these strategies.  For example, a 

number of parasitoids and predators use host plant volatiles to track herbivores (Allmann & 

Baldwin, 2010; Bjorkman, Larsson, & Bommarco, 1997; Bruinsma et al., 2009; de Boer, 

Hordijk, Posthumus, & Dicke, 2008; Grosman et al., 2005; Kappers, Verstappen, Luckerhoff, 

Bouwmeester, & Dicke, 2010; Puente, Magori, Kennedy, & Gould, 2008; Soler et al., 2007; 

Tentelier & Fauvergue, 2007; Unsicker, Kunert, & Gershenzon, 2009).  By using an alternate 

host plant, the composition of volatiles emitted during feeding may fail to attract consumers, 

thereby providing herbivores with enemy-free space and a decrease in predation pressure (Fox 

& Eisenbach, 1992; Gratton & Welter, 1999; Grosman, et al., 2005; Oppenheim & Gould, 

2002; Rossbach, Löhr, & Vidal, 2006b; Singer & Stireman, 2005; Stamp, 2001; Vet & Dicke, 

1992).  Obviously this may enhance fitness for herbivores enough to select for those that 

engage in host-switching, assuming there is little difference in nutritional quality (J. M. 

Brown, Abrahamson, Packer, & Way, 1995; Gratton & Welter, 1999; Grosman, et al., 2005; 

Holt & Lawton, 1993; Velasco & Walter, 1993; Zangerl, Huang, McGovern, & Berenbaum, 
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2002).  Superior nutritional quality of an alternate host may also trigger host-switching 

behaviour (Bernays & Chapman, 1994; Brazner, Aberdeen, & Starmer, 1984; Chaneton & 

Bonsall, 2000), as may competition (Denno, 1995; Feder, Reynolds, Go, & Wang, 1995; 

Forbes, Fisher, & Feder, 2005; Fricke & Arnqvist, 2007; Messing & Wang, 2009), or the 

relative abundance of a particular plant (Graves & Shapiro, 2003; Horton, Capinera, & 

Chapman, 1988; D. R. Strong, Lawton, & Southwood, 1984).  Most often it is likely to be a 

combination of factors (Gassmann, Levy, Tran, & Futuyma, 2006 and references therein).   

One important prerequisite is the possession of traits that enable an herbivore to make use of a 

particular host plant, such as ovipositional cue detection, phytochemical/nutrient acquisition 

and use, and the ability to detoxify potentially harmful compounds.  To describe this concept 

of preparedness, Janzen (1985) introduced the term “ecological fitting”, which encompasses 

all aspects of an organism’s ability to persist in novel environments.  Particularly important in 

this endeavour is the ability to utilize novel resources and form novel associations.  Agosta 

(2006) elaborated on this concept in reference to insect-host plant associations and discussed 

how species that may have no close co-evolutionary history can still form novel associations 

based on recognizable and/or compatible traits.  This means that invaders that are ecologically 

fitted to interact with species in invaded communities are not only more likely to establish, 

but the associations that they form can cause significant perturbations of the food web in 

which they incorporate themselves. 

There are several documented cases where exotic species have made use of novel hosts and 

trophic resources in their new range (Aizen, et al., 2008; B. J. Brown, et al., 2002; Crowl, 

Crist, Parmenter, Belovsky, & Lugo, 2008; Didham, Tylianakis, Hutchison, Ewers, & 

Gemmell, 2005; Kenis, et al., 2009; Koch, Venette, & Hutchison, 2006; Louda, et al., 2005; 

Ness & Bronstein, 2004; Sessions & Kelly, 2002; Styrsky & Eubanks, 2007; Verhoeven, 

Biere, Harvey, & van der Putten, 2009).  In the same respect, many native insects have shown 

the ability to make use of exotic and invasive novel host plants (Agrawal, 2000; Auerbach & 

Simberloff, 1988; Gratton & Welter, 1999; Grosman, et al., 2005; Holmes, Dennill, & Moll, 

1987; Keeler & Chew, 2009; Lau & Strauss, 2005; Louda, 2000; Louda, et al., 2005; 

Mitchell, et al., 2006; J. J. Sullivan, Winks, & Fowler, 2008).  In both cases it is generally 

presumed that ecological fitting, host abundance and factors leading to greater or equal fitness 

(be it from higher nutritional value or the presence of fewer natural enemies) are the primary 

factors leading to the incorporation and use of novel hosts.  This supports the possibility for a 

potential ecological scenario that was suggested by White et al. (2006), where native insect 

herbivores could make use of invading plants and create a population “reservoir”.  The 
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resulting spillover of herbivores onto native species could facilitate apparent competition 

between the abundant weed and the herbivore’s native host plants.  This, in turn, could have 

could have dramatic community-wide implications for individual native species that use those 

plants, as well as the intensity of biotic resistance produced by the community at-large.   

One possible example of this scenario is found in the interactions between the native magpie 

moth of New Zealand (Nyctemera annulata, Lepidoptera: Arctiidae), the invasive weed, tansy 

ragwort (Jacobaea vulgaris, until recently Senecio jacobaea) and the magpie moth’s native
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Table 1.1 - Senecio species in New Zealand, their biostatus and naturalisation period (for exotic species).  
Species Biostatus Naturalisation 
S. banksii Hook.f. Endemic – 
S. carnosulus (Kirk) C.J.Webb (1988) Endemic – 
S. dunedinensis Belcher Endemic – 
S. glaucophyllus Cheeseman Endemic – 
S. hauwai Sykes Endemic – 
S. kermadecensis Belcher Endemic – 
S. marotiri C.J.Webb (1988) Endemic – 
S. radiolatus F.Muell. Endemic – 
S. repangae de Lange & B.G.Murray (1998) Endemic – 
S. rufiglandulosus Colenso (1895) [1896] Endemic – 
S. scaberulus (Hook.f.) D.G.Drury Endemic – 
S. sterquilinus Ornduff Endemic – 
S. wairauensis Belcher Endemic – 
S. biserratus Belcher Native (non-endemic) – 
S. glomeratus Poir. Native (non-endemic) – 
S. hispidulus A.Rich. Native (non-endemic) – 
S. lautus G.Forst. ex Willd. (1803) Native (non-endemic) – 
S. minimus Poir. Native (Non-endemic) – 
S. quadridentatus Labill. Native (Non-endemic) – 
S. angulatus L.f. Exotic (Fully naturalised) 1940–1970 
S. aquaticus Hill Exotic (Fully naturalised) 1870–1900 
S. bipinnatisectus Belcher Exotic (Fully naturalised) 1900–1940 
S. cineraria DC. Exotic (Fully naturalised) 1940–1970 
S. crassiflorus (Poir.) DC. Exotic (Casual)   
S. diaschides D.G.Drury Exotic (Fully naturalised) 1970–1990 
S. elegans L. Exotic (Fully naturalised) 1900–1940 
S. esleri C.J.Webb (1989) Exotic (Fully naturalised) 1990–2000 
S. glastifolius L.f. Exotic (Fully naturalised) 1940–1970 
S. hypoleucus Benth. Exotic (Casual) – 
J. vulgaris (= S. jacobaea L.) Exotic (Fully naturalised) 1870–1900 
S. linearifolius A.Rich. Exotic (Fully naturalised) 1970–1990 
S. macroglossus DC. Exotic (Casual) 1990–2000 
S. mikanioides Walp. Exotic (Fully naturalised) 1840–1870 
S. serpens G.D.Rowley Exotic (Casual) – 
S. skirrhodon DC. Exotic (Fully naturalised) 1900–1940 
S. sylvaticus L. Exotic (Fully naturalised) 1870–1900 
S. vulgaris L. Exotic (Fully naturalised) 1840–1870 
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host plants (Senecio spp.).  The New Zealand flora includes 19 native species of Senecio, of 

which 13 species are endemic (Table 1.1).  In the chapters that follow I investigate whether 

the invasion of New Zealand by J. vulgaris caused an increase in the abundance of the magpie 

moth which spilled back onto native Senecio species decreasing their fitness and depressing 

their populations as a result of apparent competition. 

To confirm the occurrence of apparent competition a few criteria must be met.  First, there 

must be at least two host species that share a common consumer.  Second, the shared 

consumer must cause a greater negative impact to the fitness of one of the hosts in the 

presence of the other.  Third, these impacts must be evident at the population level with 

populations of the weaker apparent competitor becoming scarcer over time or disappearing 

altogether. 

1.6 Thesis Structure 

The remainder of this doctoral thesis consists of four chapters assessing evidence for apparent 

competition mediated by the endemic magpie moth, N. annulata between the invasive J. 

vulgaris and three native New Zealand Senecio species (S. minimus, S. quadridentatus and S. 

wairauensis).  These chapters are followed by a section devoted to my discussion and 

conclusions. 

Chapter 2 provides anecdotal evidence from New Zealand’s colonial period through to today 

and consists mainly of writings by New Zealand naturalists from this time period.  It details 

the invasion of New Zealand by J. vulgaris and a correlated rise in N. annulata populations in 

invaded areas.  Also documented is the decrease in these two species following the 

implementation of J. vulgaris control measures that began in 1901.  My goal in writing this 

chapter is to give a historical foundation for the association between J. vulgaris and N. 

annulata and to convey how naturalists in the period before and after the invasion of the 

former were keenly aware how this led to an increased abundance of the latter. 

In Chapter 3, I use herbarium and vegetation survey records collected over the last 140 years 

to perform a temporospatial analysis in order to find relationships between the locations of J. 

vulgaris records and those of native Senecio on the South Island.  Using a variety of records 

establishing presence of J. vulgaris and native Senecio hosts at specific dates and locations, 

the analysis should show how encounters of these individual species shift in time and space.  

These results are intended to uncover evidence for population-level impacts to native Senecio 

species through time and in relation to J. vulgaris presence. 
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The purpose of the assays carried out and reported in Chapter 4 is to compare the preference 

of N. annulata for J. vulgaris and native Senecio host plants, as well as the suitability of the 

alternate hosts for larval development.  Experiments consisted of standard choice and no-

choice tests using newly-hatched larvae.  In the choice tests, larvae were offered standardized 

amounts of plant tissue of J. vulgaris and three native host plants (S. minimus, S. 

quadridentatus and S. wairauensis) in order to find out which they preferred the most and 

how much of each they ate.  In the no-choice tests, larvae were given access to just one of the 

species used in the choice tests and then followed in their development.  These experiments 

were used to establish the trophic associations between N. annulata and its alternate hosts and 

to find out how each host plant affected the fitness of their shared consumer. 

In Chapter 5, I report on field surveys from river valleys of the West Coast Region of New 

Zealand where J. vulgaris invasions have occurred most recently.  Surveys for J. vulgaris and 

native Senecio were carried out at seven different sites and looked for the occurrence and 

abundance of these host plants at increasing distances from high-density J. vulgaris 

populations.  Densities of each host species were recorded in disturbance corridors (stream 

beds, trails, landslips, etc.) at regular intervals along each valley.  Numbers of N. annulata 

larvae and levels of larval feeding damage on each host species were also recorded in the 

same locations.  The survey included three sites that were free of J. vulgaris infestations in 

order to uncover any differences in the pattern of native Senecio abundance and distribution 

between invaded and uninvaded sites.  These surveys were carried out to determine if there 

are any discernable landscape-level impacts to native Senecio populations as a result of J. 

vulgaris presence and density. 

The final chapter of this thesis summarizes the research findings and the conclusions I draw 

from those results.  I also make suggestions for interested parties and end-users while offering 

ideas for future research in this area. 
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     Chapter 2 
Invasion of New Zealand by Jacobaea vulgaris 

2.1 Introduction 

New Zealand is home to 19 native species of herbaceous plants in the genus Senecio (Webb, 

Sykes, & Garnock, 1988).  There are also several species of native herbivorous insect that 

feed and reproduce on these host plants, all of which contain toxic pyrrolizidine alkaloids 

(Benn, DeGrave, Gnanasunderam, & Hutchins, 1978; Langel, Ober, & Pelser, 2010; P. B. 

Pelser, Nordenstam, Kadereit, & Watson, 2007; E. P. White, 1969).  In the mid- to late-17th 

Century, the European pasture weed, Jacobaea vulgaris (formerly Senecio jacobaea L.), was 

inadvertently introduced to New Zealand and rapidly spread across the colony (Gilruth 1904, 

Thompson 1922, Cameron 1935, Wardle et al. 1995).  A few of the native insects that 

specialized on native Senecio began to successfully use this exotic host (J. J. Sullivan, et al., 

2008).  Between the eventual ubiquity and high density of J. vulgaris in New Zealand, the 

presence of this species in the landscape appears to have had significant impacts to the 

populations of the native insects that used it (Anonymous, 1929; Buller, 1881; Watt, 1914).  

Specifically, there is ample anecdotal evidence that one Senecio-specialist, Nyctemera 

annulata (Boisduval)1

Jacobaea vulgaris is an herbaceous pasture weed native to Europe and eastern Asia that has 

been inadvertently introduced to many other geographic areas including North America, 

Australia and New Zealand.  Jacobaea vulgaris is a facultatively annual, biennial or perennial 

herb in the daisy family (Asteraceae) with leaves that are lobed and glabrous and that are dark 

green on top, but paler to purple underneath (Radcliffe, 1969; Schmidl, 1972a).  Wardle 

(1987) provides a comprehensive description of J. vulgaris, a summary of which follows.   

 (the New Zealand magpie moth), experienced a population explosion 

following the invasion of J. vulgaris (see section 2.4 below).  In this chapter, I review the 

natural history of J. vulgaris, present evidence for its novel association with N. annulata, and 

detail the effects that J. vulgaris invasion appears to have had on N. annulata populations.  To 

conclude, I discuss the implications for native Senecio species, which likely experienced 

increased pressure in the form of herbivore spillback. 

On average, mature plants are about 50 cm in height and have long, stout stems and diffuse 

root systems, from which plants can readily regenerate.  The morphology of the flowers 

                                                 
1 This species was originally named Leptosoma annulatum. 
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reveals two concentric rings of florets; the outer ring of ray florets produces hairless seeds, 

while the inner ring of disc florets produces seeds with some pubescence.  Seeds germinate in 

late autumn and from a rosette over winter.  The upper part of the stem usually branches 

several times and can produce thousands of yellow florets which are insect pollinated.  

Rosettes generally bolt and flower during their second year of growth, although J. vulgaris is 

monocarpic and can persist until it sets seed.  Flowering can be delayed by herbivory (E.  van 

der Meijden & van der Waals-kooi, 1979) and if the plant is grazed on, or growth is otherwise 

interrupted, the plant can convert to a perennial with multiple crowns and a number of 

flowering stems (Wardle, 1987).  Each plant produces 5,000 to 275,000 seeds (Radcliffe, 

1969).   

Jacobaea vulgaris is perhaps best known for its toxicity and economic impact by reducing the 

grazing capacity of many pastures and as a causal agent of livestock mortality (Fuller & 

McClintock, 1986; Schmidl, 1972a, 1972b; Stables, 1983; Thompson, 1922; Wardle, 1987; 

Wardle, Nicholson, & Rahman, 1995).  Jacobaea vulgaris produces a suite of hepatotoxic 

phytochemicals (pyrrolizidine alkaloids) and ingestion of sufficient quantities of plant tissue 

by livestock causes cirrhosis of the liver, especially in horses and cattle and notably less so in 

sheep (Adler, Karban, & Strauss, 2001; Cheeke, 1988, 1989; Gera Hol, Macel, van Veen, & 

van der Meijden, 2004; Hartmann & Toppel, 1987; Toppel, Witte, Riebesehl, Borstel, & 

Hartmann, 1987).  Jacobaea vulgaris has been shown to cause more mortality in British 

livestock than all other toxic plants together (Forsyth, 1954). 

Jacobaea vulgaris was first reported in New Zealand in 1869 near Dunedin (Fereday, 1872).  

Within a few decades it was established in other areas, including Invercargill, the West Coast 

Region, Bay of Plenty, the areas around Coromandel and Auckland, as well as Taranaki and 

became particularly abundant in farming areas (Anonymous, 1889a, 1891, 1899, 1902a, 

1902b, 1902c, 1904; Gilruth, 1904; E. Howell, 1903; Meyrick, 1889; Thompson, 1922).  In 

the 1880's J. vulgaris became associated with fatal Winton Disease in livestock – primarily 

horses (Cowan, 1889; Gilruth, 1904).  It was declared a noxious weed in the Second Schedule 

of the Act of 1900, but was moved up to the First Schedule of the Act of 1908 (Poole & 

Cairns, 1940).  More recently, in the Noxious Plant Act of 1986, it was again classified as a 

Class B noxious weed which required farmers to maintain a 20-metre wide J. vulgaris-free 

buffer around their pastures and made it illegal for them to allow J. vulgaris to flower on their 

property (Bird, 1977). Some New Zealand regional councils maintain similar provisions in 

current Regional Pest Management Strategies under the Biosecurity Act 1993 (MAF, 1993). 



` 

 18 

Since its introduction, all methods of control have been attempted including cultural control 

(e.g. prohibiting movement of plants and seed-infested soil), chemical control and biological 

control.  Arguably, sheep were the first organisms used to control J. vulgaris in New Zealand 

and were often employed alone or alongside cattle in infested paddocks specifically for that 

purpose (Cameron, 1935; Hilgendorf, 1926; Mitich, 1995).  Additionally, six insects have 

been imported and released as biological control agents, all but one of which established 

successfully (Table 2.1).  Biological control has been largely successful in much of New 

Zealand, especially in drier areas typical of the eastern portion of the country.  However, 

healthy J. vulgaris populations continue to persist in other areas of the country, particularly in 

the Westland Region (Harman and Syrett 1989, Gourlay et al. 2008).  Perseverance of J. 

vulgaris populations is attributed to its high fecundity, its adaptation to disturbed habitats and 

its high tolerance to herbivory and disturbance (Crawley & Gillman, 1989; McEvoy, et al., 

1993; E.  van der Meijden & van der Waals-kooi, 1979; Wardle, 1987).  This same research 

also indicates that J. vulgaris distribution and size is determined perhaps as much by 

competition and the availability of suitable disturbed habitat (microsites) as by pressure from 

natural enemies. 

Over a century of research has been carried out on J. vulgaris in New Zealand, but many 

questions regarding its impacts to the native ecology are still unexamined.  Since J. vulgaris is 

viewed mainly a pasture weed it has traditionally been considered as a farming issue. For 

example, the Department of Conservation (DOC) in Westland typically does not control J. 

vulgaris despite its abundance in grazed and recently retired lowland valleys since DOC is 

outside of the purview of the regional pest management strategy and does not regard J. 

vulgaris as an important environmental weed in these landscapes (Tom Belton, personal 

communication).  Data collection in relation to this species has overwhelmingly focused 

on aspects of economic importance, such as impacts to agricultural livelihood, the 

costs/benefits/efficacy of different control methods and the effects of imported biological 

control agents on its control (e.g. Amor, Lane, & Jackson, 1983; Anonymous, 1904; Bird, 

1977; Cameron, 1935; Harman & Syrett, 1989; McEvoy, et al., 1993; Mitich, 1995; Poole & 

Cairns, 1940; Radcliffe, 1969; Schmidl, 1972a; Stables, 1983; Wardle, 1987; Wardle, et al., 

1995).  Conversely there has been little research examining the ecological impacts of J. 

vulgaris on native plants and insects and the impacts of J. vulgaris biocontrols on native and 

endemic species. This is a potentially important omission for such an abundant invasive 

species. 
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Table 2.1 - Insects and the years they were introduced to New Zealand in an attempt to control the invasive pasture weed, Jacobaea vulgaris.  An asterisk (*) 
indicates failure to establish. 

 

  Species   Order: Family   Released   Geographic origin Reference 

  Tyria jacobaeae   Lepidoptera: Arctiidae   1929   England (Cameron, 1935; Harman, Syrett, Hill, & Jessep, 1996) 

  Botanophila jacobaeae   Diptera: Tephrididae   1936   England (Cameron, 1935; Harman, et al., 1996; Holloway, 1983) 

  Botanophila seneciella*   Diptera: Tephrididae   1936   England (Cameron, 1935; Harman, et al., 1996; Holloway, 1983) 

  Longitarsus jacobaeae   Coleoptera: Chrysomelidae   1983   Italy via Oregon (USA) (Harman, et al., 1996; Syrett, Grindell, Hayes, & Winks, 

1991; Syrett, Scheele, & Philip, 1983) 

  Cochylis atricapitana    Lepidoptera: Tortricidae   2008   Spain via Australia (ERMA, 2005a, 2005b) 

  Platyptilia isodactyla   Lepidoptera: Pterophoridae   2008   Spain via Australia (ERMA, 2005a, 2005b) 

 

 
 
 



` 

 20 

2.2 New Zealand Senecio Specialists 

Many of the endemic and native insects that feed on Senecio species are specialists on this 

genus and some closely related Asteraceae.  Prior to European colonization these Senecio-

specialist insects were supported by a community of 13 endemic and 6 non-endemic native 

hosts (see Chapter 3, Table 3.1).  Beginning with the arrival of European settlers, 13 non-

native species of Senecio and J. vulgaris have naturalized in New Zealand, with casual 

introductions of five others (J. J. Sullivan, 2006; Webb, et al., 1988).  Subsequent to these 

introductions, some of these genus-specific herbivores expanded their host range to use one or 

more of the non-native Senecio species and J. vulgaris.  In a survey of host plant use, Sullivan 

et al. (2008) found that at least three endemic Senecio specialists regularly use both native and 

naturalized species as hosts.  One of the species that Sullivan et al. (2008) followed, 

Nyctemera annulata (Lepidoptera: Arctiidae), was encountered nearly twice as often on the 

exotic J. vulgaris (23%) compared to the native species that was most used by the moth in 

their samples, S. minimus (14%).  Another important part of the picture is that the authors 

found the exotic Senecio species to be far more common than the native hosts in both 

modified rural and urban habitats.  One of the conclusions of the study was that the endemic 

Senecio specialists that have expanded their host range would likely be far less abundant and 

more restricted in their geographic distribution without the presence of the naturalized 

Senecio hosts and J. vulgaris.  The pattern of host use by N. annulata combined with the 

abundance and distribution of the preferred, exotic host presents some interesting possibilities 

that call for further study.  In particular, it is prudent to ask how the impact of J. vulgaris 

invasion and spread may have affected N. annulata populations. 

2.3 Magpie Moth (Nyctemera annulata) 

The New Zealand magpie moth (Nyctemera annulata Boisduval, Lepidoptera: Arctiidae), is a 

day-flying moth endemic to New Zealand.  Nyctemera annulata is a bivoltine herbivore 

common throughout the country (Thomson, 1909; Watt, 1914).  It is oligophagous and uses 

multiple hosts plants (Table 2.2).  While it originally relied on native species of Senecio for 

development, it now feeds on most naturalized species from this genus as well (Benn, et al., 

1978; Gaskin, 1966; Singh & Mabbett, 1976; Watt, 1914).  It also uses plants in other closely-

related genera such as rangiora (Brachyglottis repanda) (B. Patrick, 1994; Singh & Mabbett, 

1976; Watt, 1914).  

While N. annulata is parasitized by multiple species of native and naturalized hymenoptera 

(Table 2.3), the moths’ bright aposematic coloration likely acts as a visual warning of their 
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Table 2.2 - Host plant species recorded for the endemic New Zealand magpie moths (Nyctemera 
annulata) and the reference for the association.  Hosts are also annotated as to if they are 
endemic (§), non-endemic native (*) or exotic (†) species.  Specious associations are also 
annotated (σ).  Doubt as to host associations are collected from the sources cited or assumed by 
this author due to an absence of corroborating reports. 

Host plant Family Citation 

J. vulgaris † Asteraceae (Singh & Mabbett, 1976; Spiller & Wise, 1982; J. J. Sullivan, et al., 2008) 

Senecio antipodus Asteraceae (B. Patrick, 1994) 

S.  bipinnatisectus † Asteraceae (Kay, 1980) 

S. carnosulus § Asteraceae (Sullivan, unpub. data) 

S. elegans † Asteraceae (S. Hartley pers. comm.) 

S. esleri † Asteraceae (Martin, 2010) 

S. glastifolius † Asteraceae (S. Hartley pers. comm.) 

S. glomeratus * Asteraceae (Spiller & Wise, 1982) 

S. hispidulus * Asteraceae (Martin, 2010) 

S. lautus * Asteraceae (Singh & Mabbett, 1976; Spiller & Wise, 1982) 

S. mikanoides † Asteraceae (Spiller & Wise, 1982) 

S. minimus * Asteraceae (Singh & Mabbett, 1976; Spiller & Wise, 1982) 

S. quadridentatus * Asteraceae (J. J. Sullivan, et al., 2008; D. R. Woodward, 1984) 

S. radiolatus § Asteraceae (Dugdale, 1971) 

S. rufiglandulosus § Asteraceae (Martin, 2010; Watt, 1914) 

S. scandens Asteraceae (Watt, 1914) 

S. skirrhodon † Asteraceae (Martin, 2010) 

S. spathulatus † Asteraceae (Benn, et al., 1978) 

S. sylvaticus † Asteraceae (Spiller & Wise, 1982; Watt, 1914) 

S. vulgaris † Asteraceae (Gaskin, 1966; Spiller & Wise, 1982; Watt, 1914) 

S. wairauensis § Asteraceae Chapter 5 

Erechtites arguta Asteraceae (Watt, 1914) 

Brachyglottis repanda § Asteraceae (Dugdale, 1971; Watt, 1914) 

B. bellidioides § Asteraceae (Watt, 1914) 

B. hectori § Asteraceae (Watt, 1914) 

B. turneri § Asteraceae (Watt, 1914) 

Olearia sp. §†σ Asteraceae (Spiller & Wise, 1982) 

Pelargonium sp. †σ Geraniaceae (Spiller & Wise, 1982) 

Salvia sp. †σ Lamiaceae (Spiller & Wise, 1982) 

Chrysanthemum sp. †σ Asteraceae (Spiller & Wise, 1982) 

Lactuca sativa †σ Asteraceae (Gaskin, 1966; Spiller & Wise, 1982) 

Leptinella plumose §σ Asteraceae (B. Patrick, 1994) 

Pericallis xhybrida † Asteraceae (Gaskin, 1966) 

Pleurophyllum criniferum §σ Asteraceae (B. Patrick, 1994) 

Cineraria maritime †σ Asteraceae (Singh & Mabbett, 1976) 

Cotula plumosa §σ Asteraceae (B. Patrick, 1994) 

Hedera hibernica †σ Araliaceae (Buller, 1881) 
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Table 2.3 - Parasitoids of Nyctemera annulata (Bois.) and the lifestage they attack.  Annotations indicate if species are 
endemic (§), native(*), non-native (†) and unknown (?). 
 

