6.1 Overall Conclusion

The cytoskeleton comprises a small proportion of the total protein in the lens, but is thought to be important in the development and maintenance of transparency. Calpain plays a role in cataract in several species (Biswas et al., 2005; Robertson et al., 2005; Inomata et al., 2002), however calpain-like cleavage sites have not been detected in human lens crystallins in vivo (Nakajima et al., 2006; Ma et al., 2005). If calpain is important in human cataract, proteolysis of proteins other than crystallin must be occurring. The cytoskeletal proteins are known calpain targets in the lens, and proteolysis of cytoskeletal proteins may play an important role in the development of cataract. The ovine lens has been used in a model for cataract development, and there is little to be found in the literature regarding cytoskeletal proteins in lenses from this species.

Hypothesis i: Inhibition of calpain with novel inhibitors will result in the absence of proteolytic products associated with calpain.

The research presented in Section 3 shows clearly that the cytoskeletal profile changes when lens extracts were incubated in the presence of calpain and calcium compared to extracts incubated in the presence of calpain and calcium plus inhibitor. Novel calpain inhibitors were successful in preventing the appearance of calpain proteolysis products for spectrin, vimentin and filensin, with the novel inhibitor Cat0059 the most potent of the novel calpain inhibitors investigated, inhibiting calpain-induced proteolysis at 100 nM.

Hypothesis ii: Lens cytoskeletal proteins in the ovine lens will display a characteristic distribution for that selected protein, and will have a similar distribution to that seen in other species.

Research presented has shown that for a selection of cytoskeletal proteins in the ovine lens there exists a characteristic pattern of expression that closely resembles that seen in other species (Section 5). Specifically, actin was found to display preferential distribution in the short sides of the fibre cells in the cortex of the lens but was absent in the nucleus, while
spectrin was found in the cortex and nucleus associated with the fibre cell membrane. Filensin was observed in the outer cortex of lens sections associated with the fibre cell membrane and cytoplasm, however the pattern of localisation was indistinct due to the abundance of filensin products in the lens. Vimentin displayed both a membrane and cytoplasmic association in the outer cortex that gradually diminished toward the lens nucleus, with membrane vimentin found only in the deeper regions of the cortex and nucleus.

Taken together, the evidence presented in this thesis shows the cytoskeletal proteins as crucial elements of the lens by way of their pervasive presence (as seen in lens sections presented in Section 5). This, coupled with evidence that lens cytoskeletal proteins are sensitive to calpain-induced proteolysis and novel calpain inhibitors inhibit this proteolysis (Section 4), suggests that these proteins may be useful targets in cataract prevention. With research suggesting calpain-induced proteolysis is crucial in the pathology of cataract (Cuerrier et al., 2006; Robertson et al., 2005; Shearer et al., 1999), the cytoskeletal proteins represent susceptible targets for that proteolysis in the lens, and inhibition of proteolysis of lens cytoskeletal proteins as has been achieved in the current study supports the approach of inhibiting calpain activity to prevent cataract development.

6.2 Future Directions

Building upon the work in this thesis, the obvious way forward would be to carry out similar work focusing on the development and characteristics of the ovine cataract, as was originally proposed. Of particular interest would be a comparison of the USF protein profile of normal and cataract lenses using the methods applied in Section 3 in this investigation. This would allow for the approximate determination of the degree of proteolysis of lens cytoskeletal proteins in the cataract lens, and this coupled with the application of cataract inhibitors directly to cataract sheep eyes, comparing the protein profile of lens USF extracts between these eyes and cataract eyes would give an indication of the applicability of these inhibitors as a treatment for cataract.

Also of interest for future investigations would be following the development of the lens during growth and cataract by immunohistochemistry. In particular, the role of calpain in normal lens development and fibre differentiation, as well as the role of cytoskeletal proteolysis in the process of cataractogenesis. The appearance of cataract damage in early
cataract lenses (see fig. 3.6.1) at the approximate boundary in the lens between the differentiating outer-fibre cells and the more mature, differentiated fibre cells might indicate the involvement of aberrant activity of protease(s) associated with normal lens fibre cell differentiation in the early stages of cataract. Immunohistochemical characterisation and localisation of calpain, similar to that completed by Ma et al. (2001), and cytoskeletal proteins in normal and cataract lenses may offer some insight into these processes in the ovine lens.
I would like to thank Dr Jim Morton for his supervision of my master’s research, as well as for giving me the opportunity to work in the lab as part of the Cataract team, and for helping me get a scholarship to be able to do so. Also thanks must go to Jim for reading, critiquing, and encouraging the current work, as well as for the support over the last couple of years while carrying out the research. Thanks too to Dr Graham Kay for the assistant supervision and for the advice and critique during research and during the write up.

I would also like to express thanks to past and present co-workers at Lincoln – Dr Hannah Lee, Karl Gately, Matt Muir, Dr Lucinda Robertson, Jie Lee and Gareth Wilson. Thanks to Hannah for her expertise in all things lens, advice during my research, interest and discussion in this work, and for making the coffee. Thanks to Karl for supplying all the random bits and pieces I needed from time to time, as well as assistance during the research project. Thanks also to Matt for getting the calpain out of those lungs, Lucinda for her expertise early on, and Jie for being a good co-master. Thanks all of you for assisting me during my research and for being good sorts all round. It is appreciated. Also, I made use of a bit of equipment from the Bio-Protection and Ecology Division here at Lincoln University, so I would like to thank the team over there, particularly Margaret Auger and Candice Barclay for looking after the cryostat microtome business and for being generally affable.

I had some outside assistance during my research, so I would like to give thanks to the folk at Malvern abattoir for providing me with a bounty of sheep heads for the current work, and also to the calpain inhibitor researchers at the University of Canterbury for making and supplying the inhibitors. Also I was lucky enough to spend some time earlier on in the piece at the department of Physiology at the University of Auckland with Paul Donaldson’s lens team learning a bit about immunohistochemistry with lenses, so thanks to the team up there for having me.
I would like to thank Douglas Pharmaceuticals Limited and the TEC for funding the Enterprise scholarship. Thanks also to Dr Jim Morton/Cataract Group for assisting in my endeavours throughout the couple of years it has taken to complete this Masters degree.

Thanks must also go to friends and flatmates that over the last couple of years have put up with me during the whole ordeal, when I probably was less than… cheerful ;). I would like also to thank Hugh and Christine Donaldson for putting me up these last few months, and Pam for graciously giving up her space. It is very much appreciated and I would probably have been living in the gutter otherwise so I owe you one.

Finally, thanks to Mum and Dad for supporting me during my studies, not only during the current work but over the last several years, helping out with moving, finding me various household goods, the odd dinner and whatnot. Last but not least I would like to thank Jenny for being there for me and putting up with me over the last few years. I probably wouldn’t have and couldn’t have completed my post-grad studies (or at least kept my sanity) without your company and friendship, so thank you for giving me this.

References

Molecular Probes website (Wavelength excitation and emission data).
http://www.probes.com/handbook/tables/0726.html

References

