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Abstract

Introduction: The New Zealand Government has committed to a 250,000 ha

expansion of plantation forests by 2020 in order to diversify the forestry sector and

capture carbon to mitigate climate change. Whilst introducing novel alien species

can bring economic benefits, the risks of future invasion problems have not been

fully quantified at the appropriate scale for many species. This is because invasions

are a complex mix of species-traits, biogeographic factors, human actions, and also

because many long-lived woody species have lag-phases between initial introduction,

naturalisation and invasion.

This thesis investigates why some species become invasive whilst others do not

using the genus Pinus as a model system, and New Zealand (NZ) and Great Britain

(GB) as study regions. I improve on previous studies that have addressed this question

by accounting for successes and failures across the entire invasion process (which

incorporates the stages introduction, naturalisation and invasion).

Methodology: I compare four methods of quantifying invasion risk by: (a) testing

how robust the Australian weed risk assessment tool (WRA) is to methodological

issues including taxonomic range, region and knowledge of invasive behaviour

elsewhere; (b) quantifying the relative contribution of species, biogeographic, and

human factors to invasion success using boosted regression trees (BRT); (c) assessing

whether phylogenetic relationships can predict invasion risk, and whether control-

ling for phylogeny in Markov chain Monte Carlo generalised linear mixed models

(MCMCglmm) changes the importance of species, biogeographic and human factors

in invasion success; and (d) dissecting the causal relationships between species,

biogeographic and human factors using a novel Bayesian method for exploratory

path analysis.

Results: I found that the WRA performed well at discriminating between successful

and failed species at the introduction and naturalisation stages (AUC ≥ 0.80) but not

at the spread stage, and these results were consistent between NZ and GB. When

I repeated the procedure without information of species’ prior invasion behaviour,
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the WRA was less accurate at distinguishing among species (area under the reciever

operating characteristics curve or “AUC” ≤ 0.73). Thus the WRA may not be a viable

approach to risk assessment when this crucial information is unavailable.

Boosted regression tree analysis indicated that human (high forestry use index)

and biogeographic factors (closer climate match; NZ only) were the strongest predic-

tors of introduction success. Human (a high forestry use index, large area planted

and longer residence time) and biogeographic attributes (a close climate match

and larger native range size) were the strongest contributors to naturalisation (NZ

and GB). Species attributes (including the Z-score, a composite measure of pine

invasiveness) contributed relatively little compared to other factors at all stages. The

BRT method was reliable (introduction stage AUC ≥ 0.86; naturalisation stage AUC

≥ 0.98), relatively straightforward, and could be used as an alternative approach to

risk assessment when the WRA may fail.

I found that there was no phylogenetic signal in introductions, naturalisations,

invasions, or in any traits that might determine success for Pinus. Consequently,

phylogeny may not be a useful predictor of invasion risk for pines. Phylogenetically

controlled MCMCglmm produced the same results as non-phylogenetically controlled

models with a similar level of reliability (introduction AUC = 0.92; naturalisation

AUC = 1.00). These results suggest that non-phylogenetic models produced reliable

results and that including phylogeny will not bias results even when no phylogenetic

signal is present.

Exploratory path analysis suggested that introduction success was determined

directly by a close climate match and high forestry use index. In contrast to previous

results at the naturalisation stage I found that Pinus introductions were also highly

influenced by the Z-score (species attributes) as well as direct links with human and

biogeographic effects. Propagule pressure (residence time and area planted) was a

common mechanism for Pinus and the additional study genus Trifolium, highlighting

the importance of propagule pressure as a null model of invasions. Path analysis also

performed well at the introduction (AUC = 0.93) and naturalisation stages (AUC

= 1.00).

Conclusions: The novel aspects of this thesis include: quantifying failures at the

introduction stage; comparing the relative importance of species, biogeographic

and human factors on success at each stage of invasion; and comparing how the

importance of these factors varies for the same taxonomic group across two regions.

The results of this thesis suggest that there is an inherent conflict between introducing
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species for forestry and their invasion risk. This conflict requires measures such as

plant breeding and landscape management in order to uncouple utility from risk.

Risk assessments such as the WRA may not be suitable for all species when they

have no history of introduction outside their native range. Therefore an adaptive

approach to risk assessment is needed that includes both the costs and the benefits

of introduction and utilises alternative approaches to risk assessment when standard

approaches such as the WRA may fail.

Keywords: alien; biogeography; climate match; forestry; hemisphere; human use;

introduction; invasion; life-history traits; naturalisation; path analysis; phylogeny;

phylogenetic signal; Pinus; propagule pressure; spread; Trifolium; weed risk assess-

ment.
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Chapter 1

Introduction

1.1 Commercial trees as invasive aliens

Alien trees introduced for commercial forestry, agroforestry, erosion control and

ornamental purposes have become invaders in ecosystems around the world (e.g. CAB

International, 2010; Essl et al., 2011, 2010; Křivánek & Pyšek, 2008; Nuñez & Medley,

2011; Procheş et al., 2012; Richardson & Rejmánek, 2004, 2011; Richardson et al.,

1994). Such deliberate range expansion circumvents natural dispersal barriers and

creates an opportunity for trees to persist outside cultivation (Richardson & Rejmánek,

2004). Forestry is an efficient pathway for invasion, because it introduces individuals

from provenances suitable for particular climates and implements large-scale planting,

creating massive propagule pressure (Essl et al., 2011, 2010; Křivánek et al., 2006).

Forestry is known to be a significant pathway for introduction (Richardson et al.,

2000b), and commercial scale plantations are a key factor in their escape and

naturalisation globally (Essl et al., 2011, 2010). Because invasive organisms represent

a significant threat to biodiversity (Wilcove et al., 1998), it is essential that the risks

involved in introducing new species for commercial purposes are fully understood.

Invasive commercial trees, particularly conifers, are especially prevalent in the

southern hemisphere, where large areas of land in Australia, New Zealand, south-

ern Africa, and more recently South America, have been converted to plantations

(Richardson & Higgins, 1998). Due to their tendency to form dense stands, planta-

tion trees can affect many ecosystem processes. Some tree species can alter natural

ecosystems, for example by increasing water loss (Dye, 1996; Zavaleta, 2009), over-

growing tussock grasslands (Ledgard, 2001), increasing fuel loads (Brooks et al.,

2004) and nutrient enrichment (Richardson & Higgins, 1998). Conversely, similar

species introduced outside their native ranges to the northern hemisphere seem less

likely to establish outside cultivation (Adamowski, 2004; Carrillo-Gavilàn & Vilà,

2010; Mortenson & Mack, 2006; Richardson & Rejmánek, 2004). The invasive spread

of plantation trees was first noticed in New Zealand and southern Africa in the late

1



2 CHAPTER 1. INTRODUCTION

nineteenth and early twentieth centuries, and in Australia in 1950 (Richardson et al.,

2008). For example in New Zealand, conifer invasions are one of the most visible

and costly weed problems (Harding, 2001, Figure 1.1), and conifers make up 70%

of the woody species listed on the consolidated list of environmental weeds in New

Zealand (Howell, 2008).

Figure 1.1. Pines are highly visible invaders, here pictured spreading across high country
grasslands near State Highway 8, close to Lake Pukaki, Canterbury, New Zealand.

Afforestation of marginal land is an attractive option for many governments to

meet targets for carbon emission reductions in order to mitigate climate change.

Governments of industrialised nations that signed up to the Kyoto Protocol are

committed to “the promotion of afforestation and reforestation" (Article 2 of the Kyoto

Protocol; United Nations, 1998) as long-term carbon sinks. Alien species already

exploited commercially in a region, or species not yet introduced that have proven

valuable elsewhere, are likely to be the preferred choice for afforestation schemes.

The New Zealand government has committed to a 250,000 hectare expansion of

planted forest area by 2020 to mitigate climate change impacts and as the basis for

sustainable growth in the forestry sector; and has already achieved a 2,783 hectare

increase in forest area since 2007 (Emmissions Trading Scheme Review Panel, 2011).

Ninety percent of the forest area in New Zealand is planted with Pinus radiata (MAF,

2011). However most of the sites available for this expansion are outside the suitable

area where P. radiata, can be grown productively. Therefore, there is an urgent

need to identify suitable species to diversify planted forests in New Zealand, and
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elsewhere. While diversification could bring enormous economic benefits, these

benefits need to be weighed against the risk that more widespread planting of some

species may facilitate their escape and spread.

1.2 Defining invasion by stages

Lack of standardisation around terms such as “introduction”, “naturalisation” and

“invasion” can result in studies being non-comparable or ambiguous. Recently the

concepts and definitions around the invasion process have been formalised in an

attempt to standardise terminology (e.g. Blackburn et al., 2011; Richardson et al.,

2000b). Invasions are now viewed as a series of stages that species must pass through

in order to become invasive (Blackburn et al., 2011, Figure 1.2). The definitions

of each stage used throughout this thesis are as follows (sensu Richardson et al.,

2000b):

Introduction Introduced species must have been selected from the global pool for

transport and introduced to a new region through human agency, overcoming

a major geographical barrier.

Naturalisation From the pool of species that are introduced to a region, some go on

to naturalise. Naturalised species (often called “established species”) will have

established self-sustaining populations in the wild without direct intervention

from humans, recruiting offspring freely, usually close to the source popula-

tions. Throughout this thesis, species that are present in the new environment

as “casual” (alien species that are present and reproducing occasionally in

an area, but which do not form self-replicating populations, relying on re-

peated introductions for their persistence) are classified as introduced but not

naturalised.

Invasion Invasive species are naturalised species that produce reproductive off-

spring, often in large numbers, and at a considerable distance from the parent

plants (at scales: > 100m; < 50 years for taxa spreading by seeds and other

propagules). Invasive species thus have the potential to spread over a large

area.

Alien Once a species has been transported to a new region, the species is referred

to as “alien” in that new region. Thus the term alien refers to introduced,

naturalised and invasive species.
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In addition to defining the terminology I use relating the the status of a species, I

also use the term “propagule pressure” throughout this thesis. Propagule pressure in

this thesis is analogous to “introduction effort”. That is, I consider propagule pressure

as an estimate of the introduction effort experienced by each species, measured as

the total planting effort experienced by each species based on historical records.

Terminology

Stage Naturalisation SpreadTransport Introduction

Alien

Introduced

Naturalised/Established

Invasive

Figure 1.2. Framework of invasions as a stage-based process, and the terminology that
describes species in each stage in this thesis, following Blackburn et al. (2011).

The definition of invasive used in this thesis deliberately does not include any

quantification of the impacts that species may have in the new environment. Terms

describing harmful species (species having negative impacts) include: “weed” (plants

grown in sites where they are not wanted, usually having detectable economic

or ecological impact, not necessarily an alien species); “environmental weed” (an

alien species that is unwanted and causing impacts in unmanaged non-agricultural

systems); and “transformers” (an invasive plant that changes the character, condition

or form of ecosystems over a substantial area relative to that of the non-impacted

ecosystem). Whilst these terms may be used to describe perceived problem species,

I make no explicit attempt to quantify impact other than as the degree of spatial

spread of a species in the landscape.

Using this stage-based framework has three main advantages. First, it provides

unambiguous criteria for categorising species as introduced, naturalised or invasive.

Second, knowing which pool a species belongs to is important when drawing conclu-

sions about the factors that determine success or failure at a given stage (Cassey et al.,

2004). For example, when attempting to identify why some species are invasive

(have spread), comparing the traits of all species in the global pool with the traits of

those that have become invasive will miss out the introduction and naturalisation

stages. This misspecification lumps all the traits that controlled success or failure at

the introduction and naturalisation stage into an analysis of the invasion stage, and
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may lead to spurious results (Cassey et al., 2004). Finally, this framework forces us to

consider the traits of species that failed at a given stage, which can be as informative

as the traits of the species that made it all the way though to become invasive (Diez

et al., 2009).

Whilst there is a great deal of information available quantifying factors that deter-

mine naturalisation success, relatively few studies have included success and failures

at the introduction stage (Puth & Post, 2005). However, non-random selection at

the introduction stage can bias the pool of species available for naturalisation (e.g.

Blackburn & Duncan, 2001). Studies quantifying introduction success and failure

remain rare for plants. One study used introductions, naturalisations and invasions

of the genus Trifolium (true clover) in New Zealand (Gravuer et al., 2008). An

additional study examined introductions to, and spread from, a botanical garden in

Tanzania (Dawson et al., 2009a,b).

1.3 The genus Pinus as a model system

The genus Pinus (pine trees) has become a model system for studying invasions

(Richardson, 2006). Members of the genus are among the most-common forestry in-

vaders, with 21 out of 115 species being invasive or naturalised globally (Richardson

& Rejmánek, 2004). Due to their economic importance and obvious impacts in native

ecosystems, there is a wealth of information available about species introduction and

naturalisation histories, life-history traits, native and naturalised distributions and

phylogenetic relationships (e.g. Gernandt et al., 2005).

A suite of species, biogeographic attributes, and human factors have been linked

with pine invasions globally: (1) A Z-score derived from three life-history traits (seed

mass, minimum juvenile period, and minimum interval between large seed crop

years) is able to distinguish between invasive and non-invasive species (Rejmánek

& Richardson, 1996). Species with small seeds, short juvenile periods, and short

intervals between large seed crops are most likely to be invasive. However, the

Z-score was originally derived from a sub-set of the genus (29 species) and it is

not known how generalisable the Z-score is to the whole genus, and across regions

with different introduction histories; (2) A close climate match between the native

and introduced range increases naturalisation and invasion success in pines (e.g.

Essl et al., 2011, 2010; Nuñez & Medley, 2011). The size of a species’ native range

size correlates with its naturalised range size, such that species with a wider native
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distribution also have a larger naturalised distribution (Procheş et al., 2012). This

trend has been found in other conifers (Essl et al., 2011, 2010); (3) Finally, human

factors may contribute to invasion risk. An index of global forestry use (measured

as the number of citations a species received in the CABI Forestry Compendium)

correlates with naturalised range size in pines (Procheş et al., 2012) and use in

commercial forestry is linked with conifer naturalisations globally (Essl et al., 2011).

Despite this knowledge, there has not yet been a systematic test of how these

factors act at each stage of the invasion process (explicitly including the introduction

stage) across different regions to determine invasion risk for pines. Understanding

pine invasions is likely to inform our knowledge of the risk from other woody genera

used for forestry, such as Acacia (Richardson et al., 2011), Abies, and Cupressus

(Essl et al., 2011), and Eucalyptus (Rejmànek & Richardson, 2011). Therefore, a

quantitative understanding of the factors determining pine invasions can move the

discipline on from documenting invasions to predicting invasions.

1.4 Quantifying invasion risk

Since the first synthesis of invasion biology was published in 1958 (Elton, 1958),

a large body of work has aimed to identify and predict why some species become

invasive whilst others fail, the aim of this work being to better predict and thus

prevent future invasions. Methods used for identifying potentially invasive species

and attempting to predict invasions largely fall into two categories. First, the

formulation of structured risk assessment procedures that involve answering a set of

questions, the outcome of which is optimised based on prior information to identify

potentially invasive species. Second, researchers have used statistical procedures to

identify how a range of factors determine invasion success, with the aim of finding

general rules. Finally, there is growing interest in how phylogenetic relationships

between species could be used to inform risk, a factor that is often suggested as being

important but rarely formally tested (e.g. Miller et al., 2011). Therefore, this thesis

focuses on: (1) assessing a widely used risk assessment scheme, (2) using multiple

statistical techniques to identify factors determining success, and (3) quantifying the

ability of phylogenetic relatedness to predict invasive species.
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1.4.1 Weed risk assessment

Formal risk assessments are a popular way to quantify invasion risk. The most widely

used and tested risk assessment available is the Australian weed risk assessment

(WRA) scheme, which was developed in Australia and New Zealand (Pheloung et al.,

1999) and is in use to screen new introductions. The WRA uses the answers to 49

questions concerning the species’ biology, biogeography and behaviour elsewhere to

classify a plant species according to its risk of becoming invasive (Pheloung et al.,

1999). The WRA classifies species into: a) those that pose little risk of becoming

invasive in the new location and could be accepted for introduction; b) those that

pose a high risk and should be rejected; and c) an intermediate group that require

further evaluation. These classifications are assigned using a pre-defined threshold

score which was optimised using data from Australia and New Zealand to reject all

historically serious weeds, 10% or fewer non-weeds, and recommend no more than

30% of species for further evaluation (Pheloung et al., 1999).

The WRA has been tested for a wide range of plant species and habitats, and

found to have a high degree of reliability (reviewed in Gordon et al., 2008b; Roberts

et al., 2011). However, the WRA has several limitations that need to be fully explored

before it can be accepted as the de facto risk assessment scheme. First, it is known

to be less reliable when information on previous invasive behaviour of a species is

not available (Caley & Kuhnert, 2006). For many species, particularly those that are

used widely for commercial purposes, such information may be readily available in

databases (e.g. the Forestry Compendium; CAB International, 2010). However, in

situations where a species has never been introduced outside its native range or has

no history of invasion elsewhere, as is the case for New Zealand where 20% of recently

naturalised alien plant species have no history of invasion elsewhere (Williams et al.,

2000), the reliance of the WRA on this criterion may lead to inaccurate assessment

of potential invasion risk. Second, the repeatability of the WRA has also not been

tested in different regions for the same taxonomic group despite the WRA score

being able to vary between regions due to region-specific questions related to climate

suitability and the presence of pests and deseases. And finally, the way that the

WRA has been retrospectively tested using ambiguous definitions of invasiveness

that do not conform to the model of invasions as a series of stages (Blackburn et al.,

2011) means that it is not known at exactly which stage in the invasion process the

assessment is most accurate.
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1.4.2 Factors determining invasions

The alternative to using structured risk assessment schemes such as the WRA for

assessing invasion risk is statistical analysis of the factors that confer success and

failure through retrospectively testing which species succeed or fail at different stages

of the invasion process. Using a variety of analytical methods, species traits, biogeo-

graphic and human attributes have been linked with success at the naturalisaion

and invasion stages of the invasion process. For example, species traits such as

rapid maturation, small seeds and frequent reproduction, have been linked with

invasiveness in pines and conifers more generally (Grotkopp et al., 2002; Rejmánek

& Richardson, 1996; Richardson & Rejmánek, 2004; Richardson et al., 1994). More

recent evidence points to the role that human and biogeographic attributes play in

determining naturalisation and invasion success. Biogeographic factors that increase

naturalisation/invasion probability in woody species include a closer climate match

between a species’ native and introduced range (Nuñez & Medley, 2011), and a large

native range size (e.g. Procheş et al., 2012). Human factors such as introduction

effort (or “propagule pressure”) can increase the chance of an introduced species

naturalising and invading (Boulant et al., 2009; Gassò et al., 2010; Křivánek et al.,

2006; Medawatte et al., 2010; Pyšek et al., 2009b), as can residence time (Pyšek

et al., 2009b; Richardson et al., 1994) and economic use (Essl et al., 2011, 2010).

This large body of previous reserch was used to guide the data collection in this

thesis to focus data collection.

Despite these findings, there is little research on how these three main groups

of variables (species, biogeographic and human) interact to determine invasion

outcomes. Specifically, the relative importance of these variables on success across

the invasion process (incorporating failures at the introduction stage) has only been

assessed for one group of species (Trifolium or true clovers) that were intentionally

introduced to New Zealand (Gravuer et al., 2008), and has not previously been

assessed for other species. This study found that human factors were important at

the introduction stage, biogeographic variables were important at all stages, and

factors acted differently at each stage. Thus it is unclear which factors are repeatedly

the most important, and how this can vary between different regions, stages of

invasion, and with taxonomic group. Furthermore, no study has attempted to

quantify the causal linkages between these multiple variables and success at different

stages of the invasion process, despite methods such as path analysis being well

established in the ecological and invasion literature (e.g. Grace, 2006; Shipley, 2000).
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Understanding the relative importance of variables and the causal structure linking

them together would be useful for informing managers about avenues for managing

future risk and could potentially be used to improve current risk assessments such as

the WRA.

1.4.3 The role of phylogeny

Phylogenetic relationships between species have been recognised as an important

factor that could be used to identify risk. Because related species may share similar

traits through shared ancestry (Harvey & Pagel, 1991), related species may also

share traits that promote invasiveness. This theory has been incorporated into the

WRA where species with congeneric invaders are given a higher risk score (Pheloung

et al., 1999). Several invasion studies have investigated this idea empirically by

classifying species to higher taxonomic levels such as family, order and subclass,

and assessed whether some groups have more invasive members than expected

by chance (Alcaraz et al., 2005; Blackburn & Duncan, 2001; Daehler, 1998; Lloret

et al., 2005; Pyšek, 1998; Tingley et al., 2010; Vázquez & Simberloff, 2001; Vilà &

Muñoz, 1999). However, only three families (Amaranthaceae, Papareraceae, and

Polygonaceae) have been identified by more than one study as being over-represented

by invasive species (Daehler, 1998; Pyšek, 1998; Vilà & Muñoz, 1999) and there are

methodological issues, such as the non-comparability of Linnaean taxonomic ranks,

that may confound such analyses.

Extinction risk is a trait analogous but opposite to invasion risk, and has been

investigated in a similar way with the aim of identifying future at-risk species in

order to prioritise conservation efforts (Purvis, 2008). However work in this field has

gone further by using quantitative measures of phylogenetic non-randomness that

utilise phylogenetic trees rather than comparing over-representation in taxonomic

groups. Extinction risk is known to cluster on a phylogeny producing a “phylogenetic

signal” (defined as the statistical non-independence among species trait values due

to their phylogenetic relatedness) in risk at the family and genera level for birds

and mammals (Purvis et al., 2000; Russell et al., 1998), amphibians (Corey & Waite,

2008; Stuart et al., 2004) and plants (Davies et al., 2011; Pilgrim et al., 2004;

Schwartz & Simberloff, 2001; Vamosi & Wilson, 2008). However, identifying high

taxonomic levels, which potentially encompasses large groups of species as risky

may not provide any specific management advice. Therefore, the extent to which
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phylogenetic signal is present in invasion risk, and at which taxonomic level any

signal is evident, is an area that requires further investigation.

Knowledge of species phylogenies can also be useful for statistical analyses into

the factors determining invasion. Conventional statistical tests assume that species

are independent units for analysis, though this is rarely the case because species

are linked through shared evolutionary history (Harvey & Pagel, 1991). However,

many techniques are now available to control for phylogeny, including indepen-

dent contrasts (Felsenstein, 1985), variance partitioning (Desdevises et al., 2003),

phlyogenetic generalised least squares regression (Grafen, 1989), and phylogenetic

mixed models (Housworth et al., 2004). Recently, invasion studies have begun to

incorporate phylogenetic information in order to account for this non-independence

(Alcaraz et al., 2005; Dawson et al., 2009a, 2011b; Jeschke & Strayer, 2006; Küster

et al., 2008; Pyšek et al., 2009a), generally using variance partitioning, independent

contrasts and mixed models. These studies have shown that although in general the

variance attributed to phylogeny has minor explanatory power, the significance of

other explanatory variables can change when phylogeny is included (Alcaraz et al.,

2005; Dawson et al., 2009a, 2011b; Jeschke & Strayer, 2006) and that the effect of

phylogeny may be greater at lower taxonomic levels and at the later stages of the

invasion process (Pyšek et al., 2009a). Taken together, this evidence suggests that

accounting for phylogenetic relationships between taxa is important for invasion

studies, and that some assessment of the level of phylogenetic autocorrelation of

traits should be undertaken.

1.5 Rationale and project aims

As outlined above, introducing alien tree species for commercial purposes can bring

substantial economic benefits. However, there is a considerable risk of alien species

naturalising and spreading when introducing new species. This risk has not yet been

quantified at an appropriate spatial scale and across regions for most species, and is

likely to be underestimated for several reasons: (1) The probability that a species will

naturalise is strongly linked with introduction effort or “propagule pressure”. More

widespread planting increases the amount of seed entering the environment and

increases the probability that wild populations will establish. The scale of planting

for commercial purposes is often orders of magnitude higher than for experimental

plots, and commercial-scale planting is continued over long time periods. (2) The
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characteristics that make a good commercial species under controlled conditions, such

as fast growth rate, may contribute to invasive spread if species escape cultivation

on a large scale (Puth & Post, 2005). (3) Commercial trees show well documented

lag phases, of up to 100 years, from initial introduction date to becoming invasive

(Křivánek & Pyšek, 2008; Richardson et al., 1994). Many species with the potential

to become invasive may not yet have done so because their plantings have been

localised or of small scale. Consequently, the invasion potential of many long-lived

tree species used in both amenity and commercial planting has not yet been realised.

The aim of my thesis is to understand and quantify these risks by identifying

factors that determine why some tree species, but not others, escape cultivation and

become invasive. This area has been identified by Scion (a New Zealand Crown

Research Institute dedicated to improving the international competitiveness of the

New Zealand forest industry and building a stronger biobased economy) as a major

knowledge gap in the FRST funded “Diverse forests for a sustainable New Zealand”

programme. Whilst this research has clear applicability locally, it will also address

fundamental questions in plant invasion ecology, including:

1. How robust is the Australian weed risk assessment (WRA) system, and does

this risk assessment perform equally well in different regions for the same

group of species?

2. Which species, biogeographic, and human factors determine success and failure

at each stage of the invasion process, what is their relative importance?

3. Is there a phylogenetic signal in invasion risk within the genus Pinus, and the

traits linked to invasion success? Does controlling for phylogenetic relationships

among species change the importance of factors?

4. Given the relative importance of key species, biogeographic and human factors,

do these factors determine success or failure at each stage directly or indirectly,

mediated through one or more other variables? Are these causal pathways the

same for diverse taxonomic groups (Pinus and Trifolium)?

5. Given the results of previous chapters, is there an intrinsic conflict between

further afforestation using alien species for carbon capture and a diverse

forestry sector with future invasion risk?

This thesis uses two regions (New Zealand and Great Britain) in order to provide

replication and to assess whether trends found in one region translate to another.
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These regions provide excellent case-studies because they both have a wealth of

information on Pinus introduction, naturalisation and inasion histories, and detailed

records outlining the extent of planting for all species in the genus.

1.6 Thesis outline

All chapters have been written as self-contained research papers and consequently

there is repetition in the introductions and discussions of some chapters. Where

chapters are manuscripts of published research papers, the author contributions

are stated at the end of the chapter, and a full citation is given as a footnote on

the first page of the chapter. All literature cited in the thesis is given at the end to

avoid unnecessary repetition. Chapter 2, Chapter 3 and Chapter 4 use the genus

Pinus as a model system, and New Zealand and Great Britain as comparative regions.

Chapter 5 uses Pinus and Trifolium introductions to New Zealand as case studies.

Chapter 2 examines how robust the popular WRA system is to taxonomic range,

region and knowledge of invasive behaviour elsewhere. Chapter 3 quantifies the

relative contribution of a suite of species, biogeographic, and human factors to success

and failure at the introduction and naturalisation stages of the invasion process in

New Zealand and Great Britain. Chapter 4 assesses whether there is phylogenetic

signal in invasion risk for pines, and whether controlling for phylogeny changes the

conclusions about which factors determine introduction, naturalisation and invasion

success. Chapter 5 applies a novel Bayesian method for exploratory path analysis,

to quantify the direct and indirect causal effects of variables determining Pinus and

Trifolim introduction and naturalisation to New Zealand. Finally, in Chapter 6, I

discuss the implications of my results from all previous chapters for quantifying

invasion risk in pines, the implications beyond pines, and suggest avenues for future

study. Because each chapter is written as a self-contained research paper, Chapter 6

deals only briefly with the findings from specific chapters and focuses on assessing

the implications of the thesis as a whole.

Chapter 2 was published in Biological Invasions in 20121 and is co-authored

with Richard Duncan, Philip Hulme and Michael Watt. Chapter 3 was published

in Diversity and Distributions2 co-authored by Richard Duncan, Philip Hulme and

1McGregor, K. F., Watt, M. S., Hulme, P. E. & Duncan, R. P. (2012) How robust is the Australian
weed risk assessment protocol? A test using pine invasions in the northern and southern hemispheres.
Biological Invasions 14, 987–998.

2McGregor, K. F., Watt, M. S., Hulme, P. E. & Duncan, R. P. (2012) What determines pine naturalisa-
tion: species traits, climate suitability or forestry use? Diversity and Distributions 18, 1013–1023.
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Michael Watt. A version of Chapter 5 is in preparation as two manusripts for future

submission to appropriate journals, co-authored by Richard Duncan, Philip Hulme

and Michael Watt.



Chapter 2

How robust is the Australian weed

risk assessment protocol? A test

using pine invasions in the northern

and southern hemispheres1

2.1 Abstract

The Australian weed risk assessment protocol (WRA) is often considered the standard

approach for pre-border screening of new plant introductions. Here we assess its ro-

bustness against three key criteria: ability to discriminate success or failure of species

at three stages of the invasion process (introduction, naturalisation and spread);

sensitivity to taxonomic range and target region; and dependence on knowledge of

invasive behaviour elsewhere. We address these issues by retrospectively testing the

WRA using pine (Pinus) introductions to New Zealand and Great Britain. For both

regions we calculated WRA scores for 115 species, and classified all species according

to whether they had been introduced, which of these had naturalised, and the extent

of their naturalised distribution (spread). Using regression models, we assessed

whether WRA scores could predict success at each stage. We repeated this procedure

using WRA scores calculated without information on species naturalisation behaviour

elsewhere. In both regions, the WRA could discriminate among species in the same

genus at the introduction and naturalisation stages, but not at the spread stage. The

outcome at the naturalisation stage depended on prior knowledge of naturalisation

behaviour elsewhere. Without this information the WRA may be unable to distinguish

among closely related species, and should be used cautiously where data on invasive

behaviour elsewhere is lacking. Human selection played a strong role in the invasion

1McGregor, K. F., Watt, M. S., Hulme, P. E. & Duncan, R. P. (2012) How robust is the Australian
weed risk assessment protocol? A test using pine invasions in the northern and southern hemispheres.
Biological Invasions 14, 987–998.

14
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process both through introducing pine species likely to naturalise in New Zealand

and Great Britain in the first instance, and subsequent use of many of these species

for forestry in the target regions.

Keywords: climate matching; risk assessment; exotic species; forestry; spread; weed

2.2 Introduction

Weed risk assessment protocols use information on a species’ biology, environmental

preferences and known tendency to become a weed to determine the risk that an

alien plant species will become invasive following its introduction to a new location.

The Australian weed risk assessment protocol (WRA) has been widely evaluated

(see Roberts et al., 2011, for a recent review) and is often perceived as the de facto

standard in weed risk assessment. The WRA uses the answers to 49 questions

concerning the species’ biology, biogeography and behaviour elsewhere to classify a

plant species according to its risk of becoming invasive (Pheloung et al., 1999). Using

a pre-defined threshold score, the WRA classifies species into: a) those that pose little

risk of becoming invasive in the new location and could be accepted for introduction;

b) those that pose a high risk and should be rejected; and c) an intermediate group

that require further evaluation. Although initially developed in Australia and New

Zealand, the protocol has been adapted and tested for use with a wide range of

life-forms in temperate (Gordon et al., 2010; Jefferson et al., 2004; Kato et al., 2006;

Křivánek & Pyšek, 2006; Nishida et al., 2009), Mediterranean (Crosti et al., 2010;

Gassò et al., 2010); subtropical (Gordon et al., 2008a) and tropical (Daehler et al.,

2004; Dawson et al., 2009b) biomes. Although evaluations have shown the WRA

to correctly classify species as invasive more than 80% of the time (Gordon et al.,

2008b), critical issues with the protocol require assessment before it can be accepted

as a robust general approach to weed risk assessment (Hulme, 2012).