Species Order: Family Life stage attacked Citation 

Pales nyctemeriana §  Diptera: Tachinidae   larva (Thompson, 1922) 

Pales casta*  Diptera: Tachinidae   larva (Cameron, 1935) 

Diolcogaster perniciosus †  Braconidae: Microgastrinae   larva (Saeed, Dangerfield, & 
Austin, 1999) 

Echthromorpha intricatoria † Hymenoptera: Ichnumonidae   pupa (Cameron, 1935) 

Microplitis sp. Hymenoptera: Braconidae   larva (Valentine, 1967) 

Apantales sp. Hymenoptera: Braconidae   larva (Valentine, 1967) 
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toxicity and unpalatability to most potential bird predators, with the notable exception of the 

shining cuckoo (Chrysococcyx lucidus, Aves: Cuculidae) (Gill, 1980).  The toxicity of this 

moth has been experimentally attributed to the sequestration of pyrrolizidine alkaloids from 

the host plant by the moth larvae (Benn, et al., 1978; Gaskin, 1966).  All species regularly 

used by N. annulata are recorded to contain these compounds, including J. vulgaris and S. 

minimus (Benn, et al., 1978).  These toxic alkaloids can be retained by the moth throughout its 

lifespan and gravid females can transfer this chemical protection to her ova (Benn, et al., 

1978). 

2.4 Jacobaea vulgaris invasion of New Zealand and the Response 
by Nyctemera annulata 

The history of J. vulgaris in New Zealand has murky beginnings.  The earliest account of 

“ragwort” in New Zealand was recorded by Fereday (1872) in his response to Bathgate (1870) 

and observations therein regarding N. annulata.  Fereday (living in Christchurch) commented 

on Bathgate’s observations from Otago – in particular the abundance of N. annulata and its 

association with “ragwort” (this presumably refers to J. vulgaris, as native Senecio species 

and the naturalised S. vulgaris are often referred to as “groundsel” in the written accounts 

from this era (e.g. Anonymous, 1889a; Anonymous, 1889b; Grapes, 1896)). 

“The moth mentioned as having black wings with white spots, and the abdomen annulated 
with orange, is Leptosoma annulatum… It is very abundant here, and its larvae are 
common on a species of ragwort – I have never seen them on any other plant.”(Fereday, 
1872, p.218) 

However, Thompson (1922) is commonly considered the earliest reliable account of J. 

vulgaris invasion.  In this retrospective he mentions first noticing J. vulgaris around Dunedin 

in 1874.  Not unimportantly (and admittedly with the benefit of hindsight), he also suggests 

that proliferation of J. vulgaris was directly responsible for a dramatic increase in the 

abundance of the endemic New Zealand magpie moth, N. annulata. 

“Since the vast increase in this weed, there has been a correspondingly enormous increase 
in numbers of New Zealand magpie moth – Nyctemera annulata – the larvae of which feeds 
mainly on this plant.  In summer the moths are frequently to be seen almost in clouds in the 
infested districts… and coincidentally with [J. vulgaris]’s spread has been an enormous 
increase of Nyctemera annulata.” (Thompson, 1922, p. 434) 

From the early stages of the invasion, naturalists have provided some evidence that N. 

annulata numbers were increasing.  About a decade after Bathgate’s (1870) initial 

observation, Buller (1881) noted the how the moth seemed to be increasingly common: 

“This familiar moth occurs plentifully during the summer months in all parts of the 
colony… it appears to increase and multiply every year, while many of the other common 
moths are becoming extinct.” (Buller, 1881, p. 238) 
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A couple years later Smith (1893) published his own observations about N. annulata in which 

he declared that the apparent rise in moth numbers was a direct result of the invasion of exotic 

plants – the earliest such account I was able to locate.  He went further and also made the 

claim that N. annulata larvae develop better on exotic Senecio species and that adult moths 

reared on exotic hosts reproduce at a higher rate compared to those reared on native hosts.   

“When, however, alien plants of the same order have supplanted the native species, it is 
interesting to note how several species of insects have adopted the ailen plants as food, and 
continue to multiply more than when their larvae fed on native plants... The case of N. 
annulata, a large diurnal moth , may be cited as one of perfect adaptation to new food, by 
which the species continues to increase annually.”  (Smith, 1893, p. 220) 

Early in the J. vulgaris invasion, N. annulata was so closely associated with this exotic plant 

that many farmers initially suspected moth larvae as the cause of livestock mortality:  

“I understand the danger lies in the grubs or worms which are to be found in every 
stalk of [J. vulgaris], presumably the young of the black moth so pleantiful whever the 
yellow weed is found.” (Maclean, 1894, p. 11) 

“It was at one time thought that a disease which affects cattle grazing in districts 
overrun by Senecio jacobaea and its allies—the food plants of the larvae —had its 
origin in the animals inadvertently eating the larva along with its food plant. It is now 
known that the Senecio itself contains a poisonous substance.”(Philpott, 1907, p. 213) 

 
Around the same time livestock deaths in New Zealand were on the rise from J. vulgaris 

poisoning, Meyrick (1889) reported how common N. annulata was is in some areas.  He also 

gave some idea of the impact that larvae of the native moth could have on their host plants: 

[regarding N. annulata:] “Common throughout the North and South Islands.... feeds on 
various species of Senecio, sometimes entirely stripping the plants.  The imago has a 
curious habit of soaring in the early morning sunshine, soon after sunrise, in calm fine 
weather.  I have seen them in numbers flying round the tops of trees at a height of over 
100ft.” (Meyrick, 1889, p. 218) 

Observations of high N. annulata population densities were affirmed by Hudson, who also 

commented on the ubiquity of the species: 

“It is extremely common, especially during the latter end of the summer, when specimens 
may often be seen flying in all directions.” (Hudson, 1898, p. 3) 

A bit further north in Taranaki, local newspapers of the time provide clues that Taranaki was 

in the early stages of invasion by J. vulgaris:  

“Mr. G. Cliff brought to this office on Friday morning specimens of a weed found 
growing on his place near Upjohn’s Bridge.  The plant was identified by Mr F. 
P.Corkill as the ragwort, or golden cushag of the Isle of Man, where it grows freely and 
is not regarded as a pest. Some two years ago Mr. Corkill wrote to this paper warning 
settlers, however, against the plant, which he had seen on land near Inglewood.  For 
although not objectionable in the Isle of Man, he foresaw that it would not be a 
desirable plant to get into this country.” (Anonymous, 1899, p. 2)  
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About a decade later, Taranaki was in the midst of a N. annulata population boom.  

Eventually locals began arriving at the realization that the increase in J. vulgaris in the 

landscape was the root cause of the increase in moth abundance: 

“There has been a veritable plague of moths in Hawera during the past month… A well-
known Ngaere settler is given as the Stratford Post’s authority for stating that a species 
of black moth specially chooses ragwort plants as a depository for its eggs, and that 
when the caterpillars emerge therefrom they practically destroy the plant of this 
noxious weed, upon which they feed.  These caterpillars are further said to be unusually 
numerous in the district this year.” (Anonymous, 1910, p. 4)  

 
Just a couple years earlier, the naturalist James Drummond (1908) wrote a column entitled 

“Bird and Insect Notes” in the Wellington daily newspaper, Evening Post.  In his column he 

made reference to this precise phenomenon:  

“The magpie moth, whose scientific name is Nyctemera annulata, is a pretty diurnal 
moth. One of its most interesting features is the fact that it is a striking illustration of 
the manner in which some introduced plants help to bring about an increase in the 
numbers of some species of native insects. The accidental introduction of the ragwort 
(Senecio jacobaea) brought loss to farmers in Southland, but it also provided an 
additional and natural food for the larvae of the magpie moth, which has increased 
prodigiously every year. In Southland, where the ragwort grows in large masses over 
areas of country, the caterpillars may be seen in their tens of thousands feeding on the 
luxuriant plants. As a traveller walks through the forests of yellow flowers, the moths 
rise around him in great numbers, and pass from flower to flower.” (Drummond, 1908, 
p. 13) 

Around the same time, the prolific entomologist Thompson (1909) made his earliest written 

acknowledgement that increasing N. annulata numbers seemed to be caused by J. vulgaris 

invasion and spread: 

“Of late years there has been a very remarkable increase in the abundance of these 
insects, especially in the southern end of this island, and this is apparently due to the 
great abundance of ragwort (Senecio jacobaea) which has become such a serious pest 
in the south.  Armies of the caterpillar are sometimes met with during the month of 
November, followed later by myriads of moths.” (Thomson, 1909, p. 7) 

Bathgate (1922) also indicates that there were unusually high densities of N. annulata in areas 

of Southland where J. vulgaris was abundant. 

“... if I may judge from what I saw in the neighbourhood of Lumsden a few years ago, 
where these moths were very abundant and the larvae were also numerous, feeding on 
the ragwort, which evidently afforded a suitable food supply and this resulted in these 
moths being present in far greater numbers than I had ever seen elsewhere.”(Bathgate, 
1922, p. 275) 

Thompson (1922) echoed this observation. 

“The common magpie-moth (Nyctemera annulata) has certainly become extremely 
abundant wherever the introduced ragwort (Senecio jacobaea) has become a common 
pest… Wherever ragwort has spread and become an abundant weed the Nyctemera has 
also increased enormously, and may be seen rising in vast swarms from plants during 
the adult moth stage.” (Thompson, 1922, p. 512) 
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In his reminiscence on the previous 40 years, Thompson (1922) also included an account of a 

how invasion of the Waikato area of the North Island by J. vulgaris (almost 40 years after he 

watched it occur in Otago) coincided with  a surge in N. annulata numbers: 

“In June 1913 ragwort was reported as common on the Volcanic Plateau, an area of 
5,000 acres lying to the south of Mangatautari and west of the Waikato River, and 
coincidently with its spread has been an enormous increase in Nyctemera annulata.” 
(Thompson, 1922, p. 434) 

However, as Thompson (1922) noted some time later, the impact of magpie moth on J. 

vulgaris was not significant enough to curb its spread and abundance: 

 “The larva is hairy and distasteful to birds, and there is apparently nothing to check its 
increase, but it is quite unable to cope with the vast increase of the weed.” (Thompson, 
1922, p. 434) 

As is the case with population explosions, the dramatic increase in weed and moth 

populations was eventually followed by a similarly striking drop in these two species.  Back 

in Otago – at about the same time Thompson (1922) recorded the weed and moth increase in 

the Waikato – Philpot (1916) recorded what he saw as a distinct drop in N. annulata 

abundance.  He indicated that he believed the reason fewer moths were around was because of 

decreased J. vulgaris biomass in the landscape as a result of regional control measures: 

“[N. annulata] is now less common than formerly, owing to the destruction of much of 
the food-plant (Senecio jacobaea) of the larva.”(Philpot, 1916, p. 196) 

A few years later in a reflective paper, Bathgate (1922) recalled witnessing the same thing in 

the area of Dunedin, although he indicated that J. vulgaris was maintaining high population 

densities in other areas of the South Island:  

“The moth with black wings spotted with white (Nyctemera annulata) was much more 
commonly to be seen in the neighbourhood of Dunedin than is the case at the present 
day, which is probably due to the extermination by cultivation of the food plant of the 
larvae. While this may be the case in this locality, it is very different in the situation 
where the introduced weed ragwort (Senecio jacobaea) abounds…”(Bathgate, 1922, p. 
275) 
 

2.5 Discussion 

After examining known collections of N. annulata and J. vulgaris it became apparent that 

there are not enough specimens with detailed records of host associations or abundances to 

quantitatively make these connections, although these two species are clearly associated in the 

minds of most naturalists in New Zealand based on many independent anecdotal observations.  

Similarly, after inquiring about survey data that document these patterns I was unable to find 

any which could be used to quantify these patterns.  It was therefore necessary to rely on these 

anecdotal accounts. 
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Without exception, these early records that include both moth and host species suggest that 

the invasion of J. vulgaris in New Zealand greatly increased the abundance of magpie moth in 

J. vulgaris-infested areas.  While the scale at which these observations are made is crude and 

lacks numbers with which to compare the state of things today, several of the authors make a 

link between the high densities of J. vulgaris and the explosion in magpie moth numbers.  For 

instance, Drummond (1908) suggests that the J. vulgaris invasion is the reason for the 

population explosion of N. annulata and describes larvae in the “tens of thousands”, 

presumably at one site.  In comparison, I undertook a landscape survey in 2008 and 2009 of 

four J. vulgaris-infested valleys and a few dozen other road-side sites over several months and 

was unable to find anywhere near this many larvae altogether.  In reference to the abundance 

of adult moths in J. vulgaris-infested locations, Drummond (1908) writes how they “rise… in 

great numbers”, while Thompson (1922) describes them as “almost in clouds” and “vast 

swarms”.  All naturalists that I have spoken to concur, these observations indicate numbers 

unlike N. annulata abundances that are typically seen today. 

Another theme in the later accounts of Bathgate (1922) and Philpot (1916) is that N. annulata 

populations experienced a decline following the implementation of J. vulgaris control 

measures.  After the strict enforcement of laws that started in earnest in 1908 and aimed at 

curtailing J. vulgaris, it is likely that abundances of the weed began to decline.  Given the 

association between the plant and moth and the generally low biomass of Senecio species in 

most agricultural landscapes, it is presumed that N. annulata populations also suffered a 

decline in the aftermath of aggressive weed eradication programmes.  An informal survey of 

senior entomologists also reinforces the conclusion that N. annulata appears to be much less 

common than it was closer to the peak of J. vulgaris invasion.   

Since 1970, there have been a few studies that have examined this relationship as it exists 

today (Benn, et al., 1978; Singh & Mabbett, 1976; J. J. Sullivan, et al., 2008; D. R. 

Woodward, 1984).  In the most recent published survey, Sullivan et al. (2008) determined that 

N. annulata was found feeding on J. vulgaris significantly more often than on the other 

species they sampled, including native Senecio hosts.  Observations from this study 

corroborate other accounts that larvae laid or reared on J. vulgaris that can still make use of 

native host plants (and vice versa) (Benn, et al., 1978; B. Patrick, 1994; Singh & Mabbett, 

1976; D. R. Woodward, 1984).  Previous and current research also indicates that feeding by 

larvae causes differential impacts on the alternate hosts (Helson 1974, Patrick 1994, Chapter 

3).  All of these factors suggest some interesting possible dynamics in the New Zealand 

Senecio food web.   
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The descriptions of the abundances of N. annulata during the peak of J. vulgaris infestation 

have some obvious implications for native Senecio populations adjacent to weed-infested 

areas.  Based on my own observations, as well as those of Buller (1881) and Patrick (1994), 

N. annulata larvae have a propensity to move from areas of high larval density and disturbed 

or mostly-consumed plants in search of alternative food sources.  Native Senecio near areas of 

high N. annulata density are more likely to experience the effects of spillover from migrating 

larvae and host-searching adults.  If native species are more sensitive to N. annulata herbivory 

than is J. vulgaris (which is known for its high tolerance to herbivory) and/or are less fecund 

than the invader, the impacts to their fitness (particularly relative to J. vulgaris) would be 

significant.  There is a strong likelihood in this scenario that the presence of J. vulgaris near 

native Senecio populations will have resulted in intensified negative pressure and possible 

population declines for native Senecio as a result of weed-induced increases of their shared 

insect herbivore.   

The taxa affected by a significant increase in N. annulata abundance may also extend beyond 

native host plants to other native Lepidoptera.  When N. annulata numbers increased 

abundance of its parasitoids probably did too.  The buildup of this parasitoid guild may have 

very well resulted in a different spillover onto native species – this time onto native moths.  

Although a comprehensive list of native parasitoids shared between N. annulata and other 

native species is lacking, at least one native parasitoid (Pales nyctemeriana) is known to 

attack N. annulata and other native Lepidoptera (including Tmetolophota purdii and Wiseana 

cervinata) (Thompson, 1922).  Two other parasitoids, one native (Pales casta) and one exotic 

(Echthromorpha intricatoria), likely use native moths as hosts and have been present in New 

Zealand since at least the early 20th century, when J. vulgaris and N. annulata were still in 

great abundance (Paynter et al., 2010).  Although I do not have quantitative evidence for this 

trophic cascade in the New Zealand lepidopteran food web, it is certainly plausible. 

The example of host-range expansion by N. annulata to include J. vulgaris and other non-

native Senecio species can be viewed from the context of a “worst-case scenario” for a 

biological control programme.  While N. annulata is native to New Zealand, the phenomenon 

of its rise in abundance following the invasion of J. vulgaris mirrors other examples where a 

biological control agent that was released proved to be less-than-effective but had 

demonstrably negative impacts on a native food web and species in it (e.g. Carvalheiro, et al., 

2008; Clement, Smith, Prena, Kleene, & Johnson, 2009; Koch, 2003; Louda, et al., 2003; 

Messing & Wang, 2009; Ortega, et al., 2004; D. E. Pearson & Callaway, 2003; Simberloff & 

Stiling, 1996; Snyder, Clevenger, & Eigenbrode, 2004).  In this respect, N. annulata was 
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relatively ineffective at impacting J. vulgaris abundance which spread despite the fact that it 

was already abundant and established throughout the country.  Although ineffective against 

the “target weed” (J. vulgaris), the invasiveness of this host precipitated a boon in N. annulata 

numbers that is likely to have had a suppression effect on native Senecio via spillover and on 

native Lepidoptera via shared parasitoid spillover.  In real biological control programmes 

these events are analogous to unwanted non-target effects.  In actuality, these events represent 

damage inflicted by unattended weed invasions.  This is likely a much more common scenario 

than non-target effects of biological control given that the great majority of weeds are not 

biologically controlled and that modern biocontrol programmes undergo extensive pre-release 

host testing.  This is despite weed-mediated indirect effects receiving little attention in 

scientific literature relative to vocal concerns about some biological control agents. 

The impact of invasive plants on native insect herbivores and the resulting impacts on native 

plants by changes in native herbivore abundance and/or distribution should be considered in 

decisions regarding biological control of invasive weeds.  Currently it is the direct impacts of 

invasive species, like competition with or predation on natives and modification of habitat, 

which are usually (sometimes only) considered as reasons for action on their control by 

introduced insects.  The example involving J. vulgaris, native Senecio and N. annulata 

demonstrates that there should be other aspects of an invader’s presence that are considered.  

Even if an invasive and a native species do not occupy the same habitat type or use the same 

host (and therefore do not directly compete), the native may still be at risk from spillover of 

native or naturalised consumers that use both species.  In terms of the present study system, 

this means that impact of increased numbers of N. annulata on native Senecio species (some 

of which have become locally rare or extirpated (de Lange et al., 2009), perhaps not 

coincidentally) should be considered in decisions to control J. vulgaris. 

These raise some important research questions.  For instance, what are the preferences of 

magpie moth for native Senecio species that co-occur with J. vulgaris?  Also, what impacts do 

standardized levels of herbivory have on J. vulgaris and co-occurring native Senecio species 

(is J. vulgaris as unusually tolerant of damage as literature from its home range suggests)?  

Finally, is there any evidence for geographic changes in distribution for native species 

populations as a result of J. vulgaris invasion?  In the chapters that follow seek to answer 

some of these questions. 
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     Chapter 3 
Spatial and Temporal Associations Between Native New 
Zealand Senecio and a Closely-Related Invasive Weed 

3.1 Introduction 

Jacobaea vulgaris2

The genus Senecio is still one of the largest in the world and, despite a succession of genera-

splitting events, contains about 1,500 species worldwide.  Currently there are 36 species of 

Senecio recognized as native or naturalised in New Zealand (Webb, et al., 1988).  Like other 

taxa in New Zealand, the genus Senecio exhibits a high level of species endemism with 13 of 

the 19 native species (roughly 2/3) being endemic (see Table 1.1 in Chapter 1).  Since the 

arrival of European settlers around 1769, 17 species of exotic Senecio (including J. vulgaris) 

have naturalised.  In New Zealand there are also native and endemic herbivorous insects that 

use both native and exotic species Senecio and J. vulgaris as host plants (J. J. Sullivan, et al., 

2008 and Chapter 2). 

 is a widespread weed and well researched from the standpoints of its 

natural history, its agricultural impacts and its biological control (Amor, et al., 1983; 

Anonymous, 1904; Bird, 1977; Cameron, 1935; Crawley & Gillman, 1989; Gourlay, Fowler, 

& Rattray, 2008; Harman & Syrett, 1989; Helson, 1974; Kunin, 1999; McEvoy, et al., 1993; 

Mitich, 1995; Poole & Cairns, 1940; Radcliffe, 1969; Schmidl, 1972a, 1972b; Stables, 1983; 

Sutherland, Betteridge, Fordham, Stafford, & Costall, 2000; Wardle, 1987; Wardle, et al., 

1995).  Despite this, surprisingly little is known about its impacts on native species through 

competition and shared food webs.  In New Zealand, there is some anecdotal evidence that J. 

vulgaris invasion increased the abundance of endemic, genus-specialist native herbivores (J. 

J. Sullivan, et al., 2008 , Chapter 2 and references therein).  The resulting change in food web 

interactions may have had a significant suppression effect on endemic Senecio species 

although this possibility has been unexplored until now.  If native Senecio species have been 

suppressed near J. vulgaris populations, it is plausible that this will be detectable in New 

Zealand’s herbarium and vegetation plot records for these species.  In this chapter I report 

results from spatial analyses of J. vulgaris and native Senecio distributions using data from 

herbarium collections and vegetation survey records. 

                                                 
2 Formerly Senecio jacobaea. 
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For the most part, native New Zealand Senecio species are herbaceous and tend to be found in 

ruderal and disturbed habitats such as roadsides, pasture margins, walking tracks, riparian 

zones and landslips.  These are also many of the same habitats where J. vulgaris is present.  

That being the case, and with the exception of grazed pastures where J. vulgaris is dominant 

(Chapter 5), there is clearly potential for some direct competition between J. vulgaris and the 

native Senecio species in such habitats.  Likewise, indirect interactions between species are 

increasingly considered important in structuring communities and can strongly influence the 

abundances and distributions of species in them (Chapters 1 and 5 and references therein). 

As detailed in Chapter 1, the influence of novel interactions between invaders and the species 

in native food webs can affect flow-on effects and food web stability (Bourgeois, et al., 2005; 

E. Grosholz, 2002; E. D. Grosholz, 2005; Janssen, Pallini, Venzon, & Sabelis, 1998; 

O'Gorman & Emmerson, 2009; Ortega, et al., 2004; D. E. Pearson & Callaway, 2003; 

Simberloff & Von Holle, 1999; Simon, et al., 2004; Styrsky & Eubanks, 2007; G. Woodward 

& Hildrew, 2001; Zedler & Kercher, 2004).  Ecological fitting between previously-allopatric 

species plays a large role in how an invading species interacts with a food web’s members 

(Agosta, 2006; Daniel R. Brooks, León-Règagnon, McLennan, & Zelmer, 2006; Dostál & 

Palečková, 2010; Janzen, 1985; Morales & Traveset, 2009; Dov F. Sax et al., 2007; Zamora, 

2000).  Like the native New Zealand Senecio species, the tissues of J. vulgaris contain 

defensive compounds, predominantly pyrrolizidine alkaloids ( henceforth referred to as PAs) 

(Benn, et al., 1978; Bicchi, Rubiolo, Frattini, Sandra, & David, 1991; Bohlmann et al., 1986; 

Mattocks, 1972; McLean, 1970; Pieter B. Pelser et al., 2005; P. B. Pelser, Nordenstam, B., 

Kadereit, J.W. & Watson, L.E. (2007)  56 (4): 1077–1104., 2007; Schoental, 1968).  PAs 

have been shown to be toxic to other life forms, including animals, plants and microbial 

organisms (Ahmed & Wardle, 1994; Joosten, Mulder, Klinkhamer, & van Veen, 2009; 

Kowalchuk, Hol, & van Veen, 2006; Macel, Vrieling, & Klinkhamer, 2004; McLean, 1970; 

Schoental, 1968).   

However, some groups have developed tolerance to PAs, as well as biological mechanisms to 

deal with them or adaptations to use them beneficially.  This is true for some native New 

Zealand insect species that have coevolved with native Senecio to successfully deal with PAs 

and use these species as foodplants (e.g. Helson, 1974; J. J. Sullivan, et al., 2008).  

