Copyright Statement

The digital copy of this dissertation is protected by the Copyright Act 1994 (New Zealand).

This dissertation may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- you will use the copy only for the purposes of research or private study
- you will recognise the author's right to be identified as the author of the dissertation and due acknowledgement will be made to the author where appropriate
- you will obtain the author's permission before publishing any material from the dissertation.
Polymorphism in the human Cathepsin B gene

A dissertation

submitted in partial fulfilment

of the requirements for the degree of

Bachelor of Science with Honours

at Lincoln University

Jason R MacKenzie

November 1995

Animal and Veterinary Sciences Group

Lincoln University,

Canterbury, New Zealand.
Abstract

Cathepsin B is a cysteine protease which has been implicated in the development and progression of various cancers. It is often redistributed to the plasma membrane, and inactive forms of the enzyme are commonly found in tumour tissue exudates. The secretion of cathepsin B from cancer cells is thought to correlate with their invasive potential. The purpose of this study was to identify and characterise polymorphism in the human cathepsin B gene.

PCR was used in the amplification of exon 7 and intron 7 of the human cathepsin B gene, using primers designed from the reported bovine and human cathepsin B genes. The two resulting amplimers were of different size, revealing a potential polymorphism.

10 human volunteers were screened for this variation, and sequencing of the variant amplimers identified two previously unreported alleles of the human cathepsin B gene. One allele is thought to confer increased stability to the primary transcript for cathepsin B, and hence may alter gene expression in homozygous carriers.
Acknowledgments

Sue Mason, many thanks to you for your patience and understanding throughout the year. Your guidance has been much appreciated. Thanks also for the time you have put into my project. Also to Jon Hickford, thank you for your time, your effort, and your critical appraisal when it was needed. I’m sure they make red ink just for you.

A special thank you to SM, KT, JH, BP, JB, AC, JP, MD, LV, & ME. This work would have been nothing without you (especially ME).

Thank you Roy Bickerstaffe, for the opportunity to undertake this work. I know I have gained invaluable experience and skills whilst working in your laboratory. A word of advice for Roy’s future students - smile often, it makes him wonder what you’re up to.

Noelle Roberts, many thanks for being so helpful and resourceful. Thanks for keeping my bench tidy too, I never could find anything after we had important visitors.

A very special thank you to Kate and Matthew, who set aside the time to help me with all the small but very important things.

My parents: Dad, Ali, Mum, and John. Thank you all for your understanding. I will try to get home more often! Thanks also for the computer, it has been my right hand this year.

Once again, my special gratitude to the Sunday editors - you know who you are.
Contents

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>iv</td>
</tr>
<tr>
<td>Table of figures</td>
<td>vi</td>
</tr>
<tr>
<td>Table of tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>viii</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Cathepsins</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Properties of cathepsin B</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Cathepsin B and cancer</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Cysteine protease inhibitors and cancer</td>
<td>5</td>
</tr>
<tr>
<td>1.5 The human cathepsin B gene</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Evidence for alternative splicing of cathepsin B transcripts</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Polymorphisms in the cathepsin B gene</td>
<td>10</td>
</tr>
<tr>
<td>1.8 Objectives</td>
<td>11</td>
</tr>
<tr>
<td>Chapter 2 Amplification of the human cathepsin B gene</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1 Selection of primers and development of initial PCR reaction</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2 Development of whole blood PCR protocol</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3 Agrose gel electrophoresis and visualisation of amplimers</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4 Revised whole blood PCR</td>
<td>15</td>
</tr>
<tr>
<td>2.1.5 Discussion</td>
<td>16</td>
</tr>
<tr>
<td>2.2. Refinement of PCR methodology</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2 Results</td>
<td>17</td>
</tr>
</tbody>
</table>
2.2.3 Discussion

Chapter 3 Preparation of 10 human genomic DNA samples for gene analysis

3.1 Introduction
3.2 Hi-Salt DNA extraction from whole blood
3.3 Estimation of raw genomic DNA concentrations
3.4 Results and discussion

Chapter 4 PCR amplification of genomic DNA from 10 individuals

4.1 Introduction
4.2 PCR reagents and reaction protocol
4.3 Results and discussion

Chapter 5 Preparation of purified amplimers for sequencing

5.1 Introduction
5.1.1 Wizard™ PCR preps DNA purification system (Promega)
5.1.2 Agrose gel DNA extraction kit (Boehringer Mannheim)
5.1.3 Results and discussion
5.2 Measurement of purified amplimer concentration by gel electrophoresis
5.2.1 Results and discussion
5.3 Estimation of DNA concentrations using the scanning spectrophotometer
5.3.1 Results and discussion

Chapter 6 Sequencing results

6.1 Introduction
6.2 Sequence failure due to errors in estimation of DNA concentration
6.3 Sequence results from the University of Auckland

Chapter 7 Discussion of sequence results

7.1 Introduction
7.2 Intron consensus sequences within alleles A and B
7.3 Implications of the extra 19 base pairs in allele A
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 Identification of possible point mutation</td>
<td>34</td>
</tr>
<tr>
<td>Chapter 8 Conclusions</td>
<td></td>
</tr>
<tr>
<td>8.1 Conclusions</td>
<td>36</td>
</tr>
<tr>
<td>8.2 Future research in this area</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Appendix A.1 Primer homology results from the NCBI blast serv</td>
<td>40</td>
</tr>
<tr>
<td>Appendix A.2 Visualisation of DNA by gel electrophoresis</td>
<td>44</td>
</tr>
<tr>
<td>Appendix B.1 Consent form</td>
<td>46</td>
</tr>
<tr>
<td>Appendix B.2 Hi-salt DNA extraction reagents</td>
<td>47</td>
</tr>
<tr>
<td>Appendix C.1 Homology between A and B alleles</td>
<td>48</td>
</tr>
<tr>
<td>Appendix C.2 Sequence signal strengths</td>
<td>49</td>
</tr>
<tr>
<td>Appendix C.3 19 nucleotide sequence search results</td>
<td>53</td>
</tr>
</tbody>
</table>
Table of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Interaction between cathepsin B and stefin B</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Structural organisation of the human cathepsin B gene</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Cathepsin B transcripts in human tissues</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Primer alignment with human cathepsin B gene sequence</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Agrose gel of whole blood PCR</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>PCR banding pattern for subject 4 over a range of magnesium ion concentrations</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>PCR banding patterns generated from DNA of human Subject 4 and tumour tissue</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Scan of pure DNA sample XXX</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Banding pattern suggestive of two different alleles amongst ten human subjects</td>
<td>23</td>
</tr>
<tr>
<td>5.1</td>
<td>Purified amplimers on agrose gel for concentration estimation by band density</td>
<td>27</td>
</tr>
<tr>
<td>6.1</td>
<td>Consensus sequences for amplimers 10 and 8</td>
<td>29</td>
</tr>
<tr>
<td>7.1</td>
<td>Region of possible point mutation</td>
<td>30</td>
</tr>
<tr>
<td>7.2</td>
<td>General consensus sequence for introns</td>
<td>31</td>
</tr>
<tr>
<td>7.3</td>
<td>The stable loop structure afforded by 19 extra nucleotides in allele A</td>
<td>32</td>
</tr>
<tr>
<td>7.4</td>
<td>The stable loop structure formed in absence of the 19 extra nucleotides in allele A</td>
<td>32</td>
</tr>
<tr>
<td>7.5</td>
<td>Signal strengths for the regions containing possible point mutations</td>
<td>34</td>
</tr>
</tbody>
</table>

Table of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Active site region amino acid homologies among papain-type cysteine residues</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Nucleotides at the intron-extron boundaries of the human cathepsin B gene</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Raw genomic DNA concentrations and purity</td>
<td>21</td>
</tr>
<tr>
<td>7.1</td>
<td>Probable branch sites for the A and B alleles</td>
<td>31</td>
</tr>
<tr>
<td>7.2</td>
<td>The possible alternative branch site in allele A</td>
<td>33</td>
</tr>
<tr>
<td>7.3</td>
<td>Possible point mutation between alleles A and B</td>
<td>34</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12Py</td>
<td>12 pyrimidine</td>
</tr>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>A<sub>260</sub></td>
<td>absorbance at 260nm</td>
</tr>
<tr>
<td>A<sub>280</sub></td>
<td>absorbance at 280nm</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>conc</td>
<td>concentration</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>2'-deoxyribonucleic triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>(ethylenedinitrilo) tetraacetic acid disodium salt</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>kcal mol<sup>-1</sup></td>
<td>kilocalories per mole</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>Leu</td>
<td>leucine</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotecnology Information</td>
</tr>
<tr>
<td>ng</td>
<td>nanograms</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pmol</td>
<td>picomole</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
</tbody>
</table>
r.p.m revolutions per minute
T_m melting temperature
T thymine
μL microlitre
μg microgram
UV ultraviolet
V volt
Val valine
[] concentration
CHAPTER 1

Introduction

1.1 Cathepsins

Cathepsins are members of a large family of papain-type cysteine proteases, which also includes the calcium dependent calpains. Unlike the cytosolic calpains, the cathepsins are located in cell lysosomes, where they are predominantly found in active form. Cathepsins B, H, L, and S are all closely related through active site sequence homology and are similar in size, with the mature forms ranging from 24-32 kDa (Chapman et al., 1994). While they share high active site homology, the overall amino acid homology among the cathepsins is much less striking (20-60%). The two closest cathepsins in terms of sequence similarity are cathepsins L and S, which share 60% homology (Chapman et al., 1994). Table 1.1 illustrates conserved active site amino acid sequences between papain and the cathepsins.

<table>
<thead>
<tr>
<th></th>
<th>Active site region amino acid homologies among papain-type cysteine proteases (from Chapman et al., 1994).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papain</td>
<td>--NQGSCGSCWAFS---YILIKNSWG</td>
</tr>
<tr>
<td>Cathepsin S</td>
<td>--YQGSCGACWAFS---YWLVKNSWG</td>
</tr>
<tr>
<td>Cathepsin L</td>
<td>--NQGQCGSCWAFS---YWLVANSWN</td>
</tr>
<tr>
<td>Cathepsin B</td>
<td>--DGSCGSCWAFG---YWLVANSWN</td>
</tr>
<tr>
<td>Cathepsin H</td>
<td>--NQACGSCWTF---YWLVKNSWG</td>
</tr>
<tr>
<td></td>
<td>* denotes the active site cysteine residue</td>
</tr>
</tbody>
</table>

The cathepsin precursors all have N-linked oligosaccharides containing mannose-6-phosphate, which is typical of proteins that accumulate in lysosomes (Moin et al., 1992; Chapman et al., 1994; Mach et al., 1994a). The lysosomal cathepsins are accepted as the proteases which
degrade defective or damaged proteins within the lysosome, and mediate the recycling of amino acids for new protein synthesis (Moin et al., 1992; Mordier et al., 1995). They are optimally active at acidic pH - especially human cathepsin B, which suffers irreversible loss in activity and changes to secondary structure when exposed to pH ≥ 7.0 (Turk et al., 1994). Therefore the containment of cathepsins within the cell lysosome can be regarded as a protective mechanism. Any cathepsin activity accidentally released into the cell cytosol will not indiscriminately digest protein substrates, but is inactivated by the higher pH in the cell cytosol.