First, species risk must be assessed against an objective risk of invasiveness

(Hulme, 2010, 2012). Most WRA evaluations to date have used expert opinion to

classify the species already present in a region as invasive or non-invasive. Given

that the term invasive can be interpreted differently, and may mean naturalisation to

some but negative impact to others (Colautti & Richardson, 2009), a more objective

measure is needed. For example, Dawson et al. (2009b) assessed the WRA not only

against its ability to discriminate between naturalised and non-naturalised species
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but also its value in explaining how widespread an alien species becomes at the

landscape scale.

Second, most WRA evaluations assess the existing pool of alien species in a

region with the aim of distinguishing between invasive and non-invasive species.

This methodology ignores recent developments in invasion biology which stress

that the process of becoming invasive involves passing through at least three stages:

1) a species must be introduced to a new region; 2) the species must establish a

self-sustaining wild population (naturalise); and 3) the species spreads from its point

of naturalisation, at which point it becomes invasive (Blackburn et al., 2011). Species

classified by experts as invasive will have passed through all three stages of this

process, while those classed as non-invasive could be a mixture of introduced species

that have failed to naturalise, naturalised species that have failed to spread, and

even widespread species that are perceived to have little impact. Thus previous

studies may have used different source pools for comparison (Cassey et al., 2004)

and ignored the introduction stage. A more thorough evaluation of the WRA could

include the global source-pool of potential introductions to determine whether the

WRA can identify which species were introduced, then from the pool of introduced

species which have naturalised, and finally, of the naturalised species which have

become invasive. This ensures a realistic base-rate is factored into the assessment of

the reliability and accuracy of weed risk assessment (Hulme, 2012). A test of this

kind would also assess the WRA’s ability to discriminate amongst a broader range

of species characteristics than those represented by subset of species already in the

target region (Hulme, 2012).

Third, retrospective tests of the WRA have invariably drawn on species from a

wide taxonomic range, typically including many different families. This taxonomic

range may improve the accuracy of assessments because it makes it more likely to

include species from groups with very different characteristics that may be linked

to naturalisation success or failure (Onderdonk et al., 2010). However, little is

known about the ability of the WRA to discriminate among closely related species

that may differ in their probabilities of naturalisation but are likely to share many

characteristics in common.

Fourth, tests of the WRA have been limited to single regions (with the exception

of Pheloung et al. [1999] who compared scores for species shared between New

Zealand and Australia) and, while these often achieve high accuracy, we do not know

how transferable the results are from one region to another (Onderdonk et al., 2010).

Such comparisons have been limited by the often region specific assemblages of alien
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plants examined using the WRA. However, by repeating the WRA for a common

group of species in more than one region, the reproducibility of WRA outcomes can

be assessed.

Finally, previous studies have identified a subset of questions in the WRA that

are critical to determining the classification outcome (Caley & Kuhnert, 2006; Weber

et al., 2009), particularly those related to whether the species is known to be invasive

elsewhere. While knowledge of invasive behaviour elsewhere is informative in

assessing whether a widely introduced species is likely to naturalise in a new region,

it provides no information for species introduced outside their native range for

the first time, where there has been no opportunity to assess invasive behaviour.

This situation may be common: in New Zealand, for example, over 20% of recent

naturalised alien plants have no history of invasion elsewhere in the world (Williams

et al., 2000). While reliance on information about invasive behaviour elsewhere

has been recognised, we do not know how sensitive the WRA is in situations where

we lack this information, or at what stage in the invasion process this information

becomes critical.

Our aim in this study is to evaluate the WRA with regard to these five issues, and

thus to assess how robust the WRA is at differentiating stages in the invasion process,

and its sensitivity to taxonomic range, region and knowledge of naturalisation

elsewhere. To do this, we narrowed the taxonomic range by selecting a single, well-

studied genus, Pinus, and examined how well the WRA could retrospectively predict

pine success at three stages in the invasion process (introduction, naturalisation and

spread) in two regions: New Zealand and Great Britain (hereafter referred to as NZ

and GB respectively). We chose the genus Pinus because pines are a model group for

studying invasions having been widely introduced and planted, with the subsequent

naturalisation and spread of species being well documented (Essl et al., 2011, 2010;

Procheş et al., 2012; Rejmánek & Richardson, 1996; Richardson, 2006). The global

distribution of invasive pines suggests that locations in the southern hemisphere are

more readily invaded than those in the northern hemisphere (Carrillo-Gavilàn & Vilà,

2010; Richardson & Higgins, 1998; Richardson & Rejmánek, 2004). Our choice of

NZ and GB as study locations allows us to assess this by comparing locations with a

similar area, climate and history of pine introductions, but in different hemispheres.
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2.3 Materials & Methods

2.3.1 Study genus

Pines are widely planted for forestry and ornamental purposes, and information

on their history of introduction along with data on species attributes are widely

available (e.g. Boulant et al., 2009; Grotkopp et al., 2002; Rejmánek & Richardson,

1996; Richardson & Bond, 1991; Richardson, 1998b). We compiled a list of all 115

Pinus species (see Appendix A) following comprehensive taxonomic treatments of

the genus (Farjon, 2005; Price et al., 1998), and research into commonly delimited

species (Earle, 2008; GBIF, 2011; IPIN, 2004; Perry, 1991; USDA, 2011). We did

not include recently described species that are not widely recognised, and included

only species for which two or more sources supported their recognition at the species

level. This was necessary because we used historical sources to identify species that

had been introduced, and newly described taxa would not have appeared in these

sources. We did not include subspecies or varieties due to disagreements about the

delineation of these taxa, and because the data used for weed risk assessment does

not allow us to differentiate among taxa within species.

2.3.2 Introduction, naturalisation and invasion

From the global pool, we identified which pine species had been introduced to NZ

and GB and the date they were first recorded as introduced using historical records

that included the horticultural and scientific literature (Appendix A). Within each

region, introduced species were classed as naturalised if they had established wild

populations outside of cultivated areas (sensu Richardson et al., 2000b); we excluded

from this category species regenerating naturally only in areas where the species

is currently cultivated. Although P. sylvestris is native to GB it has naturalised in

parts of GB that are outside its native range but to ensure comparability with NZ

we treated it as native to the region and excluded it from the GB analysis. To

provide an objective measure of the level of invasion, we used the extent of a species

naturalised distribution in each region. In NZ, we collated records of pine species

established in the wild from: a) the Department of Conservation’s weeds database;

b) the results of a questionnaire which we sent to all Department of Conservation

area offices asking which of the 13 pine species known to have naturalised in NZ

were present as wild populations in their area; c) the spatial locations of herbarium

specimens (from http://www.nzherbaria.org.nz/virtherb.asp and Scion

http://www.nzherbaria.org.nz/virtherb.asp
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National Forestry Herbarium Database); d) the New Zealand Biodiversity Recording

Network (http://www.nzbrn.org.nz); e) location data in the New Zealand Flora

(Webb et al., 1988); and f) literature searches. Subsequently, each record was

assigned to one of the NZ Department of Conservation’s 43 administrative areas (see

Appendix B) and the number of areas in which each species was recorded was used

as a measure of invasiveness (sensu Richardson et al., 2000b). For GB we obtained

data on the presence of wild populations of each pine species in each of the 107

Watsonian vice-counties in GB (mainland England, Scotland and Wales) from Preston

et al. (2002), and used the number of vice-counties where present as the measure

of invasiveness. We excluded offshore islands in estimating distribution for both NZ

and GB.

To determine which of the introduced species had been planted for forestry

purposes, we searched archival forest working plans that covered the majority of

state forests for NZ (housed at Scion, Rotorua) and GB (housed at the Forestry

Commission, Alice Holt, Surrey). We define a forestry species as any species that was

listed as planted by the state forest service.

2.3.3 Weed Risk Assessment

Following standard protocols (Gordon et al., 2010), we calculated a separate WRA

score in each region for each of the 115 species in the global pool of the genus Pinus

(excluding data on invasion history derived from the target region; see Appendix C).

To reduce the number of species placed in the “evaluate” category after the initial

assessment, all species were screened for a second time using a widely used decision

tree for secondary classification (Daehler et al., 2004; Křivánek & Pyšek, 2006).

Evidence of the presence of effective natural enemies (question 8.05) was treated on

a case-by-case basis using information gathered following standard protocols (Gordon

et al., 2010) excluding information from the proposed country of importation, and

the answer could therefore vary between NZ and GB.

Because climate match is known to be a predictor of pine naturalisations (Nuñez

& Medley, 2011) we assessed the goodness of climate match for each species. We

obtained records of the presence of each species in their native geographic range from

the Global Biodiversity Information Facility (GBIF, 2011), online databases (Burns &

Honkala, 1990; CAB International, 2010; Earle, 2008; USDA, 2010), standard refer-

ence books (Perry, 1991; Richardson, 1998b), floras for each region, and online liter-

ature searches in Google Scholar. We searched for records using both accepted names

http://www.nzbrn.org.nz
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and recognised synonyms. Duplicate records were removed and records without

geographical coordinates were assigned coordinates from location information using

Google Earth and Fuzzy Gazetteer (http://isodp.fh-hof.de/fuzzyg/query/).

All occurrence records were then displayed in ArcMap Version 9.3 (ESRI, 2008), and

incorrect coordinates were checked and corrected or removed. Five species (Pinus

hakkodensis, P. henryi, P. squamata, P. stankewiczii and P. wangii) had fewer than

three global occurrence records and a specific climate match could not be obtained.

As a result, the degree of climate match in the WRA was set to the default score of

+2 for these five species.

In contrast to previous WRA analyses that have not used formal models of climate

suitability, we quantified the climate match between the native range and the two

target regions (NZ and GB) using a global meteorological dataset that gridded the

world into 10′ × 10′ latitude-longitude grid cells (New et al., 2002). Each grid

cell has data for the mean, maximum and minimum monthly values for a range

of meteorological variables including temperature and precipitation for the period

1961 to 1990. We converted the monthly values into 16 climate parameters that are

commonly used in climate matching studies to characterise the climate of a given

location (see Duncan et al., 2001, for full list). For each species we identified the

grid cells that contained at least one native range occurrence record. For each of

the 16 climate variables we then calculated the difference between the value in

a native range grid cell and the value in each of the target region grid cells, and

divided the difference by the global standard deviation of each variable to generate

standard scores. An overall measure of the match between a native range grid cell

and the NZ and GB grid cells was computed as the square root of the sum of the

squares of the standard scores for each of the 16 climatic variables, divided by 16.

The resultant value was then compared to a normal distribution of reference scores

that partition the normal distribution into percentage categories based on the area

under the normal distribution. Scores within 10% of the mean score are those with

a close climate match, while scores of 80% or more, which fall in the tails of the

distribution, have the lowest climate match. We then selected the lowest score for

each NZ and GB grid cell (i.e. we identified the native range grid cell with the closest

match) and used this as a measure of climate match for that grid cell. To produce an

overall value for the climate match for each species, we calculated the mean of all

grid cells for that species in NZ and the mean for GB and subtracted the mean values

from 100 to ensure that higher values indicated a better match. Each species’ mean

climate match score was then assigned to one of three categories (0− 32%= “low”,

http://isodp.fh-hof.de/fuzzyg/query/


2.3. MATERIALS & METHODS 21

33− 65%= “intermediate”, 66− 100%= “high”) that matched WRA categories for

question 2.01 (degree of climate match).

2.3.4 Statistical analysis

For each target region, we used the numerical WRA score as an explanatory variable

for three response variables: a) whether a species in the global pool was introduced

or not (binary score); b) whether, having been introduced, a species had naturalised

or not (binary score); and c) the distribution range of a species once naturalised

having accounted for date of introduction (interval scale).

Logistic regression was used to model the two binary response variables, and

their performance assessed using four measures of goodness of fit: accuracy (the

proportion of species that succeeded that the model predicted would succeed);

reliability (the proportion of species the model predicted would succeed that actually

succeeded); area under the receiver operating characteristics curve (AUC); and

the Kappa statistic. To calculate accuracy and reliability, a value of 0.5 was used

as the threshold for classifying species as predicted to succeed or fail from the

model probabilities. Rather than specifying a threshold for converting predicted

probabilities into either successes or failures, AUC provides a measure of how well the

model discriminates success and failure across all possible thresholds. An AUC value

of 0.5 indicates a model has no ability to discriminate among classes (i.e. it performs

no better than chance), a value of 1 indicates a model always correctly assigns

success a higher probability than failure, while a value of −1 indicates the opposite.

Hosmer & Lemeshow (2000) suggest interpreting AUC values as follows: 0.7≤ AUC

< 0.8= acceptable discriminatory power; 0.8≤ AUC < 0.9= excellent; 0.9≤ AUC

= outstanding. Kappa is a measure of the difference between observed agreement

and agreement expected by chance, standardised to a scale of −1 to 1. Kappa can be

interpreted as follows (Landis & Koch, 1977): < 0 no better than chance; 0.01−0.20

slight agreement; 0.21− 0.40 fair agreement; 0.41− 0.60 moderate agreement;

0.61− 0.80 substantial agreement; 0.81− 0.99 almost perfect agreement.

Multiple regression was used to determine whether WRA score could predict

the number of locations within a region in which pine species had naturalised. We

included date of introduction as a covariate in the model to control for the effect of

residence time because species that have been resident for longer have had more

time to spread to new locations (e.g. Castro et al., 2005; Pyšek et al., 2009b).
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To assess how well the WRA performed in the absence of knowledge about the

invasive behaviour of a species elsewhere, we repeated the WRA assessment for each

species but answered as “unknown” the following questions, identified by Caley &

Kuhnert (2006) and Weber et al. (2009) as important: 2.05 (history of repeated

introductions outside its native range); 3.01 (naturalised beyond native range);

3.02 (garden/amenity/disturbance weed); 3.03 (agricultural/forestry/horticultural

weed); 3.04 (environmental weed); and 3.05 (congeneric weed). We then repeated

the statistical analyses described above using these modified WRA scores.

All analyses were undertaken in R (R Development Core Team, 2010) and we

used the packages ROCR (Sing et al., 2009) to calculate accuracy, reliability and

AUC, and vcd (Meyer et al., 2010) to calculate Cohen’s Kappa statistic.
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Figure 2.1. The percentage of administrative units with known occurrence of naturalised Pinus species in New Zealand (black bars, n= 43
regions) and Great Britain (grey bars, n= 107 regions). For the seven species present in both countries except for P. mugo, the proportion
of regions occupied is significantly different (P < 0.05 and marked with *) between New Zealand and Great Britain, as determined by
two-proportion Z-tests for each species comparison. Species are coded: radi = P. radiata; pina = P. pinaster; cont = P. contorta; nig = P. nigra;
muri = P. muricata; pond = P. ponderosa; patu = P. patula; sylv = P. sylvestris; mugo = P. mugo; bank = P. banksiana; stro = P. strobus; hale
= P. halepensis; taed = P. taeda; wall = P. wallichiana
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2.4 Results

2.4.1 Introduction, naturalisation and invasion

From the global pool of 115 Pinus species, a similar number were scored as potentially

invasive (WRA score > 6) in NZ (32 species) and GB (34 species). With the exception

of P. henryi in NZ, all pines in the global pool assessed as potentially invasive have

been introduced into each of the two target regions. In both regions, species that

had been introduced had a higher mean WRA score than those not introduced

(Table 2.1), with species rejected by the WRA more likely to be introduced than those

accepted (χ2 test, χ2 = 29.50 and 28.55 for NZ and GB respectively, both d f = 1,

P < 0.0001). Date of introduction was strongly negatively correlated with WRA

score in NZ (Spearman’s rank correlation r =−0.519, P < 0.001), such that species

scored as more invasive in the WRA tended to be introduced earlier. This relationship

was weaker, but still negative, for GB (Spearman’s rank correlation r = −0.107,

P = 0.527). In both regions, species that had naturalised had, on average, earlier

dates of introduction (Table 2.1). Similar numbers of pines were introduced into

NZ (66 species) as in GB (73 species). Although the naturalisation rate in NZ was

almost twice that of GB, the proportion of species naturalising was not significantly

different (20% and 10% for NZ and GB respectively, Z-test, Z = 1.692, P = 0.216),

probably due to small sample size. Six species had naturalised in both regions, all

associated with forestry, but each species’ rank order of distribution in NZ and GB

was significantly different, except for P. mugo (Figure 2.1). Nevertheless, for these

six species, there was no tendency for them to be, on average, more widespread in

NZ than GB (44.95± 13.20% vs. 53.27± 13.01% in NZ and GB respectively; paired

t-test, t = 0.48, d f = 5, P = 0.652).

2.4.2 Utility of weed risk assessment for screening Pinus species

The WRA scores of the 65 species introduced to both regions were highly correlated

(Spearman’s rank correlation r = 0.96, P < 0.001). Since only four questions are

regionally specific 2.01, 2.02, 2.04 (relating to climate match) and 8.05 (effective

natural enemies present), variation could arise only through region specific scores

related to these questions. Mean climate match scores between NZ and GB were

highly correlated (Spearman’s rank correlation r = 0.92, P < 0.001). In both regions

climate match scores were significantly different between invasion stages (Table 2.1),

with naturalised species having the best climate match and species that were not
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introduced having the worst match. The number of regions occupied was significantly

positively correlated with mean climate match in NZ (Spearman’s rank correlation

r = 0.62, P = 0.03), but not significantly related in GB (Spearman’s rank correlation

r =−0.71, P = 0.09).

The WRA would have rejected slightly under half of the pines that were introduced

to both NZ and GB, while it would have rejected all of the introduced species that

have naturalised in either region (Table 2.1). Moreover, the WRA score was a

highly significant predictor of both introduction and naturalisation success in both

regions (Table 2.2). The AUC scores rated the discrimination between successful and

unsuccessful species at both the introduction and naturalisation stages in both regions

as “excellent” (Table 2.3). Reliability of the WRA was high for the introduction stage

in both regions (≥ 0.97) but poor for the naturalisation stage (≤ 0.42, Table 2.3) due

to the high proportion of false positives in NZ (42%) and GB (39%). Accuracy was

generally lower than reliability at the introduction stage in both regions (≤ 0.66), and

higher than reliability at the naturalisation stage (≥ 0.63). Kappa statistics suggested

that the WRA was moderately to substantially correct at both stages in both regions

(Kappa > 0.36), except at the naturalisation stage for GB (Kappa = 0.12) where

WRA performance appeared to be only slightly better than chance (Table 2.3). The

number of naturalisations in GB was small, with only seven species from a pool of

73, so this low value of Kappa may be due to properties of the Kappa statistic, which

is known to be sensitive to low prevalence.

Dates of introduction for the naturalised species ranged from 1830 to 1974 in

NZ, and from 1500 to 1930 in GB, reflecting NZ’s relatively recent colonisation by

Europeans. The number of locations occupied was only weakly associated with

introduction date in NZ, and showed no clear relationship in GB (Table 2.4). Having

controlled for any effect of introduction date, WRA score was not a significant

predictor of the number of locations occupied in either region. These results should

be interpreted cautiously due to the small number of naturalised species in both NZ

(n= 13) and GB (n= 7).

Logistic regression models showed that the revised WRA score (excluding informa-

tion on invasive behaviour elsewhere) was still a significant predictor of introduction

success in both countries (Table 2.2). However, the revised WRA score was only

significant at the naturalisation stage for NZ, and the degree of significance was much

less than with the original WRA score that included information on prior invasiveness

(Table 2.2). All other measures of WRA performance indicated that the revised

WRA score performed worse than the original WRA (Table 2.3; see Appendix D for
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full WRA results). The revised WRA failed to explain significant variation in the

number of locations occupied in both regions (Table 2.4). This poorer performance

reflects the fact that all naturalised species in both countries had records of invasion

elsewhere and that this characteristic was a powerful means to discriminate these

species.

2.5 Discussion

Our results show that the WRA had high accuracy but low reliability when applied

to a group of closely related species that share many attributes in common, and

that this performance was repeatable across regions. The WRA correctly identified

as invasive 100% of the introduced pine species that had naturalised in both NZ

and GB; a higher proportion than previous tests (e.g. Dawson et al., 2009b; Gordon

et al., 2008a). Unfortunately, the high number of false positives at the naturalisation

stage suggests this accuracy comes at a cost of rejecting potentially useful species.

Furthermore, whilst the WRA performed well in discriminating among successful

and unsuccessful species at the introduction and naturalisation stages, it performed

poorly at predicting the subsequent distribution of species in each region. This finding

appears to contrast with Dawson et al. (2009b), who found that WRA score correlated

with how widespread a species had become at a landscape scale. However, Dawson

et al. (2009b) examined spread from relatively localised propagule sources, whereas

our study measured distribution over a larger region in which naturalised populations

most likely arose from multiple sources (Aikio et al., 2010). In these circumstances,

how widespread a species becomes may be more strongly linked to the availability

of propagule sources resulting from differences in planting effort for forestry. Thus

at the landscape scale, attributes related to natural dispersal may be important in

determining spread (Dawson et al., 2009a), but at much larger spatial scales human

influenced propagule pressure may shape the pattern of invasion. Nevertheless,

we used a fairly coarse measure of distribution in both regions (the proportion of

occupied administrative units) and this, coupled with the relatively small numbers of

naturalised species, undoubtedly limited our ability to detect differences.

We found that the ability of the WRA to discriminate among successful and

unsuccessful species in the first two stages of the invasion process was reduced when

information about invasive behaviour elsewhere was excluded. This highlights a

potential limitation of the WRA: that its performance depends critically on obtaining
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Table 2.3. Performance measures for logistic regression models with WRA as the explanatory
variable in discriminating between (I) introduced and not introduced species, and (N)
introduced and naturalised species, both including and excluding information on prior
invasion history, for Pinus in New Zealand and Great Britain.

Prior invasion history
Included Excluded
I N I N

New Zealand AUC 0.80 0.97 0.67 0.70
Kappa 0.36 0.71 0.26 −0.03
Accuracy 0.69 0.73 0.43 0.79
Reliability 0.97 0.42 1.00 0.00

Great Britain AUC 0.83 0.91 0.73 0.65
Kappa 0.47 0.12 0.27 0.00
Accuracy 0.66 0.63 0.37 0.92
Reliability 1.00 0.21 1.00 1.00

knowledge of a species’ prior invasive behaviour (Caley & Kuhnert, 2006; Weber

et al., 2009). It implies that, within a group of closely related species that share

many attributes in common, invasive behaviour elsewhere may be the key attribute

distinguishing species with high WRA scores that are likely to naturalise from the

rest, and that reliable assessments are feasible only for species with a known history

of introduction. On this basis it could be argued that full WRA assessments will waste

resources if data on naturalisation elsewhere is the key criterion defining invaders,

and that time could be saved by focussing only on this aspect of the assessment. We

found, however, that in the absence of information about invasive behaviour the

WRA still distinguished between successful and failed species at the introduction (NZ

and GB) and naturalisation (NZ only) stages with higher accuracy than expected

by chance (Table 2.3). A full WRA assessment can thus provide useful information

about the risk posed by species whose invasive behaviour is unknown because they

have not been introduced outside their native range. However, such a conclusion is

highly dependent on there being no costs to rejecting “false positives”, which may

not be true where these species are commercially valuable, such as in the case of

forestry (Hulme, 2012).

The pool of introduced species was significantly biased towards more invasive

species in each country, and had the WRA been implemented to screen Pinus prior

to importation in the past it would have rejected the most high risk taxa. This bias

arises from the fact that conifers selected for forestry often share many characteristics

(such as fast growth rate, typically associated with short generation time and high
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reproductive output) associated with invasive behaviour (Essl et al., 2011, 2010). In

the case of NZ and GB, around half of all pines were introduced for forestry purposes,

including all of the species that subsequently naturalised. This contrasts with other

studies that have found forestry species to have lower naturalisation rates than other

introduction pathways (Lambdon et al., 2008). Potential conflicts may therefore arise

between forestry and environment sectors where screening tools such as WRA would

likely limit or prevent introduction of the most economically valuable conifer species.

Whether the reduction in WRA score for introductions over time is indicative of a

change in introduction policy in each region or simply that the most invasive species

had already been introduced, is unclear.

In addition to selection for traits that may increase the chance of naturalisation

and invasion, forestry may compound the problem through initial cultivation, prove-

nance selection and the widespread planting of high risk species with good climate

match, which could further facilitate their spread (e.g. Procheş et al., 2012). Indeed,

all of the pine species with WRA scores of six or more (those the WRA would have

rejected for importation) have already been introduced to both countries, with the

exception of P. henryi in NZ. We would recommend this species not be considered

for introduction to NZ. Nevertheless, WRA scores were not good predictors of pine

distribution in either NZ or GB. While species selected for forestry tend to have higher

WRA scores, among this group higher scores may not translate to wider planting and

a potentially wider naturalised distribution.

This study is the first to explicitly use climate matching in the WRA analysis and,

as a result, identified the critical role climate plays in the introduction, naturalisation

and, at least for NZ, the spread stage of invasion. Essl et al. (2011) found that simple

climate parameters (mean annual temperature and precipitation) were insufficient

to predict the global success of conifer naturalisation and a more integrated measure,

such as zonobiome, was necessary to capture the suitability of the recipient envi-

ronment. Our results suggest that incorporation of more detailed climate variables

may indeed usefully discriminate between naturalisation success or failure. While

formal climate matching has been advocated in WRA (Pheloung et al., 1999) this

has not been undertaken: default scores have been applied (Gordon et al., 2008a),

mean climate parameters (Křivánek & Pyšek, 2006), or latitudinal ranges (Dawson

et al., 2009b) compared or climate classification maps have been used (Jefferson

et al., 2004). Our results indicate that formal climate matching should be an integral

element of WRA and that studies failing to do so should be viewed as incomplete.
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Such formal climate matching can future-proof WRA assessments by building in

changes in risk under predicted future climate change (Walther et al., 2009).

Global assessments of conifer invasions indicate that regions of the southern

hemisphere are more invaded than those of the northern hemisphere (Essl et al.,

2011, 2010; Richardson & Rejmánek, 2004; Simberloff et al., 2010). GB is somewhat

unusual for the northern hemisphere, having few native conifers and a forestry

sector based on introduced species. Indeed, by northern hemisphere standards

GB has a large number of naturalised conifers (Carrillo-Gavilàn & Vilà, 2010; Essl

et al., 2011, 2010). The strong correlation among WRA scores between the two

regions suggests that there was little difference in the potential for species to invade

each region, possibly due to the broadly equivalent climates. We highlighted many

similarities between NZ and GB in the patterns of introduction of pines; of the

73 species introduced, 61 species were introduced to both regions. However, we

found that almost twice the number of pines had naturalised in NZ than in GB

(although this was not statistically significant, potentially due to the small number of

naturalising species). Thus any differences between regions may be more related to

the intensity of planting rather than inherent species traits or climate characteristics

of the recipient region (also see Essl et al., 2011, 2010). This is probably the reason

we found no correlation in the distribution of the six pine species shared between

both regions.

2.6 Conclusions

Overall, we have shown that the WRA is able to discriminate among closely related

species at the introduction and naturalisation stages of the invasion process, but not at

the spread stage, and that these findings are repeatable across regions. Nevertheless,

the outcome at the critical naturalisation stage was dependent on prior knowledge

of a species invasive behaviour elsewhere; without this information the WRA may be

unable to reliably distinguish among closely related species as to their naturalisation

potential, and should therefore be used cautiously where data on invasive behaviour

elsewhere is lacking. We also document the potential conflict between forestry usage

and pine naturalisations in NZ and GB. Finally, our results highlight the key role that

humans can play in the first stage of the invasion process through the preferential

introduction of species with a high risk of invasive behaviour in the first place.
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Chapter 3

What determines pine invasions:

species traits, climate suitability or

forestry use?1

3.1 Abstract

AIM: Species attributes, biogeographic features and human factors have all been

shown to discriminate between invasive and non-invasive plant species. However,

the relative importance of these factors, their generality in determining invasion

outcomes across different regions, and their ability to discriminate success and failure

at different stages of the invasion process, have not been established.

LOCATION: New Zealand (NZ) and Great Britain (GB).

METHODS: For species in the genus Pinus, we used boosted regression trees to iden-

tify factors associated with success or failure at the introduction and naturalisation

stages in each region.

RESULTS:Human factors, notably the forestry use index, were the strongest deter-

minants of which species from the global pool were introduced to both NZ and GB.

Species with a close climate match were also more likely to be introduced to NZ but

not to GB. Human factors and climate match were also the strongest determinants

of which introduced species became naturalised in both NZ and GB, although the

order of importance differed (human factors followed by climate match for NZ and

vice versa for GB). Species attributes (life-history traits and the Z-score), had much

less ability to discriminate successful and failed species at both the introduction and

naturalisation stages in these two regions.

MAIN CONCLUSIONS: We show for the first time that human factors are more

important than either species or biogeographic traits in determining the likelihood

1McGregor, K. F., Watt, M. S., Hulme, P. E. & Duncan, R. P. (2012) What determines pine naturalisa-
tion: species traits, climate suitability or forestry use? Diversity and Distributions 18, 1013–1023.

34
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of a species being introduced or becoming naturalised. The similarity between two

different regions in the factors found to be important in success at both these inva-

sions stages points to potentially general mechanisms underlying these processes.

The strong human component to introduction and naturalisation highlights a poten-

tial conflict between future afforestation using alien species with conservation and

management aims in the surrounding landscape, given that the factors desirable for

forestry species are also those that may promote invasion.

Keywords: alien species; biological invasions; climate match; forestry; Pinus; propag-

ule pressure; traits, weeds.

3.2 Introduction

Worldwide, pines (Pinus spp.) have been extensively used in plantation forestry

in areas outside their native ranges (CAB International, 2010), yet they are also

recognised as some of the most widespread and significant invasive plants in the

world (Richardson & Higgins, 1998; Richardson & Rejmánek, 2011). It is therefore

essential to understand the determinants of pine invasion to ensure forestry practices

do not pose a risk of introducing further invasive species. Three key life-history

traits (short juvenile period, small seeds and frequent reproduction) have been

tightly linked to invasion outcomes globally and have been suggested as a suitable

screening mechanism for sustainable forestry using Pinus spp. (Grotkopp et al., 2002;

Rejmánek & Richardson, 1996; Richardson & Rejmánek, 2004; Richardson et al.,

1994). However, recent evidence also points to the interplay between life-history

traits and both biogeographic and human factors as key determinants of the likelihood

that a pine species will become invasive. Biogeographic factors such as native range

size (Procheş et al., 2012) and climate match (Nuñez & Medley, 2011), and human

factors such as propagule pressure (Boulant et al., 2009; Gassò et al., 2010; Křivánek

et al., 2006; Medawatte et al., 2010), residence time (Richardson et al., 1994) and

economic use (Essl et al., 2011, 2010) have all been identified as important correlates

of pine invasion success. Furthermore, life-history traits on their own do not appear

to explain the apparently greater success of pines in invading regions of the southern

hemisphere relative to the northern hemisphere (Carrillo-Gavilàn & Vilà, 2010; Essl

et al., 2010; Simberloff et al., 2010), which further suggests that the interaction

between species attributes, biogeographic factors and human use may be critical in

explaining invasion outcomes globally (Richardson et al., 1994). This complex set of
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interactions underpinning pine invasions is likely to have parallels in other woody

genera known to have naturalised around the world e.g. Acacia (Richardson et al.,

2011), Abies, Cupressus (Essl et al., 2010) and Eucalyptus (Rejmànek & Richardson,

2011). Thus applying methods to tease apart the relative contribution of species

attributes, biogeographic and human factors in plant invasions is an essential step in

developing sustainable forestry practices (Chornesky et al., 2005; Moore, 2005).