Interestingly, after the arrival of J. vulgaris in New Zealand, at least three native Senecio-

specialist insects expanded their host range to effectively use J. vulgaris as a novel host, 

presumably due to the plasticity of the adaptations they possessed from feeding on native 

Senecio hosts.  Sullivan et al. (2008) presented data on these species and their relationships 
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between exotic Senecio.  The native insects Patagonoides farnaria, Sphenella fascigera 

(previously Tephritis fascigera) and Nyctemera annulata all use exotic species as hosts, 

including J. vulgaris.   

Like Sullivan et al. (2008) found in Auckland, I found N. annulata to be the most common 

folivore on J. vulgaris and Senecio in the field sites I visited across the South Island and I also 

detected a trend of high J. vulgaris use by this endemic moth compared to other available host 

species (Chapter 5).  There are several anecdotal accounts that describe the host preference for 

N. annulata and its performance on and preference for J. vulgaris and non-native Senecio 

species relative to natives (Chapters 2 and 4).  However I have located only one quantitative 

study examining N. annulata-host interactions, although J. vulgaris was not included in the 

majority of the tests (D. R. Woodward, 1984).  I am unaware of any other studies examining 

the impact of the flow-on effects of this large-scale, sustained herbivore outbreak on the New 

Zealand Senecio food web.  As described in Chapter 2, the invasion of New Zealand by J. 

vulgaris was associated with a dramatic increase in populations of N. annulata that followed 

and herbivore spillover onto native Senecio are a distinct possibility.   

The invasive S. jacobaea possesses a high tolerance of herbivory (Cameron, 1935; Islam & 

Crawley, 1983; Kunin, 1999; McEvoy, et al., 1993; Poole & Cairns, 1940; Schmidl, 1972a, 

1972b; E. van der Meijden, De Boer, & van der Veen-van Wijk, 2000; E.  van der Meijden & 

van der Waals-kooi, 1979; Wardle, 1987; Wardle, et al., 1995).  Tolerance to herbivory by J. 

vulgaris appears greater than do tolerance levels by the native Senecio species I assayed 

(personal observation).  So it is not unlikely that a combination of near-equitable use of 

available hosts by N. annulata, lower tolerance to herbivory by the native Senecio species 

relative to J. vulgaris, and a rise in herbivore numbers that is well above historic levels should 

have resulted in a negative impact on native Senecio species at multiple spatial scales. 

As discussed in Chapter 1, one of the pieces of evidence sought in this thesis is of population-

level changes to native species.  In this chapter I examine herbarium and vegetation survey 

records for evidence of these impacts.  By comparing the date and location of J. vulgaris 

records with those for native Senecio species, I expected to find a fine-scale spatial 

segregation between the two species that correlates with the spread of the former.  One of the 

limitations of the resolution of the data I used in this approach is that it may be difficult to 

distinguish evidence for apparent competition from direct competition or the effect of habitat 

differences and changes.  It may turn out that elucidation as to which of these factors are 

responsible could be accomplished with further analysis and incorporation of additional data – 

something which is now occurring, but was beyond the scope of this study.  Nevertheless, if 
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any of these factors are at work they would likely appear as repulsion between J. vulgaris and 

native species at fine spatial scales (less than a few kms) while co-occurring at landscape 

scales (greater than a few kms).   

The set of questions I attempt to answer in this section focus on the temporospatial 

relationships and changes in native Senecio records in relation to J. vulgaris presence and 

spread.  In order to reveal historic patterns, I will perform this analysis using data from known 

and accessible herbarium records and plot data to answer six main questions: 

1.)  What is the extent to which J. vulgaris and native Senecio share the same habitats 

and what is the potential for direct competition and food web sharing? 

2.)  Are the records for endemic Senecio wairauensis, S. dunedinensis and S. 

rufiglandulosus collected farther away from records for J. vulgaris than would be 

expected by chance? 

3.)  Are the records for S. minimus and S. quadridentatus, non-endemic natives, 

collected farther away from records for J. vulgaris than would be expected by 

chance?  

4.)  Is there evidence of a decline in S. wairauensis, S. dunedinensis and S. 

rufiglandulosus collections in the most lowland areas (< 500 m)? 

5.)  Are the distributions of S. wairauensis, S. dunedinensis and S. rufiglandulosus 

along an elevational gradient affected by J. vulgaris presence? 

6.)  Are these records for S. wairauensis, S. dunedinensis and S. rufiglandulosus in the 

lowland areas disproportionately farther from records for J. vulgaris than would 

be expected by chance in just the lowland areas (< 500 m)? 

 
The data used in this survey came from a variety of herbaria and vegetation surveys that 

included J. vulgaris and Senecio records.  A complete list of sources and query criteria is 

provided in Appendix A. 

3.2 Methods 

Collection data for J. vulgaris, two non-endemic native (S. minimus, S. quadridentatus) and 

three endemic (S. wairauensis, S. dunedinensis, S. rufiglandulosus) congeners were 

assembled from various sources within New Zealand.  Host records for the South Island were 

compiled from herbaria including the Allan Herbarium (CHR), the Lincoln University 

Herbarium (LINC), the Auckland Herbarium (AKL), the National Forestry Herbarium 

(NZFRI), the Dame Ella Campbell Herbarium (MPN), the Museum of New Zealand 
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Herbarium (WELT), The University of Waikato Herbarium (WAIK) and the British Museum 

in London (BM).  Added to this are occurrence data from the Department of   
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Conservation’s BioWEB database, a New Zealand Senecio database maintained by Jon 

Sullivan (Lincoln University), as well as both public (NVS(p)) and special request records 

(NVS(s)) from the National Vegetation Survey database that were made available to us (Table 

3.1). 

Records for each species encounter were used only if they had both date and location data.  

Specimens with location data of poor resolution (e.g. location given as a map sheet with no 

coordinates) were also rejected.  Analyses were carried out using New Zealand Map Grid 

(NZMG) projection coordinates given that most of the data supplied used were in this 

projection format.  Location data in the herbarium or vegetation survey that were not supplied 

with NZMG coordinates were converted using the Land Information New Zealand Online 

Conversions webpage (LINZ, 2010).  For points that were supplied without an elevation, 

elevation was determined using ArcGIS (Environmental Systems Research Institute, 2009) 

and a layer with New Zealand elevation data (Barringer, McNeill, & Pairman, 2002). 

Some records were not supplied with specific dates.  For vegetation surveys, which all were 

listed with the year(s) that the survey was carried out, the dates used in the analysis were 

recorded as January 1st of the latest year of the survey.  For example, samples from plots in 

the survey labelled “AORANGI FOREST PARK FOREST 1983-1984” were labelled as 

January 1, 1984 for the analysis.  For herbarium records without a date but with a known 

collector, a date was derived from the latest estimated time that the collector likely made 

collections (Table 3.2) (Gatehouse, 2008). 

All analyses were performed in using R statistical software (R Development Core Team 

2010).  The first analysis was carried out using the statistical package “ads” for spatial point 

patters analysis (Pelissier & Goreaud, 2010).  This package performs first- and second-order 

multi-scale analyses derived from Ripley's K-function, for univariate, multivariate and 

marked mapped data in rectangular, circular or irregular shaped sampling windows, with test 

of statistical significance based on Monte Carlo simulations.  Ripley's K-function analyses a 

set of points by class (species) and determines if points of feature classes are clustered (closer 

together than would be expected at random) or dispersed (further away from one another than 

would be expected at random) and displays this relationship graphically.  This relationship is 

compared at different distances from closest selected distance (starting point) outwards in 

discrete intervals (distance increment).  The robustness of a Ripley’s-K analysis is determined 

by the number of points in each feature class (individual species records), as well as the 

repeated random sampling (permutations) of class points within the study area.  The number 
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Table 3.1 - Counts of records used for the six species surveyed from listed herbarium and vegetation survey data sources.  
Source abbreviations: Allan Herbarium (CHR), the Auckland Herbarium (AKL), the National Forestry Herbarium (NZFRI), 
the Dame Ella Campbell Herbarium (MPN) and the Museum of New Zealand Herbarium (WELT).  Added to this are 
occurrence data from the Department of Conservation’s BioWEB database (BWEB), a New Zealand Senecio database 
maintained by Dr. Jon Sullivan (JJS), as well as both public and restricted access records from the National Vegetation Survey 
(NVS). 

 
Source 

Species 

AKL 

 

BWEB 

 

CHR 

 

JJS 

 

MPN 

 

NVS 

 

NZFRI 

 

WELT 

 Total 

Jacobaea vulgaris 1 336 35 5 2 481 0 1 861 

Senecio dunedinensis 3 83 26 0 0 24 0 2 138 

S. minimus 9 0 13 3 0 269 2 2 298 

S. quadridentatus 11 0 19 0 0 102 4 5 141 

S. rufiglandulosus 3 1 7 0 0 0 1 3 15 

S. wairauensis 40 0 34 10 0 432 3 5 524 

TOTAL 67 420 134 18 2 1308 10 18 1977 
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Table 3.2 - Herbarium specimen collectors and the latest possible date of 
their collections, which are applied to attributed but undated specimens 
used in the spatial analysis in this chapter.  Modified from Gatehouse 
(2008). 
 

 
Collector Date used 

T. W. Kirk January 1, 1935 

T. F. Cheeseman January 1, 1922 

E. P. Turner January 1, 1931 

W. Townson January 1, 1920 

D. Petrie January 1, 1920 
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of permutations loosely translates to the level of confidence (e.g. 9 for 90%, 99 for 99%, and 

999 for 99.9%).   

Boundary correction for the area analysed (South Island) was accomplished by using the 

Study Area Method to generate an absolute boundary (rectangular box encompassing all of 

the South Island) and exclusion of remaining non-terrestrial areas with individual, triangle-

shaped bounding boxes – in order to prevent the underlying areas from being incorporated 

into the analysis.  When the observed K value is larger than the expected K value for a 

particular distance, the distribution is more clustered than a random distribution at that 

distance (scale of analysis). The output of a Ripley’s-K analysis provides an anticipated result 

(theoretical K) along with confidence bands or confidence intervals (CI), as well as the 

calculated result from the data provided (observed K).  When the observed K value is smaller 

than the theoretical K, the distribution is more dispersed than a random distribution at a given 

distance from the starting point. When the observed K value is larger than the upper CI value, 

points are more clustered than would be expected at random. When the observed K value is 

smaller than the lower CI value, points are more dispersed than would be expected at random. 

The second set of analyses compared the distributions of J. vulgaris and native Senecio 

species through 1985 with those after this year.  This year was selected as it was the average 

of the median year of the samples for all native species analysed (S. minimus = 1985, S. 

wairauensis = 1986, S. quadridentatus = 1986, S. dunedinensis = 1985 and S. rufiglandulosus 

= 1983).  The analysis was repeated for each time interval to determine if there are any 

changes in the distributions of these species and if there are any observable correlations in 

these changes between J. vulgaris and the natives.  I used t-tests to compare altitudinal 

distributions of each species earlier and later than the median year all sample dates.  While a 

superior analysis would have compared records in multiple time periods (as opposed to just 

before and after 1985), there was insufficient replication for some species and in some time 

periods that prevented subdividing samples sets.   

Another potential tool in assessing the distribution of J. vulgaris specifically is the use of 

remote sensing and satellite image analysis.  Prior to undertaking this herbarium analysis, 

some progress was made with the help of Stella Belliss at Landcare Research with the use of 

images from the Quickbird satellite.  These images captured J. vulgaris patches in flower and 

were able to determine their distribution within a 5 x 5 km window and estimate the amount 

of land they occupied.  While this approach has potential and this type of analysis would be 

helpful in estimating the current distribution of J. vulgaris and tracking its spread or 

contraction and over time, it was not feasible in terms of finances or time for this thesis (while 
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I demonstrated the feasibility of this work in principle, ground-truthing is still needed 

especially in in landscapes with other, widespread, yellow-flowering species – most notably 

gorse (Ulex europaeus) and Scotch broom (Cytisus scoparius). 

3.3 Results 

A random labelling of J. vulgaris and S. wairauensis points in the analysis found that the two 

species are significantly segregated along the entire range of spatial scales (Fig. 3.1a).  From 0 

to 10 km the two species were clustered at levels below random chance indicating that these 

two species, despite both using habitats characterised by disturbance, were not found 

disproportionately near one another in the landscape.  The same was true for J. vulgaris and S. 

minimus (Fig. 3.1c). 

However, this was not the case for J. vulgaris and S. rufiglandulosus (Fig. 3.1b), which are 

segregated at smaller spatial scales but not at scales larger than about 4.3 km.  However, if the 

sampling window is reduced to the smallest size rectangle possible that still incorporates the 

area where S. rufiglandulosus is located, then a segregation trend becomes stronger at larger 

scales too. 

In terms of elevation, the collections for each species oscillated through time (Figure 3.2) with 

some measurable trends.  The invasive J. vulgaris was the species that was the most well-

represented at lower elevations (Figure 3.3).  With the exception of the range between 0 to 50 

m, J. vulgaris records were collected more often than all other species in the analysis and had 

more records in each 50 m increment of elevation between 0 and 500 meters than all other 

species combined in the analysis.  Only S. minimus had more records from the 0 to 50 m 

range than J. vulgaris.  Both J. vulgaris and S. minimus had the highest number of records at 

low elevations with records decreasing with increasing elevation.  Records of the native S. 

quadridentatus exhibited bimodal distribution with a large number of specimens collected at 0 

to 50m and then another spike in records between 350 and 400 m.  The endemic S. 

rufiglandulosus had a few records that were distributed more-or-less evenly below 1200 m. 

Senecio rufiglandulosus was the least encountered species of all and exhibited an irregular 

distribution on the South Island.  One other endemic, S. dunedinensis, demonstrated a normal, 

unimodal distribution with the number of records that peaked between and 850 to 900 m.  The 

last species and endemic, S. wairauensis, peaked between 700 to 750 m, although it did have 

a smaller peak in the number of records collected between 0 and 50 m. 
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Figure 3.1 - The level of herbarium and vegetation survey clustering between 
Jacobaea vulgaris and three native Senecio species (S. wairauensis, S. rufiglandulosus 
and S. minimus) at differing spatial scales from 0 to 10,000 meters using Ripley’s K 
Function.  The solid black line indicates the observed level of clustering, the red 
dashed line indicates the theoretical level of clustering by chance and the green 
dashed lines indicate the 99% confidence intervals. 
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Figure 3.2 - Collections of an invasive weed (Jacobaea vulgaris) and two native herbs (Senecio minimus and S. quadridentatus) and three endemic 
herbs (S. dunedinensis, S. rufiglandulosus and S. wairauensis) in New Zealand. The horizontal axis indicates the year collected and the vertical 
axis is the elevation (m) of the samples recorded.  The dashed red line indicates a running mean of elevation through time.
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Figure 3.3 - Distributions by elevation of herbarium and vegetation survey records for Jacobaea 
vulgaris and five native Senecio species in New Zealand collected between 1874 and 2009.  The 
horizontal axis indicates elevation in 50 m intervals and the vertical axis is the number of 
samples recorded. 
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Figure 3.4 - Distributions by elevation of herbarium and vegetation survey records for an invasive 
weed (Jacobaea vulgaris) and the endemic herb (S. wairauensis) in New Zealand. Comparison is of 
records collected up to 1986 versus records collected from 1986 onwards.  The horizontal axis 
indicates elevation in 50 m intervals and the vertical axis is the total number of collections from 
that period. 
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There was an interesting trend noted when comparing the records for J. vulgaris and S. 

wairauensis collected before 1986 with records collected from 1986 onwards.  This year is 

significant in that it is the median collection year.  In general, it appears that the relative 

altitude for the years preceding 1986 increased for both species.  However, the lack of 

uniform collecting methods and standards makes it difficult to draw any conclusions as to 

why. 

At this point it must be noted that the earliest collections of all native New Zealand Senecio 

species are from around the same time or since J. vulgaris was first conclusively recorded in 

New Zealand (1874).  This means that much of any change that likely resulted from apparent 

competition occurred prior to the collection of the vast majority of these records (Figure 3.5).  

For instance, only 33 (less than 2%) of the 1,977 Senecio records used for this analysis were 

collected before 1940.  On the other hand and while this is a small sample on which to base 

generalizations, of these 33 records the majority of them (19) are records for S. wairauensis 

and 7 of which (36.8%) are below 500 m.  Comparatively, of the other 491 encounters for S. 

wairauensis that were recorded from 1940 on, only 50 (10%) were recorded below 500 m. 

3.4 Discussion 

Despite the fact that Senecio species all use disturbed, ruderal habitats, the records from 

herbaria and vegetation surveys for the invasive J. vulgaris did not demonstrate any level of 

clustering with the endemic S. wairauensis or the native S. minimus.  Even at distances up to 

10 km, the two native species were rarely encountered near the invasive J. vulgaris.  

However, I have also observed this and the other native and endemic Senecio species growing 

in close proximity or intermixed with J. vulgaris at several Westland locations (Chapter 5) 

suggesting that the lack of overlap at fine spatial scales in my analysis may be an artefact of 

collection bias.  The pattern of clustered between J. vulgaris and S. rufiglandulosus at local 

scales, but not at distances of more than about 4 km, may be indicative of the few locations on 

the South Island at which this endemic is found.  In fact, I have only been able to locate three 

populations of this species on the South Island – all of them on roadsides where J. vulgaris is 

present.  Sullivan et al. (2008) notes that this species has become more rare over time on the 

North Island lending more support to the idea that the geographic range of this species is 

contracting. 

Whether these patterns are correlative, causal or an artefact of collection bias is unclear.  

These results are consistent with apparent competition between these species, although they 

could likewise be driven by other factors such as direct competition with other plants and land 

use changes.  For instance, J. vulgaris is associated with livestock grazing  
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Figure 3.5 - Number of all herbarium and vegetation survey records used in the accompanying 
analysis collected by decade, including an invasive weed (Jacobaea vulgaris), two native herbs 
(Senecio minimus and S. quadridentatus) and three endemic herbs (S. dunedinensis, S. 
rufiglandulosus and S. wairauensis) in New Zealand. The horizontal axis indicates decade 
collected and the vertical axis is the number of records used. 



` 

 46 

(Hanley, Fenner, & Edwards, 1995; Kunin, 1999; Lozon, 1997; McEvoy, et al., 1993; Myers 

& Post, 1981; Poole & Cairns, 1940; Schmidl, 1972a; Sutherland, et al., 2000; Wardle, 1987), 

while native Senecio species may be readily eaten by stock.  If this is the case, the clustering 

of J. vulgaris with native Senecio would be low at small spatial scales in these areas. 

Another issue is that the overall sampling method for these data is not systematic and the data 

resolution is poor.  For example, half of the records used were collected below the median 

elevation of 480 m with most of these collected from between 0 and 50 m (Figure 3.5).  

Likewise half of the records were collected in the last 24 years (since 1986) (Figure 3.6).  

Each data source also appears to have its own distinct geographic distribution patterns and 

some areas are well represented and while others are not (Figure 3.7).  If these data sets are 

broken up into native status, the distribution of the groups indicates that endemics are 

generally found away from population centres, native Senecio are found in highly-visited yet 

protected areas, and invasive J. vulgaris is found everywhere else (Figure 3.8).   

The individual species included in this analysis have distribution patterns that fit into my own 

field observations; however the collections within a species geographic range are not as 

uniform as I would have hoped.  For instance, S. minimus is both widely-distributed and 

common across the South Island (personal observation, Jon Sullivan personal 

communication), but the map of collection points for this species would indicate that it is less 

commonly encountered than S. wairauensis and is largely found along the West Coast 

Highway near Haast (Figure 3.9). 

Perhaps a good way to increase resolution is by incorporating absence data into the analysis.  

The National Vegetation Survey (NVS) database system records both presence and absence 

data within their plots.  However, for the present set of data there were issues with regards to 

accurately identifying absence data – since different surveys were undertaken to varying 

taxonomic details (Hazel Broadbent, personal communication).  Subsequent work on these 

analyses should focus on the NVS data which would ensure that there is a certain level of 

systematic sampling and more evenness in sampling effort.  Additionally use of NVS data 

would allow incorporation of absence data which would further increase the resolution and 

robustness of observed trends. 
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Figure 3.6 – Distribution by elevation of all Senecio records used for this survey, 
including an invasive weed (Jacobaea vulgaris), two native herbs (Senecio minimus and S. 
quadridentatus) and three endemic herbs (S. dunedinensis, S. rufiglandulosus and S. 
wairauensis) in New Zealand. The horizontal axis indicates elevation in 50 m intervals 
and the vertical axis is the number of records used. 
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Figure 3.7 – Geographic distribution of six Nyctemera annulata host plant species records 
used for this analysis (Jacobaea vulgaris, Senecio minimus, S. quadridentatus, S. 
dunedinensis, S. rufiglandulosus and S. wairauensis) on the South Island of New Zealand 
and labelled by record source. The black dots are records from the Department of 
Conservation BioWEB database (BWEB), the grey dots are National Vegetation Survey 
(NVS) data, the blue open circles are records from the University of Auckland Herbarium 
(AK) and the red triangles are records from the Allen Herbarium (CHR).  
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Figure 3.8 – Geographic distribution of six Nyctemera annulata host plant species records 
used for this analysis: the invasive (Jacobaea vulgaris (black circles)), the non-endemic 
natives (Senecio minimus and S. quadridentatus (green circles)), and the endemic host 
plants (S. dunedinensis, S. rufiglandulosus and S. wairauensis (red circles)) on the South 
Island of New Zealand and labelled by record source. The black dots are records from the 
Department of Conservation BioWEB database (BWEB), the grey dots are National 
Vegetation Survey (NVS) data, the blue open circles are records from the University of 
Auckland Herbarium (AK) and the red triangles are records from the Allen Herbarium 
(CHR).  
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Figure 3.9 – Geographic distribution of records for six Nyctemera annulata host plant 
species used for this analysis (Jacobaea vulgaris, Senecio minimus, S. quadridentatus, S. 
dunedinensis, S. rufiglandulosus and S. wairauensis) on the South Island of New Zealand.  
Data sources listed in Table 3.1.
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Another useful way to verify population level impacts on native Senecio from J. vulgaris 

presence in the native food web would have been to repeat this analysis using a control group.  

Performing the same analysis with a functionally-analogous set of endemic herb species with 

no invasive congeners would supply a model with which to compare native Senecio.  This 

control species would, theoretically, demonstrate impacts from the same pressures of direct 

competition and habitat modification, but not from the impact of shared, specialist insect 

herbivores.  If repulsion was detected from J. vulgaris on endemic Senecios – but not detected 

for the co-occurring control species – this would be a stronger indicator of apparent 

competition.  Another way to help address the motivating factors for the trends seen in these 

analyses is to carry out a systematic field survey in areas where these species exist today.  By 

surveying areas where Senecio species are present and absent and by comparing their 

distribution patterns, stronger conclusions could be drawn as a result.  So to address the 

weaknesses outlined above, I ultimately carried out a landscape survey of Senecio and co-

occuring N. annulata to determine whether apparent competition is occurring (Chapter 5). 

In examining the altitudinal trends of all species through all years, it is apparent that, in 

addition to being encountered more overall, J. vulgaris is proportionally recorded much more 

often at low elevations (< 500 m) than are the endemic Senecio species.  At the same time, 

endemics like S. wairauensis and S. dunedinensis are notably rare at these same elevations – 

especially in recent decades.  Only S. minimus has been regularly and commonly collected 

from areas below 500 m, although the number of overall encounters is fewer compared to 

those for J. vulgaris and S. wairauensis.  The other interesting trend in these distributions is 

that as J. vulgaris encounters begin to drop off at 500 to 600 m, encounters of S. wairauensis 

and S. dunedinensis begin their greatest increase in collection numbers.  Taken together, this 

pattern suggests that the presence of J. vulgaris at low elevations correlates with a dip in 

populations of S. wairauensis and S. dunedinensis.  While my analyses did not explicitly 

examine the distance between records for these same endemic species in the lowest elevations 

and their relative distance from J. vulgaris records, my own field surveys suggests that at least 

one endemic (S. wairauensis) can be common in low elevation areas where J. vulgaris is 

absent (Chapter 5). 

The significant changes in altitudinal distribution of three species, in particular, demonstrate 

that there is dynamism in this system.  While the invasive J. vulgaris shows shifts through 

expansion along the altitudinal gradient, the endemics S. wairauensis and S. dunedinensis 

demonstrate contraction, especially from the lower elevation areas of New Zealand.  Ongoing 
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analysis of this and associated data is likely to lead to more insights into the association of J. 

vulgaris with these changes.
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     Chapter 4 
Host Expansion in the New Zealand Magpie Moth, 

Nyctemera annulata 

4.1 Introduction 

The general consensus is that insect herbivores (particularly specialists) prefer their original 

host plants over novel potential hosts in their naturalised range (Bernays & Chapman, 1994; 

Fowler, Syrett, & Hill, 2000; Joshi & Vrieling, 2005; Liu & Stiling, 2006; McEvoy, 1996; 

Via, 1990; Eve M. White, Sims, & Clarke, 2008, c.f. Keane and Crawley 2002; H Zwölfer & 

Harris, 1971).  The general assumption had long been that oliophagous and monophagous 

insect consumers have evolved physiological requirements for specific phytochemicals which 

they need for growth and development and that can only be found in a narrow range of plants 

(e.g. Bernays & Chapman, 1994).  Additionally, many plants have evolved complex chemical 

compounds that make them unpalatable and toxic to insect herbivores not adapted for 

overcoming these defenses.  These requirements, in turn, inform which plants they find 

palatable.  Fidelity in host selection and feeding is one of the underpinning principles behind 

the classical biological control of plant invaders: insects selected for release are tested to 

ensure that they prefer their original host plant (target) over other plant species available to 

them (non-targets).   