1.2 Properties of cathepsin B

Cathepsin B is the only cathepsin to possess C-terminal dipeptidase (endo- and exopeptidase) activity (Chapman et al., 1994; Zongchao et al., 1995). The mature protein exists in two forms: a single chain form of ~30 kDa (254 residues) and a double chain form with a heavy 25 kDa chain and a lighter 5 kDa chain (Mordier et al., 1995). The double chain form is produced by enzymatic cleavage between residues 47 and 50, with the loss of a dipeptide (Moin et al., 1992; Mordier et al., 1995). Human cathepsin B contains six disulphide bridges, one of which links the heavy and light chains (Mordier et al., 1995).

Like other cathepsins, cathepsin B is synthesised as a latent precursor, or preproenzyme which is subsequently converted to its mature form by limited proteolysis. All mammalian species produce a preproenzyme containing a 17-residue prepeptide, a 62-residue proregion, a 253-residue mature proteinase (254 in bovine), and a C-terminal extension of 6 residues for rat, mouse and human, and three residues in bovine cathepsin B (Mordier et al., 1995). Procathepsin B is cotranslationally glycosylated at Asn 113 (numbered according to the mature enzyme), and possibly at Asn 42 in the proregion. A third potential site is found in human cathepsin B at Asn 120. Phosphorylation of mannose residues in cis-Golgi allows for the specific binding of procathepsin B by mannose 6-phosphate receptors in the trans-Golgi network, to ensure accurate sorting to prelysosomal compartments (Mordier et al., 1995).
Activated cathepsin B is predominantly found in lysosomes, and it was originally assumed that this was the site of activation. Activated forms of cathepsin B have been found elsewhere within cells (endosomal compartments) suggesting that processing may occur earlier in the biosynthetic pathway, and is not strictly limited to the lysosome. It is now thought that the proteolytic processing of cathepsin B is initiated in prelysosomal compartments, and involves the cleavage of the propeptide, and the C-terminal extension. Excision of the dipeptide (residues 48 and 49) may occur in the lysosome through the action of other resident proteases. Removal of the dipeptide within the lysosome may decrease the stability of the active protein in alkaline conditions, and ensure that any activity lost to the cell cytosol is quickly inactivated. Mach et al., (1994a) have reported that recombinant procathepsin B can be activated in vitro by a unimolecular autocatalytic mechanism, and that processing of the activated procathepsin to the mature form is a result of intramolecular processing. It is unknown as to what extent the proenzyme undergoes self activation and processing to the mature form in vivo.

1.3 Cathepsin B and cancer

The expression, post translational processing, and targeting of cathepsin B are all frequently altered in transformed and malignant cells (Gong et al., 1993; Calkins and Sloane, 1995; Mordier et al., 1995). Increased expression or activity of cathepsin B has been observed in a variety of both human and murine tumours, specifically at the invasive edges of human prostate carcinoma (Cao et al., 1994). Altered forms of cathepsin B (differing in size and stability) have been found in a variety of animal tumour cells and tissue culture exudates, including fluids from human breast and ovarian cancers. The elevated levels and variation in both form and proteolytic potency of this enzyme has led to its implication as a potentiator of tumour invasiveness and metastasis (Moin et al., 1992; Gong et al., 1993).

The peripheral distribution of cathepsin B protein and activity explains the cosedimentation of cathepsin B with plasma membrane/endosomal fractions of malignant human and murine cells (Moin et al., 1992). Therefore levels of membrane associated cathepsin B may indicate the
metastatic or invasive potential of these tumours, due to its altered distribution and its ability to degrade extracellular matrix and basement membrane proteins (Turk et al., 1995). The transfection of MCF-10 human breast epithelial cells with oncogene ras leads to the association of cathepsin B containing lysosomes with the cell membrane (Sloane et al., 1994). The ability of oncogene ras to affect intracellular trafficking of cathepsin B is intriguing, as the re-distribution of lysosomes from around the nucleus to the cell periphery is a phenomena usually reserved for cells involved in degradative or invasive processes.

Although cathepsin B is irreversibly inactivated in alkaline pH (Turk et al., 1994), active, high molecular mass forms have been reported in cultured tumour tissue exudates. Mach et al., (1994b) observed the transient formation of a complex between the mature enzyme and its propeptide during autocatalytic proteolytic maturation of recombinant procathepsin B. They suggest that this complex occurs in vivo, and accounts for the high molecular mass forms present in tumour tissue exudates. Extracellular high molecular mass forms of cathepsin B may serve as latent enzyme pools, and dissociation of the complex followed by degradation of the inhibitory propeptide may occur in the acidic micro-environment surrounding living cells, i.e. in the extracellular matrix. The mature enzyme may then act on potential protein substrates until it becomes inactivated by the secretion of cysteine protease inhibitors, or by the neutral pH commonly encountered in body fluids (Mach et al., 1994b).

Elevated cathepsin B gene expression is manifest through increased levels of mRNA and protein, during the early development of colorectal cancer (Murnane et al., 1991; Shuja et al., 1991). Levels of cathepsin B activity in tumours associated with regional lymph-node metastasis, distant metastasis, and in normal tissues are significantly lower than levels in tumours which are confined to, or are invading the bowel wall. Therefore increased cathepsin B gene expression is a characteristic of tumours actively invading the bowel wall or local tissues (Murnane et al., 1991), and a decrease in gene expression seems to occur as the disease progresses. mRNA transcripts of different size (2.2, 4.0, 1.5 and 3.0 kb) are also evident, and may reflect alternative splicing of the primary transcripts.
Increased levels of cathepsin B activity in serum, and in tumour tissue are emerging as a prognostic factor in cervical carcinoma. Makarewicz et al., (1995) measured cathepsin B activity levels in 106 patients with cervical carcinoma, to estimate the usefulness of cathepsin B activities in determining the extent of the disease. They observed a positive correlation between serum cathepsin B levels and levels of cathepsin B in tumour tissue. In contrast to colorectal cancer, increased levels of tumour cathepsin B activity correlated with tumour metastases to pelvic lymph nodes in patients. Makarewicz et al., (1995) concluded that levels of cathepsin B activity may be useful in predicting the extent of cervical carcinoma in clinical practice.

1.4 Cysteine protease inhibitors and cancer

Cysteine protease inhibitors (CPIs) are pseudoirreversible inhibitors with a high affinity for cathepsins (Calkins & Sloane, 1995). They contain a highly conserved amino acid sequence -QVVAG-, which is partly responsible for their tight binding. Endogenous CPIs constitute a single protein superfamily called the cystatins, which can be divided into four families: stefins (family I), cystatins (family II), kininogens (family III), and some non-inhibitory proteins (family IV).

The cystatins are proposed to bind with cysteine proteases in areas adjacent to the active site, and exert their inhibitory effects by physically blocking the active site. There is no specific interaction with the cysteine, or any another residues within the active site. Figure 1.1 illustrates how stefin B may interact with cathepsin B.

Stefin B is a more potent inhibitor of cathepsins L and S, and Figure 1.1 suggests that an equilibrium exists between stefin B and cathepsin B. The region of stefin B which occupies or blocks the active site is referred to as the "trunk".
Figure 1.1 Interaction between cathepsin B and stefin B. "*" represents the region containing the QVVAG-consensus sequence (adapted from Calkins & Sloane, 1995).

The progression of malignant tumours may be due in part to an imbalance in the CPI : cysteine protease ratio. A decrease in CPI activity or concentration may contribute to this imbalance. Two out of three breast carcinomas are reported to contain low CPI activity in comparison to normal breast tissue (Calkins and Sloane, 1995). As a result, breast cancer tissues possess increased cathepsin B and L activity which is probably due to reduced CPI activity. The remaining third of breast carcinomas have CPI activity equal to or higher than normal breast tissue. Stefin A in particular has come under scrutiny, as 4 out of 5 breast carcinomas have decreased levels of stefin A mRNA transcript (Lah et al., 1992; cited in Calkins and Sloane, 1995). Reductions in stefin A protein levels parallel the decrease in CPI activity and stefin A mRNA, suggesting stefin A is a major contributor to the observed CPI activity in breast tissue (Calkins & Sloane, 1995). Future study in this area will elucidate the involvement of cystatins in tumour progression.

1.5 The human cathepsin B gene

There is increasing evidence for the existance of one gene for human cathepsin B, despite the presence and generation of multiple mRNAs in both normal and transformed tissue. The
The cathepsin B gene had previously been mapped to two locations: 8p22 and 13q14, but has since been assigned to chromosome 8 at 8p22-p23.1 (Fong et al., 1992). The gene is large (in excess of 18 kb), and contains 12 exons (Fig 1.2). Parts of exons 3 and 11, and the intervening exons (4-10) are translated, and constitute preprocathepsin B.

![Figure 1.2 Structural organisation of the human cathepsin B gene. Solid areas are regions that encode preprocathepsin B. The sequence is deduced from two clones which contained discontinuous segments of the human cathepsin B gene, and "?" represents the unknown length of intron between exons E2 and E3 (adapted from Gong et al., 1993).](image)

In mammals, the cathepsin B gene exhibits a complete conservation of the intron-exon junctions in the coding portion of its gene. The size and sequence of introns diverge between species (Mordier et al., 1995). Human cathepsin B is encoded by exons 3-11 (Gong et al., 1993), and Table 1.2 shows the nucleotides at the intron-exon boundaries, and the size of introns in the human cathepsin B gene.

1.6 Evidence for alternative splicing of cathepsin B transcripts

Different forms of cathepsin B and multiple mRNA types for this enzyme are produced in both normal and human tumour tissues, and generated early speculation that more than one cathepsin B gene existed. For example both normal and cancerous colorectal mucosa contain 2.2 and 4.0 kb mRNA transcripts for human cathepsin B, whereas human osteoclastomas can contain 2.4, 1.9, and 1.2 kb cathepsin B related mRNAs. Gong et al., (1993) isolated and characterised cDNA and genomic clones encoding cathepsin B from several human tissues and tumours. Human kidney and HepG2 (hepatocyte) cells were found to contain at least four different types
of mRNA for cathepsin B, and a fifth type of transcript was present in only some human
tumours. The preprocathepsin B coding sequence in all of the five different transcripts was
identical, suggesting that the different mRNAs were derived by alternative splicing of mRNA
derived from a single cathepsin B gene (Gong et al., 1993).

Table 1.2 Nucleotides at the intron exon boundaries of the human cathepsin B gene (from Gong et al.,
(1993)).