Recent evidence has highlighted that invasive conifers worldwide are biased

towards species used in commercial forestry (Essl et al., 2011, 2010) implying an

important role for this sector in the dissemination of invasive species. Yet such

analyses have not taken into account the many species deliberately introduced that

have never naturalised, which might paint a different picture of the risks posed by

commercial forestry (Hulme, 2012). The initial introduction stage of most invasions

is poorly studied because there is often no reliable record of the species that were

introduced but failed to establish (Diez et al., 2009; Puth & Post, 2005). Nevertheless,

this stage is important because non-random patterns of introduction may result

in the pool of introduced species being a biased subset with regard to key species

attributes and life-history traits, potentially biasing our perception of which factors

are important in determining naturalisation outcomes (Blackburn & Duncan, 2001;

Cassey et al., 2004; Lambdon et al., 2008). In contrast to the many studies that have

examined correlates of naturalisation and invasion in pines, an appreciation of the

role of biases at the introduction stage in shaping invasion outcomes is only just

emerging (McGregor et al., 2012).

Given this background, our aim was to assess the relative roles of species at-

tributes (life-history traits and the Z-score), biogeographic and human factors on

the likelihood of introduction, naturalisation and invasion of pines in New Zealand

and Great Britain. New Zealand (NZ) and Great Britain (GB) are island regions of

similar size and broadly similar climates, for which pines are economically important,

resulting in a well-documented history of introductions, including records of which

species were introduced, their residence time, and how widely different species were

planted for forestry. These two countries are the major foci of pine introductions

and naturalisations in the southern and northern hemispheres respectively (Carrillo-

Gavilàn & Vilà, 2010; Essl et al., 2010; Richardson & Rejmánek, 2004), and thus

provide an opportunity to test whether similar processes underpin the patterns of

introduction and invasion in both regions (McGregor et al., 2012).
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3.3 Materials & Methods

3.3.1 Study genus

We used the list of all 115 species in the genus Pinus compiled by McGregor et al.

(2012), which is based on recent taxonomic treatments of the genus excluding

recently described species that are not widely recognised in the literature along with

subspecies/varieties (see Appendix A). One pine species is native to one of our study

locations: P. sylvestris is native to GB and we excluded this species from the GB

analysis.

3.3.2 Introduction, naturalisation and invasion histories

We identified which pine species had been introduced to NZ, and which had been

introduced to GB (excluding all off-shore islands), and the date of first recorded

introduction to each region from historical records that included the horticultural,

forestry, and scientific literature (see Appendix A). Within each region, an introduced

species was classed as naturalised if it had established new self-sustaining populations

outside of cultivated areas (sensu Richardson et al., 2000b); and invasive if it

produced reproductive offspring often in large numbers, at considerable distances

from the parent plants (scale: > 100m; < 50 years; sensu Richardson et al., 2000b).

Using these definitions, all naturalised pine species in NZ were classed as invasive,

and in the UK, P. contorta, P. nigra, and P. pinaster were classed as invasive. It was

not possible to test the transition from naturalisation to invasion in either region,

because in NZ there was no source pool for comparisons to be made, and in GB there

were too few species to provide robust results. Therefore, we examine the introduced

to naturalised transition, and for simplicity refer to all species succeeding in this

transition as having naturalised.

3.3.3 Species attributes

We examined two classes of species attribute: life-history traits and the Z-score.

For each species we recorded a suite of life-history traits (Table 3.1) by searching

standard reference texts (Farjon, 2005; Perry, 1991; Price et al., 1998; Richardson &

Bond, 1991; Richardson, 1998b), scientific literature, online databases (e.g. Earle,

2008; GBIF, 2011; IPIN, 2004; USDA, 2011), and horticultural books and websites.

We chose these traits for three reasons. First, we recorded the traits required to
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calculate the Z-score, which uses seed mass, minimum juvenile period and interval

between large seed crops to derive an index that has been shown to reliably distin-

guish invasive from non-invasive pine species (Grotkopp et al., 2002; Rejmánek &

Richardson, 1996). Second, we hypothesised that factors related to the desirability

of a species for forestry, such as diameter at breast height (DBH), height and life-span

(fast growing species with short or intermediate life-spans may be more suited to

commercial forestry than long lived slow growing species) should influence the

likelihood of introduction, which may in turn influence relationships at the naturali-

sation stage. Third, we collected traits linked to dispersal ability, including dispersal

mode, seed wing length, serotiny (a species with serotinous cones may be less likely

to be dispersed in NZ and GB because neither regions are highly fire prone), and

plant height (taller trees being more likely to disperse propagules further by wind

[Thomson et al. 2011]) because these may influence the ability of plants to colonise

areas outside of cultivation. We limited our study to traits that could be obtained for

most species. Although pines are a well studied genus, additional traits that have

been linked to invasion success, such as relative growth rate and specific leaf area

(Grotkopp et al., 2002) were available only for a much smaller subset of species.

While we chose life-history traits that we considered readily obtainable, our life-

history data nevertheless had 20% of entries missing (Table 3.1). To handle missing

life-history trait data we used imputation rather than case-wise deletion because the

latter results in information loss, reduced statistical power, and potentially biased

estimates of parameters (Rubin, 1976). These problems become more important

if the data are missing because of some underlying reason linked to the biology of

the species or are difficult to measure (Nakagawa & Freckleton, 2011). To prevent

imputation of negative values, we first added one to all entries for variables that

contained true zeros and then log-transformed all continuous variables (Table 3.1).

We performed imputation using the mix package (Schafer, 2010) in R (R Develop-

ment Core Team, 2010), specifying an unrestricted general location model (which

uses maximum likelihood estimates for the parameters) with a uniform prior. After

log-transformation some variables were not normally distributed, but simulations by

Graham & Schafer (1999) showed that imputation performs robustly even for a set

of highly non-normal variables under an assumption of multivariate normality.

Life-history traits in plants are frequently correlated such that plants exhibit trait

syndromes (Grime et al., 1997). For the 115 pine species, many of the traits we

measured were strongly correlated with each other (see Appendix E). In order to

reduce this collinearity, we selected eight traits to include in the analysis that we
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hypothesised to be important in pine invasions, and that were not highly corre-

lated (r < 0.60) with each other. These included six continuous traits: diameter

at breast height (DBH), seed mass, interval between seed crop years, minimum

juvenile period, life-span, seed wing length; and two ordinal traits: dispersal mode

(wind/animal/both) and serotiny (serotinous/non-serotinous/both).

The Z-score has been identified as an integrative measure of species life-history

that is able to discriminate among invasive and non-invasive pine species (Grotkopp

et al., 2002; Rejmánek & Richardson, 1996). We calculated Z-scores for each species

using the values for seed mass, minimum juvenile period, and interval between large

seed crop years, using the discriminant function described by Rejmánek & Richardson

(1996).

3.3.4 Biogeographic factors

For each species, we quantified native range size, geographic area of origin, and

climate match with both NZ and GB. We chose these three variables because aspects

of both the native range and climate match have been shown to predict naturalisation

success in pines (Nuñez & Medley, 2011).

We collated presence only occurrence records for each species from online

databases and published scientific literature (see Chapter 2). We calculated na-

tive range size as a convex hull around all native occurrence points (see Chapter 2),

which yielded a value for the extent of occurrence (EOO) for each species. For

simplicity we refer to EOO as “native range size” throughout the following text.

To quantify climate match between the native range and the two target regions

(NZ and GB), we used the automated matching method outlined in Chapter 2 which

used the native range occurrence points. This yielded a value for the percentage of

grid cells in each country that had ≥ 90% match to the native range. Five species

(Pinus hakkodensis, P. henryi, P. squamata, P. stankewiczii and P. wangii) had fewer

than three global occurrence records and neither a specific climate match or native

range size could be obtained.

We hypothesised that, given the history of British and European exploration of

North America and subsequent British colonisation of NZ, species native to North

America and Europe were more likely to be introduced to both GB and NZ than species

native to either Central America or Asia. We classed species as Asian or European

based on an accepted division at the Ural-Caucasus Mountains: if the majority of
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their native range was west of the division, they were classed as European, if the

majority was east, they were classed as Asian.

3.3.5 Human factors

To quantify the extent to which species used widely for forestry purposes were

more likely to have been introduced to NZ and GB, we used an index derived by

Procheş et al. (2012): the number of citations to each species in the CABI Forestry

Compendium (CAB International, 2010). Procheş et al. (2012) found that this

bibliometric measure explained naturalised range size in pines better than other

measures such as ISI Web of Science searched using species names and search terms

relevant to forestry, or when searches were restricted to forestry journals. The number

of CABI Forestry Compendium citations was significantly correlated with the number

of experimental plantings in southern Africa, and explained 71% of the variance in

a species’ global naturalised range size (Procheş et al., 2012). We therefore used

this variable as a measure of the utility of a species in worldwide forestry and have

subsequently termed this variable “forestry use index”.

For each species introduced into a region, we used the total area planted (ha),

the duration of planting (in years), and the first date of planting as measures of

introduction effort or propagule size. Data were obtained from regional forestry

organisations that collate and archive both private and state forestry data in NZ

(housed at Scion, Rotorua) and GB (housed at the Forestry Commission, Alice Holt,

Surrey). For each species in each region we calculated the area planted by plotting

the number of hectares of standing stock against planting year, and calculated the

area under the curve using the areapl function in the splancs library (Rowlingson

et al., 2010) in R (R Development Core Team, 2010). To assess the effect of minimum

residence time on naturalisation success, we recorded the earliest date of introduction

to NZ and GB by searching the scientific and horticultural literature (see Appendix A).

3.3.6 Statistical analysis

All analyses were preformed in R (R Development Core Team, 2010). Because our

proposed analytical approach (see below) has some capacity to handle missing values,

we included the five species for which we were unable to calculate climate match or

native range size.
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To quantify the relative importance of variables in explaining outcomes at the

introduction and naturalisation stages, we used boosted regression tree (BRT) models.

BRT models are a form of regression that use a boosting algorithm to fit many models

(hundreds to thousands), resulting in one tree that is a linear combination of many

trees, improving the overall model accuracy (e.g. Elith et al., 2008). We used BRTs

because they perform well in model discrimination (e.g. Elith et al., 2006; Keller

et al., 2011; Schmidt & Drake, 2011a), and because they can readily incorporate

non-linear relationships and potential interactions among explanatory variables (see

Elith et al., 2008).

For each region we fitted two BRT models at each invasion stage (introduction

and naturalisation). First, we used the eight life-history traits, and the biogeographic

and human factors as explanatory variables. Since the Z-score is an integrative

measure of (and thus highly correlated with) three life-history traits, we fitted a

second model that included the Z-score as the only species attribute as well as

biogeographic and human factors as explanatory variables. At the introduction stage,

our response variable was whether species were introduced or not to each region

from the global pool of 115 species. At the naturalisation stage our response variable

was whether the species introduced to each region had naturalised or not.

We fitted BRT models with the gbm package using the methods and supplemental

functions described in Elith et al. (2008). We fitted models with a tree complexity

of five (which automatically detected and fitted up to five-way interactions among

explanatory variables), a learning rate of 0.001, and a Bernoulli error structure.

Because using the same data for model testing and validation leads to overfitting

and deflates the estimated error rate, the optimal numbers of trees were determined

using ten-fold cross-validation with a bag fraction of 0.5. The relative contribution

of predictor variables is estimated in the gbm package (Friedman, 2001). The

contribution of a variable is based on the number of times the variable is selected

for splitting, weighted by the squared improvement to the model as a result of each

split, and averaged over all trees (Friedman & Meulman, 2003). The contribution of

each variable is scaled so that the sum adds to 100, with higher numbers indicating

stronger influence on the response.

Model performance was assessed during cross-validation using the area under the

receiver operating curve (AUC, Hanley & Mcneil, 1982), which provides a measure

of the degree to which the fitted values discriminate between observed outcomes. An

AUC value of 1 indicates that the model perfectly discriminates between outcome 1

(e.g. introduced) and outcome 0 (e.g. not introduced), while a value of 0.5 indicates
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that the model performs no better than chance. Models containing the full set of

explanatory variables were simplified by dropping uninformative variables using the

default settings, which allowed model simplification to continue until the average

change in predictive deviance exceeded the original standard error (see Elith et al.,

2008).

3.4 Results

3.4.1 Determinants of introduction

A similar number of pine species were introduced into each region (NZ: n = 66; GB: n

= 73) with 61 common to both (see Appendix A). The forestry use index (classed as

a human factor) had the strongest influence on whether pine species were introduced

to a region or not, having a relative contribution of over 50% and 70% in NZ and GB

respectively (Figure 3.1). Biogeographic factors had the next largest contribution,

with life-history traits contributing relatively little. The relatively small contribution

of species attributes in both regions (NZ: 15.7%; GB: 9%) was true whether we

included the eight life-history traits or used the Z-score (Figure 3.1). No individual

life-history trait made a relative contribution of more than 5% (Table 3.2; Table 3.3).

In NZ, a single life-history trait (seed wing length) had a higher contribution than

the Z-score to model outcomes, though in GB the Z-score had a higher contribution

than any single life-history trait.

Species use widely in global forestry, with a good climate match, large native

range size, native ranges in Europe and North America, shorter juvenile period and

larger DBH had a higher probability of being introduced to NZ or GB (Table 3.2).

All human and biogeographic variables acted in the same direction in both regions,

but there appeared to be no consistent directional effect among the different life-

history traits (Table 3.2). When the Z-score was used in place of life-history traits a

similar pattern emerged; human and biogeographic variables had similar effects in

both regions but the effect of the Z-score differed between regions. Species with a

tendency to naturalise widely (high Z-score) were more likely to be introduced to

NZ but the reverse was true for GB (Table 3.3).
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Table 3.1. Characteristics of the variables used in analysis: the transformation applied to each variable prior to imputation and analysis; n the
number of species for which empirical data were available (life-history trait data for the remaining species were imputed to the full sample size;
n = 115). Variables were classified as either categorical (cat.) or continuous (cont.). In order to assess the relative influence of all life-history
traits, biogeographic, and human factors, all variables were included in all models except: life-history traits marked with a †(which were not
included in any models due to multicollinearity); and human factors marked with a ∗ (which were included for the naturalisation stage only).

Category Variable Transformation n Type Coding or units

Species Diameter at breast height (DBH) log 96 cont. cm; maximum encountered

Dispersal mode - 84 cat. 1 = animal; 2 = wind; 3 = both

Cone length† log 108 cont. cm

Genome size† log 41 cont. pg DNA

Height† log 111 cont. m

Interval between large seed crop log + 1 74 cont. years

Juvenile period log 69 cont. years

Life-span log 43 cont. years

Mean seed mass log 88 cont. g

Seed length† log 108 cont. mm

Seed wing length log + 1 110 cont. mm

Serotiny - 94 cat. 1 = yes; 2 = no; 3 = yes/no

Z-score - 69 cont. Higher score = more invasive

Biogeographic Native range size log 110 cont. km2

Climate match - 112 cont. -

Geographic origin - 115 cat. 1 = North America; 2 = Asia; 3

= Europe; 4 = Central America

Continued on next page. . .
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Continued

Category Variable Transformation n Type Coding or unites

Human Forestry use index log + 1 115 cont. Number CABI Forestry Com-

pendium references (from

Procheş et al., 2012)

Area planted* log + 1 115 cont. hectares

Date of first state forestry planting∗ - - cont. years

Duration of state forestry planting∗ - - cont. years

Minimum residence time∗ - - cont. years

Response variables Introduced - 115 cat. 1 = yes; 0 = no

Naturalised - 115 cat. 1 = yes; 0 = no
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3.4.2 Determinants of naturalisation

Almost twice as many introduced pine species had naturalised in NZ than in GB

(13 and 7 respectively, with six species naturalised in both regions). The relative

importance of species attributes, biogeographic and human factors on naturalisation

differed between regions. In both regions, life-history traits had the least influence on

naturalisation success (maximum relative contribution NZ: 12.3%; GB: 22.6%). No

individual life-history trait made a relative contribution of more than 10% (Table 3.2;

Table 3.3). In NZ, a single life-history trait (minimum juvenile period) had a higher

contribution than the Z-score to model outcomes though in GB the Z-score had

a higher contribution than any single life-history trait. In NZ, human factors had

the greatest influence on naturalisation success with a relative contribution ∼ 50%,

whereas in GB biogeographic variables had the greatest influence with a relative

contribution ≥ 51% (Figure 3.1).

In both regions, species with greater forestry use index were more likely to

naturalise (maximum relative contribution NZ: 21.1%; GB: 23.6%). In NZ species

planted over a wider area were also more likely to naturalise, but this was not

the case is GB. In both regions, species with a closer climate match, larger native

range size, longer residence time, shorter juvenile period, smaller seed mass, and

smaller DBH, were more likely to naturalise (Table 3.2). In GB longer lived species

originating from Europe and North America were more likely to naturalise than

species from Asia and Central America. In both regions, species with a higher Z-score

(more invasive) were more likely to naturalise than species with a low Z-score, and

the relative contribution of Z-score was similarly low in both regions (Table 3.3).

To explore whether the differences in the correlates of introduction and naturali-

sation success found for NZ and GB simply reflected the different species composition

of pines in each region we repeated the analyses described above with only the

species that had been introduced to both regions (n = 61). The results from this

analysis were similar to those using all species in the genus and the quantitative

conclusions did not change (results not presented). Thus differences in regions are

likely due to other factors e.g. forestry practices, landscape structure rather than

being attributable to individual species.
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Human
Biogegraphic
Traits
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)

Introduction NZ Introduction GB Naturalisation NZ Naturalisation GB

0.88 (0.04) 0.84 (0.05) 0.98 (0.02) 0.96 (0.02)

0.84 (0.05) 0.98 (0.02) 0.96 (0.02)

Human
Biogegraphic
Z-score

a

b
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(%

)

0.86 (0.04) 0.87 (0.03) 0.98 (0.02) 1.00 (0.00)

Figure 3.1. Stacked bars showing the percent relative contribution of variables in three
classes (human, biogeographic and species attributes) to introduction and naturalisation
success for Pinus spp. in New Zealand (NZ) and Great Britain (GB) when: (a) life-history
traits are used; (b) when the Z-score is used in place of life-history traits. AUC (±SE) values
indicate the performance of the model at each stage are given above the stacked bars.
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3.5 Discussion

Our goal was to assess the relative importance of species attributes (life-history traits

and the Z-score), biogeographic, and human factors in determining success at the

introduction and naturalisation stages in two regions. An increasing number of

studies attempt to assess the correlates of introduction, naturalisation and invasion

success (Dawson et al., 2009a; Gravuer et al., 2008). However, we present the

first evidence for consistent roles of species attributes, biogeographic, and human

factors in introduction and naturalisation success for the same global pool of species

in different regions. We found that human factors most strongly influenced the

likelihood that a pine species from the global pool would be introduced into either

region, followed by a good climate match and large native range size. However,

human factors acted differently between regions on naturalisation, being more

important in NZ than in GB. In both regions, life-history traits and the Z-score had

much less influence on both introduction and naturalisation, being ranked below

other factors.

Our results show how bias in the pool of introduced species may affect outcomes

in subsequent stages of the invasion process. Pines introduced to NZ and GB were

a non-random subset of species in the global pool: they tended to be species that

were widely used for forestry elsewhere, had a good climate match to the target

region, a large native range and fast maturation (Table 3.2). These are also traits that

have been linked to a greater probability of invasion in pines (Grotkopp et al., 2002;

Nuñez & Medley, 2011; Procheş et al., 2012; Rejmánek & Richardson, 1996) and

other taxa (Gallagher et al., 2011; Gravuer et al., 2008; Hanspach et al., 2008; Hui

et al., 2011). The predominance of these traits in the pool of introduced species thus

likely increases the base rate of naturalisation and invasion relative to that expected

had species been chosen at random. In short, the features of species selected for

introduction and commercial planting for forestry, such as good climate match and

fast maturation, will in turn favour success at naturalisation and invasion (Essl et al.,

2011, 2010).

Our finding that species attributes contribute little to naturalisation success

relative to human and biogeographic factors, is contrary to previous studies that

identified small seed mass, short juvenile period and short interval between large seed

crop years as key factors discriminating invasive and non-invasive pines (Grotkopp

et al., 2002; Rejmánek & Richardson, 1996). There are several possible reasons for

this discrepancy.
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First, previous studies on pines have focused solely on species attributes, and

not considered the potential role of biogeographic and human factors (Grotkopp

et al., 2002; Rejmánek & Richardson, 1996). Second, it is possible that the forestry

use index we used, derived from the CABI Forestry Compendium, was itself highly

correlated with traits related to likelihood of naturalisation (and invasion in the

case of NZ). This might be expected if foresters biased the pool of commercially

used species towards those with specific traits linked to invasion success. However,

the only trait with which this index was even weakly correlated was tree height

(Spearman’s rank correlation, r = 0.50, P < 0.001). Third, previous studies have

analysed only subsets of the genus, typically fewer than 30 species selected on data

availability. Our analysis of introduction and naturalisation outcomes in NZ and GB

uses all known introduced species (66 and 73 species in NZ and GB respectively) and

the inclusion of a wider range of species selected on an objective basis may influence

the outcome.

Finally, previous studies have used different measures of “invasion success” to

our study and this might lead to differences in the variables identified as important

(Hulme, 2012). For example, Rejmánek & Richardson (1996) classified species as

invasive if they were spontaneously spreading on at least two continents and as

non-invasive if they were planted on at least three continents but never reported

as spreading. Invasion success in this context encompasses both naturalisation and

subsequent spread in multiple regions, while our study considers naturalisation in

specific regions. Other studies have quantified invasion outcomes using the rate

or extent of spread within a region and it is possible that life-history traits become

more important in influencing these distributional patterns (Gravuer et al., 2008;

Lloret et al., 2005). The Z-score has previously been used to discriminate invasive

from non-invasive pines and its failure to predict outcomes in our study could be a

consequence of the focus on naturalisation. Nevertheless, all pine species naturalised

in NZ were invasive and we would therefore expect it to discriminate among these.

In contrast, we found that the Z-score had low explanatory power in NZ and was

ranked below human and biogeographic factors (Table 3.2). We also found that

there was only a weak correlation between the Z-score and area planted (≤ 0.26 in

both regions; see Appendix S2). Our findings support recent work by Dawson et al.

(2011a) who also highlighted that human factors (e.g. propagule pressure) were

more important determinants of invasion success than species traits in a wide range

of tropical woody taxa.
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We found that a close climate match between the native range and the target

region was a good predictor of success at both the introduction and naturalisation

stages. This result supports several studies that have found one or more measures of

climate match to be important determinants of pine naturalisation (Essl et al., 2011,

2010; Nuñez & Medley, 2011), and naturalisation and invasion of other plant taxa

(Diez et al., 2009; Gravuer et al., 2008; Hayes & Barry, 2008). However, for twelve

pine species used in plantation forestry, Nuñez & Medley (2011) showed that climate

match could identify only the invasive species (sensu Richardson et al., 2000b) and

not those which failed to invade. Given that, for pines, selection for good climate

match is linked to forestry use (Essl et al., 2011, 2010; McGregor et al., 2012), it may

be that the species examined by Nuñez & Medley (2011) were already preselected to

have a good climate match with the recipient region, weakening the discriminatory

power of this variable.

Our study is the first to quantitatively compare the outcome of pine introductions

to different regions and we show that, perhaps not surprisingly, the forestry use

index was a strong predictor of introduction success, supporting previous work

that found economic use was a strong predictor of Trifolium introductions to New

Zealand (Gravuer et al., 2008). Human factors (forestry use index and area planted

for forestry) were likewise strong determinants of pine naturalisation (and in NZ,

invasion success; Essl et al., 2011, 2010; Procheş et al., 2012). The forestry use

index, while not strongly correlated with species traits, was more strongly associated

(r > 0.50) with native range size and degree of climate match in each region. It was

also strongly correlated with the area planted in NZ, which was another important

predictor of invasion success in this region. However, in GB, area planted was not a

good predictor of naturalisation and was less strongly correlated with the forestry

use index. These contrasting patterns in the role of the forestry use index and area

planted between regions could be due to differences in the temporal coverage of

the data available from forest working plans in each region. In NZ, which was only

settled by Europeans in the mid-late 1800s, the working plans covered the entire

period of commercial forestry planting. In GB, however, early private plantings may

not have been documented in the Forestry Commission archives thus underestimating

their extent, particularly for European species. Nuñez et al. (2011) found conflicting

evidence for the role of propagule pressure in pine invasion success, concluding that

its effects could be modified by ecological filters in the area surrounding plantations.

This could apply to GB, where the higher human population density relative to NZ,

and more intensive land-use could mediate the effect of propagule pressure. In NZ
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large areas of extensively grazed tussock grasslands are particularly prone to pine

invasion (Harding, 2001), and widespread similar habitats do not occur in GB.

We found that a combination of species attributes, biogeographic and human

factors were able to accurately distinguish success and failure of pines at the two

stages we examined (AUC > 0.8). This discriminatory ability was similar to that

found when the same pool of species was assessed using the Australian weed risk

assessment (WRA) to distinguish success and failure at these stages in the same

regions (McGregor et al., 2012). The WRA was able to classify species with a

similar level of accuracy and reliability to our BRT models. This suggests that a full

weed risk assessment is no more accurate than using a small but targeted subset

of variables, in this case: global forestry use, climate match, native range size

and minimum juvenile period (Hulme, 2012). However, for species where good

information is available, the WRA is faster than the BRT approach, though this

time advantage is reduced for poorly known species that require more research.

In addition, when information about invasive behaviour elsewhere is missing, the

WRA becomes unreliable (McGregor et al., 2012), and the BRT approach has the

advantage that it does not rely on this information for accurate risk assessment.

3.6 Conclusion

We have shown that for two climatically similar island regions in different hemi-

spheres with a similar history of forestry introductions, outcomes at the introduction

and naturalisation stages are explained by a similar set of variables. This implies

that similar processes may underlie pine invasions in different regions, and that

differences in the level of invasion between regions or hemispheres may reflect differ-

ences in the total number of species introduced or area planted (the total “invasion

pressure”), rather than fundamental differences in the processes underlying invasion

or the susceptibility of regions to invasion. Our results suggest that forestry usage

and biogeography are better predictors of naturalisation than species attributes.

Risk assessment, at least for pines, needs to especially incorporate knowledge of

how widespread a species is likely to be planted and biogeographic factors because

these predict invasion outcomes better than species attributes. Given the strong

economic pressures to introduce alien trees in plantation forestry, uncoupling utility

from invasion could require a novel approaches that might include plant breeding

(Anderson et al., 2006) to reduce seed dehiscence or viability, and/or landscape man-
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agement (Buckley et al., 2005; Hulme, 2006) to limit spread beyond the plantation

neighbourhood.

3.7 Author contributions and publication details
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feedback from RPD, PEH and MSW. John Wilson, Martin Nuñez, and one anonymous

reviewer provided comments that improved the manuscript. This manuscript was

published in Diversity and Distributions 18, 1013–1023.



Chapter 4

Is phylogeny a useful predictor of

Pinus invasion risk?

4.1 Abstract

Predicting which species are likely to be invasive is essential for effective risk man-

agement. The potential to predict risk based on species relatedness has been widely

recognised and investigated for extinction risk with the aim of identifying future

at-risk species in order to prioritise conservation efforts, yet has been relatively poorly

investigated for invasion risk. Models of how factors determine invasion success

have recently begun to control for phylogenetic autocorrelation and have shown

that controlling for phylogeny can change analytical results, but this practice is not

widespread in invasion biology. I address these issues and test whether there are

phylogenetic signals in introduction, naturalisation and invasion risk, and in factors

that could determine risk in the genus Pinus. I infer phylogenetic relationships using

DNA sequence data (matK and rbcL) analysed in the Bayesian Markov chain Monte

Carlo (MCMC) program BEAST. I then incorporate phylogenetic uncertainty into

phylogenetic signal calculations (Blomberg’s K and the D test) on the factors that

determine introduction and naturalisation success in New Zealand and Great Britain,

and on introduction and naturalisation success themselves. In order to assess the

effect of accounting for phylogeny, I use phylogenetic and non-phylogenetic MCMC

generalised linear mixed models (glmm) to compare the importance of factors that

determine success for introduction and naturalisation in New Zealand (NZ) and Great

Britain (GB). I found that there was no significant phylogenetic signal in success at

any stage or for the factors that determine success, and that controlling for phylogeny

does not change the significance of factors influencing success. Introductions were

predicted by a high forestry use index (both regions) and close climate match (NZ

only). Naturalisation success was increased by a larger area planted (both regions),

high forestry use index and close climate match (NZ only). The Z-score was not

54
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a significant predictor at either stage or in either region, but played a larger role

for naturalisations in NZ than GB. These results suggest that for pines phylogenetic

relationships are not a useful predictor of invasion risk and that models produce

the same results with and without controlling for phylogeny. Investigating whether

phylogenies can predict invasion risk in a wider group of species, for example all

Pinaceae, would be a useful broader test of the ideas developed in this chapter.

Keywords: climate match; forestry; native range size; phylogenetic signal; phyloge-

netic uncertainty; traits; weed; Z-score

4.2 Introduction

Predicting which species are likely to become invasive and which are not is a central

aim in invasion biology. It is becoming clear that a suite of species attributes,

biogeographic and human factors each contribute to the probability that a species

will transition through each stage of the invasion process. For plants, the probability

of naturalisation is increased by having life-history traits related to fast and prolific

reproduction (Procheş et al., 2012; Pyšek et al., 2009b; Rejmánek & Richardson,

1996), a closer climate match to the introduced regions (Essl et al., 2011; Nuñez &

Medley, 2011), a larger native range size (Procheş et al., 2012), greater economic

importance (Essl et al., 2011, 2010; Hulme, 2009; Křivánek & Pyšek, 2008; Pyšek

et al., 2010) and higher propagule pressure (Essl et al., 2011, 2010; Křivánek &

Pyšek, 2006; Pyšek et al., 2009b). However another crucial factor is the role of

evolutionary relationships among species, and how these relationships may allow

us to predict invaders or confound traditional statistical analyses into the factors

determining invasions.