An example of narrow host specificity in an insect is the alligator weed flea beetle (Agasicles 

hygrophila (Coleoptera: Chrysomelidae)) which was introduced for control of the aquatic 

weed Alternanthera philoxeroides in North America and elsewhere (reviewed in Buckingham, 

1996).  Alternanthera philoxeroides is native to South America, but invaded waterways in 

Florida beginning in the early 20th Century.  It soon became a problem in that it hindered 

navigation, blocked drains and water intake valves, severely reduced sunlight penetration in 

the water column and outcompeted native aquatic and shoreline plants.  Alligator weed flea 

beetles were collected from Argentina and introduced beginning in the mid-1960s into parts 

of the U.S. where A. philoxeroides had spread, which included the Gulf Coast states, the 

Carolinas and California.  In Florida, alligator weed flea beetle was not established until 

1977-78 and after re-importation of new genetic stock, however it rapidly set to work 

decimated A. philoxeroides across the region.  To date there are few reports of impacts on 

non-target plants in the U.S. by the alligator weed flea beetle and a manuscript that includes a 

summary of pre- and post-release testing published this year reports that this species does not 
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develop well on other species in the U.S., aside from A. philoxeroides (Lu et al., 2010).  So it 

appears that the alligator weed flea beetle needs to feed on A. philoxeroides in order to 

complete its lifecycle and that it finds few other hosts palatable.  Like other specialist insect 

herbivores, the alligator weed flea beetle is highly restricted in its diet making it ideally suited 

for the purposes of biological control. 

The literature also contains many examples of host expansions and shifts.  There are 

numerous recorded instances where native consumers have successfully fed and reproduced 

on exotic hosts that invade an area (Agosta, 2006; Alleyne & Wiedenmann, 2002; Cuda, 

Parker, Coon, Vasquez, & Harrison, 2002; Grosman, et al., 2005; Keeler & Chew, 2009; 

Newman, Borman, & Castro, 1997; Strauss, Lau, & Carroll, 2006; J. J. Sullivan, et al., 2008; 

Thomas et al., 1987; Tscheulin, Petanidou, & Settele, 2009), as well as a history of host-range 

expansion by invasive insects that make use of the plant species in a new geographical range 

(Agosta, 2006; Gassmann, et al., 2006; Korenchenko, 1980; C. M. Malmstrom, et al., 2005; 

Marchetti, 1962; Settle & Wilson, 1990; Thomas, et al., 1987; Ueno, Fujiyama, Yao, Sato, & 

Katakura, 2003; Verhoeven, et al., 2009).  Host-range expansion and host shifts rely on the 

ecological fitting between an insect herbivore and a novel host plant (Agosta, 2006; Agrawal, 

2000; Becerra & Venable, 1999; M. Deane Bowers, Stamp, & Collinge, 1992; S. M. Fraser & 

Lawton, 1994; Gassmann, et al., 2006; Peccoud et al., 2008).  Instances of host-range 

expansion in monophagous and oligophagous insect herbivores occurs most frequently with 

closely related host plants (reviewed in Futuyma & Mitter, 1997).   

Brooks and McLennan (2002) cited three key concepts regarding ecological fitting and how 

they function to mediate plant-insect associations. In brief, these concepts are that adaptations 

can be used to perform novel functions, insect herbivores track host resources (e.g. 

phytochemistry, phenology, architecture, etc.) and that these traits in hosts are evolutionarily 

conserved (although occasionally convergent) in alternate hosts.  In other words, associations 

between insect herbivores and host plants that they use are determined by the available 

genetic variation in the insect herbivore and the genetic composition of the host(s).  The 

likelihood in occurrence of host shifts and host-range expansions decreases the longer an 

insect maintains an association with a particular host(s) (discussed in Futuyma & Mitter, 

1997).  For example, melaphidine aphids discussed in Moran (1989) have complex life cycles 

and have used sumac (Rhus spp.) and mosses as hosts for millions of years.  Examination of 

the modern day host faithfulness of this group of aphids endemic to different continents that 

have roughly 40 million years of biogeographic separation (North America and Asia) reveals 

that the ancient association has severely limited the ability of the aphids to use other plants 
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hosts.  Obviously the inability to expand host range or shift hosts ties the insect herbivore’s 

fate to that of the host plant(s). 

Host shifts, like host-range expansions, require ecological fitting between insect and host 

plant.  Facilitation of a host shift also requires a fitness-enhancing component, such as enemy-

free space (J. M. Brown, et al., 1995; Gratton & Welter, 1999; Zangerl, et al., 2002) or a 

greater abundance of hosts (Agrawal, Lau, & Hamback, 2006; Menken, Boomsma, & Van 

Nieukerken, 2010; Shannon & Feeny, 2006), and results in greater use of the novel host 

(Weis, 1992).  Expanding a host range to incorporate a more widely-distributed and abundant 

host is a particularly successful strategy for insect herbivores that are able to do so.  Such as 

host-range expansion occurred with the Colorado potato beetle (Leptinotarsa decimlineata).  

This insect is native to southwestern North America and is presumed to have fed on native 

solanaceous plants in that area.  The history of this L. decimlineata is reviewed in Jacques 

(1988) and states that this beetle was first discovered in 1811 by Thomas Nuttal who collected 

it from buffalo-bur (Solanum rostratum) in the southern range of the Rocky Mountains.  It 

wasn’t until 1859 – well after the potato (S. tuberosum) was first cultivated in Europe in the 

late 16th Century and introduced to North America in the early 17th Century – that the beetle 

became one of the most widespread and destructive potato pests.  By expanding its host range 

to a crop widely cultivated on four continents, it eventually expanded its geographic range to 

become widespread throughout much of the world.  The strategy used by L.  decimlineata of 

using existing traits to exploit abundant and widespread, alternate hosts to become abundant 

and widespread itself is a successful one.  As a genus-specific monophage it was able to 

colonize a new species with which it had no prior evolutionary history, but which it was 

genetically suited to exploit.  Even within a given area, like New Zealand, if an insect 

herbivore is able to make good use of an abundant host (wither a cultivated crop or an 

invasive weed) in areas where its original host plant(s) are rare or absent, the implications for 

increased fitness of the insect are obvious. 

New Zealand is home to 19 native species of Senecio, 13 of which are endemic.  These plants 

support a community of native, specialist insect fauna that feed exclusively on Senecio and 

close relatives.  Jacobaea vulgaris (formerly Senecio jacobaea) is an herbaceous pasture 

weed that is native to Europe and has spread to several other places around the world.  It 

established in New Zealand around 1870 and has since been present in the landscape, 

particularly in disturbed landscapes characterized by livestock grazing.  Previous research 

supports the assertion that J. vulgaris has a relatively high tolerance for herbivory and that its 

abundance and distribution appears more limited by the availability of suitable, disturbed 
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habitat than by herbivores – even in its native range (McEvoy et al. 1993, Wardle 1987, 

Stables 1983, Radcliffe 1969, Poole and Cairns 1940).   

As reviewed in Chapter 2, the New Zealand magpie moth (Nyctemera annulata, Lepidoptera: 

Arctiidae) is a day-flying moth that generally uses only plants in the genus Senecio (and 

closely-related taxa, including J. vulgaris) as hosts.  Numerous lab and field observations 

confirm that it has successfully expanded its host range to feed and develop on J. vulgaris.  

Indeed, despite having an evolutionary history with the native Senecio species, it has arguably 

become more closely associated with J. vulgaris in people’s minds and quite possibly 

numerically in some modern New Zealand landscapes.  However, the quantitative aspects of 

the relationships between moth and the plants have yet to be examined. 

This research is designed to compare a few dimensions of the relationship between N. 

annulata and four New Zealand host species: J. vulgaris (exotic), S. minimus (native), S. 

quadridentatus (native) and S. wairauensis (endemic).  I used choice tests to establish host 

plant preference by larvae and no-choice tests to determine moth performance on 

monophagous diets of the four different species.  A field experiment was also conducted using 

the same species to further examine preference and performance, as well as the impact of 

magpie moth herbivory on whole plants.  My expectations were that N. annulata larvae would 

prefer feeding on native Senecio species with which they have a closer evolutionary 

relationship over the invader, J. vulgaris.  For the same reason, I expect larvae that feed on 

native Senecio will grow more and develop faster than larvae fed J. vulgaris, as is often the 

case with a host range expansion.  Given a lower expected preference for J. vulgaris, as well 

as its reputation to greater tolerance to herbivory (discussed in Chapter 2), I expected J. 

vulgaris to incur less negative impact as a result of N. annulata herbivory than the native 

Senecio species. 

4.2 Methods 

4.2.1 Magpie Moth 

All magpie moth larvae (Nyctemera annulata) used in these assays were selected at random 

from freshly hatched eggs produced by a lab colony maintained at Landcare Research in 

Lincoln, New Zealand.  The colony was started from larvae found on S. quadridentatus plants 

growing along the Summit Road on the Port Hills above Christchurch and adult moths found 

in-flight and larvae that I came across on potted Senecio plants of 3 additional species in the 

greenhouse were subsequently added to the colony in order to increase numbers and 

potentially the genetic diversity.  The larvae were placed in mesh cages (60 cm3) and kept in a 
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rearing room at Landcare Research in Lincoln under a 16L:8D photoperiod and with 

temperatures of 24°C during the light phase and 15°C during the dark phase.   

All four of the Senecio (or formerly Senecio) species being assayed (the non-native J. vulgaris 

and the natives, S. minimus, S. wairauensis and S. quadridentatus) were offered as larval food 

to the magpie moth colony in an effort to prevent a larval performance or choice bias.  Larval 

feeding on all of these species was noted each time plants were removed and added 

throughout the lifetime of the colony.  In total, 12 plants (3 of each species) were placed in a 

cage and larvae were allowed to move about freely within a cage and feed on any of the host 

plants provided.  Larvae were reared through to adulthood on this mixed diet, at which time 

they were placed in a new cage and allowed to mate and (in the case of the females) oviposit.  

Another measure taken in order to avoid host preference bias is that all larvae used in the 

assays came from ova that were freshly laid on the interior surface of the cage (as opposed to 

those laid on plants).  These ova were scraped off the cage and placed in a Petri dish that was 

lined with moist filter paper (in order to maintain humidity).  When hatching events took 

place, larvae less than 24 h in age were selected at random from the dish(es) to be used in the 

assays.  Any unused larvae were returned to the colony. 

4.2.2 Host Plants 

All of the plants used in the assays were grown from seed taken from wild plants in 

Canterbury and Westland Regions (see below for site details).  Four of the 37 species of 

Senecio established in New Zealand were selected for this experiment because they are known 

to co-occur in several areas of Te Wai Pounamou/South Island and because they all host 

magpie moth.  This selection also incorporates species that are endemic, non-endemic native 

and exotic to New Zealand. 

Seeds of J. vulgaris were taken from an area on Department of Conservation land known as 

Calf Paddock (about 2 km east of Springs Junction on Highway 7 (lat/long: -

42.350045°,172.226143°) in May 2007 and promptly potted in the Lincoln University 

Greenhouse Facility.  Seeds of S. minimus and S. wairauensis were collected from an 

overlook along HWY 6 in the Buller Gorge (lat/long: -41.784783°, 172.034163°) also in May 

2007.  Seeds of S. quadridentatus were collected along the Summit Road, Port Hills (lat/long: 

-43.590528°, 172.695131°) in December 2007.  All seeds were germinated in the Lincoln 

University greenhouses using “3-4 month potting mix” which has fertilizing agents that are 

active for 3 to 4 months (contains per 1m3: 800 litres composted bark, 200 litres pumice 1-
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4mm, Osmocote exact 16 - 3.9 - 10 (N,P,K) 3-4 month 1000g, Agricultural lime 500g, 

Hydraflo 500g (Wetting agent)).     

Once plants were approximately 10 cm in height the host plant seedlings were transferred into 

3 litre pots with fresh potting mix and placed back into a greenhouse where they were watered 

from above daily and allowed to drain freely.  Between the first round of choice and no-

choice assays and the second round, the plants became infested with aphids (Macrosiphium 

euphorbiae) and were sprayed with Key Pyrethrum™ (5 mL/L) using a hand sprayer.  Plants 

were not used in second round of assays until at least 14 days after the most recent insecticidal 

treatment and were selected at random.  Plants used in the first round of assays were 

transferred to a Landcare Research (Lincoln, Canterbury, New Zealand) rearing room where 

the tests were carried out.  The second round of assays was carried out on the Lincoln 

University campus. 

4.2.3 Laboratory and Field Cage Assays 

Each assay was conducted in an arenas constructed of a plastic Petri dish 85 mm in diameter 

and 15mm in height (Fig. 4.1).  For the initial no-choice assays, each arena was assigned one 

host species and an excess of leaf tissue was offered in a single mass (an unmeasured amount 

that was greater than could be consumed by the larva).  The subsequent choice and no-choice 

assays were carried out in the same type dish, but quadrats were created and larvae were 

offered a uniform measurement of leaf tissue by leaf area in each quadrant. 

4.2.3.1 Initial No-Choice Assays 
A series of no-choice tests were carried out to determine if development rates of magpie moth 

caterpillars differ significantly on different food plants.  A preliminary assay was conducted 

where the four species of host plant were offered in no-choice arenas.  A single leaf from one 

of the host species was placed in the arena and a newly-hatched larva was placed on the leaf.  

Ten replicates were assembled for each of the four species tested.  The arenas were placed 

together on a bench top in a rearing room at in the Landcare Research Insect Quarantine 

Building in the same room and with the same environmental conditions in which the N. 

annulata colony was maintained.  Every other day Petri dishes were opened to add fresh 

leaves and remove the accumulated frass, but otherwise the caterpillars were not removed 

except for a brief cleaning (once a fortnight, the interior of the arena was wiped clean with a 

single-use, moistened paper towel).  For all arenas, an excess of plant material was added to 

ensure a surplus of food and adequate humidity for the developing larvae and pupae. 
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Figure 4.1 - Petri dish arena used for Nyctemera 
annulata preference and performance assays and 
measuring 85mm in diameter by 15mm in height 
(shown with one leaf disc within each quadrant 
and positioned on top of moist filter paper). 
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Each time the arenas were cleaned and refreshed with new plant material, a visual scan for 

exuvae or pupal cases was conducted and the corresponding event was recorded for that 

specimen.  The temperature, percent humidity and time of day were also recorded.  After new 

plant material was added to an arena with a caterpillar, the larva was placed directly on top of 

it using a paintbrush.  At each feeding one individual plant was divided among all of the Petri 

dishes of that food plant species to keep food plant quality the same between subject arenas. 

The experiment began with N. annulata hatching on 20 Jan 2008 and ran through to the last 

pupation event of the cohort on 26 March 2008. 

4.2.3.2 Choice and Second No-Choice Assays 
A second round of experiments to determine host preference by larvae and the impact of host 

plant diet on larval development were carried out using arenas similar to those used for the 

no-choice assays.  However, all Petri dishes used were labelled with four quadrats using an 

indelible marker on the outside of the dish.  In the arenas that were to be used for the choice 

tests, each quadrat of the dish was designated and labelled for one of the four host species 

(Fig. 4.2a). In the no-choice tests, the same species was placed in each of the four arenas 

within a dish (Fig. 4.2b). 

Leaf discs measuring 15 mm in diameter were cut out of individual leaves of each species 

using an insect collection vial in a “cookie cutter” fashion.  Each vial used was used for only 

one species in order to prevent cross contamination.  Leaf discs were cut while avoiding the 

mid vein in order to standardize the amount of biomass being collected.  Once cut, the discs 

were transferred to their respective quadrants in the dish and a single larvae was placed in the 

middle of the arena.  Since S. quadridentatus has long, thin leaves, sometimes it was 

necessary to use more than one leaf to cut out a comparable amount of biomass. 

Each day, prior to opening the lid, the location of the larvae was recorded and new leaf discs 

were made and placed in the arenas.  Upon being removed, the leaf discs were collected in 

paper bags and placed in a drying oven for 15 days at 75°C.  These samples were then 

weighed and the amount of post-consumption biomass remaining from each disc was 

recorded.  The discs were collected and replaced every 1–2 days over a period of 8 days.  A 

group of control arenas was also established with the same composition as the test arenas, but 

had no larva added.  With the exception of being weighed 4 weeks later, the discs from these 

arenas were collected and processed in the same manner as those from the experimental 

arenas.  The masses of the experimental and control arena leaf discs were compared and the 

difference was attributed to consumption by larvae.  Larval masses were recorded on days 1, 4 
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Figure 4.2 - A diagram of experimental arenas used for Nyctemera annulata choice (a) and no-choice (b) assays.  
Petri dish arenas were divided into quadrants.  The choice test arenas consisted of four leaf discs from the four 
Senecio host species assayed.  No-choice arenas also featured four leaf discs, but all from the same Senecio 
species.  Each time the leaf discs were changed out the single N. annulata larva was placed in the centre of the 
arena.  Control arenas were identical in their layout, but lacked larvae. 

A  A A 

A A 

B  

C  D 

b. a. 



` 

 62 

and 8.  Similarly, daily visual estimates of percent herbivory were recorded for each disc 

removed. 

4.2.3.3 Whole Plant Trials 
A series of whole plant experiments was conducted in a field on the Landcare Research 

campus in Lincoln using polyester mesh cages measuring 8 m3.  The cages had steel pole 

frames that were securely pushed into the ground and then tied to an existing vineyard-type 

wire structure.  The mesh cage was then draped over the frame and the bottom of the cage was 

secured to the ground with tent stakes and the bottom edge buried.  A total of 24 cages were 

erected in the field, each of which was assigned a homogeneous or heterogeneous host 

composition.  Heterogeneous host compositions consisted with one of the other (native) 

species being paired with J. vulgaris (see below for details). 

Styrofoam “mushroom boxes” were used to hold the potted plants within each cage.  Water 

levels in the mushroom boxes were maintained at about 5 cm in order to prevent caterpillars 

from moving off of the plants, as well as to keep the plants from drying out.  Two mushroom 

boxes were placed in each cage and four potted plants were placed in each box.  Single-

species cages had four plants of the same species in each box, while boxes in mixed-species 

cages had two plants each from J. vulgaris and another host species.  Pots in all boxes were 

placed in the mushroom boxes a zigzag configuration in order to fit, with heterogeneous 

boxes arranged so conspecifics are not directly touching one another (Fig 4.3).  One of the 

mushroom boxes in each cage was selected as the experimental group.  On this group, twelve 

newly-emerged, randomly selected larvae from the N. annulata colony were placed – three 

per plant.  During the experiment the cages were only reopened in order to put water in the 

mushroom boxes. 

After nine weeks, the cages were sampled by manually and visually, surveying the plants and 

the cage interior for N. annulata.  Their location in the cage and lifestage were recorded for 

each individual, as well as the gender for adults.  After searching for any final N. annulata,  a 

25 x 45 cm paper bag was placed over the plant before the above ground portion of the plant 

was lopped off at ground level.  This was then placed completely inside the bag, which was 

subsequently folded closed at the top.  All plant samples collected were placed in the drying 

ovens at 75ºC for 8 days before being weighed. 

All data was analysed using R statistical analysis software (Version 2.10.0) (R Development 

Core Team, 2010).  To determine any difference in growth rates and pupation times between 

the species treatments, I used GLMs constructed from the data with the ANOVA function.  
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Figure 4.3 - Diagrams of cages used in field experiments to test whole-plant preference and performance by 
Nyctemera annulata larvae.  Each cage has two identical replicates, each composed of a Styrofoam mushroom 
box containing four potted host plants.  Some cages contained (a) mixtures of two host species, with some 
others were (b) composed of one individual species.  Three newly-hatched N. annualata larvae were added to 
each plant in one of the boxes in each cage.  Five cm of water in the mushroom boxes were maintained for the 
purposes of hydrating the plants, as well as preventing the larvae from leaving the plants in the box. 

 

+ + _ _ 
LARVAE LARVAE 

a. b. 
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Chi-square tests were used to find any differential rates of larval mortality in the no-choice 

tests, as well as to confirm differences in host species preference. 

4.3 Results 

4.3.1 No-Choice Assays 

4.3.1.1 Initial No-Choice Assay 
In the initial no-choice assay, larval development time on J. vulgaris was the same or higher 

than on two of the native hosts tested (Fig. 4.4).  Overall, I found a significant difference in 

the impact of diet on the number of days required to reach adulthood (F3, 26 = 14.56, P < 

0.0001).  When compared to caterpillars fed J. vulgaris (53.0 ± 1.6 d), larvae fed S. 

wairauensis developed at about the same rate (54.5 ± 2.4 d) while those that ate S. minimus 

took significantly longer to develop (57.7 ± 3.3 d).  The caterpillars fed S. quadridentatus 

were the only group to develop faster (47.3 ± 0.7 d).  When compared to those larvae fed J. 

vulgaris, there were no detectable differences among species on larval mortality (χ2
3, N = 36 = 

4.40, P = 0.265) nor on the number of days larvae spent in pupation (F3, 22 = 2.43, P = 0.093).   

Post-pupation, there were no significant differences in adult mass between the different 

treatments (F3 = 2.61, P = 0.077).  As expected, female moths were larger and more massive 

than males (F1 = 47.10, P < 0.0001), but even after accounting for sex no significant 

difference between adult masses emerged from the different treatments.   However, the 

general trend (for both sexes) was for those fed J. vulgaris and S. wairauensis to be heavier as 

adults, while moths fed S. minimus were slightly smaller (Table 4.1).  

There was also a trend for more ova to be produced by females that consumed J. vulgaris and 

S. wairauensis than the other species.  However, this result was not significant (F3, 9 = 0.231, 

P = 0.087) and was likely due to the very low number of females in some treatments (Table 

4.2). 

4.3.1.2 Subsequent No-Choice Assay 
In the second series of tests using leaf discs in no-choice assays, all of the larvae feeding on S. 

quadridentatus died and this treatment was excluded from the final analysis.  Results indicate 

that the plant species on which larvae fed had a significant impact on larval mass after 13 days 

(F2 =  9.88, P = 0.0021).  Larvae reared on J. vulgaris were the heaviest, and significantly 

more so than larvae that ate S. minimus and S. wairauensis (Figure 4.5).  The S. minimus and 

S. wairauensis treatments did not differ significantly from one another.  As in the initial no- 
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Figure 4.4 - The mean number of days required for Nyctemera annulata to develop 
on exotic Jacobaea vulgaris, versus the natives Senecio minimus and S. quadridentaus 
and the endemic S. wairauensis.  Bars are one standard error of the mean. 
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Table 4.1 - Final mean mass of adult magpie moths (Nyctemera annulata) fed different host plants in a no-choice 
assay.  Standard errors are reported in parentheses (n=1 for males fed S. minimus).

 J. vulgaris   S. minimus S. quadridentatus S. wairauensis 

females 0.118 (0.001) 0.106 (0.003) 0.113 (0.005) 0.118 (0.012) 

males 0.077 (0.001) 0.047 (0) 0.060 (0.007) 0.083 (0.011) 
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Table 4.2 - Mean numbers of ova produced by gravid female Nyctemera annulata reared on one of four species of host plant with number of 
specimens sampled.  Numbers in parentheses indicate the standard error.

Species diet J. vulgaris S. minimus S. quadridentatus S. wairauensis 

Mean number of ova produced 91.5 (6.3) 75.5 (22.2) 75 (23.1) 92 (25.2) 

n 4 4 2 3 
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Figure 4.5 - Mean masses after 13 d of larval Nyctemera annulata fed different host 
species in no-choice assays.  Of the four species assayed, larvae fed J. vulgaris were 
significantly heavier than larvae fed other species, including S. minimus and S. 
wairauensis.  All larvae fed S. quadridentatus died prior to weighing. 
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choice assay, there were no differences in larval mortality between the three species 

treatments (χ2
2, N = 22 = 1.31, P = 0.520).  Similarly larval mass was unaffected by the 

particular plant species eaten in relation to the amount of biomass consumed (F2 = 0.213, P = 

0.811). 

4.3.2 Choice Assay 

Daily visual observations of the location of larvae in the choice arenas revealed that they were 

found on J. vulgaris discs disproportionately often, with larvae being observed on them 53% 

of the time – significantly more often than they were found on S. wairauensis (25%), S. 

quadridentatus (13%) and S. minimus (9%) combined (χ2
3, N = 113 = 22.1, P < 0.0001).  When I 

analyzed the visual observations to determine if any species discs incurred any feeding at all 

during the 13-day period I found a significant preference for the exotic J. vulgaris (t = 2.900, 

d.f. = 453, P = 0.00374) over the S. quadridentatus (t = -5.525, d.f. = 452, P < 0.0001) and S. 

minimus discs (t = -6.658, d.f. = 452, P < 0.0001).   

