


















adding geographic proximity if the requirement is to get the

realized distribution representation. In the three-step method, we

quantified these boundaries by utilizing variable importance

analysis over various distances from presence locations. The

challenge was to maintain model performance while introducing

spatial constraint on the potential background data. Environmen-

tally profiled background data without any geographical constraint

usually gives very high model AUC and sensitivity values because

the data are overly and unrealistically discriminated. Rather than

using an arbitrary distance, the 3-step pseudo-absence selection

method utilizes an ecologically meaningful distance to specify

geographic extent of background data, in order to minimize

Figure 7. Global habitat suitability prediction for Asian tiger mosquito (A. albopictus). (A), SM1 pseudo-absences with model NNET (B) SM2
pseudo-absences with model KNN (C), SM3 pseudo-absences with model NNET (D) SM4 pseudo-absences with model SVM. Note: A. albopictus
occurrence data is too dense to overlay on prediction map, refer to Figure 1. Legend key: not suitable = p,0.4, low= 0.4,p,0.5,
moderate = 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g007

Figure 8. Global habitat suitability prediction for Western corn rootworm (D. v. virgifera). (A), SM1 pseudo-absences with model NNET (B)
SM2 pseudo-absences with model NB (C), SM3 pseudo-absences with model CART (D) SM4 pseudo-absences with model KNN. Legend key: not
suitable = p,0.4, low=0.4,p,0.5, moderate = 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g008
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information loss due to the introduced spatial constraint. We

found the optimum distance for the background data extent to be

350 km for the A. albopictus dataset and 3,000 km for D. v. virgifera

dataset. Care should be taken not to associate distance obtained

through variable importance analysis as a constant biogeographic

characteristic of the species. The distance at which background

data is bounded is identified based on the species relative area of

occurrence. As a consequence, it is affected by the number of

presence locations, their distribution and the extent of the study

area. The identified distance must be re-calculated if the presence

data or the extent of the study area changes.

Figure 9. Habitat suitability prediction for Asian tiger mosquito (A. albopictus) in New Zealand. (A), SM1 pseudo-absences with model
NNET (B) SM2 pseudo-absences with model KNN (C), SM3 pseudo-absences with model NNET (D) SM4 pseudo-absences with model SVM. Legend
key: not suitable = p,0.4, low=0.4,p,0.5, moderate = 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g009
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Variable Selection
Variable selection is an essential step in species distribution

modelling. Selected variables and their relationship at the presence

points are the mechanism by which ecological assumptions are

incorporated in correlative species distribution models. Failing to

select the appropriate explanatory variables leads to model results

detached from ecological reality. In this study, we found large

variation between the numbers and types of variables selected

according to presence data and pseudo-absence selection method.

Figure 10. Habitat suitability prediction for Western corn rootworm (D. v. virgifera) in New Zealand. (A), SM1 pseudo-absences with
model NNET (B) SM2 pseudo-absences with model NB (C), SM3 pseudo-absences with model CART (D) SM4 pseudo-absences with model KNN.
Legend key: not suitable =p,0.4, low=0.4,p,0.5, moderate= 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g010
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The between-species differences in the variables selected for

each pseudo-absence scenario can be used to assess the effect of

species presence data on variable selection. More variables were

selected for the A. albopictus training dataset than D. v. virgifera in all

pseudo-absence selection methods. This was because the A.

albopictus dataset with 2,928 presence points covers a large area

in geographic and environmental space, requiring more variables

to characterise the training data than the D. v. virgifera dataset that

has 64 presence points over a relatively limited geographic and

environmental range. This result is not unexpected, the larger the

environmental range of the species, the larger number of variables

needed to construct a valid model.

The within-species differences in the variables selected show

that pseudo-absence data has considerable influence on variable

selection. A large number of variables in this case correspond to

inconsistent pseudo-absence points that require a large number of

variables to characterise the training data. The least number of

variables were selected from data using the 3-step method

(Table 1). More conservative variable selection is a result of a

unique interplay of limiting background extent and robust

environmental profiling used in the 3-step method, which

excluded environmentally extreme outliers in the training data

while providing clear environmental classification between pres-

ence and pseudo-absence points.