Phylogenetic relationships alone could predict naturalisation and invasion risk

because related species may share similar traits through shared ancestry, including

those traits linked to risk (Harvey & Pagel, 1991). The potential to predict risk based

on species relatedness has been widely recognised and investigated for extinction risk

with the aim of identifying future at-risk species in order to prioritise conservation

efforts (Purvis, 2008). Quantitatively investigating the strength of phylogenetic

clustering (or “phylogenetic signal” defined as the statistical non-independence

among species trait values due to their phylogenetic relatedness) in extinction

risk is an on-going area of research and generally assigns extinction risk based

on IUCN assessment results. Phylogenetic signal in risk is evident for birds and
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mammals (Purvis et al., 2000; Russell et al., 1998), amphibians (Corey & Waite,

2008; Stuart et al., 2004) and plants (Davies et al., 2011; Pilgrim et al., 2004;

Schwartz & Simberloff, 2001; Vamosi & Wilson, 2008), such that some taxonomic

groups have more threatened species than is expected by chance. Using the same

logic, phylogenetic non-randomness of invasive species could be used to predict

invasion risk.

Several studies have investigated phylogenetic non-randomness in invasion risk,

although this non-randomness has not been quantified using measures of phylo-

genetic signal. Species have been assigned to high-level taxonomic groups (such

as families, orders, and subclasses) to assess whether certain groups contain more

invasive species that expected by chance (Alcaraz et al., 2005; Blackburn & Duncan,

2001; Daehler, 1998; Lloret et al., 2005; Pyšek, 1998; Richardson & Rejmánek, 2004;

Tingley et al., 2010; Vázquez & Simberloff, 2001; Vilà & Muñoz, 1999). For plants,

invasive species are often over-represented in some taxonomic groups, although

there appear to be only three families that are identified by more than one study,

including Amaranthaceae, Papareraceae and Polygonaceae (Daehler, 1998; Pyšek,

1998; Vilà & Muñoz, 1999). The usefulness of this approach for informing risk is

limited by three factors. First, all grouping levels within the Linnaean hierarchy (e.g.

orders, family, genus) are human-made categories that are not equivalent units for

comparison (Fisher, 1991; Forey et al., 2004). Second, the higher taxonomic levels

used are often large and mean that any groups identified as risky are not specific

enough to be used for practical mitigation actions (e.g. Pyšek et al., 2009a; Schmidt

& Drake, 2011b). Finally, identifying invasive species from within a taxonomic group

without accounting for the opportunity that each species had to become invasive (i.e.

whether a species was introduced outside its native range or not) produces a biased

sample of invasive species for analysis (Cassey et al., 2004). Consequently, new ap-

proaches such as quantifying phylogenetic signal that deal with these methodological

issues are needed to assess how phylogeny can inform risk assessment.

In addition to testing whether a species phylogeny alone is a useful proxy for risk,

knowledge of how phylogeny affects trait distributions is useful when implementing

statistical analyses that make comparisons across taxa. Conventional statistical tests

assume that species are independent units for analysis. However, species are part

of a hierarchically structured phylogeny and may not be biologically or statistically

independent from one another (Harvey & Pagel, 1991; Martins & Hasnes, 1996;

Miles & Dunham, 1993). The assumption of phylogenetic independence can lead

to spuriously narrow confidence limits and inaccurate correlation and regression
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parameter estimates (Felsenstein, 1985; Harvey & Pagel, 1991; Martins & Garland

Jr, 1991). Consequently, several statistical methods have been developed that

incorporate phylogenies and account for non-independence among taxa. These

include techniques such as independent contrasts (Felsenstein, 1985), phylogenetic

autocorrelation (Cheverud et al., 1985), phylogenetic generalised least squares

regression (Grafen, 1989; Martins & Hansen, 1997) and phylogenetic mixed models

(Housworth et al., 2004).

Several studies have incorporated phylogeny into analyses of the factors related to

invasion risk in order to control for relatedness between species. Studies of invasions

have used variance partitioning (Blackburn & Duncan, 2001; Dawson et al., 2009a;

Küster et al., 2008; Pyšek et al., 2009a), phylogenetic independent contrasts (Alcaraz

et al., 2005; Jeschke & Strayer, 2006) and phylogenetic mixed models (Dawson

et al., 2011b). Controlling for phylogeny sometimes changes the importance or

significance levels of some variables when compared to a non-phylogenetically

controlled analysis (Alcaraz et al., 2005; Dawson et al., 2009a, 2011b; Jeschke

& Strayer, 2006). For example, for mammals the effect of hunting (a variable

related to human use and reason for introduction) disappeared when phylogeny was

included (Jeschke & Strayer, 2006), and several trait differences between native

and invasive fish species were significant when phylogeny was included but not

significant when phylogeny was excluded (Alcaraz et al., 2005). Phylogeny may

also be more important at lower taxonomic levels and the later stages of invasion

(Pyšek et al., 2009a). However in general, phylogeny has a minor explanatory role in

most studies (Dawson et al., 2009a, 2011b; Küster et al., 2008; Pyšek et al., 2009a).

Therefore, although phylogeny itself may have a minor explanatory role, failing to

control for its effects can lead to spurious conclusions.

In this study I aim to assess whether phylogenetic relationships can be useful

for predicting invasion risk at the species level. Specifically, I assess the strength

of phylogenetic signal in introduction and naturalisation success for Pinus in New

Zealand (NZ) and Great Britain (GB) using quantitative measures which incorporate

phylogenetic information from DNA sequence data. Because of the detailed knowl-

edge of pine introductions to NZ and GB (Appendix A), I account for the opportunity

of each species to naturalise (or invade) in these regions. Additionally, because Pinus

is a well-studied genus (e.g. Richardson, 2006), DNA sequence data is available

for most species from which phylogenetic relationships can be inferred (Gernandt

et al., 2005). Finally, patterns of extinction risk in plants have been found to differ

between regions (Davies et al., 2011) and by assessing phylogenetic signal for the
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same genus in two regions, I can identify whether the pattern in invasion risk differs

between regions for the same group of species. This study also aims to assess whether

phylogenetically controlled analyses of the factors determining invasions change the

conclusions from previous chapters, and whether including phylogeny in analyses

changes the significance levels of variables compared to non-phylogenetic models.

4.3 Methods

4.3.1 Species and variables

A list of all species in the genus was compiled and each species was categorised

as either not introduced, introduced or naturalised in NZ and GB (Chapter 3 and

Appendix A). All naturalised species in NZ are classed as invasive (Richardson &

Rejmánek, 2004), so for NZ I effectively test for phylogenetic signal in invasion risk

as well. However, not all species are invasive in GB (Richardson & Rejmánek, 2004),

so for GB I am testing the phylogenetic signal in naturalisation risk. I refer to this

stage as “naturalisation” in both regions to keep terminology simple.

Because a small suite of variables determine introduction and naturalisation

success in pines and represent the three main classes of variables—species, biogeo-

graphic and human (Chapter 3)—these were the variables that I selected to test for

phylogenetic signal. All variables are listed in Table 4.1 and further details of how

these variables were collected or calculated are given in Chapter 2 and Chapter 3.

Table 4.1. Table of Pinus variables used in phylogenetic MCMC generalised linear mixed
models of introduction and naturalisation success for New Zealand and Great Britain; the
class of variable; variable type and units or coding used. Variables with a ∗ were only included
at the naturalisation stage; all other variables were included at both stages (introduction and
naturalisation).

Variable class Variable Type Unit or code

Species Z-score cont. -
Biogeographic Climate match cont. %

Native range size cont. km2

Human Forestry use index cont. -
Residence time∗ cont. year
Area planted∗ cont. ha
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4.3.2 Phylogeny

I used data from Gernandt et al. (2005, TREEBASE study accession number S1143,

matrix accession number M1964) to construct a phylogenetic hypothesis for the genus

Pinus. The phylogeny was based on chloroplast DNA regions matK and rbcL. Since

the study by Gernandt et al. (2005) further sequence data have become available on

GENBANK (Table 4.2). These sequences were incorporated into the matrix, resulting

in 109 species (out of 115 that I recognised; see Appendix A) being represented in

the phylogeny. DNA sequence data were concatenated and aligned visually in MEGA5

(Tamura et al., 2011) using the translated protein sequence.

Table 4.2. Table showing the GENBANK accession numbers for additional Pinus matK and rbcL
sequence data that were not included in the Gernandt et al. (2005), but were used in this
study.

Taxon matK rbcL

Pinus arizonica DQ156484.1 FJ580056.1
Pinus henryi EU369312.1 EU369313.1
Pinus juarezensis AY115770.1 AY115752.1
Pinus kwangtungensis EF546713.1 AB019802.1
Pinus lagunae AY115783.1 AY115752.1
Pinus orizabensis AY115753.1 AY115785.1
Pinus strobiformis AB455588.1 AB455829.1
Pinus washoensis DQ156490.1 FJ580082.1

Bayesian tree building programs search and optimise over many thousands of

possible tree topologies (e.g. Drummond & Rambaut, 2007; Huelsenbeck & Ronquist,

2001). Rather than summarising this variation in tree topology into a single consen-

sus tree, performing multiple analyses using many trees allows us to incorporate the

uncertainty associated with the molecular data and tree-building process (Arnold

et al., 2010; Huelsenbeck et al., 2000; Pagel & Lutzoni, 2002). Incorporating this

uncertainty is important because analytical results have been shown to depend on the

tree topology (Lutzoni et al., 2001). Therefore, in order to quantify the uncertainty

surrounding the phylogenetic relationships for Pinus and because subsequent statis-

tical analyses (see below) required an ultrametric tree (rooted tree where branch

lengths correspond to time), I used the Bayesian analysis program BEAST v1.6.1

(Drummond & Rambaut, 2007) because it generates a sample of many thousands of

trees from the posterior tree distribution (the “posterior tree block”) and produces

ultrametric trees. BEAST is a cross-platform program for Bayesian Markov chain

Monte Carlo (MCMC) analysis of molecular sequences that can produce rooted,
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time-measured phylogenies inferred using strict or relaxed molecular clock models

(Drummond et al., 2006). MCMC procedures ensure that trees are sampled in propor-

tion to their probability of occurrence under the model of gene-sequence evolution

(see below).

In order to establish the best model of gene sequence evolution for my data, I used

the program JMODELTEST (Guindon & Gascuel, 2003; Posada, 2008; Posada & Buckley,

2004) that identified (from those available for implementation in BEAST) the general

time reversible substitution model plus invariant sites and gamma rates (GTR+I+G)

as the best model, based on Akaike information criterion (AIC; Akaike, 1974) values.

Invariant site heterogeneity allows some sites to never undergo evolutionary change,

and gamma rate heterogeneity allows the substitution rate to vary so that some

sites evolve more slowly and some more quickly. Because previous BEAST runs

demonstrated that the data were not clock-like, I used an uncorrelated lognormal

relaxed molecular clock where the rate for each branch is drawn from a lognormal

distribution and assumes independent rates on different branches (Drummond et al.,

2006). Other settings were as follows: base frequencies estimated; no partitioning;

the tree prior was set to the Yule speciation process prior (a pure birth process); and

all other priors were left as their default settings (see the BEAST documentation).

Bayesian MCMC was run twice from random starting trees over 50 million

generations, sampling every 5,000 generations. In order to avoid any trees that

might have been sampled before convergence of the Markov chains, the last 5,000

trees from these two analyses (effectively a 50% burn-in) were combined with

LOGCOMBINER v1.6.1. and inspected with TRACER v1.5 (all programs included in the

BEAST download, see Rambaut & Drummond, 2007), resulting in 10,000 posterior

trees (the posterior tree block). In order to obtain the single tree shown in Figure 4.1,

I created a median clade credibility tree on the basis of the 10,000 saved trees using

TREEANNOTATOR v1.6.1 (Figure 4.1).

4.3.3 Statistical analysis

4.3.3.1 Phylogenetic signal

In order to quantify the effect of variation in the posterior tree block (the effect of

phylogenetic uncertainty) on analytical results, I performed multiple statistical tests

across a random selection of 1,000 trees from the posterior tree block. This number

of trees was selected because preliminary analyses showed that averaging over 1,000
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random trees produced similar results to averaging over all 10,000 trees but resulted

in a significantly shorter time for analyses to run.

Analyses were carried out in R version 2.13.1 (R Development Core Team, 2011).

First, the data and tree block were matched, reordered and pruned to insure that

only species present in both the tree and data were included. In order to quantify

phylogenetic signal for all continuous variables I calculated Blomberg’s K (Blomberg

et al., 2003) using the phylosig function in the phytools package in R (Revell, 2011).

Blomberg’s K has some noted advantages and disadvantages (Münkemüller et al.,

2012). I used K because in preliminary tests it produced the same significant and

non-significant results as the other comparable alternative measure of phylogenetic

signal, Pagel’s λ (Pagel, 1999), but was easier to implement and interpret.

The K statistic can take values from 0→∞ and can be thought of as the degree

of similarity among species in the phylogeny compared with the degree of similarity

expected from a Brownian model (BM) of evolution (Felsenstein, 1985). Traits in

the BM follow a random walk along the branches of a phylogenetic tree, with the

variance in the distribution of trait values being directly proportional to branch

length. To test for the null hypothesis of no phylogenetic signal, the observed value

of the K statistic is compared to the values expected under random trait distribution

(Münkemüller et al., 2012). Low values indicate low phylogenetic dependence and

vice versa. When K = 1 the traits follow a BM. When K < 1 there is low phylogenetic

signal and closely related species are more distant than expected by a BM. When

K > 1 there is a higher degree of phylogenetic signal than expected under a BM

and closely related species are more similar to one another than a BM. The phylosig
function assesses the significance of K by randomly shuffling occupancy values among

species 1,000 times and calculates 95% confidence intervals, returning a P-value.

Blomberg’s K cannot be applied to binary traits. Therefore to quantify phyloge-

netic signal for the binary traits (introduced or not; naturalised or not) I used the D

test (Fritz & Purvis, 2010) calculated using the phylo.d function in the caper package

(Orme et al., 2011). When D = 1 the trait is distributed randomly on the phylogeny.

When D = 0 the trait is clumped as expected by a BM. Values of D can fall outside

the range of 0–1. Because the phylo.d function scales D to be comparable between

phylogenies using two null distributions, it can also calculate two P-values (P1 and

P0). If P1 ≤ 0.05 then the trait is significantly different from a random distribution,

i.e. phylogenetic signal is present. If P0 ≤ 0.05 then the trait is significantly different

from a clumped distribution, i.e. phylogenetic signal is not present.
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I first calculated K or D for all factors determining introduction success and for

introduction success itself, for all 109 taxa in NZ and GB over a random sample of

1,000 trees. Then, because invasions are a stage-based process and some species

were not introduced to a region, all 1,000 trees randomly sampled from the posterior

tree block were pruned to remove species that were not introduced to a given

region. Phylogenetic signal was then calculated on this pruned tree block for the

traits determining naturalisation success, and then again for naturalisation success

(0= not naturalised; 1= nautralised) itself. Therefore phylogenetic signal in traits

determining naturalisation was calculated on two different pruned tree blocks: one

for those species that were introduced to NZ, and one for those introduced to GB.

4.3.3.2 Congruence of trees

In order to assess whether the method of inference I used (Bayesian) resulted in a

similar tree topology to previous trees generated from the same data using different

inference software (Gernandt et al., 2005), I tested for the level of congruence

between a consensus tree of the BEAST runs and the consensus tree published by

Gernandt et al. (2005). Gernandt et al. (2005) derived their consensus tree using

equally weighted parsimony, which may have optimised on a slightly different tree

topology. However, if the majority of the major clades are similar between the two

different phylogenetic analysis methods it is more likely that the clades present in

both trees are an accurate representation of the data. BEAST does not produce a

consensus tree, therefore I computed a 50% majority rule consensus tree in R using

the ape package (Paradis et al., 2004) so that the BEAST result was comparable with

the Gernandt et al. (2005) tree. To further make both trees comparable, the BEAST

consensus tree was pruned to remove the eight additional species sequence data

(Table 4.2) that were not present in the Gernandt et al. (2005) data set. I then used

the tree.comp function in the spider package (Brown et al., 2012) to compare the

proportion of clades that are the same between the two trees.

4.3.3.3 Phylogenetic mixed models

In order to determine whether including phylogeny changed the importance of

factors determining success at each stage, I used Bayesian generalised linear mixed

models (glmm) implemented in the package MCMCglmm (Hadfield, 2010) using R.

MCMCglmm allows phylogenies to be optionally included in models as a component

of variance (Hadfield & Nakagawa, 2010) and can handle binary response variables
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as well as explanatory variables from different sampling distributions. The phylogeny

I used in all MCMC glmm models was the median clade credibility tree (Figure 4.1)

calculated from the posterior tree block (i.e. phylogenetic mixed model results are

not averaged over the posterior tree block like phylogenetic signal was).

To assist with model convergence and ensure that parameter estimates for all

continuous and binary explanatory variables were on a comparable scale, all con-

tinuous explanatory variables were first standardised by subtracting their mean and

dividing by two standard deviations (Gelman, 2008). The phylogenetic tree and data

were matched and pruned to ensure that only species present in both data and tree

were included. Species with missing values (for climate match and native range size;

n = 3) were then removed because MCMCglmm cannot incorporate varaibles with

missing data if those varaibles are fixed effects. In total 107 species were used in

the analyses at the introduction stage. For the naturalisation stage these 107 species

were subsetted to analyse only those species that had been introduced to a given

region, resulting in 62 species for NZ and 30 species in GB (this low number for GB

was due to the high number of missing values for residence time in GB).

To quantify the effect of phylogeny on the explanatory power of each variable, I

fitted a model that included factors potentially determining success as fixed effects,

and specified phylogeny as a random effect. Effectively, the variance explained by

phylogeny was modelled as follows:

Si = β1i
+ β2i

vi + β3i
Phy (4.1)

Where Si is success (1) or failure (0) at a given stage (repeated for introduction

or naturalisation); βx i
are parameters to be estimated from the data; vi is one of the

explanatory variables listed in Table 4.1; and Phy is the phylogenetic relationships

between species (as a phylogenetic covariance matrix). β3i
measures the variance

explained by phylogeny. I then fitted the models a second time without β3i
Phy.

Then, to determine whether phylogeny explained any variation in introduction and

naturalisation success (and to assess whether phylogenetic mixed models agreed

with measures of phylogenetic signal) I fitted a model with just success, an intercept

term and phylogeny as a random effect:

Si = β1i
+ β2i

Phy (4.2)

The models were then fitted without phylogeny.
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Finally, to determine whether phylogeny made a difference to the overall model

results, I fitted a model that included all species, biogeographic and human factors

as fixed effects and phylogeny (Phy) as a random effect:

Ii = β1i
+ β2i

zi + β3i
ni + β4i

ci + β5i
fi + β6i

Phy (4.3)

Ni = β1i
+ β2i

zi + β3i
ni + β4i

ci + β5i
fi + β6i

+ β6i
ai + β7i

ri + β8i
Phy (4.4)

Where Ii is introductions success (1) or failure (0) and Ni is naturalisation success

(1) or failure (0); βx i
are parameters to be estimated from the data; zi is the Z-score,

ni is native range size, ci is climate match, fi is the forestry use index, ai is area

planted, and ri is residence time. This model fitting process was repeated for both

NZ and GB and then repeated again for both regions without phylogeny.

Because MCMCglmm fits Bayesian models, I had to specify priors. To let the data

drive parameter estimates I specified uninformative prior distributions for all model

parameters. In MCMCglmm this equated to priors for the response variables Ii and

Ni being set to a variance of 1, the degree of belief in prior was set to 1 and residual

variance was fixed at 1 because all models were binomial and there is no residual

variation term. Parameter expanded priors for the random effect (phylogeny) were

used in order to speed chain convergence, with a variance of 1, degree of belief in

prior of 1, a mean of 0 and the covariance matrix parameter set to 1000. To avoid

problems in model fitting associated with separation but still allow the data to drive

parameter estimates, I specified a weakly informative prior that equated to a uniform

prior on the probability scale (which provides some constraint of the fixed effects;

Gelman et al., 2008) as having a variance of ji(1+π2/3), where ji is the number of

fixed effects plus the intercept term (Hadfield, 2012).

Each model was run three times in MCMCglmm in order to obtain three MCMC

chains for inspection. I set the number of iterations for each chain to 50,000 with

a burn-in of 10,000 and sampled every 10 iterations. Convergence of the three

chains was judged by both visual inspection of the chain histories and by using the

Gelman–Rubin convergence diagnostic measure (Brooks & Gelman, 1998; Gelman

& Rubin, 1992) in the coda package (Plummer et al., 2006). The Gelman–Rubin

diagnostic measures whether there is a significant difference between the variance

within and between several chains by giving the scale reduction factors for each

parameter. A value of 1 indicates that between and within chain variances are

equal; values substantially above 1 indicate lack of convergence. As a rule of thumb

anything above 1.05 indicates chains have not converged. To increase the efficiency
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of mixing between chains I used a slice sampling method (Damlen et al., 1999) by

passing slice=TRUE to MCMCglmm.

MCMCglmm calculates P-values indicating whether a parameter was significant

in a given model. To visualise the significance of each variable I plotted the median,

upper and lower 95% credibility intervals. Parameters with credibility intervals

including zero are not significant (at the level P = 0.05). To determine whether in-

cluding phylogeny improved model fit I compared the deviance information criterion

(DIC; Spiegelhalter et al., 1993) for all models. The DIC aims to assess the trade-off

between the fit of the data to the model and the complexity of the model. Models

with a smaller DIC value are better supported by the data. Model complexity is

measured by estimating the effective number of parameters. The best model provides

a good fit but is not overly complicated and loses the least amount of information

when the model is used to approximate reality. In models with negligible prior infor-

mation the DIC will be approximately the same as AIC. The philosophy behind DIC

and AIC is that there is no “true” model. As a general rule of thumb, models within

10 of the model with the smallest DIC value might be regarded as the best model

while those within 2–4 might be regarded as the more likely candidates (Burnham &

Anderson, 2002; Spiegelhalter et al., 2002). Very small differences in DIC values can

arise because the MCMC chains introduce stochasticity, therefore small differences

might not necessarily indicate a better model.

4.4 Results

4.4.1 Phylogenetic tree

The phylogenetic tree comprised 109 taxa that were divided into the two main sub-

genera and four sections commonly recognised for pines. All major clades (subgenera,

sections and subsections) had a ≥ 95% posterior probability (Figure 4.1). When

displayed on the tree, species introduced and naturalised in NZ and GB showed

no strong tendency to be clumped so that there were no monophyletic groups of

naturalised species. However, subsections Contortae, Pinus and Pinaster each had

two or more naturalised species (Figure 4.2). The congruence between the BEAST

majority rule consensus tree (pruned) and the original tree from Gernandt et al.

(2005) was 94%.
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Figure 4.1. Median clade credibility tree produced from BEAST for 109 species in the genus
Pinus. Clades with a posterior probability (support) ≥ 95% are shown with black, those
with ≥ 75% posterior probability are shown with white circles, clades with < 75% are not
marked with circles. Within each subgenera, clades are labelled by sections (thick bars) and
subsections (thin bars). Tree is divided into (A) subgenus Pinus, and (B) subgenus Strobus
(on next page. . . )
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Figure 4.2. Phylogenetic mean clade credibility tree produced from BEAST for 109 taxa in the
genus Pinus, showing the status of each species (not introduced; introduced; naturalised) in
New Zealand (left) and Great Britain (right).
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4.4.2 Phylogenetic signal

There was no significant phylogenetic signal in either of the binary variables (intro-

duction or naturalisation success (Table 4.3) in NZ or GB. P-values for D suggested

that the distribution of introduction and naturalisation success was not significantly

different from a random distribution of introductions and naturalisations on the

phylogeny. There was also no significant phylogenetic signal in any of the traits

determining introduction or naturalisation success in either NZ or GB (Table 4.4).

Table 4.3. Mean values of D test for phylogenetic signal, and mean values for P1 and P0.
Mean values were calculated by averaging over all results using a sample of 1,000 trees
from the Bayesian posterior distribution obtained from BEAST, for Pinus introductions and
naturalisations in NZ and GB. If P1 ≤ 0.05 then the trait is significantly different from a
random distribution, thus has phylogenetic signal. If P0 ≤ 0.05 then the trait is significantly
different from a clumped distribution, thus has no phylogenetic signal. Significant values are
highlighted in bold.

Variable D (±SE) P1 (±SE) P0 (±SE)

Introduction NZ 0.860 (0.002) 0.109 (0.002) 0.000 (0.000)
Introduction GB 0.876 (0.002) 0.153 (0.004) 0.000 (0.000)

Naturalisation NZ 0.849 (0.002) 0.208 (0.003) 0.004 (0.000)
Naturalisation GB 1.046 (0.003) 0.547 (0.005) 0.003 (0.000)

4.4.3 Phylogenetic mixed models

At the introduction stage in both regions, including or excluding phylogeny did

not change the explanatory power of any individual variables (Figure 4.3a), nor

the significance level of variables in the full model (Figure 4.3b). Similar results

were also seen at the introduction stage for NZ (Figure 4.3c and d). The difference

in DIC values between the full model with phylogeny and the full model without

phylogeny at the introduction in both regions was < 2, therefore both models had

equal explanatory power.

The individual explanatory power of the Z-score, forestry use index and climate

match on naturalisation success in GB were significant when phylogeny was not in-

cluded as a random effect, but became non-significant when phylogeny was included

(Figure 4.4a). However including phylogeny in the full model of naturalisation in

GB did not change the significance of any variables (Figure 4.4b). Including or

excluding phylogeny had no effect on either individual variable importance or their

significance in full model of naturalisation success in NZ (Figure 4.4c and d). As at
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Table 4.4. Mean values for Blomberg’s K measure of phylogenetic signal and mean P-values.
Mean values were calculated by averaging over all results using a sample of 1,000 trees
from the Bayesian posterior distribution obtained from BEAST, for Pinus introductions and
naturalisations in NZ and GB. High values (>1) indicate strong phylogenetic signal, whereas
small values (<1) indicate a lack of phylogenetic signal. P-values ≤ 0.05 indicate significant
phylogenetic signal.

Stage Variables K (±SE) P (±SE)

Introduction Z-score 0.054 (0.00) 0.308 (0.009)
Climate match to GB 0.047 (0.001) 0.454 (0.009)
Climate match to NZ 0.065 (0.00) 0.349 (0.001)
Native range size 0.045 (0.001) 0.425 (0.001)
Forestry use index 0.095 (0.001) 0.302 (0.008)
Area planted GB 0.183 (0.002) 0.203 (0.004)
Area planted NZ 0.074 (0.001) 0.181 (0.008)
Residence time GB 0.236 (0.002) 0.098 (0.004)
Residence time NZ 0.048 (0.001) 0.662 (0.009)

Naturalisation Z-score GB 0.085 (0.002) 0.303 (0.009)
Z-score NZ 0.102 (0.021) 0.183 (0.006)
Climate match to GB 0.05 (0.001) 0.640 (0.007)
Climate match to NZ 0.065 (0.001) 0.545 (0.008)
Native range size GB 0.092 (0.001) 0.236 (0.008)
Native range size NZ 0.100 (0.001) 0.127 (0.008)
Forestry use index GB 0.097 (0.001) 0.443 (0.009)
Forestry use index NZ 0.095 (0.001) 0.467 (0.007)
Area planted GB 0.182 (0.002) 0.300 (0.005)
Area planted NZ 0.088 (0.001) 0.251 (0.008)
Residence time GB 0.307 (0.002) 0.080 (0.002)
Residence time NZ 0.048 (0.001) 0.663 (0.008)
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the introduction stage, DIC values suggested that phylogenetic and non-phylogenetic

models had the same explanatory power.

Overall, full models including species, biogeographic and human factors sug-

gested that introduction success was significantly increased in both regions by a

higher forestry use index, and in NZ a closer climate match with the native range (Fig-

ure 4.3b and d). Probability of naturalisation in GB was only significantly increased

by a larger area planted (Figure 4.4b). Naturalisation success in NZ was significantly

increased by a closer climate match, and greater area planted (Figure 4.4d).
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Figure 4.3. Median values ±97.5% credibility intervals for all parameters from Markov chain Monte Carlo generalised linear mixed models
with (filled circles) and without (open circles) phylogenetic control, for Pinus introduction success to Great Britain (a) when each variable was
assessed individually and (b) all variables were used in models; and for introduction success to New Zealand when (c) when each variable was
assessed individually and (d) all variables were used in models. Variables with credibility intervals that do not cross the dashed line at y = 0
are considered to be significant at the P = 0.05 level. DIC values are given for the full models at the bottom of each plot. Lower DIC values
indicate a better fitting model, but DIC values differing by < 4 are not considered to be substantially different.
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Figure 4.4. Median values ±97.5% credibility intervals for all parameters from Markov chain Monte Carlo generalised linear mixed models
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DIC values indicate a better fitting model, but DIC values differing by < 4 are not considered to be substantially different.
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4.5 Discussion

There was no phylogenetic signal in introduction or naturalisation success, or any of

the traits that could determine success for Pinus. Phylogenetically controlled models

produced the same conclusions as non-phylogenetic models and supported findings

from Chapter 3 and Chapter 5. I found that pine introductions are largely determined

by a high forestry use index and, in NZ only, better climatic suitability between the

native and introduced ranges. Pine naturalisation success was significantly increased

in both regions by a large area planted and in NZ by greater climatic suitability (e.g.

Essl et al., 2010; Nuñez & Medley, 2011). Although not significant, naturalisation

probability in NZ was increased by a longer residence time (e.g. Castro et al., 2005;

Křivánek et al., 2006; Pyšek et al., 2009b), greater forestry use index (e.g. Procheş

et al., 2012), larger native range size (e.g. Procheş et al., 2012) and higher Z-score

(Grotkopp et al., 2002; Rejmánek & Richardson, 1996).

The results of both phylogenetically controlled and non-controlled analyses are

consistent with previous invasion studies that found phylogeny had only a minor

contribution to results (Dawson et al., 2009a, 2011b; Küster et al., 2008; Pyšek et al.,

2009a). I also found that there was no phylogenetic signal in traits potentially linked

to invasion risk, including the Z-score, which is a species trait that we may expect to

be phylogenetically non-random due to shared evolutionary pressures among closely

related species for small seed mass, short juvenile period and large interval between

seed crop years. These results suggest that phylogenetic relatedness alone is not

a good predictor of invasiveness at lower taxonomic levels (i.e. between species)

and that most of the variation in invasion risk is determined by factors that do not

necessarily correlate with phylogenetic relatedness, such as propagule pressure. My

results suggest that it is unnecessary to control for phylogeny at the species level for

Pinus when assessing factors determining invasions.

I did not find any evidence that phylogenetic relatedness was more important

(or traits more phylogenetically correlated) at the later stage of the invasion process

(Pyšek et al., 2009a). However, it is too early to draw any conclusions regarding

whether phylogeny is more important at different stages of the invasion process

based on these results, which only include one genus in just two regions (NZ and

GB). Pinus naturalisations in NZ and GB may not be an ideal system in which to

test these questions because of the limited number of species being examined and

the limited number of regions used. A wider analysis that included several genera

from within the Pinaceae and compared these with other taxonomic groups (for
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example grasses and herbs) and examined introduction, naturalisation and invasion

globally, would have more power to detect broad trends. However, such an analysis

would require detailed knowledge of success and failure at all stages of the invasion

process for hundreds of taxa (Cassey et al., 2004; Diez et al., 2009), which could

prove problematic to obtain (particularly data on failed introductions).