Feeding incidence on S. wairauensis discs were not significantly different from those of J. 

vulgaris (t = -1.601, d.f. = 452, P = 0.10945), despite larvae being present on J. vulgaris discs 

more often (Table 4.3).  For the percentage of each leaf disc eaten each day, for just those leaf 

disks that were eaten, larvae ate significantly more of the J. vulgaris discs than of S. 

minimus (t = -1.88, d.f. = 14, P = 0.004) (Fig. 4.6). Eaten S. quadridentatus discs tended to 

have less area removed than ragwort but this was not significant (t = -1.24, d.f. = 14, P = 

0.12). Eaten discs of J. vulgaris and S. wairauensis showed very similar amounts of feeding (t 

= 0.44, d.f. = 14, P = 0.99). 

4.3.3 Field Cage Assay 

The field cage experiment failed to function as intended, mainly due to my failure to 

anticipate the speed at which the grass in the cages grew.  This resulted in the grass providing 

a “bridge” for the caterpillars to walk across from the infested tray to the control tray.  

Similarly, there were multiple storms with high winds that upset most of the cages and 

allowed the caterpillars to escape, be preyed upon or parasitized.  Of the 384 larvae that were 

placed on plants in the cages, only 55 (14.3%) were recovered.  

Although there was no significant difference in the mean amount of biomass eaten in the 

control treatments versus the herbivore-added treatments, significantly more larvae were 

recovered from plants in mixed-species groups containing J. vulgaris than from plants in 

single species groups (z = -2.023, d.f. = 75, P = 0.042) (Fig 4.7).  In cages with this species,  
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Figure 4.6 - Mean visual estimates of the amount of leaf discs eaten (%) by Nyctemera 
annulata larvae in choice tests where the invasive Jacobaea vulgaris and three native 
species of Senecio were offered (S. minimus, S. quadridentatus and S. wairauensis). 
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Figure 4.7 - Mean number of larvae recovered from whole plants in an experiment where four 
species of host plant were tested.  Each host species was paired with Jacobaea vulgaris (R) or 
itself.  The other species included in the testing are Senecio minimus (M), S. quadridentaus (Q) 
and S. wairauensis (W).  The first letter in the category labels along the x-axis is the species from 
which larvae were recovered and the second letter is the species with which it was paired. 
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Table 4.3 - Proportion of leaf discs fed on from four species in a choice assay: Jacobaea vulgaris (exotic), Senecio minimus (native), S. 
quadridentus (native) and S. wairauensis (endemic). 

 
 J. vulgaris S. minimus S. quadridentatus S. wairauensis 

Proportion of  discs eaten 0.673 (0.021) 0.319 (0.020) 0.239 (0.017) 0.575 (0.023) 

  n 113 113 113 113 
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significantly more larvae were recovered from the conspecific pairings than from S. 

wairauensis with J. vulgaris (Fig. 4.8).  There was also a detectible difference in the amount 

of estimated biomass eaten when comparing plants paired with J. vulgaris versus those paired 

with conspecifics (Fig. 4.9).   More biomass was removed from J. vulgaris in cages where it 

was by itself (3.50 ± 0.56 g) compared to when it was in cages with S. minimus (0.33 ± 0.16 

g), S. quadridentatus (2.61 ± 0.53 g) or S. wairauensis (1.81 ± 0.25 g).  Similarly, more S. 

minimus (8.74 ± 3.01 g) and S. quadridentatus (3.20 ± 0.34 g) were eaten when they were 

alone compared to when they were paired with J. vulgaris (1.79 ± 0.48 g and 0.59 ± 0.17 g, 

respectively).  However, S. wairauensis lost more biomass to N. annulata herbivory when it 

by itself (7.49 ± 1.85 g) than when it was paired with J. vulgaris (19.08 ± 7.74 g).  The net 

results from these assays are summarized in Table 4.4. 

4.4 Discussion 

It is traditionally assumed that genus-specific monophagous insects prefer their original host 

plant(s) and host-shifts to heterogeneric hosts are rare.  However, my current results for N. 

annulata show that this species has clearly incorporated J. vulgaris into its host range.  

Moreover, the invasive J. vulgaris was found to be and more attractive, more palatable than 

native hosts offered, was associated with faster larval development, produced larger adult 

moths than a diet of the native host plant S. minimus.  This result has several implications. 

Results of choice tests show that N. annulata abundance is higher on J. vulgaris than on 

native Senecio species.  In a similar study by White et al. (2008) involving species congeneric 

to those in this study, the authors concluded that preferential host use of a native Senecio 

species over an invasive by a native Australian Nyctemera species was evidence for the 

enemy release hypothesis (ERH).  However, several studies of invasive plants indicate that 

enemy release fails to broadly explain invasiveness and that biological resistance is often 

more influential when invaders are congenerics of native species (Agrawal et al., 2005; M. 

Deane Bowers, et al., 1992; Connor, Faeth, Simberloff, & Opler, 1980; National Research 

Council, 2002; Keane & Crawley, 2002; Liu, Stiling, & Pemberton, 2007; Maron & Vilà, 

2001; J. D. Parker & Hay, 2005).   
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Figure 4.8 - The mean number of Nyctemera annulata larvae per gram of plant biomass collected 
from four host species in same-species and mixed-species cage assays.  The first letter of the species 
pair along the x-axis is the species from which the larvae were collected and the second letter is the 
species with which it was paired in the enclosure. The four host plant species are Jacobaea vulgaris 
(R), Senecio minimus (M), S. quadridentatus (Q) and S. wairauensis (W). 
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Figure 4.9 - Estimated biomass eaten by Nyctemera annulata from four species of host 
plant in cages with four plants of a single-species or four plants from two species per 
cage.  Mixed-species treatments consisted of one native Senecio host plant mixed with 
the invasive weed, Jacobaea vulgaris.  In addition to J. vulgaris (R), the other species 
offered were S. minimus (M), S. quadridentatus (Q) and S. wairauensis (W).  Estimated 
biomass eaten was derived from the final dry biomass of the plants adjusted by the 
proportion of herbivore damage observed. 
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Table 4.4 - A summary of the choice and no-choice assay results for the performance of Nyctemera annulata on ragwort (Jacobaea vulgaris) versus the two non-
endemic native hosts (Senecio minimus and S. quadridentatus) and one endemic host (S. wairauensis). “>” indicates a significantly better performance on J. vulgaris 
(P < 0.05), “~>” indicates a trend for better performance on J. vulgaris (P < 0.10), “=” indicates no detectable difference in performance (P > 0.10), “NA” indicates 
that measures were not addressed due to high mortality in one of the treatments.  By only one measure did N. annulata perform significantly better on a native than 
on J. vulgaris (larvae feeding on S. quadridentatus eclosed on average 7 days earlier than those fed J. vulgaris).  Notations of the different comparisons measured 
indicate if they were collected in the (a) initial choice (4.3.1.1), (b) subsequent no-choice (4.3.1.2), or (c) choice (4.3.2) assay. 

 

Species comparison larval massa,b feeding choicec feeding amounta,b,c time to eclosiona mortalitya,b adult massa ova per ♀a 

J. vulgaris 
vs. 

S. minimus 
> > > > = ~> ~> 

J. vulgaris 
vs. 

S.  quadridentatus 
NA > > < = ~> ~> 

J. vulgaris 
vs. 

S. wairauensis 
> = = = = = = 

 
 
 
 
 
 



` 

 77 

 

My results contradict the conclusions of White et al. (2008) and show that the invasiveness of 

J. vulgaris in New Zealand is not explained by a lack of herbivore pressure.   

Indeed, J. vulgaris arrived in New Zealand facing a considerable level of biotic resistance 

from natural enemies, at least from N. annulata.  Despite this, J. vulgaris still rapidly spread 

and established across much of the landscape.  Even with the introduction and establishment 

of five natural enemies from its home range it continues to be invasive in parts of New 

Zealand with high amounts of rainfall (although its geographic distribution has retracted 

noticeable from drier areas following the release of biological control agents) (Simon Fowler 

and Hugh Gourlay, unpublished data).   Considering this, the escape from top-down pressure 

of consumers seems to be an inadequate explanation for the invasive success of J. vulgaris.  

Anecdotal observations from whole J. vulgaris plant used in the field cage trials and for 

feeding N. annulata colonies both align with the reputation of this species as having a high 

level of tolerance to herbivory.  Unfortunately I was unable to quantify the differences in 

herbivore tolerance between J. vulgaris and the other species assayed due to the shortcomings 

of the field cage trials.  However, the difference in biomass in an individual J. vulgaris and a 

S. wairauensis of the same age are striking with the latter being a significantly smaller plant 

and produces significantly less seed.   

Anecdotal observations of both of these species being used to feed colonies also support the 

assertion that J. vulgaris in more tolerant of herbivory.  After individuals of both species had 

been completely defoliated by N. annulata in the colony cages, only J. vulgaris was able to 

generate regrowth.  While in itself, plant tolerance to herbivory is not a reliable predictor of 

invasiveness (Hayes & Barry, 2008; Maschinski & Whitham, 1989), it is clearly important in 

herbivore-dense environments (Ashton & Lerdau, 2008; Augustine & McNaughton, 1998; 

Jogesh, Carpenter, & Cappuccino, 2008; Rogers & Siemann, 2005; J. P. Rosenthal & 

Kotanen, 1994; Strauss & Agrawal, 1999; Strauss & Murch, 2004; P. S. White & Allison, 

1998; Wise & Abrahamson, 2005; Zou, Rogers, & Siemann, 2008).  Therefore given the 

significant levels of biotic resistance that was likely incurred in the form of herbivory by N. 

annulata, as well as the limited success of the introduced natural enemies in suppressing J. 

vulgaris, this characteristic was likely important in the establishment of J. vulgaris in New 

Zealand. 

An intriguing result from these assays is that N. annulata performance was as good (or better) 

on J. vulgaris compared to native host species.  Most notably, by many measures, N. annulata 
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performed better on J. vulgaris than on the natives S. minimus and S. quadridentatus.  There 

are a few possible hypotheses for this.  The first is that J. vulgaris is chemically more poorly 

defended against N. annulata herbivory than these natives.  The “red queen” hypothesis is 

based on the idea that prey and their consumers constantly counter one another’s new 

adaptations with novel adaptations of their own (Clay & Kover, 1996; Marrow, Law, & 

Cannings, 1992; Van Valen, 1974).  Locked in this evolutionary arms race, plant hosts evolve 

defences selected by the consumer threats it encounters.  I do know that these Senecio species 

differ in their tissue phytochemistry and, although the components responsible for making S. 

minimus less palatable to N. annulata are still unidentified, the native species differ in their 

pyrrolizidine alkaloid composition (Benn, et al., 1978), which may serve as an attractant to 

some Senecio specialists.   

Another possible explanation could be the impact of more recent selection pressures on N. 

annulata following invasion by J. vulgaris that endowed moths that used it with higher 

fitness.  Several reasons have been suggested for observations of disproportionately high 

performance on novel hosts in other systems.  These include the benefits of enemy-free space 

(J. M. Brown, et al., 1995; Gratton & Welter, 1999; Holt & Lawton, 1993; Zangerl, et al., 

2002), lower levels of competition (Abrahamson, Eubanks, Blair, & Whipple, 2001; Feder, et 

al., 1995; Messing & Wang, 2009) and a greater abundance of an alternate host (Munday, van 

Herwerden, & Dudgeon, 2004; Rossbach, Löhr, & Vidal, 2006a; Shirai & Morimoto, 1999).  

Any of these could fit the situation with J. vulgaris in New Zealand.  If these strategies result 

in higher fitness for the magpie moth populations that employ them, increased performance 

on these hosts will likely be selected for over time (Agosta, 2006; Agrawal, 2000; Mayhew, 

1997; Nosil, Crespi, & Sandoval, 2002; Schoonhoven, van Loon, & Dicke, 2006). 

Of all species tested in the choice assays one of the non-endemic natives, S. minimus, was 

consistently the least palatable overall.  In the initial no-choice assay S. quadridentatus 

showed a high level of palatability, which is not as surprising given the fact that the initial 

founders of the colony population were taken from S. quadridentatus plants.  However, in the 

second round of tests, larvae were less attracted to S. quadridentatus and ate far less of it.  Of 

note is the fact that all test subjects fed S. quadridentatus in the second round of no-choice 

assays died before the end of the trial period.  One possible explanation for this outcome is 

that the plants used in the second no-choice assay were considerably older than those used in 

the initial no-choice assay and that the newly hatched larvae has difficultly accessing the plant 

tissues as a result of greater indumentum.  Senecio quadridentatus has a much greater length 

and density of pubescence on its leaves than the other species assayed and this trait is 
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enhanced on leaves of older plants.  Lower levels of feeding on S. quadridentatus is echoed in 

the choice test results that showed larvae feeding on S. quadridentatus less than on the other 

species offered.  This was also a reason given for poor N. annulata larval feeding on S. 

quadridentatus in similar research by Woodward (1984).  Another possible explanation for 

complete larval mortality in the S. quadridentatus treatment is that the knock-down herbicide 

used to treat the greenhouse aphid infestation persisted longer on S. quadridentatus than on 

the other species.  Steps were taken to make sure that plant leaves used in the assays were 

collected and used beyond the maximum persistence time for the pyrethroid and that all plants 

were watered daily from above. With the exception of S. quadridentatus, the results from both 

sets of assays were consistent with one another and the same level of mortality was not 

experienced by larvae feeding on any other species; however death of all six larvae fed S. 

quadridentatus is the one obvious difference.  Again, S. quadridentatus differs from the other 

species in the dense pubescence of its leaves, which in this case may have prevented the 

degradation or washing off of insecticidal residue. 

Results from the whole plant trials show that N. annulata feeds on a mixed-species diet when 

available. In terms of biomass removed through herbivory, more J. vulgaris was eaten when it 

was by itself and with S. quadridentatus than when it was paired with S. minimus or S. 

wairauensis.  The two non-endemic native species, Senecio minimus and S. quadridentatus, 

were both eaten more when they were alone compared to when they were paired with J. 

vulgaris.  The endemic, Senecio wairauensis, was heavily consumed in both treatments, but 

significantly more so when it was paired with J. vulgaris.  Fewer larvae were collected per 

plant from J. vulgaris alone compared to when it was paired with another species despite this 

species retaining its vigour throughout the trial.  Although N. annulata developed well on J. 

vulgaris in the no-choice assay and preferred it to other hosts, larvae in the cage assays did 

not settle for a diet of pure J. vulgaris when other hosts were available.  When two of the 

native hosts (S. minimus and S. quadridentatus) were paired with J. vulgaris more larvae were 

collected from them than when they were offered alone.  Fewer larvae were collected from S. 

wairauensis when it was paired with J. vulgaris than by itself, but this result may have more 

to do with the low quality of the heavily-eaten S. wairauensis plants at the end of the assay 

than with its overall attractiveness.  Combined with the other two choice assays, data from the 

cage trials indicate that larvae will readily move between host plants and feed on more than 

one species.  This trend was also reported by Woodward (1984).  They clearly like to eat J. 

vulgaris but will move onto other host species that are nearby and eat them.  Specifically, the 

results for S. wairauensis indicate that N. annulata finds this species highly palatable but that 

the small and delicate nature of this endemic make it vulnerable to levels of herbivory that 
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larger and more robust species, like J. vulgaris and S. minimus, can tolerate.  When J. vulgaris 

is near this species it likely allows N. annulata larvae to move back and forth between these 

two resources; feeding on S. wairauensis when available, then moving back onto J. vulgaris 

once S. wairauensis is decimated. 

In light of the results presented here, many new questions arise.  The success of J. vulgaris 

cannot be interpreted as enemy release in New Zealand as J. vulgaris was likely subject to 

substantial biotic resistance through N. annulata and perhaps others of the native Senecio- 

feeding herbivores (J. J. Sullivan, et al., 2008).  Similarly, if N. annulata populations readily 

feed on J. vulgaris and develop well on it, what impact does this have on nearby populations 

of native Senecio species that appear to have a lower tolerance to herbivory?  Many examples 

have been reported where susceptible populations near other infested populations experience 

consumer spillover (e.g. Cronin & Reeve, 2005; Hamback & Bjorkman, 2002; Power & 

Mitchell, 2004; Rand & Louda, 2006; Rand, Russell, & Louda, 2004; Tscharntke, Rand, & 

Bianchi, 2005; J. A. White & Whitham, 2000).   Is there any evidence for a population 

spillover by these herbivores from J. vulgaris infestations on to nearby patches of native 

Senecio species?  I address this question in Chapter 5. 
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     Chapter 5 
Field Surveys of Nyctemers annulata Abundance and 

Distributions on Alternate Hosts in Relation to Jacobaea 
vulgaris Presence and Abundance 

5.1 Introduction 

Species invasions are occurring at their highest rate in history (Arim, Abades, Neill, Lima, & 

Marquet, 2006; Drake et al., 1989; Fridley, et al., 2007; Julie L. Lockwood, Cassey, & 

Blackburn, 2005; J. L. Lockwood, et al., 2007; Richard N. Mack & Lonsdale, 2001; Dov F. 

Sax, Gaines, & Brown, 2002; Vitousek, D'antonio, Loope, Rejmanek, & Westbrooks, 1997; 

Williams, et al., 2002), although the vast majority of species introductions fail to result in 

invasions (Colautti, Grigorovich, & MacIsaac, 2006; Drake, et al., 1989; Hopper & Roush, 

1993; Lodge, 1993; Moyle & Light; D. F. Sax & Brown, 2000; M. Williamson, 1999; Mark 

Williamson & Fitter, 1996).  While potential weed invaders are likely to experience biotic 

resistance from competitors, consumers and pathogens that are already established – 

particularly if they are related to species in the invaded habitat (Agrawal & Kotanen, 2003; 

Agrawal, et al., 2005; Becerra & Venable, 1999; Cadotte, Cardinale, & Oakley, 2008; 

Darwin, 1859; G. S. Gilbert & Webb, 2007; J. M. Levine, et al., 2004; R. N. Mack, 1996; 

Novotný et al., 2006; J. D. Parker & Hay, 2005; M. Rejmanek, 1996; Marcel Rejmanek & 

Richardson, 1996; Strauss, 2006), a growing body of research shows that many potential 

weed invaders actually experience a net benefit from the presence of natural enemies (novel 

and original) in invaded ranges via apparent competition (Dangremond, et al., 2010; Juliano, 

1998; Kenis, et al., 2009; Carolyn M. Malmstrom, et al., 2007; C. M. Malmstrom, Stoner, 

Brandenburg, & Newton, 2006; Mitchell, et al., 2006; Orrock, Witter, & Reichman, 2008; 

Power & Mitchell, 2004; Reynolds, 1988; Roemer, Coonan, Garcelon, Bascompte, & 

Laughrin, 2001; Rushton, Lurz, Gurnell, & Fuller, 2000; Sabelis, Janssen, & Kant, 2001; 

Sessions & Kelly, 2002; Tompkins, White, & Boots, 2003).  In these situations, the shared 

natural enemies disproportionately affect established competitors.  In the current research I 

examine such a situation in New Zealand where the invasive weed Jacobaea vulgaris formed 

a novel association with a native insect herbivore (Nyctemera annulata, Lepidoptera: 

Arctiidae) that also uses native Senecio host plants – several of which have contracted in their 

geographic distributions since the arrival and spread of J. vulgaris. 
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The addition of exotic species to native communities sometimes results in negative impacts to 

the species present and can cause important changes in native ecosystem function (Beggs, 

2001; Jaenike, 1990; Juliano & Lounibos, 2005; C. M. Malmstrom, et al., 2005; Rand, et al., 

2009; Rodriguez, et al., 2005; Ruiz, Carlton, Grosholz, & Hines, 1997; Simberloff & Von 

Holle, 1999; Simmonds & Bennett, 1966; G. Woodward & Hildrew, 2001).  To prevent loss 

of native biodiversity and function it is important to know why some exotic species become 

naturalized and why some habitats are more prone to invasions than others.  The foci of some 

of these studies are on various aspects of ecosystem ecology, such as the physical and 

biological characteristics of the habitats that have been invaded (Byers, 2002; Simberloff, 

1995; Zalba, Sonaglioni, Compagnoni, & Belenguer, 2000), climate similarities between the 

invaded and home range of a species (Bradford & Lauenroth, 2006; Lennon, Smith, & 

Williams, 2001; S. G. Willis & Hulme, 2002) and the influence of anthropogenic disturbance 

(Didham, et al., 2005; Gibb & Hochuli, 2003; Larson, Anderson, & Newton, 2001).  Other 

studies have looked at the physiological and behavioural traits of a species that correlate with 

successful invasion, including reproductive strategies (Aron, 2001; Barrett, Colautti, & 

Eckert, 2008; Gross, 1984; Sakai et al., 2001), modes of dispersal (Benvenuti, 2007; Herron, 

Martine, Latimer, & Leicht-Young, 2007; Kot, Lewis, & van den Driessche, 1996), lifecycle 

characteristics (Castro, Figueroa, Muñoz-Schick, & Jaksic, 2005; Devin & Beisel, 2007; 

Sakai, et al., 2001) and competition strategies (Barrat-Segretain, 1996; B. J. Brown, et al., 

2002; Fogarty & Facelli, 1999).  A fair amount of investigation has also probed the pressure 

exerted on invaders from natural enemies (or a lack thereof) and how this may influence 

invasion success, which is the basis for the enemy release hypothesis (ERH).   

The ERH assumes that natural enemies apply significant pressure to an organism’s 

populations and that removing this pressure allows the organism to become disproportionately 

abundant.  Competitors, consumers and pathogens are considered primarily responsible for 

controlling species’ populations.  Darwin (1859) had this in mind when he predicted that the 

taxonomic relatedness of potential invaders to one or more species in a native community can 

have an impact on invasion success.  Darwin also suggested that the effects of relatedness to a 

native species can, like a double-edged sword, cut both ways by potentially encumbering or 

facilitating an exotic species in the process of naturalization.   

Recent research examining the phenomenon of biotic resistance by native ecosystems has 

shown a greater probability of invasion success by phylogenetically-novel species (Cahill Jr, 

Kembel, Lamb, & Keddy, 2008; Hill & Kotanen, 2009; C. M. Malmstrom, et al., 2005; 

Strauss, 2006).  This is rooted in the idea that plants are more apt to compete with other plants 
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with which they are related (Cahill Jr, et al., 2008; Juliano & Lounibos, 2005; Lambdon & 

Hulme, 2006; Procheş, Wilson, Richardson, & Rejmánek, 2008; Strauss, 2006; Thuiller et al., 

2010; Valiente-Banuet & Verdú, 2008) and native consumers are more likely to suppress 

potential invaders that are closely related to their original hosts (Dawson, Burslem, & Hulme, 

2009; Jogesh, et al., 2008; Lau & Strauss, 2005; R. N. Mack, 1996; I. M. Parker & Gilbert, 

2004; Prowse & Goodridge, 2003).  In terms of species invasions, this means that immigrant 

species are more likely to encounter biotic resistance in the novel habitat the more 

genotypically and phenotypically similar they are to species that are already present and 

support enemies.  An example of this comes from Knevel et al. (2004) who found that the 

introduced exotic grass Ammophila arenaria experienced negative effects on growth and 

vigour from a soil-borne pathogen associated with a grass species already present in the 

community, Sporobolus virginicus.  The authors concluded that biotic resistance to potential 

plant invaders comes from interspecific competition, but also from the presence of soil 

pathogens that negatively affect the invader and use already established species as hosts. 

Conversely, similar analyses have found the role of taxonomy in regards to biotic resistance 

oversimplified and the role of species relatedness in invasions more complex.  Researchers 

found that a potential invader’s relatedness to a native counterpart can also prove beneficial to 

its success (Dawson, et al., 2009; Diez et al., 2009; Dostál & Palečková, 2010; Lambdon & 

Hulme, 2006; Morales & Traveset, 2009; Procheş, et al., 2008).  Relatedness to natives 

contributes to success in cases where an invasive species makes use of a close relative’s 

specific nutritional resources (such as host plants, prey or trophobionts) or mutualists (such as 

pollinators, rhizobia and trophobiont tenders).  Several studies have shown that plants 

(Dickie, et al., 2002; Freiberg et al., 1997; Richardson, et al., 2000; van Rhijn & 

Vanderleyden, 1995), pathogens (Chandramohan & Charudattan, 2001; G. S. Gilbert & 

Webb, 2007; L. Gilbert, Norman, Laurenson, Reid, & Hudson, 2001; I. M. Parker & Gilbert, 

2004; Power & Mitchell, 2004; Tompkins, et al., 2003) and parasites (Bonsall & Hassell, 

1998; Caro, Combes, & Euzet, 1997; Greenman & Hudson, 2000; Jones, Hassell, & Godfray, 

1997; MacNeil et al., 2003; Poulin & Mouillot, 2003; Rott & Godfray, 2000) are more likely 

to be able to utilize fitness-enhancing biotic resources the more taxonomically similar they or 

their hosts are to extant species in that habitat.  The benefits that invading species gain from 

expanding their geographic range into areas with taxa related to taxa in their habitat of origin 

are not always direct as in the case with parasites and related hosts.  Often indirect 

relationships that are formed within the invaded food can equally contribute to the success or 

suppression of the invader.  One class of ecological interactions formed from indirect 
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relationships that are based on relatedness and that can affect the relative success of invaders 

is the phenomenon of apparent competition. 

