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Data Analysis and Preliminary model Development for an Odour 

Detection System based on the Behaviour of Trained Wasps 

 

By Zhongkun Zhou 

Abstract 

Microplitis croceipes, one of the nectar feeding parasitoid wasps, has been found to 

associatively learn chemical cues through feeding. The experiments on M. croceipes 

are performed and recorded by a Sony camcorder in the USDA-ARS Biological 

Control Laboratory in Tifton, GA, USA. The experimental videos have shown that M. 

croceipes can respond to Coffee odour in this study. Their detection capabilities and 

the behaviour of M. croceipes with different levels of coffee odours were studied. 

First, the data that are related to trained M. croceipes behaviour was extracted from 

the experimental videos and stored in a Microsoft Excel database. The extracted data 

represent the behaviour of M. croceipes trained to 0.02g and then exposed to 0.001g, 

0.005g, 0.01g, 0.02g and 0.04g of coffee. Secondly, indices were developed to 

uniquely characterise the behaviour of trained M. croceipes under different coffee 

concentrations. Thirdly, a preliminary model and its parameters were developed to 

classify the response of trained wasps when exposed to these five different coffee 

odours. In summary, the success of this thesis demonstrates the usefulness of data 

analysis for interpreting experimental data, developing indices, as well as 

understanding the design principles of a simple model based on trained wasps. 

 

 

Keywords: Microplitis croceipes, insect behaviour, Tracker, video images analysis, 

Mathematical model  
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Chapter 1: Introduction 

 

 

1.1 Introduction 

 

Many animals are known to have a remarkable ability to detect, recognize and locate 

target materials based on olfactory, visual and other cues. However, the capacity of 

their natural system remains poorly understood and under-utilised, other than a long 

and rich history of using dogs’ keen sense of smell for detecting and monitoring drugs, 

cadavers, bombs, contraband, etc. Emerging information regarding the chemical 

detection capabilities of insects has revealed the potential for developing detection 

strategies utilizing insects, which are portable, cheap to reproduce and easy to use. 

 

Microplitis croceipes, one of the black nectar-feeding parasitoid wasps, have been 

found to associatively learn chemical cues through feeding. The experiments on M. 

croceipes are performed and recorded by camcorder in the USDA-ARS Biological 

Control Laboratory in Tifton, GA, USA. The experimental videos have shown that M. 

croceipes can respond to the test chemical cues. To better understand their detection 

capabilities, the behaviour of a single M. croceipes wasp with different levels of 

chemical concentrations is studied. To study the effect of concentration level on wasp 

behaviour, it is necessary to extract data that are related to the wasp behaviour from 

the experimental videos, to analyse those data and investigate the relationships 

between the data and chemical concentration levels. Finally, a preliminary model 

could be built and utilised for chemical detection based on those information. 
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1.2 Motivation of study in the thesis 

 

The basic motivation of this research is to investigate the connection between single 

trained wasp’s searching response and the target odour concentrations. When a hand 

trained Microplitis croceipes is placed in the presence of a target odour, it will 

individually exhibit several different behaviours, such as coiling, head sticking, 

anntenating, and restricted searching (Wäckers et al., 2002, Olson et al., 2003). 

Humans can interpret these behaviours visually to indicate whether the response is 

positive (odour detected) or negative (odour not detected). However, it is really 

difficult from human observation to visually quantify a wasp’s response to a target 

odour. In fact, the connection between wasp’s response and different levels of target 

odour needs to be studied. A simple stochastic model (D. Kulasiri and W. Verwoerd, 

2002) is built based on the experimental data to simulate the wasp’s behavioural 

response under several target odour concentrations. This is a useful technique for 

developing objective measures of the behavioural response to varying concentrations 

of test odorants. 

 

 

1.3 Research objectives 

 

Throughout this study, the major theme is to investigate the relationship between 

single trained M. croceipes and different level of target odours, and to build a simple 

stochastic model which will be used to predict the level of target odour by simulating 

the single M. croceipes’ behaviour under different level of target odours. The specific 

objectives of this study are: 

 

• To extract data from video files and build up a database to store and analyse 

those data.  

• To develop indices to uniquely characterise the behaviour of wasps under 

different target odour concentrations.   
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• To develop a simple model based on stochastic calculus equation 

dwbXdtadX ⋅+⋅=  (X is variable, a and b are the parameters to be 

determined in this project; dw is increments of the standard Wiener process 

which is normally distributed with a unit variance) and parameter estimate 

processes for governing differential equation.  

• Establish the parameter and model validation process and analyse the accuracy 

of the model. 

• To identify the gaps of our current knowledge of the model. 

 

 

1.4 Outline of the thesis 

 

In the current chapter, an introduction of chemical detecting Technologies that utilize 

M. croceipes is provided, which leads to the motivation for the thesis. In chapter two, 

literature review covering the fields touched in this thesis is given. In chapter three, 

experiment procedure of M. croceipes, data preparation and variable exploration is 

given. In chapter four, the wasp’s behaviours are analyzed and the variables extracted 

from these behaviours are given. In chapter five, the model parameters from 

stochastic calculus equations are estimated. In chapter six, the model framework is 

developed based on the mathematical equations. In chapter seven, the model 

simulation results are compared with the actual values, and the limitation of model is 

discussed. Finally, in chapter eight, a retrospective look at the overall implications of 

this work is provided, as well as the contributions of the thesis and directions for 

future research. 
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Chapter 2: Literature review and discussion 

 

 

Since the thesis embraces several disciplines, the literature review discussed here 

covers the field of chemical detecting, biology species and computer modelling issues. 

Section 1 gives the introduction of traditional chemical detecting technology utilizing 

human olfactometry, training canines, and electronic olfaction. Section 2 provides the 

biological background of Microplitis croceipes, which include physiology, chemotaxis 

and research history on Microplitis croceipes. Section 3 gives the details of a 

successfully made computer vision system that utilizes a new biological species to 

detect target substances. Section 4 gives the relevant information of computer 

software used in this research. 

 

 

2.1 Chemical sensing technologies 

 

Historically, tracking illegal substances and detecting explosives are very important 

applications for detecting volatile chemicals. Detection of volatile compounds can 

also be a good method for detecting other organic materials, such as aflatoxin in 

peanuts and corn (Rains et al., 2003A). Traditional methods of detecting volatile 

chemicals are human olfactometry, training canines, and electronic olfaction (Gardner 

and Bartlett, 1998). In those methods, humans and dogs are the most sensitive; but 

also subjective and costly (Gardner and Bartlett, 1998). Because of security concerns 

and agriculture needs, volatile detection is being used to lower the cost and increase 

the efficiency of chemical screening.  

 

Many electronic devices have been developed to reduce the cost and improve the 

reliability of volatile detection. The electronic devices are designed from simple to 

complex. The simple designs are inexpensive relative to training and maintaining a 
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canine, are very specific and sensitive to low chemical concentrations. On the other 

hand, they may detect a wider range of volatiles but lack sensitivity (Gardner and 

Bartlett, 1998; Dickinson, 1998). The complex electronic designs are relatively 

inexpensive, but are much less sensitive than human olfaction.  The complex output 

is also difficult for the user to interpret. 

 

Dr. Glen C. Rains (University of Georgia, US) has been carrying out experiments on 

parasitic wasps (Microplitis croceipes) that respond to odours from plants and can be 

trained to detect chemicals (Rains et al., 2003A). By having a sensor that makes use 

of trained parasitic wasps, the detection of chemicals at very low concentrations (ppb) 

could be improved. It is hypothesized that the use of wasps could prove to be more 

accurate than the current detection methods. 

 

 

2.2 Microplitis croceipes 

 

2.2.1 Physiology  

 

Microplitis croceipes (Cresson) (Hymenoptera: Bracibudae) are larval parasitoids of 

heliothis virescens (tobacco budworm) and Helicoverpa zea (corn earworm). They are 

black nectar feeding wasps, approximately 10-12 mm in length and 2-3 mm in width, 

with a yellowish abdomen. The males are haploid and have antennae approximately 

the length of their body. The females are diploid and possess antennae approximately 

½ the length of the male antennae. M. croceipes are facultative pathogenic, laying 

facultatively arrhenotokous eggs; M. croceipes larvae will develop as male if the egg 

is unfertilized and female if fertilized (Daly et al., 1998). 
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2.2.2 Research history on Microplitis croceipes 

 

M. croceipes’ ability to detect volatile chemicals has been widely studied. In 1988, 

Lewis and Tumilinson first discovered that a parasitoid wasp named Microplitis 

croceipes could associatively learn chemical cues from its host and food (Lewis and 

Tumilinson, 1988). These wasps can be trained to search chemical cues in various 

environments. Bioassays in a wind tunnel proved that M. croceipes can selectively 

seek out the plants by tracking the volatile chemicals released from the plant, based on 

their physiological state such as needs for reproduction or food (De Moraes et al., 

1998). The volatile chemicals emitted from the plant were isolated and identified, then 

used for further investigation of M. croceipes’ chemical detection ability. Further 

experiments have shown M. croceipes was able to selectively detect the odours at low 

concentrations when presented with the emitted volatiles without the plants (Olson et 

al., 2003).  

 

The US Department of Agriculture (USDA) investigated the breadth of the chemicals 

detectable by M. croceipes and their limits of detection. Using wind tunnel trials as 

the standard testing method, M. croceipes was successfully trained and tested with a 

wide array of chemicals, including those that they might not normally encounter in 

their natural habitat. The chemicals ranged from common food stuffs, such as 

chocolate and coffee (Takasu and Lewis, 1993), to a wide array of aliphatic, ketones, 

aldehydes and 2,4 and 2,6 dinitrotoluene (Olson et al., 2003, Pare and Tumlinson, 

1997). The detection capabilities of M. croceipes offered a possible method for 

detecting and tracking potential illegal or harmful substances instead of using canine 

olfaction and electronic noses. The method with which to best exploit the abilities of 

M. croceipes was uncertain. Several options included harvesting the antennae and 

measuring their activity with electro-antennograms (EAGs), tracking the wasps once 

released into the environment, and allowing a confined group of wasps to report the 

detection of a target odour. 
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In order to seek out additional behaviour of the trained wasps, many experiments that 

use the trained wasps to search out target odour was performed and the behaviour of 

trained wasps were studied. If the wasp is allowed to smell the target odour while 

feeding, it will flick its antennae (which is known as antennating behaviour) when 

exposed to the target odour again. If the wasp is allowed to smell the target odour 

while stinging a host, it will be contracting the abdomen in a stinging fashion (which 

is known as coiling behaviour) when exposed to the target odour again. If a trained 

wasp was exposed to the target odour which is emitted from a point source, it will 

rotate its body and antennate in a small area (which is known as area restricted 

searching behaviour) around that point source. However, if the target odour was 

emitted from a hole that is large enough for a wasp to fit into it, the wasp will 

generally enter the hole in search of the odour’s source. (Olson et al., 2003; rains et al., 

2002; Rains et al., 2001; Rains et al., 2000). Based on these behaviours and the 

abilities of M. croceipes, a whole organism sensor that utilize M. croceipes to detect 

target odour was made. Monitoring trained wasp’s head sticking, body spinning and 

hole entering behaviours are used as the method to measure the absence or presence 

of the target odour. Area restricted searching is exhibited more quickly than head 

sticking and may be a quick, reliable, and easily measurable response (Utley et al., 

2004). However, it is necessary to investigate the relationship between single wasp’s 

behaviours and the concentration of target odour. Currently, the wasp sensor only 

measures whether the target odorant is present. By examination of the wasp behaviour, 

we may be able to detect other characteristics of the target odorants, such as 

concentration. It is helpful for development of organism sensor that utilizes M. 

croceipes to detect the target odour. 

 

 

2.2.3 Chemotaxis 

 

M. croceipes’ life cycle depends on its keen ability to track volatile odours from plants 
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and hosts (Olson, et al., 2003, Pare and Tuminson, 1997). To find both hosts and foods, 

M. croceipes must track favourable feeding and breeding conditions over long 

distances through the use of chemical cues (Lewis and Tumlinson, 1988). In nature, 

female wasps use chemical cues to first locate plants where host organisms are 

feeding by tracking the volatiles emitted by both the plant and host’s frass. After 

locating the plant, they need to determine the location of the host larvae. The larvae 

themselves are relatively odour free and therefore camouflaged. However, the larvae 

must feed to grow and, when they do, they give away their location. The saliva of the 

larvae enters the open wound of the plant causing the plant to begin to produce the 

volatile, which is not only from the wound but from the entire plant canopy. The 

insect is repelled by this volatile (Pare and Tumlinson, 1999). Interestingly, the wasps 

are not repelled by this volatile, but instead they use these chemical cues to locate the 

larvae. The odours emitted by the plant are dependent on its type, health, soil 

conditions, and the type of insect feeding on it (Tumlinson et al., 1999). Therefore, M. 

croceipes must possess outstanding learning and detection capabilities with many 

variables affecting the possible volatile emissions. 

 

The volatiles that M. croceipes could learn and respond to are not limited to naturally 

occurring volatiles produced by plants or hosts. M. croceipes can also learn to 

recognize a range of chemical structures such as cyclic and aliphatic ketones, aliphatic 

aldehydes and alcohols, and aromatic hydrocarbons (Wäckers et al., 2002, Olson et al., 

2003). M. croceipes can learn to associate these distinct odours with separate 

behaviours and will seek out the odours that they believe will lead to food or host, 

depending on their physiological state. Wind tunnel trials have shown that hungry 

wasps trained to associate a target odour with food will choose to seek out the target 

odour over a control in order to feed. Wasps allowed to sting a host or antennate frass 

while exposed to a target odour will seek out the target odour in order to lay eggs 

(Wäckers and Lewis, 1994, Olson et al., 2003). In nature, the wasps are able to track 

the faint traces of odours by tracking upwind along an odour concentration gradient. If 

the wasp is to seek out the target odour, a concentration gradient needs to exist, 
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otherwise the wasp cannot track the odour to its source. 