My results suggest that there was no significant clustering of naturalised or

invasive species within the genus Pinus and that identifying species-level invasion

risk using phylogeny is not viable. This somewhat contrasts with a study by Miller

et al. (2011) who found that invasive Acacia species cluster together on a phylogeny

to some extent. However, my results are not directly comparable with Miller et al.

(2011) for several reasons. First, their study did not account for the opportunity for

species to become invasive by identifying which species were introduced to South

Africa, whereas my study did account for failures at the introduction stage (Cassey

et al., 2004). In total they classed 16 of the 110 species they examined as “invasive”

because they had been recorded as invasive in South Africa, but did not state whether

they restricted their 110 species to those that had been introduced to South Africa.

Second, whereas I used the entire genus (as far as possible, given available DNA

sequence data), Miller et al. (2011) used a selection of 110 species in the Acacia genus

(the genus has over 1000 recognised species) split into three data sets representing

all major lineages within the genus and the groups containing the invasive species A.

mernsii and A. melanoxylon. Thus their study may contain unforseen biases related

to species selection. Finally, Miller et al. (2011) did not aim to quantify phylogenetic

signal in these species using measures such as K or D (Blomberg et al., 2003; Fritz &

Purvis, 2010), thus their conclusions are necessarily qualitative.

Although there are many advantages of using the genus Pinus as a model system

(Richardson, 2006), pines may not be the ideal case study when examining phylo-

genetic patterns in invasion risk because several factors could favour evolutionary

divergence even among closely related taxa. Pinus is a particularly genetically and

ecologically diverse genus (Ledig, 1998). The genus arose around 130 million years

ago in the Late Cretaceous period and is a basal member of the Pinaceae (Price

et al., 1998). The genetic and ecological strategies of pines favours the creation and

recombination of genetic variation, which results in species being able to adapt to

a wide variety of ecological conditions. Pines have a high number of chromosomes

(n = 12) compared to other conifers, a monoecious mating system with sex sepa-

ration in the tree crown and hybridise readily within many species-complexes–all

factors that favour recombination and outcrossing, leading to high genetic diversity
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(Ledig, 1998). Since their origins in the late Cretaceous, pines have both expanded

and contracted their geographic ranges in response to climatic changes and now

occupy a wide variety of diverse habitats including lowland taiga forest, sea level

tropical swamp, Mediterranean environments, dry desert and mountain tree line

(Farjon, 2005; Richardson & Rundel, 1998). Both the large evolutionary time-scales

and this genetic and ecological diversity could have resulted in closely related species

being different enough from one another that phylogenetic signal in some traits has

been removed. Testing for phylogenetic signal in invasion risk on a wider taxonomic

group could avoid the biases associated with using Pinus as a model group.

4.6 Conclusion

I found that there was little or no phylogenetic signal in introductions, naturalisations,

or the traits determining introductions and naturalisations for the genus Pinus, sug-

gesting that phylogeny is not a useful proxy for risk at the species-level in these taxa.

When models controlling for phylogeny were compared with non-phylogenetically

controlled models, there was no difference in the significance levels of variables

between models. Mixed models indicated that factors that were not correlated with

phylogeny, and would not necessarily be predicted to correlate with phylogeny in-

cluding the forestry use, planting effort and climate match, determined introductions

and naturalisations in both regions. Factors that were more likely to correlate with

phylogeny such as native range size and the Z-score were not significant predictors

at either stage of invasion. These results suggest that phylogenetic relationships

may have a limited role in predicting invasions at the species level for conifers,

because the factors that determine success are largely governed by human selection,

which may not correlate with phylogeny. Quantitative tests of how invasion risk is

distributed across phylogenies at the species level are needed to assess whether there

are any generalities that could be useful for assessing the risk of species becoming

invasive in the future.



Chapter 5

Mapping the path to plant

naturalisation: identifying causal

relationships with exploratory path

analysis

5.1 Abstract

1. Understanding the mechanisms driving alien plant invasions is essential for

developing effective prevention and ecosystem management strategies. Several

species, biogeographic and human factors have been identified that correlate with

invasion success, though no research has examined how these factors link together in

a causal structure to establish the mechanism of invasion. Path analysis can identify

causal links between variables. However, invasions are a complex process, involving

multiple variables from different sampling distributions, where there may be no

strong prior hypothesis about how factors link to determine success, presenting a

challenge to traditional path analysis methods.

2. This chapter introduces a Bayesian method for path analysis that overcomes

many of these issues. I use this method to test how species, biogeographic and

human factors link in a causal structure to determine outcomes at the introduction

and naturalisation stages of the invasion process, for two non-native genera (Pinus

and Trifolium) in New Zealand.

3. I found that human factors (area planted and residence time) acted directly to

increase naturalisation success, and that these mechanisms were repeated in both

genera, suggesting they are general. However, the factors determining area planted

and residence time were different between the two genera. Species attributes had

77
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relatively weak direct and indirect links compared to human and biogeographic

variables, at both the introduction and naturalisation stages. This analysis revealed

the differing causal mechanisms and strength of important biogeographic variables

between taxonomic groups.

4. I found that path analysis uncovered more detailed relationships than standard

regression methods, and also uncovered instances of potential latent (unmeasured)

variables.

5. Synthesis: My results suggest that variables identified as determining invasion

outcomes in traditional regression studies can act via different causal mechanisms be-

tween taxonomic groups, and that the results from one group may not apply directly

to others. I also found evidence of latent variables, which are likely to be common but

unidentified in previous studies, and could be targeted for further research. There

is great scope for path analysis to be more widely applied to identifying the drivers

of invasions, with the aim of improving prevention and management of invasive

species.

Keywords: Bayesian method; biological invasions; BRugs; causation; climate;

propagule pressure; path analysis; structural equation; traits; weeds.

5.2 Introduction

Invasions are determined by a range of species attributes, biogeographic, and human

factors that can link together in a causal structure. For example, plant invasions have

been associated with factors such as climate suitability within a new region (Essl et al.,

2011; Gravuer et al., 2008; Nuñez & Medley, 2011; Scott & Panetta, 1993), a large

native range size (Goodwin et al., 1999; Gravuer et al., 2008; Procheş et al., 2012),

propagule pressure (Essl et al., 2010; Křivánek et al., 2006; Lockwood et al., 2005;

Pyšek et al., 2009b), economic use (Essl et al., 2010; Gravuer et al., 2008; Křivánek &

Pyšek, 2008; Reichard & Hamilton, 1997), and a range of life-history traits (Gravuer

et al., 2008; Pyšek et al., 2009b; Rejmánek & Richardson, 1996). Given that invasions

are a process incorporating the stages of introduction, naturalisation, and invasion

(Blackburn et al., 2011) there are several possible ways that these variables could

link together in a causal structure to determine invasion success. Some factors may

be both explanatory and dependent variables in a causal model, such as propagule
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pressure. While propagule pressure may determine invasion success, this variable

may be directly dependent upon climatic suitability to a region and economic use.

Such causal linkages have not been explored for large-scale determinants of invasion

success, yet could advance our understanding of invasions.

Structural equation models (“SEM”; Bollen, 1989; Haavelmo, 1943; Koller &

Friedman, 2009; Neapolitan, 2004; Pearl, 2000; Spiegelhalter et al., 1993) and path

analysis (Wright, 1921, a subset of SEM with no unmeasured or “latent” variables),

provide a means of determining causal links between variables when experimental

manipulation is not possible, as is the case when examining regional- or global-scale

determinants of invasion success. Path analysis in particular has become widely used

in ecological studies (e.g. Cariveau et al., 2004; Dunham & Mikheyev, 2010; Farris

& Lechowicz, 1990; Grace, 2006; Mitchell, 1992; Mysterud et al., 2008; Schemske

& Horvitz, 1988; Shipley, 1997, 2000; Sikes et al., 2010; Thomas et al., 2007),

yet its application to invasion biology has been limited to assessing the effect of

variables on alien species richness (Atwater et al., 2011; Harrison et al., 2006; Hulme,

2011; Keeley et al., 2005; Seabloom et al., 2006; Taylor & Irwin, 2004). Most

research has focused on a single study region (Atwater et al., 2011; Harrison et al.,

2006; Keeley et al., 2005; Seabloom et al., 2006) or species (Atwater et al., 2011),

and only rarely take a continental or global approach (García-Berthou et al., 2005;

Hulme, 2011; Taylor & Irwin, 2004). Thus, using path analysis to disentangle the

causal relationships between large-scale determinants of success at each stage of the

invasion process could yield new insights into the processes determining invasion

outcomes.

Despite the potential use of path analysis in invasion studies, two features have

limited its wider application. Firstly, standard approaches often assume that variation

in the data due to unobserved causes follows a multivariate normal distribution

(Bollen, 1989; Shipley, 2000). This makes it difficult to incorporate variables with

different sampling distributions (such as binary outcomes or count data) despite

these being frequently encountered in invasion biology (e.g. invasive or not invasive).

Whilst traditional correction and bootstrapping methods exist that help deal with this

problem (Bollen & Stine, 1993; Satorra & Bentler, 1999), they are often difficult to

implement and may not be effective for small sample sizes (Hoogland & Boomsma,

1998).

Secondly, identifying suitable path models can be problematic when there are

many variables and multiple potential causal models, with no strong prior hypotheses

about the causal linkages. Path analysis often aims to identify a “best” model or
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at least a selection of equally well-performing models using measures of model fit

or adequacy such as the AIC (Taylor & Irwin, 2004), BIC (Taylor & Irwin, 2004),

and Chi-squared (Harrison et al., 2006; Keeley et al., 2005; Seabloom et al., 2006),

or to narrow the set of plausible models by eliminating those which do not meet

assumptions given by a probability threshold using a test of independence claims

(Shipley, 2009). These approaches work well when there are strong prior hypotheses

about the causal relationships between variables or when there are few variables.

However, when there is no reason to strongly suspect any particular links over others

this method can be difficult or impossible to implement efficiently. For example,

given no constraints, the number of potential models with three variables is 64;

with four variables this increases to 4,096; and by five variables there are 1,048,576

potential path models to assess (Shipley, 2000).

In this chapter, I describe a new exploratory approach for path analysis to investi-

gate how multiple factors both directly (causally) and indirectly determine invasion

outcomes. This approach has two main advantages that overcome the limitations of

standard approaches. First, it is straightforward to include variables from different

sampling distributions. Second, the approach is not restricted to comparing a subset

of all potential path models representing different a priori hypotheses, and is thus

exploratory.

I apply this approach to disentangle how factors determine success at the intro-

duction and naturalisation stages of the invasion process, for two diverse genera of

plant species introduced to New Zealand (NZ): Pinus and Trifolium. These genera

are excellent candidates for partitioning the influence of factors determining success

and failure at different stages of invasions for a number of reasons. First, detailed

information on success and failure at each stage, together with a large number of

human, biogeographic, and life-history traits are available for both genera (Gravuer,

2004; Gravuer et al., 2008; McGregor et al., 2012); however it has proven difficult to

isolate the causal relationships underpinning the success of these genera. Second,

both genera are naturally absent from NZ and intentionally introduced. For many

intentionally introduced plant taxa it is likely to be the case that humans favour

species with certain traits (e.g. fast growth rate, broad environmental tolerance)

that are in turn linked to invasion outcomes, potentially confounding the traits

favouring introduction and traits favouring naturalisation (Chapter 3). Finally, for

each stage of the invasion process, there are several alternative and plausible models,

and numerous variables potentially determining success, which lends itself to an

exploratory approach.
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Table 5.1. Characteristics of all variables used in path models for Pinus and Trifolium introduction and naturalisation in New Zealand. Shown
in the table are the response variables and explanatory variables which are categorised into three groups (species, biogeographic and human).
For all variables a description of the type of variable (continuous, binary or counts), the coding used or units of the variable; and the source of
the data for each variable is given.

Genus Variable category Variable Type Coding or units Source

Pinus Species Z-score Cont. Higher score = more invasive Appendix A

Biogeographic Climate match Cont. Number of 10′ lat-long grid cells with

≥ 90% climate match

Chapter 2

Native range size Cont. log km2 Chapter 2

Human Forestry use index Cont. Number CABI Forestry Compendium

references

Procheş et al. (2012)

Residence time Cont. years Chapter 2

Area planted Cont. hectares (ha) Chapter 3

Response Introduction suc-

cess

Binary 0 = not introduced; 1 = introduced Appendix A

Naturalisation suc-

cess

Binary 0 = introduced but not naturalised; 1

= naturalised

Appendix A

Trifolium Species Height Cont. cm; maximum recorded Gravuer (2004)

Life-span Binary 1 = annual or biennial; 2 = perennial Gravuer (2004)

Biogeographic Climate match Cont. Number of 10′ lat-long grid cells with

≥ 90% climate match

Gravuer (2004)

Native range size Cont. log km2 Gravuer (2004)

Continued on next page. . .
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Genus Variable category Variable Type Coding or units Source

Conditions toler-

ated

Count. – Gravuer (2004)

Residence time Cont. year Gravuer (2004)

Human Presence in GB in

mid-1800s

Binary 0 = no; 1 = yes Gravuer (2004)

Area planted Cont. hectares (ha) Gravuer (2004)

Response Introduction suc-

cess

Binary 0 = not introduced; 1 = introduced Gravuer (2004)

Naturalisation suc-

cess

Binary 0 = introduced but not naturalised; 1

= naturalised

Gravuer (2004)
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5.3 Methods

5.3.1 Data collection

I used data from two previous studies that have examined factors associated with

introduction and naturalisation success in Pinus and Trifolium species introduced

to NZ (Gravuer et al., 2008; McGregor et al., 2012). Details of data collection are

given in those studies; here I outline key features of the data that are relevant to the

analyses I present below.

5.3.1.1 Pinus

Pinus is a genus of c. 115 woody species that are naturally absent from NZ, with

most species native to the northern hemisphere (Earle, 2008; Farjon, 2005; Price

et al., 1998). Pines have been widely introduced around the world for forestry

(e.g. Essl et al., 2010; Nuñez & Medley, 2011; Procheş et al., 2012) and are now

amongst the worst forestry invaders, with 21 species being considered invasive

globally (Richardson & Rejmánek, 2004). Consequently, pines make an excellent

model system for studying invasions (Richardson, 2006).

Each pine species in the global pool was classified as having been introduced

to NZ or not (0 = no, 1 = yes) by searching historical, horticultural and scientific

literature (Appendix A): from the global pool, 66 pine species were intentionally

introduced to NZ for commercial forestry and horticulture. These 66 species were

then classified as having naturalised in NZ or not (0 = no, 1 = yes), with a species

classed as naturalised if it had established new self-sustaining populations outside of

cultivated areas (sensu Richardson et al., 2000b): 13 pine species have naturalised

in NZ. Following the definition of invasion given by Richardson et al. (2000b) all

naturalised species can also be considered as invasive in NZ.

I used variables that might directly or indirectly determine success at the intro-

duction stage (Table 5.1) including: climate match (a measure of how well matched

the climate in NZ is to climate in the species native range on a scale from 0–100;

Chapter 2); native range size (in km2, calculated from range maps; Chapter 2);

the forestry use index (the number of citations in the CABI Forestry Compendium

[CABI, 2010] for each species following Procheş et al., [2012]); and the Z-score (a

composite measure derived from a discriminate analysis of three life-history traits:

seed mass, minimum juvenile period and minimum interval between large seed crop

years; Rejmánek & Richardson [1996]) in analyses at the introduction stage. At
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the naturalisation stage I tested the effect of climate match, native range size, area

planted (calculated using data from archival working forest plans held at Scion,

Rotorua), residence time (number of years since first introduction) and Z-score. I

chose these variables for several reasons. First, they represented three different

categories of variables (species, biogeographic and human) commonly identified

as determining invasion success (Chapter 3). Second, many have previously been

identified as important determinants of pine introduction and invasion success (Essl

et al., 2011, 2010; Křivánek & Pyšek, 2008; Křivánek et al., 2006; Nuñez & Medley,

2011; Procheş et al., 2012; Pyšek et al., 2009b; Rejmánek & Richardson, 1996).

Finally, these variables have the potential to interact via important indirect pathways

that have not been previously quantified.

5.3.1.2 Trifolium

Trifolium is a genus of c. 228 species that are naturally absent from NZ (Gillett

& Taylor, 2001; Gravuer et al., 2008). Following Gravuer et al. (2008) I classed

species as intentionally introduced to NZ or not (0 = no; 1 = yes). Those that

were introduced were classed as naturalised or not (0= no; 1= yes). Between the

years 1843 and 1993, 54 species of clover were introduced intentionally to NZ for

agricultural purposes, of which nine species have naturalised. Of the naturalised

species, only three are environmental weeds (Howell, 2008). Therefore my test

cannot test the transition from naturalised to invasive for Trifolium because there are

too few data points.

Following (Gravuer et al., 2008) I used variables that might directly or indirectly

determine success at the introduction stage (Table 5.1), including: climate match

(a measure of how well matched the climate in NZ is to climate in the species

native range, on a scale from 0–100); native range size (in km2, calculated from

range maps); the range of conditions tolerated (measured as the number of WWF

Ecoregions a species’ native range covered); a species presence in Great Britain in

the mid-1900’s (“GB presence”); and the species traits height and life-span. At the

naturalisation stage I used: climate match; native range size; area planted (calcu-

lated from historical records that included, seed and plant catalogues, newspapers,

government reports/research, Agricultural and Pastoral Show catalogues, advisory

documents for farmers, Acclimatisation Society reports, herbarium specimens and

sources from the ALLWEEDS database; Gravuer, 2004); residence time (the number
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of years since first introduction); GB presence; height; and lifespan. I chose these

variables for the same reasons as for Pinus.

5.3.2 Exploratory path analysis

Path analysis involves a series of linked regression equations specifying the hypothe-

sised causal relationships among variables commonly shown as a path diagram, with

arrows specifying the links and direction of causality among variables. A standard

approach is to identify one or more path models that represent a priori hypothesis

about the relationships between variables, and identify the most likely (best-fitting)

model from this model set. However, when there are many variables and no strong

a priori hypotheses about the causal relationships, an exploratory approach that

includes all potential hypothesised links between variables is useful.

I fitted path models in a Bayesian framework (e.g. Arhonditsis et al., 2006; Lee,

2007; Rupp et al., 2004; Scheines et al., 1999) using a variable selection method

outlined by Duncan et al. (2011) to determine: the probability that a given link

between variables is present in the best model; and the model-averaged weightings

(or “effect size”) for each link (calculated as the probability of a link being present in

the best model multiplied by the parameter value of a link). The process of fitting a

path model in this way involves four steps: (1) construct the path diagram including

all biologically plausible links between variables; (2) translate the path diagram into

a series of linked regression equations; (3) fit the full model using uninformative

priors for the regression coefficients that define the links between variables; (4)

refit the model, this time including binary indicator variables that specify whether

regression coefficients should be included in the model or not, and using the posterior

distributions of the regression coefficients from the full model as priors.

5.3.2.1 Steps 1 and 2: path diagrams and linked regression equations

Based on my hypotheses of how the different factors could influence one another and

introduction and naturalisation success (below), I developed the path models shown

in Figure 5.1. These models include variables that are binary (introduced or not;

naturalised or not), continuous (e.g. the Z-score), and categorical (e.g. life-span). I

hypothesised that:

At the introduction stage for Pinus: all variables could directly influence intro-

duction success, such that species with a closer climate match, that are common
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(large native range), with fast growth and reproduction, that are widely used in

forestry, might be preferentially introduced because these traits make them more

suitable of forestry and horticultural species. I also considered that species with

higher Z-scores may have a larger native range size because they have traits that may

make it easier to spread widely, and were more likely to be used in forestry because

of their fast grown and prolific reproduction; species with large native ranges were

more likely to be used in forestry because they are more commonly available for

introduction; and species with a larger native ranges could be more climatically

suited to NZ because their range may cover a larger number of climatic zones.

At the naturalisation stage for Pinus: all the links between explanatory variables

possible at the introduction stage were also possible at the naturalisation stage; all

variables were able to directly influence naturalisation success, although the effect of

native range size per se could not plausibly be direct and thus any direct influence

identified by the model would suggest the presence of an unmeasured variable

between native range size and naturalisation success; all variables except area

planted were able to affect residence time, because I might expect that climatically

suited, common species with a large native range, that were widely used in forestry

and had high Z-scores, would be preferred and thus introduced earlier; all variables

were able to determine area planted, for the same reasons as residence time, and a

longer residence time was likely to result in a larger area planted.
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Figure 5.1. Path diagrams showing hypothesised causal links between measured variables (square boxes) in the most complex possible models
for (a) introduction and (b) naturalisation of Pinus; and (c) introduction and (d) naturalisation of Trifolium in New Zealand. Arrows represent
the direction of dependencies between variables; the absence of an arrow between two variables indicates that the variables are not causally
linked. Oval boxes indicate that unobserved variation (“e”) was modelled.
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Figure 5.1. Continued from previous page. . . Path diagrams showing hypothesised causal links between measured variables (square boxes)
in the most complex possible models for (a) introduction and (b) naturalisation of Pinus; and (c) introduction and (d) naturalisation of
Trifolium in New Zealand. Arrows represent the direction of dependencies between variables; the absence of an arrow between two variables
indicates that the variables are not causally linked. Oval boxes indicate that unobserved variation (“e”) was modelled.
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At the introduction stage for Trifolium: all variables could directly influence

success given that species with a closer climate match, that are common (large native

range), already present in GB (thus likely to be known to early NZ settlers), with

greater biomass (height) and life-spans suited for commercial agricultural use may

be preferentially introduced; the range of conditions tolerated may determine native

range size and climate match; life-history traits (height and life-span) may determine

the range of conditions tolerated and native range size of a species such that small

short lived species are more widespread; being common (having a large native range)

could have determined presence in GB such that widespread species were more likely

to be in GB; and a large native range may increase the chance of being from a region

that is climatically suited to NZ.

At the naturalisation stage for Trifolium: all the links between explanatory vari-

ables possible at the introduction stage were also possible at the naturalisation stage;

all variables were able to directly influence naturalisation success except for presence

in GB; as for Pinus the effect of native range size on naturalisation success was

included to indicate whether there was a missing variable between native range

size and success; all variables except area planted and life-span were able to affect

residence time, because one might expect that climatically suited, common species

with a large native range already present in GB and known to NZ settlers, with large

biomass (height) would be preferred and thus introduced earlier; all variables were

able to determine area planted for the same reasons as residence time, and a longer

residence time was likely to result in a larger area planted.

The path models shown in Figure 5.1 translate into four sets of linked regression

equations for introductions and naturalisations which are given in Appendix F.

5.3.2.2 Step 3: fitting the full path model

Continuous explanatory variables were standardised by subtracting their mean and

dividing by two standard deviations to assist with model convergence and ensure

that parameter estimates for continuous and binary explanatory variables were on a

comparable scale (see Gelman, 2008). Being a Bayesian model, I had to specify priors

for each unknown parameter reflecting my prior belief regarding the value each

parameter is likely to take. The benefits of being able to include prior information

in this way include objectively stating any prior beliefs in a model that can then
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be formally tested against models with different priors, and being able to fit more

complex biologically realistic models.

I chose to include uninformative priors to allow the data to drive parameter

estimation. I specified flat normal prior distributions for all regression coefficients as

having a mean 0 and variance 1000. I specified uniform priors on all standard devia-

tions in the range of 0–100 for the variance terms following Gelman (2006). To avoid

problems in model fitting associated with separation (when a linear combination of

predictors perfectly predicts the outcome) but still allow the data to drive parameter

estimation, I followed Gelman et al. (2008) and applied a weakly informative prior

to all constant terms on the logit for binary variables. These priors specified values as

being drawn from a Cauchy distribution centred on zero (i.e. a t-distribution) with

one degree of freedom, with a scale of 10 for regression intercepts and a scale of

2.5 for binary predictors. These priors apply a low probability to changes of 10 on

the logistic scale (which equates to the probability of outcome x going from 0.01 to

0.99), which were reasonable assumptions for my data.

Bayesian path models were fitted using Markov chain Monte Carlo (MCMC)

methods implemented in the OPENBUGS software (Thomas et al., 2006) in R version

2.13.1 (R Development Core Team, 2011). I ran three MCMC chains (Clark &

Gelfand, 2006) for 10,000 iterations after a burn-in of 10,000, which was sufficient

to achieve convergence (judged by inspection of the chain histories). In order to

produce a set of priors necessary for subsequent variable selection models, I sampled

and saved the posterior distribution (the post-burn-in iterations) of each chain, for

all regression coefficients (βx i
) and variances (σ2

x i
) (see Appendix G for the R code).

5.3.2.3 Step 4: refitting the model

In order to quantify the probability that a link between any two variables would

be present in the best model of introduction and naturalisation, and the model-

averaged weightings (effect sizes) of each causal link, I followed Duncan et al. (2011)

and expanded the linked regression equations outline in Appendix F by assigning

each explanatory variable a binary indicator variable (wx , j) that specifies whether

regression coefficients associated with that link should be included in the model or

not. This binary indicator variable takes the value of 1 if the link between variables

x and j is included in the model and 0 if it is not. The variable effectively switches

linkages on and off. The binary indicator variables were given prior distributions

that equated to a uniform prior on the number of links to include in a model (Ley &
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Steel, 2007):

wx , j ∼ Bernoulli(Θ);Θ∼ Beta(1,1) (5.1)

After all MCMC iterations, a distribution of values (either 0 or 1) was obtained

for each binary indicator variable. The mean of this distribution can be interpreted

as the probability that a link between variables x to j would be included in the

most probable model defined by all direct and indirect links. Linkages that are

consistently selected (mean wx , j close to 1) are more likely to determine introduction

or naturalisation than variables that are rarely selected (mean wx , j near 0). Finally,

the binary indicator variable (wx , j) and the regression coefficient that the indicator

variable is switching on and off were multiplied, which gives the model averaged

value (‘effect size’) of a given linkage.

The priors for the refitted model (step 4) were different from the initial full model

(step 3). Uninformative priors are useful when fitting initial models, because they

allow the data to drive parameter estimation. However, uninformative priors are

usually not uninformative when they are used to assess model probability (Link &

Barker, 2006). Therefore I followed Duncan et al. (2011) and Aitkin (1991) and

used the posterior distributions for regression coefficients and variances saved from

the initial model (step 3) as priors for the variable selection model (step 4).

The refitted models (step 4) were fitted in the same way as the initial full models

(step 3), using OPENBUGS (Thomas et al., 2006), with three MCMC chains, run for

10,000 iterations after a burn-in of 10,000 iterations, which achieved convergence

(see Appendix G for R code).

Finally, I calculated the area under the receiver operating curve (AUC, Hanley &

Mcneil, 1982), which provides a measure of the degree to which the fitted values

discriminate between observed outcomes. An AUC value of 1 indicates that the

model perfectly discriminates between outcome 1 (e.g. introduced) and outcome

0 (e.g. not introduced), while a value of 0.5 indicates that the model performs no

better than chance.

5.4 Results

5.4.1 Determinants of introductions

Pinus species were more likely to be introduced if they had a close climate match,

were used widely in forestry, had a large native range size and higher Z-scores
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(Figure 5.2). Both climate match and the forestry use index had a 100% probability

of being present in the best model of introduction success (see Appendix H). The

effect size of native range size (0.60) and the Z-score (0.26) on introduction success

was two orders of magnitude smaller than climate match (14.17) and the forestry

use index (10.58). Species with a large native range size were slightly more likely

to have a higher forestry use index although this effect was also relatively small

(Figure 5.2). All of the strong links determining pine introduction success were

direct. The AUC value for Pinus introductions was 0.93 indicating that the model

performance was “outstanding” (Hosmer & Lemeshow, 2000).

In contrast to Pinus, more indirect links were present for Trifolium introductions.

Native range size had the strongest effect in the model and this was indirect, such

that species with larger native ranges were less likely to be present in GB. Trifolium

species with a larger native range size, not present in GB in the mid-1800’s that

were taller, lived longer, and had a closer climate match to NZ, had an increased

probability of introduction to NZ (Figure 5.2). All variables that were modelled

as having a direct causal effect on introduction success had ≥ 49% probability of

being included in the best model of introduction success (see Appendix H). The AUC

value for Trifolium introductions was 0.82 indicating that the model performance

was “excellent” (Hosmer & Lemeshow, 2000).

5.4.2 Determinants of naturalisations

The naturalisation success of pines was determined by (in order of importance)

direct links with the forestry use index, climate match, the Z-score, area planted,

residence time and native range size (Figure 5.2). The direction of these effects was

positive such that species with a closer climate match, greater forestry use index,

larger area planted, longer residence time, higher Z-score and larger native range

size were more likely to naturalise. Climate match also had indirect effects on other

explanatory variables such that a closer climate match increased the area planted,

with a relatively small effect size but a 99% probability of being included in the best

model (see Appendix H). All other indirect links were relatively weak (Figure 5.2).

As at the introduction stage the majority of links were directly between explanatory

variables and naturalisation success. The AUC value for Pinus naturalisations was

1.00 indicating that the model produced near perfect predictions.

In contrast to the introduction stage, Trifolium naturalisation success was in-

creased mostly through direct links between explanatory variables and naturalisation
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success, however the strong indirect effect of native range size on presence in GB

was still evident (Figure 5.2). Naturalisation success was increased, in order of

importance, by a closer climate match, larger native range, longer residence time

and larger area planted (Figure 5.2). Weaker links between height and life-span

with naturalisation success suggested that smaller, short-lived species were more

likely to naturalise than larger, long-lived species. Presence in GB increased both the

residence time and the area planted and species with longer residence times were

more likely to be planted widely. Species with larger native ranges were more likely

to have a close climate match to NZ. All direct links with naturalisation success were

present in ≥ 52% of the best models of naturalisation (see Appendix H). The AUC

value for Trifolium naturalisations was 0.99 indicating that this model produced near

perfect predictions.
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Figure 5.2. Results of exploratory path analyses for (a) introduction and (b) naturalisation of Pinus; and on the following page (c) introduction
and (d) naturalisation of Trifolium in New Zealand. Square boxes indicate measured variables. Oval boxes indicate that unobserved variation
(“e”) was modelled. Arrows represent the direction of dependencies between variables; the absence of an arrow between two variables
indicates that the variables are statistically independent in the model (model averaged weightings were zero or the link was not modelled; see
Appendix H). Arrows between measured variables are sized according to the model averaged effect size for a given link (the probability of a
link being present in the best model multiplied by the parameter value for the link); the model averaged effect size for a given link ±95%
credibility intervals are written next to arrows (only those with a model averaged effect size of ≥ 0.20 are labelled). Continued on following
page. . .
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Figure 5.2. Continued from previous page. . . Results of exploratory path analyses for (c) introduction and (d) naturalisation of Trifolium in
New Zealand.
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5.5 Discussion

At the introduction stage species traits had relatively weak links with all other vari-

ables and with success compared to human and biogeographic factors, and that Pinus

introductions were determined by direct links whereas Trifolium introductions had

more indirect links (Appendix H). Naturalisations were largely determined by direct

links in both genera and at this stage life-history traits were more important determi-

nants of success than at the introduction stage, although human and biogeographic

factors were still the strongest predictors (Appendix H). Climate match was a strong

direct determinant of pine introduction and naturalisation success and also acted

indirectly to increase the area planted, but for Trifolium climate match did not affect

the area planted. Propagule pressure (both area planted and residence time), a close

climate match, large native range size and traits related to fast reproduction were a

common direct mechanisms determining naturalisations in both genera. However

the causal links modifying these variables were more complex for Trifolium than

Pinus, particularly at the introduction stage, suggesting different mechanisms operate

in these taxonomic groups.