First described by Holt (1977), apparent competition occurs when a common consumer 

creates a differential suppression effect on prey populations in the presence of one another 

compared to a situation where they are presented independently.  While shared prey in cases 

of apparent competition are not always closely related species (e.g. Roemer, et al., 2001), they 

often are in the case of generalist consumers and almost always are in case of specialist and 

oligophagous consumers.  For example, Reitz et al. (2006) documented a situation where two 

thrips species, one invasive (Frankliniella occidentalis) and one native (F. bispinosa), shared 

a common generalist consumer (Orius insidiousus) in a common agroecosystem.  The 

predators are active, skilled hunters and were found to prey on both thrips species equally 

well when the individual species were presented monospecifically.  However O. insidiosus 

preferentially fed on F. occidentalis when the two thrips species were presented together.  It 

was determined that individual predators were able to take a limited number of thrips per day 

before reaching satiation.  Behavioural differences between the prey species left the exotic 

thrips more vulnerable to capture.  These factors translated to a situation in the field where F. 

bispinosa populations persisted longer in into the autumn than those of F. occidentalis.  In 

this case apparent competition between thrips functioned to suppress the exotic species while 

allowing the native thrips to prolong their time in the landscape. 

A converse example – where invasion by an exotic species was facilitated via apparent 

competition – is typified by the invasive purple loosestrife (Lythrum salicaria).  Upon its 

arrival in North America purple loosestrife was able to make use of native pollinators 

associated with a native congener (L. alatum) based on their taxonomic relatedness.  Brown et 

al. (2002) documented how the native pollinators exhibited a stronger attraction to purple 

loosestrife than L. alatum  and that, although pollinators moved between both Lythrum 

species, the presence of the exotic decreased overall pollinator visits and seed set size in the 

native.  The authors concluded that the reduction of pollen quantity and quality has an 

overwhelming negative effect on the native L. alatum.  In this case, relatedness of the invader 

to one of the species in this native food web undermined the relationship established between 

pollinators and a native plant and caused significant population impacts to the latter.  But how 

common is apparent competition in facilitating species invasions of natural communities? 

White et al. (2008) examined a native Senecio food web in Australia that was invaded by an 

exotic congener (S. madagascariensis).  Experiments and field surveys were carried out to 

determine if the native Senecio-specialist moth (Nyctemera amica) demonstrated any 
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differential consumption and use of the invasive and a native host plant (S. pinnatifolius) and 

if the results conformed to the enemy release hypothesis (ERH).  The authors found that, 

although the N. amica used both host plants, it preferred its native host over the invasive.  The 

authors concluded that this result conformed to the ERH. 

I searched for evidence of apparent competition and support of the ERH in a similar Senecio 

food web on the South Island of New Zealand that includes hosts plants and a consumer 

congeneric to those studied by White et al. (2008).  The specialist consumer, Nyctemera 

annulata (Lepidoptera: Arctiidae), a close relative of N. amica from White et al. (2008), 

successfully uses several native and naturalised species of taxonomically-related host plants 

for oviposition material and food in the landscape (Benn, et al., 1978; Singh & Mabbett, 

1976; J. J. Sullivan, et al., 2008, listed in Chapter 2; Watt, 1914; D. R. Woodward, 1984).  

Results from the assays performed in Chapter 3 indicate that there are differing levels of 

preference by N. annulata for the alternative host species which include the abundant exotic, 

J. vulgaris.  Whole plant assays also indicate different levels of tolerance by the various host 

plant species in response to equal levels of N. annulata feeding damage.  I performed a 

landscape survey to determine if there are any herbivore-influenced, population-level trends 

influencing Senecio distributions on the South Island.   

Jacobaea vulgaris is particularly abundant in disturbed areas of the West Coast Region and 

where it co-occurs at a landscape scale with several native congeners, including S. minimus 

and S. wairauensis assayed in Chapter 3.  Nyctemera annulata is a common Senecio specialist 

herbivore that is widespread across New Zealand, including the West Coast of the South 

Island.  The West Coast of the South Island was therefore chosen as a suitable location to look 

for evidence of apparent competition in this food web.  Specifically I looked for the presence 

of N. annulata larvae and feeding damage to test the hypothesis that N. annulata densities will 

be highest where J. vulgaris is present (and abundant) versus areas where it is absent or in 

lower densities.  Given the results from Chapter 3, my prediction is that N. annulata will 

show a similar preference for J. vulgaris compared to the available native host plants.  Given 

its tolerance to herbivory, I also expect that J. vulgaris will demonstrate a greater ability to 

compensate for N. annulata herbivory leading to a positive correlation between high-density 

J. vulgaris patches and herbivory on native Senecio hosts.  I presume that the lower tolerance 

to herbivore damage by the native hosts will result in a reduction in their distribution near 

where J. vulgaris is present as this differential impact to their fitness will impede re-

establishment by these species. 
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5.2 Methods 

5.2.1 Site Selection 

Prior to the initial survey, I collated records of known plant populations.  Most of this 

information came from Allan Herbarium records (herbarium code: CHR), as well as from 

earlier visits to the West Coast.  After narrowing the survey down to a general region where 

four N. annulata host plants co-occur (J. vulgaris, S. wairauensis, S. rufiglandulosis and S. 

minimus), I made visits to these areas and recorded Senecio occurrences.  Based on this 

preliminary survey and data, I selected seven candidate valleys for more in-depth data 

collection (Fig. 5.1 and Table 5.1). 

5.2.2 Field Survey 

The abbreviations used for the sites where I carried out field surveys and where J. vulgaris 

was present are STYX (Styx River Valley), DECEPT (Deception River Valley), TARAMAK 

(Taramakau River Valley), WANG (Wanganui River Valley), and the abbreviations for the 

sites where the invader were absent are MING (Mingha River Valley), WAIHO (Waiho River 

Valley), WAIMAK (Waimakariri River Valley).  After a valley  was selected (referred to as a 

“site”), my field assistants and I travelled up river and sampled at disturbance corridors (i.e. 

stream, walking track, landslip) with no less than 1 km between each disturbance corridor 

sampled (each disturbance corridor referred to as a “transect”).  After I selected a disturbance 

corridor, other data collectors and I walked along the middle of the transect heading in both 

directions perpendicularly, away from the trail, for a total distance of at least 150 m in each 

direction.  In some areas where disturbance corridors were less defined (e.g. open flat areas 

like pastures and grassy saddles) transects sampled exceeded 150 m in order to better capture 

the overall composition of that area, which may have been missed with a smaller sampling 

window.  For all transects, I recorded the number of plants of each Senecio species present 

within 1 m of each side of the transect midline for every 15 m along a transect.  Each 2 x 15 m 

sample area was termed a “quadrat” and each transect was made up of at least 20 of them (10 

on each side of the trail where this feature was defined).  During the early portion of the 

season transects and quadrats were measured out in paces instead of meters thereby deviating 

slightly from 15 m in length.  However, the points between each quadrat sampled was 

recorded using GPS and this inconsistency was accounted for in the model created using that 

data (described in the Data Analysis section below).     
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Figure 5.1 - Location of the river valley transects sampled on the South Island, including three sites that 
were free of significant Jacobaea vulgaris populations (open stars: Waiho, Upper Waimakariri, and 
Mingha) and four sites with dense J. vulgaris populations (black stars: Deception, Taramakau, Styx, and 
Whanganui). 
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Table 5.1 - The number of plants of each species sampled in seven sites over the 2008-2009 field season.  All samples were also sampled for presence of N. 
annulata larvae and herbivory.  In none of the sites was S. rufiglandulosus present.  All three populations of this plant that I encountered in the South 
Island occur in small clusters on roadside embankments. 

 

 
 Location 

(coordinates) 

plants sampled number sampled elevation 
range J. vulgaris S. minimus S. wairauensis S. rufiglandulosus Total transects quadrats 

Styx River Valley 
42.88S 171.17E 144 138 162 - 0 - 444 11 424 100-775 m 

Deception Valley 
42.78S 171.60E 180 63 85 - 0 - 328 11 250 300-1075 m 

Taramakau River Valley 
42.76S 171.64E 56 9 5 - 0 - 70 5 68 210-430 m 

Wanganui River Valley 
43.18S 170.63E 54 12 27 - 0 - 93 7 110 110-240 m 

Mingha River Valley 
42.98S 171.60E - 0 - - 0 - 38 - 0 - 38 5 66 650-1170 m 

Waiho River Valley 
43.42S 170.17E - 0 - - 0 - 15 - 0 - 15 2 37 150-250 m 

Upper Waimakariri 
43.01S 171.57E - 0 - 4 44 - 0 - 48 4 117 600-750m 

Total 434 226 376 0 1036 45 1072 - 
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After plant counts were completed for a quadrat, one plant from each species that was 

determined to be the closest to the end point of that quadrat (referred to as an “interquadrat 

point”) was sampled for presence of arthropods and herbivore damage.  If no plants of a given 

species were located within 5 m of the interquadrat point, no sample data were recorded for 

that particular species at that location.  Percent canopy cover, habitat type and GPS data were 

also recorded at each interquadrat point. Canopy cover was estimated using visual estimations 

of the percentage of sky blocked by canopy while standing at the sampled plant. Habitat types 

were subjective and derived from geographic features (e.g. SS (stream side), SC (stream 

center), LS (landslip), RE (river edge)), habitat use characteristics (e.g. GP (grazed paddock), 

TR (trailside)), community type (e.g. SB (scrub habitat), UP (tussock/ungrazed grassland)) 

and canopy characteristics (e.g. FF (full forest cover), FE (forest edge), FG (forest gap)). Each 

sample was assigned two habitat types if applicable.  All adult magpie moths seen in-flight 

were recorded for the quadrat that it passed through or closest to. 

Of the seven sites I surveyed, the Styx and the Deception Valleys were the most 

comprehensively sampled and were compared in greater depth.  The length of both of these 

sites is approximately the same (~ 13 km), but their elevation ranges differ with the Styx 

Valley site ranging from about 100 m to about 775 m above sea level and the Deception 

Valley elevation gradient runs between 300 m and 1075 m above sea level.  Comparing the 

distribution of Senecio species in these two otherwise-similar valleys is important in 

understanding the factors affecting distribution apart from elevation. 

5.2.3 Data Analysis 

Of the seven river valleys I surveyed using the transect-sampling method described above, 

four of the valleys had J. vulgaris infestations.  Using the species distribution, abundance, and 

site characteristic data that I collected from just these sites, I created GLM models using the 

statistical program R.  Models were constructed by testing the significance of individual 

coefficients.  As each coefficient was individually added to and removed from an overall 

working model, the relative explanatory power of each factor was determined by following 

the Akaike's information criterion (AIC) value.  For each iteration, the model(s) with the 

lowest AIC value(s) was/were considered to have greater explanatory power.  For models 

with similar AIC values (< 10 points difference), the more complex model(s) (greater number 

of covariates) was/were favoured over less complex models.  Determining the significance of 

potential interaction effects between covariates was carried out in the same way.  Once the 

importance of all possible covariates was tested at each phase of model construction, the 

model was considered complete. 



` 

 90 

The specific covariates selected for the full models of each species were: site, transect, the 

interaction effect of site and transect, elevation, quadrat length and habitat type (forest edge, 

full forest, forest gap, grazed pasture, land slip, river edge, scrub, stream side (along the edge 

of a stream), trail edge or ungrazed pasture (perhaps maintained by wild deer)).  Once the 

optimal models were selected for S. wairauensis and S. minimus, J. vulgaris presence was 

incorporated into their presence-absence model, while J. vulgaris abundance was incorporated 

into the abundance models for the native species.  Effects of J. vulgaris presence and 

abundance were tested for significance at different response variables of transect and quadrat.  

Abundance of J. vulgaris per transect was calculated from the sum of plants counted in all 

quadrats of that transect. 

To determine the impact of J. vulgaris density on herbivore populations and herbivore 

damage to native species, larval counts and damage levels on individual plants were 

compared with both presence and density of J. vulgaris at the response variables of site, 

transect and quadrat.  Full models for the presence of larvae on the native species were mixed-

effect models with nesting of plants within quadrats within transects within sites and 

incorporated elevation, and presence-absence of J. vulgaris.  Full models for percent 

herbivory on the native species were mixed-effect models with nesting of plants within 

quadrats within transects within sites and incorporated transect, abundances of each host 

species, presence of J. vulgaris, and quadrat length. 

5.3 Results 

5.3.1 Nyctemera annulata and Herbivory 

Nyctemera annulata larvae were significantly more likely to be found on individual S. 

wairauensis plants in quadrats with J. vulgaris present (χ2
1, N=375 = 12.14, P = 0.0005) (Table 

5.2a), with larvae collected from 35 % (11 out of 31 plants) of the endemic plants in quadrats 

with J. vulgaris present versus collections from 1% (3 out of 209 plants) of plants in quadrats 

without the invader (Table 5.3).  Overall, elevation did not appear to be a significant factor in 

this relationship (χ2
1, N=375 = -0.001, P = 0.599).  For the most part, the same was true of S. 

minimus (χ2
1, N=225 = 6.50, P = 0.0108) (Table 5.2b) with larvae collected from 25% (18 out of 

73 plants) of the native plants in quadrats with J. vulgaris versus 7% of plants (5 out of 71 

plants) in transects without the invasive.  However, the analysis revealed that this relationship 

was significantly and inversely correlated with elevation (χ2
1, N=225 = 15.27, P < 0.0001), with 

more larvae collected in the lower end of the valleys.  The effect of J. vulgaris density on the 

number of N. annulata larvae collected from sympatric S. wairauensis was not significant, 
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Table 5.2 - Generalised linear models of different landscape patterns listing the importance of different response variables used in the final models.  The model code used 
in R analyses are in the shaded boxes.  Habitat types include forest edge (FE), full forest (FF), forest gap (FG), grazed pasture (GP), land slip (LS), river edge (RE), scrub 
(SB), stream side (SS), trail side (TR) and ungrazed pasture (UP).  Other terms refer to “Jv” for J. vulgaris, “Sm” for Senecio minimus, and “Sw” for S. wairauensis.  From 
the terms used in the models: “ragwort.valley”  indicates a site with dense J. vulgaris populations present, “ja” indicates J. vulgaris presence in a quadrat, “ja.transect” 
refers to the presence of J. vulgaris in a transect, “altitude” refers to elevation above sea level, “transect” refers to the transect sampled (and correlates with distance from 
the J. vulgaris population center), “ja.1m” is the density of J. vulgaris in a given quadrat, “mi.1m” is the density of S. minimus in a given quadrat, and “wa.1m” is the 
density of S. wairauensis in a given quadrat. 

 
 

a.) Presence of N. annulata larvae on S. wairauensis in quadrats 
Model:  glm (larvae.wa.presence_absence ~ ragwort_valley + ja + altitude + (1|site_num), family = binomial) 
Coefficient Df Estimate s.e. Deviance LRT Pr(Chi) AIC 
intercept 

 
-3.929 1.534 100.58 

  
108.58 

ragwort.valley 1 -0.108 1.265 100.59 0.007 0.932  
ja 1 2.362 0.819 112.72 12.141 0.0005  
altitude 1 -0.001 0.002 100.86 0.277 0.599  

 
b.) Presence of N. annulata larvae on S. minimus in quadrats 

Model: glm (larvae.mi.presence_absence ~ ragwort_valley + ja + altitude + (1|site_num), family = binomial) 
Coefficient Df Estimate s.e. Deviance LRT Pr(Chi) AIC 
(Intercept)  -10.96 120 128.9   136.85 
ragwort.valley 1 9.631 120 128.9 0.008 0.930  
ja 1 1.266 0.535 135.4 6.504 0.011  
altitude 1 -824.1 0.003 144.1 15.272 <0.0001  

 
c.) Presence of N. annulata larvae on J. vulgaris in quadrats 

Model: glm (larvae.ja.presence_absence ~ altitude + transect + ja.1m + (1|site_num), family = binomial) 
Coefficient Df Estimate s.e. Deviance LRT Pr(Chi) AIC 
intercept 

 
-2.537 0.364 329.4 

  
337.3544 

altitude 1 0.002 0.001 333.5 4.11 0.043 
 transect 1 -0.007 0.041 329.4 0.03 0.865 
 ja.1m 1 0.001 0.002 329.5 0.12 0.730  

 
d.) Herbivory on J. vulgaris in those quadrats with J. vulgaris. 

Model: glm (percent.herbivory.jacobeaea ~  site + ja.1m + mi.1m + wa.1m + quadrat_length, family = "quasipoisson" ) 
Coefficient Df Estimate s.e. Deviance F value Pr(F) 
intercept 

 
2.05 0.605 8193.4 

  ja.1m 1 0.00 0.001 8285.8 4.07 0.044 
mi.1m 1 0.00 0.008 8193.5 0.00 0.966 
wa.1m 1 -0.11 0.064 8341.9 6.54 0.011 
quadrat length 1 0.06 0.039 8243.1 2.19 0.140 
site 3 

  
8539.7 5.08 0.002 

 
e.) Herbivory on S. wairauensis in those quadrats with J. vulgaris. 

Model: glm (percent.herbivory.wairauensis ~  site + ja.1m + mi.1m + wa.1m + ja.transect + transect + site:transect + quadrat_length, , 
family = "quasipoisson" ) 
Coefficient Df Estimate s.e. Deviance F value Pr(F) 
intercept 

 
2.10 0.950 1646.7 

  ja.1m 1 0.00 0.011 1646.7 0.0001 0.99 
mi.1m 1 -0.09 0.120 1662.2 1.97 0.162 
wa.1m 1 0.01 0.014 1649.8 0.39 0.534 
ja.transect 1 0.00 0.001 1685.9 4.98 0.027 
quadrat_length 0 na na 1646.7 

  site:transect 4 
  

1869 7.05 <0.0001 
 
 

 
f.) J. vulgaris presence in quadrats in those valleys with any J. vulgaris. 

Model: glm (ja ~ transect*site + altitude + habitat_FE + habitat_FF + habitat_FG + habitat_GP + habitat_LS + habitat_RE + 
habitat_SB + habitat_SS + habitat_TR + habitat_UP + quadrat_length, family = "binomial") 
Coefficient Df Estimate s.e. Deviance LRT Pr(Chi) AIC 
intercept 

 
4.202 1.693 405.4 

  
445.4498 

altitude 1 -0.037 0.007 449.9 44.4 <0.0001 
 habitat_FE 1 0.591 0.502 406.9 1.4 0.230 
 habitat_FF 1 -0.982 0.600 408.2 2.8 0.096 
 habitat_FG 1 0.852 0.743 406.8 1.4 0.245 
 habitat_GP 1 2.131 0.610 419.4 13.9 <0.0001 
 habitat_LS 1 -0.195 0.582 405.6 0.1 0.738 
 habitat_RE 1 0.209 0.658 405.6 0.1 0.751 
 habitat_SB 1 1.782 0.953 408.7 3.2 0.072 
 habitat_SS 1 -0.038 0.518 405.5 0.0 0.941 
 habitat_TR 1 0.697 0.356 409.3 3.9 0.049 
 habitat_UP 1 -1.323 1.296 406.6 1.2 0.277 
 quadrat_length 1 0.0002 0.095 405.4 0.0 0.998 
 transect:site 3   431.0 25.6 <0.0001  

 
g.) J. vulgaris abundance in quadrats of transects containing J. vulgaris.  

Model: glm (ja.1m ~ transect*site + altitude + habitat_FE + habitat_FF + habitat_FG + habitat_GP + habitat_LS + habitat_RE + 
habitat_SB + habitat_SS + habitat_TR + habitat_UP + quadrat_length, family = "quasipoisson") 
Coefficient Df Estimate s.e. Deviance F value Pr(F) 
intercept 

 
3.348 1.040 13502.29 

  altitude 1 -0.007 0.004 13656.54 4.06 0.045 
habitat_FE 1 0.298 0.237 13572.59 1.85 0.175 
habitat_FF 1 0.243 0.918 13505.47 0.08 0.773 
habitat_FG 1 -0.140 0.539 13505.51 0.08 0.771 
habitat_GP 1 1.650 0.578 13988.01 12.77 <0.0001 
habitat_LS 1 -1.372 0.262 15153.70 43.42 <0.0001 
habitat_RE 1 -0.993 1.358 13530.15 0.73 0.393 
habitat_SB 1 -0.190 3.158 13502.47 0.00 0.946 
habitat_SS 1 -0.091 0.820 13502.87 0.02 0.902 
habitat_TR 1 0.783 0.328 13768.44 7.00 0.009 
habitat_UP 1 -3.020 6.831 13532.54 0.80 0.373 
quadrat_length 1 -0.092 0.043 13718.44 5.68 0.018 
transect:site 3   16626.75 27.38 <0.0001 

 
h.) S. wairauensis abundance in quadrats of transects containing S. wairauensis. 

Model: glm (log(density_wa) ~ ragwort_valley + ja.transect + transect_altitude + (1|site_num), family = gaussian) 
Coefficient Df Estimate s.e. Deviance F value Pr(F) 
intercept  -2.598 0.565 70.66   ragwort.valley 1 -0.458 0.418 72.37 1.21 0.278 
ja.transect 1 -0.008 0.0003 86.83 11.44 0.001 
transect_altitude 1 0.001 0.0007 74.34 2.60 0.113 
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Table 5.3 - The number of each host plant species sampled, the total number of larvae collected on them, the percentage of each species with larvae, the 
average number of larvae per plant, their overall levels of herbivory, and the number of egg masses recovered on the total numbers of plants from each 
species and overall.  Standard error in italics. These statistics are from all seven sites combined. 

 

 
 

 

 

Host n Total larvae Plants with larvae (%) Larvae per plant 
mean, (s.e.) 

% herbivory  
mean, (s.e.) 

Egg masses, 
(number of plants) 

Jacobaea vulgaris 434 102 56 (12.9) 0.24 (0.0009) 16.5, (20.0) 44. (10) 

Senecio minimus 226 37 23 (10.2) 0.16 (0.002) 9.8, (13.2) 4, (2) 

Senecio wairauensis 376 19 14 (3.7) 0.05 (0.0008) 5.6, (12.5) 12, (3) 

TOTAL 1036 158 93 0.15 (0.004)  11.1, (15.8) 60, (15) 
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although there was a trend in this direction (χ2
1, N=375 = 2.57, P = 0.109).  The same was true 

for S. minimus (χ2
1, N=225 = 3.55, P = 0.0595).   

Within transects, the level of herbivory on S. wairauensis in quadrats where J. vulgaris was 

present was also significant and positively correlated with the density of J. vulgaris in the 

same quadrat (F1,214= 4.98, P = 0.027) (Table 5.2e).  Herbivory recorded on S. wairauensis 

was 2.13 times greater on plants near grazed pastures (the habitat type most closely associated 

with J. vulgaris (Table 5.2f)) (P < 0.0001).  This relationship also decreased by 0.05% with 

every 100 m rise in elevation (P < 0.0001).  

Overall, 158 N. annulata larvae were found in the survey on 93 of the 1036 individual plants 

sampled from all species (Table 5.3).  Across all plants surveyed, N. annulata larvae 

demonstrated the strongest association with J. vulgaris with 12.9% of the plants surveyed 

hosting at least one larva.  In comparison, larvae were collected from 10.2% of all S. minimus 

and 3.7% of the S. wairauensis surveyed.  The invasive J. vulgaris also had the greatest 

densities of larvae with 0.24 (± 0.0009) caterpillars per plant surveyed, while the native S. 

minimus and endemic S. wairauensis were found supporting 0.16 (± 0.002) and 0.05 (± 

0.0008) larvae per plant, respectively.  Although N. annulata larval abundance appeared to be 

lower than during the previous field season when site selection was carried out, significantly 

more larvae were collected from S. wairauensis plants in areas where J. vulgaris was present 

(Table 5.4).  The naturalized host also displayed the highest levels of N. annulata herbivory 

with 246 individuals (56.6%) exhibiting feeding damage with 16.5% of leaves showing >5% 

folivory.  Senecio minimus and S. wairauensis surveyed were slightly less injured with 106 

(35%) and 79 (21%) plants herbivore damaged, respectively.  Overall, S. minimus had >5% 

damage on 9.8% of leaves while S. wairauensis had 5.6% of leaves damaged in the same way. 

No populations of the endemic S. rufiglandulosus were found in any of the sites sampled.  

However at the three isolated populations of this species encountered during the early site 

selection surveys, I found at least 20 N. annulata larvae feeding on this species at one site 

(unpublished data).  Larvae that managed to get into the glasshouse at Lincoln where I was 

growing S. rufiglandulosus also readily fed on this species, which indicates that it is a suitable 

and palatable plant for its growth and development.  A third endemic, S. dunedinensis, was 

not located in any of the field sites nor were any populations encountered in initial site 

surveys.  This species appears to have a current geographic distribution in the southern part of 

the South Island and outside the area I surveyed (see Chapter 3, Figure 3.8). 
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Table 5.4 - Percentage of Senecio wairauensis plants from which Nyctemera annulata larvae were collected in areas with the invasive Jacobaea 
vulgaris present versus in areas where it was absent.   

 

 J. vulgaris present J. vulgaris absent 

% with larvae 35.5 1.1 

N 93 283 
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5.3.2 Host Plants 

When the presence of S. wairauensis was compared between sites with J. vulgaris versus 

uninvaded sites, there were significantly more endemic hosts in the valleys where the invader 

was absent (χ2
1, N=66 = 4.27, P = 0.039) (Fig. 5.2).  The density of S. wairauensis in valleys 

where J. vulgaris was present was 1.75 (± 0.23) per 30m2 quadrat, while the number of this 

endemic host plant in sites free of J. vulgaris was 3.56  (± 0.52) per quadrat.  Senecio 

wairauensis was also more likely to occur in transects of sites without invasions than in 

invaded sites (χ2
1, N=66 = 5.94, P = 0.015) (Fig. 5.3).  The endemic S. wairauensis was present 

in 37.3% of the quadrats of sites without J. vulgaris infestations in them, but only in 18.5% of 

quadrats at sites with infestations.  Senecio jacobaea dominated the low elevation portion of 

the sites that it infested while S. wairauensis was present across all elevations in uninfested 

sites (Fig 5.4).  Furthermore, sites that were free of J. vulgaris also, for the most part, 

appeared to lack the native S. minimus.  While a very few individuals were present in the J. 

vulgaris-free Mingha River Valley, they were close to the car park and not in the areas 

sampled in the systematic survey.   

