THE ECONOMIC IMPACTS OF CLIMATE CHANGE ON CANTERBURY DAIRY FARMS

Anna Concepción Oñate Narciso
Dr Nazmun Ratna
Prof Geoffrey Kerr

Lincoln University

11 February 2015
59th AARES Conference, Rotorua, New Zealand
INTRODUCTION
∙ How does farm production react to climate change and variability?
QUESTIONS

- How does farm production react to climate change and variability?
- How would these changes affect farm profits?
QUESTIONS

- How does farm production react to climate change and variability?
- How would these changes affect farm profits?
- What are the externalities that need policy considerations?
QUESTIONS

- How does farm production react to climate change and variability?
- How would these changes affect farm profits?
- What are the externalities that need policy considerations?
DAIRYING IN CANTERBURY

2004 – 2005

Representation of farms and herd size (Burns, 2013)
DAIRYING IN CANTERBURY

2012 – 2013

Representation of farms and herd size (Burns, 2013)
<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy (1'000 000 000$)</th>
<th>Meat (1'000 000 000$)</th>
<th>Fishing (1'000 000 000$)</th>
<th>Forestry (1'000 000 000$)</th>
<th>Mining (1'000 000 000$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Statistics New Zealand (2013)
METHOD
METHOD: SIMULATION

DairyMod

- Developed by Johnson, et al.
METHOD: SIMULATION

DairyMod

- Developed by Johnson, et al.
- Multi-paddock, biophysical simulation model for dairy systems
DAIRYMOD

- Developed by Johnson, et al.
- Multi-paddock, biophysical simulation model for dairy systems
- Used in previous studies in New Zealand and Australia
Farm data (Canterbury region)
 · DAIRYNZ

Climate data (projections for climate scenarios)
 · NIWA
CLIMATE SCENARIOS

Adapted from the IPCC 5th Assessment Report

- **RCP 2.6 (E1):** aggressive mitigation scenario
- **RCP 4.5 (B1):** eco-friendly/globalised world
- **RCP 6.0 (B2/A1B):** high-tech/regionally sustainable
- **RCP 8.5 (A2/A1FI):** divided world/high population growth/poorly-developed institutions and governance
Adapted from the IPCC 5th Assessment Report

- **RCP 2.6 (E1):** aggressive mitigation scenario
- **RCP 4.5 (B1):** eco-friendly/globalised world
- **RCP 6.0 (B2/A1B):** high-tech/regionally sustainable
- **RCP 8.5 (A2/A1FI):** divided world/high population growth/poorly-developed institutions and governance
PRELIMINARY RESULTS
Applied DairyNZ and NIWA data to DairyMod model to analyse climate change effects in:

- Lactation (milk production)
Applied DairyNZ and NIWA data to DairyMod model to analyse climate change effects in:

- Lactation (milk production)
- GHG emissions
EMISSIONS

- Increase in CO_2e from N_2O (but very small)
- Increase in CO_2e from N_2O (but very small)
- No change in CO_2e from CH_4
· Increase in CO_2e from N_2O (but very small)
· No change in CO_2e from CH_4
· Irrespective of the increase in stocking rate
CO2e FROM CH4

Base 2.6 4.5 6.0 8.5
NET CO2E EMISSION
Decrease in lactation across climate scenarios
Decrease in lactation across climate scenarios

- Expected decrease in profits
Decrease in lactation across climate scenarios

- Expected decrease in profits
- The next stage of the research will be to see whether management would have a mitigating effect on lactation decrease
Decrease in lactation across climate scenarios

- Expected decrease in profits
- The next stage of the research will be to see whether management would have a mitigating effect on lactation decrease
LACTATION
LACTATION RESULTS

· As the stock density changes, the intake balance changes
· As the stock density changes, the intake balance changes

· Paddocks are being over-grazed
LACTATION RESULTS

- As the stock density changes, the intake balance changes
- Paddocks are being over-grazed
- No radical environmental impact in terms of GHG emissions
END
Thank you!!!
And any question/s?
😊 😊