 

 

2.3 Computer vision system 

 

Some computer vision systems that utilise insects to detect volatile chemicals have 

been successfully devised. However, a computer application that utilises M. croceipes 

and outputs chemical concentration of the target odorant has not been made, due to 

the lack of information of how M. croceipes’ searching behaviours are modified by 

chemical concentrations. 

  

Inscentinel Ltd. (Hertfordshire, UK) has successfully devised and marketed a system 

using honey bees (Apis mellifera [Hymenoptera: Linnaeus]) for trace vapor detection 

(http://www.inscentinel.com). The system can hold trained bees in a safe and 

controlled environment and can be operated in a range of external environmental 

conditions. Sample air is delivered to the bees for recognition of specific odours. The 

bees are held in a special cassette and specially designed hardware and image 

recognition software monitors and records detection by the bees, converting their 

response into an electronic form. The electronic output can be given in a simple 

yes/no, green light/red light form. 

 

Another computer vision system with image analysis software (Visual Cortex) 

successfully and objectively quantified the searching behaviour of five trained female 

M. croceipes parasitoid wasps (S. L. Utley, G. C. Rains, W.J. Lewis. 2004). It is an 

open-air system, consisting of a camera, computer and software. The wasp hound was 

developed as a handheld instrument for the detection of volatile compounds 

[Appendix A – Computer Vision System]. The wasp hound consists of a ventilated 

area, a mounted camera, fixed light source, and test cartridge loading area. The 

device’s air sampling method creates an odour gradient inside the device by slowly 

drawing outside air through the test cartridge. Five trained female M. croceipes are 
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placed inside the test cartridge so they can only walk without flying away. The 

mounted camera is used for observing wasps’ behaviour during testing. Images that 

are captured by camera are transferred to the laptop PC and analyzed with an image 

analysis software called Visual Cortex. Visual Cortex was developed S.L Utley using 

National Instruments’ LabView 6.1 and Parente’s LabView Webcam Library. It is used 

to observe and analyse wasps area-restricted searching behaviour during chemical 

detection. The handheld system constructed during this study quickly detected the 

presence of 3-octanone ( 5106.2 −×  mol/L) in a background of corn within 25 s (Rains 

et al, 2006). Such a system has the potential to be utilized for the detection of target 

chemical odours within an environment containing a masking background. 

For more details on the computer vision system refer to Appendix A. 

 

 

2.4 Tracker 

 

During the preliminary studies, the single wasp was tested with coffee odour and 

recorded by camcorder. In order to study the relationship between the wasp’s 

behaviour and the coffee concentrations, data need to be extracted from video files 

(wasp experimental videos) to a Microsoft Excel datasheet. The Visual Cortex is not 

suitable for extracting data from the video file in my study. Therefore, the Tracker 

software is used.  

 

Tracker is a video analysis package built on the Open Source Physics (OSP) Java 

framework. The features include object tracking with position, velocity and 

acceleration overlays and graphs, special effect filters, multiple reference frames, 

calibration points and line profiles for analysis of spectra and interference patterns 

(http://www.cabrillo.edu/~dbrown/tracker/). It was originally designed to be used in 

introductory college physics labs and lectures. It features automatic and manual 

curve-fitting and statistics for user-selected portions of any dataset. 
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The Tracker software has a friendly user interface that easily tracks the object position 

from a video image file. A wide variety of functionalities can help the user set up axes, 

coordinate system, plot graphs and tables of track-generated data. 

 

 

 

Figure 2.1: User interface showing the menu bar, tool bar and four of the split 

panes that have been opened. Four split panes are main video view, plot view, 

table view and world view. (From http://www.cabrillo.edu/~dbrown/tracker/). 

 

For more details about how to use tracker in my study, refer to Appendix B. 
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Chapter 3: Experimental methodology 

 

 

This chapter describes the methodology that is used in this research. Section 1 

explains the biological experiment procedures that are implemented at Tifton, GA, 

USA. Section 2 gives the explanation of the data preparation procedures. Section 3 

provides details of exploring variables and their calculation. In section 4, the variables 

are improved based on the previous variables in Section 3. 

 

 

3.1 Experiments at Tifton 

 

The data used in my study are video files that contain the behaviour of the wasp. 

Those videos are recorded during the experiments in the USDA-ARS Biological 

Control Laboratory in Tifton, GA, USA. All training procedures and experiments are 

performed at Tifton. They were performed under a fume hood, with a fluorescent ring 

light to lure escaped wasps. 

 

 

3.1.1 Insects 

 

M. croceipes are used for this study. The larval hosts used for rearing M. croceipes 

were Heliothis zea (Lepidoptera: Notuidae) as discussed by Lewis and Burton (1970). 

The breeding stock are provided with water and honey and kept in a Plexiglas cage 

(30 x 30 x 17 cm) at 28 C
0 , 50-70% RH, and a L16:D8 photocycle. Test specimens 

were females, two days old, given only water from time of emergence and no 

oviposition experience. 
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3.1.2 Training procedure 

 

In this study, female M. croceipes are conditioned to associate coffee odour with food 

through associative learning. All training procedures are performed under a fume 

hood in the USDA-ARS Biological Control Laboratory in Tifton, GA. A fluorescent 

ring light (Luxco Lamp Corp.) is placed in the fume hood to lure escaped wasps. For 

preliminary studies, 20 wasps were trained, but only 16 were tested, then 

approximately 300 wasps were trained for future analysis. 

 

An odour delivery stage (Figure 3.1) was prepared for training each wasp. First, a 

filter disc was loaded with 0.02g coffee. Next, the filter disc was placed in a 200 ml 

glass jar which was then covered with a piece of aluminum foil. A piece of paper (2 x 

2 mm) was placed in the centre of aluminum foil covering and saturated with 50% 

sucrose water solution. Lastly, a push pin was used to create six holes in a tight 

circular pattern around the sucrose-water-saturated filter paper approximately 10 

minutes after the glass jar was closed with aluminum foil. 

 

 

Figure 3.1:Odour deliver stage used during training.(From Glen C. Rains) 

 

Female M. croceipes were captured and individually hand trained. These wasps were 

captured from their rearing cage and placed in separate vials. Each wasp was removed 

from its vial using a pair of forceps and individually allowed to feed on the sucrose 
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solution for ten seconds. The odorant emitted around the filter paper passed over their 

antennae while feeding. After feeding, each wasp was placed back in its vial. The 

process was repeated so each wasp was allowed to feed for three times, ten second 

intervals with approximately 60 seconds between each feeding (Tertuliano et al., 

2004). 

 

 

3.1.3 Test sample preparation 

 

For preliminary studies, two different coffee sample preparations were used for the 

testing. One was 0.02g coffee sample, the other was 0.005g coffee sample. The 

researcher’s hands were washed prior to creating the samples. First, a filter disc was 

loaded with 0.02 / 0.005g coffee. Next, the filter disc was placed in a 250 ml glass jar 

which was then covered with a piece of filter paper. There was a single hole in the 

middle of the filter paper where the odour emits. There were 2 circles centred on the 

hole. One was 25 mm in diameter and the other was 50 mm in diameter. 

 

Subsequently, three more coffee sample preparations (0.001g, 0.01g and 0.04g coffee) 

were added for testing. The testing sample categories became 0.001g coffee, 0.005g 

coffee, 0.01g coffee, 0.02g coffee and 0.04g coffee. 

 

 

3.1.4 Test procedure 

 

Testing was performed under the same fume hood as was used in the training. The 

digital camcorder was placed on top of the test sample under the fume hood. During 

testing, all light sources within the room, except the overhead fluorescence room 

lights, were turned off or covered up, resulting in an average light intensity of 295lux 

at the top of the test sample. The digital camcorder was placed so that the tip of the 
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camera was approximately 3 cm above the top of the test sample. Trained wasps were 

placed on each test sample (0.001g, 0.005g, 0.01g 0.02g and 0.04g coffee) separately 

and recorded by camcorder.  

 

 

3.2 Data record and preparation 

 

The data was collected using the camcorder to record trained wasps (0.02g coffee) 

presented with 0.001g coffee, 0.005g coffee, 0.01g coffee, 0.02g coffee and 0.04g 

coffee odours. The original data from the camcorder was MPEG
1
 movie file. They 

were grouped by five testing categories and stored in a computer hard drive. The 

Tracker software that is used in this study does not support MPEG files at this time; it 

only supports QuickTime
2
 movies and AVI

3
 movie files. In order to use the Tracker 

software to track the movement of the wasp from the data file, Blaze Media Pro
4
 was 

used to change the format of the data file from MPEG to AVI format. Blaze Media Pro 

is a powerful, all-in-one, multimedia application supporting audio and video 

conversions. It performs two-way video conversions among AVI, MPEG, and WMV 

formats. The MPEG data files (record from camcorder) were converted to AVI format 

with a matching frame rate of 25 frames per second.  

 

For more details on the steps of converting data files from MPEG to AVI refer to 

Appendix C. 

                                                        
1
 MPEG (pronounced M-peg), which stand for Moving Picture Experts Group, is the name of family 

of standards used for coding audio-visual information (e.g., movies, video, music) in a digital 

compressed format. (http://www.mpeg.org/MPEG/index.html) 

2 QuickTime is a multimedia architecture developed by Apple Computer for Mac OS, Mac OS X, 

Windows, and other platforms. It allows your computer to work with real-time movies, sounds, and 

high-quality compressed images. (http://www.apple.com/quicktime/) 
3
 AVI (which typically end in the .avi extension) stands for Audio Video Interleave and is currently the 

most common file format for storing audio/video data on the PC. 
4
 It is all-in-one multimedia software offering conversion, ripping, editing, recording, burning, 

playback, and much more. It is developed by Mystik Media Ltd. (http://www.blazemp.com) 
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3.3 Variables exploration and calculation 

 

A single trained wasp was placed on the surface of the test sample and its movement 

was captured by camcorder, which is showed in Figure 3.5 (A). According to the 

video record, the wasp has three major movement behaviours on the surface of the 

sample. First, the wasp travels close to the centre hole (where coffee odour emits) or 

moves away from the centre by searching for the coffee odour. Secondly, the wasp 

travels around the centre point (centre hole where the coffee odours emits from), 

clockwise or anticlockwise. Thirdly, it rotated around itself, either clockwise or 

counter-clockwise. Therefore, this project explores the relationships between those 

three major behaviours and the different levels of coffee concentration as time 

changes. It is assumed for the short duration of this test that the odour concentration 

emitted through the centre hole remains constant. The three major behaviours lead to 

three variables αθ ,,R . R  is the distance between wasp’s head and centre point as 

time changes (Figure 3.2). θ  is the angle in radians between the line through the 

wasp’s head to the origin(centre hole) and the horizontal line though centre point 

(X-axis) as time changes (Figure 3.3). α  is the angle in radians between the wasp’s 

body line (from wasp’s head to abdomen) and the horizontal line though the centre 

point (positive X-axis) as time changes (Figure 3.4). Those three variables were 

calculated for every 0.2 seconds; using plane geometry (two-dimensional) formulae 

(refer to Appendix D) based on the video files.  
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Figure 3.2: The variable R  

 

 

 

Figure 3.3: The variable θ  



   18 

 

Figure 3.4: The variable α  

 

 

The other variables could be used are the length of time that the wasp interrogates the 

centre hole, and the time at which the wasp exits the circle. But the major theme of 

this study is to investigate if there is a link between single trained M. croceipes and 

different level of target odours, and we use this information to build a simple model. 

Therefore, these two variables are not included in the model development in this study. 

However, these two variables could be useful for future development to improve the 

efficiency of the model. 

 

Tracker 1.5.2 was used to open each of the AVI data files, which were converted from 

MPEG format using Blaze Media Pro software. Planimetric rectangular coordinates 

were set up and the centre hole (where the coffee odour emits from) was made to be 

the origin as showed in Figure 3.5 (B). Tracker was used to mark the positions of 

wasp’s head and end of abdomen every 0.2 seconds and these positions (in X and Y 

coordinates) were copied into a Microsoft Excel data sheet (refer to Appendix B) . 

Those coordinates were used to calculate variables αθ ,,R  (refer to Appendix D).  
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A                                 B 

Figure 3.5: (A) The wasp was placed on the test sample; the centre point is a hole 

where coffee odour emits from. (B) Planimetric rectangular coordinates are set 

up using Tracker software and the centre hole is origin. 

 

Please refer to Appendix B for more details about how to use Tracker to track wasp’s 

position (x and y data for head and abdomen) and to export that information into a 

Microsoft Excel data sheet.  

 

The plane geometry formulas and other formulas used in the study will be showed in 

Appendix D. 