Tests of alternative models revealed a significant interaction effect between the covariates of 

site and the distance from the area with the highest density (in terms of increasing transect 

number) on J. vulgaris presence (χ2
2, N =851 = 76.12, P < 0.0001) and abundance (F3, 374 = 

27.76, P < 0.0001).  After taking this interaction, as well as habitat type and elevation into 

account, J. vulgaris was still found to be present significantly more often in grazed pastures 

(χ2
1, N =851 = 39.10, P < 0.0001), forest gaps (χ2

1, N=851 = 4.02, P = 0.0450) and along landslips 

(χ21, N =851 = 4.15, P = 0.041) than in other habitats.  Furthermore, grazed pasture (F1, 374 = 

13.39, P = 0.0003), landslip (F1, 374 = 39.45, P < 0.0001) and trailside terrain (F1, 374 = 5.59, P 

= 0.0186) all had a positive effect on the abundance of J. vulgaris. 

The distribution and abundances of S. wairauensis populations also demonstrated a significant 

effect of habitat as it was more often found in forest gaps (χ2
1, N =228 = 77.23, P < 0.0001), on 

trailsides (χ2
1, N =222 = 75.03, P < 0.0001), in ungrazed pastures (χ2

1, N =221 = 29.24, P < 0.0001), 

as well as along forest edges ((χ2
1, N =230 = 13.20, P < 0.0001), landslips (χ2

1, N =226 = 10.31, P < 

0.0001) and river margins (χ2
1, N =225 = 8.09, P = 0.0044).  The endemic was significantly less 

common in grazed pastures (χ2
1, N =227 = 22.60, P < 0.0001) and scrub habitat (χ2

1, N =224 = 4.66, 

P = 0.0301).  The abundance models created from collection data for S. minimus and S. 

wairauensis were compared with the distribution and abundance data for J. vulgaris.  Models 

of distribution for the native Senecio species were also compared to abundance and presence- 
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Figure 5.2 - The proportion of quadrats containing Senecio wairauensis in sites with Jacobaea 
vulgaris present versus sites without the invader present. See Methods for site abbreviations.
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Figure 5.3 - Mean numbers of plants of three Nyctemera 
annulata host plant species (Jacobaea vulgaris, Senecio 
minimus and S. wairauensis) sampled per meter in 
transects for all seven river valley sites surveyed.  
Valleys with J. vulgaris infestations are on the right of 
the dashed line, while valleys without J. vulgaris 
populations are on the right. 
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Figure 5.4 - Elevational distributions of Senecio wairauensis (endemic), S. minimus (non-endemic native) and 
Jacobaea vulgaris (invasive) in seven survey sites with and without J. vulgaris invasions.  Note that Senecio 
wairauensis typically occurs at higher elevations than J. vulgaris regardless of the overall elevation of the site, 
suggesting that factors within each landscape are affecting on S. wairauensis.  Black lines indicate median values, 
boxes indicate the interquartile range (IQR) and bars indicate the IQR x the range, and dots indicate outliers.  
Hashed boxes at the bottom of each site plot indicate the full elevation range surveyed.  
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absence data for J. vulgaris.  The two native species were found to inversely correlate with J. 

vulgaris occurrence in quadrats, however this relationship is confounded with habitat.  

Specifically, in grazed pasture sites J. vulgaris is at its most abundant while S. minimus and S. 

wairauensis are sparse and absent, respectively.  Outside of grazed pasture habitats, there is 

an inverse relationship in abundance between the endemic S. wairauensis and the invasive J. 

vulgaris in the transects where they co-occur (Fig.5.5). 

5.4 Discussion 

Most models of species invasions assume that invaders influence native species through direct 

mechanisms like (resource) competition (Callaway & Walker, 1997; Case, 1990; Corbin & 

D'Antonio, 2004; Kupferberg, 1997; Procheş, et al., 2008; Stachowicz & Byrnes, 2006; 

Tilman, 2004) and predation (Carlsson, Brönmark, & Hansson, 2004; Didham, Tylianakis, 

Gemmell, Rand, & Ewers, 2007; D. F. Fraser & Gilliam, 1992; Kenis, et al., 2009; J. M. 

Levine, et al., 2004; Snyder, et al., 2004; Taniguchi, Fausch, & Nakano, 2002; G. Woodward 

& Hildrew, 2001) or by altering an ecosystem’s nutrient cycling (Allison & Vitousek, 2004; 

Bohlen et al., 2004; Ehrenfeld, 2003; Hawkes, Wren, Herman, & Firestone, 2005; Hobbie, 

1992; Stadler, Müller, & Orwig, 2006), fire regime (M. L. Brooks et al., 2004; D'Antonio & 

Vitousek, 1992; Keeley, 2001; Simberloff & Von Holle, 1999; Zedler & Kercher, 2004) or 

hydrology (Bunn, Davies, Kellaway, & Prosser, 1998; Calder & Dye, 2001; Caraco et al., 

1997; Crowl, et al., 2008; Décamps, Planty-Tabacchi, & Tabacchi, 1995; Ford & Vose, 2007; 

Maerz, Brown, Chapin, & Blossey, 2005; Stromberg et al., 2007; Tickner, Angold, Gurnell, & 

Mountford, 2001).  My results suggest a more complex effect from the introduced plant 

invader, J. vulgaris.  They are consistent with apparent competition is occurring between J. 

vulgaris and the endemic S. wairauensis through their shared, endemic consumer, N. 

annulata.  Where it is present, J. vulgaris leads to increases in native herbivore abundance 

which, in-turn, leads to increased herbivory on the endemic host plant.  Evidence for this 

includes higher levels of N. annulata herbivory on S. wairauensis samples that are positively 

correlated with their proximity to J. vulgaris infestations.  Likewise, the majority of larval N. 

annulata larvae captured in the survey on both native species were also positively correlated 

with their proximity to J. vulgaris infestations.  Association of high N. annulata densities with 

J. vulgaris incidence matches historic accounts linking population eruptions of these two 

species (Chapter 2).   

Perhaps as a consequence of apparent competition, I found a paucity or absence of S. 

wairauensis populations near dense J. vulgaris infestations.  The data show that S. 
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Figure 5.5 - The logrithm of Senecio wairauensis (endemic) density plotted against the 
logrithm of Jacobaea vulgaris (invasive) density for just the quadrats in which they co-
occur at seven survey sites on the South Island of New Zealand. 
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wairauensis abundance was significantly lower in valleys with J. vulgaris infestations when 

compared to those without the invader.  Segregation of the host species along the length of J. 

vulgaris-infested valleys also supports the assertion that apparent competition is affecting 

native species at the population level.  In infested valleys J. vulgaris occupies areas that 

correlate with high disturbance while S. wairauensis inhabits those parts of the valleys where 

the exotic is absent.  While high levels of disturbance alone could be seen as an explanation as 

to why J. vulgaris persists in these areas, the influence of J. vulgaris in the models for S. 

wairauensis was still present after taking into account covariates relevant to habitat type.  

Likewise, analyses of the survey data show that in valleys where J. vulgaris is absent or rare, 

the highly-disturbed, low-elevation areas occupied by this species in invaded sites are used by 

S. wairauensis.  Senecio wairauensis also exhibits far less N. annulata herbivory in sites and 

transects without J. vulgaris present. 

It is important to point out that the segregation phenomenon between these two species is not 

due to the effects of elevation.  Of the seven sites surveyed, four were invaded by J. vulgaris 

and shared the same pattern of spatial separation between the invader and S. wairauensis.  

However the point along the altitudinal gradient at which these species switch over in 

dominance occurs at different elevations for each valley.  Furthermore, S. wairauensis 

occupies the entire range of elevations in the valleys where J. vulgaris is absent, including 

locations far below the lowest elevation it occupies in infested valleys (i.e. Deception Valley 

compared to Waiho Valley). 

In light of evidence for apparent competition between an invasive species and a rare, endemic 

congener, there are clear and important implications for invasion ecology and conservation.  

First, it is widely accepted that invasive species, including J. vulgaris, damage native 

ecosystems by outcompeting native or economically important species for finite resources (B. 

J. Brown, et al., 2002; Gherardi & Daniels, 2004; Human & Gordon, 1996; Kenis, et al., 

2009; J. M. Levine, et al., 2004; Morrison, 2000; Sher, et al., 2000).  However, these data 

show that the presence of J. vulgaris in the landscape is also causing an increase in the 

numbers of an endemic, insect herbivore that uses native host plants.  One indirect effect of 

this increase is the application of elevated herbivore stress on populations of at least one rare, 

endemic herb (as mentioned above, two other endemics, S. dunedinensis and S. 

rufiglandulosus were not present in any of my field sites so likely impacts to their populations 

are not covered here).  In contrast to direct competition, which is experienced in close 

proximity to an invader, pressure exerted on S. wairauensis in this instance is transferred 

along greater distances.  One recommendation is for stronger control measures of J. vulgaris 
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near populations of S. wairauensis and other endemic Senecio species that are now rare and 

are declining in their abundance (e.g. S. rufiglandulosus, S. scaberulus and S. dunedinensis).  

While N. annulata adults (and larvae to a lesser extent) can move some distance between 

high-density J. vulgaris patches and areas with native Senecio hosts, curtailing J. vulgaris 

densities and presence is likely to reduce the pressure felt by nearby native Senecio host 

populations.  Recognizing J. vulgaris infestation as a conservation issue (not just as a farming 

issue) would likely have an effect of promoting further efforts aimed at its control.  The recent 

release of two biological control agents on the West Coast presents a unique opportunity to 

examine the response of endemic Senecio species (particularly S. wairauensis and S. 

rufiglandulosus) during and following the expected retractions in the distribution and 

abundance of J. vulgaris.  If J. vulgaris is having an effect and then is successfully controlled, 

the endemics are likely to respond by extending their distributions and altitudinal ranges 

Of particular consideration to the field of invasion ecology is the likelihood that similar cases 

exist of native herbivore spillback onto native species following exotic plant invasions, with 

these phenomena occur primarily along taxonomic lines.  In selecting organisms for release 

and control of invasive species, biological control practitioners perform host range testing to 

gain a clear picture of what impact candidate biological control agents (BCAs) may have on 

native and agricultural species (non-target species).  Most non-target organisms tested are 

selected because they are taxonomically related to the target weed or pest and are therefore 

the most likely species to be attacked by BCAs.  As discussed in the introduction, however, 

the consequences of relatedness in species interactions are multifarious and complex.  My 

research suggests that the effects of relatedness between target and non-target species may be 

detrimental to the latter even before BCAs are released.  In a review by White et al. (2006), 

the authors theorized that apparent competition between native and invasive plants and 

mediated by native insect herbivores was probably occurring, however they were unable to 

find a single instance of it in the literature.   

In the current example of the invasion of New Zealand by J. vulgaris, evidence presented in 

Chapter 2 suggests that the population explosion of the native N. annulata and the top-down 

pressure this exerted on S. wairauensis from it was far more intense prior to the importation 

and release of BCAs for J. vulgaris.  Reviews on the efficacy of J. vulgaris biological control 

efforts conclude that the impacts of Tyria jacobaeae and Longitarsus jacobaeae have 

significantly decreased the density and geographic distribution of this invader in New Zealand 

(e.g. Fowler, et al., 2000; Syrett, 1983; Syrett, Briese, & Hoffmann, 2002).  Compared to 

observations recorded prior to 1901 when J. vulgaris control measures were first 
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implemented, abundances of N. annulata have likely declined substantially (although there 

may be multiple explanations as to why).  Regardless, the effects from N. annulata herbivory 

detected in this field survey must have been much stronger over 100 years ago and reduction 

of J. vulgaris populations is a likely reason why this has changed.  For all intents and 

purposes, instances of native consumer-mediated apparent competition between target and 

non-target organisms and their impact on non-target species should be recognized and 

weighed in decisions involving control invasive species.  

There are also clear implications for species conservation, as the impact of invasive species 

may go deeper than previously acknowledged.   A case-in-point is the current Department of 

Conservation (DOC) policy on management of J. vulgaris.  Currently, DOC is not required to 

control J. vulgaris on any of its holdings under the various Regional Pest Management 

Strategies including the West Coast’s.  Regardless, DOC generally does apply chemical 

controls in J. vulgaris-invaded areas when legitimate claims are laid for agricultural reasons.  

Likewise, DOC has lent their support to the idea and application of biological control as the 

strategy with the best long-term chance of controlling J. vulgaris.  Given that there are several 

species of endemic New Zealand Senecio with populations that have dramatically declined in 

abundance and significantly retracted in terms of their geographic distribution, the results 

presented here may be cause for a revision in DOC’s status of J. vulgaris as a weed.  

Currently this species is not considered of importance to conservation (Tom Skelton, personal 

communication), although my research findings are evidence that this is not necessarily true 

and that J. vulgaris had and is still having an impact on at least one of the 13 species of 

Senecio endemic to New Zealand.  DOC policies regarding exotic weed control and 

consideration for more aggressive strategies at some locations. 

The other native host included in the survey, Senecio minimus, exhibited a distribution pattern 

which contrasts with that of S. wairauensis and was often found interspersed with patches of 

J. vulgaris outside of grazed paddocks.  This hearty native, also native to Australia, had few 

larvae on it in the landscape surveys and exhibited less sensitivity to N. annulata herbivory in 

caged field trials when compared to S. wairauensis.  Low preference for S. minimus by the 

moth larvae aligns with the results of the host preference analysis in Chapter 4 which showed 

this host to be the least palatable of the species included in the landscape survey.  One 

possible explanation for this is that S. minimus, while still suitable as food plant to N. 

annulata larvae, is protected from greater levels of herbivory by a phytochemistry that deters 

consumers and reduces fitness of moths that feed on it relative to those that feed on J. vulgaris 

and S. wairauensis.  
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The results of this landscape survey, as well as those from the host preference and 

performance analyses in Chapter 4, do not show a clear difference between the naturalized J. 

vulgaris versus native hosts.  Clearly J. vulgaris is an acceptable host for N. annulata and its 

use provides some advantages for this native consumer, most notably its abundance relative to 

native hosts and its ability to use highly disturbed habitats (specifically livestock-grazed 

paddocks).  Furthermore N. annulata began exploiting J. vulgaris immediately following its 

establishment in New Zealand and has become intimately associated with its novel host plant 

both in its ecology and in the minds of early European settlers and modern day New 

Zealanders.  These results contradict the generalization that endemic, specialist herbivores 

prefer their native host plants as was suggested by White et al. (2008).  The authors of that 

study concluded that demonstrated preference by a Nyctemera congener for a native Senecio 

species over an exotic invader was further support for the ERH. 

Interspecific competition is another ecological influence that is generally thought of as being 

stronger between closely related species.  For the most part, this appears to be the case for J. 

vulgaris and the native Senecio species in most of the habitats surveyed.  Jacobaea vulgaris, 

S. minimus and S. wairauensis were similarly likely to be sampled at landslips, stream sides, 

along trail margins and at forest edges.  However, J. vulgaris and S. wairauensis were rarely 

encountered in the same quadrat .  Out of 584 quadrats in which at least one of these species 

was present, they were found together in only 31 of them (of the other 553 quadrats, J. 

vulgaris was absent from 209 of them and S. wairauensis was absent from the other 344).  

The most obvious exception to this trend is cattle-grazed paddocks, with which J. vulgaris is 

strongly associated.  In fact, J. vulgaris is practically unchallenged by native Senecio in 

grazed pastures, mainly due to the fact that the native Senecio species are readily eaten by 

cattle.  The data collected indicates that in grazed quadrats, the invasive J. vulgaris was at its 

highest levels of abundance, while the native S. minimus is rare and the endemic S. 

wairauensis is completely absent.  Facilitation of J. vulgaris infestations by cattle grazing is 

supported by previous studies (Hanley, et al., 1995; Kunin, 1999; Lozon, 1997; McEvoy, et 

al., 1993; Myers & Post, 1981; Poole & Cairns, 1940; Schmidl, 1972a; Sutherland, et al., 

2000; Wardle, 1987) and appears to be a very important component in its presence and 

abundance in the current survey. 
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     Chapter 6 
Conclusion 

6.1 Evidence for Apparent Competition 

In my current study of the New Zealand Senecio food web, I found evidence consistent with 

apparent competition between Jacobaea vulgaris and S. wairauensis mediated by a shared 

herbivore, Nyctemera annulata.  As outlined in the Introduction, three important criteria 

characterize apparent competition.  First, there must be at least two host species that share a 

common consumer.  Second, the shared consumer must cause a greater negative impact on the 

fitness on one or more species of host(s) in the presence of another.  Third, these impacts must 

be evident at the population level, with the weaker apparent competitor declining in 

occupancy and abundance.  Results from my research found evidence for all three of these 

phenomena in the study system, which I expand on below. 

Nyctemera annulata fills the role of a shared herbivore by feeding on native Senecio species 

and the invasive weed, J. vulgaris.  Historic anecdotal evidence since the arrival of J. vulgaris 

in New Zealand (presented in Chapter 2) indicates that multiple naturalists linked the exotic 

plant’s invasion and spread with a distinct increase in the local abundance of N. annulata 

larvae and imagos.  Host preference and performance analyses (presented in Chapter 4 show) 

that J. vulgaris is at least as suitable a host for gravid female N. annulata as the three native 

Senecio hosts assayed and that larvae develop at least as well on the invasive host.  Nyctemera 

annulata larvae readily moved between alternate hosts in the field cage trials and fed on all 

species in choice assays.  My field surveys found that larvae were using both J. vulgaris and 

native Senecio hosts in the landscape.  In addition to my tests and surveys, previous research 

and observations also confirm that N. annulata uses multiple hosts, including the species 

assayed. 

The impact of N. annulata on the endemic S. wairauensis is disproportionately greater in the 

presence of J. vulgaris.  In choice assays S. wairauensis was attractive to larvae and in field 

cage experiments N. annulata larvae fed heaviest on S. wairauensis.  In the field cage 

experiment feeding on S. wairauensis was even greater when this species was paired with the 

invasive J. vulgaris.  In field surveys, more larvae were collected from both S. wairauensis 

and S. minimus that were in close proximity to J. vulgaris than on plants farther away from 

the invasive species.  Likewise more herbivore damage on these two native species was 

recorded when they were near J. vulgaris.  While my cage assays failed and, as a result, I was 
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unable to effectively quantify the impact of N. annulata larvae on the S. wairauensis, there are 

reasonable indications that this host species is more delicate and sensitive to similar levels of 

herbivory than the invasive species (e.g. it is smaller, produces far less seed than J. vulgaris).  

Altogether, these results suggest that there are differing levels of impact on these two host 

species and that damage to S. wairauensis by N. annulata is more intense in the presence of J. 

vulgaris. 

There is also evidence for these impacts at the population level for S. wairauensis in that this 

species is generally less abundant in areas with J. vulgaris populations.  My analysis of 

herbarium records in Chapter 3 suggests that, despite using similar types of habitat, there is 

little evidence for clustering between J. vulgaris and native Senecio species.  Similarly, this 

analysis suggests that there has been an upward shift in the elevational distribution of J. 

vulgaris since its arrival along with a corresponding shift in the elevational ranges of native 

and endemic Senecio species.  In my field surveys I found a similar trend where the endemic 

S. wairauensis was less common (or absent) at all scales (sites, quadrats and transects) when 

J. vulgaris was present.  In sites without J. vulgaris the endemic was consistently well-

represented across all scales and independent of the elevation of the site surveyed. 

6.2 Possible Alternative Explainations 

While the results above suggest that apparent competition is occurring in the New Zealand 

Senecio food web, there are other factors that could explain the patterns that I observed.  

Given that species distributions are be influenced by many factors, several possible alternative 

explanations for the patterns in the data should be considered.  In the following paragraphs I 

discuss some of these. 

Patterns detected in the distribution analyses could be more strongly influenced by other 

factors such as direct competition, specific habitat types, and/or historic land changes.  For 

instance, presence data used in the spatial analysis in Chapter 3 have a relatively weak 

resolution (e.g. no accompanying habitat data, no absence data, collection times and locations 

are patchy) which makes it difficult to be certain of the reasons for the patterns observed.  As 

mentioned in Chapter 3, incorporating the use of GIS data layers into an analysis would help 

to clarify the effect of other habitat and site characteristics.  Adding land characteristic data 

(such as soil type, disturbance regimes, aspect, etc.) over the Senecio records would help 

determine if any such features are influential in predicting host distribution.  Incorporation of 

absence data in addition to presence data (particularly for the systematically-sampled NVS 

plots), would also add more context to the distribution of these species and generate a more 
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robust analysis in comparing and contrasting species distributions.  The current analysis fails 

to distinguish between plots from which a species is absent and plots that were simply not 

surveyed for the focal species (or at all). 

The distribution patterns observed in the field survey show an undeniable segregation 

between J. vulgaris and S. wairauensis.  However, there are other possible explanations as to 

why this is the case aside from apparent competition.  One alternative explanation is direct 

competition.  Non-natives account for more than half of the vascular flora species in the New 

Zealand landscape (C. Howell & Sawyer, 2006; NZPCN), many of these invaders are adapted 

to the same disturbed habitats that native Senecio species favour (e.g. Pyšek & Richardson, 

2006; J. J.  Sullivan, Williams, Timmins, & Smale, 2009).  In my field surveys, I regularly 

found that other invasive plant taxa (e.g. grasses) were competing with J. vulgaris and native 

Senecio species in the same patch.  The outdoor cage assays in Lincoln were meant to remove 

direct competition as a factor and look at just the impact of N. annulata herbivory; however 

the experiment did not proceed as planned and failed to produce much useful data in this 

regard.   

The densest populations of J. vulgaris encountered in my field surveys were in cattle-grazed 

pastures.  At the same time, native Senecio species were in significantly low abundance or 

absent in the same places.  So it stands to reason that the distribution of Senecio could be an 

artefact of grazing behaviour.  Jacobaea vulgaris has a much longer window of exposure to 

livestock grazing given its Eurasian ancestry (Caño, Escarré, Vrieling, & Sans, 2009; del-Val 

& Crawley, 2004; McEvoy, et al., 1993).  As a result, it is highly tolerant to the damage and 

disturbance associated with the dairy cattle paddocks of the West Coast.  Likewise, J. vulgaris 

produces a particularly potent blend of toxins that dissuades roaming cattle from eating large, 

luxurious plants growing there.  During the field surveys I rarely found S. minimus or S. 

wairauensis in grazed paddocks, but it was occasionally on the field periphery.  Several S. 

wairauensis plants that I became familiar with over two field seasons appeared to have been 

eaten or fed on by deer.  So it seems possible that grazing in general and cattle grazing 

specifically could influence the patterns seen in the data.  Despite this, fenced forest areas 

were frequently adjacent to cattle pastures containing ragwort and Senecio wairauensis was 

both less common in these forests than further from ragwort and also experienced greater 

folivory.  It remains plausible that past grazing in these adjacent forested habitats has left an 

imprint on current distributions. 

As indicated above (and from over a century of observation in New Zealand), J. vulgaris 

dominates habitats in and around the grazed pastures of the lowlands.  My conclusion that N. 
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annulata larval densities are highest in areas because J. vulgaris biomass is the greatest here 

assumes a causal relationship.  However, both of these results could be correlated with the 

habitat itself.  As some authors in Chapter 2 indicate, the behaviour of N. annulata adults is 

unusual for moths in that they tend to casually fly around in open spaces (like paddocks).  So 

it’s important to consider that the reason so many larvae are found in and around the 

disturbed, open areas of the lowlands is for some of the same reasons that J. vulgaris is so 

common in these same areas: preferred habitat.  The same grazed paddocks that afford J. 

vulgaris abundant sunlight and fewer competitors provide N. annulata with the sunny, open 

spaces that it seems to prefer.  As such, there’s the slight possibility that abundances of N. 

annulata larvae associated with J. vulgaris patches in lowlands (and not with native Senecio) 

is an artefact of habitat characteristics and not one of association between the moth and its 

novel host plant.  Despite this, some of my sites, especially in valleys without ragwort, had 

large open spaces free of ragwort and also had less Nyctemera. 

While the alternative explanations above are important to take into consideration, they still 

fail to explain away some other key factors in reaching the conclusions of this thesis.  There 

are a number of valid concerns regarding the herbarium record analysis in Chapter 3.  The 

methodology used should be re-assessed and the data reanalysed, but at the same time there 

are clear trends to suggest that populations of J. vulgaris and native Senecio species are less 

likely to be found near one another and that the natives are less prevalent at the lower 

elevations than formerly and that J. vulgaris is more common in these same areas.  In order to 

determine the actual influence of J. vulgaris on native Senecio it would be prudent to perform 

tandem analyses with at least one other native-invasive species pair and/or a native lowland 

plant without an invasive relative in New Zealand.  These analyse would indicate how much 

of the pattern shift in native Senecio species is attributable to changes in land use and habitat 

modification and how much the changes are as a result of apparent competition.   

