Soil Fertility, Legumes & Fertilisers: Unravelling the Mysteries

Jim Moir, Derrick Moot, Dick Lucas

Soils

Lowland Soils

- Recent alluvial soils from greywacke (pallic)
- Floodplains & high river terraces*/downlands, 600-700 mm
 - Wairau & Awatere valleys (faults), Seddon soils
- Wither hills (Wairau valley) = loess over conglomerate
 - Weakly consolidated, highly erodable
- <u>http://www.marlborough.govt.nz/Environm</u> <u>ent/Land/Soils</u>
- * Loess covering underlying gravels, and rock (sandstone, siltstone, conglomerate, limestone)

Dry Inland ('intermontane') Basins

- > 300 m a.s.l. (500-700 mm rainfall)
- Rain shadow
- Glacial fans, terraces, outwash plains, moraines; lakes common
- Soils stony/gravelly, from greywacke
- pH/nutrients good, low leaching
- Gentle slopes, low erosion
- e.g. Hurunui & Haldon steepland soils Molesworth country, inland Marlborough

Hill Country Soils (Sounds & West)

- Complex mix of rocks: greywacke, schist, ultra mafic – Mg rich
- Higher rainfall 'Brown' soils.
- Above 200 m: weakly weathered gravels
- Below 200 m: old strongly weathered soils
 - Acidity, podzolization, gleying, high clay (50%!)
- Moutere gravels clay cemented gravels
 - e.g. Spooner hill soils

Why Fertilize?

Why Superphosphate?

Nitrogen fixation = 25 kg N/t DM

Source: Lucas et al. 2010

Long-term Superphosphate = More Total DM, More Clover

700 mm pa

1400 mm pa

Olsen P – Predicts Growth Well (when soils are moist)

Long-term Superphosphate = More Soil N

• Soil Total and Mineralisable (plant available) N levels increased markedly with higher long-term SSP inputs (Wairarapa hill country)

Fertiliser Witchcraft:

Can Nutrients Appear From Thin Air?

Answer = <u>NO!</u>

100 kg P ≠ 10 kg P : 1 T lime ≠ 100 kg lime

Always calculate fertiliser on a nutrient weight basis (\$/kg)

Manufacturers/retailers must, by law, supply information on the concentrations (%) of (N—P—K—S) in fertilisers.

e.g. Single superphosphate is (0-9-0-12).

The choice of fertiliser depends on:

- Nutrients it contains 1.
- 2. 3. Concentration of nutrient
- Form of nutrient
- 4. Rate nutrient becomes available to plants
- 5. Cost /kg of nutrient
- 6. Risk of damage to sensitive plants.

Cost/kg Nutrient = $\frac{\text{Cost/tonne fertiliser}}{(10 \text{ x \% nutrient in fertiliser})}$

Remedies to Ward off Fertiliser Witchcraft:

- Where is the hard science?
 - Published in credible international scientific journals?
 - Is it applicable to NZ farming systems?
- Stick to basic principles, not "creative accounting"
 > e.g. 'Cation base saturation ratios'?!
- Practice good soil sampling, basic soil analyses, and back up with herbage analyses if required.

Soil Acidity, Nutrient Availability & Liming

Soil Acidity (H⁺) – Formation and Issues

- A natural process soils 'weather' (develop over time)
 > Older soils = more weathering = higher acidity (lower pH)
- Acidity develops by:
 - Leaching of 'base' ions (+climate/rainfall)
 - ≻ H⁺ ion release by plant roots
 - Microbial activity (organic acids formed)
 - > Al hydrolysis when aluminosilicate soil minerals are weathered
 - Elemental S fertiliser
- Many hill and high country soils have low pH & can be extremely variable down the profile – difficult to manage!

Soil pH strongly affects nutrient availability to plants

Soil Phosphorus Availability

Source: McLaren & Cameron 2005

Aluminium Toxicity & Legumes

THE Issue: Aluminium Toxicity in Legumes

- Lower soil pH (more acidity) = higher Exchangeable soil Al
- Legumes particularly sensitive to soil Al
 Some species more that others e.g. Lucerne
- Soil Exch Al above 3 mg/kg can cause problems
 > Definite toxicity at 10 mg Al/kg & above

Lucerne: Lees Valley, Nth Canterbury

Canterbury Plains

Central Canterbury High Country

THE Issue: Aluminium Toxicity in Legumes

- Can affect plants severely
 - Root damage
 - Substantial I in rooting depth (depending on Al location in soil profile)
 - ➤ ↓ in accessing soil moisture (more drought prone)
 - $ightarrow \Psi$ in nodulation and N fixation in legumes
 - $\succ \Psi$ nutrient availability
 - yield & persistence

Aluminium Toxicity - Root Damage


```
Wheat
(Al 5 mg/kg, pH 5)
```

Pea Roots dipped in Al Solⁿ at arrow

Lucerne - Horizontal root growth

Glenmore Station Tekapo

Central Canterbury High Country

Relationship Between Soil pH & Exchangeable Soil Aluminium

Different Legume = Different pH tolerance

Source: Moir et al. 2011

References

Lucas, R. J., Smith, M. C., Jarvis, P., Mills, A. and Moot, D. J. 2010. Nitrogen fixation by subterranean and white clovers in dryland cocksfoot pastures. *Proceedings of the New Zealand Grassland Association*, **72**: 141-146.

McLaren, R. G. and Cameron, K. C. 2005. Soil science : an introduction to the properties and management of New Zealand soils (2nd Ed). Auckland, New Zealand: Oxford University Press. 314 pp.

Moir, J.L.; Hedley, M.J.; Mackay, A.D.; Tillman, R.W. 1997. The effect of fertiliser history on nutrient accumulation and plant-available nutrient supply in legume-based pasture soils. Section 10, pp. 68-69. In: XVIII International Grassland Congress, Saskatoon, Canada.

Moir, J. L. and Moot, D. J. 2010. Soil pH, exchangeable aluminium and lucerne yield responses to lime in a South Island high country soil. *Proceedings of the New Zealand Grassland Association*, **72**: 191-195.

Moir, J.L.; Scotter, D.R.; Hedley, M.J.; Mackay, A.D. 2000. A climate-driven, soil fertility dependent, pasture production model. *New Zealand Journal of Agricultural Research*, **43**: 491-500.