 

 

3.4 Variables improvement and explanation 

 

The variables were calculated and plotted using Microsoft Excel. However, it is 

difficult to imagine how the wasp travelled by looking at the graph. Three new 

variables were introduced to help understand how the wasp travelled. This helped to 

better understand the relationship between those variables (wasp behaviours) and the 

levels of concentration. Based on the previous variables ( αθ ,,R ), new variables ( ρ , 

γ  and β ) are described as follows: 
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� 
0

0

R

RR n−
=ρ               (3.1) 

 

where 0R  is the initial distance between the wasp’s head and the origin when the 

wasp is placed on the surface of the test sample. nR  is the distance between the 

wasp’s head and the origin when time is increased by (N x 0.2) seconds. N = 0, 1, 2, 

3…  

 

� 
π

θθ
γ

2

0−
= n               (3.2)     

 

where 0θ  is the initial angle in radian between the line through the wasp’s head to 

the origin and the X-axis when the wasp is placed on the surface of the test sample. 

nθ  is the radian between the line through the wasp’s head to the origin and the 

X-axis when time is increased by (N x 0.2) seconds. N = 0, 1, 2, 3… 

 

� 
π

αα
β

2

0−
= n               (3.3)   

 

where 0α  is the initial angle in radian between the wasp’s body line (from the 

wasp’s head to abdomen) and the positive X-axis when the wasp is placed on the 

surface of the test sample. nα  is the radian between the wasp’s body line and the 

positive X-axis when time is increased by (N x 0.2) seconds. N = 0, 1, 2, 3… 

 

 

Instead of using the initial distance (from wasp’s head to centre point) to observe the 

behaviour of the wasp, the variable ρ  is used to see if the wasp moved toward the 
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centre, across the centre or away from centre. If the wasp moves toward the centre 

from where it is first placed, the value of ρ  will be in the region (0, 1). If the wasp’s 

head arrives at the centre, it will exhibit head sticking or hole entering at the centre 

hole and the value of ρ  will become 1. If the wasp moves away from centre point, 

then the value of ρ  will start to decrease from 1 to a negative value (when moving 

further away from the initial starting position). 

 

The γ  is used here to describe how many cycles around the centre point (0, 0) the 

wasp travelled during the test. The positive γ  value means the wasp travelled 

counter-clockwise; the negative γ  value means the wasp travelled clockwise. The 

integer value of γ  means how many cycles the wasp travelled around the centre hole, 

for example, if 5.2−=γ , the wasp travelled clockwise for 2 and half cycles.   

 

The β  is used here similar toγ , but to describe the number of the body rotations 

during the test. The positive β  value means the wasp rotated counter-clockwise. The 

negative β  value means the wasp rotated clockwise. The values of β  is how many 

cycles the wasp has rotated about itself, for example, if 5.2=β , the wasp’s body 

rotated counter-clockwise for 2 and half cycles. 
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Chapter 4: Data analysis of wasp behaviour 

 

 

Based on information provided in the pervious chapter, the variables αθ ,,R  and the 

dimensionless variables ρ ,γ , β  are successfully computed and stored into MS Excel 

database. This chapter aims to provide detailed information on Excel database 

structure, the variable plots and the explanations on representative examples. Section 

1 gives the details of the data structure in Excel database. Section 2 provides the 

conditions of the variable calculation. In Section 3, the representative example of 

variable plots are provided and explained. In Section 4, the major findings are given 

after the variable plots have analysed. 

 

 

4.1 Data format in Excel database 

 

In this research, the behavioural data of one hundred and fifty trained wasps are 

extracted from the experimental movie files and stored into Microsoft Excel database. 

The data are grouped by the testing conditions, and stored into five different Excel 

files, named as ‘001 coffee’, ‘005 coffee’, ‘01 coffee’, ‘02 coffee’ and ‘04 coffee’. 

Each of these Excel files contained approximately thirty wasp data and stored 

separately into the different Excel work sheet. A single sheet is named as a unique 

wasp number that contained this wasp’s behaviour information. The indices used to 

calculate all the relevant variables that are listed in table 4.1. 
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Table 4.1: The indices that are used for variables calculation. 

 

Title Comment 

t 
Testing time, start from 0 until the wasp exit, 

increase by 0.2 seconds 

x1 X coordinate of wasp's head 

y1 Y coordinate of wasp's head 

R Variable R (refer to Figure 3.2) 
ρ  Variable Rho (refer to Equation 3.1) 

Theta 
Variable Theta range from 0 to pi (refer to Figure 

3.3) 

Theta(0-2pi) Variable Theta range from 0 to 2pi  

N 

N is the number of cycles the wasp moved 

towards clockwise/anticlockwise (refer to 

Appendix D)  

Theta + N*2pi Total angle of Theta 
γ  Variable Gamma (refer to Equation 3.2) 

x2 X coordinate of wasp's abdomen 

y2 Y coordinate of wasp's abdomen 

x3 X coordinate of origin (0,0) 

y3 Y coordinate of origin (0,0) 

x4 X coordinate of point (0,10) 

y4 Y coordinate of point (0,10) 

dx1 dx1 = x2-x1 

dx2 dx2 =x4-x3 

dy1 dy1 =y2-y1 

dy2 dy2 =y4-y3 

Alpha Variable R range from 0 to pi (refer to Figure 3.4) 

Alpha(0-2pi) Variable Alpha range from 0 to 2pi  

N 

 N is the number of cycles the wasp’s body 

rotated towards clockwise/anticlockwise (refer 

to Appendix D) 

Alpha + N*2pi  Total angle of Alpha 

β  Variable Beta (refer to Equation 3.3) 
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4.2 Conditions of variable calculation 

 

The variables ρ , γ  and β  for each wasp are calculated based on the formulas in 

chapter 3.4. The scatter plots of the variables ρ , γ  and β  against time for each 

wasp under five different test conditions are plotted out. These plots are used to help 

familiarize and analyse the relationship between the variables and the different 

concentration levels of the test samples.  

 

The experiment testing time (from the wasp has been placed on the test sample until it 

exited the test sample) is slightly different for each wasp. It is also changed when the 

concentration levels of the test sample are changed. The wasp’s testing time is 

increased sharply when the concentration levels of the test sample are increased. Most 

of the wasps’ testing time is larger than 20 seconds. However, few of the wasps have a 

shorter testing time less than 20 seconds. Due to the different testing time, only the 

first 20 seconds’ behavioural data is used for the variable analysis and the model 

implementation. 

 

Ideally, all the wasps reach the centre point or find the test odour. However, some 

wasps do not reach the centre point (find the test odour). These wasps are not studied 

in my research and these data are not used for the model implementation.  

 

 

4.3 Representative example of variable plots  

 

Due to the large number of plots under each test condition, one representative is 

selected and discussed in this section as an example of others. The plot shows the 

variable changes from 0 seconds to 20 seconds (In Figure 4.1). The variable is 

calculated in every 0.2 seconds; all the data points are connected by smoothed lines 
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without marking the data points.  

 

 

 

Figure 4.1: Scatter plot of variables for a selected wasp at 0.001g test 

concentration. (A) Variable Rho. (B) Variable Gamma. (C) Variable Beta. 
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Figure 4.1(A) illustrates the distance changes between the wasp’s head and the centre 

point (the odour-emitting point) as time changes. The graph shows that the wasp 
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moved to the centre in 4.4 seconds. The wasp then kept searching around the centre 

point until 8.7 seconds had elapsed. It moved slightly away from the centre point for 

7.5 seconds (total now 16.2 seconds). Finally, the wasp is moved directly away from 

the centre point. On the other hand, the wasp’s activity could be divided into three 

parts. The first part is the time taken by the wasp to reach the centre point; the second 

part is the time spent by the wasp at or near the centre point. The last part is the time 

between when the wasp moved away from the centre point until it either exited the 

surface of the test sample or 20 seconds had elapsed. 

 

Figure 4.1(B) illustrates the number of cycles the wasp travelled around the centre 

point during the test as time changes. The graph shows that the wasp moved 0.4 

cycles in a counter-clockwise direction in 3.6 seconds. Then it moved clockwise for 

2.8 seconds. After that, it moved counter-clockwise until 20 seconds had elapsed. The 

graph also shows the wasp mainly moved in one direction and totally moved 1.2 

cycles. In fact, there is a small oscillation that occurred between 0 seconds and 11.8 

seconds. It means the wasp moved continuously in a counter-clockwise and clockwise 

direction every few seconds. In some cases, the wasp moved equally in both a 

counter-clockwise and clockwise direction as shown in Figure 4.2 (A). The slope of 

the graph also shows how fast the wasp moved in this direction. In fact, the slope 

changed when the test conditions change. 

 

Figure 4.1(C) illustrates the number of the body rotations during the test as time 

changes. The graph shows that the wasp’s body is mainly rotate counter-clockwise 

and totally rotated 1.8 cycles. The wasp moved in a clockwise direction between 10 

seconds and 11.8 seconds. The slope of the graph shows the wasp’s body rotated 

slowly counter-clockwise between 0 seconds and 6.4 seconds. Then it rotated more 

quickly counter-clockwise between 6.4 seconds and 10 seconds. After quickly 

reversing rotation (from 10 seconds to 11.8 seconds), the wasp rotated 

counter-clockwise direction until 20 seconds had elapsed. In some cases, the wasp is 

rotated equally in both directions as shown in Figure 4.2 (B). The slope of the graph 
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shows how fast the wasp is rotated in this direction. In fact, the slope changes when 

the test condition is changed. 

 

 



   29 

 

Gamma

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

Time

G
a
m

a

 

(A) 

 

 

Beta

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20

Time

B
e
ta

 

(B) 

Figure 4.2: Scatter plot of variables for a selected wasp at 0.02g test 

concentration.  (A) Variable Gamma. (B) Variable Beta. 
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4.4 Major findings after analysis of variables 

 

After comparing all the variable plots for five different test conditions, there are some 

major findings between the variables and the test sample levels. 

 

Most of the wasps could reached the centre (the odour-emitting point) within five 

seconds. The time that wasp first reached the centre point is called the first resident 

time. This time is slightly different for the different concentration levels of the test 

sample. The wasp’s first resident time for the 0.02g test is smaller than other; it may 

be because this concentration value is the same as the training concentration. The 

average first resident time is decreased when the test sample’s concentration level is 

increased. As the test sample’s concentration level increased, the total time that the 

wasp spend during the test is increased, which means the wasp is spent more time to 

search around the centre (the odour-emitting point) during the test and the number of 

times the wasp cross the centre (the odour-emitting point) is larger. 

 

The mean value of γ  and β  are calculated over all wasps for each of the 

concentration levels as shown in Figure 4.3. The values on Figure 4.3 show the final 

positions averaged over all wasps in each concentration level. 

 

Figure 4.3(A) illustrates mean value of variable γ  (the number of cycles the wasp 

travelled around the centre) changes under the different test concentration levels. It 

shows that the average number of cycles the wasp travelled around the centre for the 

higher concentration levels is larger than low level concentrations.  

 

Figure 4.3(B) illustrates mean value of variable β  (the number of the body rotations) 

changes under the different test concentration levels. It shows that the average number 

of the body rotations for the lower concentration levels is larger than high level 

concentrations. 
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Figure 4.3: Means of Gamma and Beta values for the different concentration 

levels. (A) Mean Gamma Value. (B) Mean Beta Value. 

 

 

In this study, only one test sample’s concentration is larger than the training 

concentration (0.04g) test sample. The comparison is made between the 0.02g test 

sample (same as the training concentration) and the 0.04g test sample (larger than the 
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training concentration). The variable plots are similar to each other. In general, we can 

hypotheses that the wasp may not be able to distinguish the difference between the 

concentrations when they have similar behaviours. It may be because that these two 

concentration do not have different levels of odour (they both saturate the air in the jar 

at equilibrium). It is presumable that when the test sample’s concentration is saturated, 

the wasps are appeared to have the similar behaviours. However, more comparisons 

between the larger concentrations are necessary to investigate the effect of higher 

concentrations on wasp behaviour.  

 

The mean values of γ  and β  recorded in Figure 4.3 are close to each other for 

each of the concentrations. It shows a very weak relationship (shallow slope) between 

γ  and β , and this relationship is almost non-existent. This is not adequate for 

quantitative concentration sensing. A more elaborate model is developed in the next 

chapter. 



   33 

Chapter 5: Stochastic model development and parameter estimation 

 

 

In this chapter, a simple stochastic mathematical model dwbXdtadX ⋅+⋅=  is 

introduced to simulate the wasp’s behaviour. In this stochastic differential equation, X 

is the dimensionless variable that is discussed in chapter 3.4; a and b are the 

parameters to be determined in this chapter based on the experimental data; dw is the 

increments of the standard Wiener process which is normally distributed with a unit 

variance. The parameters are analysed in order to find out the hidden information 

between these parameters and the different test concentration levels. In Section 1, the 

stochastic mathematical model is described for three variables that are used in this 

study. In Section 2, the parameter estimation process is explained. In Section 3, the 

computed parameters are analysed and a new model equation is developed, which 

would lead to the final implementation of the model. 

 

 

5.1 Stochastic mathematical model 

 

Before establishing a realistic and reliable input-output function that could be used for 

the model development, we have to figure out what is the input and output, and how 

they relate to each other. The output is obvious; it is the test sample concentrations. 

However, the input is not obvious; it is related to the wasp’s behaviour (or the 

improved variables) during the test. To estimate the input, we have to investigate how 

the wasp’s behaviour changes when the concentration level of the test sample is 

changed. Therefore, a simple stochastic mathematical model is built to simulate the 

wasp’s behaviour (or the improved variable changes) at the different concentration 

levels. The numerical solution of this model is solved by using the extracted data and 

the variable values. Ideally, by analysing the numerical solution of this model, we will 

be able to find out the unique characteristics of the different test samples. These 
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characteristics can be used as the input for the model. 

 

Based on the knowledge of the analysed variables discussed in the previous chapter, a 

simple stochastic mathematical model is used in this study to simulate the wasp’s 

behaviour (variables) changes. This mathematical model is based on a stochastic 

differential equation  

 

dwbXdtadX ⋅+⋅=               (5.1) 

 

where X is the variable, a is the variable parameter, b is the standard Wiener process 

parameter, dw is the increments of the standard Wiener process which are normally 

distributed with a unit variance ( Mean value is 0, Variance is t∆ , Standard Deviation 

is t∆  ).   

 

Equation (5.1) is the general form used to describe how a variable changes. As 

discussed in Chapter 3.4, we have introduced three dimensionless variables ρ , γ  

and β  in this study. Therefore, the stochastic differential equation for each of these 

variables is transferred into three different equations, each with their own parameters. 