<table>
<thead>
<tr>
<th>Exon</th>
<th>Exon size (bp)</th>
<th>5' splice donor</th>
<th>Intron size (bp)</th>
<th>3' splice acceptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>124</td>
<td>CGCTGGgtgag...5' UTR</td>
<td>~3500</td>
<td>...tcccagGCTGGT5' UTR</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>CGAGTAGtaag...5' UTR</td>
<td>>5000</td>
<td>...ctccagGTGGATAlaGly</td>
</tr>
<tr>
<td>3</td>
<td>151</td>
<td>TGGCAGgtagg...</td>
<td>820</td>
<td>...ttccagGCCGGGValMet</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
<td>CGAGACgtagg...</td>
<td>1450</td>
<td>...atccagAGTTATGAlaPhe</td>
</tr>
<tr>
<td>5</td>
<td>115</td>
<td>TGCTGGgtaag...</td>
<td>1750</td>
<td>...ctcgagCCCTTCAspGly</td>
</tr>
<tr>
<td>6</td>
<td>119</td>
<td>GGACGGgtaag...</td>
<td>750</td>
<td>...ttcagCTGTAAHisaVal</td>
</tr>
<tr>
<td>7</td>
<td>86</td>
<td>CATGTAGgtaag...HisVal</td>
<td>230</td>
<td>...catcagGGTGCAGlyTyr</td>
</tr>
<tr>
<td>8</td>
<td>144</td>
<td>CACTACGgtaag...LysSer</td>
<td>470</td>
<td>...ttcagGATCAAGlyVal</td>
</tr>
<tr>
<td>9</td>
<td>117</td>
<td>AAGTCAGgtgcg...</td>
<td>1380</td>
<td>...ttcagGATGTA3' UTR</td>
</tr>
<tr>
<td>10</td>
<td>129</td>
<td>GACAATGgtagg...</td>
<td>470</td>
<td>...ttccagGCTTC3' UTR</td>
</tr>
<tr>
<td>11</td>
<td>142</td>
<td>ATCGGGgtaga...</td>
<td>823</td>
<td>...ctgcagAGAATC</td>
</tr>
<tr>
<td>12</td>
<td>2700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The five different transcripts characterised by Gong et al., (1993) are illustrated in Figure 1.3.
Type 1 is the largest transcript produced, and contains a 237 nucleotide 5' untranslated region
(UTR), 1017 nucleotides which encode preprocathepsin B, and a 2800 nucleotide 3' UTR. Types
1 and 2 (4 kb in length) differ from each other through the deletion of 88 nucleotides in the 5'
UTR in type 2. Types 3 and 4 (2.3 kb in length) differ from each through the same deletion of 88
nucleotides in the 5'UTR in type 4.
Figure 1.3 Cathepsin B transcripts in human tissues. Overlapping cDNA clones corresponding to mRNA types 1, 2, 3, and 4 were isolated from human kidney and HepG2 phage libraries. The type 5 transcript was characterised by PCR, and the 3' untranslated region associated with this transcript has not been determined. Solid black boxes indicate the 88 nucleotide sequence contained in mRNA types 1 and 2, but deleted in mRNA types 2, 4, & 5. The type 5 transcript also has an additional 155 nucleotide deletion corresponding to the signal peptide (S), and 7 amino acid residues of the propeptide (P). Cross hatched boxes indicate the alternative 3'-UTRs (adapted from Gong et al., 1993).

Processing at a cryptic intron donor site in exon 11 and splicing to exon 12 produces the larger type 1 and 2 mRNAs, with alternate 3' UTRs. mRNAs with the 88 nucleotide deletion in their 5' UTRs are produced as a result of the variable removal of exon 2 (types 2, 4 and 5).

Gong et al., (1993) observed that the ratio of 4.0 kb to 2.3 kb mRNA transcripts in most tissues examined was 2:1, but the ratio of 5' UTR variants differed widely. In particular, mRNAs lacking exon 2 were most predominant in human tumours. Human melanoma, breast and colon carcinomas all contained the type 5 transcript which lacks exons 2 and 3 which code for the signal peptide and 7 amino acids of the activation propeptide.

An in vitro transcription/translation assay was performed by Gong et al., (1993), and demonstrated that the different mRNAs had different rates of translation. The relative rates of translation for the type 5 transcript, types 2 and 4, and types 1 and 3 were 8:2:1, and indicate that
the smallest type 5 transcript can be translated \textit{in vitro}, and quite quickly in comparison to mRNAs which contain the full 5' UTR (types 1 and 3). Gong \textit{et al.}, (1993) concluded that the expression of cathepsin B in human tissues may be regulated in part at the level of mRNA processing.

\textit{In vitro} translation of the type 5 transcript is thought to start from an in-frame methionine residue (52) within the propeptide region. The resulting 32 kDa product lacks the signal peptide and the first 34 residues of the 62 amino acid propeptide region. It is no longer targetable to the lysosome, and could explain why some tumour tissues show a redistribution of cathepsin B to the plasma membrane, secretory vesicles, and to the cell nucleus. Tumour cells are known to secrete higher molecular weight forms of cathepsin B, in latent and active forms. This could reflect alterations in the linked targeting and post-translational processing of cathepsin B that result in changes in the amount and composition of the oligosaccharide side chains, and the extent of proteolytic modifications. The findings of Gong \textit{et al.},(1993) also imply that variable splicing of the cathepsin B mRNA transcript can also complement the diversity of cathepsin B form and function seen in both normal human and tumour tissues. Translation of the type 5 transcript \textit{in vivo} has yet to be determined, but if translation occurs, then the protein product could be located in the cell cytosol and/or the nucleus. Its role could be in the modulation of cellular activity through the proteolytic modification of key regulatory proteins (Gong \textit{et al.}, 1993).

1.7 Polymorphisms in the cathepsin B gene

There are few identified polymorphisms in the human cathepsin B gene. Those which have been published are usually identified through the use of complimentary DNA sequences. Variation in the 5' and 3' UTRs is often seen, but has little effect upon the size and shape of the protein produced.

Cao \textit{et al.}, (1994) analysed full length human preprocathepsin B cDNA clones from gastric adenocarcinoma for sequence modifications potentially linked to the altered intracellular
trafficking and secretion of cathepsin B. A 10 bp insertion (CATCAGACCT) in the 3' UTR not found in the kidney and hepatoma cathepsin B cDNAs by Chan et al., (1986) was identified. Cao et al., (1994) concluded that the 10 bp insertion could potentially alter mRNA stability and hence alter cathepsin B gene expression. Tam et al., (1994) independently characterised the same 10 bp insertion in the 3' UTR of cathepsin B in lung fibroblasts. With reference to the results of Cao et al.,(1994) Tam et al., (1994) postulated that the 10 bp insertion occurs naturally, and may have been deleted in the cDNAs studied by Chan et al., (1986). The 10 bp insertion can take part in the formation of a stable stem loop structure within the cathepsin B mRNA transcript, and may provide binding sites for regulatory proteins that can modify the stability of this message. If the 10 bp insertion was deleted, then the kidney and hepatoma cathepsin B mRNAs characterised by Chan et al., (1986) may have had altered stability in comparison to transcripts from fibroblasts, or from the human gastric adenocarcinoma.

In addition to the 10 bp insertion, Cao et al., (1994) also reported the following variations in the human cathepsin B gene, which were identified using four cDNA clones isolated from a human gastric adenocarcinoma cDNA library:

- a nucleotide substitution in the coding region for the propeptide from GTG to CTG, resulting in a Val26Leu change.
- three silent nucleotides replacements in the coding region for the mature protein.
- five single nucleotide substitutions in the 3' and 5' untranslated regions.
- heterogeneity in the 5' untranslated region.
- two restriction fragment length polymorphisms Eco RI and Taq I.

1.8 Objectives

The objectives of this study were to identify any polymorphism(s) in the human cathepsin B gene using PCR technology, and to characterise any polymorphism(s) found.
CHAPTER 2

Amplification of the human cathepsin B gene.

2.1 Introduction

The Polymerase Chain Reaction (PCR) was developed in 1985, and enables users to amplify specific gene sequences from a complex mixture of genomic material (PCR Protocols, 1990). After amplification the amplimers can be visualised as bands on agarose gels.

The polymerase chain reaction was used in this study to amplify what would potentially be 342 nucleotides of the human cathepsin B gene, including intron 7. This would be accomplished using primers that shared 100% homology with human cathepsin B gene sequence published by Chan et al., (1986).

2.1.1 Selection of primers and development of initial PCR reaction

The selection of adequate primers is a critical step in the development of a PCR method. In a previous study (Markham, 1994), two primers were designed to amplify a region of the ovine cathepsin B gene. They were: Bocthex8 (5’-GGGAGGGATGGAGTACGGTCTGCA-3’), and BovcthU (5’-GAGTGGCTCTTTTCTCCAGCTGTAACGG-3’). Bocthex8 is located in exon 8 of the human cathepsin B gene, and also shares 100% homology with bovine cathepsin B sequence (Appendix A.1). The BovcthU primer was originally used by Mordier et al., (1993) to study polymorphism in the bovine cathepsin B gene.

In this study, Bocthex8 and BovcthU were used to try and amplify human cathepsin B. No amplification of any part of the human genome was observed (results not shown).

Gong et al., (1993) reported the nucleotides surrounding the intron-exon boundaries for human cathepsin B, and also reported the size of each intron and exon (Table 1.2 pp 8). Several introns were sufficiently small enough to be used as potential candidates for PCR amplification. The previously used primer Bocthex8 was complementary to the start of exon 8 (Fig 2.1) of the human cathepsin B gene sequence first published by Chan et al., (1986). Due to the availability of a suitable primer in exon 8 and the small size of intron 7 (230 bp), a region spanning intron 7 was chosen for amplification using a new primer located upstream in exon 7. The computer Oligo™ computer program was used to identify a suitable primer in the 5’ end of exon 7 which formed limited primer-dimer with itself and Bocthex8, and limited stable secondary structure such as loops, which can interfere with the PCR reaction.
This primer (named "HucathU"), is shown in Figure 2.1. When used in conjunction with Bocthex8, the 342 bp amplimer was anticipated to contain most of exon 7 (85 of 86 bp), all of intron 7 (230 bp), and the first 27 bp of exon 8.

Figure 2.1 Primer Alignment with Human Cathepsin B Gene Sequence (Gong *et al.*, 1993; Chan *et al.*, 1986).

G + C content was 62.5% for Bocthex8, and 48% for HucathU. The melting temperature (T_m) was calculated for each primer using the methods of Thein & Wallace (1986), giving $T_m = 78^\circ C$ for Bocthex8 and $T_m = 74^\circ C$ for HucathU.

Homology of both HucathU and Bocthex8 primers with the human cathepsin B gene was confirmed using the NCBI Blast server (Blast@NCBI.NLM.NIH.GOV). The results of each search are in Appendix A.1. Synthesis of the HucathU primer was performed by Canterbury Health Laboratories, Christchurch, New Zealand.

2.1.2 Development of whole blood PCR protocol

Ohhara *et al.*, (1994) previously reported the successful amplification of a mouse retinoblastoma susceptibility gene from DNA in microwave-irradiated whole blood. It was concluded that microwave irradiation destroyed cell structures and exposed the genomic DNA, and that it also denatured proteins or proteases which could interfere with the PCR reaction.