Despite some difference there were several broad similarities between the causal

links for Trifolium and Pinus that could suggest commonalities in the invasion process

for different plant genera. First, a greater area planted and longer residence time

(both measures of propagule pressure) were directly linked to increased naturalisa-

tion success in both genera. This supports previous studies highlighting the consistent

importance of these variables in naturalisation and invasion success (Castro et al.,

2005; Essl et al., 2010; Křivánek et al., 2006; Pyšek et al., 2009b), and suggests that

these may be generally applicable variables which should always be accounted for

in models of invasion success (Colautti et al., 2006). However, I have gone further

and shown that propagule pressure is itself directly increased by other key variables

that are often identified as determining naturalisation and invasion outcomes such

as climate match (Essl et al., 2011; Nuñez & Medley, 2011) and a human variable

related to previous human familiarity to the species (presence in GB). My results

suggest that standard regression approaches that simply partition the variation ex-

plained by each variable in a single step could over-emphasise the importance of a

given variable’s direct influence on success.

Second, the influence of species attributes on both introduction and naturalisation

were relatively weaker than the influence of biogeographic and human variables.

Although research directly comparing the effects of species attributes against other
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factors is limited, my findings align with previous research suggesting that species

attributes may be relatively less important predictors of success than other factors

(e.g. Forsyth et al., 2004). These results suggest that further studies describing

determinants of invasion success should include a complete range of biogeographic,

human/economic, and landscape-scale factors as well as species attributes, in order

to correctly determine the importance of individual factors.

I showed some marked differences in the causal mechanisms between the two

genera used. First, in all models for both genera, biogeographic variables had

the largest effect size but these were different between genera. For Pinus climate

match was the strongest variable whereas for Trifolium native range size was the

strongest variable and climate match had a relatively low rank. I also found that

for Pinus climate match had the strongest direct effect on success, whereas for

Trifolium native range size acted most strongly indirectly through presence in GB.

For pines, my findings are consistent with previous research on naturalisation and

invasion success in woody species that show climate suitability between the native

and introduced range is a key predictor of naturalisation success (Essl et al., 2011;

Nuñez & Medley, 2011). However, my results suggest that the mechanism of action

of climate suitability may vary for different taxonomic groups. Second, although I

found that propagule pressure acted the same way in both genera, the variables that

in turn determined the amount of planting and residence time were different. For

Pinus, a good climate match increased the residence time and also the area planted.

For Trifolium, however, climate match was not linked to either measures of propagule

pressure.

Path analysis allows for causal links between variables to be inferred, which

suggested the presence of latent (unmeasured) variables in my dataset between

native range size and naturalisation success. Native range size was modelled in my

study as having potentially direct effects on naturalisation success for both genera

as well as indirect effects through links with other explanatory variables. I included

direct links in order to test for the presence of unmeasured variables in the system,

given that a species having a large native range size cannot per se increase the chance

of naturalisation occurring. Therefore native range size must act indirectly though

other variables. Indeed for Trifolium I saw indirect effects of a large native range

increasing residence time and the chance that a species was present in GB. However,

the relatively strong direct link between native range size and naturalisation success

seen in both genera suggests that there is a variable missing between native range

size and naturalisation success. This shows how path analysis could be used to
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initially identify areas where there are potentially missing explanatory variables

and thus be used to guide future data collection. This method for exploratory path

analysis could be extended to explicitly include latent variables (SEM; Grace, 2006;

Shipley, 2000).

When comparing my findings to the studies that the explanatory variables were

drawn from (Gravuer, 2004; Gravuer et al., 2008, Chapter 3) it is clear that path

analysis produced a more detailed picture of the invasion process than simpler re-

gression based methods. For example, Gravuer et al. (2008) used boosted regression

trees (BRT) which assigned a “relative contribution” of a variable to the outcome

of Trifolium introductions to NZ. Gravuer et al. (2008) found that only one PC-axis

which was highly correlated with human traits (including presence in GB and res-

idence time) predicted naturalisation success. Using path analysis, I was able to

dissect these relationships. Path analysis revealed that the effect of presence in GB

acts indirectly on introduction success such that a species that was present in GB was

likely to have been introduced to NZ earlier and planted more widely. The original

study was also not able to detect the relatively strong effects of both native range size

and climate match on presence in GB (NZ and GB have relatively similar climates,

such that the climate match for a species to NZ is highly correlated with its match

to GB), thus biogeographic variables appeared to be of little influence on Trifolium

naturalisations. However, the strong effect of presence in GB identified by this and

the original study appears to be a product of biogeographic factors, but acts through

other human factors; a mechanism that could not have been detected using the

original method.

Similarly, in Chapter 3 I used a BRT approach for Pinus that highlighted broadly

the same relative importance of variables at each stage as the path analysis presented

in this study (human and biogeographic variables being ranked more highly than

species attributes). However, the analysis in Chapter 3 found that the Z-score had a

much smaller relative importance (∼8%; Table 3.3) on naturalisation success than

climate match (∼30–50%; Table 3.3), whereas path analysis ranked them as almost

equal (Figure 5.2). These contrasting results could be due to the different statistical

methods used to analyse the relationship between Z-score and naturalisation success

in each chapter. Given that all naturalised pines are also considered invasive in NZ,

the results from the present chapter support previous studies that also found the Z-

score to be able to discriminate between invasive and non-invasive pines (Grotkopp

et al., 2002; Rejmánek & Richardson, 1996). Nevertheless, the Z-score is not a

better predictor of naturalisation success than the forestry use index (how widely
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used a species in for forestry globally) or climate match, highlighting that a good

understanding of how different variables influence invasion success is important.

Path analysis showed that pines with a closer climate match to NZ were planted

over a larger area and tended to have a longer residence time. Thus, the strong

effect of climate identified in Chapter 3 is multifaceted and more complex than

originally identified. These findings suggest that standard regression approaches may

be missing detail and falsely identifying the level of influence of some variables.

The present study represents a step forward in the analysis of factors determining

success across the invasion process, and thus preventing and managing invasions,

by identifying mechanistic relationships. I have highlighted the scope for a much

wider application of path analysis/SEM to invasion questions. While I used several

variables in my models that represented three major groups (species, biogeographic

and human) there are other potential explanatory factors that I did not include, such

as relative growth rate (Grotkopp et al., 2002), human population density, per capita

gross domestic product and the number of native Pinus species (Essl et al., 2011).

More insights into the generality of the links between different factors could be gained

by applying this method to multiple regions for which data is already available for

the same group of species (Essl et al., 2011). Additionally, assessing how common

various links are between variables for different functional or taxonomic groups may

provide generalities that could inform future risk assessment and management of

introduced species. Finally, extending this exploratory path analysis method (where

latent variables are not accounted for) to be a full SEM (where latent variables can

be included) would be a logical extension (Grace, 2006; Shipley, 2000).

5.6 Conclusions

I have presented a method for exploratory path analysis that is flexible and can

easily incorporate variables from different sampling distributions, including binary

variables. This method is also able to assess the probability of linkages being present

in models where there are no strong a priori hypotheses and where the potential

number of models makes standard model comparison approaches impractical. This

study is the first to apply path analysis to assess how factors determine success at

different stages of the invasion process. I used the genera Pinus and Trifolium as case

studies which are both economically important and intentionally introduced. The

extent to which findings from these genera, where some members have experienced
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large propagule pressure, are generalisable to accidentally introduced species is not

clear. I found that human factors (area planted and residence time) acted directly

to increase naturalisation success, and that these mechanisms were repeated in

two genera, suggesting they are general. However, the factors determining area

planted and residence time were different between the two genera. My analysis

revealed the differing causal mechanisms and strength of important biogeographic

variables between taxonomic groups. My results suggest that variables identified as

determining invasion outcomes in traditional regression studies can act via different

causal mechanisms between taxonomic groups and that the results from one group

may not apply directly to others. I also found evidence of latent variables, which

are likely to be common but unidentified in previous studies, that could be targeted

for further research. There is scope for path analysis to be more widely applied

to identifying the drivers of invasions, with the aim of improving prevention and

management of invasive species.



Chapter 6

Conclusions

6.1 Thesis aims

The aim of this thesis was to quantify the risk of invasions from introducing alien

species. This was achieved by using the genus Pinus as a model system, which has

parallels with other commercial tree genera, to: (1) assess how robust the WRA is

to taxonomic range, region, and knowledge of invasive behaviour elsewhere; (2)

determine the relative contribution of species, biogeographic, and human attributes to

introduction and naturalisation/invasion success; (3) quantify phylogenetic signal in

introduction and naturalisation success, and the traits that determine success to assess

whether phylogeny is a useful predictor of invasion risk; and (4) disentangle the

direct and indirect effects of a range of variables on introduction and naturalisation

success through a novel exploratory method for path analysis.

6.2 Main results

6.2.1 Weed risk assessment

Chapter 2 provided a novel test of how robust the WRA is at distinguishing between

species at each stage of the invasion process from within a genus of relatively similar

species, across two climatically similar regions. The performance of the WRA at the

introduction and naturalisaion stages as measured by AUC values was good, which

supports previous studies that also found the WRA performs well at retrospectively

classifying species as invasive or not (Gordon et al., 2008b; Roberts et al., 2011).

However, when critical information on prior invasiveness was not available the WRA

was no longer able to identify successfully introduced or naturalised species and

yielded a success rate no better than chance. The WRA was also not able to predict

the number of regions that a species had naturalised in, as it was found to do in

previous studies (Dawson et al., 2009b). This finding could be partly explained by

101
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the necessarily coarse resolution of our data compared to the previous study (Dawson

et al., 2009b).

Given these results, it is debatable how useful the WRA protocol is for application

to forestry species (Hulme, 2012). It could be argued that the WRA is a useful

tool for identifying potential future species that are likely to be invasive because

many of the candidate forestry species will already be in use or have been trialled in

other countries. Therefore any invasive behaviour would have had an opportunity

to manifest itself. On the other hand, the WRA could be a waste of time if the

species being considered for introduction do not have any history of introductions

and cultivation outside their native ranges. Additionally, if their history of cultivation

has been short invasive behaviour may not have had sufficient time to manifest itself

given that long-lived woody species can have lag-phases of over 100 years (Křivánek

& Pyšek, 2008; Richardson et al., 1994).

One clear drawback of a full weed risk assessment is that the WRA can be time

consuming to complete with each of the pine assessments taking between 5–20 hours

of research and no guarantee that this work will result in an accurate assessment.

Furthermore, for poorly known species the assessment takes longer to complete

and information for the critical questions is less likely to be available–effectively the

assessment is least accurate for the species that are of most interest. This suggests

that the application of the WRA should be considered on a case-by-case basis after

considering the introduction and cultivation histories of the species of interest, and

that an adaptive approach to weed risk assessment could be implemented (e.g.

Hulme, 2012; McGregor et al., 2012). Such adaptive management could include

grading the reliability of the WRA based on how many questions were answered

and how long it took to complete, and flagging assessments where the key questions

about invasion elsewhere could not be answered. For species where this information

does not exist, obtaining the required data through experimentation is unlikely to be

feasible for long-lived woody species and the WRA may not be a feasible approach

at all. In such cases, quantifying risk through other factors that are important

determinants of invasion success may be the most sensible approach.

6.2.2 Factors determining introduction and naturalisation

In Chapter 3 I identified a set of factors that determined success and failure at the

introduction and naturalisation stages for pines in two climatically similar regions

and showed that these factors were similar between regions. I found that species
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with greater climate suitability, a large native range size, that were widely used

globally for forestry (had a higher forestry use index) were the top predictors of

introduction success. These factors, as well as greater propagule pressure, determined

naturalisation success. Species attributes contributed relatively little at both stages.

My results largely support recent work on pines that found that greater global

forestry use (as measured by a forestry use index; Procheş et al., 2012) and a close

climate match between the native and introduced regions (e.g. Nuñez & Medley,

2011) increase naturalisation and invasion success. A greater area planted for forestry

was also important in predicting naturalisation success in the southern hemisphere

region, which supports previous studies that found propagule pressure to be a key

determinant of invasion success (e.g. Pyšek et al., 2009b). In contrast with previous

studies, I found that species attributes were not an important predictor of success or

failure for pines (Grotkopp et al., 2002; Rejmánek & Richardson, 1996). My study

is the first to quantify the factors controlling introduction success for pines and I

showed that global forestry use and a close climate match were also good predictors

of introduction success. The novel aspects of this research were in quantifying the

relative importance of these factors, in accounting for failures at the introduction

stage and in comparing the relative importance of factors for the same group of

species in more than one region.

The statistical approach I used (BRT) was able to classify which species succeeded

and which failed at each stage as well or better than the WRA (based on AUC

values; Table 6.1). Given that the WRA for lesser-known species can require a large

amount of time to be spent on research to answer each question, the time spent on a

WRA becomes comparable to the time spent collecting and analysing data in a BRT

approach. Therefore, the BRT approach could be a viable option when quantifying

risk for lesser known species where key WRA questions my be impossible to answer.

The advantage of the BRT method is that it doesn’t rely on questions such as a

species having a history of invasion elsewhere. However, the disadvantage of the

BRT approach is that it does rely on good data being available to quantify native

range size in order to calculate climate match, which may not be achievable for

every species (as was the case in my study, where several species had too few data

points to calculate a climate match). If a species was a high priority for assessment,

information about the native distribution could be collected on the ground or may

become available in the future, whereas if a species has no history of invasiveness

elsewhere because it has never been introduced elsewhere there is no way to answer

that key WRA question.
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6.2.3 Phylogenetic signal in pine invasions

In Chapter 4 I calculated phylogenetic signal for introduction and naturalisation

success for Pinus and a range of traits known to determine success in order to

determine if phylogeny could be a useful proxy for measuring risk. There was weak

and non-significant phylogenetic signal of introduction and naturalisation success

across the phylogeny for Pinus. Likewise, there was no phylogenetic signal in any of

the traits that had been previously identified as determining success at each stage.

When considered at higher taxonomic levels such as family and order, there are

only three families that have been identified by more than one study as having more

invasive members than expected by chance (Daehler, 1998; Pyšek, 1998; Vilà &

Muñoz, 1999). As discussed in Chapter 4, risk identification at these high taxonomic

levels may not be useful for informing management actions where information on

individual species in necessary (e.g. Pyšek et al., 2009a; Schmidt & Drake, 2011b).

For phylogenetic relationships to be useful for risk assessment, species-level variation

in invasion success must be correlated with phylogeny. Currently there is insufficient

literature available to assess how likely it is that traits determining invasion risk show

phylogenetic signal at the species-level, although for Pinus and Acacia (Miller et al.,

2011) it appears that it is not present. These results suggest that phylogeny alone

may be a poor predictor of invasion risk for some woody groups and that too little is

known about the distribution of risk across phylogenies at the appropriate level to be

informative. Currently, phylogeny is not a viable alternative approach to other forms

of risk assessment. However, in order to draw and general conclusions about the

role of phylogeny in predicting risk at a useful taxonomic level, further studies are

needed that include a wider taxonomic range (e.g. all members of several genera).

Although these conclusions may seem somewhat pessimistic, it is still essential for

invasion biologists to incorporate phylogenetic information into analyses of invasion

risk in order to control for possible statistical non-independence among taxa (Harvey

& Pagel, 1991). When determinants of both introduction and naturalisation success

were analysed with both phylogenetically and non-phylognetically controlled mixed

models, there were no differences in the effect size or significance of any variables.

These results support previous invasion studies that have compared phylogenetic and

non-phylogenetic models and found that including phylogeny makes little difference

to the results (e.g. Dawson et al., 2009a, 2011b; Küster et al., 2008; Pyšek et al.,

2009a). This suggests that traits linked to phylogeny such as life-history traits and

native range size may not determine invasion risk and instead traits such as propagule
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pressure, which is less likely to be determined by evolutionary pressures, determine

risk.

6.2.4 Casual links between factors

In Chapter 5 I used a novel method for exploratory path analysis to identify the

causal links between variables and introduction and naturalisation success for Pinus

and Trifolium in New Zealand. I aimed to assess how the causal links differed for

two genera introduced to the same region, where the genera being considered were

functionally very different but both economically important (i.e. long-lived woody

species used for long-term forestry and horticulture vs. short-lived herbs used to

enrich pasture with nitrogen). This is the first example of path analysis applied to

the question of how factors determine success through the invasion process.

The key findings from Chapter 5 were that Pinus introduction and naturalisation

success was determined by direct effects of human, biogeographic and species factors.

In contrast, Trifolium introduction and naturalisation success was a mixture of indirect

effects of factors on one another and direct links between human, biogeographic

and species factors with success. For Pinus climate match was the strongest variable,

whereas for Trifolium native range size was the strongest variable and climate match

had a relatively low rank of importance. There were also broad similarities between

the causal links for Trifolium and Pinus that could suggest commonalities in the

invasion process for different plant genera. I found that a greater area planted and

longer residence time (both measures of propagule pressure) were directly linked

to increased naturalisation success in both genera. Propagule pressure in turn was

directly increased by other key variables that are often identified as determining

naturalisation and invasion outcomes such as climate match (Essl et al., 2011; Nuñez

& Medley, 2011) and a human variable related to previous human familiarity to

the species (presence in GB). I also found that the effect of the Z-score in pine

naturalisations was as large as the effect sizes of climate match and the forestry use

index. This contrasted with the results from Chapter 3 where Z-score had relatively

little ability to discriminate between naturalised and non-naturalised species. The

results from Chapter 5 suggest that standard regression approaches that simply

partition the variation explained by each variable in a single step could over- or

under-emphasise the importance of a given variable’s direct influence on success.

The main advantage of using path analysis over other methods that are commonly

used to quantify factors determining success, such as regression trees or standard
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linear and linear mixed regression models, is that path analysis can be used to

identify causal linkages. I found that path analysis revealed a more detailed picture

of Pinus and Trifolium introductions and naturalisations. The original Trifolium study

that my data were drawn from (Gravuer et al., 2008) identified human variables

as determinants of naturalisation success. However, path analysis revealed that

biogeographic variables mediated through human variables played a role in nat-

uralisation success. Furthermore, the novel method for exploratory path analysis

that I used was able to handle two common scenarios encountered in multivariate

data sets addressing a complex problem, namely multiple alternative models with

no strong prior hypotheses and variables from different sampling distributions, in

an objective and flexible way. Whilst model comparison methods such as AIC, DIC,

BIC and Chi-squared tests are available, systems with more than three variables

and no strong hypothesised links can quickly become unmanageable using model

comparison methods.

The exploratory path analysis method presented in this thesis could be used

more widely by invasion biologists because: (a) all use of path analysis in the

invasion literature to date has focused on explaining native-alien species richness

rather than invasion drivers (e.g. Atwater et al., 2011; Harrison et al., 2006; Hulme,

2011; Keeley et al., 2005; Seabloom et al., 2006; Taylor & Irwin, 2004); and (b)

all previous studies have used a model comparison method to determine the “best”

models, without any standardised approach to dealing with the uncertainty around

these “best” models or how many models are needed in the a priori model set under

comparison in order to be sure of identifying a suitable model (Atwater et al., 2011;

Harrison et al., 2006; Hulme, 2011; Keeley et al., 2005; Seabloom et al., 2006; Taylor

& Irwin, 2004). The exploratory method I presented could easily be expanded to

include latent (unmeasured) variables and thus be a full SEM approach (Grace, 2006;

Shipley, 2000) but specifying latent varaibles in the model as being drawn from an

appropriate distribution with uninformative priors. Developing SEMs could facilitate

the identification of missing information for a system and focus future data collection

towards defined goals. Future work using path analysis and full SEM for analysing

the determinants of invasions could extend our knowledge of how general the causal

mechanisms of invasion success are by comparing the causal relationships between

numerous taxonomic or functional groups, and by comparing the determinants of

success or failure at each stage of invasion across multiple regions. This would

provide new insights into the similarity in transition between stages across taxonomic

and geographic boundaries.
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Chapter 5 demonstrates how invasion biologists could move towards using statis-

tical approaches such as path analysis and SEM that can provide mechanistic insights

into invasion rather than just describing patterns. Using Bayesian approaches and

exploratory analyses can provide estimates of uncertainty in model selection and

confidence that all potential explanations involving a set of variables have been

considered.

6.3 Comparison of alternative approaches to risk as-

sessment

In order to directly compare the performance of the four different methods I used

to quantify risk in Pinus (WRA, BRT, path analysis, and MCMC glmm) I calculated

AUC values for all models at the introduction and naturalisation stages in NZ (see

methods sections of relevant chapters). I compared performance for NZ only because

I did not use path analysis to assess success for Pinus in GB.

First, at both introduction and naturalisation AUC values were ≥ 0.80, which is

considered as “excellent” prediction according to Hosmer & Lemeshow (2000). For

quantifying the risk of introduction in the first instance the WRA was the poorest

model. This is perhaps not surprising given that the WRA is not designed to discrimi-

nate between introduced and not introduced species. However at the naturalisation

stage all models performed “outstandingly” (Hosmer & Lemeshow, 2000). Thus,

it appears that no one method gives a significant advantage over any others as far

as performance goes. However, as demonstrated in Chapter 2 the WRA is reliant

on knowledge of invasive behaviour elsewhere. Without this information the WRA

performs no better than chance (AUC ≤ 0.50). If a species has never been intro-

duced outside its native range it would never be possible to collect the required

data. Therefore this drawback represents a serious issue that should be addressed by

using an additional method of risk assessment. When knowledge of prior invasions

is not available the WRA should not be used because it is likely to be unreliable and

alternative methods could be considered.

One advantage of the WRA over the other three methods tested is that the WRA

provides a clear management recommendation in most cases. Only species that fall

into the “evaluate” category are not either directly accepted or rejected (Pheloung

et al., 1999). The WRA assessment also requires no specialist statistical analysis

skills to complete and interpret and is therefore usable by anyone who may need to
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perform weed risk assessments. However, the three statistical modelling methods

outlined in this thesis could also be used to make predictions if a cut-off probability

of naturalisation or invasion was selected. Such a cut-off would depend on the costs

of potential invasions as well as the benefits of introduction (Yokomizo et al., 2012),

which is outside the scope of this thesis.

Out of the statistical analysis methods (BRT, path analysis, and MCMCglmm)

I judged the BRT models to be the easiest to implement in R. BRTs were easy to

use because a comprehensive tutorial is available (Elith et al., 2008) that includes

R code, and because this method uses machine learning no a priori hypotheses

needed to be specified. In contrast, the method for exploratory path analysis outlined

in Chapter 5 required more complex Bayesian statistics and the development of

mechanistic models of introduction and naturalisation success. Phylogenetic mixed

models were also more complicated to implement that BRTs, requiring a phylogeny

(which in this case was developed directly from molecular sequence data) and a priori

specification of priors and hypothesised models. Therefore, BRTs offer a relatively

straightforward alternative approach when the WRA is unreliable due to missing

information on invasion elsewhere.

6.4 Implications beyond pines

6.4.1 Conflict between forestry and invasion risk

My results suggest that there is an intrinsic risk of future invasions when introducing

new alien species or more widely planting existing alien species for forestry. Species

introduced to NZ and GB had higher WRA scores, were the best climatically suited,

had larger native range sizes, and had been used more often for forestry elsewhere

than species that were not introduced. Those species which naturalised also had the

closest climate matches, which translated into a higher level of propagule pressure.

Therefore, these circumstances create a dilemma for foresters and for invasion ecolo-

gists: species with desirable traits for forestry, such as fast grwoth rate (measured in

this thesis using the syndrome of life-history traits describing rapid development and

reproduction) also have traits that are likely to lead to invasions, but species may

become invasive because they are planted widely. Therefore traits associated with

invasion in forestry trees may be an artefact of widespread planting. There is likely to

be a trade-off between the requirements foresters have for selecting suitable species
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with future invasion risks. Ultimately, managing the risks from forestry invasions

around plantations more consistently may be the only practical solution.

6.4.2 Potential solutions to forestry–invasion conflict

The problem of future forestry invasions is unlikely to be solved by risk assessments

as they currently operate for three reasons. First, as noted above foresters introduce

species that are good for forestry and intrinsically high-risk. Second, in NZ for

example, a large number of alien tree species have been introduced historically and

exist in the landscape in low numbers in gardens and arboreta (see Appendix A).

There is currently no regulation of the circulation of almost all of these existing species

(Howell, 2008) meaning that many potentially problematic species, so called “sleeper

weeds”, are unlikely to legally require risk assessment. Implementing retrospective

risk assessments for species already in a region and regulating the further circulation

of sleeper weeds would reduce this risk. Third, current assessment methods do not

take a cost-benefit approach to decision making when considering which species

to import and may not be practical for assessing commercial species. Optimal

decisions for introduction and containment of commercial species depends not only

on their probability of their escape but also on the cost of escape and the potential

economic benefits of introduction (Yokomizo et al., 2012). Including such cost-benefit

parameters in assessments could allow more pragmatic assessment of risk that are

suitable for commercial species.

An alternative solution to simply banning the circulation or importation of po-

tentially invasive species based on risk assessment results would be to set industry

standards on the layout of plantations and the management of surrounding land.

Indeed, a preliminary version of such a national strategy for NZ has been drafted

by the Ministry for the Environment (2010). Other solutions put forward to reduce

the amount of wilding pine spread in NZ have been outlined by Ledgard and Langer

(1999) and these could be applied in other regions. These solutions include planting

a belt of low-risk species around the outside of afforested areas to act as a buffer,

sighting plantations away from “take-off points” such as the top of hills or in the

prevailing wind and managing the land around a plantation with grazing or targeted

weed control. Another potential avenue for preventing weed incursions from forestry

would be to adopt the “polluter pays” principle (Perrings et al., 2005; Richardson,

1998a) by making plantation owners legally obliged to pay for weed control that

results from their forest. Currently in NZ regional councils generally remove wilding
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trees through a pest-management strategies despite 92% of plantation forests in NZ

being privately owned (MAF, 2011). However, if the cost of weed control was passed

on to the commercial forestry company the incentive for companies to implement

good management practice could reduce the risk of future invasions from plantations.

6.4.3 Implication beyond commercial trees

Biofuel crops have been put forward as a “green” renewable energy source, and

their cultivation is gaining momentum. However, biofuel plants have the potential

to invade because many of the essential traits for a biofuel crop are also the traits

associated with invasiveness such as large stature, high biomass production, efficient

resources use and the ability to tolerate a wide range of environments (Raghu et al.,

2006). Using an adapted version of the WRA Buddenhagen et al. (2009) found that

70% of regionally suitable biofuel crops have a high risk of becoming invasive and

are four times more likely to establish in the wild compared to non-biofuel plants in

Hawaii.

The situation for biofuels is remarkably similar to commercial afforestation using

alien tree species because biofuel species are likely to be planted throughout large

areas over long time-scales, creating massive propagule pressure. This risk has led to

a call for genotype-specific screening protocols early on in to developing a biofuel

species (Barney & DiTomaso, 2008; Low et al., 2011), standards for plantation lay-out

and sighting, and development of global databases that can be used as a tool for

decision makers (Davis et al., 2010; Koh et al., 2009; Richardson & Blanchard, 2011).

Such databases could be one one-stop location to store downloadable up-to-date

information on the native range, places of introduction, naturalisation and invasion,

a suite of life-history trait data, and completed weed risk assessments with scores.

Lessons learned from commercial forestry invasions could provide a valuable

guide for future biofuel crops. However, as I have shown in Chapter 2 the effec-

tiveness of the WRA relies heavily on knowledge of a species behaviour elsewhere.

Therefore the WRA may be of little use when screening potential biofuel species

that have never been cultivated outside their native range. And as demonstrated in

Chapter 3 and Chapter 5, species life-history traits traditionally identified as being

important in determining invasions do not appear to predict invasions in some com-

mercial species, and the effect of other factors such as propagule pressure can differ

somewhat between regions. Caution and high-quality species-level data are needed
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before extrapolating any general lessons from commercial forestry to other species

and agricultural systems.

6.5 Recommendations for future research

Although the importance of quantifying failures at the introdution stage when

examining the invasion process has been stated several years ago (Blackburn &

Duncan, 2001; Cassey et al., 2004) and insights gained in plant invasion biology

when this has been adopted (Dawson et al., 2009a; Diez et al., 2009; Gravuer

et al., 2008), the majority of invasion studies still do not account for the failures at

each stage as well as successes or quantify the introduction stage (e.g. Essl et al.,

2011, 2010; Procheş et al., 2012). I recommend that more attention is paid to

this issue. One reason the introduction stage is only rarely included (Puth & Post,

2005) is that data on introductions is often perceived by researchers as difficult

and time-consuming to obtain, requiring searches of archive material which may

be available only in specialist holdings. However, obtaining such data ought to be

attempted and in many cases may not be any more time consuming than searching for

species life-history traits in databases, research papers or through field collection and

experimentation. If the data are not available then it may be worthwhile questioning

if the insights that the given system can provide are in fact likely to be novel or robust

to the issue of the “opportunity to invade”. Universally adopting the framework of

invasions as a stage-based framework (Blackburn et al., 2011) can help researchers

produce insights that are based on robust definitions and are comparable to other

studies.

Future work quantifying invasion risk should focus on obtaining detailed datasets,

such as the one used in this thesis, for several geographic areas and a wide taxo-

nomic range. I found that there were common patterns between NZ and GB but

it remains to be seen how generally applicable these patterns are to other region,

particularly regions in the tropics, regions with larger land areas and regions where

the forestry sector is not based on the Anglo-European model that applied to NZ

and GB. Establishing whether patterns documented in temperate regions translate to

tropical regions (e.g. Dawson et al., 2009a) and what lessons can be learnt is critical

to preventing invasions in tropical regions.

Further research is needed to determine the shape of the relationship between

planting intensity and invasion risk. The potential shapes of the relationship between
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propagule pressure and invasions has been outlined by Lockwood et al. (2005), yet

testing these hypotheses has proven difficult, even in my study where detailed data

were available for forestry planting. Detailed information on the amount and timing

of planting is difficult to obtain for many taxa because of the historical nature of most

introductions and will depend on the use of the species (e.g. commercial crops are

often inventoried, and some horticultural species hold special interest and are thus

documented). When such detailed information has been available, the results from

different regions for the same species can be conflicting. For example, Chapter 3

and Chapter 5 suggest that there is a direct relationship between naturalisation at a

regional-scale and propagule pressure for pines in NZ and GB. However, Nuñez et al.

(2011) found no relationship between propagule pressure and pine naturalisations

at a landscape-scale in Isla Victoria, Argentina. These differences may be due to the

scale of propagule pressure in each study region: commercial-scale and temporally

sustained pressure for NZ and GB versus more limited experimental plantings in Isla

Victoria. This suggests a critical threshold level of planting after which it is inevitable

that a species will escape cultivation and invade, given that the climate is suitable

for that species. Establishing the nature of the relationship between propagule

pressure and invasions is thus important for quantifying risk and could facilitate the

development of plantation management strategies based on total propagule pressure.

Quantification of propagule pressure could be improved by searching for case-study

systems like the one presented in this thesis, where detailed historical documentation

exists.