 

• For variable ρ , the stochastic differential equation is  

 

dwbdtad ⋅+⋅⋅= ρρ            (5.2) 

 

where ρ  is the variable used to describe the distance changes between the 

wasp and the centre point during the test, a is the parameter of variable ρ , b is 

the parameter of the standard Wiener process, and dw is the increments of the 

standard Wiener process. 
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• For variableγ , the stochastic differential equation is  

 

dwddtcd ⋅+⋅⋅= γγ             (5.3) 

 

where γ  is the variable used to describe the number of cycles the wasp have 

travelled around the centre point, c is the parameter of variable γ , d is the 

parameter of the standard Wiener process, dw is the increments of the standard 

Wiener process. 

 

• For variable β , the stochastic differential equation is  

 

dwfdted ⋅+⋅⋅= ββ            (5.4) 

 

where β  is the variable used to describe the number of the body rotations 

during the test, e is the parameter of variable γ , f is the parameter of the 

standard Wiener process, dw is the increments of the standard Wiener process. 

 

In summary, the variables ρ , γ  and β  are described by these 3 stochastic 

differential equations with 6 parameters a, b, c, d, e and f. These parameters can be 

estimated from the experimental data that are extracted from the experiment video 

files. The parameters a, c and e are representing the spatial and angular velocities. The 

underlying idea is that these velocities change in response to odour concentration, 

rather than the static values that were tried in Section 4.4. The erratic nature of the 

observed movement as illustrated by Figure 4.1 and 4.2 is in this model ascribed to 

random perturbations superimposed on the regular velocity displacements. The 

parameters b, d and f are representing the amplitudes of such perturbations. 
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5.2 Parameter estimation for stochastic model   

 

After defining the stochastic differential equations for each of the variables, their 

parameters should be estimated. The goal of parameter estimation is to find parameter 

values which give the model equation the best goodness of fit with the given 

measured data. This is also called the inverse problem. Normally, a model contains a 

set of unknown parameters. The parameter estimation processes could be extremely 

complex due to the large number of parameters. 

 

For the current model, there are only two parameters as shown in equation (5.1). One 

is variable parameter a , the other one is standard Wiener process coefficient b . The 

coefficient b  denotes the intrinsic noise coefficient which takes negligibly small 

values to include or exclude the intrinsic noise. The Wiener process is a random 

number generator to indicate the noise in the equation. In this study, Variance is 

0.0125 (refer to Section 5.3.1) and Standard Deviation is 0.1118. Approximately, 85% 

of the dw  values are less than 0.01; the other 15% of the dw  values are between 

0.01 and 0.03. Since, dw  represents the noise in the equation and is far less than Xdt  

and dX , therefore the deterministic equation can be obtained by removing the terms 

involving dw , and consider the following part as a least square problem. The 

equation (5.1) now become 

 

XdtadX ⋅=                (5.5) 

 

From the given data set Xi, and dXi (the extracted experimental data), where 

Mi ..1=  ( dttimetotalM /_= ), and the equation (5.5), we need to find the unknown 

parameter a . 

 

The square error of model equation (5.5) is ∑∑
==

−==∏
M

i

ii

M

i

i dtaXdXd
1

2

1

2 )( . In order 



   37 

to reach the minimum square error, let the first derivative of ∏ be 0, we got equation 

 

0)(2
1

=−−=
∂

∏∂
∑

=

M

i

iii dtXdtaXdX
a

          (5.6) 

 

Then we can easily compute the unknown parameter a  from equation (5.6), and it is 

expressed in the form 

 

∑

∑

=

=

⋅

⋅

=
M

i

i

M

i

ii

dtX

dXX

a

1

2

1ˆ
            (5.7) 

 

where iX  is the experimental value of variables, iii XXdX −= +1 ,  sec2.0=dt  

and 1002.0/20/_ === dttimetotalM . 

 

Because equation (5.1) is the general form of the variable equation (5.2), (5.3) and 

(5.4), therefore the unknown parameters a, c and e in equation (5.2), (5.3) and (5.4) 

can be computed by using the same method and expressed as the same form of 

equation (5.7). 

 

• For variable ρ , the stochastic differential equation is  

 

dwbdtad ⋅+⋅⋅= ρρ            (5.2) 

 

and the solution of the parameter a  is 
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∑

∑

=

=

⋅

⋅

=
M

i

i

M

i

ii

dt

d

a

1

2

1ˆ

ρ

ρρ

          (5.8) 

 

where iρ  is the measured experimental value of variable ρ , iiid ρρρ −= +1 ,  

sec2.0=dt  and 1002.0/20/_ === dttimetotalM . 

 

 

• For variableγ , the stochastic differential equation is  

 

dwddtcd ⋅+⋅⋅= γγ             (5.3) 

 

and the solution of the parameter c  is 

 

∑

∑

=

=

⋅

⋅

=
M

i

i

M

i

ii

dt

d

c

1

2

1ˆ

γ

γγ

           (5.9) 

 

where iγ  is the measured experimental value of variable γ , iiid γγγ −= +1 ,  

sec2.0=dt  and 1002.0/20/_ === dttimetotalM . 

 

 

• For variable β , the stochastic differential equation is  

 

dwfdted ⋅+⋅⋅= ββ            (5.4) 
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and the solution of the parameter e  is 

 

∑

∑

=

=

⋅

⋅

=
M

i

i

M

i

ii

dt

d

e

1

2

1ˆ

β

ββ

          (5.10) 

 

where iβ  is the measured experimental value of variable β , iiid βββ −= +1 ,  

sec2.0=dt  and 1002.0/20/_ === dttimetotalM . 

 

The variable parameters are solved and successfully computed from the equations 

(5.8), (5.9) and (5.10). Since the increments of the standard Wiener process dw and its 

parameter are very small, we omit them and only focus on the variable parameter 

analyse. 

 

 

5.3 Parameter analysis 

 

The variable parameters a, c and e are computed based on equation (5.8), (5.9) and 

(5.10). These parameters are stored in a separate MS Excel database for analysis. 

 

 

5.3.1 Parameter accuracy improvement 

 

The initial conditions are sec2.0=dt  and 1002.0/20/_ === dttimetotalM . 

There are a total of 100 measured variable X values and dX values (from equation 5.7) 

that are used to calculate the variable parameters. One way to improve the parameter 
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accuracy is keeping the experiment time at a constant value (20 seconds in this study), 

and then, decrease the time interval dt (the time between data collecting), therefore the 

total number of measured variable X values and dX values are increased.  

This leads to another question: how do we decide the value of dt in order to get the 

parameter value with a reasonable accuracy. As dt decrease, the number of the 

variable data (X and dX) used to compute the parameter will be increased sharply. 

This will increase the complexity of the parameter calculation. For instance, when dt 

= 0.001562, there will be 12802 variable X values and dX values used for parameter 

calculation. This will cause the calculation time to increase sharply. 

 

In order to find out a suitable dt value, a simulation is carried out to examine the 

parameter changes under the different dt values. The experiment observation time is 

20 seconds for all the wasps. The dt value is divided into eight different groups which 

start with 0.2 seconds and decrease by half each time. The dt values are 0.2 seconds, 

0.1 seconds, 0.05 seconds, 0.025 seconds, 0.0125 seconds, 0.00625 seconds, 0.003125 

seconds and 0.001563 seconds. The simulation results have shown that the parameter 

value (a or c or e) is increased when the time interval dt is decreased. In other words, 

the parameter value is increased when the amount of data that are used to calculate the 

parameter is increased. The experiment results have also shown that the parameter 

value is increased slowly as dt keeps decreasing, it will reach a stable point (stay 

constant) when dt is extremely small.  

 

Figure 5.1 illustrates the relationship between the parameter a and the time interval dt 

for four randomly picked wasps at 0.02g coffee concentration. In this figure, Y axis is 

representing the parameter a values, the number 1 to 8 on X axis is representing eight 

different dt values, which are 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125 and 

0.001563. Each joining line is representing the parameter a value changes for the 

same wasp as dt changes. For the same wasp, the parameter value is changed much 

more slowly when dt is less than 0.00125 seconds. It will reach its stable point when 

dt is less than 0.001563 seconds. The parameter value at dt = 0.0125 is very close to 
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the dt value at dt = 0.001563. 
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Figure 5.1: Scatter plot of the parameter a for four randomly picked wasps. Four 

wasps were randomly picked up and their parameter a values were calculated 

using 8 different dt values (from 0.2 to 0.001563). 

 

 

After analysing the experiment results, it is decided to use dt = 0.0125 for all the 

parameter calculation and analysis. When dt = 0.0125 seconds, the parameter value is 

very close to the value we got from dt = 0.001562. However, the amount of data that 

are used to calculate the parameter value at dt = 0.0125 is eight times less than the 

amount of data used to calculate the parameter value at dt = 0.001562. The calculation 

time is much less than the time that dt = 0.001562 seconds as well.  

 

A computer program is written in VBA programming language to compute and record 

the parameter a, c and e values at the different dt values. It is provided in Appendix E. 

After the parameter values have been computed using eight different dt values for all 

the wasps, the graphs of the parameter changes at 0.02g test concentration is plotted 

and provided as a example in Appendix E. 
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5.3.2 Linear regression analysis  

 

The variable parameters a, c and e are computed at dt = 0.0125 sec and stored in a 

separate MS Excel file for statistical analysis. A regression analysis is carried out to 

examine the relationship between the parameters and the test concentration levels. 

The results have shown that the parameters a, c and e do not have a straightforward 

linear relationship with the test concentration levels. Most of the parameter values are 

spread into a similar range when the test concentration levels are increased, and they 

can not be classified. The scatter plots of parameters versus test concentrations are 

provided in Figure 5.2.  

 

Figure 5.2(A) illustrates the distribution of the parameter a values under the different 

test concentrations. The graph shows that most of the parameter a values are in the 

same range from -0.06 to 0.4 when the test concentration is less than or equal to 0.01g. 

The parameter a values are spread from -0.06 to 0.6 when the test concentration is 

equal to the training concentration (0.02g). The parameter a values are in the small 

range from -0.06 to 0.2 when the test concentration is 0.04. 

 

Figure 5.2(B) illustrates the distribution of the parameter c values under the different 

test concentrations. The graph shows that the parameter c values are in the range from 

-0.02 to 0.2 when the test concentration is less than or equal to 0.02g. The parameter c 

values are in the small range from -0.02 to 0.1 when the test concentration is 0.04g. 

 

Figure 5.2(C) illustrates the distribution of the parameter e values under the different 

test concentrations. The graph shows that the parameter e values are all in the range 

from -0.03 to 0.18 except when the test concentration is 0.02g. The parameter e values 

are in the small range from -0.03 to 0.1 when the test concentration is 0.02g. 
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Figure 5.2: Scatter plot of the parameters versus test concentrations. (A) 

Parameter a. (B) Parameter c. (C) Parameter e. 
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It is disappointing that the parameter a, c and e itself does not have a straightforward 

relationship with the test concentrations. Consider the real situation of a trained 

wasp’s behaviour during the test; there are three variables that represent three 

different movements occurring at the same time during the test. Therefore, instead of 

studying them separately with the test concentrations, it is also necessary to 

investigate the relationship between the test concentrations and the combination of 

parameters a, c and e. There is most likely a connection between the test 

concentrations and the combination of the parameter a, c and e. Finding this 

information will lead us to a model that uses the combination of the parameters a, c 

and e as the independent input variables to get the test concentration as the dependent 

output variable. 
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5.3.3 New model equation and nonlinear regression analysis 

 

In order to determine the connection between the parameters a, c and e, the study is 

carried out to investigate the relationship between parameter combinations. After 

analysis of many different parameter combinations’ plots, it is found that  a  and 

a

ec

e

−
−

 have an exponential relationship for each of the test concentrations. Different 

combinations of a, c and e are also tested to check if they can provide better results. 

However, the test results shown that a

ec

e

−
−

 provide better results than other 

combinations of a, c and e, such as c

ea

e

−
−

. The scatter plots of  a  versus a

ec

e

−
−

 

for each of the test concentrations are provided in Figure 5.3. 

 

The Figure 5.3 illustrates the distribution of a

ec

e

−
−

 values via a  changes for each 

test concentrations. The data distribution is slightly different from Figure 5.3(A) to 

Figure 5.3 (E). However, the general trend line of the data is similar to each other, 

which are all exponential functions. 
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Figure 5.3: Scatter plot of a  versus a

ec

e

−
−

 for each of the test concentrations. 

(A) 0.001 test concentration. (B) 0.005 test concentration. (C) 0.01 test 

concentration. (D) 0.02 test concentration. (E) 0.04 test concentration. 
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Based on the study of the general exponential functions in Figure 5.3, a new model 

equation is found as showed below: 

 

aa

ec

ee
β

α
−

−
−

⋅−= 1             (5.11) 

 

where a, c and e are the known parameters from equation (5.8), (5.9) and (5.10). α  

and β  are the unknown parameters for equation 5.11. 

 

Nonlinear regression analysis is performed to examine the new parameters in equation 

(5.11) for each of the test concentrations by using the MATHEMATICA software 

through an iterative process. The best fit parameters α  and β  values and its Mean 

Square Error for each of the test concentrations are listed in table 5.1. 

 

 

Test Concentration α  β  Mean Square Error 

0.001 0.744068 6.28999 0.0915192 

0.005 0.930106 16.2554 0.076745 

0.01 0.905896 8.41131 0.0657437 

0.02 0.878047 6.41053 0.052781 

0.04 0.812218 8.59345 0.077577 

 

Table 5.1: New parameters α , β  and their mean square error values for each 

of the test concentrations. 
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Substitute the new parameters value from Table 5.1 into the equation (5.11), the new 

model equation for each of concentrations are solved and listed blow. 