Determining the influence of cattle grazing on native hosts would also be a simple (yet effort-

intensive) undertaking.  Making cages more livestock-proof and setting up an experiment to 

try and isolate the effects of J. vulgaris proximity on native Senecio through shared herbivores 

would help determine how much of the impact on native hosts is due to N. annulata feeding 

and how much is from other factors.  So while all of the possible alternative explanations are 

feasible, they tend to fall short of explaining away the experimental results. 
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6.3 Conservation Implications 

Together, these results raise significant conservation issues surrounding an invasive plant that 

has traditionally been viewed and handled as a strictly agricultural issue, not one of 

conservation.  All of the J. vulgaris-infested sites chosen for the survey were on Department 

of Conservation (DOC) lands and selected for their high densities of the weed, which is in 

large part due to the lack of regular control measures at those sites.  DOC is exempt from 

controlling J. vulgaris under all regional pest management strategies and does not consider 

this invasive species as a serious environmental weed (Tom Belton, personal communication).  

With a limited budget for control of weeds in general, DOC does not apply chemical controls 

unless it is warranted (e.g. in high priority conservation areas, or when a complaint from an 

adjacent landowner is laid).  DOC instead considered biological control of J. vulgaris as the 

only current cost-effective solution and DOC has been a participating member of the West 

Coast Ragwort Control Trust since its inception, which petitioned the Environmental Risk 

Management Authority (ERMA) to release two additional biological control agents 

(Platyptilia isodactylus and Cochylis atricapitana) in the West Coast Region in 2008.  As yet, 

this has done little to tamp down high J. vulgaris numbers on the DOC holdings that I 

surveyed.  

The response of the native host plant, S. minimus, differs in that it appears to be less preferred 

than J. vulgaris or S. wairauensis and is more tolerant of herbivory than S. wairauensis.  It not 

surprising then that, in the landscape, it appears to overlap more closely with J. vulgaris.  In 

my field observations it was not uncommon to find them both in the same location.  In fact, 

when comparing the seven valleys in this survey, looking just at those with J. vulgaris versus 

those without-, no S. minimus was recorded from any transects in valleys without the invasive 

but it was present in all valleys with J. vulgaris.  The reasons for this are uncertain. 

6.4 Apparent Competition Past 

While my surveys were able to detect higher levels of N. annulata herbivory on native species 

near infestations of J. vulgaris, the evidence in Chapter 2 indicates overall densities of N. 

annulata were historically much higher.  If the densities of adult and larval moths were once 

enormous there was undoubtedly more spillover of N. annulata onto native Senecio 

populations.  While there is no evidence for the level of damage done to native Senecio 

populations during this time, I can extrapolate from the evidence in this thesis and surmise 

that it must have been significant for small, delicate and less fecund species like S. 

wairauensis and S. dunedinensis, especially during a period of rapid modification and loss 
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(Brooking, 2004).  Presumably this pressure has decreased with an implied decrease in N. 

annulata abundance since the early 20th Century. 

There are two leading theories as to the reason for the suggested decline in N. annulata.  One 

theory is that the abundance of host plants has dropped significantly thereby limiting the 

amount of larvae from the bottom-up.  There is both scientific data and anecdotal evidence 

that seems to support this idea for J. vulgaris and some native Senecio in many areas of their 

respective ranges (Fowler, personal communication; Helson, 1974; Poole & Cairns, 1940; 

Radcliffe, 1969; Syrett, 1983; Wardle, 1987).  Although competition from other exotic 

species may play a role, decreases in J. vulgaris abundance have been recorded across much 

of New Zealand.  This decrease in distribution and density of J. vulgaris is often attributed to 

the impact of introduced biological control organisms, particularly Longitarsus jacobaea and 

Tyria jacobaea (e.g. Fowler, et al., 2000), as well as improved cultural and chemical control 

strategies (e.g. Wardle, 1987).  However, attributing this drop in N. annulata solely to a 

decrease in food plant still seems unsatisfactory in that even in the densest infestations of J. 

vulgaris of the modern day, they typically exhibit nothing approaching the “clouds of N. 

annulata” or “vast swarms” described in Thompson (1922).   

Nyctemera annulata populations may be regulated as much (or more) from the top-down by 

parasitoids (Benn, et al., 1978; Cameron, 1935; Gaskin, 1966; Paynter, et al., 2010).  

Increased pressure by parasitoids is another theory for why there are fewer adult N. annulata 

observed today.  There is some evidence for this, although the exact reasons why are a point 

of conjecture (Smith 1893, Watt 1914, McLaughlin 1967, Singh and Mabbett 1976, Benn et 

al. 1978, Woodward 1984b).  One likely explanation is that, since the invasion of J. vulgaris, 

there have been new records for non-native parasitoids that use N. annulata as a host (listed in 

Chapter 2).  Additional consumers would have a greater suppression effect on N. annulata.  

Additionally, under these same conditions a vast increase in N. annulata biomass would 

create selection pressure for parasitoids to use and optimize use of this food supply.   

Perhaps as importantly, many of the parasitoids of N. annulata also use other Lepidoptera, 

including exotic (e.g. Tyria jacobaeae, Plutella xylostella) and native species (e.g. Danaus 

plexippus, Vanessa gonerilla).  Alternate hosts and parasitoid sharing can influence parasitoid 

abundance and result in parasitoid spillover and spillback onto alternate host populations 

(Bonsall, Bull, Pickup, & Hassell, 2005; Bonsall & Hassell, 1999; Frere, Fabry, & Hance, 

2007; Harrison & Thomas, 1991; Langer & Hance, 2004; Messing & Wang, 2009; Muller & 

Godfray, 1997; Settle & Wilson, 1990; van Veen, et al., 2006).  Buller (1881) remarked to the 

fact that as N. annulata numbers seemed to increase, the number of other moths seemed to 
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decrease.  While the observation is probably due mostly to habitat loss and dwindling host 

plant populations, it is conceivable that a dramatic increase in N. annulata numbers may also 

have contributed additional pressure on native Lepidoptera populations through shared 

parasitoid spillover. 

Looking forward, if biological control of J. vulgaris were successful in further suppressing its 

abundance and restricting its distribution, this should further reduce N. annulata numbers and 

weaken the impact of N. annulata-mediated apparent competition with endemic Senecio.  As 

a result endemic Senecio should expand their presence in the lowlands and, to a greater extent, 

into areas where high density populations of J. vulgaris are present. 

6.5 Recommended Research 

Further research into the impact of J. vulgaris and N. annulata on native Senecio species 

should be carried out.  As mentioned above as perhaps the most useful data that could be 

collected is a field experiment quantifying the strength of apparent competition along a 

gradient extending away from an area with a high density of J. vulgaris.  Again, this was 

attempted in the last part of my final field season, but the experiment failed due a combination 

of factors.  Data from the successful implementation of such an experiment would help to 

clarify precisely how much pressure is exerted on transplanted native species by N. annulata 

in relation to J. vulgaris proximity while limiting the influence of habitat and competition.   

Apparent competition with J. vulgaris may also be impacting other endemic species that have 

shown a contraction in their geographic ranges and altitudinal distributions.  The impact of J. 

vulgaris and N. annulata on S. rufiglandulosus, S. dunedinensis and other endemic Senecio 

species should be investigated further.  In my Ph.D. research I was unable to examine the 

effect of J. vulgaris proximity on populations of S. rufiglandulosus as there were only three 

small populations on the South Island that I was able to locate.  Cage trials using transplanted 

S. rufiglandulosus were unsuccessful after the cages were trampled by livestock and washed 

away in a flood.  No populations of S. dunedinensis were encountered in my survey area.  The 

analysis of the herbarium records indicate that S. dunedinensis is no longer found in most of 

the areas and elevations that it once was.  While the analysis was less clear as to the effects on 

S. rufiglandulosus, the distribution of this species is thought to have retracted from many 

areas of New Zealand (e.g. J. J. Sullivan, et al., 2008).  Future research should include these 

species and the effects of J. vulgaris-enhanced populations on them. 

In addition to examining if observed levels of N. annulata herbivory are sufficient to limit 

populations of endemic Senecio species, future research should investigate the impact of other 
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native, genus-specific insect herbivores that use J. vulgaris and native Senecio species (J. J. 

Sullivan, et al., 2008).  Suggested research includes finding out if these herbivores function in 

mediating apparent competition between J. vulgaris and native host species.  One example, 

the native blue stem borer (Patagoniodes farnaria, Lepidoptera: Pyralidae), is commonly 

found feeding in the stems of J. vulgaris.  While P. farnaria does not appear to use S. 

wairauensis, it does use the native species S. minimus and S. hispidulus (J. J. Sullivan, et al., 

2008) and endemic S. rufiglandulosus (personal observation).  Incidentally, the use of S. 

rufiglandulosus by P. farnaria may be one reason why this host is now so much rarer than S. 

wairauensis. 

Another research goal could be determination of S. minimus traits that make it less attractive 

to N. annulata and allow it to persist in the landscape near J. vulgaris.  Chemical defense may 

be one such trait.  S. minimus is also found in Australasia where it co-occurs with other 

Nyctemera species.  Existence in the New Zealand landscape as a non-endemic native may 

give S. minimus an advantage over endemic Senecio species in the form of greater 

evolutionary “experience” in chemically defending itself against other Senecio herbivores 

(including congeneric moth species) and in developing a greater tolerance to feeding.  While 

S. minimus was evolving these adaptations in other parts of its geographic range, N. annulata 

was evolving under different conditions with endemic New Zealand Senecio.  When 

expanding into new geographic ranges, species like S. minimus bring along with them 

adaptations acquired through their prior history of ecological interactions (Agrawal, 2007; 

Agrawal & Fishbein, 2006; Agrawal, et al., 2006; M. D. Bowers, 1992; Mauricio & Rausher, 

1997; J. Rosenthal & Dirzo, 1997; Strauss & Agrawal, 1999).  Some of these adaptations and 

traits may be responsible for low palatability to N. annulata and may have given this host 

species the ability to persist in areas where J. vulgaris is present. 

Identification of the shared parasitoids (discussed above) is another area where more research 

is needed.  Determining the relationships between parasitoids that use N. annulata and their 

other moth hosts has been accomplished to a small extent, but there is plenty of work to be 

done on this area (discussed in Chapter 2).  Finding out how parasitoid sharing translates in 

the landscape - in terms of preference and performance in different hosts - and how this 

affects N. annulata populations would be a valuable next step.  It would also be helpful in 

determining what effects that a N. annulata population explosion might have had on native 

Lepidoptera, several of which are considered rare and/or endangered (B. H. Patrick & 

Dugdale, 2000). 
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Another recommendation of this research is to once again survey Nyctemera populations 

across New Zealand (and to a greater degree, the North Island) to determine the distribution 

of the Australian congener, N. amica.  Preference for the various species of Senecio available 

in New Zealand by N. amica is still unknown.  Given that N. amica is not native to New 

Zealand it may have a preference for different Senecio species that contrasts somewhat with 

that of N. annulata.  The resulting dominance of N. amica in particular areas may change the 

Senecio community composition in the long term – although it is still unclear how much 

Nyctemera herbivory (at densities that are not elevated by J. vulgaris) would actually limit 

Senecio populations.  Of similar concern is the extent to which N. amica is interbreeding with 

N. annulata (Kay, 1980).  This should be considered a conservation issue and one of cultural 

importance to Māori.  Geographic range expansion by N. amica and widespread interbreeding 

may effectively exclude N. annulata from large areas or even cause this iconic, endemic moth 

to go extinct altogether while being replaced by an Australian species.  Finally, this 

phenomenon of apparent competition between J. vulgaris and native and endemic Senecio and 

mediated by shared herbivores should be examined at other locations in New Zealand. 

6.6 Concluding Remarks 

In their review of indirect effects, White et al. (2006) noted that one theoretical outcome from 

a species invasion is that the invader will interact with native herbivores in a way that causes 

increased pressure on native hosts.  They hypothesized that an invasive weed could provide an 

insect herbivore with additional food biomass in the landscape and increase the insect’s 

population.  The resulting swell in herbivore abundance would almost certainly increase the 

intensity of the negative impacts to native host species in the presence of the alien plant; 

however they were unable to find any record of apparent competition between an alien and a 

native plant species and mediated by a native herbivore.  My research shows that apparent 

competition between an exotic and a native and mediated by a native insect herbivore has 

occurred as a result of J. vulgaris invasion.  As White et al. (2006) noted, it is not uncommon 

for native insect herbivores to expand their host range to use invasive plants and there are 

numerous documented examples (Agrawal, 2000; Auerbach & Simberloff, 1988; Gratton & 

Welter, 1999; Grosman, et al., 2005; Holmes, et al., 1987; Keeler & Chew, 2009; Lau & 

Strauss, 2005; Louda, 2000; Louda, et al., 2005; Mitchell, et al., 2006; J. J. Sullivan, et al., 

2008).  That being the case, it is likely that indirect, herbivore-mediated effects of invasive 

weeds on native plants are mistaken for competition and are actually more common than 

realized.  Therefore this issue urgently requires more attention and study. 
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The concern that indirect effects on native plants via native insect herbivores may be 

influenced by weed invasion is also pertinent to the field of biological control.  In the study 

system that I used for my research, N. annulata may be viewed as a “worst case scenario” for 

biological control.  While it readily uses J. vulgaris and inflicts measurable damage on this 

host, it was still unable to control this species’ establishment and spread.  As a result of the J. 

vulgaris invasion, N. annulata reached high abundances, which appears to have had 

consequences for native plants and moths.  The host range for N. annulata includes several 

native plant species and it shares parasitoids with several moth species – including natives and 

introduced biological control agents.  These outcomes are examples of the risks of biological 

control that are of primary concern to researchers and the public  

In reality, however, N. annulata is not a biological control agent, but rather an endemic moth.  

The impacts described above were not related to its introduction, but rather influenced by 

weed invasion.  One could therefore argue that the end results here, in terms of impacts to 

native food webs from weed invasions, are not that different from a “worst case scenario” 

biological control introduction.  If indirect effects of weed invasions on native food webs are 

as common as my research suggests), it is incongruous that researchers and the public should 

place so much attention on the risks of biological control but give comparatively little 

attention to the impacts of invasive weeds on native food webs.  The implications for 

biological control risk assessment are that the all of the impacts from invasive weed in the 

landscape need to be considered in the calculation of whether to undertake importation and 

release of biological control agents.  This decision should include assessing influence on 

resident species and native food webs by the invader through indirect effects and 

acknowledging the damage caused in the absence of control measures. 
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     Appendix A 
Senecio Data Sources (Chapter 3) 

A.1 Overview 

In this section I want to convey my appreciation to the entities and individuals that allowed 

me to use their Senecio collection data in my Ph.D. project.  The Senecio and J. vulgaris 

records that I used in Chapter 3 came from the herbarium (A.2) and vegetation survey (A.3) 

sources listed below.  All data sets used from the public access (A.3.1.1) and restricted access 

(A.3.1.2) lists of the National Vegetation Survey Database are listed as well, with specific 

acknowledgement of the custodial entities and individuals that granted permission to use their 

restricted access data (A.3.1.3) 

A.2 Herbarium Data Sources 

The Allen Herbarium (CHR), The Auckland University Herbarium (AK), National Forestry 

Herbarium (NZFRI), Museum of New Zealand/TePapa Tongarewa Herbarium (WELT), 

Lincoln University Herbarium (LINC), University of Waikato Herbarium (WAIK), Dame 

Ella Campbell Herbarium (MPN), The British Museum (BM). 

A.3 Vegetation Survey Databases 

Department of Conservation BioWEB Database (BWEB), National Vegetation Survey 

Database (NVS). 

A.3.1 NVS Data Soures by Individual Study Name 

A.3.1.1 Public Access Data Sets 

AORANGI FOREST PARK FOREST 1979-1980, AORANGI FOREST PARK FOREST 

1983-1984, AORANGI FOREST PARK FOREST 1985-1986, ASHLEY/PUKETERAKI 

FOREST 1984, BIG BUSH FOREST 1983, BIRCHWOOD WETLAND 2009-2009, BLUE 

MOUNTAIN EXCLOSURES FOREST 1980-1980, CAMP CREEK FOREST 1982-1983, 

CAMP CREEK FOREST 1983-1984, CDRP EARNCLEUGH STATION 2008-2008, COBB 

FOREST 1986, COLERIDGE FOREST 1987-1988, DUNSTAN FOREST 1984-1985, ERUA 

STATE FOREST EXCLOSURES FOREST 1984, FAREWELL SPIT 2008-2008, 

FIORDLAND NTH FOREST 1969-1970, FOX RIVER FOREST 1982, FYFFE-MOUNT 

FOREST 1980, GRANITE HILL FOREST 1983, HOHONU FOREST 1973-1974, 
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HOKITIKA FOREST 1971-1972, HOKITIKA FOREST 1985-1986, HOKITIKA RIVER 

FOREST 1983-1986, HOWARD ECOLOGICAL AREA FOREST 1983-1984, HOWLONG - 

IKAWHENUA RANGE FOREST 1997, HOWLONG - MATEMATEAONGA FOREST 

1996-2004, HUNDALEE FOREST 1997, HURUNUI SOUTH FOREST 1986-1987, 

KAIKOURA FOREST 1966-1967, KAIKOURA FOREST 1983, KAIMAI EXCLOSURES 

FOREST 1980-1981, KAIMAI FOREST 1974, KAIMANAWA/WAIPAKAHI FOREST 

1983-1984, KAIMANAWA/WINDFALL FOREST 1983-1984, KARAMEA FOREST 1984-

1985, KAWEKA - MANGATAINOKA EXCL FOREST 1982, KAWEKA MIXED 1981-

1982, KNOBS FLAT 2008-2008, LONGWOOD FOREST 1977-1978, MARATOTO 

FOREST 1982, MCKENZIE MIXED 1984, NELSON - MURCHISON EXCL FOREST 

2000, NGAUMU FOREST 1983-1984, NORTHLAND/WAIKARE E.A. FOREST 1984, 

NYDIA SADDLE - MAHOE FOREST 1994, OLD MAN FOREST 1983-1985, OXFORD-

MOUNT FOREST 1985-1986, PAKAHI FOREST 1985-1986, PAPAROA FOREST 1985, 

PELORUS FOREST 1983, POULTER FOREST 1984, PUREORA EXCLOSURES FOREST 

1986, PUREORA FOREST 1982-1983, PUREORA FOREST 1986, RAKAIA/MATHIAS 

FOREST 1986-1987, RAUKUMARA EXCLOSURES FOREST 1985, RIMUTAKA 

FOREST 1984, RIMUTAKA FOREST 1985-1986, ROCKY HILLS FOREST 1984, 

ROTOEHU FOREST 1979-1980, ROTORUA LAKES FOREST 1983-1984, ROTORUA 

LAKES FOREST 1999, RUAHINE (TUKITUKI) FOREST 1983, RUAHINE 

NORTH/KAWEKA RUAHINE FOREST 1983, RUAHINE-NORTH FOREST 1983, 

RUAHINE-POHANGINA FOREST 1983, RUAHINE-POHANGINA FOREST 1996, S. W. 

M. E. P. FOREST 1983-1985, S. W. M. E. P. MAHITAHI RIVER FOREST 1984-1985, S. 

W. M. E. P. MOERAKI FOREST 1985, S. W. M. E. P. PARINGA-OTOKO FOREST 1984-

1985, STEWART ISLAND EXCLOSURES FOREST 1979, STEWART ISLAND 

EXCLOSURES FOREST 1980, STEWART ISLAND NORTH (STEWRT) 2008-2009, 

TAIPO RIVER FOREST 1983-1984, TAKITIMU MIXED 1961-1962, TARAMAKAU 

FOREST 1968-1969, TARAMAKAU FOREST 1978-1979, TARAMAKAU FOREST 1992, 

TARANAKI-NORTH FOREST 1983-1984, TARARUA FOREST 1974-1975, TARARUA 

FOREST 1983-1984, TARARUA FOREST 1984-1985, TAWARAU EXCLOSURES 

FOREST 1993-1994, THREE KINGS ISLANDS FOREST 1996, TONGARIRO FOREST 

1983-1984, UREWERA EXCLOSURES FOREST 1980-1981, UREWERA-SOUTH 

FOREST 1980-1981, UREWERA-SOUTH FOREST 1981-1982, UREWERA/WAIKARE 

FOREST 1980-1981, WAIAU FOREST 1980-1981, WAIMAKARIRI FOREST 1983-1984, 

WAIMANGARARA FOREST 1985-1986, WAIPAPA MIXED 1983-1984, WAIPORI 

FOREST 1978, WAIPOUA FOREST 1984-1985, WAITAANGA FOREST 1994, WAITAKI 
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FOREST 1973-1974, WAITAKI FOREST 1985-1986, WAITAKI GRASSLAND 1985-1986, 

WANGANUI N.P. FOREST 1986-1987, WANGANUI RIVER FOREST 1983, 

WELLINGTON LND DISTRICT FOREST 2003-2004, WELLINGTON LND DISTRICT 

FOREST 2004-2005, WHIRINAKI FOREST 1979-1980, WOODHILL FOREST 1983-1984. 

A.3.1.2 Restricted Access Data Sets 

ADAPTIVE MANAGEMENT OF DEER (DOC) FOREST 2006, ARROWSMITH FOREST 

1985, AVOCA KANUKA MIXED 2008, BANKS PENINSULA OUTCROPS MIXED 2001, 

BLENHEIM ECOLOGICAL DISTRICT PNAP SURVEY MIXED 2001, BOUNDARY 

STREAM EXCLOSURES FOREST 1997, BOUNDARY STREAM SCENIC RESERVE 

FOREST 1999, CAPE JACKSON BIODIVERSITY ASSESSMENT MIXED 2007, 

CAPLES/GREENSTONE FOREST 1997, CARNEY'S CREEK MIXED 1991, CASS 

FOREST 1988, CHEVIOT SCRUB 1994, COLERIDGE FOREST 1987-1988, 

CRAIGIEBURN FOREST 1987-1989, DANSEY FOREST 1989-1990, DUNSTAN FOREST 

1984-1985, EBEX - HINEWAI SCRUB 2005, EBEX AUDIT - KURUNUI SCRUB 2006, 

FIORDLAND NTH FOREST 1998, FLAXBOURNE ECOLOGICAL DISTRICT PNA 

SURVEY MIXED 2001-2002, FOXTON FOREST 1989-1991, FYFFE-MOUNT FOREST 

2007-2008, GLENHOPE (TOPPINGS PROPERTY) FOREST 1996, GRASMERE 

ECOLOGICAL DISTRICT PNAP SURVEY MIXED 2001, HAAST/ARAWATA FOREST 

1998-2000, HAKATERE FOREST 1984-1985, HARATA-MOUNT FOREST 1988, 

HILLERSDEN ECOLOGICAL DISTRICT PNAP SURVEY MIXED 2002-2003, 

HUNDALEE FOREST 1997, HUXLEY FOREST 1987-1988, KAIKOURA FLOODPLAIN 

SUCCESSION STUDY MIXED 2001, KAIMANAWA-NORTH FOREST 1987-1988, 

KAKAHU FOREST 2002, KAWEKA - LOTKOW EXCL FOREST 2001, KAWEKA 

FOREST 1998-2000, KOKATAHI MIXED 1999, LINDIS MIXED 1984-1985, 

MANAWATU PLAINS FOREST 1993, MANORBURN GRASSLAND 1989, MATAITAI 

ECOMONITORING FOREST 2002-2003, MATEMATEAONGA FOREST 1995, 

MATHIAS FOREST 1989, MCKENZIE MIXED 1984, MOLESWORTH MIXED 1987, 

MOTU FOREST 1983-1984, MOTUNAU SCRUB 1994, MT HUTT FOREST 1988-1989, 

NELSON-WEST MIXED 1982-1983, NELSON-WEST/ALPINE GRASSLAND 1982-1983, 

NELSON-WEST/MATIRI SLIPS MIXED 1982-1983, NELSON-WEST/PERMANENT 

FOREST 1982-1983, NELSON-WEST/VALLEY GRASSLAND 1982-1983, OLD MAN 

FOREST 1983-1985, PAHIATUA FOREST 1991, PENCARROW FOREST 2004-2005, 

PISA FOREST 1984-1985, PUKEAMARU FOREST 1964-1985, PUREORA 

EXCLOSURES FOREST 1993, PUREORA FOREST 1993, RANGITIKEI FOREST 1993, 
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ROCKY HILLS AND REWA BUSH FOREST 2005, ROWALLAN BIRD FOREST 1983, 

RUAHINE STATE FOREST EXCL FOREST 1996, SECRETARY ISLAND FOREST 2003-

2004, SOUTH ISLAND COASTAL MIXED 1997-1998, TARANAKI, NORTH FOREST 

1985-1986, TARINGATURA FOREST 1996, TE HOE FOREST 2002, TIMARU MIXED 

1998-1999, TURANGA FOREST 1990, TURNBULLS BUSH FOREST 2003, TWO 

THUMB FOREST 1985, UPPER WAITAKI BASIN RIVERBED GRASSLAND 2002-2003, 

UREWERA EXCLOSURES FOREST 1997, WAIPORI FOREST 1991, WAITUTU 

FOREST 1996-1998, WANAKA FOREST 1984, WHAKAPAPA ISLAND HABITAT 

INVENTORY FOREST 2006-2007, WHANGANUI NAT. PARK: MANGAWAITI EAST 

FOREST 2006, WITHER HILLS ECOLOGICAL DISTRICT PNAP SURVEY MIXED 

2002, WOODSIDE FOREST 2000. 
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