One issue that is rarely addressed in retrospective tests of the WRA and in

factors determinng risk is that trees can experience time-lags between introduction,

naturalisation and invasion in the order of 100 years (Křivánek & Pyšek, 2008;

Richardson et al., 1994). This could be a critical limitation to many such studies. In

my study, the long time period since introduction of the majority of the genus Pinus

meant that it is likely that species have had sufficient time to naturalise. Additionally,

i included resident time as a covariate in models and thus controlled for this factor.

However, future studies would benefit from explicitly confronting this issue and

investigating how it could bias results and control ling for it statistically by including

introduction date as a null model approach.

When plants are introduced to new regions they may lose the interractions

with mutualist, natural enemies and competitors present in their native ranges, but

also gain interractions with new species encountered in the introduced range (this

topic has been reviewed in Mitchell et al., 2006; Richardson et al., 2000a). The
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effect of this change in the dynamics of biotic interractions in the new range can

be significant. This can lead to advantage for the introduced plant species, such

as enemy release, and dissadvantages such as inhibition from lack of mutualistic

interractons. Integrating data on the factors dermining invasions including life-

history traits, biogeographic and human factors identified in this thesis with data on

the presence and effect of biotic interractions could unify the two areas of invasion

biology. Taking a case-study approach and focusing on a small taxonomic group such

as a famiy or group of genera could be a manageable way to begin addressing the

integration of these different factors.

Finally, historical documents such as forestry inventories, plans and nursery

catalogues are valuable sources of data on propagule pressure, yet few are digitised.

A public database of such documents similar to www.gbif.org, along with a wiki

that allowed researches to input introduction dates (backed with citations to original

sources) could greatly facilitate future invasion studies across several regions. As

many such historical documents are held in institutions that often have no budgets

for digitisation of such material, this task falls to individual researchers and the

invasion biology community.

www.gbif.org
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Table A.1. Table listing 115 species in the genus Pinus used in this study along with: (A) invasion status in NZ (NI = not introduced, I =
introduced, N = naturalised); (B) number of WRA questions answered for NZ assessments; (C) NZ WRA scores; (D) NZ WRA result; (E)
NZ introduction date; (F) invasion status in GB (NI = not introduced, I = introduced, N = naturalised); (G) number of WRA questions
answered for GB assessments; (H) GB WRA scores; (I) GB WRA result; (J) GB introduction date; (K) Z-score. Species epithets are from the
International Plant Names Index (IPNI) http://www.ipni.org, though there is some disagreement between the data sources used by the
IPNI. Introduction dates for species marked with † came from the forest working plans held in the archives at Scion, Rotorua, New Zealand;
and those with a ∗ came from nursery catalogues held at the library at Lincoln University, Lincoln, Canterbury, New Zealand. Numbers in
brackets indicate the literature source for the data.

Species A B C D E F G H I J K

albicaulis Engelm. NI 40 4 Accept - I 15,16 40 3 Accept 1853 26 −5.61

aristata Engelm. I 1 41 −1 Accept 1915 1 I 15,16 41 −3 Accept - 0.35

arizonica Engelm. NI 36 −2 Accept - NI 37 −2 Accept - 4.03

armandii Franch. I 1 35 −4 Accept 1909 1 I 15,16 36 −5 Accept 1897 24 −3.74

attenuata Lemmon. I 1,8 36 0 Accept 1860 8 I 15,16 36 3 Accept - 11.03

ayacahuite Ehrenb. ex Schltdl. I 35 1 Evaluate 1974† I 14−16 35 0 Accept 1872 24 7.04

balfouriana S.Watson NI 35 −4 Accept - I 15 36 −5 Accept 1853 26 −1.09

banksiana Lamb. N 9 40 16 Reject 1904 1 I 14−16 41 15 Reject 1897 24 9.17

bhutanica D.G.Long & C.N.Page NI 20 3 Evaluate - I 20 21 2 Accept 1930 22 0.38

brutia Ten. I 1 39 6 Reject 1915 1 I 16 39 6 Reject - 7.49

bungeana Zucc. ex Endl I 1 34 −1 Accept 1903 1 I 15,16 35 −1 Accept - −1.38

canariensis C.Sim I 1,3,6 37 12 Reject 1861∗ I 15,16 38 11 Reject - −12.25

caribaea Morelet I 1 34 8 Reject - I 15,16 35 7 Reject - 0.46

cembra L. I 1 35 0 Accept 1872∗ I 14−16 36 -1 Accept 1745 18 4.9 0

cembroides Zucc. I 1 39 −1 Accept 1872∗ I 15,16 40 −2 Accept - −7.79

Continued on next page. . .

http://www.ipni.org


117
Continued

Species A B C D E F G H I J K

chiapensis (Martínez) Andresen NI 34 −4 Accept - NI 35 −5 Accept - −2.72

clausa Vasey NI 35 3 Accept - NI 36 2 Accept - 8.72

contorta Douglas ex Loudon N 9 42 15 Reject 1873∗ N 9 43 14 Reject 1851 25 10.58

cooperi C.E.Blanco NI 23 −3 Accept - NI 24 −3 Accept 1832 23 7.03

coulteri D.Don I 1 38 6 Reject 1870∗ I 15,16 39 10 Reject - −3.67

culminicola Andresen & Beaman I 1 34 −4 Accept - NI 35 −5 Accept - −2.96

dalatensis Ferre NI 26 −4 Accept - NI 27 −5 Accept - 8.05

densata Masters NI 38 2 Accept - NI 39 2 Accept 1926 24 1.38

densiflora Siebold & Zucc. I 1,7 37 14 Reject 1872∗ I 14−16 38 13 Reject - 7.54

devoniana LIdl. I 28 1 Evaluate 1872∗ I 16 29 0 Evaluate - 5.97

discolor D.K.Bradley & Hawksw. NI 27 −3 Accept - NI 28 −3 Accept - −2.09

douglasiana Martínez NI 27 −2 Accept - NI 28 −2 Accept - 6.11

durangensis Martínez I 31 2 Evaluate 1960† NI 32 1 Evaluate 1821 24 −6.63

echinata Mill. I 1,7 36 5 Accept 1881 1 I 15−17 37 4 Accept - 4.87

edulis Engelm. NI 41 1 Evaluate - I 16 42 0 Evaluate - −2.71

elliottii Engelm. I 10 39 7 Reject 1915 1 I (16) 40 6 Reject - 4.79

engelmannii Carrière NI 35 −1 Accept - NI 36 −1 Accept - −2.71

fenzeliana Hand.-Mazz. NI 18 −1 Accept - NI 19 −2 Accept 1861 24 −0.55

flexilis E. James I 1 35 0 Accept 1872∗ I 15,16 36 −1 Accept - −2.27

gerardiana Wall. ex Lamb. I 1 34 −1 Accept 1915 1 I 15,16 35 −1 Accept - −11.03

Continued on next page. . .
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Continued

Species A B C D E F G H I J K

glabra Walter NI 36 −6 Accept - I 15 37 −7 Accept - 7.07

greggii Engelm. ex Parl. I 2,4 32 0 Evaluate 1960 6 I 15,16 33 −1 Accept - 4.45

hakkodensis Makino NI 20 3 Evaluate - NI 21 2 Evaluate - 11.37

halepensis Mill. N 9 38 11 Reject 1868 6 I 15,16 39 17 Reject - 11.76

hartwegii Lindl. I 1,6 29 5 Reject 1868 6 I 16 30 4 Evaluate 1855 24 4.92

heldreichii Christ I 1 28 4 Evaluate 1904 1 I 15,16 29 3 Evaluate 1890 18 12.34

henryi Masters NI 29 6 Reject - NI 30 5 Accept - 7.56

herrerae Martínez NI 25 -1 Accept - NI 26 -1 Accept - 8.72

hwangshanensis W.Y.Hsia NI 18 3 Evaluate - NI 19 2 Evaluate - 8.64

jaliscana Pérez de la Rosa NI 28 −2 Accept - NI 29 −3 Accept - 11.29

jeffreyi A.Murr. I 6 37 9 Reject 1861∗ I 16 37 14 Reject 1853 27 3.39

johannis M.-F.Robert NI 28 −6 Accept - NI 29 −6 Accept - −7.90

juarezensis Lanner NI 24 1 Evaluate - NI 25 0 Evaluate - −23.45

kesiya Royal ex Gordon I 6 30 7 Reject 1865 6 I 15,16 32 12 Reject - 9.45

koraiensis Siebold & Zucc. I 1 36 4 Evaluate 1906 1 I 15,16 37 3 Reject 1880 24 −6.47

krempfii Lecomte NI 28 −2 Evaluate - NI 29 −3 Accept - 10.33

kwangtungensis Chun ex Tsiang NI 27 4 Accept - NI 28 3 Accept - −0.64

lagunae (Passini) Passini NI 30 −3 Accept - NI 31 −4 Accept - −1.37

lambertiana Douglas ex R.Taylor & R.Philips I 1,7 36 10 Reject 1872∗ I 15,16 37 13 Reject 1827 23 −28.63

lawsonii Rozel ex Gordon NI 28 −4 Accept - NI 29 −4 Accept - 6.92

Continued on next page. . .
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Species A B C D E F G H I J K

leiophylla Schltdl. & Cham. NI 33 −1 Accept - I 15,16 34 −1 Accept - 7.43

longaeva D.K.Bailey NI 34 −1 Accept - NI 35 −2 Accept - 6.31

luchuensis Mayr NI 26 5 Evaluate - I 15,16 27 4 Evaluate - 7.12

lumholtzii B.L.Rob. & Fernald NI 26 −1 Accept - NI 27 −2 Accept - 4.91

massoniana Lamb. I 1 28 0 Accept 1873∗ I 15,16 29 1 Evaluate - 6.64

maximartinezii Rzed. NI 32 −5 Accept - NI 33 −5 Accept - −19.57

maximinoi H.E.Moore I 29 2 Evaluate 1949† NI 30 1 Evaluate - 7.94

merkusii Jungh. & de Vriese NI 32 2 Accept - NI 32 2 Accept - 1.36

monophylla Torr. & Frém. I 1 38 −2 Accept 1876∗ I 15,16 39 −2 Accept - −11.73

montezumae D.Don I Lamb. I 1 34 4 Evaluate 1911 1 I 15,16 34 6 Reject 1881 24 −0.67

monticola Douglas ex Lamb. I 1 35 3 Evaluate 1915 1 I 15,16 35 7 Reject 1823 23 3.32

morrisonicola Hayata NI 24 0 Evaluate - NI 25 -1 Accept - 4.73

mugo Turra N 9 36 16 Reject 1861∗ N 9,17 36 16 Reject 1774 25 11.63

muricata D. Don N 9,21 35 7 Reject 1861∗* I 15 35 7 Reject 1851 24 8.65

nelsonii Shaw NI 28 −2 Accept - I 15 29 −3 Accept - −3.85

nigra J.F.Arnold N 9 35 14 Reject 1861∗ N 21 35 14 Reject 1759 18 4.24

occidentalis Sw. NI 28 −1 Accept - NI 28 −3 Accept - −0.16

oocarpa Schiede ex Schltdl. NI 34 3 Evaluate - I 16 34 3 Evaluate - 6.18

orizabensis D.K.Bailey & Hawksw. NI 26 −3 Accept - NI 27 −3 Accept - −15.11

palustris Mill. I 1,3,7 35 6 Reject 1866 3 I 15,16 36 9 Reject - −5.08

Continued on next page. . .
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Continued

Species A B C D E F G H I J K

parviflora Siebold & Zucc. NI 28 1 Accept - I 15,16 29 1 Accept 1879 24 0.81

patula Schiede ex Schltdl. & Cham. N 9 33 14 Reject 1877 1 I 15,16 33 14 Reject - 10.06

peuce Griseb. I 1 31 4 Accept 1876∗ I 14−−16 31 6 Reject 1864 25 2.75

pinaster Aiton N 9 38 18 Reject 1830 27 N 9 38 18 Reject 1596 18 7.89

pineana Gordon NI 29 −4 Accept - NI 30 −4 Accept 1870 24 −5.55

pinea L. I 1,3,7 33 8 Reject 1861∗ I 15,16 33 15 Reject 1500 18 −8.37

ponderosa P.Lawson &. C.Lawson N 9 37 19 Reject 1861∗ I 15,16 37 19 Reject 1827 23 4.10

pringlei Shaw I Sarg. I 7,8 26 −3 Accept 1896 1 NI 27 −3 Accept - 12.45

pseudostrobus Lindl. I 32 1 Evaluate 1949† I 15,16 32 3 Evaluate 1913 24 6.05

pumila Regel NI 30 2 Accept - I 15,16 31 2 Accept - 2.23

pungens Lamb. NI 34 0 Accept - I 15,16 35 −1 Accept - 9.64

quadrifolia Parry ex Parl. I 7,8 34 −2 Accept 1896 7 I 15 35 −2 Accept - −2.10

radiata N 9 41 14 Reject 1858∗ N 9,14,16 41 14 Reject 1832 25 8.75

remota D.K.Bailey & Hawksw. NI 29 −4 Accept - NI 30 −4 Accept - 0.98

resinosa Aiton I 1 37 11 Reject 1861∗ I 15,16 38 10 Reject - 4.72

rigida Mill. I 6,7 34 12 Reject 1868 6 I 14−16 35 11 Reject 1895 24 8.12

roxburghii Sarg. I 36 6 Reject 1876∗ I 15,16 36 11 Reject - −4.68

rzedowskii Madrigal & M.Caball. NI 25 −3 Accept - NI 26 −4 Accept - −1.12

sabiniana Douglas I 1,7 35 9 Reject 1861∗ I 15,16 36 8 Reject 1832 25 −7.70

serotina Michx. I 33 −1 Accept 1862∗ I 15 33 −1 Accept - 10.82

Continued on next page. . .
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Species A B C D E F G H I J K

sibirica Ledeb. Turcz. NI 34 1 Evaluate - I 19 35 0 Evaluate - −3.02

squamata X.W.Li NI 23 0 Evaluate - NI 24 -1 Accept - 4.65

stankewiczii Sukaczev Fomi NI 21 −1 Accept - NI 22 −2 Accept - −13.77

strobiformis Engelm. NI 35 5 Evaluate - NI 36 4 Accept - −3.72

strobus L. N 9 37 13 Reject 1861∗ I 14−16 37 13 Reject 1605 25 7.01

sylvestris L. N 9 35 10 Reject 1861∗ Native 35 10 Reject 1746 24 7.75

tabuliformis Carrière I 29 0 Evaluate 1957† I 15,16 30 -1 Accept 1910 24 9.20

taeda L. N 9,10 36 17 Reject 1915 1 I 15,16 36 17 Reject 1912 24 6.54

taiwanensis Hayata I 34 1 Evaluate 1963† I 16 34 1 Evaluate - 2.55

tecunumanii F.Schwerdtf. ex Eguiluz & J.P.Perry NI 32 −1 Accept - NI 33 −2 Accept - 9.29

teocote Cham. & Schltdl. I 1 31 2 Evaluate 1915 1 I 15 32 1 Evaluate - 3.52

thunbergii Parl. I 1 33 6 Reject 1890 1 I 14−16 33 6 Reject 1880 24 8.98

torreyana Parry ex Carrière I 1,7 33 −2 Accept 1870 1 I 15,16 33 −2 Accept - −6.90

tropicalis Morelet NI 31 −2 Accept - NI 32 −3 Accept - 10.11

uncinata Ramond ex DC. I 10 33 0 Accept 1962 5 I 17 34 0 Accept - 9.75

virginiana Mill. I 1 36 9 Reject 1900 1 I 15,16 37 8 Reject - 10.1

wallichiana A.B.Jacks. I 1,6 36 10 Reject 1868 6 N 17 36 10 Reject 1823 25 0.98

wangii Hu & W.C.Cheng NI 25 −2 Accept - NI 26 −3 Accept - −2.73

washoensis Mason & Stockw. NI 28 1 Accept - I 16 29 0 Accept - −0.58

yunnanensis Franch. I 1 30 2 Accept 1909 1 I 16 31 1 Accept - 7.09
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Appendix B

List of New Zealand regions

Table B.1. List of 43 regions used in regression analysis for New Zealand, organised
into their wider Department of Conservation conservancy (http://www.doc.govt.nz/
by-region/). A list of Watsonian vice-counties used in this study can be found online at
http://herbariaunited.org/gridrefVC/

Conservancy Areas included

Northland Bay of Islands, Kaitai, Kauri coast, Whangarei
Auckland Auckland, Warkworth
Waikato Hauraki, Maniapoto, Waikato
East Coast Gisborne, Rotorua, Te Urewera, Tauranga
Tongariro Ruapehu, Taurangi
Wanganui Palmerston North, Taranaki
Wellington Whanganui, Hawkes Bay, Kapiti, Wairarapa, Poneke
Nelson Golden Bay, Motueka, Nelson Lakes, Sounds Area, South

Marlborough
West Coast Buller, Franz Josef, Greymouth, Hokitika, South Westland
Canterbury Aoraki, Mahaanui, Raukapuka, Twizel, Waimakariri
Otago Central Otago, Coastal Otago, Wakatipu, Wanaka
Southland Murihiku, Te Anau
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Appendix C

WRA questions and summary of

answers

Table C.1. A list of weed risk assessment questions, the default answer used in this study
where applicable, and the percentage of assessments that each questions was answered for
New Zealand (NZ) and Great Britain (GB).

WRA question Default NZ GB

Domestication/cultivation

1.01 Is the species highly domesticated No 100 100

1.02 Has the species become naturalised where grown NA 100 100

1.03 Does the species have weedy races NA 100 100

Climate and distribution

2.01 Species suited to New Zealand/Great Britain climates (0–

low; 1–intermediate; 2–high)

- 100 100

2.02 Quality of climate match data (0–low; 1–intermediate;

2–high)

2 100 100

2.03 Broad climate suitability - 87 87

2.04 Native or naturalised in regions with equable climates - 94 94

2.05 Does the species have a history of repeated introductions

outside its native range

- 97 97

Weed elsewhere (interacts with 2.01 to give a weighted score)

3.01 Naturalised beyond native range - 88 88

3.02 Garden/amenity/disturbance weed - 96 96

3.03 Agricultural/forestry/horticultural weed - 96 96

3.04 Environmental weed - 98 98

3.05 Congeneric weed Yes 100 100

Continued on next page. . .
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Continued

WRA question Default NZ GB

Undesirable traits

4.01 Produces spines, thorns or burrs No 100 100

4.02 Allelopathic - 17 17

4.03 Parasitic No 100 100

4.04 Unpalatable to grazing animals - 38 38

4.05 Toxic to animals - 42 42

4.06 Host for recognised pests and pathogens - 82 82

4.07 Causes allergies or otherwise toxic to humans No 100 100

4.08 Created a fire hazard in natural ecosystems - 36 36

4.09 Is a shade tolerant plant at some stage of its life cycle - 65 65

4.10 Tolerates a wide range of soil conditions - 77 77

4.11 Climbing or smothering growth habit No 100 100

4.12 Forms dense thickets - 72 72

Plant type

5.01 Aquatic No 100 100

5.02 Grass No 100 100

5.03 Nitrogen fixing woody plant No 100 100

5.04 Geophyte No 100 100

Reproduction

6.01 Evidence of substantial reproductive failure in native habi-

tat

- 97 97

6.02 Produces viable seed - 97 97

6.03 Hybridises naturally - 65 65

6.04 Self-compatible or apomictic - 29 29

6.05 Requires specialist pollinators No 100 100

6.06 Reproduction by vegetative fragmentation - 96 96

6.07 Minimum generative time (years) - 61 61

Dispersal mechanisms

7.01 Propagules likely to be dispersed unintentionally (plants

growing in heavily trafficked areas)

- 95 95

Continued on next page. . .
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Continued

WRA question Default NZ GB

7.02 Propagules dispersed intentionally by people - 86 86

7.03 Propagules likely to be dispersed as a produce contaminant - 97 97

7.04 Propagules adapted to wind dispersal - 96 96

7.05 Propagules water dispersed - 97 97

7.06 Propagules bird dispersed - 41 41

7.07 Propagules dispersed by other animals (externally) - 15 15

7.08 Propagules survive passage through the gut Unknown 0 0

Persistence attributes

8.01 Prolific seed production (>1000/m2) - 20 20

8.02 Evidence that a persistent propagule bank is formed (>1

yr)

- 26 26

8.03 Well controlled by herbicides - 6 6

8.04 Tolerates, or benefits from mutilation, cultivation, or fire - 71 71

8.05 Effective natural enemies present in New Zealand or Great

Britain

- 25 100



Appendix D

WRA results without information of

prior invasiveness
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Appendix F

Full linked regression equations for

exploratory path analysis

The process of fitting a path model was divided into four stages: (1) construct a path diagram

that includes all of the possible links among variables (Figure 5.1 in main text); (2) translate

this path diagram into a series of regression equations; (3) fit the full model to the data using

uninformative priors for the regression coefficients that define the links between variables; (4)

refit the model, this time including binary indicator variables that specify whether regression

coefficients should be included in the model or not, and using the posterior distributions of

the regression coefficients from the full model as priors in this analysis. Below is stage 2 in

this process, firstly for introductions of Pinus to NZ:

introducedi ∼ Bernoulli(Pi) (F.1)

logit(Pi) = β0+ β1Z-scorei + β2climate matchi + β3native rangei + β4forestry use indexi
(F.2)

climate matchi ∼ Normal(µci ,σ
2
c ) (F.3)

µci = β5+ β6native rangei (F.4)

native rangei ∼ Normal(µni ,σ
2
n) (F.5)

µni = β7+ β8Z-scorei (F.6)

forestry use indexi ∼ Normal(µ f i ,σ
2
f ) (F.7)

µ f i = β9+ β10native rangei + β11Z-scorei (F.8)

Where introducedi specifies whether the ith species was introduced to NZ (1) or not (0),

which is modelled as drawn from a Bernoulli distribution with probability Pi of naturalisation,

which is in turn modelled (on the logit scale) as a function of Z-score, climate match, native

range size and the forestry use index. The explanatory variables climate match, native range

size and the forestry use index are dependent on other variables (i.e. the ones have arrows

going towards them), and were modelled as drawn from separate normal distributions; with
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climate match modelled as a linear function of native range size, native range size modelled

as a linear function of Z-score, and the forestry use index was modelled as a linear function

of native range size and the Z-score. The β0–β11 are regression coefficients to be estimated

from the data, and σ2
c ,σ2

n, and σ2
f are unknown variances (the variation in the data due to

unobserved causes) that are also estimated from the data. While Z-score and native range

size causally influence other variables in the model we have not explicitly considered their

causes.

The probability of naturalisation for Pinus was modelled thus:

naturalisedi ∼ Bernoulli(Pi) (F.9)

(F.10)logit(Pi) = β0+ β1Z-scorei + β2climate matchi + β3native rangei
+ β4forestry use indexi + β5residence timei + β6area plantedi

climate matchi ∼ Normal(µci ,σ
2
c ) (F.11)

µci = β7+ β8native rangei (F.12)

native rangei ∼ Normal(µni ,σ
2
n) (F.13)

µni = β9+ β10Z-scorei (F.14)

forestry use indexi ∼ Normal(µ f i ,σ
2
f ) (F.15)

µ f i = β11+ β12native rangei + β13Z-scorei (F.16)

residence timei ∼ Normal(µri ,σ
2
r ) (F.17)

µri = β14+ β15forestry use indexi + β16Z-scorei + β17climate matchi + β18native rangei
(F.18)

area plantedi ∼ Normal(µai ,σ
2
a) (F.19)

(F.20)µai = β19+ β20native rangei + β21climate matchi + β22Z-scorei
+ β23forestry use indexi + β24residence timei

Where naturalisedi specifies whether the ith species naturalised in NZ (1) or not (0), which is

modelled as drawn from a Bernoulli distribution with probability Pi of naturalisation, which
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is in turn modelled (on the logit scale) as a function of Z-score, climate match, native range

size, the forestry use index, residence time and area planted. The explanatory variables

climate match, native range size, the forestry use index, residence time and area planted

are dependent on other variables, thus were modelled as drawn from separate normal

distributions. Climate match modelled as a linear function of native range size; native range

size was modelled as a function of Z-score; the forestry use index was modelled as a linear

function of native range size and Z-score; residence time was modelled as a linear function

of the forestry use index, Z-score, climate match and native range size; and area planted

was modelled as a linear function of native range size, climate match, Z-score, the forestry

use index and residence time. As before, β0–β24 are unknown regression coefficients to be

estimated from the data, and σ2
c ,σ2

n,σ2
f ,σ2

r and σ2
a are unknown variances that are also

estimated from the data. While Z-score causally influence other variables in the model we

have not explicitly considered its cause.

The probability of Trifolium introductions were modelled as follows:

introducedi ∼ Bernoulli(Pi) (F.21)

logit(Pi) = β0+β1native rangei+β2climate matchi+β3GBi+β4heighti+β5life-spani (F.22)

native rangei ∼ Normal(µni ,σ
2
n) (F.23)

µni = β6+ β7conditionsi + β8heighti + β9life-spani (F.24)

climate matchi ∼ Normal(µci ,σ
2
c ) (F.25)

µci = β10+ β11native rangei + β12conditionsi (F.26)

heighti ∼ Normal(µhi ,σ
2
h) (F.27)

µhi = β13+ β14life-spani (F.28)

life-spani ∼ Bernoulli(Pl i) (F.29)

logit(Pl i) = β15 (F.30)

GBi ∼ Bernoulli(PGBi) (F.31)

logit(PGBi) = β16+ β17native rangei (F.32)

conditionsi ∼ Poisson(PCoi) (F.33)

log(PCoi) = β18+ β19heighti + β20life-spani (F.34)

Where introducedi specifies whether the ith clover species was intentionally introduced to

NZ (1) or not (0), which is modelled as drawn from a Bernoulli distribution with probability
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Ii of introduction, which is in turn modelled (on the logit scale) as a function of native

range size, climate match, presence in GB, centre of origin, and economic use. Continuous

explanatory variables were modelled as being drawn for separate normal distributions; binary

variables were modelled as being drawn from a Bernoulli distribution with a probability PGBi

and Pl i which was in turn modelled on a logit scale; and the count variable was modelled as

being drawn from a Poisson distribution PCoi on a log scale. Native range size was modelled

as a linear function of range of conditions tolerated, height and life-span; climate match was

modelled as a linear function of native range size and range of conditions tolerated. Height

was modelled as a linear function of life-span. Presence in GB was modelled (on a logit scale)

as a linear function of native range size; range of conditions tolerated was modelled (on a

log scale) as a linear function of height and life-span. As previously β0–β20 are regression

coefficients to be estimated from the data, and σ2
n,σ2

c and σ2
h are unknown variances that

are also estimated from the data.

Trifolium naturalisation was modelled thus:

naturalisaedi ∼ Bernoulli(Pi) (F.35)

(F.36)logit(Pi) = β0+ β1residence timei + β2climate matchi + β3native rangei
+ β4life-spani + β5heighti + β6area plantedi

residence timei ∼ Normal(µri ,σ
2
r ) (F.37)

µri = β7+β8climate matchi+β9native rangei+β10heighti+β11life-spani+β12GBi (F.38)

climate matchi ∼ Normal(µci ,σ
2
c ) (F.39)

µci = β13+ β14native rangei (F.40)

native rangei ∼ Normal(µni ,σ
2
n) (F.41)

µni = β15+ β16heighti + β17life-spani (F.42)

heighti ∼ Normal(µhi ,σ
2
h) (F.43)

µni = β18+ β19life-spani (F.44)

life-spani ∼ Bernoulli(Pl i) (F.45)

logit(Pl i) = β20 (F.46)

GBi ∼ Bernoulli(PGBi) (F.47)

logit(PGBi) = β21+ β22native rangei (F.48)

area plantedi ∼ Normal(µai ,σ
2
a) (F.49)
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(F.50)µai = β23+ β24residence timei + β25climate matchi
+ β26native rangei + β27heighti + β28life-spani + β29GBi

Where naturalisedi specifies whether the ith Trifolium species has naturalised in NZ (1)

or not (0), which is modelled as drawn from a Bernoulli distribution with probability Pi of

naturalisation, which is in turn modelled (on the logit scale) as a function of residence time,

climate match, native range size, life-span, height, and area planted. Continuous explanatory

variables were modelled as being drawn for separate normal distributions, and the binary

variables (presence in GB and life-span) were modelled as being drawn from a Bernoulli

distribution with some probability, which was in turn modelled on a logit scale. Residence

time was modelled as a linear function of range of climate match, native range size, height,

life-span, and presence in GB. Climate match was modelled as a linear function of native

range size; native range size was modelled as a linear function of height and life-span; height

was modelled as linear function of life-span; area planted was modelled as linear function

of residence time, climate match, native range size, height, life-span and presence in GB.

Presence in GB was modelled (on a logit scale) as a function of native range size. β0–β29

are regression coefficients to be estimated from the data, and σ2
r ,σ2

c ,σ2
n,σ2

h and σ2
a are

unknown variance that was estimated from the data.