 

• For 0.001 Concentration, the model equation is  

aa

ec

ee
28999.6

744068.01
−

−
−

⋅−=        (5.12) 

 

• For 0.005 Concentration, the model equation is  

aa

ec

ee
2554.16

930106.01
−

−
−

⋅−=        (5.13) 

 

• For 0.01 Concentration, the model equation is  

aa

ec

ee
41131.8

905896.01
−

−
−

⋅−=        (5.14) 

 

• For 0.02 Concentration, the model equation is  

aa

ec

ee
41053.6

878047.01
−

−
−

⋅−=        (5.15) 

 

• For 0.04 Concentration, the model equation is  

 
aa

ec

ee
59345.8

812218.01
−

−
−

⋅−=        (5.16) 

 

where a, c and e are the known parameters from equation (5.8), (5.9) and (5.10). 
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Chapter 6: Model development  

 

 

In this chapter, the model is developed based on mathematical equation (5.11) and the 

function equations between its parameters (α  and β ) and the test concentrations. It 

will use the previous parameters a, c and e as the input variables, and output the 

relevant test concentration. In Section 1, the model equations are estimated and the 

model flow diagram is provided. In Section 2, the model equation validation process 

is carried out. In Section 3, the initial conditions and the interface of the model are 

provided.  

 

 

6.1 Model equation estimation 

 

Before implementing the model, the function between new parameters α  and β  

from equation (5.11) and the test concentrations must be found out. Based on the data 

in table 5.1, the scatter plot of the parameters α , β  and the test concentrations are 

provided in Figure 6.1.  

 

The Figure 6.1(A) illustrates the parameter α  changes when the test concentration is 

increased. The parameter α  and the test concentrations appeared to have a strong 

linear relationship apart from the α  value when the test concentration is 0.001 g, 

which is marked as a triangle in Figure 6.1(A).  

 

The Figure 6.1(B) illustrates the parameter β  changes when the test concentration is 

increased. The parameter β  and the test concentrations appeared to have a quadratic 

polynomial relationship apart from the β  value when the test concentration is 0.001 
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g, which is marked as a triangle in Figure 6.1(B). 
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Figure 6.1: Scatter plot of the parameters versus the test concentrations with the 

trend line. (A) Scatter plot of parameter α . (B) Scatter plot of parameter β . 

 

 

Both Figure 6.1(A) and (B) show that the data trend could be described by the linear 

and the quadratic polynomial functions except when the test concentration is 0.001g. 

The reason for that may be because the test concentration is much smaller than the 

training concentration. Therefore, it is not detected by the wasp. If the wasp is not 

detecting anything, their behaviour is different. They are not searching. We assume 

that the wasp’s behaviour is all similar to each other when the test concentration is 

much smaller than the training concentration (the test odour is not detected by the 

wasp).  

 

Linear and nonlinear regression analysis is carried out to solve the linear and the 

quadratic polynomial functions as showed in Figure 6.1(A) and (B) by using the 

MATHEMATICA software. 

 

The linear function used to model parameter α  is  
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9431.02812.3)(1 +⋅−== ConcConcfα          (6.1) 

 

where Conc is the test concentration with 04.0005.0 ≤< Conc .  

 

The quadratic polynomial function used to model parameter β  is 

 

568.209.122923363)( 2

2 +⋅−⋅== ConcConcConcfβ       (6.2) 

 

where Conc is the test concentration with 04.0005.0 ≤< Conc . 

 

The R square is also calculated to measure the relative prediction power of the 

equation (6.1) and (6.2). The R square value for equation (6.1) is 0.996, and the R 

square value for equation (6.2) is 0.8653, indicating both equation (6.1) and (6.2) are 

very good to predict the parameter values from the test concentrations. 

 

Now, look at the equation (5.11) as showed blow 

 

aa

ec

ee
β

α
−

−
−

⋅−=1            (5.11) 

 

 

where a, c and e are the parameters that were solved from the previous chapter. 

)(1 Concf=α  and )(2 Concf=β  were also solved in equation (6.1) and (6.2). 

 

Substitute equation (6.1) and (6.2) for  α  and β  into the equation (5.11), the 

equation become 

 

aConcfa

ec

eConcfe
⋅−

−
−

⋅−=
)(

1
2)(1        (6.3) 
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Since the function )(1 Concf  and )(2 Concf  are solved, we are able to get the test 

concentration “Conc” from the known variables a, c and e. 

 

The model is developed based on the equations (5.11) and the known parameters a, c, 

e. A computer algorithm is written by VBA programming language in MS Excel to 

convert the mathematical equations into a computer solvable problem. It is provided 

in Appendix F. The flow diagram of the model is summarized in Figure 6.2. 
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Figure 6.2: An overview of the Model process. 
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6.2 Model equation validation 

 

The validation process is carried out to check the accuracy of the model and its 

equations (6.1), (6.2), (6.3). The following procedures are preformed to validate the 

model and fine tune the equations (6.1), (6.2) based on the equation (6.3). 

 

First, four sets of the experimental data (a, c and e) are collected from each of the test 

concentrations (0.005, 0.01, 0.02 and 0.04). Each of the data set contains 

approximately 30 data. They are computed though the model and the computational 

results for both sides of the equation (6.3) are stored and compared. If they are equal 

or close enough to each other, it means these equations are accurate for the model. 

Otherwise, the equations (6.1), (6.2) will need to be fine tuned to make the equation 

(6.3) satisfied for all the experimental data set or most of the experimental data sets. 

 

The equation used to validate the accuracy of equation (6.3) is  

 

aConcf

a

ec

eConcf

e
⋅−

−
−

⋅−
)(

1
2)(1

          (6.4) 

 

where 
a

ec

e

−
−

 is the left side of equation (6.3), 
aConcf

eConcf
⋅−

⋅−
)(

1
2)(1  is 

the right side of the equation (6.3). 

 

Next, the initial parameters of the equations (6.1) and (6.2) were fine tuned by 

comparing the value of the equation (6.4) for all the data set. If most of the value are 

equal or close to 1, it means these equations are accurate for the model. Otherwise, the 

equations (6.1), (6.2) will need to be changed to make the value of the equation (6.4) 

close to 1 for all the experimental data sets or most of the experimental data sets. 
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Last, the equation (6.1) and (6.2) are determined when the equation (6.4) is given the 

best certifiable ratio from all the experimental data sets. 

 

Equation (6.1) is the best equation that could be used in this study to describe the 

relation between the parameter α  and the test concentrations. It remained the same 

for the model implementation. Equation (6.2) is changed to give the best certifiable 

ratio from the experimental data set. The equation for the parameter β  is changed to 

 

662.286.293791249)( 2

2 +⋅−⋅== ConcConcConcfβ       (6.5) 

 

where Conc is the test concentration with 04.0005.0 ≤< Conc . 

 

The computational results of equation (6.4) for all the data sets at four different test 

concentrations are plotted in Figure (6.3) after the equations (6.1) and (6.2) are 

determined. The graphs show that 64% to 76% of the data are equal or close to 1, 

which means they are satisfied by the equations (6.1) (6.3) and (6.5). 
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Figure 6.3: Computational results of the equation (6.4) for all the data sets at 

four different test concentrations. (A) 0.005g. (B) 0.01g. (c) 0.02g. (D) 0.04g. 
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6.3 Initial conditions and the model interface 

 

As described in the previous section, the model is developed based on the equations 

(6.1), (6.3) and (6.5). It is written by VBA programming language in MS Excel, and 

uses the parameters a, c, e as the input variables to predict the actual concentrations. 

The model is based on the study of the experimental data which are collected from 

four different test concentrations (0.005g, 0.01g, 0.02g and 0.04g). Therefore, the 

predicting range of the model is from 0.005g to 0.04g.  

 

The interface of the model is provided in Figure 6.4. It has a friendly user interface 

that can easily process multiple rows of the input variables at the same time.  
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Figure 6.4: The interface of the model. 

 



   58 

Chapter 7: Simulation results and discussion of the model 

 

 

In this chapter, the model is tested by using the new wasp data that are collected from 

the experiment at various test concentrations. The model simulation results are 

compared with the actual results to find out the accuracy and limitation of the model. 

In Section 1, a discussion of the simulation results and a comparison with the actual 

values are given. In Section 2, a discussion of the model and its limitations are 

provided. In Section 3, the experimental data is re-simulated after lumping 0.02g and 

0.04g behaviour data, and its results are analysed and discussed. 

 

 

7.1 Simulation results 

 

A total of 120 new data sets (not used for the model development) are tested by the 

model. Each data set included three parameters a c and e which are extracted from one 

wasp video at a particular concentration of the test sample. All the data sets are 

summarized in Table 7.1. 

 

Dosage Number of data 

0.005g 30 

0.01g 30 

0.02g 30 

0.04g 30 

Σ 120 

Table 7.1: Summary of the data sets 

 

The model simulation results were not exactly equal to the actual dosage values. Most 
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of them were close to the actual dosage value. In this study, we use actual dosage 

value +/- 0.005(25% of the training dosage) as the particular ranges to classify the 

simulation results. In fact, the classify range for 0.005, 0.01, 0.02 and 0.04 dosages 

are [0 – 0.01], [0.005 – 0.015], [0.015 – 0.025] and [0.035 – 0.045]. The model was 

able to roughly predict the actual dosage value. Approximately sixty to seventy 

percent of simulated results are close to actual dosage values, which are in the given 

range. The simulation results for each dosage are summarized and plotted in Figure 

7.1.  

 

The histogram in Figure 7.1(A) illustrates the simulation results for 0.005g dosage. 

The Figure shows 63.3% of the simulation results are close to 0.005, which are in the 

range of 0 to 0.01. The other 36.7% of the simulation results are larger than 0.005, 

which are in the range between 0.01g and 0.04g dosage.  

 

The histogram in Figure 7.1(B) illustrates the simulation results for 0.01g dosage. The 

Figure shows 70% of the simulation results are close to 0.01, which are in the range of 

0.005 to 0.015. The other 30% of the simulation results are larger than 0.01, which are 

in the range between 0.015g and 0.04g dosage.  

 

The histogram in Figure 7.1(C) illustrates the simulation results for 0.02g dosage. The 

Figure shows 60% of the simulation results are close to 0.02, which are in the range of 

0.015 to 0.025. The other 30% of the simulation results are either less or larger than 

0.02. There is 13.3% of the simulation results are in the range of 0.005 to 0.015. There 

is 16.7% of the simulation results are in the range of 0.025 to 0.04.   

 

The histogram in Figure 7.1(D) illustrates the simulation results for 0.04g dosage. The 

Figure shows only 20% of the simulation results are close to 0.04, which are in the 

range of 0.035 to 0.045. The other 80% of the simulation results are much less than 

0.04. There is 13.3% of the simulation results are in the range of 0.025 to 0.035. There 

is 50% of the simulation results are in the range of 0.015 to 0.025. There is 16.7% of 
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the simulation results are less than 0.015. 

 

In summary, the model can roughly predict the target concentration values in a 

particular range of 0.005 to 0.02. The actual rate is around 60% to 70%. 

 

 

Figure 7.1: Statistic results of simulation and 5% error bar. (A) 0.005g. (B) 0.01g. 

(c) 0.02g. (D) 0.04g 
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Statistic Results for 0.02 Dosage
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(C) 0.02g 
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(D) 0.04g 

 

 

7.2 Discussion of the Model and its limitations 

 

In chapter three to six, a model has been presented that utilizes the behaviour of a 

single trained wasp to predict a target concentration value. This model has three 

unique input variables a, c and e which is computed based on three major behaviour 

of the trained wasp during the test experiment. It will output the target’s actual 

concentration value based on these input variables. 

 

The original predicting range of the model is from 0.005g dosage to 0.04g dosage. 
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However, through the analysis of the simulation results in the last section, it was 

shown that the model failed to predict the target’s actual concentration value at 0.04g 

dosage (only 20% of the simulation results close to the actual dosage value). This may 

be caused by the lack of information on the experimental data that are higher than the 

training dosage or the actual volatile concentration at 0.04g of coffee is 

indistinguishable from 0.02g of coffee placed in the glass jars (coffee concentration is 

saturated at 0.02 g and thus unchanging as we place more coffee in the jar). In this 

study, we have analysed three different groups of the experimental data (0.001g, 

0.005g, 0.01g dosage) which are less than the training dosage (0.02g dosage). On the 

other hand, we have only analysed one group of the experimental data (0.04g dosage) 

which is larger than the training dosage. It is necessary to analyse several group of the 

experimental data which are larger than the training dosage, e.g. 0.03g, 0.04g, 0.05g 

and 0.06g dosage, to improve the accuracy of the model at higher dosage in the future. 

However, if volatile concentrations at higher dosages are not different than the 

training dosage, then repeating tests at higher concentrations would not indicate any 

differences. Therefore, it is necessary to take concentration measurements for the 

different levels of coffee weights in the jars in the near future.  

 

If the coffee concentration is saturated at 0.02g, it will remain unchanging as we place 

more coffee in the jar. This hypothesis is tested by lumping 0.04g behaviour data with 

0.02g behaviour data, and see what happens to the prediction. The statistical analysis 

was performed and discussed in section 7.3. 

 

In a word, the model can roughly predict the target concentration in a particular range 

of 0.005 to 0.02. The accurate rate of the model is 60% to 70%.  

 

There are also some limitations to the model. 

 

The simulation results are not exactly same as the actual values. Therefore we have to 

use a small range that is close to the actual value to decide if the simulation results are 
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acceptable. When the actual concentration values are very close to each other, it is 

much harder to decide the actual concentration values. For instance, when simulation 

result is 0.0075, it is hard for the user to decide whether the target’s actual 

concentration is 0.005 or 0.01. 