Experimentation with microwave-irradiated whole blood PCR was carried out. Subject 1 volunteered 2 µL aliquots of whole blood (obtained with a lancet), which were placed in a PCR reaction tube and microwaved on high over a range of times from 1 - 4 minutes. The microwaved blood then had the following PCR reagents added on ice:
10 x PCR reaction buffer (Boehringer Mannheim) 2.0 μL
Water (Appendix 2.A) 14.8 μL
HucathU (50 mM) 0.4 μL
Bothex8 (50 mM) 0.4 μL
dNTPs (0.25 mM) (Boehringer Mannheim) 0.2 μL
TAQ polymerase (50 U/μL) (Boehringer Mannheim) 0.2 μL
Total volume (including blood) 20.0 μL

A reagent blank containing PCR reagents and 2μL of water instead of whole blood was included during every PCR amplification, and all tubes were overlaid with mineral oil to inhibit evaporation. PCR amplification was carried in a COY™ Tempcycler II multicycler (COY Laboratory Products Inc.) using the following conditions recommended by Couldrey (1995). Tubes were subjected to an initial pre-denaturation step of 94°C for 3 minutes. This was followed by 35 cycles of denaturation at 94°C for 30 seconds, and annealing and primer extension at 60°C for 6 minutes. Tubes were stored at 4°C overnight if necessary. PCR products were viewed following gel electrophoresis.

2.1.3 Agarose gel electrophoresis and visualisation of amplimers

Agarose gel electrophoresis is a quick and simple way to determine both the size and quantity of PCR products, and can also be used to check primer specificity. If binding is non-specific (two or more bands of DNA are produced), then PCR reaction conditions may need to be modified.

PCR products (usually 5 μL) were mixed with a small volume (1 μL) of load buffer (Appendix A.2), and loaded into sample wells of 2% agarose gels (Appendix A.2). They were then electrophoresed at 10 V cm⁻¹ for 50 minutes, conditions which were sufficient to enable estimation of the size of PCR products. Bands of DNA were visualised on a UV transilluminator (Watson Victor UVP Gel Documentation System).

This whole blood PCR protocol did not generate any observable product, except for a few faint bands when all 20 μL of PCR reaction was loaded onto agarose gel (results not shown). The method was continually modified (results not shown) until reproducible results were achieved (see following section).
2.1.4 Revised whole blood PCR

Whole blood PCR was revised so that of 2 μL of whole blood (human subject 1) were mixed with 4 μL water and then microwaved. Mixing with water lysed blood cells, released genomic DNA into the extracellular milieu. PCR reagents were then added as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PCR reaction buffer</td>
<td>2.0 μL</td>
</tr>
<tr>
<td>Water</td>
<td>10.8 μL</td>
</tr>
<tr>
<td>HucathU (50 mM)</td>
<td>0.4 μL</td>
</tr>
<tr>
<td>Bocthex8 (50 mM)</td>
<td>0.4 μL</td>
</tr>
<tr>
<td>dNTPs (0.25 mM)</td>
<td>0.2 μL</td>
</tr>
<tr>
<td>TAQ polymerase (50 U/μL)</td>
<td>0.2 μL</td>
</tr>
<tr>
<td>Total volume (including 6μL blood/water)</td>
<td>20.0 μL</td>
</tr>
</tbody>
</table>

This method generated two amplimers differing in size by about 20 bp (380 and 360 bp). Varying the time period of microwave irradiation identified 2.5 - 3 minutes as the ideal length of time for the diluted blood sample to be irradiated (Figure 2.2).

Figure 2.2 Agarose Gel of Whole Blood PCR. Each lane was loaded with 20 μL of PCR product. Contents of each lane (left to right) were PCR reactions containing blood/water mixtures irradiated on high for; 2 minutes, 2 minutes 30 seconds, 2 minutes 45 seconds, and 3 minutes. Lanes 2 and 4 contain two distinct bands of DNA for subject 1. 5 μL of molecular weight marker VI (Appendix A.2) were loaded in lane 5. The 394 bp fragment in the molecular weight marker is labelled.
2.1.5 Discussion

This method of whole blood PCR differed from that of Ohharra et al., (1994), as it did not incorporate the use of Tris-HCl, added KCl, or Triton® X-100. Instead, water was used to lyse blood cells by osmotic pressure before microwave irradiation. Two bands of PCR product were produced during PCR amplification.

DNA from subject 4 was available (by consent) through previous work undertaken by Craigen (1995). This DNA was amplified concomitantly with whole blood PCR for comparison, and as a control. Reaction mixtures were prepared as in section 2.1.2 except that 2 μL of whole blood were substituted with 0.5 μL of DNA (199 ng/μL), and 16.3 μL water was added to each tube. DNA from subject 4 generated 2 bands of PCR product similar to whole blood PCR results for subject 1, and again was thought to result from non-specific primer binding (results not shown). Steps were then taken to optimise the PCR reaction so that only one amplimer was produced. The whole blood PCR method was abandoned in favour of using preparations of genomic DNA. Further investigation using primers for different genes and blood from different animals, may yet identify this novel method which incorporates water to lyse blood cells, as a quick and easy method for the generation of PCR products.

2.2. Refinement of PCR methodology

2.2.1 Introduction

Non specific primer binding was suspected, because genomic DNA from subjects 1 and 4 generated two amplimers. Attempts to increase binding specificity by raising the annealing temperature and performing a magnesium ion titration with DNA form subject 4 were undertaken.

The magnesium ion titration was performed simultaneously with an increase in the annealing and extension temperature from 60°C to 64°C. Raising the temperature to 64°C meant that primer binding would be more specific, and performing a magnesium ion titration would identify the best ion concentration for optimal Taq polymerase activity. Magnesium ion concentration can also influence the specificity of primer binding.
2μL of magnesium chloride solution (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mM) were added to tubes, and the following reagents added:

- DNA (199ng/μL) 0.5 μL
- 10 x Mg²⁺ free PCR buffer (Boehringer Mannheim) 2.0 μL
- Water 16.3 μL
- HucathU (50 mM) 0.4 μL
- Bocthex8 (50 mM) 0.4 μL
- dNTPs (0.25 mM) 0.2 μL
- TAQ polymerase (50 U/μL) 0.2 μL
- Total volume (including magnesium chloride) 20.0 μL

2.2.2 Results

Figure 2.3 illustrates that raising the annealing and extension temperature by 4°C did not alter primer specificity in any way, because two amplimers were still produced. No amplification was observed at 0.0, and 0.5 mM ion concentrations, but the two amplimers persisted over the range of ion concentrations from 1.0 - 3.0 mM.

![Figure 2.3](image)

Figure 2.3 PCR banding pattern for subject 4 over a range of magnesium ion concentrations. The ion concentrations (mM) for each reaction tube are listed along the top of the gel in white. 10 μL of each reaction tube were loaded, and 5 μL of molecular weight marker VI were loaded in lane 8. (Numbered left to right).

The annealing and extension temperature was decreased to 60°C, and 2 μL of 10 x PCR reaction buffer added to all subsequent PCR reactions so that magnesium ion concentrations in each tube were equal to 1.5mM.

Genomic DNA extracted from human colo-rectal tumour tissue was provided by Dr. S. Damak for comparison. This DNA (100ng/μL) was amplified along with that of subject 4,
and the water content in each PCR reaction was adjusted to accommodate the differences in DNA concentrations. Agarose gel electrophoresis of PCR products revealed that tumour tissue generated only one amplimer in comparison to the 2 bands for subject 4 (Figure 2.4).

![Figure 2.4](image)

Figure 2.4 PCR banding patterns generated from DNA of human subject 4 and tumour tissue. Lanes 1 and 2 (numbering is from left to right) contained 5 and 15 µL respectively of PCR product for subject 4. Lanes 4 and 5 contained 5 and 15 µL of PCR product for human tumour tissue. 5 µL of molecular weight marker VI were loaded in lane 3.

2.2.3 Discussion

DNA from subjects 1 and 4 generated two bands of PCR product, which were approximately 360 bp and 380 bp. Tumour tissue DNA generated only one PCR product (380 bp). The persistence of two amplimers at the increased annealing temperature over a range of magnesium ion concentrations and the presence of only one amplimer from tumour tissue DNA suggested that more than one allele existed for human cathepsin B. The primers (HucathU and Bocthex8) were perhaps binding both alleles in the heterozygotes (subjects 1 and 4), and the individual from whom the tumour tissue DNA was sourced was possibly homozygous, generating the 380 bp amplimer only.

Different alleles of human cathepsin B gene have not been identified to date, despite the generation of multiple mRNAs from a variety of both normal and transformed tissues (Gong *et al.*, 1993). Results from these experiments were not conclusive for the existence of two alleles, because one DNA sample had been sourced from (abnormal) tumour tissue. To address this issue there was a requirement for genomic DNA to be both sourced and extracted from the same tissue, using a uniform method.
CHAPTER 3

Preparation of 10 human genomic DNA samples for gene analysis

3.1 Introduction

DNA for gene analysis was extracted from human blood. The white blood cell fraction is a primary source of genomic DNA, and although blood-taking is an invasive technique, it is preferred over tissue removal. Approval for human blood to be collected for use in gene analyses was received from the Lincoln University Human Subjects Committee on the condition that volunteers completed the informed consent form in Appendix B.1. The 10 volunteers (subjects 1-10), were current blood donors and assumed to be free of known blood-bourne diseases. This distinction was made so that the handling of any blood products before, during, and after DNA extraction was relatively risk free, although all safety precautions pertaining to the use of human biological samples were observed. A follow up of the ten volunteers did not indicate any trauma had arisen as a result of sampling. Human subjects 1 and 4 had participated in previous experiments for this study.

3.2 Hi-Salt DNA extraction from whole blood

The Hi-Salt DNA extraction protocol was obtained from Environmental Sciences and Research (ESR, Canterbury, New Zealand), and is specifically designed for the recovery of DNA from human blood.

10 mL of blood was collected in vacutainer™ blood collection tubes containing EDTA. 200 μL of each blood sample was used for DNA extraction, and the remainder was stored at -18°C. 800 μL of red and white blood cell lysing solution (Appendix B.2) was added to 200 μL of blood in a 1.5 mL eppendorf tube, and each tube gently inverted every five minutes at room temperature for 30 minutes. Samples were then centrifuged at 13000 rpm for 2 minutes (Biofuge 13, Heraeus Sepetech GmbH). The supernatant was discarded and the pellet washed with 100 μL aliquots of washing buffer (pH 8, Appendix B.2), with subsequent centrifugation (13000 rpm for 2 minutes), and repeated disposal of the supernatant. This washing step was repeated either 8 times or until the pellet was white. 400 μL of solubilisation solution (Appendix B.2) was added to the washed pellet and heated for 15 minutes at 100°C. The mixture was then neutralised with 100 μL of pH-8 neutralising buffer (Appendix B.2). Contents of the eppendorf tube were vortexed, centrifuged at 13000 rpm for 2 minutes, and the supernatant containing genomic DNA retained. The
concentration of DNA in each raw sample was then estimated and diluted with water if necessary (section 3.3).