Appendix G

R tutorial: exploratory path analysis

# Call the BRugs library for this session
library(BRugs)

# Set a working directory
setwd("E:\\Uni.backup\\Thesis_Chapter_4\\New_idea\\draft_May")

# Read pine data
pine <- read.csv("C:\\your\\file\\path\\Pine.csv")

# Subset pine data to include only those that were introduced
nz <- subset(pine, int.nz==1)

# Read Trifolium introduction data
tri.int <- read.csv("TrifoliumInt.csv")

# Read Trifolium naturalisation data
tri.nat <- read.csv("TrifoliumNat.csv")

# Write a function to standardise your variables by subtracting the mean and dividing
# by two standard deviations (z-scores)

stan <- function(x) ((x - mean(x, na.rm=T)) / sd(x, na.rm=T))/2

### PINUS INTRODUCTION

# Specify the model variables, standardise the continuous onse using z-scores
nz.int <- pine$int.nz
clim <- stan(pine$Nzclim.perc)
range <- stan(pine$EOO)
zscore <- stan(pine$zscore)
cabi <-stan(pine$CABI.abstracts)
N <- length(nz.int)

# Fit the full model containing all hypothesised causal links
mod <- " model {

for(i in 1:N) {
nz.int[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + b[2]*range[i] + b[3]*clim[i] + b[4]*zscore[i] + b[5]*cabi[i]

cabi[i] ~ dnorm(mu.cabi[i], tau[1])
clim[i] ~ dnorm(mu.clim[i], tau[2])
zscore[i] ~ dnorm(mu.zscore[i], tau[3])
range[i] ~ dnorm(mu.range[i], tau[4])

mu.cabi[i] <- b[6] + b[7]*range[i] + b[8]*zscore[i]
mu.clim[i] <- b[9] + b[10]*range[i]
mu.zscore[i] <- b[11]
mu.range[i] <- b[12] + b[13]*zscore[i]

}

# Set priors. Gelman et al (2008) suggest for regression parameters to use a prior
# with a scale (=standard deviation) of 2.5, except that BUGS uses the precision (= 1/(sd*sd)).
# The other thing Gelman suggests is to use a Cauchy (a t-distribution with one degree
# of freedom) rather than a t-distribution with 7 degrees of freedom.

b[1] ~ dt(0, 0.01, 1)
for(i in 2:5) {

b[i] ~ dt(0, 0.16, 1)
}

138
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for(i in 6:13) {
b[i] ~ dnorm(0, 0.0001)

}
for(i in 1:4) {

tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(0, 0.0001)

}
}"

# Write model
write(mod, "bugs model.txt")

# Write data and intial values to files
bugsData(list(N=N, nz.int=nz.int, clim=clim, range=range, zscore=zscore, cabi=cabi),
fileName="data.txt")
bugsData(list(b=rnorm(13), l.sigma=rnorm(4)), fileName="inits1.txt")
bugsData(list(b=rnorm(13), l.sigma=rnorm(4)), fileName="inits2.txt")
bugsData(list(b=rnorm(13), l.sigma=rnorm(4)), fileName="inits3.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "l.sigma"))
modelUpdate(10000)
post.b.nzint <- samplesStats("b")
post.sigma.nzint <- samplesStats("l.sigma")

# Extract the mean and sd of the posterior estimates for the parameters (b and sigma)
mean.b.nzint <- post.b.nzint[, 1]
sd.b.nzint <- post.b.nzint[, 2]
mean.sigma.nzint <- post.sigma.nzint[, 1]
sd.sigma.nzint <- post.sigma.nzint[, 2]

# Refit the full model with variable selection indicators, including the posterior
# distributions as priors

mod <- " model {
for(i in 1:N) {

nz.int[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + w[1]*b[2]*range[i] + w[2]*b[3]*clim[i] + w[3]*b[4]*zscore[i] +
w[4]*b[5]*cabi[i]

cabi[i] ~ dnorm(mu.cabi[i], tau[1])
clim[i] ~ dnorm(mu.clim[i], tau[2])
zscore[i] ~ dnorm(mu.zscore[i], tau[3])
range[i] ~ dnorm(mu.range[i], tau[4])

mu.cabi[i] <- b[6] + w[5]*b[7]*range[i] + w[6]*b[8]*zscore[i]
mu.clim[i] <- b[9] + w[7]*b[10]*range[i]
mu.zscore[i] <- b[11]
mu.range[i] <- b[12] + w[8]*b[13]*zscore[i]

}
for(i in 1:13) {

b[i] ~ dnorm(mean.b.nzint[i], sd.b.nzint[i])
}
for(i in 1:4) {

tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(mean.sigma.nzint[i], sd.sigma.nzint[i])

}

# Priors for w
for(i in 1:8) {

w[i] ~ dbern(theta[i])
theta[i] ~ dbeta(1,1)

}

# Combine w and b
v[1] <- w[1]*b[2]
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v[2] <- w[2]*b[3]
v[3] <- w[3]*b[4]
v[4] <- w[4]*b[5]
v[5] <- w[5]*b[7]
v[6] <- w[6]*b[8]
v[7] <- w[7]*b[10]
v[8] <- w[8]*b[13]

}"

# Write model
write(mod, "bugs model.txt")

# Write data and intial values to files
bugsData(list(N=N, nz.int=nz.int, clim=clim, range=range, zscore=zscore, cabi=cabi,
mean.b.nzint=mean.b.nzint,
sd.b.nzint=sd.b.nzint,mean.sigma.nzint=mean.sigma.nzint,
sd.sigma.nzint=sd.sigma.nzint), fileName="data.txt")
bugsData(list(b=rnorm(13), l.sigma=rnorm(4), theta=runif(8)), fileName="inits1.txt")
bugsData(list(b=rnorm(13), l.sigma=rnorm(4), theta=runif(8)), fileName="inits2.txt")
bugsData(list(b=rnorm(13), l.sigma=rnorm(4), theta=runif(8)), fileName="inits3.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "w", "v"))
modelUpdate(10000)
out.b.nzint <- samplesStats("b")
out.w.nzint <- samplesStats("w")
out.v.nzint <- samplesStats("v")

out.nzint <- rbind(out.b.nzint, out.w.nzint, out.v.nzint)
write.csv(out.nzint, "IntPine.csv")

##### PINUS NATURALISATION

# Naturalisation stage varaibles NZ
nz.nat <- nz$nat.nz
range <- stan(nz$EOO)
clim <- stan(nz$Nzclim.perc)
area <- stan(nz$area.log1)
zscore <- stan(nz$zscore)
residence <- 2011-nz$nz.intro.date
resid <- stan(residence)
cabi <- stan(nz$CABI.abstracts)

N <- length(nz.nat)

# Fit the full model containing all hypothesised causal links
mod <- " model {

for(i in 1:N) {
nz.nat[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + b[2]*area[i] + b[3]*clim[i] + b[4]*zscore[i] + b[5]*cabi[i]
+ b[6]*resid[i] + b[7]*range[i]

area[i] ~ dnorm(mu.area[i], tau[1])
clim[i] ~ dnorm(mu.clim[i], tau[2])
zscore[i] ~ dnorm(mu.zscore[i], tau[3])
range[i] ~ dnorm(mu.range[i], tau[4])
resid[i] ~ dnorm(mu.resid[i], tau[5])
cabi[i] ~ dnorm(mu.cabi[i], tau[6])

mu.area[i] <- b[8] + b[9]*clim[i] + b[10]*zscore[i] +b[11]*cabi[i] + b[12]*range[i]
+ b[13]*resid[i]
mu.clim[i] <- b[14] + b[15]*range[i]
mu.zscore[i] <- b[16]
mu.range[i] <- b[17] + b[18]*zscore[i]
mu.resid[i] <- b[19] + b[20]*clim[i] + b[21]*zscore[i] + b[22]*cabi[i] +
b[23]*range[i]
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mu.cabi[i] <- b[24] + b[25]*zscore[i] + b[26]*range[i]
}
b[1] ~ dt(0, 0.01, 1)
for(i in 2:7) {

b[i] ~ dt(0, 0.16, 1)
}
for(i in 8:26) {

b[i] ~ dnorm(0, 0.0001)
}
for(i in 1:6) {

tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(0, 0.0001)

}
}"

# Write model
write(mod, "bugs model.txt")

# Write data and intial values to files
bugsData(list(N=N, nz.nat=nz.nat, area=area, clim=clim, range=range,
zscore=zscore,
resid=resid, cabi=cabi), fileName="data.txt")
bugsData(list(b=rnorm(26), l.sigma=rnorm(6)), fileName="inits1.txt")
bugsData(list(b=rnorm(26), l.sigma=rnorm(6)), fileName="inits2.txt")
bugsData(list(b=rnorm(26), l.sigma=rnorm(6)), fileName="inits3.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "l.sigma"))
modelUpdate(10000)
post.b.nznat <- samplesStats("b")
post.sigma.nznat <- samplesStats("l.sigma")

# Extract the mean and sd of the posterior estimates for the parameters (b and sigma)
mean.b.nznat <- post.b.nznat[, 1]
sd.b.nznat <- post.b.nznat[, 2]
mean.sigma.nznat <- post.sigma.nznat[, 1]
sd.sigma.nznat <- post.sigma.nznat[, 2]

# Refit the full model with variable selection indicators, including the posterior
# distributions as priors
mod <- " model {

for(i in 1:N) {
nz.nat[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + w[1]*b[2]*area[i] + w[2]*b[3]*clim[i] + w[3]*b[4]*zscore[i] +
w[4]*b[5]*cabi[i] + w[5]*b[6]*resid[i] + w[6]*b[7]*range[i]

area[i] ~ dnorm(mu.area[i], tau[1])
clim[i] ~ dnorm(mu.clim[i], tau[2])
zscore[i] ~ dnorm(mu.zscore[i], tau[3])
range[i] ~ dnorm(mu.range[i], tau[4])
resid[i] ~ dnorm(mu.resid[i], tau[5])
cabi[i] ~ dnorm(mu.cabi[i], tau[6])

mu.area[i] <- b[8] + w[7]*b[9]*clim[i] + w[8]*b[10]*zscore[i] + w[9]*b[11]*cabi[i]
+ w[10]*b[12]*range[i] + w[11]*b[13]*resid[i]
mu.clim[i] <- b[14] + w[12]*b[15]*range[i]
mu.zscore[i] <- b[16]
mu.range[i] <- b[17]+ w[13]*b[18]*zscore[i]
mu.resid[i] <- b[19] + w[14]*b[20]*clim[i] + w[15]*b[21]*zscore[i] +
w[16]*b[22]*cabi[i] +
w[17]*b[23]*range[i]
mu.cabi[i] <- b[24] + w[18]*b[25]*zscore[i] + w[19]*b[26]*range[i]

}
for(i in 1:26) {

b[i] ~ dnorm(mean.b.nznat[i], sd.b.nznat[i])
}
for(i in 1:6) {
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tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(mean.sigma.nznat[i], sd.sigma.nznat[i])

}

# Priors for w
for(i in 1:19) {

w[i] ~ dbern(theta[i])
theta[i] ~ dbeta(1,1)

}

# Combine w and b
v[1] <- w[1]*b[2]
v[2] <- w[2]*b[3]
v[3] <- w[3]*b[4]
v[4] <- w[4]*b[5]
v[5] <- w[5]*b[6]
v[6] <- w[6]*b[7]
v[7] <- w[7]*b[9]
v[8] <- w[8]*b[10]
v[9] <- w[9]*b[11]
v[10] <- w[10]*b[12]
v[11] <- w[11]*b[13]
v[12] <- w[12]*b[15]
v[13] <- w[13]*b[18]
v[14] <- w[14]*b[20]
v[15] <- w[15]*b[21]
v[16] <- w[16]*b[22]
v[17] <- w[17]*b[23]
v[18] <- w[18]*b[25]
v[19] <- w[19]*b[26]

}"

# Write model
write(mod, "bugs model.txt")

# Write data and intial values to files
bugsData(list(N=N, nz.nat=nz.nat, area=area, clim=clim, range=range,
zscore=zscore,
resid=resid, cabi=cabi, mean.b.nznat=mean.b.nznat, sd.b.nznat=sd.b.nznat,
mean.sigma.nznat=mean.sigma.nznat, sd.sigma.nznat=sd.sigma.nznat),
fileName="data.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "w", "v"))
modelUpdate(10000)
out.b.nznat <- samplesStats("b")
out.w.nznat <- samplesStats("w")
out.v.nznat <- samplesStats("v")

out.nznat <- rbind(out.b.nznat, out.w.nznat, out.v.nznat)
write.csv(out.nznat, "NatPine.csv")

### TRIFOLIUM INTRODUCTION

# Specify the model variables, standardise the continuous ones using z-scores
nz.int <- tri.int$intro # Binary
clim <- stan(tri.int$class05) # Continuous
range <- stan(tri.int$logarea) # Continuous

gb <- tri.int$britpres # Binary
height <- stan(tri.int$maxht)

lifesp <-tri.int$lifespan ## Categorical
conditions <- tri.int$wwf.totnumbio ## Count

N <- length(nz.int)

# Fit the full model containing all hypothesised causal links
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mod <- " model {
for(i in 1:N) {

nz.int[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + b[2]*range[i] + b[3]*clim[i] + b[4]*height[i]
+ b[5]*lifesp[i] + b[6]*gb[i]

clim[i] ~ dnorm(mu.clim[i], tau[1])
mu.clim[i] <- b[7] + b[8]*range[i] + b[9]*conditions[i]

range[i] ~ dnorm(mu.range[i], tau[2])
mu.range[i] <- b[10] + b[11]*conditions[i] + b[12]*height[i] +b[13]*lifesp[i]

height[i] ~ dnorm(mu.height[i], tau[3])
mu.height[i] <- b[14] + b[15]*lifesp[i]

lifesp[i] ~ dbern(p.lifesp[i])
logit(p.lifesp[i]) <- b[16]

gb[i] ~ dbern(p.gb[i])
logit(p.gb[i]) <- b[17] + b[18]*range[i]

conditions[i] ~ dpois(mu.conditions[i])
log(mu.conditions[i]) <- b[19] + b[20]*height[i] + b[21]*lifesp[i]

}

b[1] ~ dt(0, 0.01, 1)
b[17] ~ dt(0, 0.01, 1)
b[16] ~ dt(0, 0.01, 1)
b[19] ~ dt(0, 0.01, 1)

for(i in 2:6) {
b[i] ~ dt(0, 0.16, 1)

}

for(i in 7:15) {
b[i] ~ dnorm(0, 0.0001)

}
for(i in 18:18) {

b[i] ~ dt(0, 2.5, 7)
}

for(i in 20:21) {
b[i] ~ dt(0, 2.5, 7)

}

for(i in 1:3) {
tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(0, 0.0001)

}

}"

# Write model
write(mod, "bugs model.txt")

# write data and intial values to files
bugsData(list(N=N, nz.int=nz.int, clim=clim, range=range, gb=gb, height=height,
lifesp=lifesp, conditions=conditions), fileName="data.txt")
bugsData(list(b=rnorm(21), l.sigma=rnorm(3)), fileName="inits1.txt")
bugsData(list(b=rnorm(21), l.sigma=rnorm(3)), fileName="inits2.txt")
bugsData(list(b=rnorm(21), l.sigma=rnorm(3)), fileName="inits3.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "l.sigma"))
modelUpdate(10000)
post.b.nzint <- samplesStats("b")



144 APPENDIX G. R TUTORIAL: EXPLORATORY PATH ANALYSIS

post.sigma.nzint <- samplesStats("l.sigma")

# Extract the mean and sd of the posterior estimates for the parameters (b and sigma)
mean.b.nzint <- post.b.nzint[, 1]
sd.b.nzint <- post.b.nzint[, 2]
mean.sigma.nzint <- post.sigma.nzint[, 1]
sd.sigma.nzint <- post.sigma.nzint[, 2]

# Refit the full model with variable selection indicators, including the posterior
# distributions as priors

mod <- " model {
for(i in 1:N) {

nz.int[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + w[1]*b[2]*range[i] + w[2]*b[3]*clim[i] + w[3]*b[4]*height[i] +
w[4]*b[5]*lifesp[i] + w[5]*b[6]*gb[i]

clim[i] ~ dnorm(mu.clim[i], tau[1])
mu.clim[i] <- b[7] + w[6]*b[8]*range[i] + w[7]*b[9]*conditions[i]

range[i] ~ dnorm(mu.range[i], tau[2])
mu.range[i] <- b[10] + w[8]*b[11]*conditions[i] + w[9]*b[12]*height[i]
+ w[10]*b[13]*lifesp[i]

height[i] ~ dnorm(mu.height[i], tau[3])
mu.height[i] <- b[14] + w[11]*b[15]*lifesp[i]

lifesp[i] ~ dbern(p.lifesp[i])
logit(p.lifesp[i]) <- b[16]

gb[i] ~ dbern(p.gb[i])
logit(p.gb[i]) <- b[17] + w[12]*b[18]*range[i]

conditions[i] ~ dpois(mu.conditions[i])
log(mu.conditions[i]) <- b[19] + w[13]*b[20]*height[i] + w[14]*b[21]*lifesp[i]

}
for(i in 1:21) {

b[i] ~ dnorm(mean.b.nzint[i], sd.b.nzint[i])
}
for(i in 1:3) {

tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(mean.sigma.nzint[i], sd.sigma.nzint[i])

}

# Priors for w
for(i in 1:14) {

w[i] ~ dbern(theta[i])
theta[i] ~ dbeta(1,1)

}

# Combine w and b
v[1] <- w[1]*b[2]
v[2] <- w[2]*b[3]
v[3] <- w[3]*b[4]
v[4] <- w[4]*b[5]
v[5] <- w[5]*b[6]
v[6] <- w[6]*b[8]
v[7] <- w[7]*b[9]
v[8] <- w[8]*b[11]
v[9] <- w[9]*b[12]
v[10] <- w[10]*b[13]
v[11] <- w[11]*b[15]
v[12] <- w[12]*b[18]
v[13] <- w[13]*b[20]
v[14] <- w[14]*b[21]

}"

# Write model
write(mod, "bugs model.txt")
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# Write data and intial values to files
bugsData(list(N=N, nz.int=nz.int, clim=clim, range=range, gb=gb, height=height, lifesp=lifesp,
conditions=conditions,mean.b.nzint=mean.b.nzint, sd.b.nzint=sd.b.nzint,
mean.sigma.nzint=mean.sigma.nzint,
sd.sigma.nzint=sd.sigma.nzint), fileName="data.txt")
bugsData(list(b=rnorm(21), l.sigma=rnorm(3)), fileName="inits1.txt")
bugsData(list(b=rnorm(21), l.sigma=rnorm(3)), fileName="inits2.txt")
bugsData(list(b=rnorm(21), l.sigma=rnorm(3)), fileName="inits3.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "w", "v"))
modelUpdate(10000)
out.b.nzint <- samplesStats("b")
out.w.nzint <- samplesStats("w")
out.v.nzint <- samplesStats("v")

out.nzint <- rbind(out.b.nzint, out.w.nzint, out.v.nzint)
write.csv(out.nzint, "IntTrifolium.csv")

#### TRIFOLIUM NATURALISATION

# Naturalisation stage varaibles NZ
nz.nat <- tri.nat$nat # Binary
residence <- 2011-tri.nat$intdate
resid <- stan(residence) # Cont
clim <- stan(tri.nat$class05) # Cont
gb <- tri.nat$britpres # Binary
height <- stan(tri.nat$maxht) # cont
lifesp <- tri.nat$lifespan # Binary
range <- stan(tri.nat$logarea)
ha <- stan(tri.nat$ltotha)
N <- length(nz.nat)

# Fit the full model containing all hypothesised causal links
mod <- " model {

for(i in 1:N) {
nz.nat[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + b[2]*resid[i] + b[3]*clim[i] + b[4]*range[i] + b[5]*lifesp[i]
+ b[6]*height[i] + b[7]*ha[i]

resid[i] ~ dnorm(mu.resid[i], tau[1])
mu.resid[i] <- b[8] + b[9]*clim[i] + b[10]*range[i] + b[11]*height[i] +

b[12]*lifesp[i] + b[13]*gb[i]

clim[i] ~ dnorm(mu.clim[i], tau[2])
mu.clim[i] <- b[14] + b[15]*range[i]

range[i] ~ dnorm(mu.range[i], tau[3])
mu.range[i] <- b[16] + b[17]*height[i] + b[18]*lifesp[i]

height[i] ~ dnorm(mu.height[i], tau[4])
mu.height[i] <- b[19] + b[20]*lifesp[i]

lifesp[i] ~ dbern(p.lifesp[i])
logit(p.lifesp[i]) <- b[21]

gb[i] ~ dbern(p.gb[i])
logit(p.gb[i]) <- b[22] + b[23]*range[i]

ha[i] ~ dnorm(mu.ha[i], tau[5])
mu.ha[i] <- b[24] + b[25]*resid[i] + b[26]*clim[i] + b[27]*range[i] + b[28]*height[i]

+ b[29]*lifesp[i] + b[30]*gb[i]

}
b[1] ~ dt(0, 0.01, 1)
b[21] ~ dt(0, 0.01, 1)
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b[22] ~ dt(0, 0.01, 1)

for(i in 2:7) {
b[i] ~ dt(0, 0.16, 1)

}

for(i in 23:23) {
b[i] ~ dt(0, 0.16, 1)

}

for(i in 8:20) {
b[i] ~ dnorm(0, 0.0001)

}

for(i in 24:30) {
b[i] ~ dnorm(0, 0.0001)

}

for(i in 1:5) {
tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(0, 0.0001)

}
}"

# Write model
write(mod, "bugs model.txt")

# Write data and intial values to files
bugsData(list(N=N, nz.nat=nz.nat, resid=resid, clim=clim, gb=gb, height=height,
lifesp=lifesp, range=range, ha=ha), fileName="data.txt")
bugsData(list(b=rnorm(30), l.sigma=rnorm(5)), fileName="inits1.txt")
bugsData(list(b=rnorm(30), l.sigma=rnorm(5)), fileName="inits2.txt")
bugsData(list(b=rnorm(30), l.sigma=rnorm(5)), fileName="inits3.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "l.sigma"))
modelUpdate(10000)
post.b.nznat <- samplesStats("b")
post.sigma.nznat <- samplesStats("l.sigma")

# extract the mean and sd of the posterior estimates for the parameters (b and sigma)
mean.b.nznat <- post.b.nznat[, 1]
sd.b.nznat <- post.b.nznat[, 2]
mean.sigma.nznat <- post.sigma.nznat[, 1]
sd.sigma.nznat <- post.sigma.nznat[, 2]

# Refit the full model with variable selection indicators, including the posterior
# distributions as priors
mod <- " model {

for(i in 1:N) {
nz.nat[i] ~ dbern(p[i])
logit(p[i]) <- b[1] + w[1]*b[2]*resid[i] + w[2]*b[3]*clim[i] + w[3]*b[4]*range[i]
+ w[4]*b[5]*lifesp[i] + w[5]*b[6]*height[i] + w[6]*b[7]*ha[i]

resid[i] ~ dnorm(mu.resid[i], tau[1])
mu.resid[i] <- b[8] + w[7]*b[9]*clim[i] + w[8]*b[10]*range[i] + w[9]*b[11]*height[i]
+ w[10]*b[12]*lifesp[i] + w[11]*b[13]*gb[i]

clim[i] ~ dnorm(mu.clim[i], tau[2])
mu.clim[i] <- b[14] + w[12]*b[15]*range[i]

range[i] ~ dnorm(mu.range[i], tau[3])
mu.range[i] <- b[16] + w[13]*b[17]*height[i] + w[14]*b[18]*lifesp[i]

height[i] ~ dnorm(mu.height[i], tau[4])
mu.height[i] <- b[19] + w[15]*b[20]*lifesp[i]
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lifesp[i] ~ dbern(p.lifesp[i])
logit(p.lifesp[i]) <- b[21]

gb[i] ~ dbern(p.gb[i])
logit(p.gb[i]) <- b[22] + w[16]*b[23]*range[i]

ha[i] ~ dnorm(mu.ha[i], tau[5])
mu.ha[i] <- b[24] + w[17]*b[25]*resid[i] + w[18]*b[26]*clim[i] + w[19]*b[27]*range[i]
+ w[20]*b[28]*height[i] + w[21]*b[29]*lifesp[i] + w[22]*b[30]*gb[i]

}

for(i in 1:30) {
b[i] ~ dnorm(mean.b.nznat[i], sd.b.nznat[i])

}
for(i in 1:5) {

tau[i] <- pow(sigma[i], -2)
log(sigma[i]) <- l.sigma[i]
l.sigma[i] ~ dnorm(mean.sigma.nznat[i], sd.sigma.nznat[i])

}

# Priors for w
for(i in 1:22) {

w[i] ~ dbern(theta[i])
theta[i] ~ dbeta(1,1)

}

# Combine w and b
v[1] <- w[1]*b[2]
v[2] <- w[2]*b[3]
v[3] <- w[3]*b[4]
v[4] <- w[4]*b[5]
v[5] <- w[5]*b[6]
v[6] <- w[6]*b[7]
v[7] <- w[7]*b[9]
v[8] <- w[8]*b[10]
v[9] <- w[9]*b[11]
v[10] <- w[10]*b[12]
v[11] <- w[11]*b[13]
v[12] <- w[12]*b[15]
v[13] <- w[13]*b[17]
v[14] <- w[14]*b[18]
v[15] <- w[15]*b[20]
v[16] <- w[16]*b[23]
v[17] <- w[17]*b[25]
v[18] <- w[18]*b[26]
v[19] <- w[19]*b[27]
v[20] <- w[20]*b[28]
v[21] <- w[21]*b[29]
v[22] <- w[22]*b[30]

}"

# Write model
write(mod, "bugs model.txt")

# Write data and intial values to files
bugsData(list(N=N, nz.nat=nz.nat, resid=resid, clim=clim, gb=gb, height=height, lifesp=lifesp,
range=range, ha=ha, mean.b.nznat=mean.b.nznat, sd.b.nznat=sd.b.nznat,
mean.sigma.nznat=mean.sigma.nznat, sd.sigma.nznat=sd.sigma.nznat), fileName="data.txt")

modelCheck("bugs model.txt")
modelData("data.txt")
modelCompile(numChains=3)
modelInits(c("inits1.txt", "inits2.txt", "inits3.txt"))
modelGenInits()
modelUpdate(10000)
samplesSet(c("b", "sigma", "w", "v"))
modelUpdate(10000)
out.b.nznat <- samplesStats("b")
out.w.nznat <- samplesStats("w")
out.v.nznat <- samplesStats("v")
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out.nznat <- rbind(out.b.nznat, out.w.nznat, out.v.nznat)
write.csv(out.nznat, "NatTrifolium.csv")
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Table H.1. Full results of path models describing introduction and naturalisation of Pinus and Trifolium to New Zealand. Shown are species
and the stage that the model represents; the parameter from the relevant equation that the results relate to (see Appendix F); the causal link
between variables that the result relates to; the probability (P±SD) of a link being present in the best model for that stage; and the model
averaged weight (W ± 95% credibility intervals) for the effect size of each link (the probability of a link being present in the best model
multiplied by the parameter value for the link). Links with ≥50% probability of being present in the best models are highlighted in bold.

Species and stage Parameter Casual link P (±SD) W (±95% CI)

Pinus introductions β1 Z-score → Introduction 0.43 (0.49) 0.26 (−0.16–1.49)

β2 Climate match → Introduction 1.00 (0.00) 14.17 (13.25–15.07)

β3 Native range size → Introduction 0.61 (0.49) 0.60 (0.00–2.01)

β4 Forestry use index → Introduction 1.00 (0.00) 10.58 (9.78–11.38)

β6 Native range size → Climate match 0.09 (0.29) 0.01 (0.00–0.21)

β8 Z-score → Native range size 0.03 (0.18) 0.00 (0.00–0.00)

β10 Native range size → Forestry use index 0.79 (0.41) 0.23 (0.00–0.46)

β11 Z-score → Forestry use index 0.11 (0.32) 0.02 (0.00–0.24)

Pinus naturalisations β1 Z-score → Naturalisation 0.99 (0.01) 10.60 (10.01–11.18)

β2 Climate match → Naturalisation 0.99 (0.03) 10.68 (10.05–11.33)

β3 Native range size → Naturalisation 0.60 (0.49) 1.21 (0.00–12.97)

β4 Forestry use index → Naturalisation 1.00 (0.02) 12.59 (12.02–13.18)

β5 Residence time → Naturalisation 0.61 (0.79) 1.35 (0.00–3.25)

β6 Area planted → Naturalisation 0.57 (0.49) 1.43 (0.00–3.45)

β8 Native range size → Climate match 0.06 (0.24) 0.01 (0.00–0.12)

β10 Z-score → Native range size 0.11 (0.32) 0.02 (0.00–0.27)

β12 Native range size → Forestry use index 0.52 (0.50) 0.16 (0.00–0.51)

Continued on next page. . .
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Continued. . .

Species and stage Parameter Casual link P (±SD) W (±95% CI)

β13 Z-score → Forestry use index 0.11 (0.32) 0.02 (0.00–0.28)

β15 Forestry use index → Residence time 0.18 (0.38) 0.04 (0.00–0.38)

β16 Z-score → Residence time 0.14 (0.35) −0.03 (−0.32–0.00)

β17 Climate match → Residence time 0.62 (0.48) 0.21 (0.00–0.56)

β18 Native range size → Residence time 0.05 (0.22) 0.00 (0.00–0.06)

β20 Native range size → Area planted 0.20 (0.40) 0.04 (0.00–0.32)

β21 Climate match → Area planted 0.99 (0.08) 0.58 (0.31–0.80)

β22 Z-score → Area planted 0.03 (0.17) 0.00 (0.00–0.00)

β23 Forestry use index → Area planted 0.23 (0.42) 0.05 (0.00–0.40)

β24 Residence time → Area planted 0.06 (0.24) 0.01 (0.00–0.15)

Trifolium introductions β1 Native range size → Introduction 1.00 (0.02) 2.84 (1.58–4.16)

β2 Climate match → Introduction 0.78 (0.42) 0.81 (0.00–1.89)

β3 Presence in GB → Introduction 0.86 (0.35) −1.23 (−2.52–0.00)

β4 Height → Introduction 0.49 (0.50) 0.32 (0.00-1.27)

β5 Life-span → Introduction 0.77 (0.42) 0.68 (0.00–0.58)

β7 Conditions tolerated → Native range size 1.00 (0.00) 0.18 (0.16–0.19)

β8 Height → Native range size 0.02 (0.13) 0.00 (0.00–0.00)

β9 Life-span → Native range size 0.01 (0.10) 0.00 (0.00–0.00)

β11 Native range size → Climate match 1.00 (0.00) 0.61 (0.51–0.72)

β12 Conditions tolerated → Climate match 0.00 (0.13) 0.00 (0.00–0.00)

Continued on next page. . .
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Continued. . .

Species and stage Parameter Casual link P (±SD) W (±95% CI)

β14 Life-span → Height 0.07 (0.26) −0.01 (−0.15–0.00)

β17 Native range size → Presence in GB 1.00 (0.00) 6.63 (5.30–7.97)

β19 Height → Conditions tolerated 0.75 (0.43) 0.14 (0.00–0.30)

β20 Life-span → Conditions tolerated 0.05 (0.22) −0.01 (−0.10–0.00)

Trifolium naturalisations β1 Residence time → Naturalisation 0.85 (0.36) 3.28 (0.00–4.82)

β2 Climate match → Naturalisation 0.91 (0.28) 4.79 (0.00–5.99)

β3 Native range size → Naturalisation 0.88 (0.32) 3.85 (0.00–5.28)

β4 Life-span → Naturalisation 0.52 (0.50) −0.98 (−2.98–0.00)

β5 Height → Naturalisation 0.65 (0.48) −1.14 (−2.95–0.00)

β6 Area planted → Naturalisation 0.83 (0.37) 3.16 (0.00–4.80)

β8 Climate match → Residence time 0.04 (0.21) 0.00 (0.00–0.08)

β9 Native range size → Residence time 0.05 (0.21) 0.00 (−0.07–0.00)

β10 Height → Residence time 0.03 (0.16) 0.00 (0.00–0.00)

β11 Life-span → Residence time 0.02 (0.15) 0.00 (0.00–0.00)

β12 Presence in GB → Residence time 1.00 (0.00) 1.18 (0.97–1.39)

β14 Native range size → Climate match 1.00 (0.003) 0.62 (0.40–0.84)

β16 Height → Native range size 0.14 (0.34) 0.03 (0.00–0.34)

β17 Life-span → Native range size 0.06 (0.24) 0.01 (0.00–0.12)

β19 Life-span → Height 0.09 (0.28) −0.01 (−0.23–0.00)

β22 Native range size → Presence in GB 0.87 (0.34) 1.76 (0.00–3.82)

Continued on next page. . .
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Species and stage Parameter Casual link P (±SD) W (±95% CI)

β24 Residence time → Area planted 1.00 (0.01) 5.23 (3.96–6.49)

β28 Climate match → Area planted 0.02 (0.14) 0.00 (0.00–0.00)

β26 Native range size → Area planted 0.02 (0.15) 0.00 (0.00–0.00)

β27 Height → Area planted 0.02 (0.13) 0.00 (0.00–0.00)

β28 Life-span → Area planted 0.02 (0.13) 0.00 (0.00–0.00)

β29 Presence in GB → Area planted 1.00 (0.00) 0.74 (0.41–1.16)
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