 

For this simple model, we have used a relevant large interval (actual value±0.005) to 

decide if the model output is correct. If the model output is in this range, we will 

count it as a correct output. However, this interval needs to be narrowed down as the 

model equations become more precise.   

 

From the data analysis, we found that when target concentration is much smaller than 

training concentration, the wasp will exhibit similar behaviour. In other words, the 

parameter values for each wasp are very close to each other. We presume that the 

wasp will also exhibit similar behaviour when the target concentration is much larger 

than the training concentration. However, this is still need to be proved in the future 

based on the more experimental data.  

 

Currently, the model is very simple. We expect that a more sophisticated model could 

be developed in the future as more data emerge from the experiments. 

 

 

7.3 Discussion of the simulation results by lumping 0.04g behaviour data with 

0.02g behaviour data 

 

From analysing the simulation results of 0.04g coffee concentration (Figure 7.1D), it 

is found that the model is failed to predict the target’s actual concentration value at 

0.04g dosage (only 20% of the simulation results close to the actual dosage value). In 

fact, the model simulation results at 0.04g coffee concentration are very close to the 

simulation results at 0.02g coffee concentration (50% of the simulation results are 

between 0.015 and 0.025, 13.33% of the simulation results are between 0.025 and 
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0.035). Therefore, we presume that the coffee concentration is saturated at 0.02g 

dosage; it will remain unchanging as we place more coffee in the jar. This hypothesis 

is tested by lumping 0.04g behaviour data with 0.02g behaviour data, and see what 

happens to the model prediction.  

 

Nonlinear regression analysis is performed to examine the new parameters in equation 

(5.11) for each of the test concentrations after lumping 0.04g behaviour data with 

0.02g behaviour data. The best fit parameters α  and β  values and its Mean 

Square Error for each of the test concentrations are listed in table 7.2. 

 

Test Concentration α  β  Mean Square Error 

0.005 0.930106 16.2554 0.076745 

0.01 0.905896 8.41131 0.0657437 

0.02 and 0.04 

together 

0.839621 7.44285 0.0647226 

 

Table 7.2: New parameters α , β  and their mean square error values for each 

of the test concentrations after lumping 0.02g and 0.04g dosage data. 

 

Followed the model equation estimation process in Section 6.1, the new parameter 

function for α  and β  are determined and listed blow. 

 

The linear function used to model parameter α  is  

 

9632.01174.6)(1 +⋅−== ConcConcfα          (7.1) 

 

where Conc is the test concentration with 04.0005.0 ≤< Conc .  
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The quadratic polynomial function used to model parameter β  is 

 

006.298.304098131)( 2

2 +⋅−⋅== ConcConcConcfβ       (7.2) 

 

where Conc is the test concentration with 04.0005.0 ≤< Conc . 

 

All the behaviour data are re-simulated through the new model which is built based on 

equation (7.1) and (7.2). The statistical analysis of the simulation results is performed 

to compare the prediction changes. The simulation results for each dosage are 

summarized and plotted in Figure 7.2.  

 

The histogram in Figure 7.2(A) illustrates the new simulation results for 0.005g 

dosage. The Figure shows 56.7% of the simulation results are close to 0.005, which 

are in the range of 0 to 0.01. The other 43.3% of the simulation results are larger than 

0.005, which are in the range between 0.01g and 0.04g dosage. Compared with Figure 

7.1(A), the model prediction is decreased by 6.6% (from 63.3% to 56.7%).  

 

The histogram in Figure 7.2(B) illustrates the new simulation results for 0.01g dosage. 

The Figure shows 63.3% of the simulation results are close to 0.01, which are in the 

range of 0.005 to 0.015. The other 36.7% of the simulation results are larger than 0.01, 

which are in the range between 0.015g and 0.04g dosage. Compared with Figure 

7.1(B), the model prediction is decreased by 6.7% (from 70% to 63.3%). 

 

The histogram in Figure 7.2(C) illustrates the simulation results for 0.02g and 0.04g 

dosage. The Figure shows 53.3% of the simulation results are close to 0.02, which are 

in the range of 0.015 to 0.025. Only 11.7% of the simulation results are close to 0.04, 

which are in the range of 0.035 to 0.04. There is 28.3% of the simulation results are in 

the range of 0.005 to 0.015. There is 10% of the simulation results are in the range of 

0.025 to 0.035. Compared with Figure 7.1(C), the model prediction is decreased by 
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6.7% (from 60% to 53.3%). 

 

In summary, the model prediction is slightly decreased by 6.7% after lumping 0.04g 

behaviour data with 0.02g behaviour data. It can still roughly predict the target 

concentration values in range of 0.005 to 0.02. The accurate rate of the model is 54% 

to 64%. In other words, the statistical analysis has proved that the coffee 

concentration is most likely to be saturated at 0.02g dosage. However, it is necessary 

to double check this conclusion by taking concentration measurements for the 

different levels of coffee weights in the jars in the near future.  
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Figure 7.2: Statistic results of simulation and 5% error bar after lumping 0.04g 

behaviour data with 0.02g behaviour data. (A) 0.005g. (B) 0.01g. (c) 0.02g and 

0.04g 
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Statistic results for 0.02 and 0.04 Dosage

 (total 60 data)
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Chapter 8: Conclusions and future outlook 

 

 

The overall goal of the thesis was to investigate the hidden information between the 

single trained M. croceipes and the different levels of the target odour. In this thesis, a 

simple model that utilizes the behaviour of the single trained M. croceipes to predict 

the target’s actual concentration has been developed. The simulation results have 

shown that the model can roughly predict the target concentration values in a 

particular range. We now give an overview of what we have achieved and main 

findings of the research, future directions that can follow on from the current step to 

improve the model, and finally, a conclusion. 

 

 

8.1 Overview of research 

 

The focus of the work were (1) to extract the useful data from the experimental video 

files of the single trained M. croceipes, and store in database for future analyse, (2) 

analyse these data and develop a model that utilize the behaviour of the single trained 

M. croceipes to predict the actual target concentrations. The purpose of the model 

were (1) to verify the current knowledge about chemical sensing technology that 

utilize the behaviour of the single trained M. croceipes to predict the concentration of 

the target odour, (2) to increase our confidence in understanding the model system and 

to develop a more sophisticated model in the future based on the knowledge of the 

current model system. 

 

The biological experiment process is described. After a careful interpretation of the 

wasp’s behaviour, three variables were decided and improved with a detailed 

explanation (Chapter 3). These improved variables are successfully computed and 

stored into MS Excel database. The general findings are given after analysing the 
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variables and their plots (Chapter 4). The stochastic model was built for each of the 

improved variables and its parameters were estimated. A new model equation was 

found after the parameter analysis (Chapter 5). The mathematical model was then 

converted into a computer solvable model. The model was built up (Chapter 6). 

 

Finally, the model was extensively tested and compared with validation data (Chapter 

7). The findings of the model are summarized into the following three aspects. (1) The 

model has the ability to predict the concentration value of the target odour in a 

particular range. Approximately 60% to 70% of the simulation results were close to 

the actual dosage value. (2) Through the analysis of the simulation results, it was 

found that a deficiency existed in the simulation results. The model equations need to 

be improved so that the simulation results become more accurate to the actual value. 

(3) The model predicting range could be improved by analysis of more experimental 

data that are tested under a wide range of concentrations. 

 

 

8.2 Contributions of the research 

 

The contributions of this thesis through modelling and analysing the behaviour of the 

trained wasps can be summarized into the following points. 

 

• To extract data from the experimental video files of the trained M. croceipes and 

build up a database to store and analyse those data.  

• To investigate the hidden information between the trained M. croceipes and 

various target dosages. 

• To develop a simple model that could be used to predict the actual target dosage.  
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8.3 Limitation and suggestion for future directions 

 

In the new area of modelling the behaviour of the trained wasp to predict the target’s 

actual concentration, our work merely touches the surface of modelling the complex 

behaviours of the trained wasp. There are several directions in which to extend and 

improve the model presented in the thesis. 

 

• The current model required the dosage of the detecting target in its predicting 

range which is from 0.005 to 0.02. This is a small range. In fact, there are still a 

large number of the experimental data that need to be tested under a wide range 

of the test dosage. They also need to be analysed and added into the current 

model. A more complete model could enhance its predicting range to solve a 

real world problem. 

 

• This is a simple model. The model simulation results are not exactly the same as 

the actual values. They are in a relevant small range that is close to the actual 

value. Therefore, to improve the accuracy of the simulation results, the 

stochastic differential equations that are determined from the analysis of the 

experimental data are required to be improved in the future study. 

 

• In this research, the model has three input variables which are extracted from 

the trained wasp’s behaviours. It is possible that there are more variables that 

could be found based on the analysis of the trained wasp’s behaviour. This could 

be used to help improve the model equations.  

 

• Other important consideration is how the wasp’s behaviour is affected by 

background odours mixed with the trained odour. In this study, the wasp is 

trained to a single odour and tested to that odour. In future, the wasps need to be 

trained to several compounds and tested to these odours.  
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• The quality of the food source (sugar water) used to train the wasp need to be 

examined in future. Lower and higher levels of sugar in sugar water may also 

affect the wasp’s behavioural response. 

 

• In this research, the wasp is tested to a point source (single hole where the odour 

emits). It is necessary to find out whether there is a difference in wasp’s 

behaviour if the odour source is more dispersed, for example, the odour is emit 

from 5 or 6 holes. 

 

• Three distinct behaviours are examined in this research. There may be more 

than a dozen distinct behavioural movements that could be used to measure the 

wasp’s behaviours, including antennal movements. Therefore, much better 

video recordings are required to capture more subtle behaviours and use those as 

data for the model development. 

 

 

8.4 Conclusion 

 

The study of modelling the trained wasp’s behaviour under several target 

concentration levels, and utilizing it to predict the target’s actual concentration is a 

challenging topic. Our understanding of the dynamics and functions of the underlying 

biological sensing processes has been hampered by the complexity of the system. 

However, mathematic modelling has the potential to assist in understanding such 

processes. In this thesis, we have shown how stochastic models can be built using 

mathematical knowledge based on the trained wasp’s behaviour information and how 

the model can be used to predict the concentration of the target odour. 

 

Although our investigation focuses on a small subset of specific problems, there is 

indeed a large array of challenging and exciting biological experiments waiting to be 

approached and explored. It is our hope that the model presented in this thesis will 
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help other mathematicians to develop a more sophisticated model in the future. 
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Appendix A – Computer Vision System 

 

Components of computer vision system (developed by S. L. Utley, G.. C. Rains and 

W.J. Lewis) was listed in following figures. 

 

 

 

 
Figure A1: The Wasp Hound integrates a computer vision system into  

a portable handheld detector. The enclosure provides consistent lighting, 

cartridge placement, and air flow. (From Utley, S.L., G. C. Rains, W. J. Lewis, 

2004.) 

 

 

 

   

     (A)         (B) 

Figure A2: Mounting of camera and LED within Wasp Hound. (A) The Logitech 

QuickCam was suspended within the PVC body by three bolts 2.5 cm above the 

test cartridge top. (B) An LED was mounted within the Wasp Hound as the main 

source of illumination. (From Utley, S.L., G. C. Rains, W. J. Lewis, 2004.) 
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    (A)        (B)     (C) 

 

Figure A3: Test cartridge. (A) The test cartridge was composed of top from a 

Millipore PetriSlide, a wire mesh disk, part of a Millipore aerosol analysis 

monitor, and a FinTip Pipet tip. (B) The mesh disk was placed in the body of the 

cartridge to prevent M. croceipes from escaping through the bottom. (C) The top 

fit onto the body and prevented M. croceipes from flying away while providing 

adequate ventilation, and the pipet tip was inserted into the bottom to direct air 

samples into cartridge. (From Utley, S.L., G. C. Rains, W. J. Lewis, 2004.) 

 

 

 

 

      (A)        (B) 

 

Figure A4: Test cartridge placement within the Wasp Hound. (A) During testing 

the test cartridge was placed within the cap and secured by two clips. (B) the 

pipet tip protruded through the bottom of the cap. (From Utley, S.L., G. C. Rains, 

W. J. Lewis, 2004.) 
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Appendix B – Use Tracker 1.5.2 to Track wasp’s movement 

 

To use Tracker the user must first download and install Java 5, QuickTime 7 and 

Tracker1.5.2 (or higher version) in the order listed below.  

1. Java 5: Download the most recent Java 5 installer from 

http://java.sun.com/j2se/downloads.html. The JRE (Java Runtime Environment) 

is all that is needed unless one is a Java developer. Double-click the installer and 

follow the instructions.  

2. QuickTime 7: Download the most recent standalone QuickTime 7 installer from 

http://www.apple.com/quicktime/download/standalone.html. It is not necessary 

to purchase QuickTime Pro. Double-click the installer and follow the 

instructions. QuickTime for Java is automatically installed.  

3. Tracker: Download Tracker.jar (version 1.5.2 or higher version) from Tracker's 

Home page at http://www.cabrillo.edu/~dbrown/tracker/.  

 

Using Tracker, the following steps will allow the user to get the necessary data for 

variable calculation.   

 

1. Double-click on Tracker.jar to open Tracker1.5.2. Use the Open button or 

File�Open menu item to open the wasp video file. 