3.3 Estimation of raw genomic DNA concentrations

A blank containing 4 µL of solubilisation buffer, 1 µL of neutralising buffer (pH 8), and 495 µL of water, was placed in the reference beam, and 5 µL of genomic DNA suspension diluted to 500 µL with water (100 x dilution) was placed in the sample path of a double beamed scanning spectrophotometer (Perkin-Elmer). The absorbancies at wavelengths 200-300 nm were recorded. Equation 3.1 was used to calculate the concentration of DNA in the original sample:

Equation 3.1. DNA concentration in µg/mL = $A_{260} \times 50 \times$ dilution

Scanning between these wavelengths also gave an indication of the purity of each sample. A strong peak at 260nm was indicative of a high DNA concentration, and a low peak shoulder at 280nm (wavelength at which the peptide bond absorbs) indicated a sample low in protein. Figure 3.1 represents a scan of a pure DNA sample.

![Figure 3.1 Scan of a pure DNA sample (From Couldrey, 1994).](image)

For pure DNA the A_{260}/A_{280} ratio is 1.8, with values less than this indicating the presence of protein and values greater than 1.8 indicating contamination with RNA. Following estimation of concentration appropriate aliquots of each DNA sample were diluted with water to give a concentration of 100 ng/µL, then stored at 4° C.
3.4 Results and discussion

Table 3.1 lists the DNA concentrations for subjects 1-10 (µg/mL), the total amount of DNA extracted (µg), and the purity of the samples (A_{260}/A_{280}). The A_{260}/A_{280} ratios ranged from 1.01 to 1.15, and indicate that the Hi-Salt method for DNA extraction may generate impure genomic DNA preparations.

Table 3.1 Raw genomic DNA concentrations and purity

<table>
<thead>
<tr>
<th>Subject</th>
<th>A_{260}</th>
<th>A_{280}</th>
<th>A_{260} \ A_{280}</th>
<th>Volume \ umL</th>
<th>Conc. \ ug/mL</th>
<th>ug DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.043</td>
<td>0.04</td>
<td>1.13</td>
<td>500</td>
<td>215.00</td>
<td>107.50</td>
</tr>
<tr>
<td>2</td>
<td>0.173</td>
<td>0.17</td>
<td>1.01</td>
<td>500</td>
<td>865.00</td>
<td>432.50</td>
</tr>
<tr>
<td>3</td>
<td>0.110</td>
<td>0.10</td>
<td>1.06</td>
<td>500</td>
<td>550.00</td>
<td>275.00</td>
</tr>
<tr>
<td>4</td>
<td>0.051</td>
<td>0.05</td>
<td>1.11</td>
<td>500</td>
<td>255.00</td>
<td>127.50</td>
</tr>
<tr>
<td>5</td>
<td>0.050</td>
<td>0.05</td>
<td>1.11</td>
<td>500</td>
<td>250.00</td>
<td>125.00</td>
</tr>
<tr>
<td>6</td>
<td>0.046</td>
<td>0.04</td>
<td>1.15</td>
<td>500</td>
<td>230.00</td>
<td>115.00</td>
</tr>
<tr>
<td>7</td>
<td>0.071</td>
<td>0.07</td>
<td>1.09</td>
<td>500</td>
<td>355.00</td>
<td>177.50</td>
</tr>
<tr>
<td>8</td>
<td>0.045</td>
<td>0.04</td>
<td>1.13</td>
<td>500</td>
<td>225.00</td>
<td>112.50</td>
</tr>
<tr>
<td>9</td>
<td>0.049</td>
<td>0.04</td>
<td>1.11</td>
<td>500</td>
<td>245.00</td>
<td>122.50</td>
</tr>
<tr>
<td>10</td>
<td>0.048</td>
<td>0.04</td>
<td>1.14</td>
<td>500</td>
<td>240.00</td>
<td>120.00</td>
</tr>
</tbody>
</table>

Unlike many other protocols for DNA extraction from mammalian blood samples the Hi-Salt DNA extraction method does not employ the use of a non-specific protease such as proteinase K, which may explain the high protein contamination. However the protocol is sufficient preparation of genomic DNA "clean" enough for PCR amplification, and it is not especially time-consuming.
CHAPTER 4

PCR amplification of genomic DNA from 10 individuals

4.1 Introduction

PCR was used to produce amplimers from genomic the DNA of 10 human subjects. The banding patterns for subjects 1 and 4 seen in earlier experiments were reproduced, and banding patterns similar to that for DNA extracted from tumour tissue were also observed.

4.2 PCR reagents and reaction protocol

Preparation of 10 human DNA samples of the same concentration (100 ng/μL) allowed for PCR reactions to be made up to the following uniform method, which was used in all subsequent PCR reactions:

- DNA (100 ng/μL) 1.0 μL
- 10 x PCR reaction buffer 2.0 μL
- Water 15.8 μL
- HucathU (50 mM) 0.4 μL
- Bocthex8 (50 mM) 0.4 μL
- dNTPs (0.25 mM) 0.2 μL
- TAQ polymerase (50 U/μL) 0.2 μL
- Total volume 20.0 μL

4.3 Results and discussion

Amplification of genomic DNA for subjects 1-10 revealed banding patterns strongly suggestive of two different alleles for human cathepsin B (Figure 4.2).

To confirm that the different banding patterns were a result of different alleles, it was decided that the 360 and 380 bp amplimers should be sequenced. Sequencing the amplimers would confirm that they were produced by amplification of the human cathepsin B gene, and would also characterise the alleles. Subjects 8 and 10 were putative homozygous carriers of each allele, and their corresponding amplimers were chosen for sequencing.
Figure 4.2 Banding patterns suggestive of two different alleles amongst ten human subjects. 10 µL of each PCR product were loaded, and 5 µL of 100 base pair ladder (Appendix A.2) were loaded in lane 11. The 300 and 400 bp fragments are indicated (numbering is from left to right).
CHAPTER 5
Preparation of purified amplimers for sequencing

5.1 Introduction

The isolation of PCR products free of any contamination such as protein, genomic DNA, salts, etc. is important, as these impurities can affect DNA sequencing. DNA sequencing required appreciable amounts of template DNA. Promega's Wizard™ PCR Preps DNA Purification System and Boehringer Mannheim's Agarose Gel DNA Extraction Kit were used to purify PCR products for sequencing.

5.1.1 Wizard™ PCR preps DNA purification system (Promega).

70 tubes of PCR product amplified from subject 8's genomic DNA produced 1.4 mL of pooled PCR product. 2% TAE agarose gels (2) were used to separate PCR product from any unused dNTPs etc. After electrophoresis the bands of DNA were cut out from each gel using a sterile scalpel blade, over a UV light source. The 2 excised bands of agarose were then solubilised in 3 mL of purification resin* in a 15 mL Falcon™ tube at 65°C for 6 minutes. 2.0 mL aliquots of the solubilised resin/DNA suspension were poured onto 2 minicolumns using a 3 mL plastic syringe, and each column was then washed with 2 mL of 80% isopropanol. The 2 minicolumns were then placed in a 1.5 mL microcentrifuge tube and centrifuged at 12000 rpm for 20 seconds to dry the resin. They were then transferred to a clean 1.5 mL microcentrifuge tube, and 50 μL of water was pipetted onto the top of each column. After one minute each minicolumn was centrifuged at 12000 rpm for 20 seconds to elute the purified DNA into the 1.5 mL microcentrifuge tube.

PCR product amplified from DNA from subject 10 was purified in the same way.

5.1.2 Agarose gel DNA extraction kit (Boehringer Mannheim).

70 tubes of PCR product amplified from subject 8's genomic DNA produced 1.4 mL of pooled PCR product. 2% TAE agarose gels (2) were used to separate PCR product from any unused dNTPs etc. After electrophoresis the bands of DNA were cut out from each gel using a sterile scalpel blade, over a UV light source. The 2 excised bands of agarose were then solubilised in 3 mL of purification resin* in a 15 mL Falcon™ tube at 65°C for 6 minutes. 2.0 mL aliquots of the solubilised resin/DNA suspension were poured onto 2 minicolumns using a 3 mL plastic syringe, and each column was then washed with 2 mL of 80% isopropanol. The 2 minicolumns were then placed in a 1.5 mL microcentrifuge tube and centrifuged at 12000 rpm for 20 seconds to dry the resin. They were then transferred to a clean 1.5 mL microcentrifuge tube, and 50 μL of water was pipetted onto the top of each column. After one minute each minicolumn was centrifuged at 12000 rpm for 20 seconds to elute the purified DNA into the 1.5 mL microcentrifuge tube.

*All reagents used in both methods (except water) were provided with the respective purification kits.
dNTPs etc. After electrophoresis the bands of DNA were cut out from each gel using a sterile scalpel blade, over a UV light source. The excised bands were combined with 12 mL of agarose solubilisation buffer in 15 mL Falcon tube. 10µL of silica suspension were then added and the mixture incubated at 56°C for 10 minutes to melt the agarose. During incubation the tubes were vortexed once every 2-3 minutes. The mixture was then centrifuged in an ultracentrifuge (Beckman J2-M1, USA) for 30 seconds at 13000 rpm and the supernatant discarded. The pellet (silica matrix and bound DNA) was resuspended in 500µL of nucleic acid binding buffer, and transferred to a 1.5 mL centrifuge tube. This was centrifuged for 30 seconds at 13000 rpm (Biofuge 13, Heraeus Sepetech GmbH), and the supernatant discarded. The pellet was washed twice with 500µL of washing buffer with intermittent centrifugation at 13000 rpm for 30 seconds, and the supernatant's discarded. The pellet was then dried over a paper towel at room temperature for 15 minutes, and resuspended in 50µL water (pH 8.5), by vortexing every 2-3 minutes over a period of ten minutes. The resulting suspension was then centrifuged for 30 seconds at 13000 rpm, and the supernatant containing purified PCR product kept.

PCR product amplified from DNA from subject 10 was purified in the same way.

5.1.3 Results and discussion

Yields from the Wizard™ PCR prep kit were suspected to be low (results not shown). Recovery for this kit declines with fragment length, with typical yields of 70-90% for 500 bp fragments and 3% for 50 bp fragments. The smallest purified amplimer was ~ 360 bp, and the worst case scenario meant that product recovery was as low as 52%. The Agarose Gel DNA Extraction Kit (Boehringer Mannheim) was trialed as it should give an 80% recovery for a fragment of similar length (370 bp).

Although it worked sufficiently, the Agarose Gel DNA Extraction Kit (Boehringer Mannheim) was not suited to the isolation of large amounts of DNA from agarose. The kit was used only once for the purification of each amplimer from corresponding subjects 8 and 10, before the provided agarose solubilisation buffer became limiting.

Knowing the concentration of template DNA for sequencing was critical, as too much template DNA can inhibit the sequence reaction. The concentrations of each purified amplimer were measured by one of the two following methods: estimation by gel electrophoresis, and measurement of the absorbency at 260 nm.
5.2 Measurement of purified amplimer concentration by gel electrophoresis

Molecular weight marker VI (Boehringer Mannheim) contains 15 fragments: 154, 154, 220, 234, 234, 298, 298, 394, 453, 517, 653, 1033, 1230, 1766, and 2176 bp, and the sum of all the base pairs (154 + 154 + 220......+ 2176), is 9814 bp. The amount of DNA for any one fragment can be calculated if the dilution factor for the molecular weight marker is known. For instance, 10 μL of the diluted molecular weight marker VI (Appendix A.2) contains a total 125 ng of DNA, and equation 5.1 gives the amount of DNA for the 394 bp fragment.