It is well established that the number of presences and the

environmental data are critical for variable selection and accuracy

of SDM predictions. However, defining appropriate unsuitable

areas by selecting optimal pseudo-absences to contrast with

suitable areas inferred from presence points is equally important.

Model Performance
With respect to model kappa values, SM1 results show that

random pseudo-absence selection method is not consistent either

for the two species or the seven models tested. For example, the

logistic regression model (LOG) performed well for A. albopictus

with a high Kappa value but performed poorly for D. v. virgifera.

This inconsistency is confirmed by Lobo et al. [4] who states that

random pseudo-absence selection methods are unreliable due to

their high dependence on species presence point distribution and

abundance. High model performance using this method can occur

by chance and is unlikely to be repeatable for different species or

model scenarios as shown in this study. SM2 results were low for

all models. Both SM1 and SM2 resulted in significantly low mean

AUC and specificity scores compared with models using SM3 and

SM4 pseudo-absences. SM1 and SM2, therefore, seem not ideal

pseudo-absence selection methods to use in SDMs.

SM3 gave consistently high model performance (Kappa

statistics) except for CTREE and CART models which had

variable performance across the two species. The machine

learning models using SM3 pseudo-absences performed consis-

tently over the two species dataset. SM3 was found to perform

well, especially for the LOG model giving similar high kappa

values for both species. This result is despite reports stating that

regression models work best under random selection methods

[7,10]. We attribute the good results from the LOG model on

SM3 pseudo-absences to the use of a robust model (OCSVM) for

environmental profiling of background data.

SM4 provided excellent kappa values for all models for the D. v.

virgifera data set and 5 models of A. albopictus dataset. A single low

kappa value was reported for the LOG model performance. There

was no significant difference between AUC, sensitivity and

specificity values between SM3 and SM4 methods despite that

the background data for the pseudo-absence points of SM4 were

geographically restricted. While there was no statistical difference,

SM4 method achieves high model performance while avoiding

extreme spatial and environmental locations that could lead to

inconsistency in prediction for new areas.

Model Consensus and Habitat Suitability
The highest percentage of predicted presences was obtained

from the 3-step pseudo-absence selection method. This result is

very important especially for invasive species studies where

identifying potential areas suitable for the establishment for the

target species is critical. The lowest predicted presence percentage

was from the random selection method (SM1) both at a global and

New Zealand scale. Comparisons of predicted presence maps were

done to check consensus among models that used the same

pseudo-absence method. We recognize that model consensus

alone does not ensure high prediction accuracy because models

can wrongly agree on the occurrence of a species. A good example

is the high consensus among models using SM2 pseudo-absence

points for prediction of D. v. virgifera distribution in New Zealand

(Figure 6b), even when the Kappa model performance scores for

these models were very low (Figure 4). However, high model

consensus combined with high model performance scores is

preferable to multiple models with high performance scores and

low agreement. Furthermore, inconsistency between predictions

makes SDM result interpretations difficult for decision makers. In

this study, the three step method (SM4) provided the needed

combination of high model performance in terms of Kappa values

(Figure 4) and consistency in model predictions in terms of high

model consensus (Figure 6a, b).