 

2. Click the inspector button at the right end of the player (Figure B1) to display 

the clip inspector. The clip inspector shows thumbnail images of the start and 

end frames along with the current video clip settings. In addition, there are 

fields for setting the mean time Dt between video frames (important for 

high-speed or time-lapse videos) and the play rate as a percent of normal 

playback speed. Set the Start frame at the number of the frame when the wasp 

was placed on the test sample. Set the Step size to 5 which is equal to 0.2 

seconds (the video rate is 25 frame per second) 
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Figure B1: the video clip inspector button 

 

3. Display the axes by click the axes button on the toolbar (or from Tracks���� 

axes ���� Visible). The axes show the location of the origin and direction of the 

positive x-axis of the coordinate system. The origin is at the intersection of the 

axes and the positive x-axis is indicated by a tick mark near the origin. Select 

and drag or nudge the origin to a desired location which is the centre hole in 

the main video view (click the right mouse button and choose suitable Zoom 

in option, will improve the accuracy of matching the origin and centre hole 

point). 

 

4. Display the tape measure by clicking the Tape Measure button on the toolbar 

(or from Tracks���� Tape measure ���� Visible). Use the cycle on the test 

sample (refer to chapter 4.1.3) to calibrate the video image. First set the two 

ends of the tape measure on circle and through the centre (the tape measure 

represents the diameter now). Then double-click the readout and enter the 

known distance, such as 25 (unit: mm) in this project. 

 

5. Now, the tracker is ready to mark the positions of the wasp’s head and 

abdomen for every 0.2 seconds. Create a new track by clicking Point Mass 

button on the toolbar (or from Tracks���� New ���� Point Mass). The Track 

Control panel will appear on the main window (Figure B2). Every track is 

identified by its name, colour, footprint (visible shape) and description. Newly 

created tracks are assigned default values for the first three properties that 

depend on the type of track. For example, a point mass might initially be 

called “mass A” and be drawn as a blue diamond. A track's name, footprint and 
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colour are displayed on the toolbar when the track is selected. To change the 

default values, select the track and enter a new name in the editable name field 

or click the footprint button and choose a new footprint or colour. Now, 

shift-click on the wasp’s head on video frame to mark it and the video frame 

will move to next frame (5 frames after the current frame as we set up in step 

2). The new track is created to mark the position of wasp’s abdomen after all 

the positions of wasp’s head were marked. Hint: Unselect Visible option will 

make easy to mark the wasp’s head or abdomen when the wasp was move 

slightly. By select Mark by Default option, it will allow the user to mark the 

wasp’s position by left clicking the mouse instead of shift-clicking.     

 

 

Figure B2: The Track Control panel. 

6. Select Window���� Right View to open the data-table view, which displays a 

table of a track’s data after each step were marked. Select the track (the wasp’s 

head or abdomen) from the dropdown list on data-table view toolbar. Select 

the data columns included in the table by clicking the Data button and 
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checking those of interest. Time is always included. Here the X-comp, Y-comp 

and theta are also needed. 

 

7. Click and drag in the data table to select cells. Currently the user have to 

reselect the track to unselect all cells. Right-click the table and select Copy 

from the popup menu to copy the selected cells to the clipboard. If no cells are 

selected, the entire data-table will be copied. Now, open Microsoft Excel and 

paste the copied data in a sheet. It will be used to calculate the variables later 

on.  
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Appendix C – Video Format Converting  

 

Blaze Media Pro is capable of performing two-way video conversions among AVI, 

MPEG-1, MPEG-2, WMV, Multi-Page TIFF, and FLIC formats. The following steps 

will allowed the user to convert a video file from MPEG format to AVI format. 

 

1. Open Blaze Media Pro software, click Conversion button in the main window, 

and then select Video Converter. 

 

2. Click Edit, select Add or click the Add Files to List button. 

 

3. Select the video files on hard drive that need to convert. (Tip: the user can select 

more than one file by pressing the Ctrl key while clicking the files or pressing the 

Shift key and using the arrows to select a range of files. To remove files from the 

list, select those files, and then, select Remove from the Edit menu or click the 

Remove Files button.) 

 

4. Select the files, using the Move Up and Move Down options on Edit menu to put 

those files in a right process order. 

 

5. Choose an Output Format from the dropdown list which is AVI for my study, and 

choose the output options as showed in Figure C1. (Tip: If the hard disk space is 

large enough, Choose Full uncompressed as AVI Codec Option. It will give 

good video quality but very large AVI video size after convert. If the hard disk 

space is an issues, Choose Cinepak Codec by Radius as AVI Codec Option. It 

will give acceptable video quality and much smaller video size than full 

uncompressed. Cinepak Codec by Radius is chosen as AVI Codec options for 

my study. At this point, the user can decide whether or not to click the Overwrite 

Existing Files option.) 
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Figure C1: Video Converter Frame. 

 

6. Click Convert button. (Tip: When you click Convert, you can set the codec and 

format of the output file. In cases where the conversion does not work for a 

certain file or does not produce the results you expected, you can try to use a 

different conversion method by clicking File, and then select Enable Alternate 

Conversion Method. After selecting this option, you must click the Convert 

button to convert the file. 
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Appendix D – Plane Geometry Formula used in the study  

 

The wasp have three major behaviours lead to three variables αθ ,,R  in the study. 

The R  is the distance between the wasp’s head and the centre point as time changes. 

The R is calculated by using point to point distance formula in 2-D plane. If there are 

two points A(a, b) and B(c, d) in 2-D rectangular coordinates as showed in Figure D1,  

 

 

Figure D1: Two point with their coordinates in 

 

the distance formula is 22 )()( bdacd −+−= . In my study, point A will be the 

origin point (0, 0), point B will be the coordinates of the wasp’s head. 

 

The θ  is the angle in radian between the line through the wasp’s head to the origin 

and the horizontal line though the centre point (X-axis) as time changes, which is 

show in Figure D2. 

 

 

Figure D2: Angle theta between the wasp’s head and the X-axis. 
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If the wasp was move anticlockwise, the formula and its condition are: 

� When x1>0 and y1>0, πθ 2*)11/1arcsin( 22
Nyxy ++= . 

� When x1<0 and y1>0, ππθ 2*)11/1arcsin( 22
Nyxy ++−= .  

� When x1<0 and y1<0, ππθ 2*)11/1arcsin( 22
Nyxy +++= .  

� When x1>0 and y1<0, ππθ 2*)11/1arcsin(2 22
Nyxy ++−= .   

� Note: N is the number of cycles the wasp moved towards anticlockwise. N=0, 

1, 2, 3…  

 

If the wasp was move clockwise, the formula and its condition are: 

� When x1>0 and y1>0, ππθ 2*)]11/1arcsin(2[ 22
Nyxy −+−−= . 

� When x1<0 and y1>0, ππθ 2*)]11/1arcsin([ 22
Nyxy −++−= .  

� When x1<0 and y1<0, ππθ 2*)]11/1arcsin([ 22
Nyxy −+−−= .  

� When x1>0 and y1<0, πθ 2*)11/1arcsin( 22
Nyxy −+−= .   

� Note: N is the number of cycles the wasp moved towards clockwise. N=0, 1, 

2, 3… 

 

Theα  is the angle in radian between the wasp’s body line (from the wasp’s head to 

its abdomen) and the horizontal line though the centre point (positive X-axis) as time 

changes. A formula is used to calculate the angle between those 2 lines (the wasp’s 

body line and the positive X-axis) for every 0.2 seconds. 

 

There are two lines (line1[p1, p2]; line2[p3, p4]), the vertexes of first line are p1(x1, 

y1) and p2(x2, y2), which represent the wasp’s head and its abdomen. The vertexes of 

second line are p3(x3, y3) and p4(x4, y4), which represent two vertexes on X-axis. 

Here point (0, 0) is used for (x3, y3) and point (10, 0) is used for (x4, y4) in my study. 

Vector a = p2 –p1, vector b = p3 – p4. From the dot product formula  
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),cos(α⋅⋅=⋅ baba  we have )cos()cos(
ba

ba
ar

ba

ba

⋅

⋅
=⇒

⋅

⋅
= αα . Because of 

)43()12( ppppba −∗−=⋅ and )43()12( ppppba −∗−=∗ , The angle formula is 

)2222()1111(

)2121(
cos

dydydxdxdydydxdx

dydydxdx
ar

∗+∗∗∗+∗

∗+∗
=α , where dx1 = x2-x1, dx2 

=x4-x3, dy1 =y2-y1, dy2 =y4-y3. 

 

If the wasp’s body was rotated anticlockwise, the formula and its condition are: 

� πα 2*
)2222()1111(

)2121(
cos N

dydydxdxdydydxdx

dydydxdx
ar +

∗+∗∗∗+∗

∗+∗
=  

� Note: N is the number of cycles the wasp moved towards anticlockwise. N=0, 

1, 2, 3…  

 

If the wasp wasp’s body was rotated clockwise, the formula and its condition are: 

� πα 2*
)2222()1111(

)2121(
cos N

dydydxdxdydydxdx

dydydxdx
ar −

∗+∗∗∗+∗

∗+∗
=  

� Note: N is the number of cycles the wasp moved towards anticlockwise. N=0, 

1, 2, 3…  
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Appendix E – Parameter Accuracy Analysis 

 

E1. The VBA program that used to compute parameter values under different dt 

values. 

 

E1.1 Parameter a 

 

Sub parameter_a() 

         

    ' This is the main program for calculating parameter a values under different dt values. 

Column A and B must be the time and variable values at dt = 0.2 sec 

    ' The parameter will be calculated print out at same worksheet 

 

    ' set up the column variable A, B, C, D... 

    Dim A, B As Integer 

    A = 1: B = 2  ' the column number 

     

    Dim J, K, L, M, N, O, P, Q As Integer 

    J = 10: K = 11: L = 12: M = 13: N = 14: O = 15: P = 16: Q = 17 

    

     ' Set up for loop to calculate parameter value under eight different dt  values.        

dt is decrease half by half. 

     For I = 1 To 8 

      

     ' Print out the title of each column... 

     Cells(1, J).Value = "t" 

     Cells(1, K).Value = "p-value" 

     Cells(1, L).Value = "d-p" 

     Cells(1, M).Value = "p-square" 

     Cells(1, N).Value = "det(t)" 

     Cells(1, O).Value = "numerator" 

     Cells(1, P).Value = "denominator" 

     Cells(1, Q).Value = "parameter=numerator/denominator" 

   '-------Calculate time------ 

    Dim row1 As Integer 

        row1 = 2 

         

    Do 
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       Cells(row1 * 2 - 2, J).Value = Cells(row1, A) 

       If Cells(row1 + 1, A) <> "" Then 

        

       Cells(row1 * 2 - 1, J).Value = (Cells(row1, A).Value + Cells(row1 + 1, A).Value) / 2 

       End If 

    row1 = row1 + 1 

    Loop Until (Cells(row1, A).Value > 20 Or Cells(row1, A).Value = "") 

     

    

    '---------Calculate p---------- 

    Dim row2, rows As Integer 

        row2 = 2: rows = 2 

         

        For firstrow = 2 To row1 - 1 

       Cells(rows, K).Value = Cells(row2, B) 

       rows = rows + 1 

        

       If Cells(row2 + 1, B).Value <> "" Then 

       Cells(rows, K).Value = (Cells(row2, B).Value + Cells(row2 + 1, B).Value) / 2 

       rows = rows + 1 

       End If 

        

        

       row2 = row2 + 1 

       Next firstrow 

        

     

    '----------Calculate d-p column---------- 

    Dim row3 As Integer 

        row3 = 2 

         

    Do 

       

       If Cells(row3 + 1, K).Value <> "" Then 

       Cells(row3, L).Value = Cells(row3 + 1, K).Value - Cells(row3, K).Value 

       End If 

        

    row3 = row3 + 1 

    Loop Until (Cells(row3, J).Value > 20 Or Cells(row3, J).Value = "") 

     

 

    '-----------Calculate p-square value---------- 

    Dim row4 As Integer 

        row4 = 2 
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    Do 

       

        If Cells(row4, L).Value <> "" Then 

        Cells(row4, M).Value = Cells(row4, K).Value ^ 2 

        End If 

        

    row4 = row4 + 1 

    Loop Until (Cells(row4, J).Value > 20 Or Cells(row4, J).Value = "") 

     

     

    '----------Calculate det(t)---------- 

    Dim row5 As Integer 

        row5 = 2 

     

    Do 

       

       If Cells(row5 + 1, J).Value <> "" Then 

       Cells(row5, N).Value = Cells(row5 + 1, J).Value - Cells(row5, J).Value 

       End If 

        

    row5 = row5 + 1 

    Loop Until (Cells(row5, J).Value > 20 Or Cells(row5, J).Value = "") 

     

     

    '----------Calculate numerator value of equation (5.7) ---------- 

    Dim row6 As Integer 

        row6 = 2 

     

    Do 

       

       If Cells(row6, L).Value <> "" Then 

       Cells(row6, O).Value = Cells(row6, K).Value * Cells(row6, L).Value 

       End If 

        

    row6 = row6 + 1 

    Loop Until (Cells(row6, J).Value > 20 Or Cells(row6, J).Value = "") 

     

     

     '----------Calculate denominator value of equation (5.7) --------- 

     Dim row7 As Integer 

        row7 = 2 

     

    Do 
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       If Cells(row7, M).Value <> "" Then 

       Cells(row7, P).Value = Cells(row7, M).Value * Cells(row7, N).Value 

       End If 

        

    row7 = row7 + 1 

    Loop Until (Cells(row7, J).Value > 20 Or Cells(row7, J).Value = "") 

     

     

    '----------Calculate a which is SUM(top)/SUM(bottom)----------- 

        Dim row8 As Integer 

        row8 = 2 

        Dim top, bottom As Single 

        top = 0: bottom = 0   

 

    Do  

      If Cells(row8, O).Value <> "" Then 

      top = top + Cells(row8, O).Value 

      End If 

       

      If Cells(row8, P).Value <> "" Then 

      bottom = bottom + Cells(row8, P).Value 

      End If 

       

     

    row8 = row8 + 1 

    Loop Until (Cells(row8, J).Value > 20 Or Cells(row8, J).Value = "") 

    Cells(2, Q).Value = top / bottom 

     

 

'Shift the column to next parameter value 

A = A + 9: B = B + 9 

J = J + 9: K = K + 9: L = L + 9: M = M + 9: N = N + 9: O = O + 9: P = P + 9: Q = Q + 9 

 

Next I 

End Sub 

 

E1.2 Parameter c 

 

Sub parameter_c() 

         

    ' This is the main program for calculating parameter c values under different dt values. 
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Column A and B must be the time and variable values at dt = 0.2 sec 

    ' The parameter c will be calculated print out at same worksheet 

 

    ' set up the column variable A, B, C, D... 