Equation 5.1

\[
\frac{394}{9814} \times 125 \text{ ng} = 5.0 \text{ ng of DNA}
\]

The 394 bp fragment is similar in size to the purified amplimers, and when purified amplimers were electrophoresed alongside 10 μL of molecular weight marker VI, their concentrations could be estimated according to band intensities. Choosing a fragment of similar size was important because DNA binds ethidium bromide semi-quantitatively, and a different fragment would have given misleading results.

1 μL of load buffer was mixed with 1 μL of purified amplimer and loaded onto a 2% agarose gel alongside a 10μL of molecular weight marker VI. After gel electrophoresis the intensity of the band for each purified amplimer was compared to the intensity of the 394 bp fragment, and a simple back-calculation (equation 5.2) gave the DNA concentration for each purified amplimer.

Equation 5.2

\[
\text{Intensity factor} \times 5 = [\text{DNA}] \text{ of purified amplimer (ng/μL)}
\]

5.2.1 Results and discussion

Figure 5.1 illustrates a gel loaded with purified amplimer for subjects 8 and 10. Band intensities were best estimated when the gel was still on the UV transilluminator, rather than from a photograph.

The Wizard™ PCR preps kit produced 100 μL of purified amplimer from 70 PCR tubes. 1 μL of each purified amplimer produced bands 6 times as intense as the 394 bp fragment of the molecular weight marker. Therefore the estimated DNA concentration for each purified was 30 ng/μL. 80 μL of each purified amplimer were then concentrated to 12 μL in a Speed Vac concentrator (Savant) to achieve a concentration of 200 ng/μL.

Tubes containing 12 μL of each purified amplimer (200 ng/μL), were then wrapped in Parafilm™ and posted along with 10 μL of each primer (diluted to 0.8 pmol/μL) to the University of Otago for sequencing.
Figure 5.1 Purified amplimers on agarose gel for concentration estimation by band intensity. 1 μL of amplimer (8 on left, 10 on right) were loaded alongside 10 μL of molecular weight marker VI.

5.3 Estimation of DNA concentrations using the scanning spectrophotometer

5 μL of purified amplimer isolated using the Agarose Gel DNA Extraction Kit (Boehringer Mannheim), were diluted to 500 μL with water, and the absorbency at 260 nm recorded using a double beamed scanning spectrophotometer (Perkin-Elmer). A blank containing 500 μL of water was placed in the reference beam. DNA concentrations were calculated using equation 5.3.

Equation 5.3

\[\text{DNA concentration in } \mu\text{g/mL} = A_{260} \times 50 \times \text{dilution} \]

5.3.1 Results and discussion

70 tubes of PCR product produced 50 μL of purified amplimer for subjects 8 and 10 using the Agarose Gel DNA Extraction Kit (Boehringer Mannheim). The absorbency at 260 nm for amplimer 10 was 0.05450, and 0.07515 for amplimer 8. Therefore the concentration of amplimer 10 was ~270 ng/μL, and ~370 ng/μL for amplimer 8. An aliquot of each DNA suspension was then diluted 100 ng/μL.

Tubes containing 20 μL of each purified amplimer (100 ng/μL), were then wrapped in Parafilm™ and posted along with 10 μL of each primer at 3.2 pmol to the University of Auckland for sequencing.
CHAPTER 6
Sequencing results.

6.1 Introduction

Sequencing of amplimers was performed by Tracee Masson-Lawrence of the Centre For Gene Research, University of Otago, New Zealand, and by Debbie Reed of the School of Biological Sciences, University of Auckland, New Zealand. Sequencing of amplimers 8 and 10 at the University of Otago did not produce any meaningful results.

Attempts to sequence amplimers 10 and 8 at the University of Otago failed. Sequencing of the amplimers at the University of Auckland were successful, and revealed each amplimer to be a unique allele for human cathepsin B. The alleles differed due to an extra 19 nucleotides in amplimer 10.

6.2 Sequence failure due to errors in estimation of DNA concentration

Two attempts to sequence amplimers 8 and 10 at the University of Otago failed. Of the sequences received back from this facility, none shared homology with the primers Bocthex8 and HucathU (results not shown), no homology with published human cathepsin B gene sequence could be found (results not shown), and random 20 bp oligomers selected from within sequence for each amplimer did not share homology with any published gene sequences in the NCBI blast server (results not shown).

The Wizard™ PCR Preps purification system (Promega) produced 100 μL of each amplimer at a concentration of 30 ng/μL. Therefore a total of 3000ng of amplimer were purified from the contents of 70 PCR reaction tubes (section 5.2.1). For amplimer 10, the Agarose Gel DNA Extraction Kit (Boehringer Mannheim) produced 50 μL of amplimer at a concentration of 270ng/mL, and a total of 13.5 mg of amplimer were purified from the contents of 70 PCR reaction tubes (section 5.3.1). The differences in recovery rates of these two kits are not great enough to explain the differences between the total amounts of DNA isolated from 70 tubes. The estimation of DNA concentration by comparison of band intensities in agarose gels was concluded to be grossly underestimated. This meant that template DNA sent to the University of Otago was well in excess of 200 ng/μL, and inhibited the sequencing reaction so that no meaningful results were produced.
6.3 Sequence results from the University of Auckland.

Template DNA sent to the University of Auckland produced meaningful sequence results, and identified the measurement of the absorbency at 260 nm as the most reliable method for measuring template DNA concentrations intended for sequencing.

Amplimers 8 and 10 were sequenced using automated dye terminator reactions. The sequence results were good enough to build a consensus sequence for each amplimer (Figure 6.1), using the aligned upstream and downstream primer sequences for each amplimer (Appendix C.1).

Amplimer 10

```
TGTAATGGTG GCTATCCTGC TGAAGCTTGG AACTTCTGGGA CAAGAAAAGG 50
CCTGGTTTCTT GGTGGCCCTCT ATGAATCCCA TGTAGttaag tgtgccccct 100
tggccacacttt ctggccagat ggtattgttg agcattaac cactatggct 150
ttatatttcct tttataaactg gggttgagag cagaggggct gctgagaggtg 200
gctagccagg tgcacagggc tctggcagga cctgcctggg gttcatgctg 250
caggccagag gcttgccttt cccaggttct gctgaggttt cccatcagGG 300
cttctgtgagg gactccgcttt tctccgggtt cccatcagGG 350
TGCAGACCGT ACTCCATCCC TCCC 374
```

Amplimer 8

```
TGTAATGGTG GCTATCCTGC TGAAGCTTGG AACTTCTGGGA CAAGAAAAGG 50
CCTGGTTTCTT GGTGGCCCTCT ATGAATCCCA TGTAGttaag tgtgccccct 100
tggccacacttt ctggccagat ggtattgttg agcattaac cactatggct 150
ttatatttcct tttataaactg gggttgagag cagaggggct gctgagaggtg 200
gctagccagg tgcacagggc tctggcagga cctgcctggg gttcatgctg 250
caggccagag gcttgccttt cccaggttct gctgaggttt cccatcagGG 301
cttctgtgagg gactccgcttt tctccgggtt cccatcagGG 331
TGCAGACCGT ACTCCATCCC TCCC 355
```

Figure 6.1 Consensus Sequences for amplimers 10 and 8. The missing 19 nucleotides in amplimer 8 are denoted by "*". g and c denote a possible point mutation. Exon sequence is in upper case, and intron sequence is in lower case.

The first 85 nucleotides in each amplimer share 100% homology with exon 7 of the published human cathepsin B gene sequence (Chan et al., 1986). Amplimer 10 contains an extra 19 nucleotides in intron 7, which explains its reduced electrophoretic mobility observed in agarose gels (eg. Figure 4.2). Only one cathepsin B gene is thought to exist (Gong et al., 1993), therefore these sequencing results identify two unique alleles of this gene. Amplimers 10 and 8 are now referred as alleles A and B respectively.
CHAPTER 7

Discussion of sequence results

7.1 Introduction

Alleles A and B of the human cathepsin B gene differ by 19 nucleotides in intron 7. It is not known if the 19 nucleotides have been inserted into the A allele, or if the 19 nucleotides have been deleted from the B allele. The exact position at which the 19 nucleotides are missing from the B allele cannot be elucidated. This is because the missing 19 nucleotides contain a CT dinucleotide, and the site adjacent to where they are missing from in the B allele contains a CT dinucleotide. Figure 7.1 illustrates this.

![Figure 7.1](image)

Figure 7.1 The A allele is aligned with the corresponding region in the B allele missing the 19 nucleotides. B' identifies the alternative region missing the 19 nucleotides in the B allele. CT nucleotides highlighted with # and @ are discussed in text.

Therefore in the B allele the 19 nucleotides are either missing to the left of CT-dinucleotide, marked with @ in figure 7.1, or from the right of the CT-dinucleotide marked with a #. The following sections discuss the how the 19 nucleotides may alter cathepsin B gene expression, and the implications of being homozygous for either allele.

7.2 Intron consensus sequences within alleles A and B

Intron 7 of alleles A and B obeyed the GT-AT rule (Lewin, 1994), as well as the general consensus for introns (Figure 7.2), although the 3' 12Py region was not strictly adhered to. Allele A contained three G's at positions 337, 338, and 339, and an A at position 344. Allele B contained two G's at positions 318 and 320, and an A at position 325. The difference in the 12Py regions for the two alleles is discussed in section 7.3.
Gene expression generates primary messenger RNA transcripts containing intron sequences which cannot be translated. Processing of the primary transcript removes the introns and produces secondary mRNA ready for translation. During processing the spliceosome cuts the 5' end of the intron to separate the left exon and the right intron-exon molecule. The 5' end of the intron-exon molecule then forms a lariat through the generation of a 5'-2' bond with the A located in the branch site. Following lariat formation, cutting at the 3' splicing site releases the free intron in lariat form, while the right exon is spliced to the left exon (Lewin, 1994). Failure to process transcripts properly can result in the skipping of exons. The probable branch sites for alleles A and B were located, and aligned with the branch site consensus sequence in Table 7.1.

Table 7.1 Probable branch sites for the A and B alleles. The G at positions 317 and 298 for each allele does not strictly conform to the consensus (Lewin, 1995).

<table>
<thead>
<tr>
<th>Consensus Sequence</th>
<th>Py80</th>
<th>Py80</th>
<th>Py87</th>
<th>Pu75</th>
<th>A</th>
<th>Py95</th>
</tr>
</thead>
<tbody>
<tr>
<td>A allele</td>
<td>G 317</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>B allele</td>
<td>G 298</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>A</td>
</tr>
</tbody>
</table>

7.3 Implications of the extra 19 base pairs in allele A

The Oligo™ program was used to identify a stable loop structure (Figure 7.3) which incorporates the extra 19 nucleotides in the A allele. Free energy change for the loop structure was -10.1 kcal mol⁻¹. There was also a stable loop structure formed in the similar region of allele B (Figure 7.4). The free energy change for this loop is -6.8 kcal mol⁻¹.
Figure 7.3 The stable loop structure afforded by 19 extra nucleotides (bolded) in allele A. The flanking regions started with G at position 260 and ended with the G at position 337.