Habitat suitability predictions based on the 4 pseudo-absence

types (Figure 2) gave different results in terms of the size and

location of suitable areas for A. albopictus and D. v. virgifera

(Figures 7, 8, 9, 10). Pseudo-absence points from SM1 and SM2

methods are not distinctly separated from presences in the

environmental feature space (Figure 2a, b). This lack of

discrimination is reflected in their respective habitat suitability

predictions. Both SM1 and SM2 maps showed underestimation of

the potential suitable area for A. albopictus and D. v. virgifera when

overlaid with occurrence points. Pseudo-absences from both SM3

and SM4 methods were distinctly clustered away from presence

points in the feature space allowing environmental discrimination

(Figure 2c, d). Accordingly, most of the occurrence areas are

identified by the SM3 and SM4 models as highly suitable for both

species. While such high model sensitivity is beneficial to more

accurately estimate the potential distribution of a species, it is

possible to overestimate the potential distribution if highly

discriminated presence/pseudo-absence training data are used

[4]. Therefore, even if both SM3 and SM4 gave comparable

suitability predictions, it is advisable to determine optimum

background extent for pseudo-absence selection if the study area

is at a global or regional scale.

Implications for Future A. albopictus and D. v. virgifera
Management in New Zealand

Aedes albopictus. The global distribution estimated for A.

albopictus from SM1 and SM2 appropriately covered the native

Southeast Asian and the introduced South American range, but

did not cover the North American distribution accurately. The

European and African population were also not accurately

represented on the maps (Figure 7a, b). SM3 and SM4 global

distribution maps for A. albopictus reflect the current complete

range of A. albopictus. However, the extent of predicted suitable

areas for A. albopictus in New Zealand varies between projections

using SM3 and SM4 pseudo-absence methods. The SM3

projection (Figure 9c) only shows 2,000 km2 of moderately
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suitable area within New Zealand, whereas the SM4 projection

identified over 8,000 km2 of highly suitable areas (Figure 9d).

Given that other species from the Aedes genus have established in

New Zealand and that A. albopictus is repeatedly intercepted at the

New Zealand border [73], we suggest that the suitable areas

identified by SM4 be considered in future mosquito related

biosecurity assessments. The suitability projection difference

between the SM3 and SM4 shows that incorporating a spatial

dimension while environmental profiling has a significant effect on

model predictions. A. albopictus is a particularly difficult species to

model as it is currently undergoing a rapid range expansion.

Previous studies showed that there is a niche shift throughout the

dispersal history of A. albopictus [74]. It is important to select

accurate presence and pseudo-absences data while projecting

suitable areas for such species whose distribution spans a wide

environmental range.

Diabrotica v. virgifera. Similar to A. albopictus, the SM1 and

SM2 global species distribution model for D. v. virgifera did not fully

reflect the current known distribution of the species (Figure 8a, b).

The SM3 and SM4 predictions (Figure 8c, d) reflected the current

known distribution, although the former was more conservative

and the latter failed to characterize Central America, the native

habitat of the species as highly suitable. An interesting variation in

prediction of SM4 is the highly suitable areas identified close to

East Africa, an area into which D. v. virgifera is expected to spread

unless appropriate prevention measures are taken [75]. The SM4

suitability projection for D. v. virgifera in New Zealand showed

northern and central areas of the North Island and areas east of

the Southern Alps as highly suitable (Figure 10d). Although maize

(Zea mays) production is not a major economic crop in New

Zealand, it still accounts for 30% of the arable industry [76].

Biosecurity measures at the border are essential to prevent the

entry of D. v. virgifera, a major maize pest, to New Zealand.

Does Model Type Matter?
Several studies show that model type is a major source of

uncertainty in SDM results [77,78] among other factors like

variable selection, data collinearity and pseudo-absence selection.

Uncertainty in SDMs can also arise both from data inaccuracy

and internal model error [79]. While little can be done by users to

fix errors inherent in model algorithms, model error from data

inaccuracy can be reduced by boosting input data quality. Models

perform differently given different datasets (environmental data,

presence data and pseudo-absence data). While the effect of the

accuracy of environmental and presence data have been

investigated in depth, the effect of accuracy of pseudo-absence

points on model performance has been less investigated. In this

study, we established that a robust pseudo-absence selection

method can create an input dataset that improves the performance

of the SDMs investigated here. That is shown by the low standard

deviation in model results that used the 3-step (SM4) pseudo-

absence points and the very high Kappa values. Well-structured

training data with appropriate variables increases the performance

of all models. However, it is still very important to choose models

carefully while keeping presence data quality, environmental data

and model expertise in mind.