    Dim A, B As Integer 

    A = 1: B = 2  ' the cloumn number 

     

    Dim J, K, L, M, N, O, P, Q As Integer 

    J = 10: K = 11: L = 12: M = 13: N = 14: O = 15: P = 16: Q = 17 

    

     ' Set up for loop to calculate parameter value under eight different dt  values.        

dt is decrease half by half. 

     For I = 1 To 8 

      

     ' Print out the title of each column... 

     Cells(1, J).Value = "t" 

     Cells(1, K).Value = "gama-value" 

     Cells(1, L).Value = "d-gama" 

     Cells(1, M).Value = "gama-square" 

     Cells(1, N).Value = "det(t)" 

     Cells(1, O).Value = "numerator" 

     Cells(1, P).Value = "denominator" 

     Cells(1, Q).Value = "parameter=numerator/denominator" 

   '-------Calculate time------ 

    Dim row1 As Integer 

        row1 = 2 

         

    Do 

     

       Cells(row1 * 2 - 2, J).Value = Cells(row1, A) 

       If Cells(row1 + 1, A) <> "" Then 

        

       Cells(row1 * 2 - 1, J).Value = (Cells(row1, A).Value + Cells(row1 + 1, A).Value) / 2 

       End If 

    row1 = row1 + 1 

    Loop Until (Cells(row1, A).Value > 20 Or Cells(row1, A).Value = "") 

     

    

    '---------Calculate p---------- 

    Dim row2, rows As Integer 

        row2 = 2: rows = 2 

         

        For firstrow = 2 To row1 - 1 

       Cells(rows, K).Value = Cells(row2, B) 
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       rows = rows + 1 

        

       If Cells(row2 + 1, B).Value <> "" Then 

       Cells(rows, K).Value = (Cells(row2, B).Value + Cells(row2 + 1, B).Value) / 2 

       rows = rows + 1 

       End If 

        

        

       row2 = row2 + 1 

       Next firstrow 

        

     

    '----------Calculate d-p column---------- 

    Dim row3 As Integer 

        row3 = 2 

         

    Do 

       

       If Cells(row3 + 1, K).Value <> "" Then 

       Cells(row3, L).Value = Cells(row3 + 1, K).Value - Cells(row3, K).Value 

       End If 

        

    row3 = row3 + 1 

    Loop Until (Cells(row3, J).Value > 20 Or Cells(row3, J).Value = "") 

     

 

    '-----------Calculate p-square value---------- 

    Dim row4 As Integer 

        row4 = 2 

         

    Do 

       

        If Cells(row4, L).Value <> "" Then 

        Cells(row4, M).Value = Cells(row4, K).Value ^ 2 

        End If 

        

    row4 = row4 + 1 

    Loop Until (Cells(row4, J).Value > 20 Or Cells(row4, J).Value = "") 

     

     

    '----------Calculate det(t)---------- 

    Dim row5 As Integer 

        row5 = 2 
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    Do 

       

       If Cells(row5 + 1, J).Value <> "" Then 

       Cells(row5, N).Value = Cells(row5 + 1, J).Value - Cells(row5, J).Value 

       End If 

        

    row5 = row5 + 1 

    Loop Until (Cells(row5, J).Value > 20 Or Cells(row5, J).Value = "") 

     

     

    '----------Calculate numerator value of equation(5.7)---------- 

    Dim row6 As Integer 

        row6 = 2 

     

    Do 

       

       If Cells(row6, L).Value <> "" Then 

       Cells(row6, O).Value = Cells(row6, K).Value * Cells(row6, L).Value 

       End If 

        

    row6 = row6 + 1 

    Loop Until (Cells(row6, J).Value > 20 Or Cells(row6, J).Value = "") 

     

     

     '----------Calculate denominator value of equation (5.7) --------- 

     Dim row7 As Integer 

        row7 = 2 

     

    Do 

       

       If Cells(row7, M).Value <> "" Then 

       Cells(row7, P).Value = Cells(row7, M).Value * Cells(row7, N).Value 

       End If 

        

    row7 = row7 + 1 

    Loop Until (Cells(row7, J).Value > 20 Or Cells(row7, J).Value = "") 

     

     

    '----------Calculate a which is SUM(top)/SUM(bottom)----------- 

        Dim row8 As Integer 

        row8 = 2 

        Dim top, bottom As Single 

        top = 0: bottom = 0   
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    Do  

      If Cells(row8, O).Value <> "" Then 

      top = top + Cells(row8, O).Value 

      End If 

       

      If Cells(row8, P).Value <> "" Then 

      bottom = bottom + Cells(row8, P).Value 

      End If 

       

     

    row8 = row8 + 1 

    Loop Until (Cells(row8, J).Value > 20 Or Cells(row8, J).Value = "") 

    Cells(2, Q).Value = top / bottom 

     

 

'Shift the cloumn to next parameter value 

A = A + 9: B = B + 9 

J = J + 9: K = K + 9: L = L + 9: M = M + 9: N = N + 9: O = O + 9: P = P + 9: Q = Q + 9 

 

Next I 

End Sub 

 

E1.3 Parameter e 

 

Sub parameter_e() 

         

    ' This is the main program for calculating parameter e values under different dt values. 

Column A and B must be the time and variable values at dt = 0.2 sec 

    ' The parameter will be calculated print out at same worksheet 

 

    ' set up the column variable A, B, C, D... 

    Dim A, B As Integer 

    A = 1: B = 2  ' the column number 

     

    Dim J, K, L, M, N, O, P, Q As Integer 

    J = 10: K = 11: L = 12: M = 13: N = 14: O = 15: P = 16: Q = 17 

    

     ' Set up for loop to calculate parameter value under eight different dt  values.        

dt is decrease half by half. 

     For I = 1 To 8 

      

     ' Print out the title of each column... 
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     Cells(1, J).Value = "t" 

     Cells(1, K).Value = "beta-value" 

     Cells(1, L).Value = "d-beta" 

     Cells(1, M).Value = "beta-square" 

     Cells(1, N).Value = "det(t)" 

     Cells(1, O).Value = "numerator" 

     Cells(1, P).Value = "denominator" 

     Cells(1, Q).Value = "parameter=numerator/denominator" 

 

   '-------Calculate time------ 

    Dim row1 As Integer 

        row1 = 2 

         

    Do 

     

       Cells(row1 * 2 - 2, J).Value = Cells(row1, A) 

       If Cells(row1 + 1, A) <> "" Then 

        

       Cells(row1 * 2 - 1, J).Value = (Cells(row1, A).Value + Cells(row1 + 1, A).Value) / 2 

       End If 

    row1 = row1 + 1 

    Loop Until (Cells(row1, A).Value > 20 Or Cells(row1, A).Value = "") 

     

    '---------Calculate p---------- 

    Dim row2, rows As Integer 

        row2 = 2: rows = 2 

         

        For firstrow = 2 To row1 - 1 

       Cells(rows, K).Value = Cells(row2, B) 

       rows = rows + 1 

        

       If Cells(row2 + 1, B).Value <> "" Then 

       Cells(rows, K).Value = (Cells(row2, B).Value + Cells(row2 + 1, B).Value) / 2 

       rows = rows + 1 

       End If 

        

       row2 = row2 + 1 

       Next firstrow 

 

    '----------Calculate d-p column---------- 

    Dim row3 As Integer 

        row3 = 2 

         

    Do 
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       If Cells(row3 + 1, K).Value <> "" Then 

       Cells(row3, L).Value = Cells(row3 + 1, K).Value - Cells(row3, K).Value 

       End If 

        

    row3 = row3 + 1 

    Loop Until (Cells(row3, J).Value > 20 Or Cells(row3, J).Value = "") 

     

    '-----------Calculate p-square value---------- 

    Dim row4 As Integer 

        row4 = 2 

         

    Do 

       

        If Cells(row4, L).Value <> "" Then 

        Cells(row4, M).Value = Cells(row4, K).Value ^ 2 

        End If 

        

    row4 = row4 + 1 

    Loop Until (Cells(row4, J).Value > 20 Or Cells(row4, J).Value = "") 

   

    '----------Calculate det(t)---------- 

    Dim row5 As Integer 

        row5 = 2 

     

    Do 

       

       If Cells(row5 + 1, J).Value <> "" Then 

       Cells(row5, N).Value = Cells(row5 + 1, J).Value - Cells(row5, J).Value 

       End If 

        

    row5 = row5 + 1 

    Loop Until (Cells(row5, J).Value > 20 Or Cells(row5, J).Value = "") 

     

    '----------Calculate numerator value of equation (5.7) ---------- 

    Dim row6 As Integer 

        row6 = 2 

     

    Do 

       

       If Cells(row6, L).Value <> "" Then 

       Cells(row6, O).Value = Cells(row6, K).Value * Cells(row6, L).Value 

       End If 
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    row6 = row6 + 1 

    Loop Until (Cells(row6, J).Value > 20 Or Cells(row6, J).Value = "") 

     

     '----------Calculate denominator value of equation (5.7) --------- 

     Dim row7 As Integer 

        row7 = 2 

     

    Do 

       

       If Cells(row7, M).Value <> "" Then 

       Cells(row7, P).Value = Cells(row7, M).Value * Cells(row7, N).Value 

       End If 

        

    row7 = row7 + 1 

    Loop Until (Cells(row7, J).Value > 20 Or Cells(row7, J).Value = "") 

    

    '----------Calculate a which is SUM(top)/SUM(bottom)----------- 

        Dim row8 As Integer 

        row8 = 2 

        Dim top, bottom As Single 

        top = 0: bottom = 0   

 

    Do  

      If Cells(row8, O).Value <> "" Then 

      top = top + Cells(row8, O).Value 

      End If 

       

      If Cells(row8, P).Value <> "" Then 

      bottom = bottom + Cells(row8, P).Value 

      End If 

       

     

    row8 = row8 + 1 

    Loop Until (Cells(row8, J).Value > 20 Or Cells(row8, J).Value = "") 

    Cells(2, Q).Value = top / bottom 

     

 

' Shift the column to next parameter value 

A = A + 9: B = B + 9 

J = J + 9: K = K + 9: L = L + 9: M = M + 9: N = N + 9: O = O + 9: P = P + 9: Q = Q + 9 

 

Next I 

End Sub 
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E2. Plot of parameter changes for all wasps at 0.02 test condition using different 

dt values. 

 

 

E2.1 Parameter a 
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E2.2 Parameter c 
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E2.3 Parameter e 

Parameter e
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Note: the value from 1 to 8 on X-axis are represent eight different dt values, which are 

0.2 second, 0.1 second, 0.05 second, 0.025 second, 0.0125 second, 0.00625 second, 

0.003125 second and 0.001563 second. 
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Appendix F – Model Algorithm 

 

 

Private Sub CommandButton1_Click() 

 

'This is main program to calculate test concentration by using parameters a, c, e 

'and mathematical model equation  (6.1), (6.2), (6.4) from Chapter six of my thesis 

 

    ' set up the column variable A, B, C, D... 

    Dim A, B, C, E, Row As Integer 

    A = 1: B = 2: C = 3: E = 5 ' the cloumn number 

 

    For Row = 3 To 125 Step 1 

     

    'get parameter values from cells 

    Dim parameter_a, parameter_c, parameter_e As Single 

    parameter_a = 0: parameter_c = 0: parameter_e = 0 

    parameter_a = Cells(Row, A).Value 

    parameter_c = Cells(Row, B).Value 

    parameter_e = Cells(Row, C).Value 

 

    'set the starting concentration 

    Dim Conc As Single 

     

     

    'set left and right side of equation (6.4) be 0 

    Dim Left_side, Right_side As Single 

     

    'Calculate left side of equation (6.4) 

    Left_side = Exp(-Abs((parameter_c - parameter_e) / parameter_a)) 

     

    Dim m As Integer 

   m = 3 

   Dim min1, min2, current_conc As Single 

   min1 = 0: min2 = 0: current_conc = 0 

    

   Dim new_alpha, new_beta, new_right_side As Single 

   new_alpha = 0: new_beta = 0: new_right_side = 0 

    

   'Set up for loop let concentration from 0.001 increase to 0.045 by 0.001 each time 

   For Conc = 0.001 To 0.045 Step 0.001 

    

   'Set new alpha and new beta variable... 
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   Dim alpha, beta As Single 

   alpha = -3.2812 * Conc + 0.9431 

   beta = 91249 * Conc * Conc - 2937.6 * Conc + 28.662 

   

   'Calculate right side of equation (6.4) 

   Right_side = 1 - alpha * Exp(-Abs(parameter_a) * beta) 

    

 

   'Calculate the minimun difference between left and right side of euqation (6.4) 

   min1 = Abs(Right_side - Left_side) 

    

   If (Conc = 0.001) Then 

   min2 = min1 

   current_conc = Conc 

   Else 

    If (min2 > min1) Then 

     

    min2 = min1 

    current_conc = Conc 

    End If 

    

   End If 

   

 

   Next Conc 

    

    

   'Output the simulation reslut in column E of the same row 

    Cells(Row, E).Value = current_conc 

     

    Next Row 

 

End Sub 