Figure 7.4 The stable loop structure formed in absence of the 19 extra nucleotides in allele B. The flanking regions started with G at position 250 and ended with the G at position 320. The 19 extra nucleotides lied within this region of the A allele.

In the absence of the extra 19 nucleotides, a loop with decreased free energy change in nucleotides 250-320 may form in the primary transcript for allele B. This may confer less stability upon the primary transcript, making it more susceptible to digestion by nucleases. If this occurred in vivo then it is possible that the A allele produces primary transcripts with a greater half life than transcripts for the B allele. Therefore individuals homozygous for the A allele (A/A) may display altered cathepsin B gene expression through increased levels of mRNA and protein. Conversely an individual homozygous for the B allele (B/B) may display decreased levels for cathepsin B mRNA and protein. Levels of mRNA and protein for cathepsin B in heterozygotes (A/B) may be intermediate. While one allele in an A/B individual may produce a more stable transcript, this may be offset by concomitant destruction of the less stable transcript.
Alternative branch sites within introns can be used in lariat formation, and in some cases generate altered mRNAs deficient in one or more exons. The extra 19 nucleotides in allele A contained a region which could potentially be used as an alternative branch site (Table 7.2), although it did not strictly conform to the branch site consensus sequence.

Table 7.2 The possible alternative branch site in allele A. The C and G nucleotides flanking the A do not conform to the consensus for the branch site.

<table>
<thead>
<tr>
<th>Consensus Sequence</th>
<th>Py80</th>
<th>N</th>
<th>Py80</th>
<th>Py87</th>
<th>Pu75</th>
<th>A</th>
<th>Py95</th>
</tr>
</thead>
<tbody>
<tr>
<td>A allele</td>
<td>C 285</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
</tr>
</tbody>
</table>

Inspection of the downstream sequence indicates that this alternative branch site is not likely to be used. The first alternative downstream splice site (A316G) does not conform to the splice site consensus sequence (Figure 7.1), and would destroy the reading frame by adding 31 nucleotides of intron to the 5' end of exon 7.

If the extra 19 nucleotides in allele A have been inserted from another region of the human genome, then their origins are obscure. The 19 nucleotide insert was sent to the NCBI blast server with the CT dinucleotide at either end, but no homology was found with any published gene sequence (search results in appendix C.3).

Current literature detailing mutations in introns, describe those which have detrimental effects on the processing of primary transcripts, to the extent that mutated and prematurely terminated proteins are expressed. Longo et al., (1995) identified one such mutation in a patient suffering from leprechaunism. Using PCR technology they characterised a G→A transition in the first nucleotide in intron 13 of the insulin receptor gene. This point mutation activated a cryptic splice site 27 bp upstream in exon 13, and caused an in-frame deletion of the amino acids 859-867 in the extracellular domain of the β subunit insulin receptor. Sun et al., (1995) describe a similar transition in the 3rd intron for the human low density lipoprotein-receptor gene. This G→A transition results in mRNA lacking exon 3, which codes for the 41 amino acids found in the ligand binding domain of the low density lipoprotein-receptor.

Literature detailing silent mutations within gene intron sequences are scarce, simply because there is more impetus behind identifying and characterising the underlying mutations in genetic disorders that seriously affect health.
7.4 Identification of a possible nucleotide substitution

A nucleotide substitution was identified. Sequencing from the upstream (HucathU) primer revealed a G at position 338 in allele A, and a C at position 319 in allele B. Table 7.3 below illustrates this.

Table 7.3 Possible point mutation between alleles A and B.

<table>
<thead>
<tr>
<th>Allele</th>
<th>Position</th>
<th>Nucleotide</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T333</td>
<td>C C C G G G T C C C A</td>
</tr>
<tr>
<td>B</td>
<td>T314</td>
<td>C C C G C G T C C C A</td>
</tr>
</tbody>
</table>

Consultation of the signal strengths (Appendix C.2) for these regions supported the existence of the substitution. Figure 7.5 illustrates that in the A allele there were signals for both G and C at position 338, with G being the stronger signal. In allele B there was a lone signal for C at position 319. The absence of a weak underlying G (or any other) signal at position 319 suggests that C is the valid nucleotide at this position in the B allele.

![Figure 7.5 Signal strengths for the regions containing possible nucleotide substitution. Allele A is on the left, and allele B is on the right. Position numbers are from signal strengths and should be ignored.](image-url)

Because these nucleotides reside in the 12 pyrimidine tract of intron 7, the substitution has probably been a C⇒G substitution at position 338 in allele A. It is less likely to have been a G⇒C substitution at position 319 in the B allele, as the 12 pyrimidine region is an area generally conserved to pyrimidines only.
It is not known if this substitution is unique to subject 7, or common in all B alleles carried by subjects 1, 2, 3, 4, 5, 6, 7, 8, and 9. Sequencing of the B allele from other homozygous individuals would address this issue. This nucleotide substitution is not be expected to alter processing of the primary mRNA transcript in any way. It serves only to increase the number of purines in the 12 pyrimidine tract in the A allele.
CHAPTER 8

Conclusions

8.1 Conclusions

This study has led to the characterisation of two previously unreported alleles of the human cathepsin B gene. Alleles A and B differ through an extra 19 nucleotides in intron 7 of the A allele. The extra 19 nucleotides in allele A are not thought to affect the processing of primary mRNA transcripts, but can potentially increase the half-life of the transcript. Homozygosity for either allele may lead to altered cathepsin B gene expression, and may result in different cathepsin B to cysteine protease inhibitor ratios in cells. An alteration in this ratio could then enhance tumour development and progression, conditions where cathepsin B gene activity is commonly upregulated.

Alleles A and B also have potential to be used as polymorphic markers in gene linkage analyses of human chromosome 8.

8.2 Future research in this area

The A and B alleles are expected to be lodged in the GENBANK database in late November of 1995. Primers HucathU and Bocthex8 will be used to screen family groups to determine if the alleles are inherited according to Mendelian segregation, and also to observe the frequencies of inheritance for each allele. This work is expected to be undertaken by myself at the John Cúrtin School of Medical Research in Canberra, Australia, over the summer of 1995-96. Following that, studies on the levels of cathepsin B gene expression in A/A and B/B individuals would be pertinent. It is possible that the presence of primary transcripts for cathepsin B with increased half-lives in transformed cells may promote tumour invasion and progression. Therefore research in this area would be valuable if any associations between tumour development and homozygosity for the A allele are to be found.
References

Couldrey C. 1995 Personal communication.

Markham LJ. 1994 Gene sequence of Ovine cathepsin B: a study of the gene sequence encoding the lysosomal protease cathepsin B. Bsc.(Hons) dissertation, Lincoln University, New Zealand.

Appendix A.1
Primer homology results from the NCBI blast server

Query = HucathU
(25 letters)

Database: Non-redundant PDB+GBupdate+GenBank+EMBLupdate+EMBL
575,107 sequences; 395,388,600 total letters.

Sequences producing high-scoring segment pairs:

>gb|T72314|T72314 yc68g10.r1 Homo sapiens cDNA clone 858...
>gb|R52199|R52199 yg85e07.r1 Homo sapiens cDNA clone 402...
>gb|M13230|HUMCTHB Human lysosomal proteinase cathepsin B...
>gb|L16510|HUMCATHB Homo sapiens cathepsin B mRNA, complet...
>gb|M14221|HUMCTSB Human cathepsin B proteinase mRNA, com...

Homology

>gb|T72314|T72314 yc68g10.r1 Homo sapiens cDNA clone 85890 5' similar to
gb:M14221 CATHEPSIN B PRECURSOR (HUMAN);.
Length = 282
Score = 125 (34.5 bits), Expect = 0.0084, P = 0.0083
Identities = 25/25 (100%), Positives = 25/25 (100%), Strand = Plus / Plus

Query: 1 TGTAATGGTGCTATCTCCTGCTGAAG 25
Sbjct: 118 TGTAATGGTGCTATCTCCTGCTGAAG 142

>gb|R52199|R52199 yg85e07.r1 Homo sapiens cDNA clone 40205 5' similar to
gb:M14221 CATHEPSIN B PRECURSOR (HUMAN);
Length = 386
Score = 125 (34.5 bits), Expect = 0.0091, P = 0.0090
Identities = 25/25 (100%), Positives = 25/25 (100%), Strand = Plus / Plus

Query: 1 TGTAATGGTGCTATCTCCTGCTGAAG 25
Sbjct: 149 TGTAATGGTGCTATCTCCTGCTGAAG 173

>gb|M13230|HUMCTHB Human lysosomal proteinase cathepsin B mRNA, 3' end.
Length = 630
Score = 125 (34.5 bits), Expect = 0.0098, P = 0.0098
Identities = 25/25 (100%), Positives = 25/25 (100%), Strand = Plus / Plus

Query: 1 TGTAATGGTGCTATCTCCTGCTGAAG 25
Sbjct: 58 TGTAATGGTGCTATCTCCTGCTGAAG 82
Appendix A.1

Primer homology results from the NCBI blast server

Query = HucathU
(25 letters)

Homology (continued)

>gbjL16510|HUMCATHB Homo sapiens cathepsin B mRNA, complete cds.
Length = 1996
Score = 125 (34.5 bits), Expect = 0.011, P = 0.011
Identities = 25/25 (100%), Positives = 25/25 (100%), Strand = Plus / Plus

Query: 1 TGTAATGGTGCTATCTGCTGAAG 25
Sbjct: 625 TGTAATGGTGCTATCTGCTGAAG 649

>gbjM14221|HUMCTSB Human cathepsin B proteinase mRNA, complete cds.
Length = 2002
Score = 125 (34.5 bits), Expect = 0.011, P = 0.011
Identities = 25/25 (100%), Positives = 25/25 (100%), Strand = Plus / Plus

Query: 1 TGTAATGGTGCTATCTGCTGAAG 25
Sbjct: 642 TGTAATGGTGCTATCTGCTGAAG 666
Appendix A.1

Primer homology results from the NCBI blast server

Query = **BOCTHEX8**
(24 letters)

Database: Non-redundant PDB+GBupdate+GenBank+EMBLupdate+EMBL
575,107 sequences; 395,388,600 total letters.

Sequences producing high-scoring segment pairs:

- **gbLM132301HUMCTHB** Human lysosomal proteinase **cathepsin B**...
- **gbLM06075IBOVCAHTH** Bos taurus **cathepsin B** mRNA, complete ...
- **gbLM165101HUMCATHB** Homo sapiens **cathepsin B** mRNA, complete...
- **gbLM142211HUMCTSB** Human **cathepsin B** proteinase mRNA, com...
- **gbiT72314fT72314 yc68g10.r1** Homo sapiens cDNA clone 858...