Advantages of the 3-step Pseudo-absence Selection
Method
The advantages of the three-step pseudo-absence selection

method proposed in this study are threefold. First, the variable

importance analysis and background data limiting step (step 1)

provide a balance between spatial and environmental information

currently missing in pseudo-absence selection methods. Second,

the use of the OCSVM for environmental profiling, instead of the

current approaches that are unable to handle large variable

datasets and complex non-linear relationships, provides an

improved method to identify pseudo-absences in a complex

environment. The proposed ensemble OCSVM framework is also

important to avoid model over-fitting caused by highly discrim-

inated training data. Third, the proposed use of k-means clustering

to choose pseudo-absences instead of random selection from

environmentally profiled data ensures not only environmentally

dissimilar points are chosen but also provides a systematic way of

obtaining a representative sample of the unsuitable environment.

The other important advantage of the k-means clustering,

compared with random sampling of environmentally profiled

background data, is that results are more repeatable. This is

essential, especially when performing ensemble modelling and

climate change studies where standardised methods are required

for appropriate replication.

The results show that spatial and environmental background

data profiling before selecting pseudo-absence points is essential to

increase prediction accuracy. Profiling is important because geo-

environmentally profiled pseudo-absences have a clearer data

structure and consistency than random, environmentally or

spatially profiled pseudo-absence points. Clear data structure

within pseudo-absence points means more information and less

uncertainty during model training. More important, such detailed

profiling of input data that simultaneously investigates geograph-

ical settings as well as environmental requirements should lead to

greater understanding and the generation of interesting hypotheses

about the relationship between species and their habitat that can

be tested in future research.

Caveats
The first step of the 3-step pseudo-absence selection system that

identifies the appropriate distance within which background data

is to be extracted can be quite time consuming and tedious. This

can be overcome by developing an automated framework to test

variable importance at a set of pre-set intervals.

Another concern is that a large number of presence points are

available, coinciding with a small background extent in step 1. A

small background extent that encompasses a large number of

presence points may reduce the area available for environmental

profiling at step 2. That could lead to a poorly discriminated

environmental classification. That is not expected to be a common

problem as accurate presence points are not usually available in

abundance at a global or regional level. This, however, could be

remedied by introducing a threshold that relates density of

presence points to a minimum distance at which spatial extent of

the background data is drawn.

Conclusion
When the complete range of a species is unknown, visualizing

the distribution of the known presence locations both in

geographic and environmental space and assessing the species

ROA, is valuable. If presence data is highly clustered both in

geographical and environmental space, using presence-only

models often leads to extrapolation. In such cases, it is advisable

to use presence-absence models with a pseudo-absence selection

method that considers both the spatial and environmental space

[2,4]. When performing species distribution modelling for species

undergoing rapid range expansion with dynamic presence data

records, new distances should be re-calculated to specify

background data geographic extent with the addition of new

presence points according to variable importance analysis over

various distances from the new presence dataset.
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The three-step pseudo-absence selection method (SM4) was

shown to result in high model performance while spatially

constraining background data to filter out extreme geographically

dissimilar locations. Any loss of information from bounding

background data geographically before environmental profiling

is compensated by the added precision resulting from reduced

over-fitting of an SDM model. While this result holds for the

models tested in this study, further investigation over more species

and models is recommended.

Supporting Information

Figure S1 Boundaries of background datasets extracted
from circular buffers drawn at various radii from D. v.
virgifera presence points. The bold red boundary shows the

optimum background extent identified by the variable importance

analysis.

(TIF)

Acknowledgments

The authors wish to thank Mark Q. Benedict and his team for the extensive

presence data on Asian tiger mosquito, and PRATIQUE (European

Commission’s 7th Framework Programme) for the Western corn rootworm

data. We also would like to thank Gwenaël G.R. Leday for his invaluable
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