Homology

- **>gbLM132301HUMCTHB** Human lysosomal proteinase **cathepsin B** mRNA, 3' end.
 Length = 630
 Score = 120 (33.2 bits), Expect = 0.017, P = 0.017
 Identities = 24/24 (100%), Positives = 24/24 (100%), Strand = Minus / Plus

 Query: 24 TGCAGACCGTACTCCATCCCTCCC 1
 Sbjct: 145 TGCAGACCGTACTCCATCCCTCCC 168

- **>gbLM06075IBOVCAHTH** Bos taurus **cathepsin B** mRNA, complete cds.
 Length = 1973
 Score = 120 (33.2 bits), Expect = 0.019, P = 0.019
 Identities = 24/24 (100%), Positives = 24/24 (100%), Strand = Minus / Plus

 Query: 24 TGCAGACCGTACTCCATCCCTCCC 1
 Sbjct: 535 TGCAGACCGTACTCCATCCCTCCC 558

- **>gbLM165101HUMCATHB** Homo sapiens **cathepsin B** mRNA, complete cds.
 Length = 1996
 Score = 120 (33.2 bits), Expect = 0.019, P = 0.019
 Identities = 24/24 (100%), Positives = 24/24 (100%), Strand = Minus / Plus

 Query: 24 TGCAGACCGTACTCCATCCCTCCC 1
 Sbjct: 712 TGCAGACCGTACTCCATCCCTCCC 735
Appendix A.1

Primer homology results from the NCBI blast server

Query = Bocthex8
(25 letters)

Homology (continued)

>gbiM14221|HUMCTSB Human cathepsin B proteinase mRNA, complete cds.
Length = 2002
Score = 120 (33.2 bits), Expect = 0.019, P = 0.019
Identities = 24/24 (100%), Positives = 24/24 (100%), Strand = Minus / Plus

Query: 24 TGCAGACCGTACTCCATCCCTCCC 1
Sbjct: 729 TGCAGACCGTACTCCATCCCTCCC 752

>gbiT72314|T72314 yc68g10.r1 Homo sapiens cDNA clone 85890 5' similar to gb:M14221 CATHEPSIN B PRECURSOR (HUMAN).
Length = 282
Score = 113 (31.2 bits), Expect = 0.058, P = 0.056
Identities = 23/24 (95%), Positives = 23/24 (95%), Strand = Minus / Plus

Query: 24 TGCAGACCGTACTCCATCCCTCCC 1
Sbjct: 205 TNCAGACCGTACTCCATCCCTCCC 228
Appendix A.2

Visualisation of DNA by gel electrophoresis

Materials:

Water
Water mentioned in text is autoclaved reverse osmosis water.

TAE Stock x 10:
<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>48.4 g</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>11.4 mL</td>
</tr>
<tr>
<td>EDTA (0.5M)</td>
<td>20.0 mL</td>
</tr>
</tbody>
</table>

Make to 1L, pH = 8

TBE Stock x 10:
<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS</td>
<td>108.0 g</td>
</tr>
<tr>
<td>Borate</td>
<td>55.0 g</td>
</tr>
<tr>
<td>EDTA (Na)</td>
<td>9.3 g</td>
</tr>
<tr>
<td>Water</td>
<td>make to 1L</td>
</tr>
</tbody>
</table>

1 x TBE or TAE buffer:

Dilute stock 10 x with ddH₂O.
Add 5μL ethidium bromide (10mg/ml).

Load buffer:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4M Urea</td>
<td>4.8 g</td>
</tr>
<tr>
<td>50% Sucrose</td>
<td>10.0 g</td>
</tr>
<tr>
<td>0.1% Bromophenol Blue</td>
<td>2.0 mL (0.5% stock)</td>
</tr>
<tr>
<td>0.1% Xylenocyanol</td>
<td>2.0 mL (0.5% stock)</td>
</tr>
<tr>
<td>0.25M EDTA</td>
<td>0.6 g</td>
</tr>
<tr>
<td>Water</td>
<td>make to 20.0 ml</td>
</tr>
</tbody>
</table>

Molecular weight markers

100 base pair ladder (GIBCO BRL)
[stock] = 1.0 μg/μL
dilute 10 μL stock and 20 μL load buffer with 170 μL H₂O.

DNA Molecular weight marker VI (Boehringer Mannheim).
[stock] = 0.25μg/μL
dilute 10μL stock and 20μL load buffer with 170μL H₂O.
Appendix A.2

Preparation of a 2% agarose gel.

Method

0.6g Agarose (SeaKem) mixed with 30.0 ml 1 x TBE.
Record weight, heat to dissolve agarose completely (microwave for 2 x 30 seconds on high).
Allow to cool. Adjust weight back to original with H₂O.
Pour into prepared gel mould. Allow to set.
Set up tank with gel and 1 x TBE buffer.
Prepare samples by mixing 2 µL load buffer + 18 µL sample (Or to same proportions).
Load all 20 µL (or 5 µL), and load 5 µL molecular weight marker in an adjacent well.
Electrophorese at 90V for 50 minutes. Visualise bands using UV Transilluminator and photograph results, or continue electrophoreses if needed.

Preparation of a 2% TAE agarose gel.

The same as above, except 1 x TBE is substituted with 1 x TAE buffer.
CONSENT TO PARTICIPATE IN A LABORATORY EXPERIMENT.

I, ____________________________, hereby give my consent to participate in a laboratory experiment as part of a study for the subject BICH 460 at Lincoln University.

This experiment will consist of the withdrawal of 10 mL of my blood by venipuncture (a sterile disposable needle inserted into my vein) carried out by a qualified medical technologist, registered nurse or medical practitioner. The blood will be used for DNA extraction, and gene analysis.

The possible risks of this procedure have been fully explained to me. I understand these risks to include the small but finite possibility of subdermal haematoma (bleeding under the skin), infection from bacterial, viral, or other agents, complications of haemophilia (uncontrolled bleeding), and moderate but transient pain, distress, or discomfort.

I understand that the giving of this blood sample will be of no direct benefit to me. I understand that in the event of medical complications arising as a result of this experiment, Lincoln University provides the facilities of the student health service to assist me. I undertake to notify Lincoln University immediately of any complications resulting from my participation.

I further understand that I have the right to refuse to participate in this experiment, and that if I do refuse no adverse reaction or effect on my marks, or my standing as either a student or staff member will result. I acknowledge that I have been granted sufficient time to consult with my family, or legal guardian, medical or otherwise advisors before signing this consent.

Having consideration to all of the foregoing I do hereby freely and voluntarily give my consent.

Signed: ___________________________ Signed: ___________________________.

Name: ___________________________ Name: J. R. MacKenzie

Date: ___________________________ Date: 1/1/95
Appendix B.2

Hi-salt DNA extraction reagents.

Red and white blood cell lysing solution.
0.17 M Ammonium chloride (NH₄Cl).

Wash buffer.
10 mM Sodium Chloride (NaCl) 10mM EDTA, pH = 8.

Solubilisation solution.
50 mM Sodium Hydroxide (NaOH).

Neutralisation buffer.
1M Tris-HCl, pH = 8.
Appendix C.1

Homology between A and B alleles

Comparison of 10 DOWNC with 10 UP with 8 UP with 8 DOWNC

HucathU TGTAAATTGGCTTAATCCTGTCGAAG
Exon 7 CTGGTAATTGGCTTAATCCTGTCGAAGCTTGGAACTTCTGGACAAGAAAAGGGCTGGTTTCTGGTGGCCTC
10 DOWNC -TGTAAATTGGCTTAATCCTGTCGAAGCTTGGAACTTCTGGACAAGAAAAGGGCTGGTTTCTGGTGGCCTC
10 UP ---------------GGGAA--ACG---------GGACANGAAAAGGG-TGGTTGCTGGTGGCCTC
8 UP ---------------TTCGNACACGGGGCCTTCTGGACAAGAAAAGGGCTGGTTTCTGGTGGCCTC
8 DOWNC -TGTAAATTGGCTTAATCCTGTCGAAGCTTGGAACTTCTGGACAAGAAAAGGGCTGGTTTCTGGTGGCCTC

Intron 7 TATGAATCCCATGTAGGTAAGTGTGTCCCCTTGGCCACTTTCTGGCCAGATGGATTGTTTGAGCAATTAA
10 DOWNC CCATCATGGCTTTATTTGCCTTTATAAACTGGGGGTTGAGACAGAGGGGCTGCTGAGAGGTGCTAGCCAG
10 UP TATGAATCCCATGTAGGTAAGTGTGTCCCCTTGGCCACTTTCTGGCCAGATGGATTGTTTGAGCAATTAA
8 UP TATGAATCCCATGTAGGTAAGTGTGTCCCCTTGGCCACTTTCTGGCCAGATGGATTGTTTGAGCAATTAA
8 DOWNC CCATCATGGCTTTATTTGCCTTTATAAACTGGGGGTTGAGACAGAGGGGCTGCTGAGAGGTGCTAGCCAG

Intron 7 TGCCTCGCCCAGNTGGGGCTTCTCCGTGGGGGCTGTAGGTTGACTCCGCTTTCTC-CCGCGTCCCATCA
10 DOWNC TGCCTCGCCCAGNTGGGGCTTCTCCGTGGGGGCTGTAGGTTGACTCCGCTTTCTC-CCGCGTCCCATCA
10 UP TGCCTCGCCCAGNTGGGGCTTCTCCGTGGGGGCTGTAGGTTGACTCCGCTTTCTC-CCGCGTCCCATCA
8 UP TGCCTCGCCCAGNTGGGGCTTCTCCGTGGGGGCTGTAGGTTGACTCCGCTTTCTC-CCGCGTCCCATCA
8 DOWNC TGCCTCGCCCAGNTGGGGCTTCTCCGTGGGGGCTGTAGGTTGACTCCGCTTTCTC-CCGCGTCCCATCA

Intron 7 -Bochex8 TGGTGCAACGCGTACTCCATATCCCT-CCC
Exon 8 GGGTGCAACGCGTACTCCATATCCCT-CCC
10 DOWNC A-----------------------------
10 UP GGGTGCAACGCGTACTCCATATCCCT-CCC
8 UP GGGTGCAACGCGTACTCCATATCCCT-CCC
8 DOWNC GGNCTTAAAA-

Key

"A" identifies 1 nucleotide which differs from three others at that position. The corresponding nucleotide in the consensus sequence is based on the agreement between the 3 similar nucleotides. Published nucleotides (Exon 7 and Exon 8) were also used where appropriate.

"@" identifies each of the 19 nucleotide insertion in allele A

"$" identifies nucleotides which needed to be resolved from the signal strengths

"#" identifies other possible polymorphism between alleles A and B.

"%" identifies nucleotides thought to be inserted by the gel reader, and which were not included in the consensus sequence.

Amplimer from subject 10 represents Allele A
Amplimer from subject 8 represents Allele B
Appendix C.3

19 nucleotide sequence search results

Query = insertct

> gcctgcgccagctggggct

(19 letters)

Database: Non-redundant PDB+GBupdate+GenBank+EMBLupdate+EMBL
575,107 sequences; 395,388,600 total letters.

Sequences producing High-scoring Segment Pairs: Score P(N) N

*** NONE ***

Query = ctinsert

> ctgcctgcgccagctgggg

(19 letters)

Database: Non-redundant PDB+GBupdate+GenBank+EMBLupdate+EMBL
575,107 sequences; 395,388,600 total letters.

Sequences producing High-scoring Segment Pairs: Score P(N) N

*** NONE ***